
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Classification and characterization of topological insulators and superconductors

Permalink
https://escholarship.org/uc/item/3qh91017

Author
Mong, Roger

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3qh91017
https://escholarship.org
http://www.cdlib.org/


Classification and characterization of topological insulators and
superconductors

by

Roger Mong

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:
Professor Joel E. Moore, Chair

Professor Dung-Hai Lee
Professor Michael Hutchings

Spring 2012



The dissertation of Roger Mong,
titled Classification and characterization of topological insulators and superconductors,

is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2012



Classification and characterization of topological insulators and
superconductors

Copyright 2012
by

Roger Mong



1

Abstract

Classification and characterization of topological insulators and superconductors

by

Roger Mong
Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

Topological insulators (TIs) are a new class of materials which, until recently, have been
overlooked despite decades of study in band insulators. Like semiconductors and ordinary
insulators, TIs have a bulk gap, but feature robust surfaces excitations which are protected
from disorder and interactions which do not close the bulk gap. TIs are distinguished from
ordinary insulators not by the symmetries they possess (or break), but by topological in-
variants characterizing their bulk band structures. These two pictures, the existence of
gapless surface modes, and the nontrivial topology of the bulk states, yield two contrasting
approaches to the study of TIs. At the heart of the subject, they are connected by the
bulk-boundary correspondence, relating bulk and surface degrees of freedom. In this work,
we study both aspects of topological insulators, at the same time providing an illumination
to their mysterious connection.

First, we present a systematic approach to the classification of bulk states of systems
with inversion-like symmetries, deriving a complete set of topological invariants for such
ensembles. We find that the topological invariants in all dimensions may be computed al-
gebraically via exact sequences. In particular, systems with spatial inversion symmetries
in one-, two-, and three-dimensions can be classified by, respectively, 2, 5, and 11 integer
invariants. The values of these integers are related to physical observables such as polariza-
tion, Hall conductivity, and magnetoelectric coupling. We also find that, for systems with
“antiferromagnetic symmetry,” there is a Z2 classification in three-dimensions, and hence
a class of “antiferromagnetic topological insulators” (AFTIs) which are distinguished from
ordinary antiferromagnets. From the perspective of the bulk, AFTI exhibits the quantized
magnetoelectric effect, whereas on the surface, gapless one-dimensional chiral modes emerge
at step-defects.

Next, we study how the surface spectrum can be computed from bulk quantities. Specif-
ically, we present an analytic prescription for computing the edge dispersion E(k) of a tight-
binding Dirac Hamiltonian terminated at an abrupt crystalline edge, based on the bulk
Hamiltonian. The result is presented as a geometric formula, relating the existence of sur-
face states as well as their energy dispersion to properties of the bulk Hamiltonian. We
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further prove the bulk-boundary correspondence for this specific class of systems, connect-
ing the Chern number and the chiral edge modes for quantum Hall systems given in terms
of Dirac Hamiltonians. In similar spirit, we examine the existence of Majorana zero modes
in superconducting doped-TIs. We find that Majorana zero modes indeed appear but only
if the doped Fermi energy is below a critical chemical potential. The critical doping is asso-
ciated with a topological phase transition of vortex lines, which supports gapless excitations
spanning their length. For weak pairing, the critical point is dependent on the non-abelian
Berry phase of the bulk Fermi surface.

Finally, we investigate the transport properties on the surfaces of TIs. While the surfaces
of “strong topological insulators” – TIs with an odd number of Dirac cones in their surface
spectrum – have been well studied in literature, studies of their counterpart “weak topolog-
ical insulators” (WTIs) are meager, with conflicting claims. Because WTIs have an even
number of Dirac cones in their surface spectrum, they are thought to be unstable to disor-
der, which leads to an insulating surface. Here we argue that the presence of disorder alone
will not localize the surface states, rather, presence of a time-reversal symmetric mass term
is required for localization. Through numerical simulations, we show that in the absence
of the mass term the surface always flow to a stable metallic phase and the conductivity
obeys a one-parameter scaling relation, just as in the case of a strong topological insulator
surface. With the inclusion of the mass, the transport properties of the surface of a weak
topological insulator follow a two-parameter scaling form, reminiscent of the quantum Hall
phase transition.
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Preface

Electrical insulators prevents the flow of electricity, thermal insulators impedes the flow of
heat, so obviously topological insulators are materials which stops the flow of topology.

Imagine a partition dividing two regions. On one side there are a lot of topology, while the
other side is devoid of topology. If the partition is made of a topological superconductor,
then over time the topology will leak through and it’ll get everywhere resulting in a giant
topological mess. However, should the partition be a topological insulator, then the topologies
remain safely on one side and everything is good.

This thesis is story of two cities. Two cities locked in a conflict for which there may be
no victor. The city of topological insulator seeks contain and trap the most ancient and
dangerous source of topology. The city of topological superconductors seeks to unleash and
wield such power, to enrich all with the essence of topology. Neither will yield, neither will
waver, neither will rest until judgment has passed and its enemies vanquished. This is a war
for their future, a war for the fate of spacetime, a war with consequences that will reverberate
for eons to come. This is a topological war.
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Part I

Introduction
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Chapter 1

Brief introduction to topological
insulators

Recently a new class of materials have emerged, which are insulating in the bulk, but sup-
port gapless boundary conducting modes. These “topological insulators”1 were predicted [1–
5] to exist and subsequently confirmed experimentally in HgTe quantum wells and thermo-
electric materials Bi2Se3 and Bi2Te3 [6–9]. The peculiar thing about the edges/surfaces
of these materials is that they are robust to interaction and disorder, as long as the ex-
tended states in the bulk are gapped. In particular, the conducting boundary exhibits
antilocalization behavior, in contrast to many one-dimensional (1D) and two-dimensional
(2D) materials [10–12].

The history of topological insulators (TIs) began in the 80s with the quantum Hall effect
(QHE), with the famous experiment by von Klitzing et al. [13] on 2D electron gases. Contrary
to the classical Hall effect, in which the Hall conductance σxy = jx/Ey is proportional to the
applied magnetic field B, von Klitzing found σxy plateaus as a function of B. In addition,
he found that the conductivity was exactly quantized:

σxy = ν
e2

h
(1.1)

where ν is an integer e is the electron charge and h is Planck’s constant. It was through the
works of Thouless et al. [14] along with Simon [15] that linked the Hall conductivity to the
topology of Bloch wavefunctions, they showed that σxy is quantized provided the bulk gap
exists. The quantum Hall effect may be regarded as the first topological insulator, with the
Hall conductivity being a topological response function of the system. One may perturb a
quantum Hall system – but as long as the material remains insulating, σxy is invariant under
adiabatic changes to the system.

The discovery of QHE led to the birth of topological phases,2 where phases of matter are
not distinguished by broken symmetries as according to the Landau paradigm [17, 18], but

1The term “topological insulator” was coined by Joel E. Moore in Ref. [1].
2Topological phases does not necessarily imply topological order as defined by Wen [16]. Unfortunately,
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are instead differentiated by topological invariants. Here the topological invariant is ν ∈ Z.3

Now the answer to following question is evident: what are the possible insulating phases
that cannot be deformed in to one another by a continuous change in the system? Simply,
there is one class for every integer ν. For most insulators (e.g. silicon, vacuum) this invariant
is zero, while each QH plateau belongs to a different class.

The QHE breaks time-reversal symmetry, from the fact that the Hall conductance σxy

is odd under time-reversal symmetry (TRS); this symmetry breaking is due to the external
magnetic field. What happens if we constrain ourselves to two-dimensional materials which
does not break time-reversal? Evidently we cannot have the quantum Hall effect, but we
can still apply the idea of a topological classification. In recent years Kane and Mele showed
that within the set of time-reversal symmetric insulators, there are two subclasses which
are adiabatically disconnected [3, 19]. Every TRS insulator belongs to the “even” subclass
or the “odd” subclass, and we say that there is a Z2 = Z/2Z classification among 2D TRS
insulators. The even subclass is referred to as “topologically-trivial” (or ordinary) insulators,
and the odd subclass as “topological insulators,” or the quantum spin Hall (QSH) insulators.
While many materials (including the vacuum) are in the even subclass, HgTe quantum wells
are shown to be in the odd subclass [6]. From an experimental perspective, the restriction
to time-reversal symmetric systems has a tradeoff: while this eliminates magnetic materials
from the classification, the strong magnetic fields required to sustain the QHE are no longer
needed.

The topological classification can be extended to 3D time-reversal invariant insulators [1,
4, 5]. Tens of compounds have been confirmed as topological insulators, including Bi2Se3

and Bi2Te3 [8, 9]. These two are particularly notable in that their band gaps are over 1000 K,
allowing their special properties to be experimentally accessible at room-temperature. Com-
mon to all these types of topological insulators are conducting edge states. For example,
the QHE admits chiral edge modes, fermionic modes that only propagate in single direction
along the edge [20]. These edge modes are one of the physical manifestations of these oth-
erwise abstract topological classification. In this thesis we explore many of these ideas in
details, tackling the interplay between bulk topological invariants and surface excitations,
and their phenomenology.

The purpose of this chapter is to serve as an introduction and a brief review to the
theoretical concepts and phenomenology of topological insulators and topological supercon-
ductors. There are a number of excellent topical reviews covering the field in much greater
depth than permitted here, the reader is encouraged to consult to Refs. [21–26] for a much
more comprehensive review of the subject.

the use of “topological order” within the condensed matter community has been rather inconsistent, with
conflicting definitions. In this text, we give a self-consistent definition of “topological phases” without
reference to topological order.

3Z denotes the set of integers.
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Figure 1.1: The quantum Hall effect.

The figure shows typical data for the integer QHE. The diagonal ρxx (blue) and Hall
ρxy (red) resistivity plotted as a function of applied magnetic field. ρxy plateaus at h

νe2

and ρxx is zero in a quantum Hall phase. During the transition from one quantum Hall
state to another, ρxx is non-zero signaling a insulator-metal-insulator transition.

1.1 Quantum Hall effect

Consider the Hall experiment on a sample in the xy-plane, with a fixed magnetic field Bz

in the z-direction. In the linear response regime, the relationship between the electric field
E and current j can be captured by the resistivity/conductivity tensor:

j = σE, σ =

[
σxx σxy

σyx σyy

]
, E = ρj, ρ =

[
ρxx ρxy

ρyx ρyy

]
. (1.2)

The matrices are related σρ = 1. From isotropy, we can argue that σxx = σyy and σyx =
−σxy. (Likewise for the resistivity) In the classical Hall experiment, the Hall resistivity is
proportional to the magnetic field:

ρxy = BzRH = −Bz/ne (classical formula), (1.3)

where n is the electron density and e is the elementary charge [27].
In 1980, von Klitzing measured the Hall resistivity on 2D electron gas (MOSFET inversion

layer) [13]. What he discovered was that the ρxy was not proportional to Bz, but has plateaus
at quantized values

ρxy = − h

νe2
(quantum Hall effect), (1.4)
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where ν is an integer. In addition, the diagonal resistivity ρxx vanishes at these plateaus
(Fig. 1.1). Today, measurements have confirmed that ν is an integer to one part in a billion,
this “exact quantization” in various materials points to the inadequacy of the classical theory
and suggests that a new physical phenomenon is at work [28].

When ρxx = 0, then σxx is also zero and the Hall conductivity/resistivity4 are related
by σxyρxy = −1 and hence σxy = νe2/h. While it may seem paradoxical that both σxx

and ρxx vanish, this is consistent considering the matrix relations σρ = 1. The vanishing
conductivity σxx = 0 means that quantum Hall system is an insulator parallel to the electric
field, while the vanishing resistivity ρxx = 0 means that there is no voltage drop parallel to
the current. In this section, we will introduce basic concepts of topology in quantum Hall
states.

1.1.1 Landau levels and band theory

Using basic quantum mechanics, it is easy to show that the energies of an electron in
a magnetic field quantizes in to Landau levels (n + 1

2
)~ω where ω = eB

m
is the cyclotron

frequency. The magnetic length is defined lB = ( ~
mω

)1/2, one can think of
√

2lB as the
“classical radius” of the electron orbit. The Landau energy levels are highly degenerate, and
the number of states per level can be approximated as follows:

NL = number of states ≈ Area of sample

Area of an electron
≈ A

2πl2B
=

Φ

Φ0

. (1.5)

Φ0 = h/e is the flux quanta and Φ = AB is the magnetic flux through the sample.5 If the
Fermi level lies between Landau levels, there will be some integer number (N) of completely
filled bands, hence NNL number of electrons. In the simplest treatment, equation (1.3) gives
the quantized ρxy = −h/Ne2 that we are looking for. Here each Landau level contributes
one unit (e2/h) of conductance and σxy measures the number of filled bands.

While the above picture is simple, it fails to explain why the quantum Hall effect is
universal – that is, the exact quantization is unaffected by the material geometry, impurities
and electron interactions. Laughlin provided an elegant argument based on the principle of
gauge invariance, and later Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) along
with Avron, Seiler, and Simon showed the relationship between the Hall conductivity and
Bloch wavefunctions [14, 29].

In a periodic potential (i.e., crystal), the single-electron wavefunctions satisfying Schrö-
dinger’s equation

Hψµk(r) = Eµ
kψ

µ
k(r) (1.6)

4In 2D, the Hall conductance and conductivity are the same; independent of material geometry. The
same applies for resistance/resistivity.

5This approach to compute the degeneracy NL = Φ/Φ0 is meant to be intuitive rather than rigorous. A
fully quantum mechanic treatment yield the same result.
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can be decomposed as product of a plane wave and a periodic function [27, 30]:

ψµk(r) = exp(ik · r)uµk(r) , (1.7)

where µ is the band index, and k is the wavevector. The “Bloch function” uµk(r) has the same
periodicity as the lattice, and hence we can think of the Bloch function living in a unit cell.
The Bloch functions uµk along with the energies Eµ

k determine the electronic spectrum of the
material. The discrete translational symmetry of the lattice means that we may restrict k
to a particular Brillouin zone (BZ), the periodicity of the BZ makes it topologically a torus.

The Hall conductivity for a 2D system may be written in terms of the Bloch functions [14]:

ν =
h

e2
σxy =

∑
µ occ.

�
BZ

i

2π

(
〈∂kxu

µ
k|∂kyu

µ
k〉 − 〈∂kyu

µ
k|∂kxu

µ
k〉
)
dkx dky , (1.8)

where the sum is over all occupied bands, and the integral is performed over the entire
Brillouin zone (BZ). While the expression (1.8) looks complicated, we can infer a fair amount
of information from it. First note that the expression only depends on the Bloch functions,
but not the energy, the only role of the energy is to distinguish between the occupied and
unoccupied bands. Second, the integral always evaluates to an integer over the Brillouin
zone (to be explained later), so ν must be an integer as long as there are no partially filled
bands [29]. Further, because ν is an integer, it must be a constant under continuous changes
to the system, as long as the number of occupied bands remains fixed (gapped insulator).

1.1.2 Berry phase, Chern integer, and topology

The preceding explanation related the Hall conductance to the Bloch functions in an
algebraic manner, but did not provide an explanation for why ν must be an integer. In this
section we paint a geometric picture for the mysterious looking expression (1.8), but first we
must define the concept of Berry6 phase [32]. The Berry connection (A) and Berry phase
(φ) are defined as follows:

A(k) =
∑
µ occ.

〈uµk|i∇k|uµk〉 , (1.9)

φ =

�
γ

A · dk . (1.10)

A is a vector defined in terms of the Bloch functions, and φ is the connection integrated over
some loop γ. It is important to note that A is gauge dependent, and possibly multi-valued.
What we mean is that there are more than one choice of Bloch functions uµk which satisfy
Bloch’s theorem (1.6) due to the phase ambiguity in quantum mechanics, and a different

6Also called the Pancharatnam phase, for Pancharatnam’s study of phase shifts as the polarization of
light is changed [31].
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gauge choice gives a different connection A. In addition, it is not always possible to find a
set of Bloch functions which are continuous in the entire BZ, hence A can only be defined
locally. More precisely, under the gauge transformation

uk → eiθ(k)uk , (1.11)

the Berry connection also changes:

A → A−∇kθ . (1.12)

However, the Berry phase

φ→ φ− θ
∣∣end

start
(1.13)

will only change by some integer multiple of 2π. The reason for this is that θ(k) may not be
single-valued, but eiθ must be such for the transformation (1.11) to be meaningful. Hence,
eiφ is a gauge invariant quantity depending on the loop γ. The form of A resembles that of
the electromagnetic vector potential, and we can define another quantity called the Berry
curvature:

F(k) = ∇k ×A , (1.14)

such that equation (1.8) reads:

ν =
1

2π

�
BZ

F d2k . (1.15)

Notice that A is analogous to the vector potential A while F is analogous to magnetic field
B, this comparison makes it easy to see that F is indeed gauge invariant. The analogy is no
accident, in fact, the equations of motions for a wave packet are [33]:

k̇ = − e
~

E− e

~
ṙ×B , (1.16a)

ṙ =
1

~
∇kE

µ
k − k̇×F , (1.16b)

where r and k measure the average position and momentum of the wave packet, the dot
implies time-derivative: k̇ = dk/dt. The first equation is simply the Lorentz force on an
electron, but notice in the second equation there is an “anomalous velocity” term k̇×F . One
can argue that the term makes the two equation more symmetric, and that the curvature
F deflects an electron moving in k-space in the same way that the magnetic field deflects a
particle in real space.

In 1931, Dirac showed that the existence of a magnetic monopole leads to the quantization
of electric charge (and vice versa), the magnetic flux through a closed (boundaryless, e.g. a
sphere or torus) surface must be multiples of the quantum flux Φ0 = h/e, in order for the
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Figure 1.2: A loop γ on a sphere.

The loop divides the surface into two complementary areas, the boundary of each being
γ. (These two areas have opposite orientation) The magnetic flux Φ through the two
areas (accounting for orientation) differs by multiples of h/e. So the total flux of the
sphere is quantized in units of the flux quanta h/e. This argument extends to any
closed 2D (orientable) surface.

quantum mechanical theory to be self-consistent: Φ = nΦ0 [34]. Dirac’s argument was as
follows: Consider an electron confined to a closed two-dimensional surface penetrated by a
magnetic field. The Aharonov-Bohm phase for a closed loop γ is defined as φ = e

~

�
γ
A · dr =

e
~

�
B ·dS, proportional to the magnetic flux through the area enclosed by the loop; however,

there are two areas which share a common boundary γ, and the two areas are complement
to each other. The Aharonov-Bohm phase for both areas must be compatible, which means
they must differ by integer multiple of 2π; therefore, the net magnetic flux through the entire
surface must be integer multiples of the flux quantum Φ0 = h/e, and so the magnetic charge
inside the surface must be quantized (Gauss’ law).

Extending our analogy between magnetism and Berry curvature, we apply the same
argument. The Brillouin zone is a torus due to periodicity in reciprocal space, which is our
closed surface. Just as the magnetic flux Φ is quantized, the Berry flux 2πν =

�
F d2k for

the entire BZ must also be an integer multiple of 2π. The fact that ν must be an integer
was demonstrated by TKNN, who at the time were unaware of the mathematical work by
Chern in the classification of complex vector bundles. When the relationship between these
two seeming different ideas were established, ν came to be known as the TKNN/Chern
number [15, 29].7

We have argued that Φ and σxy were quantized based on purely geometric grounds. In
the magnetic monopole case, it is only possible to change the number of flux quanta through
the closed surface by passing a monopole in on out of its interior; however, the moment
that the monopole passes through the surface, the surface vector potential and magnetic
field are no longer continuously defined, leading to a singularity. Similarly for the quantum
Hall system, it is possible to change the Hall conductivity by passing a “TKNN monopole”
through the BZ, but doing so requires a singularity in the Berry connection and Bloch

7More accurately, the TKNN integer corresponds to the first Chern class.
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Electromagnetism Bloch functions

Vector potential A Berry connection A = 〈uk|i∇k|uk〉
Aharonov-Bohm phase φ = e

~

�
A · dr Berry phase φ =

�
A · dk

Magnetic field B = ∇×A Berry curvature F = ∇k ×A
Lorentz force ṙ×B Anomalous velocity k̇×F

Quantized magnetic flux Φ = nh
e

Quantized Hall conductivity σxy = ν e
2

h

Magnetic monopole charge TKNN/Chern number

Table 1.1: Comparison between the electromagnetic vector potential and Berry connection.

The Berry connection of Bloch states are in many ways analogous to the vector potential
in electromagnetism. The same ideas that give rise to a quantized Dirac monopole
charge also gives the quantum Hall effect.

functions. This can only happen when the valence and conduction bands intersect, leading
to a metal-insulator transition. This can be seen in the quantum Hall experiment by peaks
in the diagonal resistance ρxx in Fig. 1.1.

We now return to the question first posed in the introduction: What are the classes of
band insulators that cannot be continuously deformed to one another, while maintaining
a gapped system? From the geometric argument in this section, it is clear that quantum
Hall systems with different TKNN/Chern number form subclasses of insulators which are
disconnected from one another. We call this a Z classification, since each insulator is repre-
sented by an integer ν ∈ Z. It has been shown that this classification is exhaustive within
the framework of 2D non-interacting electrons,8 which is to say that the Hall conductance
completely describes the topology of band insulators [29, 35].

1.1.3 Gapless chiral edge modes

In the previous sections, we have ignored an apparently flagrant paradox. If the quantum
Hall systems are insulators, then how do they conduct the Hall current? The answer lies
at the boundary: The quantum Hall system has gapless edge states, these edge states are
conducting and form a persistent current around the boundary of the material [20].

The edge states are chiral, meaning the current has a preferred direction, behaving like
perfect 1D quantum wires. These wires are “topologically protected;” as long as the bulk
electronic gap exists, the edge states are perfectly conducting even in the presence of impu-
rities and defects. This result is surprising due to the tendency for electron states to localize
in one-dimension, in fact, any small amount of disorder in an 1D metal drives the system
to an insulator [10, 12]. Intuitively one can understand the (anti)localization behavior by
the following traffic analogy. Imagining a single wire (road) with left and right propagating

8The fractional quantum Hall effect requires electron-electron interaction and does not fit under the
TKNN classification.
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(a) (b) (c)

Figure 1.3: The edge of a quantum Hall system.

A chiral current runs around the edge of a quantum Hall system. In these figures,
the net current results from the difference between the current on the top and bottom
edges.

modes (traffic in both direction). In absence of electron interactions (passing) or impurity
scattering (road obstacles) the electrons (cars) travel smoothly in both directions exhibit-
ing metallic behavior; however, any small amount of interaction or impurities will allow the
electrons to backscatter (forcing cars onto oncoming traffic), causing the electrons to localize
(traffic jam). In a quantum Hall system, the left and right propagating modes are spatially
separated on opposite edges of the material, making backscattering impossible.

The relation between the bulk spectrum and the edge spectrum is generally referred to as
the “bulk-boundary correspondence,” which states that a gapless excitation must exist at the
interface between two different topological classes of materials [20, 36, 37]. A heuristic way
to understand the correspondence is as follows. Consider a domain wall between two bulk
insulators with differing topological invariants νL and νR. Since the value of the invariant
cannot change for finite energy gap, the bulk gap must closes at the interface. Midgap
excitations can thus exist, but they are confined to the interface by the bulk gap in the other
regions. In this particular case, the boundary of the quantum Hall is an interface between the
system and vacuum (having σxy = 0). The difference in Chern number νQH − νvacuum = νQH

gives the number of chiral edge modes [38–41].

1.2 Quantum spin Hall effect

In the quantum Hall experiment, time-reversal is explicitly broken by the external mag-
netic field, which picks out a particular edge chirality and determines the sign of the Chern
number ν. The Hall conductivity σxy = jx/Ey is odd under time-reversal, as the current j
is odd under time-reversal but the electric field E is even. Hence, none of the topological
classes ν 6= 0 can be realized while maintaining time-reversal symmetry.

In 2005, Kane and Mele proposed the quantum spin Hall insulator - which is constructed
by taking two copies of quantum Hall systems with opposite Chern number and spin [2].
Time-reversal flips both spin and the Chern number, mapping one quantum Hall layer to the
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Figure 1.4: A lattice model of the quantum spin Hall insulator.

Kane and Mele’s quantum spin Hall model on a honeycomb lattice from Ref. [2]. The
model consists of a hopping term between nearest-neighbor with coefficient t. Next-
nearest-neighbor hopping along dashed arrows are of the form iλSOσ

z which is spin
dependent, where λSO is the spin-orbit coupling. (Hopping against dashed arrow is
−iλSOσ

z, such that the Hamiltonian is hermitian.)

other, such that time-reversal is preserved for the system as a whole. Their explicit model
was constructed with a tight-binding model on a honeycomb lattice (Fig. 1.4), based on prior
work by Haldane [42]. Spin-orbit coupling of the form ∇V (r) × ṙ · σ plays the role of the
magnetic field in the quantum Hall effect, deflecting opposite spins in opposite directions.
(Here σ = (σx, σy, σz) are the Pauli matrices.) This causes the spin up electrons to behave as
if they were under an out-of-plane magnetic field, and the spin down electrons in an in-plane
field. Finally, the spin-orbit coupling also opens a gap in the electronic spectrum, since the
nearest-neighbor hopping alone leads to a gapless conductor (i.e., graphene).

Conceptually, this construction of the spin Hall insulator is simply two copies of quantum
Hall such that total Chern number vanishes, and one might expect that we can classify all
such systems by the Chern number of one of the layers ν↑ = −ν↓ ∈ Z. However, the absence of
interaction between the spin layers is not only unrealistic, but uninteresting from a theoretical
point of view. When there are interaction between the two spins, the individual quantum
Hall layers are not well-defined, and there is no longer a Z topological classification of the
system. The question remains: Are there subclasses of time-reversal invariant insulators
which are topologically distinct from one another?

1.2.1 Z2 classification and edge states

In another remarkable paper, Kane and Mele showed that even in the presence of spin
mixing (e.g. Rashba effect), a topological distinction still remains between the “even” insula-
tors and “odd”insulators [3]. What this means is that one can deform all the even subclasses
(consisting of quantum Hall pairs ν↑ = +2n and ν↓ = −2n) to one another, but these are
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topologically distinct from the odd subclasses. The authors then proceeded to show that
their quantum spin Hall model (Fig. 1.4) belongs to the odd subclass. We call this a Z2

classification, where Z2 = Z/2Z is a group of order two,9 every time-reversal symmetric
insulator is characterized by ν being even or odd (as opposed to an integer).10 The even
subclass (which includes the vacuum) is commonly referred to as the “ordinary insulator”
or the “topologically trivial insulator” and the odd subclass is called the “2D topological
insulator” or sometimes the “quantum spin Hall insulator [1].” While these names could
be confusing and possibly misleading, they have been popularized and are widely used in
literature.

Formally, the Z2 invariant can be formulated in terms of the band structure, specifically
the Bloch functions uµk, similar to the construction of Z invariant for the quantum Hall
effect. In other words, for any time-reversal invariant band structure, there is an associated
element of Z2 (i.e., even or odd) which describes the topology of the Bloch functions. This
invariant may be computed directly from the Bloch functions [3], from an integral of the
Berry connection and curvature [1, 19], or in the presence of crystal inversion symmetry
by counting the number of band inversions [43]. The last technique is particular useful as
many materials have a spatial inversion, thus simplifying the calculations and also helping
physicists identify new potential topological insulators.

The 2D topological insulators also have gapless edge modes by the bulk-boundary cor-
respondence. The edge spectrum consists of opposite spins moving in opposite directions,
consistent with the picture painted earlier in this section. (For example, the spin up and
spin down electrons deflected in opposite directions due to spin-orbit interactions.) The two
edge bands are time-reversal conjugates of one another, known as Kramers pair. It turns out
that it is impossible for backscattering within a Kramers pair with a time-reversal invariant
potential, which guarantees the stability of the topological insulator boundary spectrum as
long as there are an odd number of Kramers pairs [44–46]. On the other hand, magnetic
impurities (breaking time-reversal) would allow backscattering, thereby opening a mobility
gap at the material edge. We see that the topological insulator is only stable within the
constraints given by time-reversal symmetry, Fig. 1.5 shows a schematic phase diagram of
how TRS fits in to the classification of 2D band insulators.

Kane & Mele originally suggested that the quantum spin Hall insulator could be realized
in graphene, but it soon became clear that the spin-orbit coupling λSO in carbon was much too
small for the desired effect. Since spin-orbit is a relativistic effect, heavy elements generate
much larger spin-orbit coupling and are required for the realization of topological insulators.
Bernevig et al. [47] suggested a possible realization of 2D topological insulator involving HgTe
sandwiched between CdTe layers to create a 2D quantum well, which was soon confirmed by
König et al. [6] in an experiment. With a six-terminal transport probe, they measured the

9The group structure of Z2 = {even, odd} tells us what happens when we combine different insulators.
For example, two topological insulators (odd) combine in to an ordinary insulator (odd + odd = even), but
the combination of an ordinary and topological insulator gives a topological insulator (even + odd = odd).

10We also note that, in contrast to the QH case, the spin Hall conductivity is not quantized in QSH
insulators. The Z2 invariant ν does not correspond to a linear response function.
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Figure 1.5: A schematic phase diagram for 2D materials.

The crescent-shaped regions represents insulating phases, while the surrounding regions
(with diagonal stripes) are metallic. Each crescent region represents either a trivial or
quantum Hall phase (characterized by ν), and are all disconnected from one another.
The strip in the middle represents the subset which are time-reversal invariant. Within
this strip, there are two insulating phases, the “ordinary insulator” and “2D topological
insulator” (Z2 classification). Notice that these two regions are disconnected within the
strip, but may be connected via ν = 0 phase by breaking time-reversal symmetry; the
Z2 topological invariant is only protected within the time-reversal symmetric class.

quantized conductance e2/h for each edge of the system, thereby confirming the helical edge
natural of the QSH insulator. The details of the experiments are presented in Refs. [6, 48].

1.3 Topological insulators in 3D

The quantum Hall and the quantum spin Hall effect are fundamentally two-dimensional,
and it is natural to ask, are there three-dimensional generalizations of the topological insu-
lator?

As shown by Refs. [1, 4, 5], there are four Z2 invariants associated with the Bloch functions
inside the 3D Brillouin zone for TRS band insulators. The BZ is a 3-torus (3D box with
periodic boundary conditions), which we can parametrize by three momentum coordinates
−π < k1, k2, k3 ≤ π. Time-reversal is an antiunitary operator, flipping the sign of the
momentum: k → −k. Notice that there are special values of k1 which are invariant under
time-reversal, namely 0 and π, since the periodicity of reciprocal space makes π and −π
equivalent in the BZ. Hence time-reversal takes a point k = (π, k2, k3) to (π,−k2,−k3),
mapping the plane k1 = π to itself. We can see that the 2D plane k1 = π has the same
properties as the BZ of a 2D system respecting time-reversal. The same argument shows
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Figure 1.6: The 3D Brillouin zone.

Shown in the figure are six planes in the Brillouin zone (BZ) which are time-reversal
invariant. Associated with each plane is a Z2 topological invariant. The three light
blue planes corresponds to k1 = 0, k2 = 0, k3 = 0, which gives the invariants ν1, ν2, ν3.
The three dark green planes corresponds to k1 = π, k2 = π, k3 = π, which gives the
invariants µ1, µ2, µ3.

that k1 = 0, k2 = 0 or π, and k3 = 0 or π planes are also time-reversal symmetric.11 Each
of these six planes has an associated Z2 invariant – we denote νi and µi (i = 1, 2, 3) to be
the topological invariants corresponding to ki = 0 planes and ki = π planes respectively (see
Fig. 1.6).

The six invariants νi, µi are computed from the bulk 3D band structure, however these
quantities are not independent. The variables satisfy ν1 + µ1 = ν2 + µ2 = ν3 + µ3, giving us
only four independent topological invariants. Defining ν0 ≡ ν1 + µ1, the four Z2 invariants
ν0, ν1, ν2, ν3 provide a complete classification of the three-dimensional TRS insulators. Each
of these quantities may be even or odd, giving us a total of 16 distinct classes.

• When all four invariants are even, then we have a “topologically-trivial insulator” or
“ordinary insulator.” (e.g. vacuum)

• If at least one of ν1, ν2, ν3 is odd while ν0 is even, then we have a “weak topological
insulator” (WTI), to be explained shortly. For this reason ν1, ν2, ν3 are called weak
topological invariants.

• Finally when ν0 is odd, we have a “strong topological insulator,” (STI) or sometimes
simply “topological insulator.” ν0 is referred to as the strong topological invariant.

11There are more planes within the BZ that are time-reversal images of themselves. It can be shown that
all these planes can be obtained by combining the six planes defined here in addition to a TRS deformation
of planes. The important point here is that we can always write the Z2 invariant of any plane as some linear
combination of the invariants νi, µi for the six planes, hence the six planes alone is sufficient for a topological
classification.
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Figure 1.7: Dirac cone dispersion at the surface of strong topological insulators.

The surfaces of topological insulators consist of an odd number of Dirac cone with
dispersion E = ±~v|k|, where v is the “Dirac velocity.” Near the Dirac point, the
density of states is linear in the bias voltage |E|. The effective Hamiltonian is of the form
H = ~v(kyσ

x − kxσy), which guarantees spin-momentum locking in the cone. (In this
simple model, the spin and momentum are always in the xy-plane, but perpendicular
to each other.)

1.3.1 Strong topological insulators (STI)

The strong topological insulator has no analogy with the 2D quantum (spin) Hall effect,
unlike the weak case. From the bulk-boundary correspondence, we expect gapless surface
modes, these 2D modes are robust to disorder. The surface spectrum looks like a massless
Dirac cone, where the energy is linear in momentum. The (2D) Dirac Hamiltonian for a
massless particle is of the form

Hsurface = ~v(kyσ
x − kxσy) , (1.17)

where σα (α = x, y, z) are the Pauli matrices, v is the “Dirac velocity,” giving a linear
energy-momentum dispersion (see Fig. 1.7). The spin degrees of freedom are coupled to
momentum, which is sometimes referred to as spin-texture. Dirac cones dispersion also
exist in graphene, but while graphene has four (including spin) Dirac cones in the BZ,
strong topological insulators have an odd number of Dirac cones on the surface. The odd
number and the absence of backscattering12 protects the gapless spectrum in the presence
of disorder [49–53].

How do we find these interesting materials? It turns out that almost all insulators are
trivial, it is rather rare for a material to be a topological insulator. The mathematical
formulation of the strong topological insulator was given earlier, but that gives little insight
in to the physics driving a system to a topological state.

12While backscattering is forbidden by TRS, side-scattering is still permitted, allowing current dissipation.
Hence the conductivity on the surface of a STI is not quantized unlike the edge of a QSH insulator.
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A topological insulating phase requires some sort of band inversion at various points of
the Brillouin zone [43, 47]. An example is if the valence band has s character at certain points
(say Γ) but p character at other points (say X,L in a face-centered-cubic system), while the
conduction band character has s and p reversed at these BZ points. This means that the
s orbitals is below the Fermi energy at one BZ point, but above the Fermi energy at other
BZ points. (In between these BZ points, the s and p orbitals are not energy eigenstates,
in fact, this is required for the material to have a bulk gap.) The band inversion is be
driven by spin-orbit coupling,13 for which the effect is strongest in heavy elements. At the
same time, the material must have a small enough band gap such that spin-orbit coupling is
strong enough to modify the orbital energies, inverting the bands. Typically, a compound’s
band structure is computed (e.g. via density functional theory) with and without spin-orbit
coupling to detect band inversions. Should the material exhibits an odd number of such
inversions, it becomes a STI candidate to be confirmed by experiments. Coincidentally,
these are the same characteristics shared by good thermoelectric materials; heavy elements
reduces thermal conductivity from phonons and a small band gap gives a large Seebeck and
electrical conductivity. For these reasons, one tends to look in similar classes of materials
for both topological insulators and efficient thermoelectric materials.

The first (3D) topological insulator found was Bi1−xSbx. It was predicted to be topologi-
cally insulating and later confirmed by angle-resolved photoemission spectroscopy (ARPES)
experiments [7, 43]. Hsieh et al. [7] were able to see both the bulk and surface band structure,
confirming a bulk gap and showing five Dirac cones on the surface. ARPES is a powerful
technique in mapping the energy spectrum of materials. An incident photon causes electron
to be ejected from the sample, and by controlling the incident energy and measuring the
electrons momentum, one can map out the energy-momentum dispersion. One can further
resolve the spin of the electron to map out the spin-texture of the Dirac cone [54–56].

Shortly after, Bi2Te3, Bi2Se3 and Sb2Te3 were predicted and confirmed to be topological
insulators by similar experiments [8, 9, 57, 58]. These materials have been extensively studied
in the past as they are widely used in thermoelectric applications.14 The compounds are
“simpler” in the sense that the elements are in stoichiometric ratios (in contrast to Bi1−xSbx),
and their surfaces has only one Dirac cone. Sometimes called the “hydrogen atom” of
topological insulators,15 these materials are much simpler from a theoretical point of view,
and yet capture all of the theory. In addition, these materials have a large bulk band gap
(300 meV in Bi2Se3), making their topological properties accessible at room temperature,
and increasing their potential applications [22].

Similar to the quantum Hall effect, topological insulators can be characterized by a

13Without spin-orbit coupling, band inversion always occurs in pairs (spin degeneracy) at any given mo-
mentum in the BZ. Only an odd number of band inversions can drive the system to a TI.

14Even before the theoretical work on 3D topological insulators, Bi2Te3 and Bi2Se3 were known to possess
surface states (e.g. Ref. [59]) with linear density of states. However, their significance were not realized at
the time.

15The analogy first appeared in Ref. [8].
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quantized response function, in this case the magnetoelectric polarizability [60, 61]

α =
∂P

∂B
= n

e2

2h
, (1.18)

a measure of the electric polarization in response to an external magnetic field. By the
Onsager reciprocal relation, the magnetoelectric coupling can also be written as ∂M

∂E
; the

magnetization response to an applied electric field. For topological insulators, n is an odd
integer, while for ordinary (time-reversal symmetric) insulators n is even (similar to ν0).
The constant e2

h
is ubiquitous in condensed matter physics: contact conductance in 1D, Hall

conductivity in 2D. Experiments for this quantized magnetoelectric response is underway
and will complement photoemission experiments in the study of topological insulators.

1.3.2 Weak topological insulators (WTI)

For weak topological insulators, the invariant ν0 vanishes and ν1 = µ1, etc. We can
construct the reciprocal lattice vector Gν = ν1G1 +ν2G2 +ν3G3, where Gi are the primitive
reciprocal lattice vectors of the Brillouin zone [4]. Since one of the νi is nonzero, Gν 6= 0
has a preferred spatial direction, hence WTIs are intrinsically anisotropic. They may be
constructed by stacking 2D quantum spin Hall layers which are weakly coupled to each
other (so to not close the bulk gap). The resulting surface spectrum always has an even
number of Dirac cones – zero, two, or four are the most common. It is worth noting, that for
any weak topological insulator, there always exist some surface which consists of two Dirac
cones (to contrast ordinary insulators).

These weak topological insulators are only different from the trivial insulator in terms of
the band structure, and hence their surface spectrums may be gapped out with appropriate
surface perturbation. In particular, WTI are unstable to a period-doubling perturbations
and its surface states do not enjoy the same level of protection from impurities or disorder
the way STI do. From a topological classification point of view, WTIs are indistinguishable
from ordinary insulators if one doubles the primitive unit cell, making it possible to deform
a WTI to a trivial band insulator adiabatically without closing the bulk gap. For these
reasons, WTIs are often overshadowed by their strong cousins.

While WTIs are only technically defined in the clean limit with a fixed lattice unit cell – a
condition that can never be truly realized in experiments – there are a number of effects which
should still be observable in the presence of disorder. For example, a line lattice dislocation
in the bulk will support a gapless 1D helical mode running along the defect [62, 63]. In
addition, the surface states are predicted to be stable even with disorder [64, 65], a somewhat
counterintuitive statement given that lattice translational symmetry is a required to define
a WTI. In Chap. 8, we examine the stability of the surfaces of WTIs in much greater depth.

Unfortunately, there are currently no candidate materials for WTIs. Since there is no
fundamental reason why WTI does not exists in nature, the absence of candidates may be
due to the lack of interest in the search for WTIs.16

16Na2IrO3 has been suggested as a potential WTI [66], however, experiments seems to suggests that the
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1.4 Topological superconductors

A similar classification also applies to superconductors. At first glance, superconductors
are closer to metals than insulators. However, (non-nodal) superconductors have a quasi-
particle gap much like how insulators have an electronic gap. Just as insulators have zero
electrical conductivity, superconductors have zero thermal conductivity.17 While electrons
and holes in band insulators can be described by hopping models and band Hamiltonians,
superconductors and their quasiparticles can be characterized by a Bogoliubov-de Gennes
Hamiltonian, which we explain in the next section.

From this perspective we can ask: when can we deform one gapped superconductor to
another? Are there classes of superconductors which are not adiabatically connected to a
simple conventional superconductor? The latter question we answer in the affirmative – they
are called topological superconductors.

1.4.1 Symmetries, Altland-Zirnbauer classification

To understand the Bogoliubov-de Gennes Hamiltonian, we start by briefly reviewing
the formalism of band insulators. In the cases discussed earlier (e.g., QHE, QSHE, TI),
the effective Hamiltonian of the system can be captured by band theory, that is, we can
write down a Hamiltonian consisting of only electron hopping terms to model such systems.
Imagine a lattice, with electronic degrees of freedom at every site. Every site can be filled
or empty, and electrons are allowed to hop between such sites. The many body Hamiltonian
H can be written as

H =
∑

r,α,r′,α′

tr
′,α′

r,α c†rαcr′α′ , (1.19)

where r and r′ denotes the locations of the electronic orbitals, and α, α′ denote all local
degrees of freedom (such as orbital and spin) in a unit cell. tr

′,α′
r,α are the hoppings amplitudes

from one site/orbital to another, they must satisfy tr,αr′,α′ =
(
tr
′,α′

r,α

)∗
forH to be hermitian. The

presence of translational symmetry, allows the Hamiltonian to be decomposed by momentum
sectors

H =
∑
k

∑
α,α′

c†α,k
(
Hα′

α

)
k
cα′,k . (1.20)

The destruction (creation) operators momentum space are the (inverse) Fourier transforms
of their counterparts crα (c†rα) in position space, and (Hα′

α )k is the Fourier transform of t,
i.e., tr

′,α′
r,α = 1

Nf

∑
k(Hα′

α )ke
ik·(r−r′), where Nf = (number of sites × NB), with NB being the

number of degrees of freedom per unit cell. Hk is an NB × NB square matrix, it is the

material develops magnetic order spontaneously, breaking time-reversal [67, 68].
17More, precisely, the electronic contribution to the thermal conductivity is zero, phonons in the materials

may still carry heat current.
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eigenvalues and eigenvectors of this matrix which gives the band energies Ek and Bloch
functions uk in Eq. (1.7). Written in matrix notation, Eq. (1.21) becomes

H =
∑
k

c†kHk ck , (1.21)

where now we’ve written the destruction operator ck is a column vector (c1,k, . . . , cNB ,k)T

(and c†k is row vector).
Hk captures all the information about the band model. The classification of band insu-

lators amounts to asking which classes of Hk can and cannot be deformed to one another.
Phrased another way, we examine the parameter space of all hermitian functions Hk with a
gap, the topological invariants simply labels the components of this parameter space, where
separate components are disconnected and hence cannot be adiabatically deformed to one
another. (This is formulated more precisely in Chap. 3.)

How does symmetries fit in to this picture? The presence of a symmetry restricts the
class of possible Hamiltonian to a subspace.

H−k = ΘHkΘ−1 , (1.22)

where Θ is the time-reversal operator. Time-reversal is an antiunitary operator which re-
verses the spin of an electron: Θ|↑〉 = |↓〉, but also Θ|↓〉 = −|↑〉. The negative sign is
important, a reflection of the algebra Θ2 = −1 for spin-1/2 particles. This minus sign have
profound implications, the Kramers degeneracy theorem [69], stability of the QSH edge,
weak antilocalization [70, 71] are among the physical consequences. By convention, we write
Θ = −iσyK with K the complex conjugation operator,18 Eq. (1.22) can also be written as

H−k = σyH∗kσ
y . (1.23)

This restriction can eliminate possible components of the Hamiltonian phase space, here
time-reversal symmetry forbids phases with nonzero Chern number, restricting the space to
ν = 0. At the same time, the symmetry restriction may break a single phase into multiple
components, here there are two time-reversal components within the ν = 0 phase. (Figure 1.5
illustrates both these scenarios.)

We digress for a moment to address: Why is spin-orbit coupling important? TRS systems
without spin-orbit coupling must have full electronic spin rotation invariance, the reason is
that terms which differentiate between the spins involve the spin operators σα, and these are
forbidden by time-reversal.19 Spin rotation symmetry implies that the system is invariant
under a global rotation of the electron spin, independent of the physical orientation of the
system, which we abbreviate as SU(2) symmetry.

18The Pauli matrix σy =
[ −i
i

]
. Generally, Θ

(
a|↑〉 + b|↓〉

)
= −b∗|↑〉 + a∗|↓〉. The −i in −iσyK is not

necessary, but is merely convention – even without the factor, Θ2 = −1 holds.
19Under time-reversal, σα → −σα, so the spin operators cannot exist by themselves in TRS systems. On

the other hand, time-reversal also flips the momentum, so spin-orbit combinations like k · σ are allowed.
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The combination of TRS and SU(2) symmetry imposes additional constraints of Hk.
With SU(2) symmetry, the spin-up and spin-down subsystem must be identical and decou-
pled from one another. Time-reversal thus takes a state |k ↑〉 to |−k ↓〉, which is equivalent
to |−k ↑〉. Ignoring the spin index, the Hamiltonian satisfies

H−k = H∗k . (1.24)

One can think that Eq. (1.22) still holds, but now the effective time-reversal operator is
simply Θ = K. Notice now that Θ2 = +1, since we can treat our TRS and SU(2) invariant
Hamiltonian as two copies of some spinless fermionic system. The positive sign leads to weak
localization [72, 73] and a completely different topological classification.

Superconductors and Bogoliubov-de Gennes Hamiltonian

To model a superconductor, we add in an effective electron-electron interaction term of the
form

∑
k,k′ Vk,k′c

†
kc
†
−kck′c−k′ , taking a pair of electrons from ±k′ to ±k. Let us for simplicity,

assume a single orbital (with spin-up and down) and conventional s-wave superconductivity
for the moment, our pairing term becomes

∑
Vk,k′c

†
k↑c
†
−k↓ck′↑c−k′↓ [74]. In the self-consistent

mean field treatment, we let ∆k =
∑

k′ Vk,k′
〈
ck′↑c−k′↓

〉
, treating it as a static quantity only

as a function of k. The pairing term is approximated by∑
k

∆kc
†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑ . (1.25)

We have the Bogoliubov-de Gennes (BdG) Hamiltonian [75],

H =
1

2

∑
k

( c†k↑ c
†
k↓ c−k↑ c−k↓ )

 Hk i∆kσ
y

−i∆∗kσy −HT
−k




ck↑

ck↓

c†−k↑

c†−k↓

 (1.26)

=
1

2

∑
k

Ψ†kH
BdG
k Ψk . (1.27)

This equation packs a lot of information regarding the Hamiltonian.

• Here HBdG
k is a 4× 4 matrix, with Ψ being a four component vector.

• Hk is a 2× 2 matrix describing the Hamiltonian of the original two band metal. It sits
in the upper left corner of HBdG

k coupling c†k and ck just as in the Hamiltonian (1.21).

• H−k sits in the lower right corner, coupling c−k to c†−k. However, notice that the
destruction operators are in the row vector on the left of the matrix, while the creation
operators are on the right. The transpose takes care of the swapped row/column
vectors, and the negative sign is from the exchange of c and c†.

• That means that for every term in the summation
∑

k, both pieces Hk and H−k are
added to the sum. The factor of 1

2
remedies the double counting that results.
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• The ∆k and ∆∗k terms introduce mean field pairing into the Hamiltonian. The factor
iσy = [ 1

−1 ] is a 2 × 2 matrix which ensures spin-singlet pairing. (That is, pairing
spin-up with spin-down consistent with Fermi statistics.)

Similar to Hk in Eq. (1.21), The eigenvectors and eigenvalues of HBdG
k tells us what the

quasiparticles are and their energies. The difference here is that Ψ†k contains both c†k and
c−k, meaning that quasiparticle excitations are superpositions of electrons and holes. The
possibility of mixing particles with +e and −e charge together is allowed in a condensate of
charge 2e Cooper pairs.

Each term HBdG
k captures the electron motion at both wavevector k and −k, making

HBdG
−k redundant. In fact, we can map HBdG at k to that at −k. First, notice we can take

Ψ†k to ΨT
−k (as a row vector) by swapping the first two with the last two elements, which we

can write as Ψ−k = (Ψ†kτ
x)T . Here τx is a matrix which swaps the elements, defined as

τx =

[
1

1
1

1

]
. (1.28)

We equate the terms Ψ†kH
BdG
k Ψk = Ψ†−kH

BdG
−k Ψ−k. Skipping over the algebraic details, the

matrices are related by the following equation,

HBdG
−k = −τx

(
HBdG

k

)∗
τx . (1.29)

In words: Take the four 2 × 2 subblocks of HBdG
k in Eq. (1.26), swap each of them to the

opposite quadrant, take the complex conjugate, multiply by −1, to get HBdG
−k . This form

is reminiscent of Eqs. (1.23) and (1.24), namely it places a constraint for the Hamiltonian
at opposite momenta k and −k. From this perspective, we can view BdG Hamiltonians as
possessing a new type of symmetry – called particle-hole symmetry – for every quasiparticle
excitation at energy E and wavevector k, there also exists one at −E and −k. However,
we note that the particle-hole symmetry is really an artifact of the way we create our BdG
Hamiltonian; by doubling the system and coupling operators at momenta k and −k to-
gether. Hence, the BdG Hamiltonian modeling our superconductor gives twice the degree
of freedom than it truly has, in particular, creating a quasiparticle at (E,k) is exactly the
same as removing one at (−E,−k). Nevertheless, HBdG proves to be useful in classifying
superconductors.

More generally, superconductors (conventional or otherwise) can always be characterized
by a BdG Hamiltonian of the form in Eq. (1.27), with a particle-hole symmetry

H−k = −CHkC−1 . (1.30)

C is called either the particle-hole operator or the charge-conjugation operator. (In the single-
orbital s-wave case, C = τxK.) This allows us to view superconductors as band insulators
with extra symmetries, and we can ask the same question as before: what classes of BdG
Hamiltonians can and cannot be deformed to one another, while maintaining a gap?
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TRS
Spin-

conserved
AZ name

Topological invariants

1D 2D 3D

Standard

No Either A Z
Yes No AII Z2 Z2

Yes Yes AI

Chiral

No Either AIII Z Z
Yes No CII Z Z2

Yes Yes BDI Z

Bogoliubov-
de Gennes

No No D Z2 Z
Yes No DIII Z2 Z2 Z
No Yes C Z
Yes Yes CI Z

Table 1.2: List of symmetry classes and their topological invariants up to 3D

The table here reproduces the results from Ref. [77]. The “AZ name” is the designation
given by Altland and Zirnbauer [76] for the corresponding disordered ensemble. The
list of symmetries is complete among systems without any spatial (e.g. crystalline and
inversion) symmetries.

Table 1.2 lists the possible symmetry classes by combining various combinations of sym-
metries, as well as the topological invariants that exists up to three-dimensions. Each row
corresponds to a symmetry class – an ensemble of Hamiltonians satisfying certain symmetries
and relations. The “AZ name” refers to the designation given by Altland and Zirnbauer [76],
and while the labels are completely unilluminating as to the symmetries involved and how
they could be physically realized, these names are used widely when discussing topological su-
perconductors. The symmetry classes can be grouped in to three categories. The “standard”
classes consist of the band Hamiltonians discussed earlier, with AII and AI corresponding
to the constraints (1.23) and (1.24) respectively. The “chiral” classes can be realized in a
hopping model with sublattice symmetry, that is, the system breaks in to two sublattices,
called ‘A’ and ‘B,’ we allow hopping between ‘A’ sites and ‘B’ sites, but forbid those between
‘A’s and those between ‘B’s. The BdG classes exists in context of superconductors discussed
a moment ago.

This table, called the “periodic table of topological insulators and superconductors,”
was first put together by Schnyder, Ryu, Furusaki, and Ludwig [77], and independently by
Kitaev [78]. These topological invariants are exhaustive, meaning that they describe all
possible “strong” topological invariants in up to three-dimensions. Z denotes an integer
invariant (e.g. in QH), Z2 denotes an even/odd type classification, and blank entries implies
the lack of topological distinction among that symmetry class in the particular dimension.
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An entry thus indicates the existence of a topological insulator or topological superconductor
(TSC) in the corresponding class. A number of TIs/TSCs have been found experimentally,
and there are candidate materials for a large number of these entries. Among those discussed
earlier, the quantum Hall systems belong to the “A” class in 2D, the quantum spin Hall in
HgTe wells belong to the “AII” class (also in 2D), and topological insulators (such as Sb2Te3)
belong to the 3D “AII” class. In the next section we discuss some of the properties of TSCs
and their experimental status.

1.4.2 Realizing topological superconductors

Topological superconductors were actually conceived of before topological insulators. At
the turn of the millennium, Read and Green [79] showed that the two-dimensional “p+ ip”
superconductor is in a nontrivial topological phase. A p + ip superconductor, or more
accurately px + ipy superconductor, is one where the pairing term ∆k [as in Eq. (1.25)]
is proportional to kx + iky, (at least when k is small). Contrast to conventional (s-wave)
pairing, where ∆k is constant coupling the spin in a singlet, in p+ ip pairing ∆k depends on
kx, ky and couples like spins together.

The p + ip superconductor breaks time-reversal symmetry; it belongs to the “D” class
in Tab. 1.2, where 2D systems can be characterized by an integer. Similar to QH systems,
Bogoliubov-de Gennes Hamiltonians in 2D can also be classified by their TKNN/Chern
number. A p + ip superconductor has a Chern number of 1, hence there is a single chiral
mode which runs around its edge.20

Perhaps the most exciting part about these p + ip superconductors are the Majorana
fermion modes found pinned to the center of superconducting vortices. A Majorana fermion
can be thought of as half a fermion which are their own antiparticles [80, 81].21 These
particles possess non-abelian statistics, which means that through braiding operations one
can evolve from one degenerate ground state to another [82–84]. This is the idea behind a
topological quantum computer, where information are stored by the Majorana fermions, and
computation is performed by braiding operations [82, 83, 85, 86]. The degenerate ground
states are stable in the sense that they cannot mix with one another via any local pertur-
bations to the system, hence a topological quantum computer would be less susceptible to
decoherence compared to other implementations of quantum computers.

Can such an exotic system be realized? Currently, SrRu2O4 [87] is a candidate for p+ ip
superconductors, although current experimental evidences are not completely clear. It is also
suggested that the fractional quantum Hall at ν = 5/2 could be a p + ip ‘superconductor,’
not in terms of bare electrons, but constructed from pairing composite fermions [79].

While the use of Majorana fermions to construct a quantum computer seems far-fetched,
Majorana fermions themselves have recently been observed in InSb wires in an experiment
by Mourik et al. [88]. The experiment realizes a model by Kitaev [89]; a one-dimensional

20More precisely, a chiral Majorana mode around its edge.
21They arise naturally from the BdG Hamiltonian as states with zero energy.
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topological superconducting wire with single Majorana modes on each end. (The model is
an example of a nontrivial 1D system in the “D” class.) As the “Kitaev wire” is one of
the simplest system to realize Majorana fermions, its implementation was the subject of a
number of theoretical proposals [90–92]. The essential ingredients are: a superconductor,
spin-orbit coupling, and time-reversal breaking. In the experiment, this is realized with
InSb wires (for the spin-orbit effect), in proximity with NbTiN superconducting electrodes,
immersed in a magnetic field (breaking time-reversal). Transport measurements show a
zero-bias conductance peak, a signature that is characteristic of Majorana fermions.

Finally, we’d like to comment on time-reversal symmetric superconductors (class “DIII”
in Tab. 1.2). CuxBi2Se3 is shown to be a superconductor and is currently a candidate to be a
3D topological superconductor [93–96]. If such is the case, then their surface would support
“Dirac cones of Majorana fermions.” (As opposed to Dirac cones of electrons for TIs.)
The current difficulty lies in the ability to probe the superconducting surface states, and to
distinguish the their signatures from those of TIs (as the parent compound Bi2Se3 is also a
TI). Curiously, superfluid 3He-B is also proposed to realize a 3D topological superconducting
phase [97]. Here the electrons do not pair to become a superconductor, but the helium-3
atoms pair to become a superfluid.

1.5 Applications and outlook

The search for more topological insulating materials continues. For example, thallium
based compounds such as TlBiSe2 have been suggested to be a topological insulator [98–100]
which have subsequently been experimentally verified [101–104]. Recent ab-initio calcu-
lations of various ternary compounds including half-Heusler alloys suggest new classes of
semiconductors which are topological insulators, some which have been confirmed experi-
mentally [105–108]. Much work has been focused on band structure calculations of semicon-
ductors in a race to discover more topological insulators, this along with the competition
to fabricate new materials and experimentally confirm their topological properties has led
to myriad of new TI compounds [109–114]. This larger pool of materials will allow greater
control over properties such as the bulk gap, chemical potential, lattice structure, surface
Dirac velocity, superconductivity, etc. for various applications.

Much experiments have been based on surface-sensitive techniques such as ARPES and
scanning tunneling microscopy (STM) [52, 115–117], as these directly probe surface states
which are the key experimental signatures of a topological insulator. On the other hand,
transport experiments are crucial to complement these results, and gives us information re-
garding the bulk region of these materials. For example, Peng et al. [118] used the Aharonov-
Bohm interference to confirm the surface conduction in nanoribbons while other groups used
Shubnikov-de Haas oscillations to probe their 2D surface properties [113, 119–123]. The main
challenge in these transport experiments is the ability to tune the chemical potential to be
in the bulk gap of the material as to maximize the contribution from surface electrons to
conductance [9, 113, 121, 124, 125]. Currently many topological insulators samples are either
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p-typed or n-typed and are not truly insulating, i.e., the conduction channels are dominated
by the bulk carriers. Improvements in materials fabrication and the ability to control the
chemical potential are among the most difficult hurdles in the study of topological insulators.
(Refer to Ref. [126] for a more comprehensive review of transport in TIs.)

There have also been interests in the fabrication of topological insulators nanostructures,
particularly nanoribbons [118, 127, 128] and thin films [129–134] where nanoscale effects
become important. For instance, in a thin film of TI, the opposite surfaces can be close
enough to each other to allow interlayer electron hopping [130, 135–137], or Coulomb in-
teractions between the surfaces [133, 134]. At the same time, these geometry optimizes the
surface to volume ratio, a way to enhance surface contributions to transport. In light of
the realization that topological insulators (namely Bi2Te3 and Bi2Se3) also tends to be good
thermoelectric materials, our new theoretical understanding of TIs could help us further im-
prove their thermoelectric efficiency [138–143]. Roughly, to have an efficient thermoelectric
material one desires a large electrical conductivity, but a small thermal conductivity. These
nano-geometries may improve thermoelectric performance in two ways. Spatial confinement
of phonons tends to reduce their mobility, thereby reducing the overall thermal conductivity,
At the same time, increasing surface-to-bulk ratio also increases the density of states (per
volume) due to the surface excitations, potentially raising the overall electrical conductivity.

Perhaps the most promising direction for topological insulators are heterojunctions with
conventional superconductors. The superconducting proximity effect opens a gap at the
interface surface, which may host Majorana fermions [144]. The properties of these SC–TI
junctions are in many ways similar to that of a p+ ip superconductor, where the Majorana
fermions obey non-abelian statistics. There are a number of proposals to create Majorana
fermions involving topological insulators, Refs. [145–147] to name a few. All these proposals
involve similar ingredients: Take a topological insulator, put it in proximity with a super-
conductor, and break time-reversal symmetry. Refs. [148, 149] review various proposals of
realizing Majorana fermions in SC–TI interfaces, and more generally, semiconductor systems.

The study of topological insulators and superconductors is a rapidly developing field in
condensed matter physics and material science. This is an exciting time for both theorists
and experimentalists, as many ideas are being tested, and many open questions remain. The
potential applications such as thermoelectricity and topological quantum computing will
further expand the breadth of this field.
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Chapter 2

Overview of thesis

The thesis is divided in to three parts. In Part II, we study the bulk properties of
topological insulators, specifically the topological invariants which distinguishes one class
from another. We then discuss how these invariants could be observed physically. In Part III,
we focus on the relationship between the bulk and surface properties, specifically in cases
where the surface spectrum could be determined from geometric bulk properties alone. In
Part IV, we analyze the transport properties of the surface of weak topological insulators.

Part II is further subdivided into three chapters.

• Chapter 3, “Topology of Hamiltonian spaces,” presents a mathematical approach to
the classification of band insulators. In any dimension, we devise a formalism and an
algorithm to compute topological invariants for inversion-like symmetry classes. While
the work is unpublished, some of the ideas presented have been published in Ref. [150],
here in this thesis we give much more rigorous treatment of the subject and generalizes
the method to many more symmetry classes.

• Chapter 4, “Inversion symmetric insulators,” applies the classification scheme of the
previous chapter to the inversion symmetry class. We show that with only inversion
symmetry, 3D insulators are characterized by an integer invariant at each of the 8
time-reversal invariant momenta (TRIMs), as well as 3 Chern numbers, for a total
of 11 integers. We also examine various properties associated with each topological
invariants and distills physically observable quantities, such as frozen polarization and
the magnetoelectric coupling. The work was completed in collaboration with Ari M.
Turner, Yi Zhang, and Ashvin Vishwanath, published at Ref. [150].

• Chapter 5, “Antiferromagnetic topological insulators,” classifies antiferromagnets pre-
serving a combination of translation and time-reversal symmetry. We find that in
3D, a Z2 invariant exists distinguishing antiferromagnetic trivial insulators from an-
tiferromagnetic topological insulators (AFTIs). This chapter uses some of the ideas
presented earlier, but is largely focused on the physical implications and the potential
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realizations in experiments. The work was completed in collaboration with Andrew
M. Essin, Joel E. Moore, published at Ref. [151].

Part III consists of two chapters.

• Chapter 6, “Computing the edge spectrum in Dirac Hamiltonians,” presents a ge-
ometric prescription for computing edge state energies of Dirac Hamiltonians. The
prescription applies even when the edge states are not topologically protected, such
as in the case of graphene. However, when applied to topological insulators, we show
that the edge modes are indeed robust, and proves the bulk-boundary correspondence
for the case of Dirac Hamiltonians. The work was completed in collaboration with
Vasudha Shivamoggi, published at Ref. [40].

• Chapter 7, “Majorana fermions at the ends of superconductor vortices in doped topo-
logical insulators,” examines when Majorana fermions can be found without the prox-
imity effect. We argue that their existence is dependent not on the surface band
structure of the parent compound, but on the bulk Fermi surface properties – another
example of the subtle interplay between the bulk and the surface. Specifically, we
demonstrate that the minigap spectrum within the vortex can be computed from the
non-abelian Berry phase of the bulk Fermi surface, which in turn determines the critical
doping level for which Majorana fermions can be localized. The work was completed in
collaboration with Pavan Hosur, Pouyan Ghaemi, and Ashvin Vishwanath, published
at Ref. [152].

Part IV has only one chapter.

• Chapter 8, “Quantum transport on the surface of weak topological insulators,” resolves
the surface properties of WTIs with two Dirac cones. Unlike the STIs, the surface states
may be gapped out with a TRS ‘mass’ term coupling the two Dirac cones. At the same
time, WTIs require lattice translational symmetry to be distinguished from a trivial
insulators, which raises the issue of disorder on the surfaces of WTIs. We find that
the surface conductance flows to an insulator or a symplectic metal, governed by a
competition between disorder and mass. The work was completed in collaboration
with Jens H. Bár�arson and Joel E. Moore, published at Ref. [65].
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Part II

Classification of Band Insulators
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Notation and conventions for the
following chapter

• Sn is an n-sphere. Dn is an n-disk. T n in an n-torus.
Note that ∂Dn ∼= Sn−1, T n ∼= S1 × · · · × S1︸ ︷︷ ︸

n

.

Also, I is the unit interval [0, 1].

• A pointed space is a pair (X, x0) where X is a topological space and x0 ∈ X. Often we
write X instead of the pair when the meaning is implied. Unless otherwise specified,
maps between pointed spaces are basepoint preserving, as are homotopies between such
maps. Formally, a pointed space is always required to define homotopy groups πn(X).

• ΩX is the space of loop in the pointed space (X, x0); set of maps f : I → X, f(0) =
f(1) = x0 along with a compact-open topology. The base point of ΩX is defined to be
the constant loop at x0.

•
(
n

k

)
is a binomial coefficient, equals to

n!

k! (n− k)!
.

• As a group, 0 denotes the trivial group. (In tables, entries with 0 will be left blank.)

• Zn denotes the cyclic group of order n. (Sometimes written as Z/nZ literature.)

• Given two complex vectors u, v ∈ Cn, the inner product is defined as 〈u, v〉 =
∑

µ u
∗
µvµ.

• 1n denotes an n × n identity matrix. (Depending on the context, it is also used to
denote the identity map/operator on a n-dimensional vector space.)

• AT , A∗, A† denotes the transpose, complex conjugation, and hermitian conjugate (or
conjugate transpose) of the matrix A. If A is invariant under AT , A∗, or A†, then A is
respectively, symmetric, real, or hermitian.

• σx, σy, σz are the Pauli matrices. σx = [ 1
1 ], σy = [ −ii ], σz = [1 −1]. σ is a vector of

matrices: (σx, σy, σz).
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• K is the complex conjugation operator. Θ, C, S, Π are the time-reversal, charge-
conjugation, sublattice, and inversion operators respectively.

• H is the set of quaternions of the form a = a0 + a1i + a2j + a3k, with ij = k and
i2 = j2 = k2 = −1. The quaternion conjugation a∗ is given by negating a1, a2, a3.
Often we will employ their 2 × 2 complex matrix representation a = a012 − ia · σ,
such that quaternion multiplication is compatible with matrix multiplication. The
quaternion conjugation becomes the conjugate transpose a†.

• O(N), SO(N), U(N), SU(N) are the orthogonal, special orthogonal, unitary, special
unitary groups respectively. We will always represent an element of these groups by
an N ×N matrix.

• Sp(N) is the compact symplectic group: set of N ×N unitary matrix of quaternions.
Alternatively defined as the set of 2N × 2N matrices A such that ATJA = J and
A ∈ SU(2N), where J is the standard symplectic 2-form: J =

[
1N

−1N

]
.

• Grk(Fn) is the Grassmannian of a associative division algebra F. (We will only use
R, C and H in this text.) That is, the space of all k-dimensional subspace of Fn.
The projective spaces are special cases of Grassmannians with k = 1, e.g., CPn ∼=
Gr1(Cn+1).

• BG denotes the classifying space of group G. We are particularly interested in the
classifying space of classical Lie groups, which can be thought of as the direct limit of
Grassmannians, e.g., BSp(N) ∼ GrN(H∞).
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Chapter 3

Topology of Hamiltonian spaces

In this chapter, we approach the problem of classifying band insulators from a homotopy
point of view. By providing formal definitions for physical concepts such as band structures
and symmetries, we can pose the problem in a rigorous setting. This chapter is intended to
be much more mathematical than the rest of this work, drawing on formal concepts from
abstract algebra and algebraic topology.1 Readers unfamiliar with some of the concepts or
terminology may consult textbooks in algebraic topology.

We motivate this chapter with a puzzle, but first some definitions. A d-dimensional band
structure is a matrix-valued function H(k), where k is the momentum which lives in the
Brillouin zone, topologically equivalent to a torus: k ∈ T d. Rephrased in another way, a
band structure is a map from T d to the set of NB × NB hermitian matrices. The spectrum
of the band structure are the eigenvalues of H(k), a set of NB real numbers at every k.
The spectrum represents the excitation energies of the system, and system is called gapless
if there is a zero eigenvalue in the Brillouin zone. On the other hand, if there are no zero
eigenvalues anywhere, we say the system is gapped, and H(k) describes a band insulator.

What are properties of band insulators? Let H(k) be gapped, hence at every k the matrix
has some number of positive and negative eigenvalues, call them M and N respectively, such
that M +N = NB. Of course, we are dealing with continuous maps,2 hence M and N must
be constant throughout the Brillouin zone. Physically, N is the number of filled bands (or
filled orbitals), M is the number of empty bands, and NB is the total number of bands.
Moreover, any deformation of the band structure, as long as it remains gapped, cannot
change M or N . We ask the general question.

Given two band insulators H(k) and H ′(k), can we adiabatically deform one to
the other without breaking the gap? That is, is there a homotopy between the
two maps?

1There will be no category theory, anywhere.
2H(k) is actually the Fourier transform of the electron hopping amplitude in real space. The condition

that H(k) is a continuous function of k comes from the requirement that the hoppings are local, i.e., they
are exponentially decaying as a function of distance. The concept of locality is paramount in physics.



32

Clearly H(k) and H ′(k) must share the same N , which physically amounts to counting
the number of electrons per unit cell, a necessary, but not very interesting distinction. As
it turns out, there are additional requirements for H and H ′ to be homotopic, the answer
depending on the number of dimensions d. The set of NB ×NB Hermitian matrices is RN2

B ,
a retractable space that is of little interest in terms of homotopy. However, the constraint
that there are no zero eigenvalues yield a subspace which is not topologically trivial (i.e., not
retractable). An algebraic topologist will immediately recognize the subspace is homotopic

to a Grassmannian GrN(CN+M) = U(N+M)
U(N)U(M)

, and the problem related to the classifying
vector bundles on tori, we will return to the latter point in a moment.

To rephrase the question, what are the homotopy classes of maps from T d to GrN(CN+M)?
In d = 2, and for N,M ≥ 1 (so there are at least one filled and empty band), we get a
class of maps characterized by an integer ν. This integer is related to π2(GrN(CN+M)) =
Z.3 The homotopy groups classifies maps from spheres to a pointed space, in this context
S2 → GrN(CN+M). But a torus T 2 and a sphere S2 are not the same – here we are in a
fortuitous situation where the Grassmannian is simply-connected, i.e., its π1 is trivial. A map
T 2 → GrN(CN+M) may be deformed to S2 → GrN(CN+M) by taking two ‘perpendicular’
loops in T 2 and contracting them to form a sphere. In any case, we have the following
necessary (and sufficient) criteria in 2D: the maps H and H ′ must share the same N and
ν to be homotopic. The ν here describes the “Chern number” of quantum Hall phases
described in the introduction.

In 3D, the classification is more complicated. Looking at π3(GrN(CN+M)) is insufficient
since the second homotopy group does not vanish. In the case when N = M = 1, the space
becomes a sphere: Gr1(C2) ≈ S2. Based on the homotopy groups (π2(S2) = π3(S2) = Z),
one might may a naive guess that maps T 3 → S2 are classified by 4 integers invariant, 3
integers for each 2-cells in T 3, and the last one related to the Hopf invariant. Unfortunately,
this is not the case,4 as was shown by Pontryagin [153].

We can also add an additional constraint. We can restrict to systems with time-reversal
symmetry, which puts the constraint that H(−k) = UΘH(k)∗U−1

Θ (for some unitary matrix
UΘ with UΘU

∗
Θ = −1M+N). What are the classification of band insulators with this addi-

tional symmetry constraint? Existing classes (from the case without the constraint) may
be forbidden, while some classes may split in to disconnected pieces, creating a new classes.
This is realized with the quantum spin Hall effect with the presence of time-reversal.

For such classification problems in general to be tractable, we make a few assumptions
and simplifications. First, we let the number of empty bands M go to infinity, which effec-
tively equates the problem with classifying vector bundles. Second, we consider only stably
isomorphic vector bundles, reproducing the results from K-theory. With the inclusion of
symmetries, the classification is in same spirit as equivariant K-theory.

3This integer is also the pullback of the cohomology H2(GrN (CN+M ))→ H2(T 2), but we will defer this
point until much later.

4The naive guess fails because of the nontrivial Whitehead product π2(S2) × π2(S2) → π3(S2). Using
cohomology also fails, as H3(S2) = 0 is unable to capture the Hopf map.



Section 3.1. Topological classification of band structures 33

3.1 Topological classification of band structures

Definition 1. Let Z be a topological space. Z is an H-group if it satisfies the following.

1. There exists a composition map µ : Z × Z → Z.

2. There exists a distinguished element – the “identity” – e ∈ Z for which the maps
x 7→ µ(e, x) and x 7→ µ(x, e) are both homotopic to the identity map.

3. µ is associative up to homotopy: The maps A1, A2 : Z ×Z ×Z → Z are homotopic to
each other where A1(x, y, z) = µ(µ(x, y), z) and A2(x, y, z) = µ(x, µ(y, z)).

4. There exists (right) inverses up to homotopy: For all x ∈ Z, ∃x−1 such that x 7→
µ(x, x−1) is deformable to the constant map x 7→ e.

In addition, an H-group is commutative if it satisfies the following.

5. The maps µ, µ′ : Z × Z → Z are homotopic to each other, with µ′(x, y) = µ(y, x).

Hence we can see that a (commutative) H-group, for the purposes of homotopy theory,
is a (commutative) group. Note that the first two conditions alone defines an H-space. In a
moment, we will give some examples of H-groups useful in the chapter.

H-groups are useful in situations where defining a strict group structure is impractical,
but for the purposes of classifying maps, they can be treated as groups. The homotopy
groups of H-spaces and H-groups have additional properties.

• The fundamental group π1(Z) of an H-space is abelian.

• The homotopy composition of πn(Z) is the same as the induced composition map
µ∗ : πn(X)× πn(X)→ πn(X).

• Properties of Z carries over to π0(Z). If Z is an H-space, H-group, or commutative
H-group, then π(Z) is a monoid, group, or commutative group respectively.

Example 2. Infinite Grassmannian.
Let Grn(C∞) be the limit of the sequence

Grn(Cn) ⊂ Grn(Cn+1) ⊂ Grn(Cn+2) ⊂ · · · . (3.1)

(Grn(C∞) is homotopy equivalent to BU(n).) We represent an element of Grn(C∞) as
an m × m idempotent5 hermitian matrix P with trace equals to n. The inclusion map is
performed by padding zeros to the bottom and right of the matrix.

We let M be the disjoint union of Grn(C∞) for all integers n ≥ 0. For X, Y ∈ M ,
define µ(a, b) as ‘interlacing’ the matrices where the elements µ(X, Y )2a−1,2b−1 = Xa,b and
µ(X, Y )2a,2b = Ya,b, and zero otherwise. (If a or b is larger than the size of the matrix, assume

5An idempotent matrix P satisfies P 2 = P .
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the matrix element is zero.) Pictorially, the construction is as follows:

µ(X, Y )a,b =



X11 X12 · · ·
Y11 Y12 · · ·

X21 X22 · · ·
Y21 Y22 · · ·

...
...

. . .
...

...
. . .


.

The size of µ(X, Y ) would be 2m× 2m, where m is the dimension of the larger matrix. The
identity element is the zero matrix in Gr0(C∞).

Define GC to be the set of pairs (X, Y ), where X, Y ∈ M , and with the identification
(X, Y ) ∼ (AX,AY ) for any A. The identity is (e, e) (or (A,A)). Composition and inverse
are defined as

µ
(
(A,B), (C,D)

)
=
(
µ(A,C), µ(B,D)

)
, (A,B)−1 = (B,A) . (3.2)

Proposition. GC is a commutative H-group.

Proof. This is relatively straightforward to show, albeit tedious.

• Commutativity. It suffices to show that M satisfies criteria 5 for an H-group. Let A,B
be m×m matrices in M , then C = µ(A,B) and C ′ = µ(B,A) are 2m× 2m matrices.6

C and C ′ are related by a unitary transformation C ′ = WCW † (with WW † = 12m),
where W2a,2a−1 = −W2a−1,2a = 1 for 1 ≤ a ≤ m, and zero otherwise. In matrix form:

W =


−1

1
−1

1
. . .

 .

We can see that conjugation by W simply swaps the even and odd rows. Since W ∈
U(2m), which is a connected space, we can deform W to the identity 12m, which gives
us the homotopy between C and C ′.7

• Properties of identity. It suffices to show that M satisfies criteria 2 for an H-group.
Let X be an m × m matrix in M , then X ′ = µ(e,X) is a 2m × 2m matrix, related
to the original matrix by X ′2a,2b = Xa,b. We construct a series of homotopies W(n)(t)
where W(n)(0) is the identity matrix, and W(n)(1) swaps rows (and columns) n with

6If A and B have different sizes, one can pad the smaller one with zeros until they are of the same size.
7For example, we can use W2 =

[
cos θ − sin θ
sin θ cos θ

]
where θ = πt/2 for each 2×2 subblock of W . It is important

to note that the homotopy does not depend on C or C ′.
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2n, similar to the case before. Applying the homotopies W(1), W(2), ... takes µ(e,X)
back to X. We chain the homotopies together by performing the nth one in the interval
[1/2n, 1/2n−1]. Each point in M lies in some finite Grassmannian Grn(Cn+m) which is
eventually stationary in the infinite chain of homotopies.

• Associativity. Let A,B,C ∈ M . µ(µ(A,B), C) and µ(A, µ(B,C) have the same ele-
ments, but with its rows (and columns) swapped. The rows with a = 1, 2, 3, ... of the
former corresponds to rows 1, 4, 2, 8, 3, 12, 5, ... in the latter matrix. We can construct
W to be an appropriate permutation matrix that takes one form to the other.

• Inverse. For (A,B) ∈ GC. We have (AB,BA) is homotopic (by commutativity) to
(AB,AB) ∼ e.

In this construction, (M,µ) satisfies the properties of a commutative monoid8 up to
homotopy. The group composition µ is very much similar to a direct sum (⊕) applied
on vector bundles. Physically, the matrix-valued function P (k) captures a flattened band
structure, where P is a projector on to the filled states. From this viewpoint, the composition
µ(P, P ′) formalizes the concept of combining band structures.

Here we have define GC to be the “Grothendieck group” of M , allowing inverses to be
defined. In general, the Grothendieck group of a commutative monoid (M,+) are formally
pairs of elements (x, y) ∈M ×M with the identification (z + x, z + y) ∼ (x, y). Intuitively,
(x, y) describes the object x − y. For example, the Grothendieck group for the nonzero
integers under multiplication (Z− {0},×) gives the fractions Q.

As it turns out, GC is homotopy equivalent to “the classifying space” Z×BU . The integer
Z can be interpreted as the quantity (TrA − TrB) for the pair A,B ∈ GC, physically, it
describes the number of filled bands.

Example 3. Unitary groups.
Let Sn be a 2n× 2n matrix with 1,−1, 1,−1, . . . along its diagonal, and zeros elsewhere.

Let Mn be the set of 2n× 2n hermitian matrices which anticommutes with Sn and squares
to the identity,9 that is,

Mn ≡
{
X ∈ C2n×2n

∣∣X† = X,X2 = 12n, XSn + SnX = 0
}
. (3.3)

Define the inclusion may Mn → Mn+1 by taking a matrix X by padding two rows of zeros
below, two columns of zeros to the right, and the matrix [0 1

1 0] at the bottom right. Pictorially,

X 7→


X

0 0
...

...
0 0

0 · · · 0
0 · · · 0

0 1
1 0

.
8A monoid is a group without the invertibility requirement.
9We note that Mn is homeomorphic to U(n). Also, the entries of the matrix X ∈ Mn has Xa,b = 0 if

a+ b ≡ 0 (mod 2).
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Let M be the limit of the sequence

M0 ⊂M1 ⊂ · · · . (3.4)

Define the composition map µ in the same manner as in Ex. 2, but in blocks of twos. The
picture is

µ(X, Y ) =



X11 X12
X21 X22

X13 X14
X23 X24

· · ·
Y11 Y12
Y21 Y22

Y13 Y14
Y23 Y24

· · ·
X31 X32
X41 X42

X33 X34
X43 X44

· · ·
Y31 Y32
Y41 Y42

Y33 Y34
Y43 Y44

· · ·
...

...
. . .

...
...

. . .


. (3.5)

The identity element is the matrix in M0.
Once again, we define U as the set of pairs (X, Y ) ∈ M × M with the identification

(X, Y ) ∼ (AX,AY ). We also define composition and inverse the exact same way as in the
previous example [see Eq. (3.2)].

The spaces Z × BU and U have been well-studied in context of topological K-theory.
The bundle Z×EU → Z×BU classifies complex vector bundle, up to stable isomorphism,
in the same manner that EU(n) → BU(n) classifies n-dimensional vector bundles. Their
homotopy groups are given in Tab. 3.1. For example, πn(Z× BU) are the stable homotopy
groups πsn of the complex Grassmannians [GrN(CN+M)].

Via similar constructions to Ex. 2 and Ex. 3, we can define a number of infinite symmetric
spaces associated with KO-theory. For example, restricting Ex. 2 to real numbers, gives GR
which is homotopic to Z×BO. The quaternion analogue yields GH ≈ Z×BSp (cf. Ex. 19).

Example 4. Loop spaces.
Given a pointed space (X, x0), the loop space ΩX is an H-group. Representing an element

of ΩX as f(x), we define the following.

• The identity is the loop f(x) = x0.

• Composition of loops f , g is given by µ(f, g)(x) =

{
f(2x) x ≤ 1/2

g(2x− 1) x ≥ 1
.

• Inverse of f(x) is given by reversal of the loop: f(1− x).

It is straightforward to show that ΩH satisfies the properties of an H-group.

Definition 5. Let d be a positive integer. Define the “Brillouin zone” BZd be a topological
space (R/2πZ)d. R/2πZ is the quotient space where points x ∼ x+ 2π are identified.
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d
πm stable

for m ≤ . . .
πs0 πs1 πs2 πs3 πs4 πs5 πs6 πs7

U(N) N2 2N − 1 Z Z Z Z

Z×GrN(CM+N) 2MN 2M, 2N Z Z Z Z

O(N) N(N−1)
2

N − 2 Z2 Z2 Z Z

Z×GrN(RM+N) MN M−1, N−1 Z Z2 Z2 Z
U(N)
O(N)

N(N+1)
2

N − 1 Z Z2 Z2 Z
Sp(N)
U(N)

N(N + 1) 2N Z Z2 Z2 Z

Sp(N) N(2N + 1) 4N + 1 Z Z2 Z2 Z

Z×GrN(HM+N) 4MN 4M+2, 4N+2 Z Z Z2 Z2

U(2N)
Sp(N)

N(2N − 1) 4N − 1 Z Z Z2 Z2

O(2N)
U(N)

N(N − 1) 2N − 2 Z2 Z Z Z2

Table 3.1: Table of stable homotopy groups.

The first column denotes a series of topological spaces X(N) (or X(N,M)) for various
N (and M), the second column d denotes the dimensionality of the manifold. These
sequences have stable homotopy groups, that is, for sufficiently large N (and M), the
inclusion X(N) → X(N + 1) (or X(N,M) → X(N,M + 1)) induces an isomorphism
in πm. Blank entries denote the trivial group. For the first two rows, Bott periodicity
implies that the stable homotopy groups πm is isomorphic to πm−2 for m ≥ 2. For the
latter rows, πm is isomorphic to πm−8 (for m ≥ 8).

We can use the coordinate system k = (k1, . . . , kd) to describe a point in BZd. It is
understood that k ∼ k + 2π(n1, . . . , nd) for integers n1, . . . , nd. For consistency, we define
BZ0 to be a single point. Furthermore, we define the map −1k : BZd → BZd be the map
that takes k 7→ −k. Note that this map has 2d fixed points, where ka = 0 or π for all a,
these points are referred to as time-reversal invariant momenta (TRIMs).10

Definition 6. Let H0 be a commutative H-group. A d-dimensional band structure is a map
H : BZd → H0.

Here H0 is thought of as the space of 0D Hamiltonians. It is convenient to talk about
the set of all band structures as a topological space. (In the text to follow, we will standard

10For some reason we don’t call them “inversion invariant momenta.” The first use of the term “TRIM”
may have been Ref. [4].
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notation ab to denote group composition µ(a, b). For a series of compositions, we will use
the convention of left-to-right, e.g., abcd = ((ab)c)d.)

Definition 7. Define Hd as the set of all d-dimensional band structures, with compact-
open topology. Group composition is defined in a pointwise manner: given H,H ′ ∈ Hd,
HH ′(k) = H(k)H ′(k).

With this definition, the classification of d-dimensional band insulators is equivalent to
finding discrete pieces of Hd, or π0(Hd). Note that Hd being an H-group endows π0 with a
group structure.

Theorem 8. Hd is homotopic to the Cartesian product

H0 × (ΩH0)d × (Ω2H0)(
d
2) × · · · × (ΩdH0) .

(Here
(
d
n

)
is a binomial coefficient, and Ω is the loop space functor.) Taking π0 of both

sides gives us the following relation.

π0(Hd) ∼= π0(H0)× π1(H0)d × π2(H0)(
d
2) × · · · × πd(H0) . (3.6)

The factors
(
d
n

)
arises from the cellular decomposition of a d-torus: if we construct a T d by

taking a d-cube Id and identifying opposite (n − 1)-faces together, then there are exactly(
d
n

)
n-cells. Physically, we can interpret πd(Hd) as the “strong” topological index, and the

remaining ones as “weak” indices which are constructed from lower dimensional objects.
Before we prove the theorem, it is useful to define H̃d.

Definition 9. Denote v0 as the identity element ofH0. Define H̃0 to beH0. For d > 0, define
H̃d to be the sub-H-group of Hd such that H(k) = v0 whenever any one of the components
of k is zero. Define the basepoint vd ∈ H̃d as the constant map to v0.

It is straightforward to see that H̃d is equivalent to the set of maps Id → H0 with the
restriction that ∂Id must map to v0. The following statement is trivial.

Proposition 10. H̃d is isomorphic ΩdH0.

Proof of Theorem 8. Consider the cellular decomposition of BZd where there is a cell for
each subset of the coordinates {k1, k2, . . . , kd}, and for each subset of coordinates c =
{kc1 , kc2 , . . . , kcn}, the n-cell ec lives in the plane where ki = 0 for each ki not in c. (I.e., ec is
completely described by the coordinates c, and contains the origin (0, . . . , 0).) Hence there
is a 0-cell corresponding to the empty set {},

(
d
n

)
n-cells corresponding to the sets with n

coordinates, for a total of 2d cells. Denote the n-skeleton (union of all m-cells with m ≤ n)
as An. We define the ‘boundary’ of the n-cell ec as its intersection with An−1.11

11Technically the cells as defined here have no actual boundaries, because 0 ∼ 2π by construction of BZd.
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Let H(k) be an element of Hd. We decompose H(k) as a product of hc(k) ∈ Hd, one for
each cell ec, as follows.12

H ∼
(
h{}
)(
hk1hk2 · · ·hkd

)(
hk1,k2hk1,k3 · · ·hkd−1,kd

)
· · ·
(
hk1,k2,...,kd

)
. (3.7)

The first term corresponds to the 0-cell, terms in the second set of parentheses corresponds
to 1-cells, etc. Within each set of parentheses we place the terms in lexicological order. We
also impose the constraints:

1. For each cell ec, hc(k) is independent of the coordinates ki which are not in c.

2. hc(k) restricted to the ‘boundary’ of ec is v0 (identity of H0).

For example, h{}(k) is a constant map, hk1(k) is a function of k1 only, with hk1(0, k2, . . . ) =
v0, etc. This construction yields the property, that for each n-cell ec, the restriction hc|ec
completely determines hc on the entire BZd. However, restricting hc to ec gives an element
of H̃n, and so Eq. (3.7) provides the map

H̃0 × H̃d
1 × H̃

(d2)
2 × · · · × H̃d

φ−−→ Hn . (3.8)

We now argue that decomposition (3.7) is always possible, constructing a map Hn to
the product of H̃n’s. Let H(n)(k) be a partial product of Eq. (3.7), where we only keep the
first (n + 1) parentheses. First, we let h{}(k) = H(0)(k) = H(0, . . . , 0), and then proceed
inductively on the skeletons An.

Suppose that, in restricting to the (n− 1)-skeleton, H(n−1)|An−1 is homotopic to H|An−1 .
For each n-cell ec, we let hc|ec be homotopy equivalent to H−1

(n−1)|ecH|ec , where the restriction

to the ‘boundary’ of ec is v0. This defines hc (up to homotopy) over all of BZd, and guarantees
that the partial product H(n)|An is homotopic to H|An . Repeating this process, hc is well-
defined for all cells, which gives us the map

Hd
ψ−−→ H̃0 × H̃d

1 × H̃
(d2)
2 · · · × H̃d . (3.9)

The compositions φψ takes H(k) and returns H∗(k) which is homotopic to it (and sim-
ilarly for ψφ acting on hc(k)’s). This establishes an isomorphism between π0 of each side
of (3.9) above, and hence proves Eq. (3.6). To proof the stronger statement in the theorem,
we can show that φψ and ψφ induces an automorphism on all homotopy groups as follows.
Take H(x,k) as a map Sm → Hd, where x ∈ Sm. Repeat the existing argument, replacing
ec and An with Sm × ec and Sm × An respectively. This shows that homotopy classes of
maps Sm → Hd are equivalent to that of Sm → H̃0 × · · · × H̃d for all m, and the desired
result follows from the Hurewicz Theorem.

With Thm. 8, we can compute the topological invariants for two symmetry classes.
Table 3.2 gives some possible symmetry classes and their invariants. The table is by no
means exhaustive, but captures some likely symmetries found in physical systems. (At least
those without too much fine tuning.) Of the classes listed, their Hamiltonian space H0

determines all the topological invariants in all dimensions.

12Note that hc(k) lives on the entire BZd, not just on ec.
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Symmetry
class

Symmetries
present H0

πd(H0)

π0 π1 π2 π3

Unitary (A) ∅ (None) Z×BU Z Z

Chiral (AIII) S U Z Z

Inversion · TR ΠΘ−1 Z×BSp Z

Inversion · TR ΠΘ+1 Z×BO Z Z2 Z2

Table 3.2: Topological invariants for symmetry classes without BZ symmetries.

The first two rows belong in the Altland-Zirnbauer classification [76], while the latter
rows required lattice symmetries (i.e., inversion). The operators S, Π, Θ are the
sublattice, inversion, and time-reversal symmetries respectively. (E.g., ΠΘ−1 denotes
that the combination of inversion and time-reversal (squaring to −1) is present, but not
separately. This might be applicable to certain types of magnetic materials with zero
net-magnetization.) The column π0, π1, etc. gives the strong topological invariants
found in 0-, 1-, etc. dimensions. (Blank entries denote the trivial group.)

3.2 Classification with Brillouin zone symmetries

We now turn our attention to band structures with additional constraints. These con-
straints are ‘nonlocal’ in the sense that they impose constraints between Hs at different
points k and −k.

Definition 11. Let H0 be a commutative H-group and T : H0 → H0 be an automorphism
with T 2 = 1H0 is the identity. A d-dimensional band structure respecting T is a map
H : BZd → H0, such that

H(−k) = T H(k) . (3.10)

Definition 12. Given the H-group H0 and the map T , define Id for d > 0 as the set of all
d-dimensional band structures respecting T , with compact-open topology. Composition is
defined in a pointwise manner: given H,H ′ ∈ Hd, HH

′(k) = H(k)H ′(k). Define I0 as the
sub-H-group of H0 which is invariant under T .

Our goal is to be able to say for each (H0, T ), what band structures can and cannot be
deformed to one another, i.e., compute π0(Id). Similar to the case without T , we define Ĩd
as a subset of the spaces Id. Again, they describe maps from Sd to H0 (subject to symmetry
T ) rather than from BZd. The separation into “strong” and “weak” topological indices also
carries over to the case with Brillouin zone symmetries, the precise meaning of this is made
clear in Thm. 14.
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Definition 13. Define Ĩd to be the intersection of H̃d and Id for all d ≥ 0. Define id : Ĩd →
H̃d as the inclusion map.

Hence we have Ĩ0 = I0. For d > 0, an element H ∈ Ĩd satisfies H(k) = v0 whenever any
component of k is zero, in addition to (3.10). Similar to before, Ĩd may be thought of as maps
(2πI)d → H0 subject to constraints ∂(2πI)d 7→ v0 and H

(
(2π, 2π, . . . , 2π)− k

)
= T H(k).

Theorem 14. Id is homotopic to the Cartesian product

Ĩ0 × Ĩd1 × Ĩ
(d2)
2 × · · · × Ĩd .

In addition, the following is a group isomorphism.

π0(Id) ∼= π0(Ĩ0)× π0(Ĩ1)d × π0(Ĩ2)(
d
2) × · · · × π0(Ĩd) . (3.11)

The proof is identical to that of Thm. 8, with the addition check that each term in the
decomposition (3.7) respects (3.10).13

Theorem 15. πn(Ĩd) is isomorphic to the relative homotopy group πn+1(H̃d−1, Ĩd−1).

Proof. Let A,B ⊂ X. Denote P(X,A,B) as the space of paths in X from A to B, that is,

P(X,A,B) ≡ {f : I → X | f(0) ∈ A, f(1) ∈ B} . (3.12)

An element H(k) ∈ Ĩd can be characterized as a path in H̃d−1.

ft(k2, . . . , kd) = H(πt, k2, . . . , kd) ,

for t ∈ I. It suffices to only describe H for half the Brillouin zone k1 ∈ [0, π] as the other
half is related by T . At t = 0, f0(k2, . . . ) = v0. At t = 1, f1(k2, . . . ) = H(π, k2, . . . , kd) =
T H(π,−k2, . . . ,−kd). Hence, Ĩd is homeomorphic to P(H̃d−1, vd−1, Ĩd−1) as a topological
space.

Consider a map f : (In, ∂In) → (Ĩd, vd). Seeing that elements of Ĩd can be represented
as paths I → H̃d−1, f can be recast as a map In × I → H̃d−1 subject to the following
constraints.

• ∂In × I maps to vd−1.

• In × {0} maps to vd−1.

• In × {1} maps to Ĩd−1.

The set of f is then equivalent to maps (In+1, ∂In+1, Jn) → (H̃d−1, Ĩd−1, vd−1), where Jn is
the closure of ∂In+1−In×{1}. Therefore, the homotopy classes πn(Ĩd) and πn+1(H̃d−1, Ĩd−1)
are equivalent.

13Note that in the proof of Thm. 8, the cells ec and their ‘boundaries’ are invariant under −1k : k 7→ −k.
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With this equivalence, we have the long exact sequence. (Refer to Sec. 4.2.4 for a detailed
explanation of this exact sequence.)

· · · // πn+1(Ĩd)
id∗ // πn+1(H̃d)

jd∗ // πn(Ĩd+1)
∂∗ // πn(Ĩd)

id∗ // πn(H̃d) // · · · . (3.13)

Here jd : ΩH̃d → Ĩd+1, a map which takes a loop in H̃d to a path in Ĩd+1 ' P(H̃d, vd, Ĩd)
in a straightforward manner. jd∗ is the induced map from πn+1(H̃d) = πn(H̃d+1) to πn(Ĩd+1).
The boundary map ∂ : Ĩd+1 → Ĩd takes a path and gives the endpoint at t = 1, with ∂∗ the
induced map for the homotopy groups.

Definition 16. Define the map T d : H̃d → H̃d as T d : H(k) 7→ T H(−k).

T 0 is simply T restricted to H̃0, while Ĩd is the subgroup of H̃d invariant under T d. T d
induces an automorphism in the homotopy groups πn(H̃d). We have the following diagram.14

πn+1(H̃d)
∼= //

−T d∗
��

πn(H̃d+1)

T d+1
∗

��

πn+1(H̃d)
∼= // πn(H̃d+1)

(3.14)

The isomorphism between πn+1(H̃d) and πn(H̃d+1) is induced by identifying maps (In×I)→
H̃d with In → (I → H̃d).

Proposition 17. The diagram (3.14) is commutative.

Proof. Let f : In+1 → H̃d and f ′ : In → H̃d+1. Represent f and f ′ as a function

f(x1, . . . , xn+1; k1, . . . , kd) ∈ H0 ,

f ′(x1, . . . , xn; k1, . . . , kd+1) ∈ H0 .

Both functions takes in n + d + 1 parameters, with a different location of the semicolon.
Application of T d on f flips d variables, while application of T d+1 flips d+1 variables, hence
the two induced maps on the homotopy groups are related by a negation.

Proposition 18. The following diagram commutes

ΩH̃d

jd //

1H̃ ◦ (T d)
−1 ""EEEEEEEE
Ĩd+1

id+1

��

H̃d+1

(3.15)

14The homotopy groups πn+1(H̃d) and πn(H̃d+1) are both abelian. −T d∗ means applying T d∗ followed by
taking the group inverse.
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The unconventional use of symbols require an explanation. 1H̃ and T d denotes maps
in the space H̃d, and is applied pointwise to ΩH̃d. The composition ◦ and inverse ()−1 is
applied as loops, as defined in Ex. 4.

Proof. We represent an element of Ĩd+1 as a path in P(H̃d, vd, Ĩd), it is important to note
that this representation only captures half of the Brillouin zone, with the other half related
by T d. Elements of ΩH̃d, Ĩd+1, and H̃d+1 are of the form:

f(x; k1, . . . , kn) � jd // g(t; k1, . . . , kn) � id+1
// h(k1, . . . , kn+1) .

(Each function as written produces an element of H0.) The map jd does not alter the
function, but simply relabels x as t. The map id+1 : g 7→ h takes two copies of the path g to
form a loop h:

h(k1, k2, . . . , kn+1) =

{
g(k1

π
; k2, . . . , kn+1) k ∈ [0, π]

T g(2− k1
π

;−k2, . . . ,−kn+1) k ∈ [π, 2π]
,

the expression for the second case may be written as T dg(2− k1
π

). In words: id+1 ◦ jd takes
a loop f and gives f(x) glued to T df(x) running backwards.

The induced maps of diagram (3.15) gives the simple expression:

id+1
∗ ◦ jd∗ = 1− T d∗ (3.16)

Equations (3.14) and (3.16) gives us a prescription to compute T d+1
∗ and id+1

∗ recursively.
We can chain all the exact sequences (3.13) together to get the following “staircase” diagram.

. . .
...

��

...
...

��

...
...

��

...

. . . // π2(Ĩ1)
i1∗ //

∂∗
��

π2(H̃1)
j1∗ // π1(Ĩ2)

i2∗ //

∂∗
��

π1(H̃2)
j2∗ // π0(Ĩ3)

i3∗ //

∂∗
��

π0(H̃3)

π2(Ĩ0)
i0∗ // π2(H̃0)

j0∗ // π1(Ĩ1)
i1∗ //

∂∗
��

π1(H̃1)
j1∗ // π0(Ĩ2)

i2∗ //

∂∗
��

π0(H̃2)

π1(Ĩ0)
i0∗ // π1(H̃0)

j0∗ // π0(Ĩ1)
i1∗ //

∂∗
��

π0(H̃1)

π0(Ĩ0)
i0∗ // π0(H̃0)

(3.17)

Starting from any πn(Ĩd), traversing right two units, then moving down one unit, and re-
peating in the staircase manner gives the exact sequence (3.13). Note that the diagram is
trivially commutative, as j∗i∗ = 0.
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Example 19. Classifying systems with time-reversal symmetry (symplectic class AII).
As an example, we look at the symmetry class where the only symmetry present is

time-reversal Θ− satisfying Θ2
− = −1 (and translation symmetry). The band Hamiltonian

satisfies15

H(−k) = σyH(k)∗σy . (3.18)

This constraints the relationship of H at time-reversal conjugate points, but not at any
particular momentum. If there are 2N filled bands and 2M empty bands, then H(k) must
be a Hermitian 2(N +M)× 2(N +M) matrix, with 2N negative eigenvalues. This space is
homotopy equivalent to Gr2N(C2N+2M).

At the TRIM (fixed points of −1k map), H(k) must itself satisfy H(k) = σyH(k)∗σy,
i.e., the matrix itself time-reversal symmetric. This constraints what normally is a 2(N +
M)× 2(M +N) complex hermitian matrix to a (M +N)× (M +N) quaternion hermitian
matrix.16 The space of such matrices is homotopy equivalent to GrN(HM+N). Applying a
similar construction as in Ex. 2, we have H̃0 = H0 ≈ Z×BU , and Ĩ0 = I0 ≈ Z×BSp.

From Tab. 3.1, the homotopy groups (π0, π1, . . . ) of Z × BU are (Z, 0,Z, 0, . . . ), and
(Z, 0, 0, 0,Z, . . . ) for Z×BSp. We examine the following maps.

• i0(0) : π0(Ĩ0)(= Z) → π0(H̃0)(= Z) is given by x 7→ 2x. Heuristically, this is because

every “matrix element” of Gr(H) is a 2 × 2 matrix in Gr(C). Physically, this is a
statement that states always appear in Kramers doublet.

• T 0
(2) : π2(H̃0)(= Z) → π2(H̃0)(= Z) is given by x 7→ −x. Physically, this says that

time-reversal negates the Chern number / Hall conductivity.

We can proceed to classify time-reversal symmetric insulators in up to three-dimensions.
The staircase diagram (3.17) is as follows.

· · · // 0
j0
(2)// π2(Ĩ1)

i1
(2) //

∂∗
��

0
j1
(1) // π1(Ĩ2)

i2
(1) //

∂∗

��

0
j2
(0) // π0(Ĩ3)

i3
(0) //

∂∗

��

0

π2(Ĩ0)
0

i0
(2) // π2(H̃0)

Z
j0
(1) //

×2

44π1(Ĩ1)
i1
(1) //

∂∗
��

π1(H̃1)
Z

j1
(0) //

×0

44π0(Ĩ2)
i2
(0) //

∂∗

��

π0(H̃2)
Z

π1(Ĩ0)
0

i0
(1) // 0

j0
(0) // π0(Ĩ1)

i1
(0) //

∂∗
��

0

π0(Ĩ0)
Z

i0
(0)

×2
// π0(H̃0)

Z
15Here σy is shorthand for 1M+N ⊗ σy, where H(k) is a square matrix of size 2(M ×N).
16Quaternions (in their 2 × 2 matrix representation) can be defined as the set of complex matrices A

satisfying A = σyA∗σy.
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We can algebraically deduce π0 of Ĩ1, Ĩ2, and Ĩ3 as follows.

1. π0(Ĩ1) = 0, from exactness with the sequence (Ĩ0, H̃0, Ĩ1).

2. π1(Ĩ1) = Z, also from exactness with the sequence (Ĩ0, H̃0, Ĩ1), with j0
(1) : π2(H̃0) →

π1(Ĩ1) being an isomorphism.

3. The map i1(1)j
0
(1) : π2(H̃0)→ π1(H̃1) (left curved arrow) is the same as 1−T 0

(2) mapping
x to 2x.

4. Hence, the map i1(1) : π1(Ĩ1)→ π1(H̃1) also takes x 7→ 2x.

5. The cokernel of i1(1) is Z2, so π0(Ĩ2) = Z2 from exactness.

6. Since i2(0) : π0(Ĩ2)→ π0(H̃2) is zero, π0(Ĩ3) = Z2 from exactness.

To conclude, the classes of 3D time-reversal symmetric insulators are

π0(I3) = π0(Ĩ0)⊕ π0(Ĩ1)3 ⊕ π0(Ĩ2)3 ⊕ π0(Ĩ3)

= Z⊕ Z3
2 ⊕ Z2 .

The Z labels the number of filled pairs of bands, a physical invariant, although not a par-
ticularly significant one. Z3

2 are the three “weak” indices, while the last Z2 is the strong
index.

Table 3.3 gives a number of topological invariants for eight of the Altland-Zirnbauer
classes, while Tab. 3.4 lists a few non-standard symmetry classes.
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Symmetry
class

Symmetries
present H0 I0

π0(Ĩd)
Ĩ0 Ĩ1 Ĩ2 Ĩ3

(D) C+1 Z×BU O/U Z2 Z2 Z

Chiral orthogonal (BDI) C+1,Θ+1,S U O Z2 Z

Orthogonal (AI) Θ+1 Z×BU Z×BO Z

(CI) C−1,Θ+1,S U U/O Z

(C) C−1 Z×BU Sp/U Z

Chiral symplectic (CII) C−1,Θ−1,S U Sp Z Z2

Symplectic (AII) Θ−1 Z×BU Z×BSp Z Z2 Z2

(DIII) C+1,Θ−1,S U U/Sp Z2 Z2 Z

Table 3.3: Topological invariants for the Altland-Zirnbauer classes.

The symmetries Θ, C, S are time-reversal, particle-hole, and sublattice symmetries
respectively. The symmetry classes gives the names of the corresponding disorder
ensembles, as appeared in Ref. [76]; they are Cartan’s labels of the symmetric spaces
associated with the disorder ensemble having the desired symmetries [154]. This (and
the first two rows of Tab. 3.2) reproduces the results from Refs. [77, 78].

Symmetries
present H0 I0

π0(Ĩd)
Ĩ0 Ĩ1 Ĩ2 Ĩ3

Π Z×BU (Z×BU)2 Z2 Z Z2 Z

Π,Θ−1 Z×BSp (Z×BSp)2 Z2 Z Z Z

Table 3.4: Topological invariants for non-Altland-Zirnbauer classes.

In addition to the symmetries described in the previous table (Tab. 3.3), Π refers to
spatial inversion symmetry. Unlike Tab. 3.3, this list contains symmetry classes which
contain some sort of spatial symmetries, i.e, inversion. This list is by no mean exhaus-
tive.
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Chapter 4

Inversion symmetric insulators

In addition to there protected surface states, topological insulators also have a magne-
toelectric response [60, 61] in which (e.g.) an applied electric field induces a magnetization
M = θ e2

2πh
E for the magnetoelectric coupling quantized at θ = π. The magnetoelectric re-

sponse may be observed only if there is a gap on the surface as well as in the bulk, so the
“chiral” surface states must be eliminated by breaking time-reversal symmetry. In principle,
coating the surface with a magnetic material and getting the Fermi energy into the band
gap would allow the magnetoelectric to be measured.

If the material were spontaneously magnetically ordered, one would be able to observe
the magnetoelectric effect without treating the surface first. However, materials that break
time-reversal symmetry in the bulk tend to have a small value of θ, a couple of percent [155].
The origin of the large θ in a topological insulator is related to the time-reversal symmetry,
surprisingly: symmetries usually force quantities to vanish, but the time-reversal invariance
of the insulator keeps θ large. The allowed values of θ are quantized because time-reversal
takes θ → −θ. This seems to rule out a nonzero θ, but since θ is defined only modulo 2π,
both 0 and π are compatible with the TRS.1

In this chapter, we will look at magnetically ordered materials (so that the surface states
are gapped) but which have some spatial symmetry group in place of time-reversal, in order
to keep θ large. One might expect a whole variety of phases as one varies the symmetry
group, perhaps displaying effects besides θ, but since there are 230 space groups altogether,
we will focus here on a single simple one. This is the symmetry group with just inversion
(r → −r), a symmetry that is commonly realized in magnetic insulators. For example, all
Bravais lattices are inversion symmetric.

Now, inversion transforms θ the same way as time-reversal does, so θ will have two
possible values in this case also, 0 and π. Since θ is quantized, there should be a simple
rule for determining its value, and in fact we show that the formula of Fu and Kane [43]

1In an experiment, the magnetoelectric effect could combine with a 2D Hall effect on the surface effectively
causing θ to jump between ±π in different parts of the sample. Thus, the bulk magnetization may average
out. In reflectivity measurements on the surface [156] the cancellation does not occur, and one can also
correct for the effects of the dielectric constant in the material.
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(originally derived when both TRS and inversion symmetry are present) generalizes to the
case with magnetic order, where time-reversal is absent.

Rather than focusing solely on the magnetoelectric effect, we will study a more general
question: Which phenomena in topological insulators can be determined by studying just
the symmetry properties of Bloch states at special momenta? When inversion is the only
symmetry, Bloch states at TRIMs can be classified by their inversion parities, which gen-
eralize the notion of the sign ±1 picked up by an orbital wavefunction of a molecule when
it is inverted. In an infinitely-large insulator, inversion parities are defined for the Bloch
states at special momenta, those that are left invariant under the inversion κ → −κ (i.e.,
the TRIMs). In molecules, parity eigenvalues lead mainly to microscopic effects, such as se-
lection rules for transitions. In bulk, though, phenomena on a large scale can be determined
by just these parities, as Fu and Kane’s result exemplifies.

When inversion symmetry alone is present, the number of odd states at each of the
eight TRIMs can be anything at all (since time-reversal is broken, the states do not have to
come in pairs). What are the phenomena associated with these parity patterns, which are
permitted after the breaking of time-reversal symmetry? We find the following phenomena:
first, if the total number of odd states at all TRIMs is an odd integer, then the material
is not insulating. Second, if the material is insulating and the number of odd states at
some individual TRIMs is odd, then the material has either electrostatic polarization or bulk
quantized Hall conductivity. Third, if the material is insulating, and the total number of odd
states is twice an odd integer then the material must have a magnetoelectric effect of θ = π.
It is natural that unpaired odd states at TRIMs indicate either a quantum Hall effect or
electrostatic polarization, since these phenomena (like the odd states) are ruled out by time
reversal symmetry.

Of these phenomena, the non-insulating behavior and the magnetoelectric effect imply
interesting experimental possibilities. If the product of all the TRIM parities is −1, as for the
parity assignment in Fig. 4.1a, then the material cannot be an insulator (as just mentioned).
Such a material is likely to be a “Weyl Semimetal,” one of the two classes of semimetal
introduced in Ref. [157]. For such parities, the dispersions for the filled and empty bands with
the minimum overlap between them have two touching points. These points are called Weyl
points. Such materials have thermodynamic and conductivity properties related to their
vanishing density of states. Furthermore, they should have interesting quantized responses,
corresponding to the “chiral anomalies” of field theory, as pointed out by Volovik [158].
Weyl points cannot occur in a material with both time-reversal and inversion symmetry:
then energy levels come in Kramers pairs, so the product of the parities is always +1.

The formula for θ helps in the search for materials with a large magnetoelectric effect. It
shows that a magnetic material may have a magnetoelectric response, but not have protected
surface states, as we had hoped. Furthermore, the formula for θ suggests that the magneto-
electric effect can occur in materials with essentially no spin-orbit coupling, but which have
nonplanar magnetic order. In these materials, nontrivial band topology can be induced by
Berry’s phases in the hopping amplitudes due to the magnetic order, rather than to the spin
orbit coupling (which was required in the TRS case).
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For an investigation of whether these properties might occur in particular materials, see
Ref. [159]. This article studies whether the magnetoelectric effect and Weyl metal behavior
can be present in magnetically ordered iridates, and finds that the Weyl metal behavior
seems to be more likely.

We will begin (see Sec. 4.1) with a brief summary of our results, explaining the various
conductivity and response properties that are constrained by the inversion symmetry of a
band structure. After this, we present the derivation of these results systematically. The
goal is to try to find all the response properties that are determined by symmetry properties,
given inversion symmetry. There are three steps. We begin (see Sec. 4.2) by classifying all
the phases with inversion symmetry, similar to how the phases with the different Altland
and Zirnbauer symmetry groups have been classified before [77, 78]. Next (see Sec. 4.3.1),
we identify which of these phases have a chance of having robust dynamical responses. Last
(see Sec. 4.3), we determine what the responses are.

The outcome is that all insulators in three-dimensions are parametrized by three Chern
numbers and a set of inversion parities. Chern numbers, which describe topological properties
of the Bloch states as a function of momentum, were already present in the absence of
inversion symmetry. The Chern number has three integer components (whereas in two-
dimensions, it is a single integer, in three, it is a reciprocal lattice vector). The inversion
parities can be encapsulated in eight integers describing the number of odd states at each of
the TRIMs.

The second step, in Sec. 4.3.1, is a preliminary study to determine which of these phases
corresponding to these integers have the potential to have interesting quantized responses.
This section organizes the problem: it simplifies a mess of infinitely many phases down to
16. This uses a process of elimination: we first identify the quantum numbers of dull “frozen
insulators;” the remaining insulators are the interesting ones.

Section 4.3 contains the last step and the outcome: it determines the quantized responses
in the interesting phases and how they are related to the inversion parities. It derives the
condition that ensures a material is non-insulating and the criterion for an insulator to
be magnetoelectric as well as some relations between the parities, Hall conductivity, and
polarization.

This procedure implies that these are the only response properties, even though there are
infinitely many different ways of assigning inversion parities. Infinitely many of these phases
have no response, because they can be realized in ionic crystals in which each electron is
tightly bound to a single atom. After ionic portions of a band structure are separated out,
only finitely many phases remain.

At the end, we give an alternative approach based on entanglement. In particular, we
will see why the relationships between inversion parities and responses usually depend on
the numbers of odd states modulo 2 or 4. The entanglement spectrum of a material is a
set of quantities that can be derived from the ground state wavefunction. It consists of a
set of modes that behave like physical surface modes, although they can be determined (at
least in principle) without perturbing the system into an excited state, and they can give
a signature that a material is in a topological phase [160–165]. Section 4.4 gives a formula
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for the number of entanglement modes in an inversion symmetric insulator in terms of the
inversion parities. This result is then used to rederive some of the electromagnetic properties
in a simple fashion and to understand why all these relations depend on the parities modulo
4.

The present chapter addresses some questions left open in earlier work in which we
participated. Reference [164] discusses the entanglement spectrum of inversion symmetric
insulators, without presenting the exact relation to TRIM parities. The discussion here
provides the basis for the investigation in Ref. [159] which studied the electronic structure of
a specific material (yttrium iridate) using the constraint on the total number of odd states
and expressions for θ in terms of the TRIM parities.

The formula derived here for the magnetoelectric effect depends on the inversion parities
in the same way as Fu and Kane’s formula, but it applies to a wider class of materials,
including materials that can’t even be adiabatically connected to any material with time-
reversal symmetry. The first prediction – that a material with an odd number of states
is metallic – has an interesting corollary that has been noticed before. If time-reversal
symmetry is broken, then continuous transitions between θ = 0 and θ = π insulators cannot
be found generically [166]. A metallic (or Weyl-metal) phase intervenes except possibly at
isolated points.

4.1 Summary of results

Let us first define some conventions about the 3D crystal lattice. We will for simplicity
assume that the lattice is cubic (although there is no symmetry required beyond inversion)
and has a lattice spacing equal to one unit. All quantities will be written with respect to
a coordinate system xyz that is aligned with the axes of the crystal. The primitive lattice
vectors are Ri (i.e., the unit vectors along the axes) and the reciprocal lattice vectors are
Gi where Gi ·Rj = 2πδij. We also define G̃ to be G

2π
to be a vector of integers (G̃x, G̃y, G̃z).

If one wants to apply the results to a non-cubic crystal, it is straightforward to translate
the results described here to any lattice, by interpreting the expressions in the appropriate
coordinate system.2

To study insulators with inversion symmetry it is useful to look at inversion parities, as
in the study of spectra of small molecules Such parities seem to describe static properties of
wavefunctions, yet in a bulk material, they can determine how electrons move in response to
a field. The point of this article is to understand such relationships. The numbers of occupied
states with each parity provides integers that can be used to classify the phases (analogous

2If a quantity is described by a vector in real space (such as the electrical polarization) and we obtain a
formula for its coordinates vx, vy, vz, then the quantity should be obtained from v = vxR1 + vyR2 + vzR3.
The coordinates of a quantity that is described by a vector u in reciprocal space determine the vector
u = 1

2π (uxG
1 + uyG

2 + uzG
3). Electrical polarization is a real space vector; 3D Hall conductivity and

momentum are in reciprocal space. We also use upper and lower indices on the coordinates as a reminder of
what basis to use.
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to how “topological integers” are used to understand other types of phases, for example,
the quantum Hall conductance in Hall insulators or the Z2 index for strong topological
insulators). The main technical distinction between solids and molecules is that, in solids,
the occupied states can be labeled by momentum k and the band index a. Let these states
be given by ψak(r) = uak(r)eik·r. States at the TRIMs (and only these) can be classified by
parity under inversion. The TRIMs are the momenta given by

κ =
n1

2
G1 +

n2

2
G2 +

n3

2
G3 (4.1)

where n1, n2, n3 are integers. (Hence components of κ are integral multiples of π.) Such a
momentum maps to itself under inversion symmetry modulo the reciprocal lattice, −κ ≡ κ.
Hence the wavefunctions at κ must be invariant under inversion Π, and their parities can be
defined:

Πψaκ(r) = ηa(κ)ψaκ(r) (4.2)

We now introduce a key quantity no(κ) at every TRIM κ. This is defined as the num-
ber of states with odd parities at that TRIM. Note, these cannot change without a phase
transition (at least in a non-interacting system). Besides these 8 integers, the quantum Hall
conductance gives three more invariant integers, since it is quantized:

σH =
e2

2πh
GH (4.3)

where G̃H = GH
2π

has integer components.3 (Note that GH is a reciprocal lattice vector
according to the conventions defined above, and σH gives the Hall conductance per unit
length.)

For inversion symmetric insulators, the Chern numbers and the no-counts of odd states
give parameters that can be used to distinguish among phases. Furthermore, these 11 in-
tegers, together with the total number of occupied bands n, give a complete description of
the set of phases – any two band structures with the same integers can be tuned into one
another without a phase transition This scheme is derived in Sec. 4.2.

Certain physical properties of each phase can be predicted in terms of these integers. We
will find all the basic observable quantities that can be expressed in terms of the no’s.

Total parity constraint and metallic behavior

The first two relationships between physical properties and inversion parities can be
written in terms of net parities:

ηκ = (−1)no(κ) =
∏
a

ηa(κ). (4.4)

3For a general lattice system, G̃H = (n1, n2, n3) is a vector of integers where nα = GH
2π ·Rα for α = 1, 2, 3.
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Figure 4.1: Determining properties of systems using parities.

The boxes represent an eighth of the Brillouin Zone; the TRIMs are at the corners.
The signs represent the parities of the occupied states at the TRIMs. In (a) the
parity constraint of even number of odd parity states is violated, hence it cannot be an
insulator. In (b) the parities require a nonvanishing Hall conductance, with odd Chern
number in the kxky planes. (c) Quantized magnetoelectric response θ = π determined
from number of odd parity states being 2 (modulo 4). (d) A parity configuration
corresponding to a frozen polarization.

For any insulator, one can show: ∏
κ

ηκ = 1. (4.5)

That is, the total number of filled odd parity states must be even. This is shown in Sec. 4.3.2.
The contrapositive of this statement is the most interesting form of it: if, for some band

structure,
∏
κ ηκ = −1, then the system must be gapless. For example, if a system has the

parities in Fig. 4.1a, it must be metallic, because there are an odd number of odd occupied
states. The gap must close at some momentum k in the Brillouin zone.

Materials with
∏
κ ηκ = −1 should be interesting. They will have Weyl points, three-

dimensional points where the valence and conduction bands meet with a dispersion shaped
like a cone. Under certain circumstances, the Fermi energy is expected to pass right through
the cone points, so that the material is a semimetal with a density of states that is equal to
zero.

Note that the right hand side in Eq. (4.5) differs from the index (−1)δ0 used by Fu and
Kane – their index is only the product of the parities of ‘half’ the occupied states; since they
focused on systems with both time-reversal and inversion symmetry, the states always come
in pairs due to the Kramers degeneracy theorem. The product in Eq. (4.5) is automatically
equal to 1 when these symmetries are present, so it did not come up in that context. The
result in Eq. (4.7), below, generalizes the strong index.
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Quantum Hall effect

The net parities also determine the quantum Hall integers modulo 2. The z-component
of GH , for example, satisfies

exp
[
i
2
GH ·Rz

]
=

∏
κ;κ·Rz=0

ηκ . (4.6)

That is, whether the Hall conductivity σH along the z-direction is an even or odd multiple
of e2

h
can be determined by multiplying the η’s around either of the squares parallel to the

xy-plane. This result is derived in Sec. 4.3.3.
If a system has the parities shown in Fig. 4.1b the Hall conductivity cannot vanish. The

component along the z-direction, GH ·Rz, must be an odd multiple of 2π (per layer of the
crystal).

Eqs. (4.5) and (4.6) also have a formal interpretation: they are constraints between the
invariants of insulating phases. The 11 integers G̃H and no(κ) are not completely independent
of one another, but have to satisfy these four relationships between their parities. Moreover,
these are the only constraints – if the relationships are satisfied, the invariants can be realized
in principle in some band structure.

Magnetoelectric effect

The magnetoelectric effect is related to the magnetoelectric polarizability αij. An applied
magnetic field induces a polarization, P i = αijB

j. In the absence of the quantum Hall effect,
αij is well-defined. (Otherwise the polarization can be neutralized by a flow of charge in the
surface states associated with the Hall effect.) The polarizability αij is odd under inversion:
Under inversion symmetry, P changes sign, while B does not.

If the crystal is inversion symmetric, it seems that α must vanish. However, α is ambigu-
ous. An isotropic portion ( e

2

h
δij × integer) is indeterminate because it can be mimicked by

an integer quantum Hall coating on the surface. Thus αij can be inversion symmetric if it is

isotropic and has a quantized value: θ e2

2πh
δij, where θ is a multiple of π.

Earlier work has considered θ for the case of materials with TRS. In that context, the
magnetoelectric effect (i.e., θ = π) and a nonzero strong index are two aspects of the same
phenomenon [60, 61]. If the system also has inversion symmetry, the criterion under which
these phenomena occur was found by Fu and Kane [43]. We find that essentially the same
formula can be used to determine when θ = π even when the time-reversal symmetry is not
present. This formula depends on the no parameters, and not just the ηκ’s:

θ

π
≡ 1

2

∑
κ

no(κ) (mod 2). (4.7)

According to Eq. (4.5), this is always an integer. This expression is proved in Sec. 4.3.4.
This result is somewhat more general than the results for materials with time-reversal as

well as inversion symmetry, because the details of the band structure can be quite different



Section 4.1. Summary of results 54

in the presence of magnetism: when time-reversal is broken, there may be an odd number of
occupied states at some of the TRIMs. Such band structures cannot even be adiabatically
connected to the band structure of a material with time-reversal symmetry because of the
Kramers degeneracy theorem, yet the magnetoelectric effect is still determined by Eq. (4.7).

One such band structure is illustrated in Fig. 4.1c; it is not adiabatically connected to
any insulator with TRS because of the unpaired odd states at the TRIMs. Although the
number of odd states at each individual TRIM in Fig. 4.1c is either even or odd, the total
number of odd states is even [in accord with Eq. (4.5)] and is twice an odd number; hence
θ = π.

One may concoct examples of Hamiltonians on a cubic lattice with such patterns of
parities. One constructs a hopping model where the local orbitals are labeled as being
even-type orbitals (s, d, . . . ) or odd-type orbitals (p, f, . . . ). Electrons can hop between
these orbitals. The hopping matrix elements can be chosen almost arbitrarily except that
they must respect inversion symmetry, which constrains the relative signs of hopping in
two opposite directions. If orbital a is centered around a point of inversion symmetry,
ta→b = ±ta→b′ where the orbitals b and b′ are corresponding orbitals on sites displaced from
orbital a in opposite directions. The sign depends on whether a and b have the same or
opposite parities.

Frozen polarization

Finally, let us complete the discussion of physical properties that are constrained by the
“net parities” ηκ = ±1. Eq. (4.6) shows that they determine the Chern numbers modulo 2.
This accounts for three of the eight independent bits of information contained in the parities.
Note that any pattern of parities satisfying the constraint Eq. (4.5) can be factored into 7
basis patterns:

η(κ) = ±(−1)
1
π2
H̃xκyκz(−1)

1
π2
H̃yκxκz(−1)

1
π2
H̃zκxκy(−1)

2
π
P̃e·κ. (4.8)

This factors into seven parts: the three factors depending on H̃i, the three depending on P̃e

and the overall sign in front. (Note that the components of P̃e are half-integers while those
of H̃ are integers. The factors of π are included to make the exponents into integers.) The
pattern corresponding to H̃z = 1 (and all other G̃ and P̃e variables set to 0) is just the same
one shown in Fig. 4.1b. Hence H̃ is just the (unitless integral) Hall conductivity modulo 2.
The patterns of ηκ on the vertices of the cube corresponding to some P̃e (with H̃ set to zero)
vary as a plane wave. The wavenumber, P̃e turns out to determine the intrinsic polarization.

Intrinsic electrical polarization is a phenomenon found in ferroelectrics. When analyzed
carefully [167], one finds that it is ambiguous like θ: the total polarization can be altered
by charges on the surface, but an intrinsic part of it is determined by the bulk properties.
The intrinsic portion is determined modulo a lattice vector times e. Inversion symmetry
constrains the components to be integers or half-integers times e. Hence the polarization
is determined by three bits, which are revealed in Eq. (4.8). Pe actually describes only the
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polarization of the electrons relative to the Bravais lattice; one also needs to include the
compensating charges of the nuclei:

P = eP̃e − e
∑
i

ZirNi, (4.9)

where rNi is the position vector of the ith nucleus, with charge −Zie. This result is derived
in Sec. 4.3.3.

Consider the polarization of the crystal with the band structure illustrated in Fig. 4.1d;
it is e

2
R1 if the nuclei are all on the sites of the Bravais lattice. This quantity is called

“intrinsic polarization,” but it does not actually appear as a polarization all the time. When
it is nonzero, it could lead to a ferroelectric moment, so that the crystal would have a surface
charge of 1

2
e per unit cell and a large electric field. The alternative possibilities are more

likely: the translational symmetry of the surface may be spontaneously broken or the surface
may be metallic (see Ref. [168]).

Other effects?

There are many combinations of parities an insulator could have and yet not display any
of the phenomena described above. Such insulators cannot be characterized in any other
macroscopic way either. They belong to distinct phases (there are gapless regions between
them in a phase diagram), but these phases all behave in the same way. For example, if
there are 4 odd states at κ = 0, and 4 even states at all other TRIMs, then Eqs. (4.6),
(4.7), and (4.8) give trivial Hall conductivity, θ, and polarization. This phase is definitely
a distinct phase, separated by a phase transition, from the one where all states are even,
so it may seem likely that some other property would distinguish the two phases. However,
in Sec. 4.3.1 we show that no response property distinguishes this phase (or any insulating
phase θ, the Hall coefficients, and the polarization vanish).

Parity constraints in general dimensions

The results in higher dimensions have a surprising feature: as the number of dimensions
increases the sum of the no’s must be divisible by larger and larger powers of 2 if the material
is to be insulating.

Specifically, in 2s-dimensions, the sum of the no’s is a multiple of 2s−1. This multiple is
related to the 2s-dimensional Chern number C2s (defined as an integer):

1

2s−1

∑
TRIM κ

no(κ) ≡ C2s (mod 2); (4.10)

the quantum Hall conductance is the 2-dimensional special case.
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In 2s+ 1-dimensions, the sum of the no’s is a multiple of 2s and is related to the Chern-
Simons integral

θ2s+1

π
=

1

2s

∑
κ

no(κ) (mod 2). (4.11)

where the polarization and magnetoelectric effect are the one- and three-dimensional ver-
sions.

Note that insulators with inversion symmetry are quite different from ones without any
assumed symmetry: There is an insulator in 2s-dimensions with a Chern number C2s equal
to 1 which has just s filled bands.4 This insulator is not inversion symmetric, though. The
simplest inversion symmetric insulator with the identical Chern number has a minimum of
2s bands, exponentially more bands than are necessary without symmetry (see Sec. 4.2.7).

The entanglement spectrum

The entanglement spectrum (a concept used to study quantum fluctuations [169]) pro-
duces an alternative explanation for these results. Each of the phenomena is connected to a
certain type of “entanglement surface state.” These states may be counted using inversion
symmetry. An insulator with inversion symmetry has a particle-hole symmetry Πe in its
entanglement spectrum εa(k) when it is cut on a plane through a center of inversion. This
makes it very easy to determine qualitative properties of the Fermi arcs of the entanglement
spectrum – it is possible to count (without topological arguments) the number of zero modes
in the entanglement spectrum at the TRIMs κ⊥ along the surface. Let ∆Ne(κ⊥) = trε=0 Πe;
that is, ∆Ne(κ⊥) is the number of even modes minus the number of odd modes with zero
entanglement-energy at κ⊥.

The ∆Ne(κ) parameters can be expressed in terms of parities of the bulk states through
no(κ). (The parities of the bulk states are to be defined using an inversion center on the plane
of the entanglement cut.) The quantity that appears is ∆N(κ) = trE<0 Π, or n− 2no(κ):

∆Ne(κ⊥) =
1

2

(
∆N(κ1) + ∆N(κ2)

)
, (4.12)

where κ1 and κ2 are the two TRIMs that project to κ⊥. In words: the difference between
the number of even and odd states on the “entanglement Fermi surface” at a TRIM is half
the difference between the even and odd states in the bulk, at the corresponding TRIMs.

To illustrate an actual entanglement spectrum, we constructed a Hamiltonian with a
cubic unit cell whose inversion parities suggest that θ = π and G̃H · Rα ≡ 0 (mod 2) for
α = x, y, z. The parities and the spectrum are shown in Fig. 4.2. The entanglement spectrum
was calculated for a cut along the xy-plane. As expected, there is a Dirac point at (0, 0),

4This follows from the relation between topological insulators and the homotopy groups of Grassmannian
spaces Grs(C2s); the essential fact is that the homotopy group π2m

(
Grs(C2s)

)
= Z when s is sufficiently

large.
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Figure 4.2: Entanglement spectrum of a hopping Hamiltonian.

(a) The parities at the TRIMs. (b) The entanglement modes on a cut parallel to the
xy-plane. Note that there are two zero-modes at the TRIM (0, 0) and none at the other
TRIMs, as expected from the parities.

although there are no physical surface states. The entanglement states reflect the nonzero
θ, though physical states do not.

From the relation between the entanglement spectrum and the parities, one can give
alternative derivations of the connections between electromagnetic properties and inversion
parities. This formula also leads to a simple alternative derivation of Fu and Kane’s formula
for the indices of topological insulators. These indices count the physical surface states.
The entanglement states are easy to count with the help of symmetry, and they can be
continuously deformed into the physical spectrum.

4.2 Classifying inversion symmetric insulators

This section will show why the inversion parities and the Chern numbers give the full
classification of non-interacting insulators with inversion symmetry. This result follows from
the classification of Hamiltonians without any symmetry, because the space of inversion
symmetric Hamiltonians and the space of all Hamiltonians are related. The Hamiltonians
without symmetry are already classified by Chern numbers for each 2D cross-section of
the Brillouin zone. The only additional parameters that appear when the Hamiltonians
have to be inversion symmetric come from the classification of “zero-dimensional insulators”
associated with the TRIMs. Like finite molecules, these states can be classified by inversion
parities.

Consider the Hamiltonian H(k) for the wavefunctions ψak. This Hamiltonian can be
taken to be an N ×N matrix by using a tight-binding model with N bands (n of which are
filled). Since this Hamiltonian is inversion symmetric,

ΠH(k)Π−1 = H(−k), (4.13)
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where Π is the matrix describing how the orbitals within the unit cell transform under
inversion.5 Note that Π2 = 1, or Π−1 = Π.

For non-interacting insulators, a phase transition occurs when the gap closes and states
cross the Fermi energy, µ = 0, say. Let us determine when two Hamiltonians are in the same
phase – i.e., can be connected without a phase transition. Topologically speaking, we wish
to find criteria on the matrix fields H(k) that can be used to determine whether they can
be deformed into one another without any zero energy eigenvalues.

The only points in the Brillouin zones where the inversion symmetry constrains the
Hamiltonian are the TRIMs, κ. Each of these points can be interpreted as a 0D system, with
a Hamiltonian H(κ) that is invariant under Π, since Eq. (4.13) implies ΠH(κ)Π = H(κ).
Let no(κ) be the number of eigenvalues at negative energy which are odd under Π. As the
Hamiltonian evolves, the states at this TRIM can mix together, but even states can mix
only with even states and odd ones can mix only with odd ones, so the value of no(κ) cannot
change.

The second set of parameters characterizing the Hamiltonian are the Chern numbers G̃H
which are topological winding numbers that also turn out to describe the Hall conductiv-
ity [14, 29]. Because they are integers, they are also invariant.

We will now show that these integers give a complete classification of Hamiltonians with
inversion symmetry. That is, if H(k) and H ′(k) are two Hamiltonians both with n occupied
states, N states total, No of which are odd, then they can be deformed into one another
while preserving inversion symmetry if

no(κ) = n′o(κ) (for all TRIMs κ),

G̃H = G̃ ′H ,
(4.14)

at least if N − n, n ≥ 2.
We do not usually consider the integers N and No to be important invariants – their

values can be changed by adding even or odd orbitals with a very high energy. In continuous
space, there are infinitely many available orbitals.

The assumption N − n, n ≥ 2 is included because, when there are too few bands, there
are some Hamiltonians that cannot be deformed into one another simply because there are
not enough degrees of freedom.6 For example, “Hopf insulators” are only nontrivial when
restricted to two bands [170]. Our classification theorem does not capture these distinctions,
but the distinctions are not related to any generic properties. If one adds sufficiently many
trivial occupied and unoccupied bands to an insulator, any two insulators with the same
invariants can be deformed into one another.

5There are technical problems when an orbital |α〉 is at a half-lattice vector – choosing which copy of
it belongs to the unit cell breaks inversion symmetry. The simplest solution is to slice the orbital into two
parts that are images of each other under inversion, |α〉 = 1√

2
(|α1〉 ± |α2〉). The opposite combination of

these orbitals is then assigned a very large energy so that it has no effect.
6In a sequence such as U(1), U(2), etc., the homotopy groups of the first few elements are irregular, but

a pattern emerges farther into the sequence.
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4.2.1 Outline of the argument

The result can be derived by relating a Hamiltonian in d-dimensions to one in (d − 1)-
dimensions, starting with d = 3. Let us take d to be arbitrary at first, so that we can
describe the general procedure for reducing the number of dimensions. Let Hd be the space
of general Hamiltonians in d-dimensions, while Id is the subspace of Hamiltonians that have
inversion symmetry. A generic Hamiltonian in Hd can be regarded as a closed loop in Hd−1:
Fixing the dth component of k to have an arbitrary value kd results in a (d− 1)-dimensional
Hamiltonian HK , HK(k1, k2, . . . , kd−1) ≡ H(k1, k2, . . . , kd−1, K). As K varies, HK traces out
a closed loop in Hd−1 because the Brillouin zone is periodic.

A Hamiltonian in Id has an alternative representation, as just an arc in Hd−1, half of the
loop just described (from kd = 0 to π). The rest of the loop is determined by the inversion
symmetry. The end-points of this arc have to be on Id−1 because the inversion takes the
kd = 0, π cross-sections to themselves.

Thus, classifying inversion symmetric Hamiltonians is equivalent to the problem of clas-
sifying which arcs can be deformed into one another, as illustrated in Fig. 4.3. That is,
consider arcs γ1, γ2 in Hd−1 connecting two points in the subspace Id−1. What conditions
ensure that it is possible to move arc γ1 to arc γ2? This deformation is possible if we can first
slide the end-points of γ1 within Id−1 onto the end-points of γ2 and then smoothly deform
the curves connecting them. That is, two arcs are equivalent if their end-points are in the
same component of Id−1 (like γ1 and γ2 in the figure) but do not have any hole in between
them.

We can thus classify d-dimensional Hamiltonians by solving two problems: describing the
different components of Id−1, and classifying the arcs connecting a pair of points in Hd−1 up
to homotopy.

Let us now consider d = 3. The first step (classifying the end-points) is analogous to the
problem we are trying to solve, just in one-dimension less. (The components of I2 are just
the different classes of 2-dimensional inversion symmetric Hamiltonians.) Let us suppose we
know how to deform the two arcs γ1, γ2 so that their end-points are the same under the
assumptions of Eq. (4.14).

We now have to slide the interior of arc 1 onto arc 2. Classifying arcs with fixed end-
points in a given space is closely related to classifying closed loops. For example, consider
the complex plane with a hole at the origin. Paths connecting a fixed pair of points are
classified by

�
dθ (where θ is the polar angle) just as closed loops are: the possible values of

the integrals are separated by multiples of 2π (corresponding to the number of times the path
encircles the origin) offset by the angle between the points. The loops in H2 can be classified
by two winding numbers

�
dα(kz) and

�
dβ(kz), where α and β are angular variables around

holes in H2. This is a restatement of the well-known fact that the Hamiltonians in H3 are
classified by their Chern numbers. A loop corresponds to a three-dimensional Hamiltonian
without any special symmetry. The two winding numbers equal the G̃Hx and G̃Hy Chern
numbers of this Hamiltonian. The remaining Chern number is not important because it is
determined by the base-point of the loop.
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Figure 4.3: Schematic phase space of d-dimensional Hamiltonians.

We can representation of d-dimensional Hamiltonians by arcs and loops in the space
of (d − 1)-dimensional Hamiltonians. The gray region represents Hd−1: each point
corresponds to a generic (d−1)D Hamiltonian. The two ellipses on the side represent the
components of Id−1, the Hamiltonians with inversion symmetry. Inversion-symmetric d-
dimensional Hamiltonians (three of which are shown) are represented by arcs connecting
points in Id−1. Two of these Hamiltonians are equivalent if the end-points are in the
same component of Id−1 and have the same winding numbers around holes in the space
(represented by the white ellipse). For example, γ2 and γ3 are not equivalent because
their final end-points are in different components; γ1 and γ2 are not equivalent because
γ1γ

−1
2 winds around the hole.

Now it follows, by analogy with the example of arcs in the complex plane, that an arc
connecting two fixed points in the space H2 can be classified by the change in α and β.
The inversion symmetric Hamiltonians can therefore be classified by ∆α =

� π
0
dα(kz) and

∆β =
� π

0
dβ(kz).

The Chern numbers G̃Hx and G̃Hy of the full Hamiltonian are given by
� π
−π dα(kz),� π

−π dβ(kz); hence the “winding numbers” of the open arcs are half as big as the Chern
numbers (by inversion symmetry). So if the Chern numbers of the Hamiltonians are equal,
then the arcs have the same values of ∆α and ∆β and so they are equivalent.

We now have to return to the problem of showing that the end-points can be slid to
one another under the assumptions. This is the same as classifying inversion symmetric
Hamiltonians in two-dimensions. This problem may be solved by studying arcs and loops
in H1 reducing it by one more dimension. For two Hamiltonians in (kx, ky) space to be
equivalent, the single winding number, G̃Hz, must be the same, and the one-dimensional
boundary Hamiltonians must be equivalent.

Now we must classify inversion symmetric Hamiltonians in one-dimension, i.e., arcs in
H0. There are no 1D winding numbers in H0, so the problem reduces directly to classifying
the zero-dimensional end-points.

Two zero-dimensional Hamiltonians (i.e., matrices) are clearly equivalent if the numbers
of even and odd occupied states are the same – just shift the energy eigenvalues so that the
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two Hamiltonians match. Hence the last condition is that the eight integers no(κ) and the
total number of occupied states n must match. The number of even and odd unoccupied
states above the Fermi energy must also be the same, but as mentioned above, there are
an infinite number of these in continuous space. The original Hamiltonian has bifurcated
into eight 0D Hamiltonians since each step of passing from arcs to end-points doubles the
number of Hamiltonians.

Hence, three-dimensional Hamiltonians are classified by G̃Hx, G̃Hy and G̃Hz together with
the parities at the TRIMs.

4.2.2 Topology of the space of Hamiltonians

In this section we will show how to use systematic methods from topology to classify
the insulators with inversion symmetry. The materials presented in this section should be
accessible to readers with elementary knowledge of topology. We will employ various tools
from Algebraic topology, readers may wish to consult Ref. [171] for an introduction of the
subject. In the interest of pedagogy, some technical details are overlooked, a far more rigorous
derivation is given in chapter 3.

In general we write a band insulator as H(k), which we think of as a vector bundle on
the Brillouin zone. The eigenvectors of H(k) with energies below the chemical potential are
the occupied states, defining a vector subspace of the entire Hilbert space at k. For inversion
symmetric insulators, there is an additional constraint on the Hamiltonian: T 0[H(k)] ≡
ΠH(k)Π = H(−k), this relates the Hamiltonians at k and −k.

The idea behind our method of classification, similar to the one used for time-reversal
invariant topological insulators, is to look only at half the Brillouin zone.

For a Hamiltonian H in d-dimensions, one can construct a path

ft(k2, k3, . . . ) = H(k1 = πt, k2, k3, . . . ) (4.15)

in the space of (d − 1)-dimensional Hamiltonians, where the endpoints (t = 0, 1) are in-
version symmetric. Thus the classification of d-dimensional Hamiltonians is equivalent to
the classification of paths in P(Hd−1; Id−1, Id−1), where Hd is the set of general d-dimen-
sional Hamiltonians and Id ⊂ Hd is the subset which is inversion symmetric. The symbol
P(X;A,B) is defined to be:

P(X;A,B) ≡ Set of paths in X from A to B (4.16)

= {f : [0, 1]→ X | f(0) ∈ A, f(1) ∈ B} ,

where A,B ⊂ X. We want to divide up Id into sets such that paths from different sets are
not homotopic to each other. Heuristically, the classes of paths of P(X;A,B) are given by
the number of components of A,B which determines the set of possible endpoints, and the
loop structure of X which determines the number of ways to travel from A to B. The classes
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of insulators in d-dimensions is very roughly given by:

Components of Id

∼ Loops in Hd−1

Loops in Id−1

× (Components of Id−1)2 . (4.17)

This idea is made precise using algebraic topology, and is captured by an exact sequence
below (4.19) (which explains the reason for the denominator here).

There is an addition structure in the classification of insulators, which comes from the
fact that one can combine two insulators together using direct sums “⊕”. To simplify the
classification, it is useful to also have a subtraction “	” operation between insulators. This
would give the topological invariants (e.g. Z) a group structure.

The subtraction procedure is realized by considering an ordered pair of bands (H1, H2),
which represents the ‘difference’ of the two Hamiltonians. Addition by H ′ is given by (H1⊕
H ′, H2) and subtraction is given by (H1, H2⊕H ′). Imposing the equivalence relation (H1⊕
H ′, H2 ⊕ H ′) ∼ (H1, H2) makes the addition and subtraction processes cancel each other.
Physically, we are interested in classifying difference of two topological insulators – this is
analogous to studying domain walls between them whose properties are determined only by
the difference in topological invariants. With this interpretation, it is possible to talk about
a negative number of filled bands (whenever H2 has more bands than H1).

The construction above, called the Grothendieck group, has two interpretations. First,
two insulators H1, H2 are deformable to one another when the topological invariants of the
band structure (H1, H2) are all trivial. Second, the invariants classifying phases of H can be
defined as the topological invariants of (H, vacuum).

4.2.3 Hamiltonians, classifying spaces and homotopy groups

Consider an NB×NB matrix H with n occupied states and NB−n empty states. Setting
the chemical potential to be zero, H is a matrix with n negative eigenvalues and NB − n
positive eigenvalues. In the topological classification of insulators, the energies are irrelevant
so long as we can distinguish between occupied and unoccupied states, and hence we can
deform the energies (eigenvalues) of all valence bands to −1 and the energies of conduction
bands to +1. We can also assume there are an infinite number of conduction bands, and so
we let NB →∞. H0 is the set of such 0D Hamiltonians, and can be separated into discrete
components based on the number of filled bands (which may be negative for differences of
Hamiltonians). The space H0 is homeomorphic to Z×BU , where BU is the classifying space
of the unitary groups.

At a TRIM, the Hamiltonian is inversion symmetric and commutes with the operator
Π. The Hilbert space is divided into an even subspace and an odd subspace, based on
the inversion eigenvalues. Hence the set of inversion symmetric (0D) Hamiltonians I0 is
homeomorphic to H0 ×H0.7

7Because H0 is an infinite-dimensional space, we can have H0 ×H0 ⊂ H0.
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Finally, we introduce the “vacuum” v0 ∈ I0 ⊂ H0, which is a Hamiltonian with no filled
bands. v0 is a useful object in that it allows us to compare any Hamiltonian to it, and also
acts as the basepoint when we compute the homotopy groups of H0, I0.

Given a topological space X and a basepoint within the space x0, the homotopy group
πs(X) is the set of equivalence classes of maps f : (Ss, b0) → (X, x0), where the basepoint
b0 ∈ Ss and f(b0) = x0. For example, π0(X) gives the number of connected components of
X, and π1(X) tells us which loops in X are equivalent and which loops are contractible.

The group structure of πs(X) is given by concatenation of maps. However, the group
structure of the Hamiltonians has already been defined based on direct sums. Fortunately,
the group composition defined based on the two methods (concatenation / direct sums) are
equivalent.

The homotopy groups of Hd are known: π0(H0) = Z because 0-dimensional Hamiltonians
are classified by the number of filled bands n. π1(H0) = 0 means that the loops in H0 are
all contractible. π2(H0) = Z, because maps of the sphere are classified by the first Chern
class (or the Chern number). This invariant gives rise to the integer quantum Hall effect.
For higher dimension, πs(H0) is 0 when s is an odd integer, and Z when s is an even integer,
corresponding to the (s/2)th Chern class. In this section, Chern numbers are taken to be
integers rather than multiples of 2π.

The homotopy groups of I0 are simply the squares of the homotopy groups of H0. In
particular, the set of components π0(I0) = Z2 is labeled by two integers: (n, α), where n
is the total number of valence ‘bands’ and α = no is the number of states which have odd
inversion parity.

4.2.4 Relative homotopy groups and exact sequences

The homotopy groups πs(X) classifies components, loops, and maps from higher dimen-
sional spheres to the space X. The relative homotopy groups πs(X,A) classify maps from
paths, disks, etc. where the boundary must lie in some subspace. This is how topologists
define “winding numbers” of open arcs, which were discussed in Sec. 4.2. Relative homotopy
groups were applied much earlier by Refs. [172, 173] to an interesting problem within physics:
classifying defects of ordered phases when the defects are stuck to the surface.

Given a space X a subspace A ⊂ X, and a basepoint x0 ∈ A, the relative homotopy
group πs(X,A) is the equivalence classes of maps (Ds, ∂Ds, b0)→ (X,A, x0). The boundary
of the disk ∂Ds = Ss−1 must map to A, and the basepoint b0 ∈ ∂Ds maps to x0. The relative
homotopy groups can be computed via the exact sequence

πs(A)
i∗−→ πs(X)

j∗−→ πs(X,A)
∂−→ πs−1(A)

i∗−→ πs−1(X) . (4.18)

An exact sequence is a sequence of groups along with maps defined from one group to the
next, each map preserving the group operations. In an exact sequence, the image of every
map is the same as the kernel of the subsequent map.
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In the one-dimensional case, the relative homotopy group π1(X,A) describes the set of
possible paths in X from x0 to A up to homotopy, that is, the classes of paths P(X;x0, A).
The exact sequence becomes:

π1(A)
i(1)−−→ π1(X)

j(0)−−→ π1(X,A)
∂−→ π0(A)

i(0)−−→ π0(X) . (4.19)

In the exact sequence above, the maps are defined as follows.

• i : A → X is the inclusion map which takes every point from A to itself interpreted
as a point in X. The induced maps i(s) : πs(A)→ πs(X) take components/loops from
one space to the other.

• j: All the loops in X start and end at x0, and so they are also clearly paths in
P(X;x0, A) seeing x0 ∈ A. j(0) is the map that takes the equivalence classes of loops
π1(X) to the equivalence classes of paths π1(X,A).

• ∂ : π1(X,A) → π0(A) is a map that takes a path and selects its second endpoint to
give a component of A. ∂ is called the boundary map, it takes a “1D object” to give
a “0D object.”

It appears that the maps i and j ‘do nothing’ to the objects (points, loops) they act on.
However, each map gives the loop/path more freedom to move around. For example, j(0)

takes a loop to a path where the endpoints no longer have to be the same, so it may map a
nontrivial path to a trivial one.

The exact sequence captures the idea that the paths in P(X;x0, A) can be classified once
one knows the properties of X and A, based on their end-points and how they wind. Suppose
we are constructing a path in P(X;x0, A).

1. First, we pick the endpoint x ∈ A of the path p. x can be in any component of A that
is connected to x0 within X and this is captured by the statement ker(i(0)) = img(∂).

2. Given a choice of a path p from x0 to x, we can construct all the other paths between
the points. We can create any other path p′ by concatenating a loop l ∈ π1(X) at the
beginning of p. This is the exactness at π1(X,A).

3. However, the paths p and p′ are only different (i.e., not homotopic to each other) only
if the loop l cannot be unwound within A, this is to say that p ∼ p′ if l is homotopic
to a loop in A. See Fig. 4.4. This idea is captured by the exactness at π1(X). Hence

we think of l belonging to the quotient π1(X)
i(1)π1(A)

, and this group is called the cokernel

of the map i(1).

We see that any path may be constructed by its endpoint x and a loop l.

p = j(l) + ∂−1x . (4.20)

The inverse boundary operator ∂−1 is not unique, but that does not affect the structure
of the group π1(X,A) for the cases we are considering. The equivalence classes of x form
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Figure 4.4: An illustration of the exact sequence.

The cylinder here represents X and the two dark circles at the ends represent A. Paths
in π1(X,A) can be enumerated by taking one path for each inequivalent end-point
x and adding loops from π1(X) to the paths. This description is redundant for the
topology shown in the figure. Consider the paths shown: they are p (green) and another
path p′ = p + l (blue) obtained from it by adding l (black), which winds around the
cylinder. The two paths are equivalent because they can be deformed into one another
by bringing the right end-point around A. This happens because l can be smooshed
into A.

ker(i(0)), while the equivalence classes of l make up coker(i(1)). The relative homotopy group
is a semidirect product

π1(X,A) = coker(i(1)) o ker(i(0)) . (4.21)

What this means is that coker(i(1)) is a normal subgroup of π1(X,A) and ker(i(0)) is the
quotient of the two. For the purpose of classifying inversion symmetric insulators, we can
treat the semidirect product as simply a product.8

4.2.5 One-dimension

In this section we examine the classification of 1D inversion symmetric Hamiltonians
H(k). Let I1 be the set of maps H : S1 → H0 such that T 0[H(k)] = H(−k). I1 is
homeomorphic to the set of paths in H0 that start and end in I0 [i.e., I1 ≈ P(H0; I0, I0)],
and we seek to classify all such paths – to compute π0(I1).

For a 1D band structure H(k), we can ‘factor’ out H(0) by letting H ′(k) = H(k)	H(0)
so that H ′(0) = v0. The decomposition H(k) = H(0)⊕H ′(k) can be expressed as

I1 ≈ I0 × Ĩ1 . (4.22)

H(0) is an element of I0 while H ′(k) is an element of Ĩ1, where Ĩ1 is the subset of I1 with
a fixed basepoint (H ′(0) = v0). Hence the classification of I1 can be broken up in to two
parts, the classification of I0 and that of Ĩ1. The former is understood already, π0(I0) = Z2.

8This is because all the homotopy groups are free in the inversion symmetric case, i.e., of the form Zn.



Section 4.2. Classifying inversion symmetric insulators 66

Notice that Ĩ1 is homeomorphic with the class of paths P(H0; v0, I0), whose components
are described by the relative homotopy group π1(H0, I0). The relative homotopy group can
be computed by the exact sequence (4.19). Using the fact that π0(Ĩ1) = π1(H0, I0),

π1(I0)
0

i0
(1)−−→ π1(H0)

0

j0
(0)−−→ π0(Ĩ1)

∂−→ π0(I0)
Z2

i0
(0)−−→ π0(H0)

Z . (4.23)

(The upper index 0 on the maps indicate that this is the exact sequence for paths from
H0 to I0.) Since π1(H0) = 0, we can ignore the left side of the exact sequence (cokernel
of i(1) is zero). The integer n ∈ π0(H0) = Z tells us how many filled bands there are, and
(no, ne) ∈ π0(I0) = Z2 are the number of even-parity and odd-parity bands. The map i(0) is
given by n = no+ne, and so the kernel of the map is the subset where no = −ne, isomorphic
to Z.9 Hence π0(Ĩ1) is isomorphic to ker(i(0)) = Z. This is to say that the set of paths

P(H0; v0, I0) are solely classified by the endpoint. Since I1 = I0 × Ĩ1, we have

π0(I1) = π0(I0)× π0(Ĩ1)

= π0(I0)× π1(H0, I0)

= Z2 × Z . (4.24)

The invariant π0(I1) = Z2 corresponds to the number of total bands and odd-parity states
at k = 0: n, no(0). The invariant π0(Ĩ0) = Z corresponds to the difference in number of
odd bands at k = π and k = 0: αx = no(π) − no(0). Hence the parities at the two TRIMs
completely classify all 1D inversion symmetric Hamiltonians.

A generator of a group is an element which gives the entire group by group addition and
subtraction; for example, 1 is a generator of Z. In our case, the generators are Hamiltonians
which form a basis for all Hamiltonians, up to homotopy. Knowing the generators amounts
to having a list of all the possible phases. Moreover, the indices for classifying phases can
be found using the generators: each phase can be written as a sum of the generators, and
the coefficients are a possible set of indices. The indices we have used up to now, no and the
Chern number, are simple linear combinations of them.

The generators of π0(I0) = Z2 are two Hamiltonians H0
n and H0

α, the first increases the
total number of bands n, the second one fixes n but increases the number of odd-parity
bands no. (Remember that we are classifying ways of changing one Hamiltonian to another
Hamiltonian.) Explicitly:

H0
n =

[
−1
]

(+)
. (4.25)

H0
α =

[
−1
]

(−)
	H0

n . (4.26)

where the subscript (±) labels the inversion eigenvalue(s) of the orbital(s). The first ex-
pression H0

n adds an inert band to increase n; the second expression H0
α adds an odd-parity

9The Hamiltonian we are classifying [H ′(k) = H(k)	H(0)] is one of the generalized Hamiltonians defined
above; that is why a number of bands ne or no can be negative.
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band but subtracts an even-parity one to increase no while maintaining n. The generator
for π0(Ĩ1) = Z is:

H1
α(k) =

[
− cos k sin k
sin k cos k

]
(+−)

	H0
n . (4.27)

The subscript (+−) specifies the inversion operator Π =
[

+1
−1

]
for this Hamiltonian. When

k = 0, the matrix becomes [−1
1](+−) and the occupied band is even under inversion. Similarly,

the matrix at k = π is [1 −1](+−) and there the occupied band is odd. Hence αx = no(π) −
n0(0) = 1− 0 = 1 and H1

α(k) is a generator of π0(Ĩ1).
Therefore, any 1D inversion symmetric Hamiltonian is homotopic to

H(k) = nH0
n ⊕ αH0

α ⊕ αxH1
α(k) . (4.28)

4.2.6 Two-dimensions

We apply the same ideas used in 1D to classify inversion symmetric insulators in 2D. The
inversion symmetric Hamiltonians (kx, ky) in 2D satisfy: T 0H(kx, ky) = H(−kx,−ky). The
set of 2D inversion symmetric Hamiltonians (I2) is equivalent to P(H1; I1, I1), where H1 is
the set of 1D band structures (loops in H0).

Just as in the 1D case where we decompose H(k) into a 0D and 1D object: H(k) =
H(0)⊕H ′(k), we decompose the 2D Hamiltonian into 0D, 1D and 2D components. Let

H ′(kx, ky) = H(kx, ky)	H(0, 0) , (4.29a)

so that H ′(0, 0) = v0. Now we define

H ′′(kx, ky) = H ′(kx, ky)	H ′(0, ky)	H ′(kx, 0) , (4.29b)

so that

H ′′(0, ky) = H ′′(kx, 0) = v0 . (4.29c)

H(0, 0) is an element of I0, and H ′(0, ky) and H ′(kx, 0) are elements of Ĩ1. We define Ĩ2 to
be the set of inversion symmetric Hamiltonians satisfying (4.29c). With this procedure, we
have decomposed I2 as

I2 ≈ Ĩ0 × Ĩ2
1 × Ĩ2 , (4.30)

where Ĩ0 = I0. Explicitly, the decomposition is:

H(kx, ky) = H(0, 0)︸ ︷︷ ︸
Ĩ0

⊕H ′(0, ky)⊕H ′(kx, 0)︸ ︷︷ ︸
Ĩ1×Ĩ1

⊕H ′′(kx, ky)︸ ︷︷ ︸
Ĩ2

. (4.31)
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Due to (4.29c), we can think of Hamiltonians in Ĩ2 as maps from the sphere (rather than
the torus) to H0. The Hamiltonian is constant around the edges of the Brillouin zone (when
we take the Brillouin zone to extend over the range [0, 2π] for each coordinate), and so the
edges may all be identified to a single point to give a sphere.

We now analyze the properties of Hamiltonians in Ĩ2. For each fixed kx, the Hamiltonian
H ′′(ky)|kx is a map from the 1D Brillouin zone (S1) to H̃0 (where we’ve also defined H̃0 =
H0). Denote the set of such maps as H̃1, the set of loops in H̃0 with basepoint v0: H̃1 =
P(H̃0; v0, v0). H̃1 is called the loop space of H̃0 and is denoted by H̃1 = ΩH̃0.

The Hamiltonian at kx = π is inversion symmetric, and so H ′′(ky)|kx=π ∈ Ĩ1. At kx = 0,
the line H ′′(ky)|kx = v0 is a constant map - which we call v1 (a line of v0). Clearly v1 is an
element of Ĩ1, and acts as the basepoint when we compute the homotopy groups of Ĩ1, H̃1.

Having defined the spaces Ĩ2, H̃1 and basepoint v1, we can see that Ĩ2 is homeomorphic
to the set of paths in H̃1 with endpoints at v1 and somewhere in Ĩ1: Ĩ2 ≈ P(H̃1; v1, Ĩ1). The
exact sequence which gives the equivalence classes of such paths is

π1(Ĩ1)
i1
(1)−−→ π1(H̃1)

j1
(0)−−→ π0(Ĩ2)

∂−→ π0(Ĩ1)
i1
(0)−−→ π0(H̃1) . (4.32)

Elements of π1(H̃1) are two-dimensional Hamiltonians that equal v0 along kx = 0 ∼ 2π
and ky = 0 ∼ 2π, which are equivalent to maps S2 → H̃0. Hence

π1(H̃1) = π2(H̃0) = Z (Chern number). (4.33)

The map j1, which essentially maps general two-dimensional Hamiltonians to inversion sym-
metric ones, is defined by

(j1H)(kx, ky)

=

{
H(2kx, ky) 0 ≤ kx ≤ π

T 0H(4π − 2kx, 2π − ky) π ≤ kx < 2π
. (4.34)

It builds an inversion symmetric Hamiltonian out of two copies of a Hamiltonian with no
special symmetries. The map ∂ : Ĩ2 → Ĩ1 is defined by

[∂H](k) = H(kx = π, ky = k) (4.35)

which takes a 2D Hamiltonian and picks out the 1D Hamiltonian at kx = π.
The exact sequence, Eq. (4.32) would fairly easily determine π0(Ĩ2) if we only knew that

π1(Ĩ1) were equal to 0, as turns out to be true. However, to see this, we will have to
do a recursive calculation, using another exact sequence for π1(Ĩ1) which classifies loops
of 1D inversion symmetric insulators (not to be confused with 2D insulators). As argued
in Fig. 4.5 and proved in Thm. 15, the group π1(Ĩ1) is isomorphic to π2(H̃0, Ĩ0). We can
compute π1(Ĩ1) = π2(H̃0, Ĩ0) via the exact sequence (4.18).

π2(Ĩ0)
Z2

i0
(2)−−→ π2(H̃0)

Z
j0
(1)−−→ π1(Ĩ1)

∂−→ π1(Ĩ0)
0

i0
(1)−−→ π1(H̃0)

0
. (4.36)
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Figure 4.5: Isomorphism between π2(H̃0, Ĩ0) and π1(Ĩ1).

An element in Ĩ1 is a path from v0 to an element of Ĩ0 (dark black lines). An element of
π1(Ĩ1) is a family of such paths. The first path in the family must be v1, a ‘zero-length’
constant path at v0 (gray dot). The last path of the family must also be v1, and so the
paths must shrink back to v0 at the end, because that is the base point for the homotopy
groups. This family of paths traces out a disk D2 which maps to H̃0, the endpoints
of each path traces out a circle S1 = ∂D2 which maps to Ĩ0 (dashed circle). The
basepoint of the circle maps to v0, and hence every element of π1(Ĩ1) is also an element
of π2(H̃0, Ĩ0) and vice-versa. This illustrates the isomorphism π2(H̃0, Ĩ0) = π1(Ĩ1).
The general case relating πn+1(H̃d−1, Ĩd−1) to πn(Ĩd) is given by Thm. 15.

The first map i0(2) : π2(Ĩ0) → π2(H̃0) is given by β = βe + βo (which means that the Chern

numbers of the odd and even bands add to the total.) The image of i0(2) is all of i0(2), so its

cokernel is trivial. Since on the right side the groups are also trivial (ker(i0(1)) = 0), we have

that π1(Ĩ1) = 0.
We now return to the exact sequence (4.32) to compute the π0(Ĩ2).

π1(Ĩ1)
0

i1
(1)−−→ π1(H̃1)

Z
j1
(0)−−→ π0(Ĩ2)

∂−→ π0(Ĩ1)
Z

i1
(0)−−→ π0(H̃1)

0
. (4.37)

The exact sequence yields π0(Ĩ2) = Z × Z; the set of H ′′(k) are classified by two integers
(αxy, βxy). The first integer αxy coming from the map ∂ gives no(π, π); the second integer
βxy is related to the Chern number of H ′′. The basis elements of π0(Ĩ2) are found by taking
the image of the generator in π1(H̃1) and one of the preimages of the generator element in
π0(Ĩ1), which we denote by H2

β(k) and H2
α(k) respectively. Any Hamiltonian in Ĩ2, up to a

homotopy, can be written as

H ′′ = βxyH
2
β ⊕ αxyH2

α . (4.38)

The generator H2
β(k) = j1Hchern(k) where Hchern is the generator of π1(H̃1) = π2(H̃0), i.e., a

2D band insulator with Chern number +1. H2
α(k) is defined such that (∂H2

α)(k) = H1
α(π, k)

is the 1D insulator (4.27).



Section 4.2. Classifying inversion symmetric insulators 70

Explicitly, the generator

H2
α(k) =

1

1 + x2 + y2

[
1− x2 − y2 2(y + ix)
2(y − ix) x2 + y2 − 1

]
(+−)

	H0
n , (4.39)

where x = cot kx
2
, y = cot ky

2
. When kx or ky = 0 (or 2π), then x2 + y2 → ∞ and H2

α(k) =

[−1
1](+−) 	 [−1](+) so H2

α is normalized properly, i.e., H2
α ∈ Ĩ2. When kx = ky = π, it can

be seen that H2
α(k) = [1 −1](+−) 	H0

n and the filled band is odd under inversion. Note that
the Hamiltonian has Chern number +1. Since αxy = no(π, π) (and the other TRIMs have
no = 0 because of the normalization), this is related to the constraint G̃ ≡

∑
κ no(κ) mod 2.

From the construction of j1 (4.34), the other generator H2
β(k) = j1Hchern(k) takes the

form

H2
β(kx, ky) =

{
H2
α(2kx, ky) 0 ≤ kx ≤ π

ΠH2
α(−2kx,−ky)Π−1 π ≤ kx ≤ 2π

. (4.40)

The second half kx ∈ [π, 2π] is the inversion image of the first half kx ∈ [0, π], the function
in second half simplifies as

ΠH2
α(−k)Π−1

=
1

1 + x2 + y2

[
1
−1

][
1− x2 − y2 −2(y + ix)
−2(y − ix) x2 + y2 − 1

][
1
−1

]−1

	 [1]H0
n[1]−1

= H2
α(k) . (4.41)

This allows us to write

H2
β(kx, ky) = H2

α(2kx, ky) . (4.42)

Since 2D inversion does not flip the Chern number, each half has a Chern number of +1.
Evidently, the Chern number of the entire Brillouin zone is given by

G̃H = αxy + 2βxy , (4.43)

since H2
α, H2

β has Chern number 1, 2 respectively.

The decomposition (4.30) gives us six Z invariants in 2D: two from Ĩ0, one from each of
the two Ĩ1, and two more from Ĩ2. The six invariants (n, α, αx, αy, αxy, βxy) are related to
the properties of the original Hamiltonian H(kx, ky) as follows:

• n gives the number of filled bands, generated by (4.25).

• α = no(0, 0) is the number of odd-parity states at (kx, ky) = (0, 0), generated by (4.26).

• αx = no(π, 0)−no(0, 0) involves the difference between two parities, generated by (4.27)
(k → kx).
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• αy = no(0, π)−no(0, 0) involves the difference between two parities, generated by (4.27)
(k → ky).

• αxy = no(π, π)− no(π, 0)− no(0, π) + no(0, 0) involves the parities at all TRIMs, gen-
erated by (4.39).

• βxy relates to the Chern number: G̃H = 2βxy + αxy, generated by (4.42).

The rule for the Chern number’s parity, Eq. (4.6), follows from the last constraint here.

4.2.7 Going to higher dimensions

In d-dimensions, we want to calculate π0(Ĩd), the set of components of the space of
inversion symmetric Hamiltonians. To calculate this in a larger dimension, we will need to
know πs(Ĩd−s) in lower dimensions.

The relevant spaces are H̃d and Ĩd. The general Hamiltonian space H̃d = ΩH̃d−1 is the
space of loops of Hamiltonians in H̃d−1, which become trivial on kx = 0 as well as on all
the other boundaries ki = 0 of the Brillouin zone. Their homotopy groups are given by
πs(H̃d) = πs+d(H̃0).

The homotopy groups of the subspace Ĩd ⊂ H̃d are harder to find. This space is homeo-
morphic to Ĩd ≈ P(H̃d−1; vd−1, Ĩd−1), since half of the Brillouin zone determines the Hamil-
tonian. The homotopy groups of Ĩd are therefore given by the relative homotopy groups
πs(Ĩd) ≈ πs+1(H̃d−1, Ĩd−1) (see Thm. 15). Via the relative homotopy exact sequence (4.18),
one can relate πs+1(H̃d−1, Ĩd−1) to πs, πs+1(H̃d−1) and πs, πs+1(Ĩd−1). The homotopy struc-
ture of Ĩd depends on that of Ĩd−1. Iterating this process reduces the problem to that of the
basic objects H̃0 and Ĩ0.

Specializing to 3D, we follow the same prescription as before to decompose Hamiltonians.

I3 ≈ Ĩ0 × Ĩ3
1 × Ĩ3

2 × Ĩ3 . (4.44)

The homotopy group π0(Ĩ3) = π1(H̃2, Ĩ2) can be computed from

π1(Ĩ2)
i2
(1)−−→ π1(H̃2)

0

j2
(0)−−→ π0(Ĩ3)

∂−→ π0(Ĩ2)
Z2

i2
(0)−−→ π0(H̃2)

Z . (4.45)

We know that π0(Ĩ2) = Z2 from the previous section and π0(H̃2) = π2(H̃0) = Z corresponds
to the Chern number G̃H . In addition, the homotopy group π1(H̃2) = π3(H̃0) = 0 is trivial,
so π1(Ĩ2) is irrelevant to the problem.

The map i2(0) : π0(Ĩ2)→ π0(H̃2) is given by (4.43) which is surjective, hence coker(i2(0)) =

Z. It follows that π0(Ĩ3) = Z; 3D insulators can be written as αxyzH
3
α where αxyz is an

integer and H3
α is the generator. To relate αxyz to band-structure properties (like no), we

place the maps ∂ and i2∗ under further scrutiny. The relevant part of the exact sequence is:

0→ π0(Ĩ3)
Z[αxyz]

∂−→ π0(Ĩ2)
Z2[αyz, βyz]

i2
(0)−−→ π0(H̃2)

Z[G̃]
, (4.46)
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where the brackets show the names of the integers that are used to label the elements of
the group. The map i2(0) is given by G̃ = αyz + 2βyz. The kernel of the map is the set

(αyz, βyz) = (2m,−m) for integers m. Since the kernel is isomorphic to π0(Ĩ3), we can define
αxyz to be m; hence ∂ is defined by ∂αxyz = (αyz, βyz) = (2αxyz,−αxyz).

In terms of the band structure invariants, we have

2αxyz = αyz
∣∣
kx=π

= no(π, π, π) .

Hence no(π, π, π) is even. Note that all other no’s are 0 because the Hamiltonian is normalized
– adding back the lower-dimensional parts of the Hamiltonian that have been subtracted off
does not change the parity of

∑
κ no(κ), so it remains even.

Explicitly, the generator H3
α is

H3
α =

[
t0τ

z + τx(t · σ)
]

(++−−)
	 2H0

n , (4.47)

where

(t0, tx, ty, tz) =
(1− x2 − y2 − z2, 2y, 2z, 2x)

1 + x2 + y2 + z2
, with x = cot kx

2
, y = cot ky

2
, z = cot kz

2
.

At kx = ky = kz = π, (t0, tx, ty, tz) = (1, 0, 0, 0) and there are two filled bands with odd
parity. At the plane kx = π the Hamiltonian reduces to two copies of (4.39), but with
opposite Chern numbers so that the net Chern number is 0. One can think of the two
subspaces of ∂H3

α as H2
α (Chern +1) and H2

α 	H2
β (Chern −1).

Therefore, there are 12 Z invariants in 3D, the eleven emphasized in the main part of the
article together with the total number of occupied bands. They relate to the band structure
invariants as follows:

• n is the number of filled bands.

• α = no(0, 0, 0).

• αx = no(π, 0, 0)− no(0, 0, 0),
αy = no(0, π, 0)− no(0, 0, 0),
αz = no(0, 0, π)− no(0, 0, 0).

• αyz = no(0, π, π)− αy − αz − α,
αzx = no(π, 0, π)− αz − αx − α,
αxy = no(π, π, 0)− αx − αy − α.

• βyz = 1
2
(G̃yz − αyz),

βzx = 1
2
(G̃zx − αzx),

βxy = 1
2
(G̃xy − αxy).

• αxyz = 1
2

(
no(π, π, π)−

∑
αµν −

∑
αµ − α

)
.
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The last equation explicitly written out as a function of no(κ) is

2αxyz = no(π, π, π)

− no(0, π, π)− no(π, 0, π)− no(π, π, 0)

+ no(π, 0, 0) + no(0, π, 0) + no(0, 0, π)

− no(0, 0, 0) .

From the formula, it is clear that the sum of parities of no(κ) at the eight TRIMs is even,
i.e., Eq. (4.5).

In every higher dimension d, Ĩd has a Z invariant corresponding to the inversion parity
no(π, . . . , π) generated by Hd

α. For the even dimensions d = 2s, there is a second Z invariant
corresponding to the sth Chern class, generated by Hd

β . Hence π0(Ĩ2s) = Z2 and π0(Ĩ2s+1) =
Z.

The generator for the sth Chern class is as follows. Let {Γ1,Γ2, . . . ,Γ2s+1} be 2s × 2s

gamma matrices satisfying the Clifford algebra ΓiΓj+ΓjΓi = 2δij. First we warp the Brillouin
zone to a sphere: T 2s[k1, . . . , k2s]→ S2s[n̂] by sending k = (π, . . . , π) to n̂ = (1, 0, 0, . . . ) and
all the planes bounding the Brillouin zone (ki = 0) to (−1, 0, 0, . . . ). We choose the map
so that it is inversion symmetric (i.e., when k → −k) all components of n̂ except the first
switch sign. The Hamiltonian can be defined then as

H2s
c (k) = n̂ · Γ , (4.48)

where Γ is the (2s + 1)-vector of gamma matrices. The generator (4.39) is an example of
this construction for d = 2s = 2. The inversion matrix is given by the first gamma matrix:
Π = Γ1, and we can see that all the occupied states are odd at k = (π, . . . , π), so no = 2s−1

there. At the other TRIMs, the occupied states have even inversion parity.
The sth Chern number Cs may be computed by the formula:

Cs =
1

s!

(
i

2π

)s �
Tr[P (dP )2s] , (4.49)

where P (k) = 1
2
(1−H(k)) is the projector onto the filled states and d is the exterior derivative

in the Brillouin zone. Evaluating the integral shows that Cs = ±1 for the Hamiltonian H2s
c .

In 2s-dimensions, Eq. (4.37) generalized to more dimensions, gives a preliminary way of
choosing the generators: H2s

β is the image under j of a generator of π0(H̃2s) and H2s
α is

an arbitrary preimage under ∂−1 of the generator of π0(Ĩ)2s−1. Any Hamiltonian can be
expanded as

H = β2sH
2s
β ⊕ α2sH

2s
α . (4.50)

H2s
c can be used for the generator H2s

α . To see this, we decompose H2s
c in terms of the

original pair of generators H2s
α , H2s

β . The sth Chern number of H2s
β is 2, since it is constructed

using the map j which takes a general insulator to an inversion symmetric one by duplicating
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it in each half of the Brillouin zone [see Eq. (4.34)]. At all the TRIMs, H2s
β (κ) = v0 and so

no is zero. Using Eq. (4.50) for H2s
c implies

Cs(H
2s
c ) = 1 = 2β2s + α2sCs(H

2s
α ) , (4.51a)

no(H
2s
c ) = 2s−1 = 0 + α2sno(H

2s
α ) . (4.51b)

The first expression requires α2s to be odd, and the second requires it to be a factor of 2s−1.
Hence α2s = ±1 and we can use H2s

c as the generator H2s
α . Since every Hamiltonian can be

expressed by Eq. (4.50), the number of odd inversion-parity states no(π, π, . . . ) is always a
multiple of 2s−1.

In terms of the general Hamiltonians in I2s, the total number of odd parity states at all
the TRIMs must be a multiple of 2s−1. Furthermore,

1

2s−1

∑
TRIM k

no(k) ≡ Cs (mod 2) in 2s-dimensions. (4.52)

In (2s+ 1)-dimensions, the Hamiltonians at kx = 0 and π are both 2s-dimensional inversion
symmetric Hamiltonians, and they must have the same Chern number, so the constraint on
the parities is ∑

TRIM κ

no(κ) ≡ 0 (mod 2s) in (2s+ 1)-dimensions. (4.53)

This is related to the (2s+ 1)-dimensional Chern-Simons integral θ2s+1 ∈ [0, 2π) by

θ2s+1

π
=

1

2s

∑
TRIM κ

no(κ) mod 2 , (4.54)

because we can evaluate θ by writing the Hamiltonian as the kx = π cross-section of a
Hamiltonian in one more dimension, and then determining the Chern number of that Hamil-
tonian [60] using Eq. (4.52).

4.3 Physical properties and the parities

Now we will find the physical properties associated with the parities no(κ) at the TRIMs.
First we show that in the space of Z8 possible combinations of no’s, we find that a subset of
“frozen insulators,”10 which can be constructed without electron hoppings. The frozen insu-
lators do not yield any dynamical physical properties. Since combining two frozen insulator
is still a frozen insulator, its parities no’s form a subspace within Z8. As we show in the next
section, the quotient of Z8 with that subspace is Z3

2 × Z4. In other words, if we consider a
courser classification of the parities where we do not distinguish frozen insulators from the
vacuum, we only have 23 × 4 = 32 possible combinations.

10Or, as Ashvin calls them, dead vegetables.
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In Sec. 4.3.2, we show that of the 32 parities combinations, only 16 of them can occur
only in non-insulators; the next section shows that 14 of the remaining ones have a nonzero
Hall conductivity, and the last section shows that the two remaining insulators can be dis-
tinguished by whether they have a magnetoelectric susceptibility or not.

4.3.1 A coarser classification: grouping phases with identical re-
sponses

So far, we have classified insulators by a set of integers without regards to their physical
significance. We would now like to look for physical interpretations of the parities that
classify the phases. One often uses parity symmetry to prove that a quantity vanishes, as
in selection rules for certain types of transitions in a molecule. We will find that, in bulk
systems, some sets of inversion parities imply the non-vanishing of a physical quantity. We
would like to determine all such relationships.

We will search for sets of parities no’s that ensure that a material has nontrivial responses
by considering the opposite problem. That is, we will first find all the dull insulators, ones
in which the electrons cannot move and therefore do not have any response: we call them
frozen insulators. Then we will know by a process of elimination which materials have a
chance of having an interesting response. We will find that many of the combinations of no’s
can occur in frozen insulators. Hence, even though the no quantum describe infinitely many
phases, only finitely many of them have distinctive behavior. In the next section, we will
determine the behavior for each of the phases with distinct properties.

To picture the different types of insulator, represent the no quantum numbers geomet-
rically, as a vector in an eight-dimensional cubic lattice, which we write as ~no.

11 Let us
understand the crystal structure of this imaginary crystal. The vectors ~no for “frozen states”
form a sublattice. One may imagine that there are two ‘elements’ A and B making up the
compound, with the element A residing at the frozen insulator sublattice, and the other ele-
ment residing at the remaining sites. The vectors of frozen states form a sublattice because
the sum of two frozen vectors is also frozen: combining the orbitals of two materials together
in the same volume of space (without any interactions between them) corresponds to adding
their ~no vectors.

The frozen sublattice can then be characterized by some conditions similar to the de-
scription of a face-centered cubic (FCC) lattice. (For example, sodium ions in NaCl form
an FCC, the sublattice of a cubic lattice consisting of the points whose coordinates sum to
an even number.) For the crystal of ~no vectors, the frozen sublattice can be described as

11We denote vectors in this 8D space with a ~ symbol, while physical (3D) vectors remain in boldface.
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follows. First define

wxyz =
∑
κ

no(κ) mod 4 , (4.55a)

uz =
∑
κ⊥Rz

no(κ) mod 2 , (4.55b)

and similarly for ux and uy. As we will show momentarily, the frozen site are ones where
these remainders vanishes.

Returning back to our 3D system, we would like to identify the frozen crystals and their
corresponding ~no’s. Consider an ionic or frozen insulator with positive nuclei on the Bravais
lattice and electrons fixed on certain sites, and with all hopping amplitudes equal to zero.
The simplest example that is inversion symmetric involves a single electron per unit cell
located at half of a Bravais lattice vector d = R

2
and its translates. When there are two

electrons per unit cell, there is more freedom: they may be located at any point together
with its inversion image. From these two cases all other insulators may be constructed.

The parities of the former insulator depend on κ, and are found by transforming from the
localized basis labeled by R to plane wave states labeled by k, |d〉k =

∑
R e

ik·(R+d)|R + d〉.
Suppose that the orbital occupied by the electron is odd (for example). Then at a TRIM,
the inversion eigenvalue is given by

Π|κ〉d = −e2id·κ|κ〉d , (4.56)

hence no(κ) is one for each κ such that 2d·κ
π

is even. These eight vectors, (one corresponding

to each d,) which we call ~fd, generate the set of ~no for frozen insulators. (The additional

no’s that come from frozen insulators with two electrons per unit cell just reproduce ~fd=0.
They have one odd and one even state at each TRIM.) Rewriting the above expression, the
numbers of odd states at TRIMs are described by

~fd(κ) =
(

1− κ

π
· d
)

mod 2 , (4.57)

assuming the electrons to be in odd orbitals at d. For each nonzero TRIM κ, ~fd contains
four zeros and four ones, and ~f0(κ) = 1.

The goal is now to determine what vectors ~no are integer linear combinations of the ~f ’s.
There is a coordinate system for Z8 where this is easy to solve. One has to find a set of basis
vectors ~v1, . . . , ~v8 for Z8, such that n1~v1, n2~v2, . . . , n8~v8 is a basis for the frozen vectors ~f
(where n1, . . . n8 are certain integers). Then if a vector ~no is represented by a1~v1 + · · ·+ a8~v8

in the new coordinate system, the criteria that it is a frozen vector are simple – ai has to be
a multiple of ni. The classification theorem for finitely generated abelian groups describes
an algorithm for finding such bases.

We find the following basis for the frozen crystals, ~m0, ~mx, 2~mxy, and 4~mxyz and vectors
symmetric with these. Here, ~m0 is the vector with ones at all corners of the cube, ~mx is the
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Figure 4.6: Representative examples of ~no basis.

The four cubes shows various ~no ∈ Z8 which represents configurations no’s at each
TRIM. These four, along with their rotations ~my, ~mz, ~myz, ~mzx, form a basis for the
set of all ~no vectors [see Eq. (4.58)]. The whole range of quantized behavior that can be
found in insulators with inversion symmetry can be found with just linear combinations
of the latter two ~mxyz and ~mxy (and the two rotations of ~mxy), because they form a
basis for the unit cell of the 8-dimensional lattice of frozen and non-frozen ~no vectors.

vector with ones on the face of the cube defined by κx = π (and zeros elsewhere), ~mxy is the
vector with ones on the edge defined by κx = κy = π, and ~mxyz is the vector with a one at
the vertex κx = κy = κz = π. The configurations of no’s for each basis vector is shown in
Fig. 4.6.

On the other hand, the vectors ~m0, ~mi, ~mij and ~mxyz (without the factors of 2 and 4)
span all combinations of 8 integers. Therefore any vector ~no can be decomposed as

~no = a0 ~m0 +
∑
i

ai ~mi +
∑
i<j

aij ~mij + axyz ~mxyz , (4.58)

for integers a0, ai, etc. Hence, the quotient of Z8 by the subspace span by the ~fd’s is Z3
2×Z4,

generated by ~mxy, ~mzx, ~myz and ~mxyz. Since there are 23 × 4 possible combinations, this
crystal has the chemical formula AB31, that is, the unit cell contains 32 lattice points; one
is frozen, and the other 31 can be represented in terms of four vectors (see Fig. 4.6):

~no = axy ~mxy + axz ~mxz + ayz ~myz + axyz ~mxyz , (4.59)

where the aij’s are each 0 or 1 and axyz is 0, 1, 2 or 3.
To relate this with the definitions of wxyz and uα’s from (4.55), we can check how these

quantities depend on a’s by computing w and u for Eq. (4.58). It is trivial to see that

wxyz ≡ axyz + 2ayz + 2azx + 2axy (mod 4) , (4.60a)

ux ≡ ayz (mod 2) , (4.60b)

uy ≡ azx (mod 2) , (4.60c)

uz ≡ axy (mod 2) . (4.60d)
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This confirms our earlier assertion that wxyz and uα’s alone characterizes all ~no modulo frozen
crystals.

Compounds occupying equivalent positions in the ~no crystal (and with equal Chern num-
bers) have equivalent quantized response properties12 as they differ by the addition of a
frozen state. In the following sections, we will determine the properties of each of the dif-
ferent types of compound in the unit cell. Since the uα’s and wxyz distinguish among the
32 sites in a unit cell, it will be these parameters that determine all the quantized response
properties. (Note that materials corresponding to equivalent sites in this classifying crystal
could have different static properties. Likely the only property of this type is that frozen
insulators can have intrinsic electric polarization. Since polarization is defined modulo one-
half of a Bravais lattice vector, there are still only a few combinations of the no-integers that
have interpretations.)

To see in general that two materials (H and H ′) with the same Chern numbers whose ~no
vectors differ by a vector in the frozen lattice have the same response whether the vector has
negative or positive coefficients, write ~no − ~n′o =

∑
d ~nd

~fd. Define ~f+ to be the sum of just

the terms in this sum with positive coefficients, and define ~f− similarly as the sum of the
terms with negative coefficients. Then ~f± both are realized for ionic crystals. Furthermore,
~no + ~f− = ~n′o + ~f+, so the materials obtained by combining the ionic crystals ~f− and ~f+ with
H and H ′ respectively belong to the same phase. Hence these materials and H and H ′ all
have the same quantized response properties.

4.3.2 Constraint on parities in gapped materials

We will start by showing that if wxyz =
∑
κ no(κ) is odd for a certain band structure,

then this band structure is not an insulator [Eq. (4.5)]. This determines the basic behavior
of a crystal with the ~no vector ~mxyz (see Fig. 4.6), and more generally, any state with an odd
multiple of ~mxyz [see Eq. (4.59)].

There are two ways to see that wxyz must be even in an insulator. For the first one, let
us understand a more general question. Consider a Hamiltonian (not necessarily a gapped
one) that is being altered. What happens when the parities of the occupied states at the
TRIMs change? These parities can change if an even state at the TRIM below the Fermi
energy and an odd state above the Fermi energy (or vice versa) pass through one another.
Each time no(κ) changes by 1 by means of such an interchange, a pair of Weyl points that
are inversion images of each other appears or disappears. Weyl points are points in the
Brillouin zone when the conduction and valence bands touch, hence when they are present,
the material is not an insulator. Therefore, if the insulator starts out as a frozen insulator
with all no(κ) = 0, then the first change of no(κ) makes the material non-insulating.

Furthermore, the material cannot become insulating again through a gaping out of the
Weyl points, unless more no’s change. A Weyl point is stable in isolation because it has

12Other properties, such as the dielectric constant, do not have to be the same of course.
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a ‘chirality’ ±1 and the total chirality of Weyl points is conserved.13 A pair of inversion
symmetric Weyl points can either annihilate with a second pair or with one another. The
latter cannot occur when the parities at the TRIMs are fixed, because by symmetry they
would have to meet one another at a TRIM. Annihilating there would cause a change in the
parities at it.

Now start from a trivial (i.e., a frozen) Hamiltonian, with all electrons glued to the
Bravais lattice; in this Hamiltonian, all the states at TRIMS are even. After an odd number
of changes of no(κ), there are an odd number of pairs of Weyl points, so the crystal is not
insulating. Some of these may annihilate two pairs at a time, but one pair always remains.
In general the number of pairs of Weyl points and the sum of the no(κ)’s are both even or
both odd.

A material with a single pair of Weyl points (the simplest case that can occur with wxyz
odd) would be an example of a Weyl semimetal, and would have some unusual type of
conductivity. Assuming the material is not doped, the Fermi energy would be forced to line
up with the energy at the cone point, resulting in a density of states equal to zero. This
is because the area of all electron-like Fermi surfaces has to cancel the area of the hole-like
Fermi surfaces (due to the Luttinger theorem). Thus, if there is only one pair of Weyl points,
the Fermi energy cannot move away from zero, since it would then intersect the cones in
small Fermi spheres containing the same type of carrier. This phenomenon does not occur if
time-reversal and inversion symmetry are both present, since a Weyl point is not invariant
under the product of the symmetries (its chirality is reversed by them). Weyl points can
also occur when no(κ) is even [159], but in that case more symmetry would be necessary to
pin the Fermi energy to them (since there would be additional pairs of Weyl points).

The stability of the Weyl points is explained in part by the basic result on degeneracies of
eigenvalues, rather than by symmetry: in order to tune a Hamiltonian to a point where there
is a degeneracy, three parameters are sufficient. Since H(k) is a function of three momenta,
these may be tuned to a point where there is a degeneracy, provided H is close enough to
having a degeneracy in the first place.

Any set of parities no(κ) satisfying
∏
κ ηκ = 1 can be realized in an insulator. There is

never a direct phase transition (even with fine tuning) between two such phases when two
or more ηκ’s flip sign. When two modes cross at one TRIM in order to change the value of
no there, Weyl points will form, and the system will be a semimetal. The Weyl points must
then move to the second TRIM and reannihilate, so that the system becomes an insulator
again, as illustrated in Fig. 4.7. There can be direct transitions where the value of no at a
single TRIM changes by 2. However, such transitions are always fine-tuned, because two
states above and below the Fermi energy have to switch places all at once.

The alternative argument for the presence of Weyl points when Eq. (4.5) is violated does
not involve changing the Hamiltonian around and following its evolution. Instead, it is based
on studying the Bloch states as a function of k. Let us first suppose there is a single occupied

13In fact, Weyl points are Berry-flux monopoles in momentum space, so they have a conserved charge, see
Ref. [97, Chap. 8, pp. 86–104].
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Figure 4.7: Changing the parities of bands at two TRIMs.

The figures represent the Brillouin zone of a system with two bands, one of which is
filled. Initially, all the filled bands have parity +1, but the parities at two points are
changed with the assistance of Weyl points which also act as monopoles in the Berry
flux. A pair of monopoles forms at one TRIM and they move to another TRIM where
they annihilate. In the process, the parities of the states at both TRIMs are reversed.
The open circles indicate where the monopoles start out and disappear.

band |ψ1k〉. To determine whether the wavefunction is even or odd, let us take its overlap
with an even orbital |s〉 centered on the origin, s1(k) = 〈s|ψ1k〉. Plot the solutions in the
Brillouin zone to

s1(k) = 0 . (4.61)

This equation is a complex-valued, amounting to two equations in three variables, so its
solutions are generically 1D curves. At a TRIM, ψ1κ(r) is either even or odd. If it is odd, its
overlap with |s〉 vanishes. Generically, if it is even, the overlap does not vanish. Hence, there
is one curve through each TRIM at which |ψ1κ〉 is odd. But since the curves are inversion
symmetric, they must pass through an even number of TRIMs (see Fig. 4.8). Hence, the
total number of TRIMs where Π|ψ1κ〉 = −|ψ1κ〉 is even.

When there are several filled bands which do not touch each other,
∏
κ ηa(κ) = 1 for

the ath band separately, and
∏
κ ηκ = 1 follows. If bands do touch, another step is required

to see that the product is still one, even though the product for a single band may be −1.
Consider the curves determined by sa(k) = 〈s|ψak〉 = 0 for all the occupied bands 1 ≤ a ≤ n.
Some of these curves may be open arcs; they may end at a Weyl point between band a and
band a± 1 because sa(k) becomes discontinuous there. If that occurs, then there is always
an arc leaving the Weyl point in the other band. Putting all the arcs from the occupied
states together therefore produces a set of closed curves; these curves will be variegated if
the arcs in each band are imagined to have different colors, but they are still closed. Hence
we can still deduce that they pass through the TRIMs an even number of times total, i.e.,
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Figure 4.8: Inversion symmetric curves in the Brillouin zone.

Curves which are inversion symmetric must pass through an even number of TRIMs.
On the left is an attempt at drawing a curve that passes through one TRIM fails to be
inversion symmetric. On the right is an inversion symmetric figure; if there is just one
curve passing through one of the TRIMs, it must go all the way around the Brillouin
zone and pass through another TRIM on the way.

∑
κ no(κ) is even.

4.3.3 Polarization and Hall conductivity

Next, we interpret the u indices, showing that uα ≡ G̃Hα (mod 2) for each of the three
directions α = x, y, z, with G̃Hα = G̃H ·Rα. (Recall that G̃H have integer coefficients and are
related to the Hall conductivity by σH = e2

h
G̃H .) This result is equivalent to Eq. (4.6) and

applies to 14 of the 16 insulating phases.
We will prove Eq. (4.6) momentarily, but it is logically necessary to derive the expression

for the electrostatic polarization in one-dimension first. The polarization is not captured
by the AB31 crystal because it is not a response property. (With polarization taken into
account, there are actually 8 × 16 different types of behavior that can occur in inversion
symmetric phases.) Both polarization and the Hall coefficient can be expressed in terms of
to the Berry connection, a vector function in momentum space. For a single band, the Berry
connection is defined by

Aa(k) = i〈uak|∇k|uak〉 (4.62)

and the total Berry connection A(k) is the sum of the Berry connections of the occupied
bands. Here uak is the periodic part of the Bloch wavefunctions, i.e, ψak = eik·(r−r0)uak(r).
This expression includes an arbitrary origin r0 for the plane wave.

Consider a crystal in one-dimension. We will prove that the intrinsic polarization is given
(modulo e times a lattice vector) by Eqs. (4.8), (4.9) starting from the formula in Ref. [167]
for the intrinsic polarization of an arbitrary crystal, namely

P = Pe −
∑
i

Zie(xi − x0) . (4.63)
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The first term is the polarization of the electrons relative to an origin, x0, the second term is
the polarization of the nuclei in the unit cell relative to x0, Since the electrons are delocalized,
calculating the former contribution is subtle. It is given by

Pe =
e

2π

∑
a

�
dk Aa(k) . (4.64)

This expression for the polarization is ambiguous up to multiples of e, as expected on
account of surface charge. For example if the unit cell is redefined, some nuclei locations are
shifted by one unit changing the second term of Eq. (4.63). Likewise if the Bloch wavefunc-
tions are redefined by uak → eiθ(k)uak, then the polarization shifts by e

2π

(
θ(2π) − θ(0)

)
, an

integer multiple of e if eiθ(k) winds around the unit circle.
To evaluate the polarization of an insulator with inversion symmetry, set x0 = 0, the

inversion center. First, consider a single band. The wavefunctions at k and −k must be the
same up to a phase, so ψ−k = eiθ(k)ψk for some phase θ(k). Therefore, A(k) + A(−k) =
θ′(−k). Combining k and −k together in Eq. (4.64) leads to

P̃e =
1

2π

� π

0

θ′(−k) dk =
1

2π

(
θ(−π)− θ(0)

)
. (4.65)

Now eiθ(k) is the parity of the wavefunction ±1 at TRIMs k = 0, π. Hence if the parities at
the TRIMs are different, θ changes from 0 to π so P̃e ≡ 1

2
(mod 1). If there are many bands,

we may sum the polarization over all of them and we find in general that

(−1)2P̃e = η0ηπ . (4.66)

The formula for the polarization in 3D can be deduced from this result – this is shown in
detail below.

Now let us consider the Chern number for a 2D system, H(kx, ky), and show that

(−1)G̃Hz =
∏
κ ηκ. This is the two-dimensional version of Eq. (4.6). The Hamiltonian leads

to a 1D Hamiltonian Hky when ky is fixed. As ky changes, the polarization P (ky) of the
one-dimensional system changes. This means current must flow from one end to the other.
According to Thouless’s pumping argument, the Hall conductivity G̃Hz is equal to the to-
tal charge (divided by e) that flows in the 1D material when ky changes by 2π [174]. (In
real space, the one-dimensional system is just the two-dimensional system rolled into a tube
along the y direction. Changing ky corresponds to applying an electromotive force (emf) for
a period of time around the y-direction. Hence the Hall effect implies that charge should
flow.)

Thus G̃Hz = −1
e

� π
−π dP (ky). (The polarization is not single-valued if G̃Hz 6= 0.) Now

if
∏
κ η(κ) = −1 (as in either of the 2D xy-layers in Fig. 4.1b) then the polarization at

ky = 0 and ky = π differ by a half integer. Thus,
� π

0
dP = (k + 1

2
)e. By inversion symmetry,

dP (ky) = dP (−ky) (P is an odd function so dP is even). Hence the full change in the
polarization between 0 and 2π is 2(k+ 1

2
)e and the Hall coefficient is odd, G̃Hz = −(2k+ 1).
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This section concludes with the generalizations of these results to three-dimensions. The
expression for the Hall coefficient in three-dimensions Eq. (4.6) is basically a restatement
of the two-dimensional result. Each of the three components of G̃H is equal to the two-
dimensional Hall coefficient for any cross-section of the Brillouin zone:

G̃Hz =

�
dkz
2π
G̃2D
Hz(kz)

= G̃2D
Hz(kz = 0) . (4.67)

The Chern number for any cross-section kz is the same, because varying kz is like taking a
2D system and deforming it continuously. The Hall coefficient can be obtained modulo 2 by
looking at an inversion symmetric plane, either kz = 0 or kz = π, giving Eq. (4.6). (Note
that this gives another reason for the constraint

∏
κ ηκ = 1: the two planes have to agree

about G̃Hz’s parity.)
The expression for the Hall coefficient can be understood also by studying the evolution of

the Hamiltonian from a frozen one into one with the parities ~mxy and studying the monopoles
in the intervening semimetal phase, as in Fig. 4.7. When the monopoles move from (π, π, 0)
through the Brillouin zone to (π, π, π) where they annihilate, they leave behind a magnetic
flux, so the Chern number is 2π. In this process, the parities flip on the edge parallel to the
flux; hence the product of ηκ on either of the perpendicular faces is −1.

Now consider the polarization in three-dimensions, which is given by

Pe = e

�
d3k

(2π)3
Aa(k) . (4.68)

For the polarization in 3D to be well-defined, σH must be 0, so that there are no surface
modes. According to Eq. (4.8), the pattern of signs is then a plane wave; in this situation all
the 1D polarizations at TRIMs, P x

1D(κy, κz), are the same. This value in fact coincides with
the three-dimensional polarization. For example, in Fig. 4.1d, each of the four horizontal
lines through TRIMs looks like a 1D insulator with half-integer polarization, so the net
polarization per unit cell of the 3D crystal is also e

2
Rx.

In more detail, the three-dimensional polarization is the integral over one-dimensional
polarizations, P x =

� dkydkz
(2π)2

P x
1D(ky, kz), if GHy = GHz = 0. (This condition ensures that P x

is single-valued.) The integrand is not a constant, but by inversion symmetry P x
1D(ky, kz)−

P x
1D(0, 0) = −

[
P x

1D(−ky,−kz) − P x
1D(0, 0)

]
. (Intuitively, one expects P x

1D(ky, kz) to be an
odd function, but only differences in polarization are inversion symmetric because of the
ambiguity in the polarization.) Hence P x = P x

1D(0, 0), proving Eqs. (4.8) and (4.9).
Note that if σH is nonzero, then part of the polarization is still well-defined. If σH is

parallel to x̂ (or in a non-cubic lattice, G1) then the x-component of the polarization cannot
leak through the surface modes. On a cylindrical sample of material whose axis is along the
x-direction of the crystal, the chiral modes circle around the cylinder, so they do not provide
a short circuit between the two ends which would have allowed the x polarization to leak
out. This component of the polarization is still given by Eqs. (4.8) and (4.9).
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The relationships we have proved so far give the physical interpretation of uα and wxyz
modulo 2. They also have another meaning: they complete the problem of listing all the
phases, by showing which combinations of the 11 integers G̃H and no(κ) occur in insulating
materials. The 11 integers cannot be chosen independently (unlike the three Chern numbers
in the non-symmetric classification); they must satisfy Eqs. (4.5) and (4.6).

4.3.4 Magnetoelectric response

Now we justify the relation θ
π

= 1
2

∑
κ no(κ) [Eq. (4.7)], for insulators with σH = 0, by

calculating θ for a special case, ~no = 2~mxyz. This is the only nontrivial point in the unit
cell of the 8D classifying-crystal that is consistent with the conditions that the material
is insulating and has no Hall conductivity, so any other case can be related to this one by
deforming the insulator, and adding and subtracting frozen insulators to it. It is not possible
to define θ for materials that have a Hall conductivity: for example, if θ is defined as dP

dB
,

the surface states interfere with defining P .
Now we need to show that θ = π for 2~mxyz. An insulator with the such parities can be

deformed to one with time-reversal symmetry since the number of odd states at each TRIM
is even (consistent with the Kramers degeneracy theorem).

However, the time-reversal symmetry is a red herring when studying the magnetoelectric
response, and so we will give an alternative argument. To calculate θ for ~no = 2~mxyz, it
is enough to consider systems with two filled bands and the appropriate parities. (Any
insulator with any additional bands, which would have to be even at all the TRIMs, has the
same value of θ because they can be obtained by adding frozen bands.) The expression for
θ in terms of the Berry connection [60, 61, 175] can be evaluated directly for the insulator
with two bands using symmetry, similar to how the polarization was obtained above. The
evaluation of this integral follows closely Ref. [176]’s calculation for the TRS case. The first
half of the argument for the time-reversal case applies to systems with inversion symmetry
also, and leads to

θ

π
=

1

24π2

�
d3k εαβγ Tr

[
(B†∂αB)(B†∂βB)(B†∂γB)

]
, (4.69)

where Bab(k) = 〈ua−k|Π|uak〉 is a matrix and |uak〉 is a set of orthogonal wavefunctions
spanning the occupied states (it might not be possible to take these as energy eigenfunctions,
since |uak〉 have to be continuous, and energy eigenfunctions are not continuous when the
bands touch each other). The spaces of occupied states are symmetric under inversion
symmetry. B(k) is a unitary matrix measuring how far the wavefunctions chosen as a basis
for them are from being inversion symmetric, just as eiθ(k) measures the asymmetry for a
single wavefunction in the calculation of the one-dimensional polarization. In a nontrivial
phase, it is not possible to choose the basis functions in a continuous way without breaking
the symmetry.

Now B(k) gives a map from the 3D Brillouin zone to a unitary group. The expression
above for θ

π
is known to equal the degree of this map, i.e., the pullback of the third cohomol-
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ogy classes H3(U) = Z→ H3(T 3) = Z. At the TRIMs, B(κ) has eigenvalues ±1 depending
on no(κ). In the case ~no = 2~mxyz with two bands, i.e., B ∈ U(2), B(κ) = 12 at each TRIM
except for at kx = ky = kz = π, where B(κ) = −12. An element of U(2) may be decomposed
as eiθU , where U ∈ SU(2). Note that this decomposition has a sign ambiguity, as both 12

and −12 are in SU(2), hence θ 7→ θ + π, U 7→ −U gives an equally valid decomposition.
We first show that this decomposition is single-valued for the system of interest here. The

pair (θ, U) ∈ U(1) × SU(2) which is a double cover of U(2), a single-valued decomposition
is possible if and only if the map B(k) : T 3 → U(2) can be lifted to the map B′(k) : T 3 →
U(1) × SU(2). The covering U(1) × SU(2)

p−→ U(2) induces a map π1

(
U(1) × SU(2)

)
=

Z p∗−→ π1

(
U(2)

)
= Z which takes n 7→ 2n. Being a cover, the only obstruction to a lift comes

from π1; as long as B(k) can be lifted to B′(k) along the 1-cells of the Brillouin zone T 3, the
lift is possible everywhere in the BZ. This amounts to showing that the ‘winding number’ of
DetB(k) along each of the three directions x, y, and z is even. One the line ky = kz = 0,
the winding of the path kx ∈ [0, π] must be an integer, since B(0, 0, 0) = B(π, 0, 0) = 12. By
inversion, B(−k) = B(k)†, and the path kx ∈ [π, 2π] is the inversion image of the first half.
Their phase winding must be the same integer,14 and hence the combined winding is an even
integer. This shows that in the x-direction, there are no obstruction to the lift from B to
(θ, U). The same argument shows a similar result in the other two directions. Therefore,
we can always decompose B(k) as eiθ(k)U(k), with U ∈ SU(2). We resolve the two-fold
ambiguity in the lift by letting θ(0, 0, 0) = 0, such that U(0, 0, 0) = 12.

As a topological space, SU(2) is homeomorphic to S3, the degree of the map T 3 → S3 is
the number of times the torus covers the 3-sphere. The degree of the map modulo 2 is the
number of solutions to B(k) = −12 (or any fixed matrix, like 12). We may just count the
TRIMs satisfying this condition, because all other solutions come in pairs at k and −k, hence
the number of TRIMs where B has this value is determined by ~no. For the case ~no = ~mxyz,
exactly one TRIM has B = −12 and hence that configuration has magnetoelectric coupling
θ = π.

4.4 Parities and the entanglement spectrum

We have found that only some combinations of the no parameters modulo 2 and 4 have
physical interpretations. In this section, we will see that all the no-parameters do have in-
terpretations in the entanglement spectrum. This will give another perspective on why only
values of the no modulo 4 are important: the entanglement modes cannot be observed di-
rectly. However, numbers of entanglement modes modulo 2 are related to various observable
properties.

The relations between the properties of the insulator and the parities can be derived
geometrically using the entanglement spectrum of the insulator; there is a rule for counting
the number of states in this spectrum based on the parities.

14B 7→ B† reverses the winding, but so does k 7→ −k.
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The entanglement spectrum measures quantum correlations in the ground state of a
system (see e.g. Ref. [169]). It is defined using the Schmidt decomposition. The insulator is
cut by an imaginary plane passing through a center of inversion symmetry. The many-body
ground state wavefunction then decomposes,

|Ψ〉 =
1√
Z

∑
α

e−E
e
α/2|α〉L|α〉R . (4.70)

where Z is a normalization constant and Ee
α controls the weight of a given term. It is called

the “entanglement energy” because the probability of each term is given by the Boltzmann
distribution. The states |α〉L are called the entanglement states, and they are analogous to
the surface states of the half of the system on the left side of the cut.

When the wavefunction of the entire system is a free system described by a Slater de-
terminant, the entanglement states |α〉L can also be written as Slater determinants [169].
They are formed just like the excited states of a system of free electrons, by selecting wave-
functions from a certain orthonormal family of single-particle wavefunctions fLik⊥(r). (These
states may be labeled by the momentum along the surface, k⊥, by translational symmetry.)
Each of these wavefunctions has an associated “energy” εLi(k⊥) as if they were eigenfunc-
tions of a single-particle Hamiltonian. The “entanglement energy” Ee

α is the sum of all the
“energies” of the occupied states.

The entanglement spectra, εLi(k⊥), can be used to determine “topological” properties of
a system. When a material is insulating in the bulk, it may still have a gapless entanglement
spectrum. This implies that electrons are delocalized across the cut, unlike the electrons
in a frozen insulator. These delocalized states may be “topologically nontrivial.” Physical
topological surface states can be deduced from such entanglement spectrum states: the
entanglement spectrum can be continuously deformed into the physical spectrum, so any
topologically protected states are present in both [163, 164].

Determining basic properties of the entanglement spectrum is simple in the presence
of inversion symmetry. In this case [164], the entanglement spectrum has a particle-hole
symmetry Πe that implies a rule for finding the number of entanglement states at each
surface TRIM. The Πe symmetry takes each mode to another mode whose momentum k⊥
and “energy” εLi(k⊥) have the opposite sign. Let us regard 0 as the “Fermi energy”; the
state in the Schmidt decomposition with the smallest “energy” (i.e., the largest weight) is
obtained by filling up all states with εLi < 0.

At surface TRIMs Πe ensures that states appear in pairs with energies ±ε when ε 6= 0.
There can be a single mode at zero. If present, this mode will stay exactly at zero no matter
how the system is changed, because moving away would break the symmetry. More can be
said about the zero-energy states: the “index” at each TRIM can be determined. The space
of zero-“energy” states is invariant under Πe so they can be classified by their parities. The
index is the difference ∆Ne(κ⊥) between the number of modes of even and odd parity. This
quantity is invariant because even and odd zero-energy states can ‘cancel’ one another and
move to nonzero energies ±ε, while two states of the same parity cannot cancel. (If two states
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move away from zero energy, then they must turn into eigenstates f1 and f2 with energies of
opposite sign. Thus, f1 and f2 are orthogonal states exchanged by Πe. The corresponding
parity eigenstates, 1√

2
(f1 ± f2), have opposite parities.) Thus, if ∆Ne(κ⊥) has some value,

such as 2, then there must be at least 2 states at this TRIM.
The imbalance number can be found directly from the bulk band structure,

∆Ne(κ⊥) =
1

2

(
∆N(κ1) + ∆N(κ2)

)
, (4.71)

where κ1 and κ2 are the two bulk inversion symmetric momenta that project to κ⊥ and
∆N(κ1) (e.g.) is related to no(κ1): it is the difference between the number of even and odd
occupied states at κ1, that is n − 2no(κ1). This result applies in any dimension. In one-
dimension, for example, there is only one ∆Ne (since there is only one surface momentum)
to determine, and ∆Ne is equal to the number of even states at κ = π minus the number of
odd states at κ = 0. Note that the parities of the bulk states are to be calculated relative to
an inversion center that is on the cutting plane.15

We will now explain how to define the particle-hole symmetry and how to derive the
formula for ∆Ne. This derivation requires some results of Refs. [169, 178, 179]. As the
building up of entanglement states from single-particle states suggests, the entanglement
modes are actually eigenfunctions of a “Hamiltonian” HL defined on the part of space to the
left of the cutting plane. The eigenvalues of HL are not equal to the entanglement energies
εLi, but they are related to them,

HL|fLik⊥〉 = 1
2

tanh
[

1
2
εLi(k⊥)

]
|fLik⊥〉 . (4.72)

The Hamiltonian HL is just the result of confining the “flat-band Hamiltonian” Hflat in
the whole space to the left half of space. Hflat is defined to have the same eigenfunctions
as the true Hamiltonian but simpler eigenvalues, −1

2
for the occupied states and +1

2
for the

empty ones. HL has strange eigenstates – it has infinitely many surface bands, and for many
cases, it has no states besides these. The reason is that the spectrum of HL ranges from −1

2

to 1
2
. Each bulk state has an energy exactly equal to ±1

2
(corresponding to εLi = ±∞) so

any state with a finite εLi is a surface state.
While HL is obtained from Hflat by cutting off the right half of space, cutting away the

left half of the space leads to a partner Hamiltonian HR (whose eigenfunctions fR generate
the Schmidt states on the right). These three Hamiltonians have unusual interconnections
that do not occur when a generic Hamiltonian is ‘cleaved’ by just confining it to half of space.

15The parities and the entanglement spectrum both depend on the inversion center, though the physical
responses do not. Suppose in particular that we are working with a hopping model consisting of a chain of
identical sites each with multiple orbitals. In order to avoid cutting an orbital in half, we have to make a
cut on a bond midway between two sites. On the other hand, defining inversion parity relative to sites is
the most natural choice. Defining the parities this way, ∆Ne = no(π)− no(0) since the parities of states at
κ = π are switched by the change in inversion center from a bond to a site. This is equivalent to the result
obtained in Sec. IIIC of Ref. [177]. This article has an additional factor of 2 because it considers periodic
boundary conditions, and cutting the chain creates two ends.
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For example, many eigenstates of Hflat give eigenstates of HL and HR when the wavefunction
is set to zero in the part of space that is being discarded. For a generic Hamiltonian, the
wavefunction on the remaining half of the space would be depleted near the surface. The
unusual relationships between the eigenfunctions of these three Hamiltonians follow because
Hflat satisfies an identity H2

flat = 1
4
.

The connections between the eigenstates of the three Hamiltonians are as follows. The
eigenfunctions of HL and HR are in one-to-one correspondence via a map M. This map
reverses the sign of the “energy.” Furthermore, it is possible to build up a complete set of
occupied states of Hflat from these pairs:

Fik⊥(r) =

√
1

2
sech

εLi(k⊥)

2
×
[
e−

1
4
εLi(k⊥)fLik⊥(r) + e

1
4
εLi(k⊥)MfLik⊥(r)

]
. (4.73)

This is an occupied state since applying Hflat to it gives an eigenvalue of −1
2
. As fLi varies

over all eigenstates of HL, the function F varies over a basis for the occupied states in the
ground state. These states are strange eigenstates for a bulk Hamiltonian since they are
localized; this is possible because wave packets do not move in Hflat: the group velocity is
zero since the dispersion is flat. (Another curiosity of these partnered wavefunctions is that
the weights in the superposition depend on the energy.)

When the system is inversion symmetric, M and Π can be combined together to give
the symmetry Πe; it is a transformation within the left half of the insulator, defined by
Πe = ΠM. Since Π is a symmetry of the wavefunction, it preserves ε while M reverses its
sign. Therefore, Πe acts as a particle-hole symmetry. Similarly, Πe also reverses the sign of
k⊥.

Now we can count the zero “entanglement energy” states at TRIMs. Let us call the
parities of these states under Πe as ηeiκ⊥ . A state fLiκ⊥ with this parity extends, by Eq. (4.73),
to an occupied state

Fiκ⊥ =
1√
2

[
(fLiκ⊥(r) + ηeiκ⊥f

L
iκ⊥

(−r)
]
. (4.74)

where we have used ΠMfLiκ⊥ = ηeiκ⊥f
L
iκ⊥

to relate fR to fL. This state is invariant under
ordinary inversion, and the parity is ηeiκ.

Let us determine the value of ∆Ne for a one-dimensional system. The result in higher
dimensions follows since we can fix k⊥ = κ to obtain a one-dimensional system. Consider
a circular chain with an even number of cells, L. Now, count the number of even occupied
states We minus the number of odd occupied states Wo, using two different bases. We −Wo

is equal to tr Π so it is the same in both bases; the equality will be Eq. (4.71).
One orthonormal basis will be obtained by cutting the system along a diameter. There

will now be two cutting points 0 and L
2
. Near each of these cuts are localized an orthonormal

set of F states [Eq. (4.73)]. The two sets (plus bulk states if any exist) together form a
full basis for the wavefunctions on the ring. The zero-“energy” states give parity eigenstates
centered on each of the two cuts, according to Eq. (4.74). These contribute 2∆Ne to We−Wo.
The remaining states do not contribute because they can be organized into inversion related



Section 4.4. Parities and the entanglement spectrum 89

pairs, Fi(x) and Fi(−x). These states states are all mutually orthonormal because their left
and right halves correspond to different eigenvalues of HL, HR. The inversion matrix Π has
only off-diagonal matrix elements between Fi(x) and Fi(−x).

On the other hand, instead of the localized wavefunctions, we can use the extended
Bloch functions, ψa(kx). The wavefunctions at momentum ±kx do not contribute to the
trace of Π because they are exchanged, while the wavefunctions at the TRIMs contribute
(∆N(π)+∆N(0)) to We−Wo. Setting the two expressions for tr Π equal to each other gives
Eq. (4.71).

We can now count the entanglement states of a two-dimensional insulator to understand
their physical surface properties. For example, applying the result to an insulator that has
both time-reversal and inversion symmetry gives a simple derivation of the formulae from
Ref. [43] for the indices of topological insulators. We will focus on the two-dimensional
quantum spin Hall index, since the three dimensional indices are defined in terms of it. The
quantum spin Hall index ν is the number (modulo 2) of physical edge modes between 0 and
π. As we have just seen, finding states in the entanglement spectrum is easy because of the
particle-hole symmetry (see Fig. 4.9). Once these are found in the entanglement spectrum,
they remain when it is deformed into the physical spectrum, by the standard arguments.

Consider the entanglement spectrum created by dividing the system at y = 0. The spin
Hall index is the parity of the number of curves in the dispersion ε(kx) crossing ε = const.
between kx = 0 and π. Consider in particular the axis ε = 0, strictly between 0 and π the
axis crosses an even number of modes: the crossings come in pairs because the spectrum is
symmetric under ΘΠe, which just flips the sign of ε. (Generically, these states will just mix
and move off the axis.)

Therefore only the modes at the ends of the interval are important. We may assume that
all the modes at either of these TRIMs have the same parity, because otherwise the states
whose parity is in the minority may combine with the states in the majority and become
gapped. Then by Eq. (4.71) the number of modes at, e.g., kx = 0 is

|∆Ne(0)| = |n− no(0, 0)− no(0, π)| . (4.75)

Since these modes are at the extremes of the interval from 0 to π, each one only qualifies as
half a mode. To justify this guess, look at a line slightly above the axis. This line crosses
half of the modes emanating from each TRIM, so the number of crossings, modulo 2, is
ν ≡ 1

2

∑
kx∈{0,π} |n − no(kx, 0) − no(kx, π)|. This is congruent to 1

2

∑
κ no(κ), summed over

all four TRIMs, in agreement with the standard result.
When the flat band Hamiltonian is deformed into the true Hamiltonian, ν remains the

same even though the surface states no longer have particle-hole symmetry. The energy
curves form continuous loops or zigzags (see Fig. 4.9) because of the double-degeneracies are
protected by the Kramers degeneracy theorem.

We can use a similar approach to understand the results in Sec. 4.3 for the polarization and
Hall coefficient. These effects may be determined by sketching the arcs of the entanglement
Fermi surface using the information about the number of zero energy states at the TRIMs.
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Figure 4.9: Determining the quantum spin Hall index using the entanglement spectrum.

The figure compares spectra of a nontrivial and a trivial system. The left spectrum for
each system is the entanglement spectrum, and the right illustrates how the surface
spectrum might look. In the entanglement spectrum, inversion symmetry protects
degeneracies at zero energy at the TRIMs, allowing one to determine the index. But
the two sets of spectra can be deformed into one another (the difference is probably
more drastic than illustrated). Because time-reversal symmetry produces Kramers
degeneracies at the TRIMs at all energies, the parity of the number of modes crossing
the Fermi energy does not change.

Figure 4.10: A model with the quantum Hall effect perpendicular to Rz.

This model with a single filled band that has an odd quantum Hall effect parallel to
Rz. (Left) The parities at the TRIMs. (Right) The entanglement states on the xz-face
of the Brillouin zone, determined using ∆Ne(κ⊥) = 1

2

(
∆N(κ1) + ∆N(κ2)

)
.
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Figure 4.11: Determining the polarization from the entanglement spectrum.

(Left) Parities for an insulator with one filled band, with a half-filled Fermi sea in the
entanglement spectrum. (Right) Possible entanglement Fermi arcs for a cut parallel to
the xz plane. The arcs surround half the surface Brillouin zone. If there are no nuclei
on y = 0, this crystal has a half-integer polarization in the y-direction.

While each zero energy state at a TRIM gives at least a Fermi point, not all of these points
extend to Fermi arcs. Helpfully, the parity of the number of Fermi arcs is the same as ∆Ne’s
parity though.

Figure 4.10 shows how the modes might look for one set of parities. Consider the xz
surface of this insulator. According to Eq. (4.71) there must be one arc (or an odd number)
passing through (π, 0) and (π, π), and an even number through the other two TRIMs. Min-
imally, there is only one Fermi arc, as illustrated in Fig. 4.10. Hence as one travels along kx
through the Brillouin zone, one crosses through the Fermi arc. Since the z-component of the
Hall conductivity, G̃Hz is the number of arcs (counted with a sign depending on the sign of
the group velocity), G̃Hz = ±1. In more complicated cases, we can determine only that G̃Hz
is odd because there may be Fermi arcs that do not pass through TRIMs. These cannot be
predicted from the no(κ) parameters, but they come in pairs by inversion symmetry, so the
parity of the Hall coefficient is uniquely determined.

Now consider the parities in Fig. 4.11. One possible choice of modes (with one passing
through each TRIM point as required) is illustrated. If these modes are not chiral, then they
separate the Brillouin zone into filled and empty states; exactly half the Brillouin zone is
filled because of the symmetry. This will imply that P y = e

2
if there are no nuclei on y = 0,

and this will be seen to agree with the rule for the polarization.
The polarization is defined as the surface charge once the surface bands have been emp-

tied. This definition may be applied also to the entanglement spectrum. Cut the system
with a plane y = 0 through a point of inversion symmetry. If there are no nuclei on this
plane (which would be indivisible), then the plane just divides the electronic part of the
wavefunction in two parts.

Of all the terms in the Schmidt decomposition, consider the one with the largest coef-
ficient, |G〉L|G〉R, where |G〉L and |G〉R are the ground states of HL and HR respectively,
obtained by filling all the negative energy states. These states are mirror images of each
other, so they both have the same surface charge Qy, with net charge 2Qy. However, the
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Schmidt state |G〉L|G〉R, obtained by collapsing the wavefunction by making a hypothetical
measurement, has the same charge as the ground state. Each electron is pushed over to the
side of the y = 0 plane where it is more likely to be, but no electrons appear or disappear.
Thus, 2Qy = 0, i.e., the ground state of HL has no surface charge.

Now Fig. 4.11 shows that this ground state of HL has a partially filled band. When this
band (which covers half the Brillouin zone) is emptied, a charge of − e

2
per unit cell on the

surface remains. Hence the polarization P y ≡ e
2

(mod e).
To compare this result to Eq. (4.9), we need to calculate both contributions to this equa-

tion, from nuclei and electrons. Note that P y
e = 0 for the given parities. Since there is one

filled band of electrons, by neutrality, there must be a single charge −e nucleus per unit
cell, which contributes P y

n = e
2
. (The nuclei must be at y ≡ −1

2
because these are the only

inversion symmetric points that are not on the cutting plane.)
We would also like to prove the rule for θ using the entanglement spectrum. The en-

tanglement modes of such an insulator (see Fig. 4.2b) include a Dirac point. Such modes,
if they were physical, would produce a half-integer Hall effect. However, this argument is
incomplete since the entanglement modes are not physical.

4.5 Conclusions

This study shows that, beyond the Chern numbers that can be used to classify insulators
without symmetry, the only protected quantities for insulators with inversion symmetry are
the parities of the occupied states at the TRIMs.

For bulk materials, certain values of the parities imply non-vanishing electrical properties
(the reverse of the usual use of parity symmetry, to prove the vanishing of certain quantities).
In particular, if the number of odd occupied states is odd, the material is never a complete
insulator.

The parities also provide a simple criterion for determining when a crystalline compound
has a magnetoelectric response θ = π, the generalization of the result on the strong topologi-
cal index of an insulator with time-reversal symmetry as well as inversion symmetry. Hence,
the magnetoelectric effect could occur in magnetic materials. There are two consequences:
a magnetoelectric effect could be generated by the magnetic ordering, rather than spin-orbit
coupling; thus there are more possible materials, besides ones containing elements with large
atomic number Z so that the electrons are spin-orbit coupled. It would be interesting to
search for such a material. Second, in a material with spontaneous magnetism and θ = π,
the magnetoelectric effect would be easier to observe than in a topological insulator, because
the material does not have gapless surface states that would interfere with the observation.

Beyond these properties, the static polarization, and the Hall conductivities’ parities,
there are no independent response properties that are related to the inversion parities, since
any two insulators which have these response properties in common can be deformed into
one another, apart from some frozen electrons.
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The properties of inversion symmetric insulators can be derived in a simple way with the
help of the entanglement spectrum, illustrating how entanglement modes can be indirectly
observed: a magnetoelectric response of θ = π corresponds to a material with an odd number
of Dirac points in the entanglement spectrum (even when there are no surface states at all).

Understanding the stability of the parity invariants to interactions will be an interesting
subject for future study. Ref. [180] shows in one-dimension that phases can merge when
interactions are turned on. In non-interacting systems, more complicated point groups may
also protect more interesting phases. Perhaps there are even new types of quantized responses
in these phases.
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Chapter 5

Antiferromagnetic topological
insulators

Topological insulators resulting from strong spin-orbit coupling were originally under-
stood theoretically by classifying single-electron states of materials with time-reversal in-
variance. As long as TRS is preserved, these surface states are robust to (weak) perturba-
tions and remain gapless. On the other hand, magnetic perturbations would destroy the
topological distinction between thees materials and ordinary insulators.

Our goal in this chapter is to explain how three-dimensional antiferromagnetic insulators
with broken TRS can nevertheless have nontrivial features similar to that of the topological
insulators. Along some planar surfaces they have gapless surface modes, while along others
the surface is gapped and there is a nonzero magnetoelectric coupling from the intrinsic ma-
terial; an experimental signature in the latter case is the existence of 1D metallic states along
step edges on the surface. We concentrate here on the conditions for an antiferromagnetic
insulator to be in the topologically nontrivial class and on the measurable consequences at
its surfaces.

The time-reversal invariant topological insulators are described by Z2 topological invari-
ants (i.e., there are only two possible values, “odd” and “even”) that differ from the inte-
ger-valued topological invariants that underlie the integer quantum Hall effect (IQHE) in
two-dimensional time-reversal-breaking systems. A simple picture of the state we discuss is
obtained by starting from a nonmagnetic topological insulator on a bipartite Bravais lattice,
then adding antiferromagnetic order that doubles the unit cell. One of the three-dimensional
topological invariants survives in this process. Note that this differs in several ways from
the two-dimensional model introduced by Haldane on the honeycomb lattice [42], which is
classified by the standard IQHE integer-valued topological invariant (TKNN integer [14] or
Chern number) and where the time-reversal breaking does not change the structural unit cell,
which is on the hexagonal Bravais lattice. Another case previously considered is a system
that breaks time-reversal Θ and spatial inversion Π but preserves the combination ΘΠ (note
that the Haldane model does not preserve this combination); here there are Z2 invariants in
d = 1, 2 for spinless systems and no topological invariants for spin-1/2 systems [181].
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The basic idea in this chapter is to classify crystals with broken time-reversal Θ but with
an unbroken symmetry of the form S = ΘT1/2, where T1/2 is a lattice translation symmetry of
the ‘primitive’ (structural) lattice that is broken by the antiferromagnetic order. Because the
topological invariant involves explicitly the lattice operation T1/2, it is sensitive to how this
lattice operation is modified by a surface, as mentioned above, and even the gapless surface
state is not expected to be stable to disorder (in contrast to the conventional topological
insulator). A macroscopic description is useful in order to understand the conditions for the
topological antiferromagnet to be stable. The three-dimensional topological insulator can be
characterized by the existence of a quantized magnetoelectric coupling in the electromagnetic
Lagrangian [60, 61, 182] (c = 1):

∆LEM =
θe2

2πh
E ·B , θ = π . (5.1)

The coupling θ is only defined modulo 2π, and ordinary insulators with time-reversal invari-
ance have θ = 0. The presence of either time-reversal symmetry or inversion symmetry is
sufficient to guarantee that the other orbital magnetoelectric terms are absent [175, 183].
The product S is also enough to guarantee that the space-averaged θ is quantized to zero or
π, since θ is odd under S.

The bulk value θ = π allows either metallic surfaces or gapped surfaces, but in the
gapped case there must be a half-integer quantum Hall effect. In the conventional topologi-
cal insulators, the surfaces are intrinsically metallic and observation of the magnetoelectric
coupling seems to require adding a time-reversal-breaking perturbation. In the topological
antiferromagnets, some surfaces have a gapped state just from the material’s own time-re-
versal-breaking, which suggests that experimental confirmation that θ = π, which has not
yet occurred, may be easier in these materials, using the same techniques previously used to
extract θ in Cr2O3 [155]. Surface disorder would complicate that approach but would enable
observation of special features at step edges as discussed below.

In the following section, we define the topological antiferromagnet in terms of band struc-
ture and verify the connection to the macroscopic description in terms of magnetoelectric
response. Then the surface properties are discussed, which will likely be important for ex-
perimental detection. In closing we discuss the requirements for experiment and comment on
the possibility that the antiferromagnetic Heusler alloy GdBiPt may realize this phase [184];
the possibility that such Heusler alloys may include several topological insulators has recently
been a topic of interest [105, 106].

5.1 Z2 topological invariant

In this section, we construct the Z2 invariant which distinguishes between the trivial
insulator and “antiferromagnetic topological insulator” (AFTI) phases. We consider a anti-
ferromagnet breaking both the primitive lattice symmetry T1/2 and time-reversal symmetry
Θ, but preserving the combination S = ΘT1/2. The unit cell is effectively doubled as a result
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and T 2
1/2 is the new lattice translation (which accounts for the notation). In the following,

lattice vectors are elements of this doubled lattice except where otherwise specified.
A free particle Hamiltonian takes the form H =

∑
k∈BZ Ψ†kH(k1, k2, k3)Ψk in reciprocal

space, where Ψ† and Ψ are fermion creation and annihilation operators; k1, k2, k3 ∈ [0, 2π)
are momentum coordinates defined by ki = k · ai; and ai are the lattice translation vectors.
The eigenvectors uk of the Hamiltonian H(k) are related to the wavefunctions by Bloch’s
theorem ψk = eik·ruk. Consequently, the Hamiltonian is not periodic in k, but rather satisfies
H(k + G) = e−iG·rH(k)eiG·r, where G is a reciprocal lattice vector and r is the position
operator in this context. Finally, we single out a3 such that T 2

1/2 gives a translation by −a3.

For spin-1/2 fermions, the time-reversal operator may be written as Θ = −iσyK in a
suitable basis, where K is the complex conjugation operator. In addition, Θ (and S) also
flips the sign of the momentum: k → −k. The translation operator T1/2(k) will move the
lattice by half a unit cell, so that its representation in reciprocal space satisfies T 2

1/2(k) = eik3 .
Explicitly,

T1/2(k) = e
i
2
k3

[
0 1

1 0

]
, (5.2)

where 1 is the identity operator on half the unit cell. Note that the operators Θ and T1/2

commute so that ΘT1/2(k) = T1/2(−k)Θ.
The combination Sk = ΘT1/2(k) is antiunitary like Θ itself, but with an important

difference: while Θ2 = −1 for spin-1/2 particles, S2 = S−kSk = −eik3 . The Hamiltonian is
invariant under the combination of time-reversal and translation:

SkH(k)S−1
k = H(−k) (5.3)

At the Brillouin zone (BZ) plane k3 = 0 the Hamiltonian satisfies SH(k1, k2, 0)S−1 =
H(−k1,−k2, 0) with (S|k3=0)2 = −1. These properties lead to a Z2 topological classifi-
cation of this two-dimensional system, by analogy to the Z2 invariant in the quantum spin
Hall (QSH) effect [3] (the same invariant can be rederived in the Hamiltonian picture used
here) [1]. At the plane k3 = π, by contrast, S2 = +1 and there are no topological invariants
associated with this plane [77].

The Z2 invariant may be computed from the Berry connection and curvature [1, 19] on
the k3 = 0 plane, or in the presence of spatial inversion by looking at the four time-reversal
momenta at k1, k2 ∈ {0, π} [43].

Even though the topological invariant is calculated from a two-dimensional slice in the
Brillouin zone for a particular choice of unit cell, it reflects the topology of the three-dimen-
sional band structure. For example, S symmetry gives no invariants in 1D or 2D. In Sec. 5.1.3,
we show that the 3D Z2 invariant is independent of unit cell choice. In the remainder of this
section, we will give a more detailed picture of this topological phase.
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5.1.1 Relation to the time-reversal invariant topological insulator

If we imagine the system described by a time-reversal breaking order parameter M (e.g., a
staggered magnetization), what happens when we restore time-reversal symmetry by letting
M go to zero while maintaining the insulating phase (band gap)?

To understand what happens, it is useful to recall briefly the classification of three-
dimensional time-reversal band insulators. In the Brillouin zone, there are six planes which
satisfy time-reversal ΘH(k)Θ−1 = H(−k), and each has a corresponding Z2 invariant: ν1,
µ1, ν2, µ2, ν3, µ3 classify the planes k1 = 0, π, k2 = 0, π, and k3 = 0, π respectively. Here,
we use the convention 0 (even) and 1 (odd) to denote the elements of Z2. The six values
must satisfy the constraint ν0 ≡ ν1 + µ1 = ν2 + µ2 = ν3 + µ3, all modulo 2, so only four
combinations of these quantities are independent: ν0, ν1, ν2, ν3. The value ν0 is the strong
topological invariant, and the other three Z2 are known as the weak invariants; together they
classify the 3D system. A strong topological insulator (STI) is one in which ν0 is nontrivial,
that is, ν0 = 1.

Upon doubling the unit cell in the a3 direction, the Brillouin zone halves by folding in
the k3 direction. (In this subsection only, a3 is the lattice vector of the structural lattice, and
ad3 = 2a3 is the lattice vector of the ‘doubled’ system which supports an antiferromagnetic
coupling.) We can write the Hamiltonian of the doubled system Hd

k in terms of the undoubled
Hamiltonian Hk:

Hd
(
kd3
)

= U
[
H(kd3/2) 0

0 H(kd3/2 + π)

]
U †

U =
1√
2

[
1 eiG

d
3·r

1 −eiGd
3·r

]
. (5.4)

Here Gd
3 is the reciprocal lattice vector dual to ad3, r is the position operator, and the

dependence on k1 and k2 are omitted for brevity. The unitary transformation U ensures that
the eigenvectors of Hd satisfy Bloch’s theorem.

Under the doubling process, the k3 = 0 and k3 = π planes collapse onto the kd3 = 0 plane.
The new invariant νd3 is given as a sum ν3 +µ3 = ν0 since the unitary transformation U does
not affect any these topological invariants. On the other hand, the planes k3 = ±π/2 map
to the plane kd3 = π. Since ±π/2 are time-reversal conjugate and those planes (like all BZ
planes, by assumption) have vanishing Chern numbers, it can be seen that µd3 is always zero.

Adding an antiferromagnetic (Θ-breaking) parameter M to a STI produces an AFTI.
Alternatively, as we turn down the time-reversal breaking parameter M , the antiferromagnet
reverts to the doubled system. The Z2 invariant describing our system is νd3 = ν0 and we
have a STI at M = 0 (provided the bulk gap does not close). This gives a natural way
to construct a nontrivial topological antiferromagnet – by taking a STI and introducing a
staggered magnetization which breaks time-reversal but preserves S.
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5.1.2 Magnetoelectric effect and the Chern-Simons integral

The strong topological insulator exhibits a quantized magnetoelectric effect, which can
be taken as its definition [60, 61, 182]. To review briefly, the magnetoelectric response tensor

αij =
∂P i

∂Bj

∣∣∣
B=0

(5.5)

is odd under the action of time-reversal. In a Θ-invariant medium, this immediately restricts
the off-diagonal elements of the tensor to vanish. However, the ambiguity in defining the bulk
polarization [185, 186] allows the diagonal elements to take a nonzero value. In fundamental
units, the strong topological insulator has

αij =
1

2

e2

h
δij =

θ

2π

e2

h
δij (5.6)

with θ = π.
The antiferromagnetic topological insulator suggested here does not have time-reversal

symmetry microscopically; the relevant symmetry operation is S. This distinction should
not affect the macroscopic response of the system to uniform fields (i.e., θ), although there
could be short-wavelength components of αij.

From the general theory of orbital magnetoelectric responses in band insulators, the
nonzero contribution to αij in cases of discrete symmetries such as time-reversal comes from
the Chern-Simons integral,

θ =
1

4π

�
BZ

cs3 ,

cs3 = TrA ∧ F + i
3
A ∧ A ∧ A , (5.7)

where Aµν = 〈uµk|id|uνk〉 is the Berry connection (a matrix-valued 1-form), and µ, ν label
filled bands. The curvature 2-form is F = dA − iA ∧ A. Under a gauge transformation (a
unitary transformation between the bands), the Chern-Simons integral will change by an
integer multiple of 2π, hence only θmod 2π is physical.

Under time-reversal |uk〉 → Θ|uk〉, the quantities k→ −k and cs3 → −cs3, and θ changes

sign. The translation operator T1/2 = e
i
2
k3 [0 1

1 0] changes cs3 by an exact form (total derivative)
and does not affect θ. Together, S symmetry implies that θ = −θ+ 2πn for some integer n,
which quantizes θ to 0 (topologically-trivial phase) or π (topological insulator phase).

The topological phase remains well-defined even when the single-particle invariant is not,
in the case with electron-electron interactions. The macroscopic θ angle remains quantized
(at 0 or π) as long as the bulk gap does not close, so the AFTI is stable to sufficiently weak
interactions.

The presence of S symmetry forces the Chern numbers on all BZ planes to be zero. In a
three-dimensional system, the three Chern numbers are the only obstruction to finding a set
of continuous wavefunctions in the Brillouin zone (respecting Bloch boundary conditions).
This guarantees the existence of a single-valued connection A for Eq. (5.7). Such A might
not respect S symmetry, but this is no impediment to computing the Chern-Simons integral.
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5.1.3 Invariance to choice of unit cell

The construction of the Z2 invariant in Sec. 5.1 required a certain choice of unit cell.
In this section, we will demonstrate that different choices of the unit cell will yield the
same result. In particular, we show that different ways to choose the doubled unit cell are
equivalent given a choice of structural cell.

Begin with a Hamiltonian H defined for a set of primitive translation vectors ai, along
with the operators T1/2 such that T 2

1/2 translate by −a3. We can always divide the Hilbert
space in to two subspaces: X and Y , such that the translation operator T1/2 takes Y to X,
and X to the Y in another unit cell. Physically X and Y represent the structural unit cell
whose symmetry is broken by antiferromagnetism.

Construct a new unit cell by leaving X fixed but taking Y from a cell R relative to the
original. In the new system the lattice vector ã3 = a3 + 2R such that T̃ 2

1/2 translates the
system by −ã3. We want to show that the Z2 invariant calculated for the new Hamiltonian
(H̃ on the k̃3 = 0 plane) is identical to that of the original one (H on the k̃3 = 0 plane).

Here we review the method used in this section to compute the Z2 topological invariant [1,
19]. First we pick an “effective Brillouin zone” (EBZ) which is half of the Brillouin zone
such that time-reversal will map it to the other half. The boundary of EBZ must be time-
reversal image of itself. The element of Z2 is computed by the integrating the connection
and curvature:

D =
1

2π

[ �
∂EBZ

A−
�

EBZ

F
]

mod 2, (5.8)

where the [U(1)] connectionA =
∑

occ. 〈u|id|u〉 is summed over occupied bands and curvature
F = dA is its exterior derivative in momentum space. The curvature F is ‘gauge invariant’
(does not depend on the choice of basis functions for occupied states), but A depends on
a particular choice of gauge for the wavefunctions. The boundary integral in the formula
above requires that the wavefunctions at k and −k be S-conjugate pairs. Any choice of the
EBZ will give the same Z2 invariant.

The effect of the coordinate transformation k1, k2, k3 → k̃1, k̃2, k̃3 changes the EBZ on
which we compute the topological invariant. Since the momentum variables are related by
k̃3 = k3 + 2R · k, we can always choose the EBZ for the new and old systems such that they
share a common boundary, namely, the two lines satisfying R · k ∈ {0, π}. This guarantees
that the boundary integral terms (

�
A) in Eq. (5.8) are identical in the two cases.

As for the term integrating curvature over the EBZ, we can try to deform the new EBZ
to match the old EBZ. This deformation is allowed by the fact that F = dA is a closed
2-form; any local deformation to the surface (i.e., one that preserves A on the boundary)
will preserve the integral

�
F . As Fig. 5.1c shows, we cannot always deform one EBZ to

the other; however, we can always decompose the new EBZ into the old EBZ plus planes
with no boundaries. These closed planes which are either contractible, or they span a torus
in the Brillouin zone. S symmetry requires that the Chern number vanishes on all closed
two-dimensional surfaces, and it follows that the integral Eq. (5.8) evaluates to the same
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(a) (b)

(c)

Figure 5.1: Example of changing the unit cell while computing the AFTI Z2 invariant.

(a) The original cell (rectangle with dashed border) is transformed to the new cell
(shaded rectangle with solid border) by keeping the X portion fixed and changing
Y , where R = −a2 − a3 is the displacement vector. In this example, the original
vectors a2 = −x̂ − ŷ, a3 = 2ŷ, and a1 points out of the plane. The new vectors
ã3 = a3 + 2R = −2a2 − a3 = 2x̂ and we choose ã1 and ã2 to remain fixed. (b) The
Brillouin zone. The blue plane is the effective Brillouin zone (EBZ) for k3 = 0, and the
red plane is the EBZ for k̃3 = 0. The Z2 invariant computed for these two planes are
the same. (c) Deformation of the new EBZ (red), which decomposes into the old EBZ
(blue) and a boundaryless plane (green).

value for new and old unit cell. In other words, the Z2 invariant does not depend on how we
choose the unit cell.

We can also view the Z2 invariant as an obstruction to finding a continuous basis (along
with the appropriate Bloch periodic boundary conditions) for the wavefunctions respecting
S symmetry in the entire Brillouin zone [19]. The material is in a trivial phase if such a basis
exists. This interpretation is much harder to ‘compute’ then the original definition, but is
powerful in what it implies. For example, any (single-valued) unitary transformation or a
change of coordinates will not affect the obstruction of finding such basis, and it is rather
straightforward from the definition that the Z2 invariant is independent of unit cell choice.
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5.2 Construction of effective Hamiltonian models

In this section, we present two explicit examples of Hamiltonians in the antiferromagnetic
topological insulator class. Henceforth, we refer these as “model A” (Sec. 5.2.1) and “model
B” (Sec. 5.2.2).

5.2.1 Construction from strong topological insulators

As noted in Sec. 5.1.1, we can create an antiferromagnetic topological insulator by adding
a staggered time-reversal breaking term to a strong topological insulator. Here we present
an explicit Hamiltonian constructed in such way.

We start with a four-band model on a cubic lattice by Hosur et al. [187] with four
orbitals/spins per cubic site,

H(kx, ky, kz)

= vτx ⊗ (sin kxσ
x + sin kyσ

y + sin kzσ
z) +

[
m+ t(cos kx + cos ky + cos kz)

]
τ z, (5.9)

where σ and τ are two sets of Pauli matrices. This Hamiltonian is in the strong topological
phase when |t| < |m| < 3|t| and λ 6= 0, with the time-reversal operator represented by
−iσyK.

To double the Hamiltonian in the z direction, first decompose H(kx, ky, kz) into a hopping
Hamiltonian as follows:

H(kx, ky, kz) = B0 +
∑
µ

(
Bµe

−ikµ +B†µe
ikµ
)
, (5.10)

where µ = x, y, z. The matrices Bµ describe hopping from adjacent cells from the −µ
direction, B†µ are hopping from +µ direction, and B0 describes the ‘self-interaction’ of a cell.
The new lattice vectors are: a1

a2

a3

 =

1 0 1
0 1 1
0 0 2

ax
ay
az

 (5.11)

which defines a face-centered-cubic (FCC) lattice with the primitive unit cell whose volume
is double that of the original cubic cell.

Doubling the unit cell gives the following eight-band Hamiltonian:

Hd(k1, k2, k3) =

[
B0 +M B†ze

i
k3
2

Bze
−i k3

2 B0 −M

]
+

[
0 Bz

0 0

]
e−i

k3
2 +

[
0 0
B†z 0

]
ei
k3
2 +

[
0 Bx

Bx 0

]
ei(

k3
2
−k1)

+

[
0 B†x
B†x 0

]
ei(k1−

k3
2

) +

[
0 By

By 0

]
ei(

k3
2
−k2) +

[
0 B†y
B†y 0

]
ei(k2−

k3
2

), (5.12)



Section 5.2. Construction of effective Hamiltonian models 102

where M is a term odd under time-reversal (such as σz or τ y) and represents the added
antiferromagnetic coupling in this example. The time-reversal operator takes the form

Θ = −i
[
1τ ⊗ σy 0

0 1τ ⊗ σy
]
K. (5.13)

In the absence of M this system also has two parity (spatial inversion) centers, given by
the operators:

Π1 = ei
k3
2

[
0 τ z

τ z 0

]
Π2 =

[
τ z 0
0 τ z

]
(5.14)

The inversion center for Π1 is between the two cubic sublattices X and Y , such that it swaps
X and Y . The inversion center for Π2 is at X, such that it takes Y to the next unit cell.
Their product results in a translation by half a unit cell: Π1Π2 = T1/2.

5.2.2 Construction from magnetically induced spin-orbit coupling

Motivation

Consider four atoms placed in a rhombus geometry on the xy-plane as shown in Fig. 5.2,
with X and Y on opposite corners of the rhombus. In the simplest model, the spin-orbit
coupling term from X to Y is given by iλSO

∑
d1×d2 ·σ, where the sum is over the two paths

X → M1 → Y , X → M2 → Y , and d1, d2 are the vectors along the bonds X → M∗ and
M∗ → Y that the electron travels through [2, 42]. In this geometry this coupling vanishes
as the cross products d1 × d2 from the two paths cancel.

Now let M1 and M2 be magnetized in the +z direction. This creates a net magnetic field
inside the rhombus breaking the symmetry between the two paths X → M∗ → Y . We can
estimate its orbital effect by attaching an Aharonov-Bohm phase e±iφ to each of the two
paths, to produce a flux 2φ. The coupling from X to Y now takes the form

HSO = iλSO

[
eiφr1 × r2 + e−iφr2 × r1

]
· (c†YσcX) ≈ 2φλSO|r2 × r1|(c†Y σ

zcX), (5.15)

•
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r1
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•
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M2

Figure 5.2: Four atoms placed in a rhombus configuration on the xy-plane.

The coupling between X and Y depends on the magnetization of M1 and M2, and the
strength of the spin-orbit effect.
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where we expect φ to be proportional to the z-magnetization of M∗. Hence the magnetization
of intermediate sites M1 and M2 induces a spin-orbit interaction between the sites X and Y .

If spins on M1 and M2 are aligned oppositely in the ±z direction, by contrast, there is no
net magnetization in the rhombus and the symmetry between the two paths X →M∗ → Y
is restored. Rotating the system by π along the axis through points X and Y , taking M1 to
M2 and vice versa, we see that there are no σz couplings between the two sites. Both cases
are important in motivating the model to follow.

Effective Hamiltonian

We start with a rock-salt (FCC) structure with the conventional cubic unit cell of side
length 1. In this setup there are four ‘A’ sites located at (0, 0, 0) and permutations of (1

2
, 1

2
, 0),

while the ‘B’ sites are located at (1
2
, 1

2
, 1

2
) and permutations of (0, 0, 1

2
). The B sites develop

antiferromagnetic order along the (111) planes and magnetization in ±(1, 1, 1) direction. In
the antiferromagnetic state, the unit cell consists of four layers: A1, B ↑, A2, and B ↓.

In this model there are spin up and spin down degrees of freedom at A1 and A2, but
the electronic degrees of freedom at B are eliminated, giving four ‘orbitals’ per primitive
cell. The electrons hop between A atoms by traveling through the magnetized B sites, and
we can see that there are always two such paths A → B → A between adjacent A’s. From
Fig. 5.3, it is apparent that spin-orbit coupling between two A1’s on the same layer vanishes
by our argument earlier, as the intermediate sites have opposite magnetization. In contrast,
the spin-orbit coupling between A1 and A2 does not vanish.

Now we describe our model with the following hopping terms: (1) spin-independent
hoppings between A1 and A2 atoms with coefficient t, (2) spin-independent hoppings between
A atoms on the same plane with coefficient t′, and (3) spin-orbit term between A1 and A2
with effective coupling ±λ. As mentioned earlier, we take the energy to reside on B sites
as far above the energy scales λ, t, t′, effectively eliminating those degrees of freedom in our
model.

•A1 •A1 •A1

↑ ↑B
•A2 •A2 •A2

↓ ↓B
• • •A1

Figure 5.3: Cross section of model B at (100) plane.

The layers in a unit cell are A1, B ↑, A2, B ↓. Note that the magnetizations are not
in-plane, but are only illustrated as such in this figure.
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We choose the primitive lattice vectorsa1

a2

a3

 =

−1
2

0 1
2

0 −1
2

1
2

1 1 0

ax
ay
az

 (5.16)

in terms of the conventional cubic basis ax, ay, az. The atoms A1 and A2 are placed at

−a3

4
and a3

4
respectively within the unit cell. Written in the basis |A↑1〉, |A

↓
1〉, |A

↑
2〉, |A

↓
2〉, the

Hamiltonian takes the form

H =

[
T ′ U †

U T ′

]
, (5.17)

where,

T ′ = 2t′
[

cos(k1) + cos(k2) + cos(k1 − k2)
]
1, (5.18a)

U = 2t
[

cos(k3
2

) + cos(k1 + k3
2

) + cos(k2 + k3
2

)
]

− 2iλ
[

sin(k3
2

)σz + sin(k1 + k3
2

)σx + sin(k2 + k3
2

)σy
]
, (5.18b)

which is gapped (in the bulk) when |t′| < |t|, 1√
3
|λ|. The time-reversal operator has the

representation

Θ = −i
[
σy 0
0 σy

]
K. (5.19)

We are interested in the regime where t′ is much smaller than t and λ, as this leads to a
gap in the surface spectrum also. Unfortunately, we cannot provide a good argument why t′

(in-plane hopping) should be much less than t (interplane hopping) in a real material.
This model has spatial inversion symmetry, given by the operator

Π =

[
0 1

1 0

]
, (5.20)

which in effect swaps the layers A1 and A2. The filled bands at the momenta (k1, k2, k3) =
(0, 0, 0), (0, π, 0), (π, 0, 0), (π, π, 0) have parity −1,−1,−1,+1 respectively, so the model is in
the nontrivial topological phase.

In this model, λ is related to the parameter breaking time-reversal symmetry, at the same
time protecting the bulk gap. If we turn the parameter λ down to zero, we will not get a
STI at λ = 0, rather, the model becomes conducting.

5.3 Surface band structure

The bulk electronic band structure of an AFTI must be gapped to allow the topological
distinction between the trivial phase and the nontrivial phase. At the boundary between
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domains of two topologically distinct phases we typically expect a gapless surface spectrum,
as is the case at the edges of quantum Hall and quantum spin Hall systems, as well as at the
surfaces of the STI (vacuum is in the trivial phase). However, it should be noted that this is
not strictly necessary. For example, while time-reversal symmetry requires doubly degenerate
states, leading to gapless boundary modes between topological phases, it is known that
breaking time-reversal but preserving inversion can give a topological phase whose surface
states are gapped [164].

We distinguish between two classes of surfaces, depending on the plane of the cut relative
to the crystal structure. We call a surface type F(erromagnetic) if it breaks the S symmetry
in the bulk, and type A(ntiferromagnetic) if it preserves the symmetry. Heuristically, the
distinction can be visualized by imagining a ferromagnetic/antiferromagnetic moment with
a Zeeman coupling to the electron’s spin, as in model A above. Then a type F surface will
have all its spins aligned, and a net magnetization on the surface. A type A surface will
have antiferromagnetic order such that we can always choose the primitive lattice vector a3

parallel to the surface. As an example: In model A with staggered magnetization on a cubic
lattice, {111} planes are type F, while planes {110} and {100} are type A.

There are an odd number of Dirac cones on a clean type A surface, analogous to the STI.
We can see why the surface (parallel to a3) is gapless by looking at the k3 = 0 line on the
surface spectrum, which is the boundary of the k3 = 0 plane in the bulk BZ. Since the plane
carries a nontrivial topological (QSH) phase, its boundary must be gapless.

The Dirac cone’s stability may also be explained by looking at a constant energy curve
γ in the surface spectrum. This curve must be its own time-reversal image because of the
symmetry between k and −k. The Berry phase of this curve φ =

�
γ
TrA is ambiguous by

integer multiples of 2π, so S symmetry forces this to be 0 or π, for the same reason it forced
θ = π in Sec. 5.1.2. As in the STI, a π phase implies that the Fermi surface encloses an
odd number of Dirac cones. However, any defect or impurity will break the translational
and S symmetry on the surface, thereby opening a gap. This is analogous to the effect of a
magnetic defect on the surface of a STI.

For a type F surface, S symmetry is broken on the surface and the usual protection for
Dirac cones or conducting surfaces no longer exists. If the bulk and surface spectrum are
fully gapped (i.e., not a semi-metal), then the surface will exhibit the half-integer quantum
Hall effect, to be discussed in the next section.

In Fig. 5.4, we present the band structure of model A for slabs with type A and type F
surfaces. Since this model is built from a STI, the band structures are similar [4].

For model B, the surface parallel to a1 and a2 is type F and its excitations are exactly
solvable, with dispersion

Es(k1, k2) = 2t′
(

cos k1 + cos k2 + cos(k1 − k2)
)
. (5.21)

As the dispersion shows, a surface spectrum exists for all values of t′ and nonzero values
of t and λ. This model has the peculiar feature that the surface spectrum is completely
disconnected from the bulk, that is, it forms a complete two-dimensional band structure.
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Figure 5.4: The bulk and surface band structure for model A.

The top and bottom band structures are plot along the (100) (type A, parallel to a2, a3)
and (1̄1̄1) plane (type F, parallel to a1, a2) respectively. The red dots indicate surface
modes. The parameters used are: v = 0.5,m = 2, t = 1,M = σz with 13 layers.

Figure 5.5 shows the bulk and surface band structure for two different cuts. In the (111)
cut, a small t′ is desired if we want to avoid band overlaps between the valence, conductance,
and surface spectrum, giving us an insulator.

In the presence of a sufficient number of random defects, we expect that the surface
electronic states are described by the unitary symmetry class because of the broken time-
reversal symmetry. That symmetry class only has extended states at isolated values of the
chemical potential; in general the surface state will have zero diagonal conductivity, with
half-integer quantum Hall plateaus. The transitions between these plateaus appear when
the chemical potential passes through an extended state. These transitions can be regarded
as a realization of the two-dimensional quantum Hall effect in zero net field discussed by
Haldane [42]. Note that since both top and bottom surfaces of a slab will have half-integer
plateaus, the total quantum Hall effect when diagonal conductivity is zero is always integral,
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Figure 5.5: The bulk and surface band structure for model B.

The top and bottom band structures are plot along the (11̄1̄) plane (type A, parallel to
a2, a3) and (111) plane (type F, parallel to a1, a2) respectively. The red dots indicate
surface modes.The parameters used are: λ = 0.5, t = 1, t′ = 0.1 with 13 layers.

as required for a single-electron two-dimensional system.

5.4 Surfaces with half-integer quantum Hall effect

In this section we present two perspectives on the half quantum Hall effect on type F
surfaces, along with numerical calculations to justify our claim.

If one views the antiferromagnet as a STI with time-reversal breaking term opening a
surface gap, then the half QHE can be viewed as the root of the bulk magnetoelectric coupling
θ = π. This effect follows from the gapped Dirac dispersion of the surface states. The sign
of the Hall conductance depends on the sign of the effective Dirac mass [42, 188, 189], which
here is set by the direction of the Zeeman field at the surface.

An alternate perspective of the AFTI surface comes from a comparison to the quantum
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Figure 5.6: Construction of an AFTI by staggering quantum Hall layers.

The shaded and unshaded boxes represents Chern number of ±1. The left and right
surfaces are type A and gapless, while the top and bottom surfaces are type F with
half-quantum Hall effect.

spin Hall effect. As described in Sec. 5.1, the Z2 invariant is computed from the two-di-
mensional plane k3 = 0 and the symmetry operator S|k3=0 in precisely the way that the
quantum spin Hall (QSH) invariant is computed from the two-dimensional BZ and Θ. The
QSH insulator may be constructed by combining two copies of a QH layer with opposite
spin and Chern number ±n. Time-reversal takes one layer to the other, making the combi-
nation of the two Θ-invariant. In reality spin is rarely conserved, allowing the two layers to
mix, making the Chern number of each spin ill-defined. However, a residual Z2 topological
invariant remains [2, 3], and we can consider the QSH as being adiabatically connected to
the two-QH-layer model, but with the topological invariant n only preserved mod 2.

By analogy, we can construct an AFTI by stacking QH layers, with alternating Chern
number of ±1 (Hall conductivity ±e2/h), as shown in Fig. 5.6. The ‘up’ (+1) layers are
related to the ‘down’ (−1) layers by S symmetry, hence they are spatially offset from one
another. Just like the QSH case, we can expect the layers to couple to one another, in a way
that makes the Chern number ill-defined on a per-layer basis. Once again, it is appropriate
to consider the AFTI to be adiabatically connected the staggered QH layer model. In the
stacked QH model, the Hall conductance in the bulk averages to zero, as the conductance
of any individual layer is canceled by neighboring layers of opposite type. In other words,
any long-wavelength probe of the system will be unable to discern the individual QH layers
However, the QH layers at either end of the stack are not completely canceled, there is a
half QHE at both surface.

To confirm this picture, we can consider a slab with type F surfaces and compute the 2D
Hall conductivity as a function of position (layer). In units of e2/h, the (two-dimensional)
conductivity in layer n can be computed from [61]

C(n) =
i

2π

�
tr
[
P(dP) ∧ P̃n(dP)

]
. (5.22)

Here P =
∑

occ. |uk〉〈uk| is the projector onto occupied wavefunctions at k and P̃n is the
projector onto basis states localized in layer n.
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Figure 5.7: Spatially resolved Hall conductance for model B.

The plot is the Hall conductance spatially resolved for 32 (blue) and 33 (red) layers of
model B. The Fermi level is set below zero to include only the bulk valence modes and
no surface modes. The parameters used for this plot are: λ = 0.5, t = 1, t′ = 0.1.

Figure 5.7 shows the results of such a computation on a slab cut from the rock-salt
model B introduced in Eq. (5.18b) with type F surfaces. In this model, when the Zeeman field
on opposite surfaces points in opposite directions (blue, upper curve) the total conductance
of the slab is C = 1, with each surface having a net C = 1/2; adding a layer such that
the two surfaces have the same Zeeman field switches the conductance on that surface from
+1/2 to −1/2, so that the total slab conductance vanishes. Note that the total conductance
of a slab is always an integer, as required [14, 29, 42].

Now, at the interface between two integer quantum Hall domains whose conductance C
differs by 1, there will be a chiral boundary mode with conductance e2/h, which can be
thought of as ‘half a quantum wire.’ In the situation outlined above, putting the two slabs
with different conductance together is equivalent to making a slab with a step edge on one
surface, and the chiral mode will reside at this step edge. Such a mode should give an
observable signature in a tunneling experiment (Fig. 5.8).

It is natural to ask, what if one rotates the antiferromagnetic moment by π, flipping
all the spins and effectively ‘peeling’ off a layer of type F surface? Since the sign of the
surface conductance C changes during this process, the surface (or bulk) gap must close at
some magnetization orientation. This is analogous to applying a magnetic field B to an
STI surface. For B parallel to the surface, the Dirac cone shifts in momentum space but no
gap opens. Any infinitesimal component of B out of the plane will open a gap, hence going
from B out of the surface to B into the surface must necessarily close the surface gap. (In
model B, the bulk gap would close while rotating the magnetization.)
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Figure 5.8: 1D quantum wire on type F surface step edge.

The red and blue regions represent ferromagnetic layers magnetized in opposite direc-
tions. There is a gapless chiral quantum wire at each step edge, with chirality indicated
by the arrow at the edge.

5.5 Conclusions and possible physical realizations

In this chapter, we have looked at the topological classification of materials breaking
both time-reversal Θ and translational symmetry T1/2, but preserving the combination S =
ΘT1/2, and found a Z2 classification within the S symmetry class that leads to the existence
of an antiferromagnetic topological insulator (AFTI). In the most basic picture, an AFTI
can be obtained from adding a staggered magnetization to a strong topological insulator.
Macroscopically, S symmetry implies a quantized magnetoelectric response ∂P

∂B

∣∣
B=0

= θ
2π

e2

h

with θ = π for an AFTI. We have also demonstrated that the surface spectrum depends
on the surface cut, classified as type A/F. Type A surfaces possess an antiferromagnetic
order that preserves S symmetry, with associated gapless excitations that can be gapped by
disorder. Type F surfaces break S symmetry and are typically gapped, analogously to the
situation of a Zeeman field on the surface of a STI. The new AFTI state is topological in a
weaker sense than the strong 3D topological insulator, because its surface state is dependent
on the surface plane and not generally stable to disorder; in that respect it is similar to
the weak topological insulator in 3D or the “Hopf insulator” [170]. (The number of Dirac
cones in a STI also depends on the surface plane, but there is always an odd number of such
cones.)

The magnetoelectric coupling θ = π requires the half quantum Hall effect at the surface,
provided the surface spectrum is gapped. Our numerical calculations based on explicit band
models agree with these results. Finally, we predict the existence of chiral 1D quantum
wires at type F surface step boundaries, an experimental signature verifiable via scanning
tunneling measurements.

The recent proposals that many Heusler compounds may be topological insulators [105,
106], together with the antiferromagnetic order in GdBiPt below 9 K [184], suggest a possible
candidate for the state proposed here. Transport [184, 190] and ARPES [191] experiments
indicate that GdBiPt is a semiconductor with a narrow gap. While the Gd sites form an
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FCC lattice and hence their antiferromagnetic interaction is frustrated, the compound have
been experimentally shown to possess [111] antiferromagnetic ordering compatible with S
described here [192]. Unfortunately, ab-initio studies and ARPES of the material have been
inclusive in determining if GdBiPt has band-inversion, to distinguish between a normal AF
insulator and an AFTI [191]. Finally, we would also like to note that a physical realization
of AFTIs could come from cold atomic gases [193].

We have provided a topological classification and experimental consequences for a par-
ticular combination of time-reversal symmetry and a lattice symmetry (S = ΘT1/2). Other
such combinations of time-reversal and crystal symmetries could lead to new topological
materials beyond those in the exhaustive classification of topological insulators stable to
disorder [77, 78].
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Part III

Edge Spectrum and the
Bulk-Boundary Correspondence
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Chapter 6

Computing the edge spectrum in
Dirac Hamiltonians

Although a topological invariant is an abstract quantity defined for a fully periodic sys-
tem, it is manifested physically as midgap surface states [194]. In IQH systems, the quantized
Hall conductance can be formulated in terms of the the number of chiral edge states [20, 36].
Similarly, the 2D/3D Z2 invariant for TRS systems determines whether there are an odd
or even number of helical modes/Dirac cones at a given edge or surface [19]. In the cases
above, the edge states smoothly connect the bulk valence and conduction bands and the
number of such modes is protected by the topological invariant: they cannot be deformed
into a single bulk band unless the bulk gap closes. By contrast, edge modes in an ordinary
system do not traverse the bulk gap and are thus susceptible to localization by disorder.
For superconducting systems, the topological invariants determine the number of Majorana
modes localized at the edge or in vortices [79, 89]. These states are at zero energy and
are protected by particle-hole symmetry and the superconducting gap. Systems such as
p + ip superconductors in the “weak pairing phase” or SC-TI heterojunctions can support
Majorana modes which obey non-abelian statistics [82, 84, 144].

The goal of this chapter is to derive a rigorous connection between the bulk invariants and
the surface dispersion. A heuristic way to understand this bulk-boundary correspondence
is as follows. Consider a domain wall between two bulk insulators with suitably defined
topological invariants that take the values νL and νR 6= νL in some regions. Since the value
of the invariant cannot change for finite energy gap, this means the bulk gap closes at some
interface. Midgap excitations can thus exist, but they are confined to the interface by the
bulk gap in the other regions. This argument applies to domain walls between regions with
different values of the invariant, of which an edge is a special case where one of the regions
is the vacuum (trivial phase) [195, 196].

In light of recent interest in topological insulators and superconductors, it would be useful
to formalize the relation between bulk topological quantities and properties of midgap edge
states. This connection has been proved specifically for IQH states on a square lattice by
deriving a winding number for the edge states [38, 39]. Another approach using twisted
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boundary conditions has the advantage of including interactions and disorder, but cannot
prove that the states exist at an open boundary [37].

There has also been recent progress on analytic solutions of edge states in topological
insulators [57, 197, 198] and topological superconductors [199]. These calculations are of-
ten based on models using a specific Dirac Hamiltonian. Dirac systems are ubiquitous in
condensed matter and particle physics systems and give rise to many exotic states. For exam-
ple, every single-particle topologically ordered system can be realized with a Dirac Hamilto-
nian. [78, 181] They are used to model a variety of systems including polyacetylene, quantum
Hall insulators, graphene, topological insulators and superconductors, etc. [4, 42, 79, 89, 200–
203].

Our work applies specifically to tight-binding Dirac Hamiltonians with nearest-layer hop-
ping. For these systems we present a prescription for the edge states spectrum and prove
the bulk-boundary correspondence. In addition, we derive a simple geometric method to
calculate the energies and penetration depth of the edge states analytically.

The organization of the chapter is as follows. In Sec. 6.1, we introduce the bulk quantities
of a lattice Hamiltonian that determine topological behavior. In Sec. 6.2, we state the first
main result of the chapter, Theorem 1 relating the parameters of the bulk Hamiltonian to the
surface spectrum in a geometric way. We provide two different way of proofs, given in Sec. 6.3
and Sec. 6.4. The second main result is given in Sec. 6.5, where Theorem 2 provides the bulk-
boundary correspondence between chiral edge states and the Chern number. In Sec. 6.6, we
demonstrate the range of applicability of our theorems and give examples of topologically
ordered systems. We also show how the bulk Z2 invariant for a time-reversal symmetric
insulator relates to the number of surface Dirac cones in Sec. 6.6.3. In Sec. 6.7, we extend
the results from lattice Hamiltonians to continuum quadratic Hamiltonians (Theorem 3),
with discussions on its implications. In closing, we discuss the possible extension of the work
to other classes of topological superconductors beyond IQH and TRS systems.

6.1 Characterization of the nearest-layer Hamiltonian

To study a system with edges, consider a 2D/3D crystal that terminates on a line/surface.
Translational symmetry is thus broken in the direction normal to the edges However, we
assume it is unbroken parallel to the surface, and the corresponding momentum k‖ is a good
quantum number. In this way, any higher dimensional system can be decoupled into a family
of one-dimension (1D) problems parametrized by k‖.

The Dirac Hamiltonian in momentum space H(k) can always be expressed as a linear
combination of gamma matrices, H(k) = h(k) · Γ. Here Γ is a vector of the hermitian
gamma matrices (independent of k) which satisfy the Clifford algebra ΓiΓj + ΓjΓi = 2δij.
h is a real vector that maps the Brillouin zone to a closed curve in a g-component vector
space, where there are g gamma matrices Γi. The Pauli matrices are examples of gamma
matrices: any 2× 2 traceless matrix can written as a h ·σ where h is a 3-component vector
and σ = (σx, σy, σz).
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Squaring the Hamiltonian gives H2 = (h · Γ)2 = |h|2. The eigenvalues of H, given by
E(k) = ±|h(k)|, can be thought of as the distance of the vector h to the origin. If H(k)
describes a band insulator with a bulk gap, then the locus of points traced by h(k) never
intersects the origin.

Let us consider Dirac Hamiltonians with coupling between neighboring layers:

H =
∑
n,k‖

Ψ†n,k‖Γ ·
[
b Ψn−1,k‖ + b0 Ψn,k‖ + b∗Ψn+1,k‖

]
, (6.1)

where n labels the layers. Both b and b0 are dependent on k‖ but we will not write this
dependence explicitly. Ψn,k‖ is a vector of quasiparticle annihilation operators at layer n that
captures all the degrees of freedom (i.e., spin, pseudospin) at every site. Fourier transforming
(n→ k⊥) in the direction away from the edge, the bulk Hamiltonian becomes

H =
∑
k⊥,k‖

Ψ†k [h(k) · Γ] Ψk , (6.2)

with

h(k) = be−ik⊥ + b0 + b∗eik⊥

= b0 + 2br cos k⊥ + 2bi sin k⊥ , (6.3)

where br and bi are the real and imaginary components of the vector b respectively. We
point out that b and b0 are independent of k⊥

The curve traced out by h(k) for fixed k‖ is an ellipse living in the plane spanned by br

and bi. b0 can be decomposed into a component b0
⊥ that is normal to this plane, and b0

‖
that lies within it. b0

‖ shifts the ellipse within the plane, while b0
⊥ lifts it uniformly. It will

be useful to define

h‖(k) = b0
‖ + 2br cos k⊥ + 2bi sin k⊥ (6.4)

as the projection of h(k) on to the 2D plane spanned by br and bi. Note that this plane
contains the origin, while the plane containing h is offset from the origin by the vector b0

⊥.
Since h‖ maps the Brillouin zone to closed curves, it can be divided into two classes: ellipses
that enclose the origin, and ellipses that do not.

6.2 Edge state theorem

As we shall state precisely in a moment, the behavior of h(k⊥) completely determines the
topological nature of the system and holds the key to understanding the relation between
existence of edge states and bulk topological invariants. This section contains one of the
main result of the chapter, relating the spectrum of edge states to h.



Section 6.2. Edge state theorem 116

Figure 6.1: An illustration of Theorem 1.

The gray ellipse is traced out by h(k⊥) = b0 +2br cos k⊥+2bi sin k⊥ for a fixed parallel
momentum k‖ [Eq. (6.3)]. The dotted ellipse (h‖) is h projected on to the plane spanned
by br and bi. The displacement of the ellipse h from the dotted ellipse h‖ is given by
b0
⊥, the component of b0 perpendicular to this plane. Theorem 1 says that an edge

state exists if and only if the dotted ellipse encloses the origin (which holds true for
the diagram above), and its energy is determined by the displacement |b0

⊥|.

6.2.1 Edge state energy

Theorem 1.
a. The system has midgap edge states if and only if h‖(k⊥) encloses the origin.
b. The energies of the edge states are given by the distance from the origin to the plane
containing h, i.e. Es = ±|b0

⊥|. When the gamma matrices are the Pauli matrices, the energy
of the left edge state (semi-infinite slab with n > 0) is given by:

Es = b0 · br × bi

|br × bi|
. (6.5)

Here we only sketch the main ideas behind two equivalent proofs of the theorem, deferring
the full details to the next two sections. We present two approaches to this problem: a
proof utilizing Green’s functions [204] (c.f. Sec. 6.3) and a proof via transfer matrices [205]
(c.f. Sec. 6.4). In this section, we consider one block of the decoupled system corresponding
to fixed k‖.

We begin by writing the Green’s function of the system without edges, where the full
translational invariance makes a momentum space representation possible. A system with
edges is then created from the fully periodic system by deleting the couplings between one
pair of neighboring sites. The poles in the Green’s function G(E) at midgap energies E
indicate the presence of edge states.

The bulk Green’s function is given by

G0 (E; k⊥) =
∑
i

|ψi〉〈ψi|
E − Ei

, (6.6)

where i sums over the energy eigenstates of H(k⊥). Since we are interested in a boundary
localized in real space, it is necessary to Fourier transform the bulk Green’s function. For
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a system of size L this results in a L × L block matrix G0(E; yi, yj), where each block
corresponds to mixing between the lattice sites yi and yj.

Next we write an expression V for the terms in the Hamiltonian that create the boundary
by subtracting the hopping terms between sites yleft and yright. For models with nearest-
neighbor interactions, the only nonzero matrix elements of V are those between yleft and
yright. The Dyson equation gives an exact expression for the open boundary Green’s function
G in terms of the bulk Green’s function G0 and the cuts V needed to take the system from
one geometry to the other:

G(E) =
(
1−G0(E)V

)−1
G0(E) . (6.7)

The poles of G(E) occur when the edge state energy satisfies Det
[
1 − G0(E)V

]
= 0. If an

edge state exists with wavefunction u, it must satisfy (I − G0V )u = 0. We note that this
is the same as the Schrödinger equation (E − H0 − V )u = 0. The benefit of the Green’s
function formalism is that it reduces the problem to only edge degrees of freedom and enables
an analytic solution. This implies the following two statements:�

dk⊥
h‖
|h‖|2

= 0 , (6.8a)

�
dk⊥ e

ik⊥
h‖ · b∗

|h‖|2
= π . (6.8b)

These conditions are satisfied if and only if h‖ encloses the origin, and the edge mode energy
is given by ±|b0

⊥|, where the sign is given by the orientation of h‖.
To prove Thm. 1 using transfer matrices, we consider a semi-infinite system with unit

cells labeled by n = 1, 2, 3, etc. We seek a solution ψn to the single-particle Schrödinger
equation:

b · Γψn−1 + b0 · Γψn + b∗ · Γψn+1 = Eψn (6.9)

for n > 1. At the edge site n = 1, we have b0 · Γψ1 + b∗ · Γψ2 = Eψ1. This condition is
enforced by applying Eq. (6.9) for n = 1 but stipulating that ψ0 = 0. The recursion relation
(6.9) relates ψn+1 to ψn and ψn−1. Hence given ψ1 (and ψ0 = 0), we can recursively calculate
all of ψn and construct the wavefunction.

An edge state requires ψn to be exponentially decaying as n increases, hence the solution
ψ takes the form:

ψn = uaλ
n
a + ubλ

n
b , (6.10)

where ua = −ub, and λa, λb are complex with |λa|, |λb| < 1. Algebraically, this is equivalent
to having E = ±|b0

⊥| and finding two roots within the unit circle of the functions L(λ) or
L̄(λ), defined as

L(λ) = h‖(−i lnλ) · (v̂1 + iv̂2) ,

L̄(λ) = h‖(−i lnλ) · (v̂1 − iv̂2) ,
(6.11)
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where v̂1, v̂2 are two orthonormal vectors that live in the plane of h‖. When λ = eik⊥ lies on
the unit circle, L(λ) and L̄(λ) trace out the ellipse h(k⊥) in the complex plane clockwise and
counterclockwise, respectively. Because of this property, the number of times h(k⊥) wraps
the origin determines the number of zeros of L(λ) and whether the two solutions λa,b in
(6.10) exists. In Sec. 6.4, we provide the full details bridging these steps, and also compute
the sign of the edge state energy as well as their penetration depth.

6.2.2 Discussion

Theorem 1 gives a simple way to compute the spectrum of edge states from properties of
the bulk Hamiltonian. The existence of zero-energy edge states is determined by whether or
not the ellipse traced by h‖ encloses the origin. Intuitively, the size of the ellipse is a measure
of the coupling strength b between neighboring layers, while the in-plane displacement of
the ellipse b0

‖ is a measure of coupling within the layers. From this perspective, Thm. 1a
says that an edge state exists if the nearest-layer coupling is ‘stronger’ than the intralayer
coupling. This is a straightforward extension of the edge states of polyacetylene, a 1D chain
with alternating bond strengths t 6= t′, which supports an edge state if the chain terminates
on the weaker bond [200].

The argument presented above can also be used to calculate the penetration depth ξ of
the surface states:

ξ =
a

2 ln(1/|λ|)
. (6.12)

a is the distance between layers, λ is the characteristic decay parameter such that the wave-
function decays as ψn ∼ λn in the bulk. |λ| is the larger of |λa|, |λb| [defined in Eq. (6.10)].
|λ| is always less than one and is determined by the location of the origin inside the ellipse
h‖(k⊥). When the origin touches the edge of the ellipse, λ has unit modulus and ξ tends to
infinity, indicating a bulk propagating mode. At this point the surface spectrum ends and
merges with the bulk bands. The decay parameter can be computed by

|λ| = l +
√
l2 − f 2

M +m
, (6.13)

where M and m are the major and minor diameters of h‖(k⊥) respectively, f =
√
M2 −m2

is the distance between the foci of the ellipse, and l is the sum of the distances from the
origin to the two foci. (See Fig. 6.2.)

6.3 Proof by Green’s functions

It is difficult to study a system with edges because of the broken translational invariance.
We begin by writing the Green’s function for an easier problem: a periodic system with no
boundary [204]. The full translational invariance allows us to work in momentum space,
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Figure 6.2: Determining the penetration depth from the ellipse h‖.

The distances from the foci of the ellipse h‖(k⊥) to the origin determine the character-
istic decay parameter λ, which in turns gives the penetration depth ξ = −a/2 ln |λ|. In
the case where h‖ traces a circle, |λ| = d/r, where d is the distance of the origin to the
center of the circle, and r is the radius of the circle. In the general case h‖ traces an

ellipse, |λ| =
l+
√
l2−f2

M+m
, where M and m are the major and minor diameters, f is the

distance between the foci |F1F2|, and l is the sum of distances |OF1| + |OF2|. (When
the ellipse is a circle, we have f = 0,M = m = 2r and the expression for λ reduces to
that of the circular case.)

reducing the dimension of the Hamiltonian in momentum space. Next, the geometry of the
system is changed from a periodic to an open system by subtracting all interactions between
a particular pair of nearest-neighbors. We use the Dyson equation to calculate the Green’s
function for the open geometry and show that there are poles – and thus bound states –
at midgap energies. The form of the potential required to cut the periodic system greatly
reduces the degrees of freedom in the problem and enables an analytic solution.

We prove Theorem 1 for the case of 2× 2 Dirac Hamiltonians, which can be decomposed
in terms of the Pauli matrices σi. For higher dimensional Hamiltonians, it is always possible
to find three gamma matrices Γi that whose sub-blocks are the Pauli matrices, e.g. τ zσx,
τ zσy, and τ zσz. A suitable unitary transformation rotates the Hamiltonian so that it is a
linear combination of these three gamma matrices, and the arguments of this section apply
to each sub-block.

6.3.1 Bulk Green’s function

We prove Theorem 1 for 2 × 2 Hamiltonians, which can be expressed in the following
form:

H(k) = Ek

[
cos θ sin θ e−iφ

sin θ eiφ − cos θ

]
. (6.14)

Decomposing H into the Pauli matrices (σx, σy, σz) gives H = h · σ for

h = Ek(sin θ cosφ, sin θ sinφ, cos θ) . (6.15)



Section 6.3. Proof by Green’s functions 120

The eigenstates are given by

|ψ−〉 =

(
sin θ

2

− cos θ
2
eiφ

)
, |ψ+〉 =

(
cos θ

2

sin θ
2
eiφ

)
. (6.16)

To express h in terms of the parameters defined in Sec. 6.1, we assume br and bi lie along
+x̂ and +ŷ respectively, with b0

⊥ along ẑ. The Hamiltonian takes the form

Ek sin θ cosφ x̂ = 2br cos k + (b0
‖ · x̂) x̂ ,

Ek sin θ sinφ ŷ = 2bi sin k + (b0
‖ · ŷ) ŷ ,

Ek cos θ ẑ = b0
⊥ .

(6.17)

Here h‖ lies in the xy-plane. For the remainder of this section, we will use the notation
br = |br| and bi = |bi|. Note that any Hamiltonian may be brought to this form by an
appropriate gauge transformation.

The first step in calculating the edge mode energies is to write the Green’s function for
the fully periodic system. Utilizing the full translational invariance, we work for now in the
momentum representation. The α-β matrix element of the bulk Green’s function is given by

Gαβ
0 (E; k) =

∑
i

|ψi〉α〈ψi|β

E − Ei
, (6.18)

where i sums over the energy eigenstates of Hk. The four matrix elements are given by

G11
0 (E; k) =

E + Ek cos θ

E2 − E2
k

, (6.19a)

G22
0 (E; k) =

E − Ek cos θ

E2 − E2
k

, (6.19b)

G12
0 (E; k) = Ek

sin θ cosφ− i sin θ sinφ

E2 − E2
k

, (6.19c)

G21
0 (E; k) = Ek

sin θ cosφ+ i sin θ sinφ

E2 − E2
k

. (6.19d)

In order to include the effects of a boundary that is localized in real space, the bulk
Green’s function is written in real space via a Fourier transformation.

G0(E; y) =



B0 B† · · · B

B B0 B†

... B B0 B†

B B0

. . .

B†


, (6.20)
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for

B0 =

�
dk

2π
G0(E; k) , B =

�
dk

2π
eikG0(E; k) . (6.21)

There are of course more nonzero matrix elements, corresponding to the mixing of matrix
elements separated by more than one lattice constant. However, for systems with nearest-
neighbor hopping, the matrix elements contained in B0 and B are the only ones needed to
prove the existence of zero energy states.

6.3.2 Green’s function of the open system

Next we write an expression V that deletes the coupling terms to create a system with
edges. In a system with nearest-layer interactions, the only nonzero matrix elements are
those between a single pair of neighboring layers:

V =


0 · · · Vb
... 0

. . .

V †b 0

 . (6.22)

Here Vb = −b · σ, and for the Hamiltonian described in Eq. (6.17) takes the form

Vb =

[
0 −br − bi

−br + bi 0

]
. (6.23)

We are now ready to compute the Green’s function for the open system. The Dyson
equation gives an exact expression for the open Green’s function G in terms of the periodic
Green’s function G0 and the cuts V needed to take the system from one geometry to the
other:

G(E; y) =
(
I −G0(E; y)V

)−1
G0(E; y) . (6.24)

Substituting Eqs. (6.22) and (6.20) into Eq. (6.24) gives the following condition for an edge
state wavevector u:

(1−G0V )u =


12 −BV †b −B0Vb

12

...
. . .

...

12

−B0V †b 12 −B†Vb

u = 0 . (6.25)

The ellipses indicate the only nonzero sub-blocks: the first and last columns, and copies of
the identity (12) along the diagonal.
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6.3.3 Existence and spectrum of edge modes

Since an edge state wavevector u has nonzero components in the sub-block corresponding
to one of the edges, Eq. (6.25) can be satisfied in two ways. There is an edge mode on the left
edge when the first two columns of Eq. (6.25) are linearly dependent, and on the right edge
when the last two columns are linearly dependent. Recalling the expressions for the bulk
Green’s functions, Eq. (6.19), we introduce some notation for the open Green’s function:

a0 =

�
dk

2π

E

E2 − E2
k

, (6.26a)

ax =

�
dk

2π

Ek sin θ cosφ

E2 − E2
k

, (6.26b)

ay =

�
dk

2π

Ek sin θ sinφ

E2 − E2
k

, (6.26c)

az =

�
dk

2π

Ek cos θ

E2 − E2
k

, (6.26d)

c0 =
�
dk
2π
eik E

E2−E2
k
, and similar for cx, cy, and cz. Let us first examine the conditions required

for a left edge mode. Collapsing the matrix in Eq. (6.25) to the subspace corresponding to
the lattice sites on each edge, the first two columns can be written as

X1 =


1 + (br + bi)(cx − icy)

(br + bi)(c0 − cz)
(br + bi)(ax − iay)
(br + bi)(a0 − az)

 , X2 =


(br − bi)(c0 + cz)

1 + (br − bi)(cx + icy)
(br − bi)(a0 + az)
(br − bi)(ax + iay)

 . (6.27)

Now we examine the conditions required for the system to have a left edge state, i.e.,
when the columns X1 and X2 are linearly dependent. This is done by writing X1 and X2 as
a 4 × 2 matrix X and requiring that the determinant of any 2 × 2 sub-block vanish. This
constraint takes on the following form for the sub-blocks of X created by the bottom two
rows, the top two rows, and the second and fourth rows, respectively:

0 = (b2
r − b2

i )(a
2
x + a2

y − a2
0 + a2

z) , (6.28a)

0 = 1 + 2(brcx − ibicy) + (b2
r − b2

i )(c
2
x + c2

y − c2
0 + c2

z) , (6.28b)

0 = (b2
r − b2

i )(c0 − cz)(ax + iay)− (b2
r − b2

i )(cx + icy)(a0 − az)− (br + bi)(a0 − az) . (6.28c)

The conditions are equivalent to B0V †b uL = 0 and (12−BV †b )uL = 0, which together require
DetB0 = 0. To see this, note that although the first condition is satisfied when either
DetB0 = 0 or V †b uL = 0, the second case cannot satisfy (12 −BV †b )uL = 0.

6.3.4 Constraints on h‖ and E2

We begin by showing that

DetB0 = a2
0 − a2

x − a2
y − a2

z (6.29)
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is zero if and only if h‖ encloses the origin and the edge state energy is given by E = ±|b0
⊥|.

For a geometric view of the variables a0, ax, etc., note that Ek(sin θ cosφ, sin θ sinφ) are the
(x, y) coordinates of h‖, and Ek cos θ = b0

⊥ · ẑ. E2
k is given by |b0

⊥|2 + |h‖|2, and E2−E2
k < 0

for a midgap state. We examine two cases, when h‖ encloses the origin and when it does
not.

Suppose the ellipse does not enclose the origin. Let hmin
‖ be the point on the ellipse h‖

closest to the origin. Because the ellipse is convex and does not contain the origin, it must
lie in the half of the plane (spanned by br,bi) for which r · hmin

‖ is positive. In other words,

h‖(k) · hmin
‖ is positive definite. Moreover, h‖(k) · hmin

‖ ≥ |hmin
‖ |2 from its definition. The

Cauchy-Schwarz inequality says that∣∣(axx̂ + ayŷ) · hmin
‖
∣∣ ≤ |axx̂ + ayŷ|

∣∣hmin
‖
∣∣ , (6.30)

therefore

|axx̂ + ayŷ| ≥
1

|hmin
‖ |

�
dk

2π

h‖ · hmin
‖

E2
k − E2

≥ 1

|hmin
‖ |

�
dk

2π

|hmin
‖ |2

E2
k − E2

. (6.31)

This sets an upper bound to DetB0:

a2
0 − a2

z − a2
x − a2

y ≤
(
E2 − |b0

⊥|2
)
I2 − |hmin

‖ |2I2 , (6.32)

where I =
�
dk
2π

1
E2
k−E2 . Since |b0

⊥|2 + |hmin
‖ |2 > E2, the expression is always negative and

never zero. Hence no edge states can exist when the ellipse h‖ fails to enclose the origin.
Now we consider the case when the ellipse h‖ encloses the origin and show that an edge

state exists only when E2 = |b0
⊥|2. First, when E2 = |b0

⊥|2, the integrals ax and ay are both
zero. Because E = |b0

⊥|, a2
0 − a2

z = 0 and the determinant is zero.
To see why ax = ay = 0 in this case, note that the denominator of I becomes |h‖|2,

and we can express the conditions geometrically. Here we use Gauss’s law in 2D to show

that
�
dk

h‖
|h‖|2

is zero if and only if h‖ encloses the origin. We can visualize the expression

from an electrostatics point of view: for a charged ellipse in 2D with a charge distribution�
dk δ2(r−h‖), the electric field (∝ 1

r
in 2D) at the origin is given by

�
dk

h‖
|h‖|2

. Analogous to

a uniformly charged circle, the charges are distributed such that the electric field is vanishing
in the interior but nonzero in the exterior:

axx̂ + ayŷ = −
�
dk

h‖
|h‖|2

= 0 . (6.33)

Now we show that DetB0 = 0 is not satisfied for any other value of E2. If E2 < |b0
⊥|2

then |E| < |b0
⊥| = |Ek sin θ sinφ|. It follows that a2

0 − a2
z = (E2 − |b0

⊥|2)I2 < 0, hence there
are no edge states.
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If E2 > |b0
⊥|2, we let E2 = ε2 + |b0

⊥|2, such that E2
k −E2 = |h‖|2 − ε2 > 0. a0 and az can

be written as:

−a0 =

�
dk

2π

E

|h‖|2 − ε2
, (6.34a)

−az =

�
dk

2π

|b0
⊥|

|h‖|2 − ε2
, (6.34b)

which combine to give:

a2
0 − a2

z = (|E2 − b0
⊥|2)I2 = ε2I2 . (6.34c)

For ax and ay, we use the manipulation

1

|h‖|2 − ε2
− 1

|h‖|2
=

ε2

(|h‖|2 − ε2)|h‖|2

to get:

−axx̂− ayŷ = ε

�
dk

2π

h‖ε

(|h‖|2 − ε2)|h‖|2
. (6.34d)

By the triangle inequality:
∣∣ � dk u(k)

∣∣ ≤ � dk |u(k)|, we can put an upper bound

|axx̂ + ayŷ| ≤ ε

�
dk

2π

|h‖|ε
(|h‖|2 − ε2)|h‖|2

= ε

�
dk

2π

ε

(|h‖|2 − ε2)|h‖|

< ε

�
dk

2π

1

(|h‖|2 − ε2)

= εI . (6.35)

We have used the fact that |h‖| > ε to go from the second to third line. This implies
a2
x + a2

y < ε2I2 and sets a lower bound to Eq. (6.29): a2
0 − a2

z − a2
x − a2

y > 0 for |E| > |b0
⊥|.

Hence we have shown that DetB0 = 0 if and only if E2 = |b0
⊥| and the ellipse h‖ encloses

the origin.
Turning now to the second constraint, Eq. (6.28b), we note that E = ±|b0

⊥| implies that
c2

0 = c2
z. In the following, we use the fact that cx = −icy. Substituting this into Eq. (6.28b)

gives the constraint 1 + 2(brcx − ibicy) = 0, which may be expressed as

1− 2

�
dk

2π
eik

h‖ · b∗

|h‖|2
= 0 . (6.36)

In order to satisfy Eq. (6.28a) and Eq. (6.28b) simultaneously, Eq. (6.36) must be true if and
only if h‖ encloses the origin. This integral can be evaluated for an arbitrary ellipse centered
at b0

‖ and with semimajor and semiminor axes given by 2br and 2bi to give the desired
result.
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6.3.5 Sign of the energy

The final constraint, Eq. (6.28c), determines the sign of the edge state energy. Note that
the first two terms vanish because ax = ay = 0 and cx = −icy. Getting rid of the remaining
term requires choosing a particular sign for the energy. The condition is satisfied with the
choice a0 = az.

The constraints for the left edge can be summarized as

1a. E = +b0
⊥ · ẑ,

1b. 1 + 2(brcx − ibicy) = 0.

A similar calculation for the right edge, using the last two columns of Eq. (6.25), gives
the following conditions:

2a. E = −b0
⊥ · ẑ,

2b. 1 + 2(brcx + ibicy) = 0.

Condition 2b. can be expressed as 1− 2
�
dk
2π
e−ik

h‖·b
|h‖|2

= 0. Hence it is also satisfied when

h‖ encloses the origin, but with opposite orientation as for the left edge. The conditions for
edge modes are now equivalent to two statements:

1. The function h‖ must enclose the origin,

2. The energy is given by E = ±b0
⊥ · ẑ, with the sign determined by the orientation of

loop h‖.

We have succeeded in analytically deriving the condition for the 2L×2L matrix represent-
ing the Hamiltonian for an open system to have zero eigenvalues. The power of the method
lies in the fact that V has nonzero matrix elements only in the 4 × 4 subspace of electron
operators at the two edges. Thus the effect of the boundary can be seen by examining the
4× 4 subspace, which can be handled analytically.

6.4 Proof by transfer matrices

In this section, we prove Theorem 1 for a hard-edge at a fixed k‖. We begin by defining
a new function β (which is like a complex extension of h), and the form of our edge states.

In the Hamiltonian (6.1), b ·Γ, b0 ·Γ, b∗ ·Γ are the hopping matrices from the previous,
same, and next layers respectively. We consider a semi-infinite system where the layers are
labeled by positive integers with n = 1 denoting the layer at the surface. Hence we ignore the
terms Ψ†1Ψ0 and Ψ†0Ψ1 in considering our semi-infinite system. Consequently, an excitation
ψ† =

∑
n Ψ†nψn of the Hamiltonian (6.1) satisfies the following properties:

b · Γψn−1 + b0 · Γψn + b∗ · Γψn+1 = Eψn n ≥ 1 , (6.37a)

ψ0 = 0 . (6.37b)
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An edge state ψ is one for which ψn is exponentially decreasing as a function of n. Due to
the translational invariance in the bulk, we use the ansatz

ψn =
∑
µ

uµλ
n
µ (6.38)

in our solutions [205].1 An edge solution requires that |λµ| < 1 for all µ and that
∑

µ uµ = 0.

For each decaying mode (λ, u) we have:2

λ [β(λ) · Γ− E]u = 0 , (6.39)

where we have defined

β(λ) ≡ λ−1b + b0 + λb∗ . (6.40)

Notice that when λ has unit modulus, we recover the Bloch equation for the bulk (propa-
gating) modes of the system:

β
(
eik⊥

)
= h(k⊥) . (6.41)

Hence we need to find an energy E and a set of λ’s all within the unit circle, such that their
corresponding null vector u defined by (6.39) sum to zero [Eq. (6.37b)].

The outline of the proof is as follows. First, we derive the particle-hole relationship
between left edge and right edge modes. Second, we establish the algebraic relations between
the λ’s and E of an edge state [Eq. (6.44)]. Third, we define complex functions L, L̄ which
represents the ellipse traced out by β(eik). Next, we show (assuming an edge state exists)
that the energy of an edge state is given by the displacement of the ellipse |b0

⊥|. We then
proceed to prove Thm. 1a, the condition which governs the existence of an edge state (i.e.,
when all |λµ| < 1). Finally, we compute the edge states projectors [Eq. (6.51)] and determine
the sign of the edge state energies, which completes the proof for Thm. 1b.

6.4.1 Relation between left-right boundaries

Lemma. For every left edge state with energy E, there is a corresponding right edge state
with energy −E, and vice versa.

The recursion relation (6.37a) and boundary condition (6.37b) describe a semi-infinite
system with a “left” edge. We can write a similar system for the “right” edge simply
changing the condition in (6.37a) to n ≤ −1 xor swapping b with b∗ in the equation. The
first transformation amounts to finding a set of λ’s outside the unit circle, i.e., |λµ| > 1,
such that the edge wavefunction ψn decays with decreasing n. The second transformation is

1A solution of the form uµnλ
n−1
µ is also possible, when λµ is a double root of (6.42). In such situation,

we can tackle the problem as a limiting case of two roots approaching each other: λ′µ → λµ.
2We cannot cross off λ on both sides because λ = 0 is a valid solution when Buµ = 0.
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equivalent to taking the complex conjugate of b, and the two transformation are the same
owing to the fact that β∗(λ) = β(1/λ∗).

When the gamma matrices are the Pauli matrices, there is a charge conjugation operator
C = −iσyK which takes b · σ → −b∗ · σ, where K is the complex conjugation operator.
Since Cβ(λ) ·σC−1 = −β∗(λ∗) ·σ, C turns a left edge state with energy E into a right edge
state with energy −E and vice versa.

When the Dirac matrices are larger then 2 × 2, such a C operator still exists, as it is
always possible to find an antiunitary operator which flips the sign of three of the gamma
matrices. This operator C will depend on what b and b0 are, meaning that C is a function
of k‖, making it a non-local operator. However, the conclusion remains the same.

For the remainder of the proof, we will only be focused on left edge states.

6.4.2 Algebraic relation between λa, λb and E

For any E, there are (at most) four possible λ’s satisfying (6.39), evident from squaring
λβ(λ) · Γ to get the quartic equation

λβ(λ) · λβ(λ)− E2λ2 = 0 . (6.42)

Note that if λ is a root to this equation, then so is 1/λ∗. Hence there can be at most two
solutions of for λ within the unit circle, which we call λa and λb.

The edge wavefunction takes the form ψn = uaλ
n
a + ubλ

n
b with ua = −ub to satisfy the

hard-edge boundary condition (6.37b), where the coefficient ua is a (right) null vector of the
matrix λa(β(λa) ·Γ−E) and similarly for ub. It follows that the matrices λa(β(λa)−E) and
λb(β(λb)− E) must share a nonzero null vector, or equivalently, any linear combinations of
the two matrices must be non-invertible. In other words, an edge state at energy E exists
only if the following conditions are satisfied:3

Detλa(β(λa) · Γ− E) = 0 , (6.43a)

Detλb(β(λb) · Γ− E) = 0 , (6.43b)

Det caλa(β(λa) · Γ− E) + cbλb(β(λb) · Γ− E) = 0 , (6.43c)

for arbitrary ca, cb and for |λa|, |λb| < 1. The converse statement is also true, as (6.43a) and
(6.43b) implies that the ranks of the matrices λa,b(β(λa,b) · Γ − E) are at most half their
dimension (a property of gamma matrices). The last equation (6.43c) means that the two
matrices must share a right null vector or a left null vector. In the former case we have a
left edge state at energy E, and in the latter case we have a right edge state at energy E,
which by our lemma implies a left edge state at energy −E.

3Equations (6.43a), (6.43b) are redundant, but useful to be written out explicitly.
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We may rewrite the equations in a more useful form:

λ2
aE

2 = λ2
aβ(λa) · β(λa) , (6.44a)

λ2
bE

2 = λ2
bβ(λb) · β(λb) , (6.44b)

λaλbE
2 = λaλbβ(λa) · β(λb) . (6.44c)

6.4.3 Introducing functions L, L̄

Similar to b0 = b0
‖ + b0

⊥ and h = h‖ + b0
⊥, we decompose β into components parallel

and perpendicular to the 2D plane (1D if the ellipse is degenerate) spanned by {br,bi}:
β(λ) = β‖(λ) + b0

⊥ Keep in mind that while b0
⊥ is a real vector, β‖(λ) = λ−1b + b0

‖ + λb∗

is generally a complex vector, unless λ = eik has unit modulus.
We want to find complex functions which trace out the same ellipse as β‖(e

ik) in the
complex plane. We first choose two real orthogonal unit vectors v̂1, v̂2 as a coordinate basis
of the 2D plane. Let

L(λ) = β‖(λ) · v̂1 + iβ‖(λ) · v̂2 ,

L̄(λ) = β‖(λ) · v̂1 − iβ‖(λ) · v̂2 .
(6.45)

The loci L(eik) and L̄(eik) both trace out the ellipse in the complex plane identical to β‖(e
ik),

but with different orientations. In general, L(λ) and L̄(λ) are not conjugate pairs unless λ
lies on the unit circle. Expanding their definitions, we can see that both λL(λ) and λL̄(λ)
are quadratic polynomials in λ:

L(λ) = qλ+ w + pλ−1 ,

L̄(λ) = p∗λ+ w∗ + q∗λ−1 .
(6.46)

where p = b · (v̂1 + iv̂2), w = b0
‖ · (v̂1 + iv̂2) and q = b∗ · (v̂1 + iv̂2).

It is straightforward to show from (6.45) that β‖(λa) · β‖(λb) = 1
2
(LaL̄b + L̄aLb), where

L(λa) is abbreviated as La, etc. Equations (6.44) become

λ2
a(E

2 −∆2) = λ2
aLaL̄a , (6.47a)

λ2
b(E

2 −∆2) = λ2
bLbL̄b , (6.47b)

λaλb(E
2 −∆2) = λaλb

2
(LaL̄b + LbL̄a) , (6.47c)

where ∆ ≡ |b0
⊥|.

6.4.4 Edge state energy

In this portion, we show that the existence of an edge state requires: E = ±∆, |λa,b| < 1,
and either La = Lb = 0 or L̄a = L̄b = 0. The converse statement is trivially true by
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inspecting Eq. (6.47). Hence if an edge state of the semi-infinite chain exists, we show here
that it must have energy E = ±|b0

⊥|. (First half of Thm. 1b.)
Assuming that neither λa or λb are zero, then

E2 −∆2 = LaL̄a , (6.48a)

E2 −∆2 = LbL̄b , (6.48b)

E2 −∆2 = 1
2
(LaL̄b + LbL̄a) . (6.48c)

which we can combine to get

(La − Lb)(L̄a − L̄b) = 0 . (6.49)

Equations (6.48) and (6.49) are simply reformulations of the recursion relation (6.37a) and
boundary condition (6.37b). We now proceed to show that E = ±∆.

Proof by contradiction Suppose that E2 − ∆2 6= 0. Then La, Lb, L̄a, L̄b are all nonzero.
Eq. (6.49) implies that La = Lb or L̄a = L̄b. Eq. (6.48a) and (6.48b) together means that one
equality implies the other, and hence La = Lb and L̄a = L̄b are both true. Here we have two
polynomials with roots λa and λb:

qλ2 + (w − La)λ+ p = 0 ,

p∗λ2 + (w∗ − L̄a)λ+ q∗ = 0 ,

which means that p/q = q∗/p∗ = λaλb. However, since |λaλb| < 1, we have a contradiction as
|p/q| cannot be less than one and greater than one at the same time. Hence we have shown,
should an edge state exist, it must have energy E = ±∆. Now (6.48a) tells us that either
La or L̄a is zero which combined with (6.49) leads to the desired result.

If one of λa, λb is zero, say λb = 0 (which happens when the ellipse is a circle), then the
expressions simplify as λbLb = p and λbL̄b = q∗. From (6.47b), either λbLb or λbL̄b is zero.
From (6.47c) we have either La = Lb = 0 or L̄a = L̄b = 0, and in either case, (6.47a) implies
that E2 −∆2 = 0.

If both λa and λb are zero (which happens when the circle is centered on the origin), then
λ = 0 must be a double root to the polynomial (6.42). In this case, we have a flat band, and
it is much easier to refer back to (6.37) and solve the system directly. One easily finds that
the statement about edge states holds.

6.4.5 Existence of edge states

Finally, we use the fact that |λa|, |λb| < 1 to determine when an edge mode is present.
Recall that there are four zeros (and two poles) to the equation L(λ)L̄(λ) = 0, and that at
most two of the roots have modulus less than one. An edge mode exists if either L(λ) or
L̄(λ) has both roots λ within the unit circle. (No edge mode exists if each function L, L̄ has
one root within the unit circle.)
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We can compute the number of zeros (inside the unit circle) of the function L by the

contour integral 1
2πi

� L′(z)
L(z)

dz along the unit circle, which computes the number of zeros minus

number of poles within the unit circle. As L(λ) has one pole (at λ = 0), L(λ) has two zeros
if and only if the ellipse L(eik) wraps around the origin counterclockwise, leading to an edge
state. On the other hand, if L wraps around the origin clockwise, then L̄(eik) wraps around
the origin counterclockwise, and there are two zeros for L̄(λ) within the unit circle which
also leads to an edge state. In the case where the ellipse β‖ does not wrap the origin, then
neither L or L̄ has two roots within the unit circle, and an exponentially decaying solution
to the semi-infinite system does not exist.

This completes the proof for Theorem 1a, which relates the presence of edge states to the
properties of the ellipse β(eik) = h(k).

6.4.6 Sign of edge state energy

In this section, we determine whether the left edge state energy is +∆ or −∆, where
∆ ≡ |b0

⊥| ≥ 0. This will complete the final statement of Theorem 1b.
Define v̂⊥ as the unit vector parallel to b0

⊥ (assume ∆ > 0). Recall that v̂1, v̂2 are unit
vectors used in the definitions of L, L̄, and so the three unit vectors are mutually orthogonal.
Define the corresponding gamma matrices Γx = v̂1 · Γ,Γy = v̂2 · Γ,Γ⊥ = v̂⊥ · Γ, which
pairwise anticommute. As β‖ · v̂1 = 1

2
(L+ L̄) and β‖ · v̂2 = 1

2i
(L− L̄),

λ(β(λ) · Γ− E) = λ(∆Γ⊥ − E) +
λL(λ)

2
(Γx − iΓy) +

λL̄(λ)

2
(Γx + iΓy) . (6.50)

The first term annihilates the projector 1
2
(1 + E

∆
Γ⊥) while the second and third terms anni-

hilate 1
2
(1 + iΓxΓy) and 1

2
(1 + iΓxΓy) respectively.

By inspection, the projector P =
∑
uu† on to the edge state depends on whether L or L̄

has two zeros inside the unit circle, as well as the energy E:

P± =

{
1
4
(1± Γ⊥)(1− iΓxΓy) La = Lb = 0

1
4
(1± Γ⊥)(1 + iΓxΓy) L̄a = L̄b = 0

, (6.51)

where P± projects on to the edge states with energy E = ±∆.
When the irreducible representations of Γ are 2 × 2, the product iΓxΓy must equal

either Γ⊥ or −Γ⊥, hence either P+ or P− must be zero. This implies that an edge state
occurs only at ∆ or −∆ but not both. For example, when ΓxΓy = iΓ⊥ and L = 0, then
P+ = 1

2
(1 + Γ⊥), P− = 0 and there is exactly one edge state at energy ∆. In general, we can

determine E via the orientation of the ellipse h:

E = b0 · br × bi

|br × bi|
, (6.52)

where the cross product is defined from the commutation algebra br × bi = − i
4

Tr
{
σ [br ·

σ,bi · σ]
}

. This result gives us Theorem 1b.
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When the irreducible representations of Γ are 2m×2m with m ≥ 2, there are edge states at
both ∆ and −∆. As P++P− = 1

2
(1∓iΓxΓy), there are a total of 2m−1 left edge states. Notice

that the projectors P+ and P− are related by the similarity transformation P+ = ΓwP−Γw,
where Γw anticommutes with Γx,y,⊥, and so there must be 2m−2 edge states at each energy.

6.4.7 Effective surface Hamiltonian

We can use the edge state projector to construct the effective surface Hamiltonian. The
operator

Ps = P+ + P− = 1
2
(1− iΓxΓy) (6.53)

projects on to the edge states (assuming v̂1 and v̂2 are chosen such that L = 0). Notice that
it only depends on b · Γ, the nearest-neighbor coupling and not the on-site potential:

1
2
(1− iΓxΓy) =

1

2

(
1− i [b

r · Γ,bi · Γ]

2|br × bi|

)
=

1

2

(
1 +

[b · Γ,b∗ · Γ]
4
π
(Area of ellipse)

)
. (6.54)

The effective surface Hamiltonian is

Hs = EP+ − EP− + E∞(1− Ps)
= Ps(b

0
⊥ · Γ) + E∞(1− Ps), (6.55)

where E∞ →∞ such that the low energy theory describes the surface states.

6.5 Bulk Chern number and chiral edge correspon-

dence

In this section we states and prove our second theorem, relating the bulk Chern number
ν with the number of chiral edge modes for 2× 2 Hamiltonians.

Theorem 2. A chiral edge mode exists for a 2D bulk insulator if the bulk has a nonzero
Chern number, i.e., h(k) wraps the origin. The number of chiral edge modes, counterclock-
wise minus clockwise, is given precisely by the Chern number.

When the irreducible representation of Γ are 4 × 4 or larger, it can be shown that the
Chern number is always zero. The edge states of any surface always appear in pairs with
energy +Es and −Es and so the number of clockwise and counterclockwise chiral modes are
always equal. We are particularly interested in 2 × 2 Hamiltonians because they can have
nonzero Chern numbers and support chiral modes.
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Consider an insulator in two-dimensions whose Hamiltonian is written as a 2×2 traceless
matrix: H(kx, ky) = h(kx, ky) · σ. Because the bulk gap of an insulator is nonzero, h is
nonzero at all points in the Brillouin zone. Hence H(k) is a map from the Brillouin zone
(torus) to a set of nonzero vectors with 3 components (R3 − {0}), and such maps can be
characterized by a ν ∈ Z topological invariant, known as the Chern number.4 Hamiltonians
with different Chern numbers ν cannot be deformed into one another without closing the
bulk gap. In this context, the invariant ν determines the number of times the torus h(k)
wraps around the origin.

To examine the edge states for an arbitrary edge, say one parallel to ŷ, we analyze
the spectrum as a function of k‖ = ky. The torus h(k) can be divided into a family of
loops h(kx)|ky , each at a fixed value of ky and giving information of the edge state at that
momentum.

Before proceeding to the technical proof, we present a geometric argument with the aid
of Fig. 6.3, which shows an example of a bulk insulator with Chern number ν = 1. The
important loops of fixed ky are highlighted in black. Since ν is nonzero and the torus wraps
the origin, it is always possible to find two loops that are coplanar with the origin, one of
which encloses the origin and one that does not. In this example, the latter case occurs at
ky = 0, indicating no midgap edge states at this ky. As we scan through different values of
ky, the loop moves out of this plane. At some critical momentum kc (given by π

3
in Fig. 6.3),

the projection of the loop onto this plane intersects the origin and an edge state emerges
from the bulk conduction bands. At ky = π, the loop is coplanar with the origin and encloses
the origin, indicating zero-energy edge states at this value of ky. As the plane of the loop
passes through the origin, the energy of the edge state changes sign. The presence of edge
modes for this range of momentum is shown as orange shading in Fig. 6.3. Eventually at
some critical momentum kv (given here by 5π

3
), the loop moves away from the origin and the

edge state disappears in to the bulk valence band. Since the edge state energies at kv and
kc have opposite signs, the edge band connects the bulk valence and the bulk conduction
bands.

Formally, we can describe each loop h(kx)|ky by the Berry phase φ(ky) living in a circle
[0, 2π] with 0 ∼ 2π [32]. The Berry phase can be formulated in various ways:

φ(ky) = −
� 2π

0

dkxAx(kx, ky) (6.56a)

=

� ky

0

dk′y

� 2π

0

dkx F (kx, k
′
y) (6.56b)

=
1

2
Ω(h) , (6.56c)

4Technically the Chern number is not defined for the map h : T 2 → R3 −{0}. However, we can compose
h with the deformation retract r : R3 − {0} → S2 = CP1 and the inclusion map i : CP1 → CP∞ to make
the Chern number (first Chern class) well defined: ϕ = i ◦ r ◦ h : T 2 → CP∞. What it boils down to is that
we are calling the induced map between the cohomology classes h∗ : H2(R3 − {0}) → H2(T 2) the Chern
number.
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Figure 6.3: Illustration of bulk-boundary correspondence.

(a) The torus traced out by h(kx, ky) for a bulk insulator with Chern number ν = 1.
Each black loop maps out h(kx)|ky for fixed values of ky, the thick black lines guiding the
eye to important loops. Setting ky = π gives the black loop on the right that encloses
the origin, meaning there is a zero-energy edge mode at this value of ky. At ky = 0, the
black loop on the left lies in the plane of the origin without containing it, indicating no
edge mode at ky = 0. The black loops on the top and bottom (kc = π

3
, kv = 5π

3
) have

projections which intersect the origin, indicating the values of ky where the edge band
merges with the bulk bands. (Note that in this model, each loop at fixed ky lies in the
xz-plane.)

(b) The band structure of the system with the edge mode drawn in orange. Notice
that the edge band touches the conduction band at ky = π

3
, has zero energy at ky = π,

and merges with the valence band at ky = 5π
3

.

The model presented here is a p + ip superconductor described in Sec. 6.6.2 [see
Eq. (6.60)] with parameters: t = 1, ∆0 = 3, µ = 1.

where Aj(k) = i〈ψk|∂jψk〉 is the Berry connection of the filled energy states of H(k), F =
∂xAy − ∂yAx is the Berry curvature. Geometrically, φ is half the oriented solid angle Ω(h)
subtended by the loop h(kx) as seen from the origin. The integral of 1

2π
F over the entire

Brillouin zone gives the Chern number: 1
2π

�
BZ
F = ν. Both φ and ky live on a circle, and

from Eq. (6.56b), φ(ky) is a map S1 → S1 with winding number ν.
At the values of φ(ky) = 0 or π, the origin is in the plane of the ellipse h(kx)|ky , and

lies outside or inside the ellipse respectively. Hence there is a zero energy edge state when
φ(ky) = π, and no edge state if φ(ky) = 0 (or 2π). The family of loops as ky is varied
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connects these two special cases smoothly. For example, the upper critical momentum kc
has Berry phase 0 ≤ φ(kc) < π, while the lower critical momentum kv has Berry phase
π < φ(kv) ≤ 2π. Thm. 1b says that if an edge state exists, 0 < φ < π implies it has energy
Es > 0, and π < φ < 2π implies Es < 0. Therefore in between kc < ky < kv, a gapless
(counterclockwise) chiral mode must exist connecting the bulk bands.

For an insulator with Chern number ν, the Berry phase φ(ky) goes from 0 to 2πν as ky is
varied from 0 to 2π. Each time the phase φ(ky) winds around the circle, 2πα→ 2π(α+ 1), a
pair of critical momenta (kcα, kvα) defines a range in which a chiral mode connects the bulk
valence and conduction band, kcα < ky < kvα. This chiral mode is counterclockwise as the
phase φ increases by 2π. Similarly, there is a clockwise chiral mode as φ decreases by 2π.
Therefore, the total number of chiral edge modes (counterclockwise − clockwise) is given by
the Chern number of the bulk Hamiltonian.

6.5.1 Discussion

The bulk-boundary correspondence described in Thm. 2 holds even in the presence of weak
interactions. The number of edge states is a topological property of the bulk and is robust to
small perturbations that do not close the bulk insulating gap. Such weak interactions have
the effect of altering the edge state dispersion from the simple formula derived in Thm. 1.
Nevertheless, we may still view the result of Thm. 1 as a starting point where the weak
interactions are added perturbatively. With strong interactions, the electronic excitations
may no longer behave as a Fermi liquid, leading to a break down of the bulk-boundary
correspondence described here. For example, electron-electron interactions may drive the
1D edge states of QSH insulators to become Luttinger liquids, which have been shown to
break the topological distinction between the insulating and helical edge states [45, 206].

6.6 Applications of Theorem 1

In this section, we illustrate how Theorem 1 may be used the edge state dispersion in
various systems.

6.6.1 Example: graphene

As an illustration of how Thm. 1 can be used to calculate edge state energies, we examine
the zigzag edge of graphene. Because the bulk energy bands are degenerate at two inequiv-
alent points in the Brillouin zone, there is no well-defined topological invariant and Thm. 2
does not apply.

Consider the tight-binding model for graphene on a honeycomb lattice with primitive
translational vectors a1 and a2 taken to be 120◦ apart. The zigzag boundary parallel to
either a1 or a2 is known to support edge modes, while the armchair boundary parallel to
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a1 − a2 has no edge modes. Using the reciprocal space coordinates k1 = k · a1, k2 = k · a2,
the tight-binding Hamiltonian takes the form

H = t

[
0 1 + eik1 + e−ik2

1 + e−ik1 + eik2 0

]
, (6.57)

written in the (A,B) basis, where A and B are the inequivalent sublattices. The Hamiltonian
can be written in terms of the Pauli matrices as H = h · σ with

h(k) = t(1 + cos k1 + cos k2,− sin k1 + sin k2, 0) . (6.58)

For a zigzag edge parallel to a1, we examine the curves traced by h for fixed k1.5 The
k2-dependent terms in h are written as

2br cos k2 = (t, 0, 0) cos k2 ,

2bi sin k2 = (0, t, 0) sin k2 ,

while the remaining k2-independent terms become

b0
‖ = (t+ t cos k1,−t sin k1, 0) , b0

⊥ = 0 .

h‖ lies in the plane spanned by br and bi, and for this system is a circle in the xy-plane.
It encloses the origin only if the magnitude of b0 is less than t, i.e., when |1 + eik1| < 1 or
equivalently when 2(1 + cos k1) < 1. Thus for 2π

3
< k1 <

4π
3

, h‖ encloses the origin and the
system has midgap edge modes. According to Thm. 1b, the energies of these edge modes
are given by ±|b0

⊥|, which is zero. We have shown that the zigzag boundary supports zero
energy edge states when 2π

3
< k1 <

4π
3

, in agreement with previous work [202, 207].
To see why such edge modes do not exist at armchair boundaries, consider the edge

parallel to a1 − a2. By rewriting the Hamiltonian in terms of k‖ ≡ k1 − k2 and k⊥ = k1, we
can again examine the behavior of h‖ at fixed k‖. In this case, it is possible to show that h‖
never encloses the origin, and thus never satisfies the condition for midgap edge states.

6.6.2 Example: p+ ip superconductor (lattice model)

We study a p + ip system, which in the weak-pairing phase is characterized by chiral
Majorana modes at the edge [79]. We consider a model on a square lattice with p-wave
pairing between nonrelativistic spinless electrons, shown in Fig. 6.3. The bulk Hamiltonian
is given by

H(k) =

[
ξk − µ ∆k

∆∗k −ξk + µ

]
, (6.59)

5Despite our notation, the basis vector a corresponding to k⊥ doesn’t have to be perpendicular to the
surface, it just has to be a displacement that takes one layer parallel to the surface to the next.
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where H is written in the (ck, c
†
−k)T basis. The kinetic energy is given by ξk = −2t(cos kx +

cos ky) and the pair potential is given by ∆k = ∆0(sin ky + i sin kx), with ∆0 real. Eq. (6.59)
can be expressed as H = h · τ , where τ i are the Pauli matrices in Bogoliubov-de Gennes
(BdG) space:

h(kx, ky) = (∆0 sin ky,−∆0 sin kx,−2t cos kx − 2t cos ky − µ) . (6.60)

For a system with edges parallel to x̂, we examine the ellipses traced by h(ky) for fixed values
of kx. Following Eq. (6.3), the ky-dependence of h is decomposed as

2br cos ky = (0, 0,−2t) cos ky ,

2bi sin ky = (∆0, 0, 0) sin ky .

The remaining ky-independent term is decomposed as

b0
‖ = (0, 0,−2t cos kx − µ) ,

b0
⊥ = (0,−∆0 sin kx, 0) .

For this model h‖(ky), which lies the plane spanned by br and bi, is an ellipse in the xz-
plane. The condition for the ellipse to enclose the origin is |2t cos kx + µ| < |2t|, which is
only possible for the range of chemical potential |µ| < 4|t|. According to Thm. 1, when this
condition is satisfied, the system has midgap states at the left edge with energy

Es = b0
⊥ ·

br × bi

|br × bi|
= b0

⊥ · (−ŷ)

= ∆0 sin kx ,

assuming t∆0 > 0. The right edge state energy is given by −Es = −∆0 sin kx. The two edge
states can become degenerate at Es = 0 at either kx = 0 or π for an appropriate range of µ:
the degeneracy occurs at kx = 0 when −4 < µ/t < 0, and at kx = π when 0 < µ/t < 4. The
bulk gap closes and there is a transition at µ/t = 0 or ±4.

6.6.3 Example: 3D topological insulator

In this section we show that the surface states of a strong topological insulator have
an odd number of Dirac cones, and derive an effective surface theory. As an example of a
topological insulator, we use a model on a cubic lattice by Hosur et al. [187]:

H = vτ z
(∑

µ

σµ sin kµ

)
+
(
M − t

∑
µ

cos kµ

)
τx (6.61)

for µ = x, y, z. In the basis of Dirac matrices Γ = (τ zσx, τ zσy, τ zσz, τx), we can write
H = h · Γ, with

h(k) =
(
v sin kx, v sin ky, v sin kz,m(k)

)
, (6.62)
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where the “mass” is given by m(k) = M − t
∑

cos kµ. (The ‘fifth’ Dirac matrix is τ y, but it
is never used in this model.) For the (001) surface parallel to x̂ and ŷ, we solve for the edge
states as a function of kx, ky:

h(kz)
∣∣
kx,ky

= (v sin kx, v sin ky, 0,M − t cos kx − t cos ky)

+ (0, 0, 0,−t) cos kz + (0, 0, v, 0) sin kz ,

which lies on the 34 -plane (in Γ space) displaced by v(sin kx, sin ky) from the origin. An
edge state exists if and only if |M − t cos kx − t cos ky| < |t| with Dirac cone spectrum

Es = ±v
√

sin2 kx + sin2 ky.
At any of the surface TRIMs (kx, ky), the ellipse h‖(kz)|kx,ky has one of its diameters

stretching from m(kx, ky, 0) to m(kx, ky, π) along the Γ4 axis. This ellipse encloses the origin
if and only if the two endpoints straddles the origin; equivalently, a Dirac cone appears at
the surface TRIM if the mass in the bulk Hamiltonian changes sign [208], i.e.,

m(kx, ky, 0)m(kx, ky, π) < 0 . (6.63)

In this basis the time-reversal operator has the form Θ = −iσyK, where K is the complex
conjugation operator. The spatial inversion operator is Π = Γ4 = τx. At the eight bulk
TRIMs, the Hamiltonian commutes with the inversion operator: [H(kTRIM),Π] = 0. In fact,
H is a multiple of Π:

H(kTRIM) = m(kTRIM)Π . (6.64)

Hence, the sign of the mass determines the parity eigenvalue of the pair of filled states. The
strong Z2 topological invariant is the product of the parity eigenvalues at these TRIMs [43],
and hence

ν0 =
∏

TRIM k

sgnm(k) . (6.65)

It is clear that the bulk Z2 invariant dictates whether there are an even or odd number of
Dirac cones on the surface [4, 208].

Generically, all TRS topological insulators written in 4×4 Dirac matrices take on a similar
form to (6.61), and most importantly they satisfy (6.64) at the eight bulk TRIMs. Hence
it is straightforward to establish the bulk-boundary correspondence for 3D TRS topological
insulators.

We now proceed to examine the surface eigenstates following the derivation in Sec. 6.4.7.
When 1 < m/t < 3, the model is in the strong topological insulating phase with a single
Dirac cone at (kx, ky) = (0, 0). The surface Hamiltonian is of the form Hs = (b0

⊥ ·Γ)Ps where
Ps is the projector of the two surface states: Ps = 1

2
(1−i(−Γ4)Γ3) = 1

2
(1+τ yσz). To examine

the Hamiltonian in the reduced vector space, it is useful to apply a unitary transformation
H̄ = UHU−1 where U = exp(−iπ

4
τx). The projector becomes diagonal in the new basis

P̄s = UPsU
−1 =

1

2
(1 + τ zσz) ,
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projecting onto the first and last row. The “edge energy” term b0
⊥ · Γ transforms as

V̄ 0
⊥ = U(b0

⊥ · Γ)U−1 = −vτ y(σx sin kx + σy sin ky)

≈ −vτ y(σxkx + σyky) .

Since P̄s is diagonal with entries (1, 0, 0, 1), it suffices to examine only the four corners of
V̄ 0
⊥. The effective surface Hamiltonian can be computed:6

H̄s = V̄ 0
⊥P̄s ≈ v

[
0 ky + ikx

ky − ikx 0

]
= v(σ × k) · ẑ . (6.66)

The basis of the surface Hamiltonian H̄s is, in terms of the basis of H, (1, 0, i, 0)T/
√

2 and
(0, 1, 0, i)T/

√
2 (The first and last columns of U †). The spin degrees of freedom (σ) and the

orbital degree of freedom (τ ) are entangled in the surface states.

6.7 Continuum Hamiltonians quadratic in momentum

The bulk-edge correspondence stated in Sec. 6.1 may also be extended to Hamiltonians in
the continuum. Given a translationally invariant Dirac Hamiltonian quadratic in momentum
p = −i∇, of the form:

H(p; p‖) = C0(p‖) + C1(p‖)p+ C2(p‖)p
2

=
[
c0(p‖) + c1(p‖)p+ c2(p‖)p

2
]
· Γ , (6.67)

where p‖ and p are, respectively, the momentum parallel and perpendicular to the edge/sur-
face. For a fixed momentum p‖, the vector

h(p)
∣∣
p‖

= c0 + c1p+ c2p2 (6.68)

traces a parabola. This parabola lies on some 2D plane spanned by c1 and c2, and we can
always decompose c0 and h into in-plane and out-of-plane components: c0 = c0

⊥ + c0
‖ and

h(p) = c0
⊥ + h‖(p). In this section we state the main theorem:

Theorem 3.
a. An edge state (with zero Dirichlet or Neumann boundary condition) exists if and only if
the origin is within the concave side of the parabola h‖(p).
b. The energy of the edge state is given by the distance of the plane to the origin, i.e.,
Es = ±|c0

⊥|. When the gamma matrices are the Pauli matrices, the left edge (semi-infinite
slab with x ≥ 0) energy is given by:

Es = c0 · c1 × c2

|c1 × c2|
. (6.69)

The proof of Theorem 3 is given later in Sec. 6.7.3.

6The Rashba coupling results from our choice of U . It is also possible with a different choice of U to
arrive at the surface Hamiltonian of the form σ · k.
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6.7.1 Discussion

The proof of Thm. 3 uses the ansatz ψ(x) = uae
iκax + ube

iκbx and derives the condition
when Imκa,b > 0 for edge states. Physically, ξ = (Imκ)−1 gives the penetration depth of the
edge modes. We may think of the continuum as a limiting case of the lattice as the lattice
spacing a goes to zero. The ellipse h‖ becomes a parabola for vanishing a as the quantities
c0 = b0 + 2br, c1 = 2bia, c2 = −bra2 are held constant. Theorem 2 also extends to the
continuum case as the paraboloid h(kx, ky) determines the number of chiral edge states.

In addition to Dirichlet and Neumann boundary conditions, there is also a mixed type
with ψ′(0) = ηψ(0) for a positive number η. The origin of this boundary condition comes

from requiring the wavefunction outside (x < 0) to satisfy Hvac = W + p2

2m
, where W > Es

is the work function. Our analysis and result holds even for this boundary condition.
Notice that the quadratic term C2p2 is crucial for the existence of edge states. Without

it, the polynomial (6.73) will be quadratic and there can only be one solution for κ in the
upper half plane. The form of the solution ψ = ueiκx makes it impossible to satisfy either
type of boundary condition.

In the lattice model, we can compute the edge spectrum only for certain surfaces because
of the nearest-layer requirement. For example, we can only compute the {100}, {110} and
{111} surface dispersion of the TI model on a cubic lattice. In the continuum case with the
Hamiltonian bilinear in momentum, any surface cut will still yield a Hamiltonian quadratic
in p⊥. Consequently, we can compute the surface excitation spectrum and wavefunctions of
the system for all linear surfaces.

6.7.2 Example: p+ ip superconductor (continuum model)

We use the simplest model of a p+ ip superconductor [79]:

H(px, py) =

[
p2

2m∗
− µ ∆0(px − ipy)

∆0(px + ipy) µ− p2

2m∗

]
. (6.70)

Equivalently, with H(p) = h(p) · τ ,

h(p) =

(
∆0px,∆0py,

p2

2m∗
− µ

)
. (6.71)

This model is isotropic, and without loss of generality, we take a semi-infinite plane x ≥ 0
with ŷ parallel to the edge. At a fixed py, the h vector becomes:

h(px) =
(

0,∆0py,
p2y

2m∗
− µ

)
+ (∆0, 0, 0)px +

(
0, 0, 1

2m∗

)
p2
x

which lies in the xz-plane with y = ∆0py. The parabola is concave towards the +ẑ direction,
and hence an edge state exists if and only if p2

y/2m
∗ − µ < 0. Edge states can only exist

when µ is positive, or in other words in the ‘weak pairing phase’ of p+ ip superconductors.
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The edge state energy dispersion is given by Thm. 3b.

Es = c0 · c1 × c2

|c1 × c2|
= ∆0pyŷ · (x̂× ẑ)

= −∆0py .

Referring to Eq. (6.53), the edge state wavefunction is given by the projector Ps = 1
2
(1 −

iτxτ z) = 1
2
(1− τ y). Hence the edge states parallel to the y-axis are eigenstates of τ y.

6.7.3 Proof for continuum Hamiltonians

The proof of Theorem 3 is very similar to the proof of Thm. 1 using transfer matrices,
and so we present here a condensed version of the proof.

Consider a semi-infinite system with x ≥ 0, and either ψ(0) = 0 (Dirichlet) or ψ′(0) = 0
(Neumann) boundary condition. The momentum parallel to the surface is a good quantum
number, and so we fix p‖ to get an effective 1D problem. We seek a solution of the form7

ψ(x) =
∑

µ e
iκµxuµ, with Imκµ > 0. Each pair (κ, u) satisfies:

(C0 + C1κ+ C2κ2 − E)u = (h(κ) · Γ− E)u = 0 . (6.72)

Squaring h · Γ gives us the quartic equation

h(κ) · h(κ)− E2 = 0 (6.73)

with real coefficients. Hence if κ is a root, then κ∗ is also a root. Once again, we have at
most two solutions for κ in the upper half of the complex plane, and so the wavefunction
must take the form ψ(x) = uae

iκax + ube
iκbx. With either Dirichlet (ua = −ub) or Neumann

(κaua = −κbub) boundary condition, we have ua ∝ ub and so h(κa) ·Γ−E and h(κb) ·Γ−E
share a null vector. By a similar argument to that in Sec. 6.4.2, the existence of an edge
state is equivalent to

Det ca(h(κa) · Γ− E) + cb(h(κb) · Γ− E) = 0 , (6.74)

for all ca, cb and Imκa, Imκb > 0. Equivalently, we have

E2 = h(κa) · h(κa) = h(κb) · h(κb) = h(κa) · h(κb) . (6.75)

We introduce the functions L(κ), L̄(κ):

L(κ) = h‖(κ) · v̂1 + ih‖(κ) · v̂2 ,

L̄(κ) = h‖(κ) · v̂1 − ih‖(κ) · v̂2 ,
(6.76)

7A summand of the form κeiκ is also permissible, provided κ is a double root of the polynomial (6.73).
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where v̂1, v̂2 form an orthonormal coordinate basis in the plane spanned by c1 and c2.
L(κ), L̄(κ) are quadratic polynomials in κ:

L(κ) = (c0
x + ic0

y) + (c1
x + ic1

y)κ+ (c2
x + ic2

y)κ
2 ,

L̄(κ) = (c0
x − ic0

y) + (c1
x − ic1

y)κ+ (c2
x − ic2

y)κ
2 .

(6.77)

When κ = p is real, L(p) and L̄(p) trace out the parabola h‖(p) in the complex plane with
opposite orientations. Using the relation h‖(κa) · h‖(κb) = 1

2
(LaL̄b + L̄aLb), where L̄(κa) is

abbreviated as L̄a, etc., Eq. (6.75) become

E2 −∆2 = LaL̄a , (6.78a)

E2 −∆2 = LbL̄b , (6.78b)

E2 −∆2 = 1
2
(LaL̄b + LbL̄a) , (6.78c)

where ∆ ≡ |c0
⊥|. The equations combine to get

(La − Lb)(L̄a − L̄b) = 0 , (6.79)

Equations (6.78a), (6.78b) and (6.79) together with Imκa,b > 0 are true if and only if an
edge state exists at energy ±E.

We construct a proof by contradiction showing that E = ±∆2. Suppose E2 6= ∆2, then
all of La, Lb, L̄a, L̄b are nonzero. Equating (6.78a) and (6.78b) gives La/Lb = L̄a/L̄b, and
combining with (6.79) implies La = Lb and L̄a = L̄b. Hence the polynomials L(κ)− La and
L̄(κ) − L̄a have identical roots (κa and κb). The sum of the roots κa + κb must lie in the
upper half plane, and it is equal to (c1

x + ic1
y)/(c

2
x + ic2

y) and (c1
x− ic1

y)/(c
2
x− ic2

y) from (6.77).
This leads to a contradiction as the expressions are complex conjugate pairs. Therefore, an
edge state requires E = ±∆ and either La = Lb = 0 or L̄a = L̄b = 0.

Finally we impose the condition that Imκa, Imκb > 0. There are no poles in the function
L(κ), and so the number of zeros in the upper half plane is given by 1

2πi

� L′(z)
L(z)

dz, integrated

along the real line from −R to R and closed on the upper half plane Reiθ for 0 ≤ θ ≤ π,
where R is taken to infinity. Assuming that c2 is nonzero and so L is a quadratic function of
z, the contour of L(z) for z = Reiθ always wraps the origin by 2π radians counterclockwise.

Hence L(κ) has two roots in the upper half plane if and only if the parabola L(p) wounds
around the origin counterclockwise. Similarly, L(κ) has zero roots (so L̄(κ) has two roots)
in the upper half plane if the parabola wounds around the origin clockwise. An edge state
exists in both these cases, which occur when the origin lies in the concave side of h‖(p). If
the origin is not in the concave side of the parabola h‖(p), then L(κ) and L̄(κ) only have one
root in the upper half plane and the system has no edge states. This completes the proof
for Theorem 3a.

To determine the sign of the edge states, we construct the projectors for E = ±∆. The
projectors in the continuum case is identical to that of the lattice case (6.51), hence by the
same argument used for Thm. 1b, we can prove Theorem 3b.

E = c0 · c1 × c2

|c1 × c2|
. (6.80)
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In addition, one may also derive the effective surface Hamiltonian:

Hs = EP+ − EP− + E∞(1− Ps)
= Ps(c

0
⊥ · Γ) + E∞(1− Ps) . (6.81)

6.8 Outlook

In this chapter, we provided two main results. Theorem 1 gives a general prescription for
finding edge states of Dirac Hamiltonians (with nearest-layer coupling) on a lattice (and the
corresponding Theorem 3 in the continuum). Its range of applicability includes ‘accidental
edge states’ which may not be topologically protected, such as in boron nitride. Theorem 2
relates the bulk Chern number of a 2D insulator to the number of chiral edge modes. This
establishes the bulk-boundary correspondence for a class of quantum Hall insulators.

For 3D time-reversal invariant insulators, we demonstrated in Sec. 6.6.3 how the Z2 strong
topological invariant determines whether there is an odd or even number of Dirac cones in the
surface spectrum. Although we have used a specific TI model in the example, the argument
is easily generalizable for all TRS Dirac Hamiltonians.

This work can be extended beyond quantum Hall insulators (class A) and TRS topological
insulators (class AII) to other insulators within the Altland and Zirnbauer classification [76,
209]. The periodic table of topological insulators and superconductors provide an exhaustive
topological classification of non-interacting electronic systems [77, 78, 194]. As there are
model Dirac Hamiltonians [4, 42, 181, 187] in each class, our work provides the machinery to
relate the bulk topological invariants [78] to the surface properties [77, 194] of these systems.
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Chapter 7

Majorana fermions at the ends of
superconductor vortices in doped
topological insulators

Majorana fermions have been pursued by neutrino physicists for several decades, but
have remained elusive so far. They are intriguing because they are, by definition, their own
antiparticles, in contrast to conventional Dirac fermions such as electrons. Of late, the search
for Majorana fermions has shifted towards condensed matter systems [79, 89, 210]. Naively,
the energy scales involved here are usually too small to talk about true antiparticles and
hence, Majorana fermions. The situation, however, is rescued by superconductors (SCs),
which have an inherent charge-conjugation or ‘particle-hole’ symmetry which ensures all
states appear in pairs with equal and opposite energies. Then, a single state at zero energy
is its own particle-hole conjugate and hence, a Majorana state or a Majorana zero mode
(MZM). As the particle-hole symmetry in a SC cannot be broken by a local disturbance,
these states are immune to local noise and hence, considered strong candidates for storing
quantum information and performing fault tolerant quantum computation [86]. Moreover,
they are expected to show non-abelian rather than Bose or Fermi statistics due to them
being effectively fractionalized electrons, which is a truly extraordinary phenomenon [82].

In this section, we describe a simple way of obtaining a MZM, namely, by creating a
vortex in an appropriate conventional SC. Here, a MZM is trapped at each end of the vortex
line. We assume inversion and time-reversal symmetry in the absence of the vortex, since
it leads to technical simplifications and captures many real materials. For weak pairing,
what the appropriate SC is is found to depend on properties of the bands of the normal
phase metal. For instance, if the metal is obtained by doping a strong topological insulator
(TI), then the corresponding SC vortex will carry MZMs if the Fermi level is below a critical
value µc. As the Fermi level is tuned past µc, the vortex, undergoes a phase transition in
which its topological state changes from one that has end MZMs to one that does not. If
verified, this vortex phase transition (VPT) may be the first instance of a phase transition
inside a topological defect. For more general band structures, we find that the occurrence
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of the VPT is related to the Berry phase around a loop on the Fermi surface (FS), normal
to the vortex. Clearly, µc will depend on the vortex orientation. Note that systems with
time-reversal and inversion symmetry have doubly degenerate bands, so the Berry phase will
be an SU(2) matrix and thus non-abelian in general [211]. Using this criterion and available
band structures we find that c-axis vortices in Cu doped Bi2Se3 [125] are near the VPT, but
those in p-doped Bi2Te3 which become superconducting under pressure [212], have vortex
end MZMs.

A recent proposal for obtaining MZMs involved proximity inducing conventional s-wave
superconductivity on the surface of a strong TI, which has gapless surface states. The vortex
core of this surface SC was shown to trap a MZM [144]. Later, several TIs were found to
exhibit bulk superconductivity on doping, which raised the natural question: will a vortex
in this bulk SC host surface MZMs? A heuristic rule often applied to answer this question
is to examine whether the normal state bulk FS is well separated from surface states in
the Brillouin zone. If it is, MZMs are assumed to persist in the bulk SC. While this may
indicate the presence of low energy states, it is not a topological criterion since it depends
on non-universal details of surface band structure, and cannot signal the presence of true
MZMs. For MZMs to disappear, a gapless channel must open that allows pairs to approach
each other and annihilate. Perturbations that only modify surface state properties should
not affect MZMs as long as the gap remains open. We therefore search for and offer a bulk
rather than surface criterion.

7.1 A vortex in superconducting topological insulators

Consider a 3D insulating band structure H, which we dope by changing the chemical
potential µ away from the middle of the band gap. In addition, consider adding conventional
‘s-wave’ even parity pairing ∆0 (in contrast to the odd parity topological SCs of Ref. [93]).

Introduce a single vortex line into the pairing function ∆r, stretching between the top and
bottom surfaces. We neglect the effect of the magnetic field used to generate the vortices,
assuming extreme type II limit. When H is a strong TI, and µ is in the band gap, the
pair potential primarily induces superconductivity on the surface states. In this limit it is
known [144] that MZMs appear on the surface, inside the vortex core.1 Now consider tuning
the chemical potential deep into the bulk bands. By modifying states well below the Fermi
level, one could tune the band structure to one with uninverted bands. One now expects
‘normal’ behavior, and the absence of Majorana zero modes. Therefore, a quantum phase
transition must occur between these limits.

The vortex phase transition (VPT) may be viewed as a change in the topology of the
electronic structure of the vortex line. The relevant energy scale is of the order of the
minigap δ � ∆0, with excitations localized within the 1D vortex core. The vortex admits
particle-hole symmetry C but breaks time-reversal Θ and hence, belongs to class D of the

1It is convenient to discuss pairing over the entire range of µ, using the mean field Hamiltonian (7.1),
although in reality superconductivity only appears once bulk carriers are induced.
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Figure 7.1: The vortex phase transition.

Evolution of the dispersion within the vortex (top row) and of the surface MZMs
(middle row) as the chemical potential µ is varied. At µ = 0, the normal phase is a
strong TI and a superconducting vortex traps a MZM at its ends. As µ is increased,
it first touches the bottom of the conduction band and midgap states appear inside
the vortex. For µ < µc, the vortex stays gapped, but with a minigap δ smaller than
the bulk gap, meanwhile the MZMs remain trapped near the surface. At µc, the gap
vanishes signaling a phase transition. Beyond µc, the vortex is gapped again, but there
are no surface MZMs.

Altland-Zirnbauer classification [76]. Thus, the problem reduces to classifying gapped phases
in 1D within the symmetry class D, which are known to be distinguished by a Z2 topological
invariant [89]. The two kinds of phases differ in whether they support MZMs at their ends;
the topologically nontrivial phase has such zero modes. We identify the surface MZMs
with these edge modes and hence the µ < µc phase of the vortex line with the topologically
nontrivial phase. On raising the chemical potential, the vortex line transitions into the trivial
phase, via a quantum critical point at which it is gapless along its length. This is reminiscent
of recent proposals to generate Majorana fermions at the ends of superconducting quantum
wires [91, 92, 213, 214]. Note, since there is no ‘local’ gap in the vortex core, the powerful
defect topology classification of [196] cannot be applied.

The mean field Hamiltonian is H = 1
2

∑
k Ψ†kH

BdG
k Ψk where Ψ†k = (c†k↑, c

†
k↓, c−k↓,−c−k↑)
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and c†kσ is assumed to have a = 1 . . . N orbital components c†kσa and

HBdG
k =

[
Hk − µ ∆

∆∗ µ−Hk

]
. (7.1)

where scalars like the chemical potential µ and singlet pairing ∆ multiply the identity matrix
12N . The band Hamiltonian, Hk, is a 2N × 2N matrix with Θ symmetry: σyH∗−kσ

y = Hk,
where σy acts on the spin, which yields the Hamiltonian structure above. When inversion
symmetry (Π) is also present, the normal state band Hamiltonian Hk will be doubly de-
generate, since the combined operation leads to a Kramers pair at every momentum. The
Bogoliubov-de Gennes (BdG) Hamiltonian has particle-hole symmetry implemented by the
transformation C = υyσyK, where υ matrices act on Nambu particle-hole indices, and K is
complex conjugation. A vortex breaks Θ but preserves C via complex phases in the pairing
term ∆(r). (For example, along the z direction, ∆(r) = |∆(r)|e−iθ, where reiθ = x+ iy.)

Consider a straight vortex along the z direction. Labeling states by kz, the momentum
along the vortex line, leads to a gapped dispersion as in Fig. 7.2 with minigap δ. A topological
phase transition requires closing of the minigap which then reopens with inverted sign.
However, the Z2 topological index is only changed by an odd number of such band crossings.
The only relevant momenta to investigate such gap closing is kz = 0, π. Band touchings
at other kz points occur in pairs at ±kz which do not alter the Z2 index [89]. In the weak
pairing limit, one expects the critical point µc to be determined by a FS property, which will
be outlined in detail below. Here we simply observe that the relevant FSs to consider lie in
the kz = 0, π planes, the planes determined by the vortex orientation. This implies that the
topological phase of the vortex, and hence µc depend in general on its orientation.

7.2 Vortex phase transition in models and numerical

results

Before discussing the general criterion for a VPT, we present numerical and analytical
evidence in a specific lattice model from Ref. [187]. While the numerics explicitly demonstrate
the phase transition, the analytical treatment of the continuum limit allows us to conjecture
a Berry phase condition for the transition, which is later proved.

7.2.1 Lattice model

The model is on a simple cubic lattice with two orbitals per site: The Hamiltonian is

Hk = τxdk · σ +mkτ
z − µ, (7.2)

where τ i and σi are Pauli matrices in the orbital and spin basis respectively. The components
of dk are dik = 2t sin ki, the ‘mass’ is given by mk = (M +m0

∑
i cos ki), where i = x, y, z

labels the components of the vectors. t, m0 and M are parameters of the model and µ is
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Figure 7.2: Band crossing in a vortex phase transition.

Evolution of the lowest bulk/vortex states at kz = 0 of the dispersion within the vortex.
as µ is varied when the normal phase has a band inversion at Γ. At µ = 0, the normal
phase is a strong TI and a superconducting vortex traps a MZM at its ends. As µ is
increased, it first enters the conduction band at µ = |mΓ| = 0.5 and midgap states
appear inside the vortex. For |mΓ| < µ < µc, the vortex stays gapped, but with a
minigap δ smaller than the bulk gap. In this region a bulk Fermi surface exists but the
MZMs remain trapped near the surface. At µc = 0.9, the gap vanishes at the vortex
phase transition. Above µc, the vortex becomes gapped again, but there are no surface
MZMs. We used the lattice Hamiltonian with the parameters t = 0.5, M = 2.5 and
m0 = −1.0. The pairing strength is ∆0 = 0.1 far away from the vortex and drops
sharply to zero at the core. Other gap profiles give similar results.

the chemical potential. The model is in the strong TI phase if −3 < M/m0 < −1. We
add a mean field s-wave pairing to this Hamiltonian, insert a unit winding into the pairing
function and diagonalize the Hamiltonian numerically. We focus on kz = 0.

Figure 7.2 illustrates the evolution of the bulk vortex bound states, the dispersion within
the vortex and the surface MZMs as a function of µ, when the normal state has a band
inversion only at the Γ = (0, 0, 0)-point, i.e., mΓ < 0. In its normal phase, the system’s gap
is simply |mΓ|. At µ = 0, the bulk is gapped and must have a pair of MZMs on opposite
surfaces in a slab geometry. As µ is raised, these MZMs leak deeper into the bulk, but
survive even after µ crosses |mΓ| despite the bulk now having a FS in the normal phase,
gapped by superconductivity. A VPT eventually occurs at µc = 0.9, at which the vortex is
gapless and the surface MZMs merge into vortex line. Beyond µc, there are no longer any
protected MZMs on the surface.
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7.2.2 Continuum model

In the continuum limit of the lattice model with cubic symmetry, we can analytically
calculate µc. For kz = 0 and small kx,y around Γ, the lattice model reduces to the isotropic
form

Hk = τxσ · k + (m− εk2)τ z − µ . (7.3)

In this form, a band inversion exists if mε > 0. Thus, mε > 0 (< 0) characterizes an STI
(trivial insulator). At k =

√
m/ε, mk = m − εk2 vanishes and Hk resembles two copies

of a pure Dirac Hamiltonian. In particular, the Berry phase around each τx = ±1 FS is
π. We will show later that this leads to a pair of vortex zero modes, signaling the VPT at
µc =

√
m/ε.

We solve analytically for the two bulk zero modes at µ to first order in ∆0 by assuming a
superconducting gap profile |∆(r)| = ∆0ΘH(r−R), where ΘH is the step function and R is
a large radius such that R(∆0/~)� 1. In this approximation, the zero energy solutions can
be calculated separately for r ≤ R and r ≥ R. Matching these solutions at the boundary
r = R gives a pair of zero modes, only when µ =

√
m/ε, for all vortex orientations, precisely

where the momentum dependent ‘mass’ term changes sign. Using the model parameters
and the linearized approximation gives an estimate of µc ≈ 1, in agreement with the lattice
model numerics.

In the basis
(
ψ(r), iσyψ†(r)

)
where ψ(r) is a four-component spinor of electron annihila-

tion operators indexed by spin and orbital indices, the Bogoliubov-de Gennes Hamiltonian
in real space for a unit vortex is

HBdG =

[
Hr ∆0ΘH(r −R)eiθ

∆0ΘH(r −R)e−iθ −Hr

]
, (7.4)

where Hr = −iτxσ · ∇ + τ z(m + ε∇2) − µ. The θ-dependence of HBdG can be removed by
observing that it commutes with the generalized angular momentum operator

Lz = −i∂θ +
σz + υz

2
. (7.5)

Since {Lz, C} = 0, a single MZM, such as the one on the surface, must have an eigenvalue
of Lz, equal to zero. Now, the bulk zero modes can be thought of as the avenues through
which the surface MZMs penetrate the bulk. Thus, they must have n = 0 as well. The
vortex preserves a mirror symmetry about the xy-plane described by M = τ zσz. Thus,
HBdG can be block-diagonalized into sectors with opposite M eigenvalues. The two blocks
are particle-hole conjugates since {M, C} = 0 and each must contribute a single bulk MZM
at µc. The radial Hamiltonian for the M = +1 sector is

Hrad = −iυzνy
(
∂r +

1

2r

)
+
νx

2r
+ υzνz

[
m+ ε

(
∂2
r +

1

r
∂r −

1

2r2

)]
− ε

2r2

− υzµ+ υx∆0ΘH(r −R) , (7.6)
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where νi are Pauli matrices in a combined orbital (τ i) and spin (σi) space. For r < R, Hrad

has four zero energy solutions
−k±J1(k±r)

(µ−mk±)J0(k±r)
0
0

 ,


0
0

−k±J0(k±r)
(µ−mk±)J1(k±r)

 , (7.7)

where k± are roots of g(k) = ε2k4 + (1− 2mε)k2 + (m2 − µ2) and Jν(x) are Bessel functions
of the first kind of order ν. For r > R, we drop all terms that contain r in the denominator.
The zero modes of the remaining Hamiltonian are of the form eiλ±rχ±, where λ± is a root
of ε2λ4 + (1− 2mε)λ2 + (m2 − (µ± i∆0)2) = 0 with positive imaginary part and

χ± =


−iλ±

µ∓ i∆0 −m+ ελ2
±

±λ±
±i(µ∓ i∆0 −m+ ελ2

±)

 . (7.8)

Matching the solutions and their derivatives at r = R to first order in ∆0, using the asymp-
totic forms of the Bessel functions, is only possible at µc =

√
m/ε. This gives an analytic

solution to the critical chemical potential µc.

7.3 General Fermi surface Berry phase condition

For weak pairing, the VPT is expected to be governed by properties of the bulk FS.
Specifically, we have argued that only kz = 0 and kz = π planes will cause a VPT. In this
section, we argue that the VPT occurs when an appropriately defined Berry phase for these
FSs is π.

7.3.1 Summary of the argument and results

Here we give a short summary of the main ideas and results of this section. A convenient
model for the vortex is ∆(r) = ∆0

ξ
(x− iy). The linear profile here simplifies calculations, but

does not affect location of the zero mode. The choice of ξ as the length scale gives the right
minigap scale for the low energy excitations. Working in momentum space we substitute r
by i∂k, which gives

HBdG
k =

[
Hk − µ i∆0

ξ
(∂kx − i∂ky)

i∆0

ξ
(∂kx + i∂ky) µ−Hk

]
, (7.9)

transforming now to the band basis |ϕνk〉, which are eigenstates of the band Hamiltonian
Hk|ϕk〉 = E|ϕk〉. Since we are only interested in very low energy phenomena, we project
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onto the degenerate bands near the Fermi energy. We assume for the moment that there are
two such bands at kz = 0 plane (and none for kz = π plane). The projected Hamiltonian
then is:

H̃BdG
k =

[
Ek − µ i∆0

ξ
(Dkx − iDky)

i∆0

ξ
(Dkx + iDky) −Ek + µ

]
. (7.10)

where Dkα = ∂kα − iAα(k) and Aα(k), the SU(2) connections, are 2×2 matrices:

[A]µνα (k) = i〈ϕµk|∂kα |ϕ
ν
k〉. (7.11)

Let us first consider the case when an additional quantum number (such as spin up and
down) can be used to label the degenerate FSs. Then, [A]µνα must be diagonal, and reduces
to a pair of U(1) connections for the two FSs. In this situation, Eq. (7.10) is identical to the
effective Hamiltonian for a px + ipy superconductor, if we interpret momenta as position and
ignore the gauge potential. The diagonal terms represent a transition from weak to strong
pairing phase on crossing the FS when Ek = µ [79]. Thus midgap are expected, composed
of states near the Fermi energy. Due to the finite size of the FS, these states have an energy
spacing of O

(
∆0

kF ξ

)
, the minigap energy scale. However, a zero energy state appears if the

FS encloses a π-flux [79]. This can be implemented via the gauge potential if
�
FS

A · dl = π
leading to a pair of zero modes, since the other FS has the same Berry phase by time-reversal.

In the absence of any quantum number distinguishing the bands, one integrates the vector
potential A(k) around the FS in the kz = 0 plane, to give the non-abelian Berry phase [211]:
UB = P exp

[
i
�
FS

A · dl
]
∈ SU(2), where P denotes path ordering. (There is no U(1) phase

by Θ symmetry.) Although UB itself depends on the choice of basis, its eigenvalues e±iφB

are gauge invariant. A semiclassical analysis gives the Bohr-Sommerfield type quantization
condition for the low energy levels:

En =
∆0

lF ξ
(2πn+ π ± φB) (7.12)

where n is an integer and lF is the FS perimeter. A pair of zero modes appears when φB = π,
i.e., when UB = −1.

We have considered a single closed FS in the kz = 0 plane. Such a FS necessarily encloses
a time-reversal invariant momentum (TRIM), (e.g. Γ), given the symmetries. When there
are multiple FSs, the condition above is applied individually to each FS, since tunneling
between them is neglected in the semiclassical approximation. Note that closed FSs that do
not enclose a TRIM, or pairs of open FSs, cannot change the vortex topology.

7.3.2 Bogoliubov-de Gennes Hamiltonian

We consider a 3D system with s-wave pairing, where the bulk is pierced by a quantum
flux h/2e. Assuming that the metallic Hamiltonian Hk (the system without superconductiv-
ity/quantum flux) has time-reversal symmetry, we will derive the condition which governs
the existence of zero vortex modes to the properties of the FS, namely the Berry phase.
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The mean field BdG Hamiltonian with s-wave pairing is of the form:

H =
1

2

∑
kk′

Ψ†kH
BdG(k,k′)Ψk′ , (7.13)

where Ψ†k =
(
c†k, c

T
−k(iσy)

)
is written in the Nambu basis, capturing all orbital and spin

degrees of freedom. The single-particle Hamiltonian is

HBdG(k,k′) =

[
(Hk − µ)δkk′ ∆(r)

∆∗(r) (µ− σyH∗−kσy)δkk′

]
, (7.14)

where the pairing potential, given by ∆∗(r) =
〈
Ψ†↑(r)Ψ†↓(r)

〉
, is position dependent due to

the vortex.
The quasiparticle operators Ψ†,Ψ are defined in such as a way that leads to spin singlet

pairing. Since the metallic Hamiltonian Hk has time-reversal symmetry, σyH∗−kσ
y = Hk and

the BdG Hamiltonian may be written as

HBdG =

[
Hk − µ ∆(r)
∆∗(r) µ−Hk

]
. (7.15)

(We drop the k,k′ dependence, treating HBdG as an operator.)
We take the vortex to lie in the ẑ direction, hence the pairing term takes the form

∆∗(r) = ∆(r⊥)eiθ, independent of z, where r⊥e
iθ = x + iy. The pairing amplitude becomes

constant for large r⊥: ∆(r⊥) → ∆0. Although the vortex breaks translational symmetry
in the xy-plane, it is preserved in the z direction and hence, kz remains a good quantum
number. The 3D system thus decouples into many 2D Hamiltonians enumerated by kz.
Henceforth, we refer to r⊥ as simply r, and k as the 2D momentum coordinate (kx, ky).

The time-reversal operator is Θ = −iσyK, taking kz → −kz, k→ −k, which is broken by
the imaginary part of ∆. In addition, the system must have particle-hole (charge conjugation)
symmetry given by the operator C = υyσyK, where υi are the Pauli matrices acting on
particle-hole space. Note that C also takes kz → −kz, k → −k, hence particle-hole is a
symmetry of the 2D system only when kz ∼ −kz (i.e., at 0 or π).

In the remainder of this section, we do not assume anything about the value of kz, nor
the symmetries of the 2D Hamiltonian Hk|kz at a fixed kz. Our results remain valid applied
to any 2D slice (with a smooth FS) of the 3D Brillouin zone, as long as the 3D Hamiltonian
has time-reversal symmetry.

7.3.3 Pairing potential

In this section, we compute the pairing potential of a vortex in k-space via a Fourier
transform. We confine our system to be on a disk with radius ξ, the superconducting
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Figure 7.3: The pairing potential.

The pairing potential ∆k′k as a function of qξ where q = |k − k′| and ξ is the system
radius. The wavefunction ψ(k) is smooth on the scale of ξ−1, and hence the pairing
potential may be modeled as −δ′(q).

correlation length. The matrix element ∆k′k is

∆k′k = 〈k′|∆(r)|k〉

=
1

πξ2

�
d2r ei(k−k

′)·r∆(r)

=
1

πξ2

� ξ

0

r dr∆(r)

� 2π

0

dθ eiqr cos(θ−θq)e−iθ , (7.16)

where q = k − k′ = q(cos θqx̂ + sin θqŷ). The θ integral evaluates to a Bessel function (of
the first kind): 2πie−iθqJ1(qr). The matrix element becomes

∆k′k =
2πie−iθq

πξ2

� ξ

0

r dr∆(r)J1(qr) . (7.17)

• At large q (qξ � 1), J1(qr) ≈ sin qr/
√
qr, and ∆(r)→ ∆0 becomes constant. The inte-

gral scales as ∆0

q2
(qξ)1/2 cos qξ and the matrix element ∆k′k ≈ i∆0e

−iθq(qξ)−3/2 cos qξ →
0.

• At small q (qξ < 1), J1(qr) ≈ qr/2 and the integral evaluates to q∆0ξ
3/6. The matrix

element scales as i
3
∆0e

−iθqqξ and is linear in q.

We can model the pairing matrix element as a derivative of the delta function: ∆k′k ∝
ie−iθq(−δ′(q)), this approximation is valid in the regime where the wavefunction ψ(k) is
smooth on the length scale of ξ−1. In Cartesian coordinates, the pairing term becomes
i∆e(∂kx − i∂ky), where ∆e is the effective p + ip pairing strength, with units energy ×
length−1. From a simple analysis, we expect that ∆e ≈ ∆0/ξ.

The Hamiltonian in k-space is of the form:

HBdG =

[
Hk − µ i∆e(∂kx − i∂ky)

i∆e(∂kx + i∂ky) µ−Hk

]
. (7.18)
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The eigenstates are of the form

|ψ〉 =
∑
k,ν

ψν(k)|ϕνk〉 , (7.19)

where |ϕνk〉 is an eigenstate of Hk and ν labels the band index.

7.3.4 Projecting to the low energy states

Solutions to the Hamiltonian (7.18) will consists of mostly states near the FS, where
Ek ∼ µ. Hence we can simplify the system by projecting to the band eigenstates |ϕµk〉 with
energy near the chemical potential, where µ, ν is the band index:

H̃ = 〈ϕµk|H|ϕ
ν
k〉 . (7.20)

If inversion symmetry is present, each band will be doubly degenerate.
The projection of the metallic Hamiltonian Hk gives a diagonal matrix Eµν

k = 〈ϕµk|Hk|ϕνk〉
with its entries being the energies. The projection of the derivative operator gives the Berry
connection: 〈ϕµk|i∇k|ϕνk〉 = i∇k + Aµν , where the non-abelian Berry connection is defined
as:

Aµν = i〈ϕµk|∇k|ϕνk〉 . (7.21)

Explicitly:

H̃ =

 Eµν
k − µ ∆e

(
i(∂kx − i∂ky)
+Aµνx − iAµνy

)
∆e

(
i(∂kx + i∂ky)
Aµνx + iAµνy

)
−Eµν

k + µ

. (7.22)

The connections Ax, Ay are hermitian matrices which depends on the choice of Bloch states
|ϕνk〉.

Dropping the band indices and writing Ek as E(k), the Hamiltonian is:

H̃ =

 E(k)− µ ∆e

(
i(∂kx − i∂ky)
+Ax − iAy

)
∆e

(
i(∂kx + i∂ky)
+Ax + iAy

)
−E(k) + µ

, (7.23)

If we interpret momenta (k) as position, then we can treat Ax,y as a gauge potential and the
Berry curvature F = ∂kxAy − ∂kyAx − i[Ax, Ay] as an effective magnetic field in the model.
This system was studied by Read, Green, Ludwig, Bocquet and Zirnbauer in context of a
Dirac Hamiltonian with random mass as well as p+ip superconducting systems [79, 215, 216].

While superficially similar to a p + ip superconductor, there is an important distinction
– our system may not have particle-hole symmetry (unless kz = 0 or π), and hence does
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not belong to the D class (particle-hole symmetry). To illustrate how C is broken, suppose
that there is only one FS and hence Ai are simply 1 × 1 (abelian) matrices. The system
resembles a superconductor with p + ip pairing, but with the Berry curvature ∇k × A(k)
being the effective magnetic field. Unlike a superconductor, the effective field does not have
to be localized nor quantized within the FS.

Consequently, the spectrum of vortex states in our 2D system does not have any sym-
metry, and the zero modes are not topologically protected. We can only show that these
modes are stable within the weak pairing limit under perturbation theory. We can restore
particle-hole symmetry by combining the 2D systems at kz with that at −kz, at the cost of
doubling the number of zero energy states.

In the remainder of the section, we will explicitly show the following: when (an eigenvalue
of) the Berry phase of the FS φF is π, there is an effective half quantum flux h

2e
in the system

which supports a Majorana mode.

7.3.5 Explicit solution with rotational symmetry

This section is not necessary to the solution, but is instructive and aids in the understand-
ing of what the terms in the more general solutions mean. For simplicity, we only consider
a single FS at wavevector kF . We also assume an abelian Berry connection, so Ax, Ay are
simply real numbers.

With rotational symmetry, we can simplify the expressions in polar coordinates: kx+iky =
keiθ: E(k) = E(k), ∂kx − i∂ky = e−iθ(∂k − i

k
∂θ), Ax − iAy = e−iθ(Ak − i

k
Aθ). In addition, it

is possible to find a gauge for which Ak = 0, and Aθ is a function of k, but independent of
θ. Explicitly, the Berry connection is

2πAθ(k) = 2π

� k

0

k′dk′ F (k′) , (7.24)

where F (k) = ∇k × A is the Berry curvature. The left side of (7.24) is the Berry phase
along a circle of radius k, while the right side is the integrated Berry curvature.

Our Hamiltonian simplifies to

H̃ =

[
E(k)− µ i∆ee

−iθ (∂k − i∂θ+Aθ
k

)
i∆ee

iθ
(
∂k + i∂θ+Aθ

k

)
−E(k) + µ

]
. (7.25)

The Hamiltonian commutes with Jz = −i∂θ + υz, that is to say that the solutions are of the
form

ψ(k, θ) =
1√
k

(
u(k)ei(n−1)θ

−iv(k)einθ

)
, (7.26)

for integers n (required by the wavefunction being single-valued). Via the transformation

Wph = k
1
2

[
e−i(n−1)θ

i e−inθ

]
, (7.27)
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the effective Hamiltonian for (u, v) is

H̃n = Wph H̃ W−1
ph

=

 E(k)− µ ∆e

(
∂k +

n− 1
2
−Aθ
k

)
∆e

(
n− 1

2
−Aθ
k
− ∂k

)
−E(k) + µ

. (7.28)

Notice that the Hamiltonian is symmetric except for the terms proportional to ∂k, due to
our choice of Wph.

Our assumption is to replace k by the Fermi wavevector kF , Aθ by AFθ = Aθ(kF ) and 1
k

by 1
kF

. This is justified as the amplitude of the wavefunction |u(k)|, |v(k)| is largest at the FS
k = kF and exponentially decays away from the FS. The resulting Hamiltonian is equivalent
to the Jackiw-Rebbi model [195]:

H̃n =
∆e

kF

(
n− AFθ − 1

2

)
υx + i∆e∂kυ

y +
(
E(k)− µ

)
υz . (7.29)

A midgap state exists whenever E(k)− µ changes sign, with energy

En =
∆e

kF

(
n− φF

2π
− 1

2

)
, (7.30)

where φF = 2πAFθ is the Berry phase of the FS. Hence, a zero energy solution exists when
φF is an odd multiple of π.

Explicitly, the eigenstates are of the form [79, 195]

u(k) = exp

� k

β(k′) dk′ , (7.31)

where β(k) must a be a decreasing function of k for u(k) to be normalizable. Assuming that
E(k) is an increasing function of k, then

β(k) =
µ− E(k)

∆e

, (7.32a)

v(k) = u(k) . (7.32b)

By inspection, this satisfies Schrödinger’s equation for the Hamiltonian (7.29):

H̃n

(
u
v

)
=

[
−∆eβ En + ∆eβ
En −∆eβ ∆eβ

](
1
1

)
=

(
En
En

)
. (7.33)

For a Fermi velocity vF , E(k) − µ ≈ ~vF (k − kF ). We can see that u(k) is a Gaussian
with width

√
∆e/~vF ≈

√
∆0/~vF ξ, which justifies the substitution k → kF earlier.
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We would like to point the reader to one last detail before moving on to the general
solution. Putting our solution back in to the wavefunction (7.26) gives

ψ(k, θ) =
u(k)einθ√

k

(
e−iθ

−i

)
. (7.34)

The pseudo-spinor (in the Nambu basis) is an eigenstate of t ·υ, where t is a vector tangent
to the FS at (kF , θ). The pseudo-spin locking to the the momentum gives rise to the π phase
around the FS in the Hamiltonian (7.28) and Eq. (7.30).

7.3.6 General solution without rotational symmetry

The solution is similar in spirit to the case with circular symmetry. Now, we label the
momentum by energy contours (E, η) instead of (r, θ) and demand constant E contours to
be orthogonal to constant η contours. Similar to θ, η is periodic with periodicity of 2π.

The idea of the derivation is as follows. We rewrite the Hamiltonian in a Jackiw-Rebbi
form as a function E, perpendicular to the FS. Let Γ1, Γ2, Γ3 be matrices which anticommute
with each other, and square to the identity matrix. Then the differential equation

Γ1(i∆e∂E) + iΓ2(E − µ) + Γ3f(η) (7.35)

has a bound state when E−µ changes sign, the bound state is an eigenvector of Γ3 and has
energy f(η) [195]. The remaining η degree of freedom governs the existence of zero energy
states, by requiring the wavefunction ψ(E, η) to be single valued.

Define the vectors tangent and normal to the energy contours t = ∂k
∂η

, n = ∂k
∂E

. Clearly,

t ⊥ n (see Fig. 7.4). The derivatives and connections in (E, η) coordinates are related to
those in the Cartesian coordinates:(

∂E
∂η

)
=

[
nx ny

tx ty

](
∂kx
∂ky

)
, (7.36)

and we define the 2× 2 matrix to be J−1.(
∂kx
∂ky

)
= J

(
∂E
∂η

)
,

(
Ax
Ay

)
= J

(
AE
Aη

)
, (7.37)

where J is the Jacobian matrix:

J =
∂(E, η)

∂(kx, ky)
=

[
JEx Jηx
JEy Jηy

]
. (7.38)

From J−1J = 1, we can see that JE · t = 0, Jη · n = 0, hence JE ‖ n and Jη ‖ t.
First we rewrite the pairing term in terms of E and η. We have

i(∂kx − i∂ky) + Ax − iAy = dE + dη , (7.39)
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Figure 7.4: Parametrization of the reciprocal space with orthogonal coordinates (E, η).

The (blue) closed contours are plotted for constant energies E, with the bold contour
being the FS at the chemical potential µ. The (purple) open contours are at constant
η, running from 0 to 2π. At each point, t(E, η) = ∂k

∂η
and n(E, η) = ∂k

∂E
are vectors

tangent and normal, respectively, to the energy contours. Notice that, for a closed FS,
the direction of the vectors t and n rotate once counterclockwise as η is varied around
the surface.

where

dE = i(JEx − iJEy )(∂E − iAE) , (7.40a)

dη = i(Jηx − iJηy )(∂η − iAη) . (7.40b)

It is always possible to find a gauge transformation which eliminates AE near the FS. The
transformation is of the form U †A = P exp

[
i
� E

0
AE(E ′)dE ′

]
, where P is the path-ordering

operator. Since ∂EU
†
A = iAEU

†
A,

UA(∂E − iAE)U †A = ∂E . (7.41)

This transformation will alter Aη, since the derivative ∂η acts on U †A. In general, it impossible
to make both AE and Aη disappear.

We make the substitution JEx − iJEy = |JE|e−iθn , where θn gives the direction of the
normal vector n. As t is perpendicular to n, Jηx − iJηy = −i|Jη|e−iθn , Eq. (7.40) becomes

dE = ie−iθn|JE|∂E, (7.42a)

dη = e−iθn|Jη|(∂η − iAη). (7.42b)

At the moment, our Hamiltonian (7.23) is of the form:

H̃ =

[
E − µ ∆ee

−iθn
(
i|JE|∂E + |Jη|(∂η − iAη)

)
∆ee

iθn
(
i|JE|∂E − |Jη|(∂η − iAη)

)
−E + µ

]
. (7.43)
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The angle θn rotates by +2π around a closed FS as η varies from 0 to 2π. The eiθn phase
in the off diagonal terms of the Hamiltonian give rise to a π phase in the eigenstates. We
transform this phase away via the unitary transformation:

Uph =

[
eiθn

1

]
, (7.44)

such that

Uph H̃ U †ph =

[
E − µ ∆eD

−

∆eD
+ µ− E

]
. (7.45)

where

D− = i|JE|∂E − i|Jη|(i∂η + Aη) , (7.46a)

D+ = i|JE|∂E + i|Jη|(i∂η + Aη) + i|Jη|∂θn
∂η

. (7.46b)

We have ignored the term ∂Eθn from the assumption that the FS is smooth (no cusps). The
term ∂ηθn is extremely important as it will give us the π Berry phase shift.

At any fixed value of η, we write the Hamiltonian in the form of Eq. (7.35):

UphH̃U
†
ph = (E − µ)τ z + ∆eD

xτx + ∆eD
yτ y, (7.47)

where Dx and Dy are the symmetric and the antisymmetric parts of off the diagonal elements
D±.

Dx =
D+ +D−

2
= i|JE|∂E + i

|Jη|
2

∂θn
∂η

, (7.48a)

Dy =
D+ −D−

2i
= |Jη|

(
i∂η + Aη +

1

2

∂θn
∂η

)
. (7.48b)

In the first expression (7.48a), there is an extra term i|Jη |
2

∂θn
∂η

, which we can absorb in to the
energy derivative via the transformation

exp

[�
gη dE

]
∂E exp

[
−
�
gη dE

]
= ∂E − gη (7.49)

where gη(E) = |Jη |
2|JE |

∂θn
∂η

. This introduces a term ∂ηgη in Dy, but is irrelevant as gη is single-

valued. (In the case with rotational symmetry, the term exp
�
gη is k1/2 in (7.27).)

The (E dependent portion of the) solution to Jackiw-Rebbi Hamiltonian (7.47) is:

ψ(E, η) ∼ u(η) exp

[
−
�
E − µ
∆e|JE|

dE

](
1
−i

)
, (7.50)
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by treating Dy as a constant (independent of E) on the energy scale of
√

∆e|JE|. The
effective Hamiltonian is Hη = −∆eD

y.
Finally, we solve for Dy(η)u(η) = 0 for a Majorana vortex bound state, subject to the

constraint that u(η) is single-valued. We can solve for u(η) explicitly:

u(η) = P exp

[
i

� η

0

dη′
(
Aη(η

′) +
1

2

∂θn
∂η

)]
u(0) . (7.51)

Since θn winds by 2π around a closed FS,
�

1
2
∂ηθn = π gives an overall phase of −1. We have

u(2π) = −UBu(0), where the Berry phase of the FS is

UB = P exp

[
i

� 2π

0

Aη dη

]
. (7.52)

Hence a solution exists for every −1 eigenvalue of UB.

7.3.7 Vortex bound states

We can solve for the spectrum Caroli-de Gennes-Matricon bound states [217]. For an
arbitrary energy E , the ‘angular’ portion of the wavefunction satisfies −∆eD

yu(η) = Eu(η),
equivalent to:

−i∂ηu(η) =

(
E

∆e|Jη|
+ Aη +

1

2

∂θn
∂η

)
E=µ

u(η) . (7.53)

Note that |Jη|−1 = |t|. The solution for u(η) is a path-ordered exponential

u(η) = P exp

[
i

� η

0

(
E|t|
∆e

+ Aη +
1

2

∂θn
∂η

)
E=µ

dη′

]
u(0) . (7.54)

The full solution to the Hamiltonian (7.43) is:

ψ(E, η) ∝ u(η) exp

[
−
� E( E ′ − µ

∆e|JE(E ′)|
+ gη(E

′)

)
dE ′
](

e−iθn

−i

)
. (7.55)

While Aη is a hermitian matrix, E|t|/∆e and ∂ηθn are simply numbers, hence the integral

may be evaluated separately for each term. The integral
� 2π

0
|t|dη is simply the perimeter of

the FS lF . The integral 1
2

� 2π

0
∂ηθndη is π for a closed FS, and 0 for an open FS (modulo 2π).

The single-valued requirement u(2π) = u(0) (for a closed FS) becomes:

u(0) = − exp

(
i
lF
∆e

E
)
UBu(0) . (7.56)
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From this, we can calculate the allowed energies for an arbitrary Berry phase:

En =
∆e

lF
(2πn+ π − φ) , (7.57)

for integers n, where eiφ are the eigenvalues of UB. Note that the eigenvalues always come
in pairs ±φ due to the particle-hole symmetry of the system (considering both kz and −kz
slices of the BZ).

7.4 Candidate materials

We now apply the Berry phase criterion to some candidate materials to see which of
them can have protected MZMs at the ends of vortices. Note our results assumes an s-wave
superconducting pairing for these materials.

In all these case, we note that the VPT could potentially be probed via thermal transport
along the vortex line. A hurdle to accessing this physics is the small minigap scale (∆0/kF ξ ∼
∆2

0/EF ), and long confinement length of surface MZMs along the vortex line, which may
be ameliorated by considering strong coupling superconductors or materials such as heavy
fermions where EF is effectively reduced.

7.4.1 CuxBi2Se3 with s-wave pairing

The insulating phase of Bi2Se3 is a strong TI with a single band inversion occurring at the
Γ point. On Cu doping, Bi2Se3 becomes n-type with an electron pocket at Γ and is reported
to superconduct below Tc = 3.8 K [125, 218]. Photoemission measurements show µ ≈ 0.25 eV
above the conduction band minimum at optimal doping (x = 0.12) [219]. We calculate the
Berry phase eigenvalues for a FS around the Γ point numerically as a function of µ, which
evaluates to ±π at µc ≈ 0.24 eV above the conduction band minimum for a vortex along the
c-axis of the crystal. µ & µc indicates c-axis vortices are near the topological transition, and
more accurate band structures may be needed for a definitive conclusion.

Numerical calculation of the Berry phase for Bi2Se3

The insulating phase of Bi2Se3 is a strong TI, with a band inversion occurring at the
Γ point in its rhombohedral Brillouin zone. CuxBi2Se3 is reported to superconduct below
Tc = 3.8 K [125, 218]. Before the superconducting transition, the carrier (electron) density
is approximately 2 × 1020 cm−3 from Hall measurements [125]. Using the effective eight-
band model from Ref. [203], we estimate µ theoretically in this material from the carrier
density to be ≈ 0.4 eV relative to the conduction band bottom. However, photoemission
measurements show µ ≈ 0.25 eV above the bottom of the conduction band at the optimal
doping (x = 0.12) [219].
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Figure 7.5: Berry phase eigenvalues φB for Bi2Se3 as a function of µ.

The chemical potential µ is measured relative to the bottom of the conduction band for
a Fermi surface. The Berry phases are computed for the Fermi surfaces relevant to a
vortex along the c-axis (solid curves) and perpendicular to the c-axis at an angle of π/6
to the binary axis (dashed curves) of Bi2Se3. The eigenvalues appear in ± pairs and are
only defined modulo 2π. The phases φB are zero (modulo 2π) at both the conduction
band minimum and at energies far above the conduction band. Clearly, the φB = π at
µc‖ = 0.24 eV and µc⊥ = 0.24 eV, signaling a VPT. Photoemission measurements show
µ ≈ 0.25 eV ∼ µc above the conduction band minimum at optimal doping [219], and
hence Cu doped Bi2Se3 is predicted to be near the vortex phase transition for a c-axis
vortex, and to have end MZMs for vortices sufficiently tilted off the c-axis.

The conduction band minimum is at the Γ-point. For small carrier densities, we expect
the FS to be centered around Γ. Using the same model from Ref. [203], we determine µc
for this material by calculating the Berry phase eigenvalues for a FS around the Γ point
numerically as a function of µ for various vortex orientations. In Fig. 7.5, we show the
results for a vortex parallel to the c-axis (solid line) and for a vortex perpendicular it making
an angle of π/6 with the binary axis (dashed line).

This calculation is done by discretizing the FS contour and making the pair of Bloch
functions continuous and the Berry connection vanish at all but one points on this contour.
More precisely, we parametrize the FS via η ∈ [0, 2π] and compute the eigenstates |ϕν(η)〉
for ν = 1, 2. The phase is chosen such that Aµνη = i〈ϕµ(η)|∂η|ϕν(η)〉 = 0 for 0 < η < 2π
along the FS.

In general, the Bloch functions will not be single-valued, i.e., |ϕν(2π)〉 6= |ϕν(0)〉. The
unitary transformation required to rectify the discontinuity at this one point is precisely
the non-abelian phase: |ϕµ(0)〉 = [UB]µν |ϕν(2π)〉. Because of time-reversal symmetry in the
normal phase of Bi2Se3, the Berry phase UB ∈ SU(2) has eigenvalues e±iφ which come in
complex conjugate pairs. Figure 7.5 shows the variation of the Berry phase eigenvalues φ as
a function of µ for two different FSs of Bi2Se3 in the kz = 0 plane, where the z-axis is along
the vortex. Here, µ is measured relative to the bottom of the conduction band at the Γ point,
which is where the band inversion occurs. When the vortex is along the c-axis, µc ≈ 0.24 eV,
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which happens to be close to the chemical potential for these doped materials according to
ARPES [219]. Thus, we expect these vortices to be close to the phase transition. On the
other hand, µc ≈ 0.30 eV for a vortex perpendicular to the c-axis – such a vortex should
have end MZMs. Note that the model does not taken into account the modification of the
Bi2Se3 bands due Cu doping.

Current status of CuxBi2Te3

We note that, since the publication of this work, there have been evidence that CuxBi2Te3

has odd-parity pairing, and may be a topological superconductor [93–96, 220]. If this is
indeed the case, then the analysis above and the result of this work will not be applicable to
the material.

7.4.2 p-doped TlBiTe2, p-doped Bi2Te3 and PdxBi2Te3

The bands of TlBiTe2 and Bi2Te3 are topologically nontrivial because of a band inversion
at the Γ point [9, 57, 98–100, 102]. The topological character of Bi2Te3 is believed to
be preserved under a pressure of up to 6.3 GPa, at which it undergoes a structural phase
transition. On p-doping to a density of 6 × 1020 cm−3 (3-6 × 1018 cm−3), TlBiTe2 (Bi2Te3

under 3.1 GPa) becomes a SC below Tc = 0.14 K (∼ 3 K) [212, 221], making it a natural
system to search for the possibility of MZMs. Similarly, n-doping Bi2Te3 to a concentration
of 9×1018 cm−3 by adding Pd reportedly results in Tc = 5.5 K [125] in a small sample fraction.
The superconductivity in Bi2Te3 under pressure, and in TlBiTe2 (PdxBi2Te3) is believed to
arise from six symmetry related hole (electron) pockets around the Γ-T line. This is an even
number so vortex lines in superconducting TlBiTe2 and both p- and n-type Bi2Te3 should
have MZMs at their ends in all orientations.

7.4.3 Majorana zero modes from trivial insulators

The bulk criterion derived does not require a ‘parent’ topological band structure. As a
thought example, say we have four TRIMs with Hamiltonians like Eq. (7.3) in their vicinity.
Such band inversions at four TRIMs in a plane leads to a trivial insulator [43]. However, if
their critical chemical potentials µc differ, then it could be possible to find a range of µ where
there are an odd number of VPTs below and above µ, leading to topologically nontrivial
vortices. Interestingly PbTe and SnTe are both trivial insulators with band inversions relative
to each other at the four equivalent L points.2 They both exhibit superconductivity on doping
below Tc = 1.5 K [223] and 0.2 K [224] respectively. A combination of strain (to break the
equivalence of the four L points) and doping could potentially create the scenario described
above in one of these systems. GeTe is similar to SnTe with Tc ∼ 0.3 K [225] but undergoes

2Hsieh et al. [222] has shown that SnTe has four band inversions, while PbTe does not under normal
circumstances. However, pressure (∼ 3 GPa) may induce band inversions in PbTe.
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a spontaneous rhombohedral distortion resulting in the desired symmetry. This general idea
merits further investigation, since it could admit many more candidate materials.
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Part IV

Surface Transport
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Chapter 8

Quantum transport on the surface of
weak topological insulators

Recall, that in 3D, topological insulators are classified as either strong (STI) or weak
topological insulators (WTI). The surfaces of STIs have an odd number of 2D Dirac fermions
and have garnered much of the attention, as TRS disorder cannot localize the surface states
unless it is strong enough to move states across the bulk energy gap. In contrast, the WTIs
have an even number of Dirac fermions and are believed to be unstable to disorder [21, 25, 26].

This belief stems partially from comparisons with graphene. Superficially, WTIs and
graphene are similar in that their low energy electronic properties are described by an even
number of Dirac fermions [226, 227]. While both systems have TRS implemented by an antiu-
nitary time-reversal operator Θ, they differ fundamentally in that Θ2 = +1 for graphene from
SU(2) spin symmetry,1 while for a WTI Θ2 = −1 due to the presence of strong spin-orbit
coupling. This places graphene in the orthogonal (AI) symmetry class, while WTIs belong
to the symplectic (AII) class in the Altland-Zirnbauer classification [76]. The consequences
of the minus sign are profound. The first quantum correction to the Drude conductivity is
determined by interference of time-reversal-symmetric paths. In the orthogonal class, this
interference is constructive (weak localization) and eventually leads to localization of all sin-
gle-particle states. In contrast, in the symplectic class, the interference is destructive (weak
antilocalization) giving rise to an enhancement of the conductivity and a stable symplectic
metal phase [70, 71]. Hence, the metallic phase of graphene is unstable to disorder coupling
the Dirac fermions [228] but is stable in WTIs.

An STI is also in the symplectic class. With an odd number of Dirac fermions on its
surface, it always flows into the symplectic metal [50, 51], reflecting the presence of a
topological term in the effective field theory (nonlinear sigma model) describing diffusion [49,
229]. This topological term is absent in the same description of a WTI, suggesting that
localization should occur. In conventional semiconductors with spin-orbit coupling, this

1An unbroken SU(2) spin symmetry (e.g. in graphene) means that Θ can be taken just to be complex
conjugation, effectively treating the fermions as spinless with Θ2 = +1.
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leads to a metal-insulator transition at a critical conductivity σc ≈ 1.42 e2/h [230].
It is the purpose of this work to explore the precise conditions under which a WTI

undergoes localization. One reason that this is an interesting question is the following
argument [64]. If one considers obtaining a WTI by stacking 2D layers in the QSH phase,
a surface parallel to the stacking direction would consist of pairs of 1D counterpropagating
helical modes. The number of such modes taking part in transport can be even or odd
depending on the number of layers. However, an odd number of 1D modes in the symplectic
class necessarily leads to the presence of a perfectly transmitted mode and thus a minimum
conductance of e2/h [44, 231]. While this argument is one-dimensional in nature as the
sample thickness is constant, it suggests that a WTI can under certain conditions avoid
localization. In the extended two-dimensional surface, the meaning of this parity effect is
unclear, raising the question: What is the scaling behavior of the conductivity in disordered
WTIs?

In this chapter, we demonstrate, by numerical simulations, that the scaling flow depends
on the presence or absence of a specific TRS mass, to be defined below. In the presence of this
mass, a gap opens up in the spectrum which can lead to localization. Disorder can still drive
the system into a metallic phase, realizing a metal-insulator transition at a critical value of
conductivity consistent with what is observed in conventional semiconductors. In contrast, in
the absence of this mass the system always flows into the symplectic metal. We demonstrate
that this flow follows one-parameter scaling with a positive beta function, just as in the
case of an STI [50, 51]. The phase diagram emerging from these observations (cf. Fig. 8.1)
suggests that one-parameter scaling is not realized throughout, as one might expect from
the minimal nonlinear sigma model description. Instead, we present data supporting two-
parameter scaling, the effective field theory of which remains unknown.

8.1 Hamiltonian and disorder structure

In the following, we specialize to the case of a WTI with two Dirac cones, for which the
low energy electronic properties are described by the Hamiltonian2

H = ~vDτ 0(σxkx + σyky) + V (r) , (8.1)

where τ 0 = σ0 = 1 is the identity, τx,y,z and σx,y,z are the Pauli matrices in valley and spin
space, respectively. H is invariant under the time-reversal Θ = iσyK, where K is the complex
conjugation operator. The momentum is shifted such that the Dirac cones are centered at
k = 0, The Dirac velocity vD (taken isotropic for simplicity) and ~ are set to 1 henceforth.
Time-reversal flips the spin in each valley, and is represented by the operator Θ = −iσyK,

2We choose to work with a Hamiltonian where the two Dirac fermions have the same chirality. All
the results presented here also hold in the case when they have the opposite chirality, due to a similarity
transformation between the two cases (cf. Sec. 8.1.1).
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Disorder structure Disorder type Notation

Vx0 · τx scalar potential (2×AII)

Vyx · τ yσx gauge potential (2×AIII)

Vyy · τ yσy gauge potential (2×AIII)

Vyz · τ yσz mass (2×D) m = 〈Vyz〉
Vz0 · τ z scalar potential (2×AII)

V00 · 1 scalar potential (2×AII) µ = −〈V00〉

Table 8.1: List of TRS disorder terms on the surface of a WTI with two Dirac cones.

If only one of the disorder structures is present in the system, the type indicates the
disorder class of the system and the effect of the disorder. For example, with only
Vyz(r)τ yσz, the system breaks up into two systems, each identical to a Dirac cone with
random mass in class D. Hence, multiple disorder structures are required for the system
to be class AII.

where K is the complex conjugation operator. The disorder potential is written

V (r) =
∑
αβ

Vαβ(r) τα ⊗ σβ (8.2)

with Vαβ(r) a scalar potential and α, β ∈ {0, x, y, z}. The six terms respecting time-reversal,
listed in Tab. 8.1, are independently distributed with correlation〈

δVαβ(r) δVαβ(r′)
〉

= gαβK(r− r′) (8.3)

where
�
d2rK(r) = 1. The two-terminal conductivity σ of a system of size L is obtained

numerically by adapting the transfer matrix method of Ref. [50] to the current problem.
(The width W is taken large enough that the conductivity is independent of the ratio W/L.)
Each disorder term is Gaussian correlated with K(r) = exp(−r2/2ξ2)/(2πξ2). We also take
the averages 〈Vαβ(r)〉 = 0, except for Vyz and V00 as explained below.

It is useful to first analyze the system in the clean case, where Vαβ are constants. 〈V00〉 acts
as the chemical potential µ which shifts the energy spectrum trivially. τ yσz anticommutes
with all the other potentials (except 1) as well as the kinetic term σ ·k; the presence of this
term always gaps the system, and hence we refer to m = 〈Vyz〉 as the “mass.” The energy
spectrum of the system is given by(

E(k)− µ
)2

= k2 + V 2
x0 + V 2

yx + V 2
yy + V 2

z0

± 2
√

(V 2
x0 + V 2

z0)k2 + (Vyxkx + Vyyky)2 +m2 , (8.4)

with minima at k2 = V 2
x0 + V 2

yx + V 2
yy + V 2

z0 and kx/ky = Vyx/Vyy, in which case we have
(E − µ)2 = m2. Therefore, the energy gap is 2|m| and the system is insulating when
|m| > |µ|. The cases m > |µ| and m < −|µ| correspond to the two topological sectors
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in the 2D AII class, i.e., the trivial and QSH insulator.3 The intermediate metallic region
−|µ| < m < |µ| separates the two phases.

8.1.1 Chirality of the Dirac cones

We digress briefly in this section we show that our results are independent of the Dirac
cone chiralities. In the previous section we used a model in which the two Dirac cones have
the same chirality:

H0 = ~vD
[
σxkx + σyky

σxkx + σyky

]
. (8.5)

Here H0 refers to the kinetic portion of the Hamiltonian. As the momentum k rotates by
2π, the spin also rotates by 2π in the same direction, hence both Dirac cones have chirality
of +1.

We can apply the unitary transformation U which flips only one of the Dirac cone’s
chirality.

U =

[
1

iσx

]
=⇒ H ′0 = UH0U

† = ~vD
[
σxkx + σyky

σxkx − σyky

]
. (8.6)

It is important to note that the transformation does not alter the form of time-reversal, i.e.,
UΘU † = Θ = iσyK, and that it shuffles the disorder potentials:

(Vx0, Vyx, Vyy, Vyz, Vz0, V00) 7→ (Vyx,−Vx0,−Vyz, Vyy, Vz0, V00) . (8.7)

The mass for the new system is defined to be m = 〈Vyy〉 as τ yσy anticommutes with H ′0.
This shows that our results are independent of the chirality of the Dirac cones.

8.1.2 Constructing the mass for an arbitrary even number of Dirac
cones

For the case of two Dirac cones, we have defined the mass m = 〈Vyz〉 with the following
properties:

1. In absence of other potentials and disorder, the system gap is simply 2|m|, and

2. the limits m → ∞ and m → −∞ correspond to the system being in the trivial and
QSH insulating phases, respectively.

3We avoid stating which state ±m is the trivial insulator and which is the topological (QSH) insulator,
as this depends on the band structure away from the Dirac point. In a certain sense, we can think of them
as ± 1

2QSH insulators [232].
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Here we explicitly construct m for a system with four Dirac cones and give the procedure
for finding m in the general case.

With four Dirac cones, the Hamiltonian is

H(4) = υ0τ 0σ · k + V (r) . (8.8)

We use the Pauli matrices τx,y,z and υx,y,z acting in valley space to span all the possible
intervalley couplings. (τ 0 = υ0 = 1.) The disorder potential decomposes

V (r) =
∑
αβγ

Vαβγ(r)υατβσγ , with α, β, γ ∈ {0, x, y, z} . (8.9)

Of the twenty-eight disorder structures υατβσγ compatible with time-reversal Θ = iσyK,
only six anticommutes with the kinetic Hamiltonian σ ·k. These six are given by (α, β, γ) =
(0, y, z), (y, x, z), (y, z, z), (y, 0, z), (x, y, z), (z, y, z). The first three anticommute with each
other as do the last three, while all of the first three commute with any of the last three.
The mass is thus given by:

m(4) =

√
〈V0yz〉2 + 〈Vyxz〉2 + 〈Vyzz〉2 −

√
〈Vy0z〉2 + 〈Vxyz〉2 + 〈Vzyz〉2 . (8.10)

It can be shown that this definition satisfies both conditions 1. and 2. above.
In the general case with 2n Dirac cones, there will be n(2n−1) linear independent disorder

structures which opens a gap in the system, of the form V ⊗σz, where V is an 2n×2n matrix
acting in valley space. V must be an antisymmetric pure-imaginary matrix, i.e., an element
of the Lie algebra so(2n) (in the canonical representation). Seeing that V ⊗σz anticommutes
with σ · k, the spectrum at k = 0 is the set of eigenvalues of V . The mass is defined as
follows: |m| is the smallest non-negative eigenvalue of V while the sign of m is that of Pf(iV ).

For the remainder of the text, we’ll assume exactly two Dirac cones, although we expect
the qualitative results to be identical for any even number 2n > 0 number of Dirac cones.

8.2 Quantum spin Hall-metal-insulator transition

We return to the problem of analyzing the Hamiltonian (8.1). In the presence of disorder,
a similar description applies just as in the clean case. – by varying m, one can take the system
between the two insulating phases. As conjugation by τx flips the sign of m, a conducting
state should be realized at m = 0. Because to the stability of the symplectic metal, one
does not expect generically a direct transition between the insulating phases [233–235]. The
resulting phase diagram is shown in Fig. 8.1. At a finite chemical potential, there is a range
of mass values |m| . |µ| where the system undergoes two transitions with increasing disorder
strength (dashed line in Fig. 8.1). The phase diagram holds generally for WTI surfaces even
with more than 2 Dirac cones.

The shape of the phase diagram around the clean Dirac point g = m = µ = 0 should also
be consistent with the renormalization group flow of the coupling parameters gαβ, m, and µ
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Figure 8.1: The phase diagram of the Hamiltonian (8.1).

The axes are mass m = 〈Vyz〉 and disorder strength gαβ = g. The solid line marks the
metal-insulator transition at µ = 0, whereas the dashed line marks the transition at
finite µ. At the clean Dirac point (g = µ = 0), there is a topological phase transition
between the two types of insulators. With increasing disorder or chemical potential µ,
a metallic phase appears separating the two topological sectors.

away from that point. Disorder average, either using the replica trick or a supersymmetric
representation, gives arise to an interacting field theory with coupling constants given by the
amplitudes gαβ of the disorder correlator, as well as single-particle potentials with amplitudes
µ and m [236, 237]. The clean Dirac point gαβ = m = µ = 0 is a fixed point of this theory.
Under renormalization the coupling constants flow away from the clean Dirac point according
to the equations:

π
dg00

d lnL
= g00(g00 + gx0 + gyx + gyy + gyz + gz0) + gyz(gyx + gyy) ,

π
dgx0

d lnL
= gx0(g00 + gx0 − gyx − gyy − gyz − gz0) + gz0(gyx + gyy) ,

π
dgyx
d lnL

= gx0gz0 + gyzg00 = π
dgyy
d lnL

,

π
dgyz
d lnL

= gyz(−g00 + gx0 + gyx + gyy − gyz + gz0) + g00(gyx + gyy) ,

π
dgz0
d lnL

= gz0(g00 − gx0 − gyx − gyy − gyz + gz0) + gx0(gyx + gyy) ,

dµ

d lnL
= µ+

µ

2π
(g00 + gx0 + gyx + gyy + gyz + gz0) ,

dm

d lnL
= m+

m

2π
(−g00 + gx0 + gyx + gyy − gyz + gz0) .

(8.11)

These equations have been obtained in one loop following the standard procedure used for
Dirac fermions [238–241].

Since m initially flows away faster than the disorder couplings, this suggest the shape of
the phase diagram around the clean point is as in Fig. 8.1. Apart from that observation and
that the clean fixed point is unstable, the renormalization group equations (8.11) yield no
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Figure 8.2: Demonstration of one-parameter scaling at m = 0.

Conductivity as a function of system size for various parameters all collapsed (by shift-
ing the raw data horizontally) onto one scaling curve. At large σ, the slope dσ/d lnL
approaches 1/π (gray line) consistent with weak antilocalization. Here g00 = g for
dotted lines and g00 = 0 for dashed lines. For all other αβ, gαβ = g. (Inset) Raw data
σ vs. L/ξ.

more information on the metal-insulator transition. Therefore the numerical simulations are
crucial in order to answer such questions.

8.2.1 Numerical data

The numerical data supporting the phase diagram in Fig. 8.1 are shown in Fig. 8.2 and
Fig. 8.3. At m = 0 the conductivity always flows to the symplectic metal, regardless of the
strength of the disorder (see Fig. 8.2). By rescaling the length (L/ξ → L/ξ∗), we can collapse
all the data on a single curve demonstrating one-parameter scaling along the m = 0 line. At
large conductivity, the beta function β(σ) = d(lnσ)/d(lnL) approaches 1/πσ as predicted
for weak antilocalization [70].

By varying m, it is possible to drive the system to an insulator, as shown in Fig. 8.3a.
At small m, the system remains a symplectic metal. At some critical m, a metal-insulator
transition occurs and it ceases to conduct. For a fixed nonzero m such that the clean system is
insulating, disorder drives the system into a metallic phase at some critical disorder strength
gc that depends on m, as demonstrated in Fig. 8.3b. In both these cases, at large conductivity
the slope dσ/d lnL approaches 1/π, indicative of weak antilocalization.



Section 8.2. Quantum spin Hall-metal-insulator transition 172

(a)

 0.8

 1.2

 1.6

 2

 10  100

(b)

 0.6

 1

 1.4

 10  100

 
 
 
 
 

Figure 8.3: Metal-insulator transition as m, g are varied.

(a) Metal-insulator transition as m is varied. Conductivity is plotted vs. system size
for fixed µξ = 1 and gx0 = gyz = 2. For large m the system flows to an insulating
state, while for small m the system is conducting. Among the conducting curves, the
slope dσ/d lnL approaches 1/π at large σ. The data shown here, in addition to the
conductance distribution in Fig. 8.4, indicates an Anderson transition at ∼ 1.4 e2/h,
consistent with [230].
(b) Metal-insulator transition as disorder strength gαβ = g is varied. The plot is σ vs.
L/ξ for fixed mξ = 0.05 and µ = 0. Increasing disorder increases the conductivity,
inducing a transition from an insulating phase to a metallic one at some critical g.
The dashed line indicates a slope of 1/π. These figures are consistent with the phase
diagram in Fig. 8.1.
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(f)
histogram mξ L/ξ samples

(a) 0.65 160 3456
(b) 0.67 80 9600
(c) 0.68 160 3456
(d) 0.7 160 1920
(e) 0.72 80 9600

µξ = 1, gx0 = gyz = 2.

Figure 8.4: Conductance distribution near the Anderson transition.

(a)-(e) The conductance distribution P as a function of the conductance g for a square
geometry (W = L). The parameters used are those of Fig. 8.3a with varying m, given
in the table (f). Comparing with the critical conductance distribution in Ref. [242]
computed for network models, we see that the metal-insulator transition occurs between
(b) and (c) (0.67 < mξ < 0.68). This confirms that the 2D Anderson transition in the
symplectic class is universal among both network models and continuous models with
smooth disorder.
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8.2.2 Conditions for localization

Since a WTI is always conducting in the absence of mass, it is pertinent to discuss
under what circumstances one expects a nonzero mass. The potential Vyz(r) couples valleys
centered at different momenta and thus requires short-range scatters. Furthermore a nonzero
mass can arise only when the surface potential is commensurate with an even number of unit
cells, such as in the case of cleaving the surface at a crystal plane [64], or when the WTI
is grown on a lattice-matching substrate. As such, a nonzero mass would be marked by an
enlargement of the unit cell and would appear in a crystal diffraction experiment as a peak
of order Gν/2, where Gν is a reciprocal lattice vector characterizing the weak topological
invariants of the WTI [4]. On the other hand, a period-doubling perturbation could indicate
a valley-mixing term other than m (the other possible terms being 〈Vx0〉, 〈Vyx〉 or 〈Vyy〉). It
may also be possible to measure m via spin- and angle-resolved photoemission spectroscopy
(spin-resolved ARPES), by comparing the spin up and spin down intensities at wavevector
Gν/2. This proposal is motivated by the form of the potential τ yσz, which differentiates the
up and down spins. Localization may also occur due to lattice effects or higher order terms
in the Hamiltonian [233, 243, 244].

In the case where the WTI consists of an odd number of QSH layers, we argue that
the mass must be identically zero. Consider stacking n QSH layers, with each layer in the
a1, a2 plane, and the layers a3 offset from one another. For simplicity, we impose a periodic
boundary condition in the a3 direction. The surface spectrum of a plane parallel to a3 will
have two Dirac cones, centered on different time-reversal invariant momenta ka and kb, such
that (kb − ka) · a3 = (Gν/2) · a3 = π. The second quantized kinetic Hamiltonian will be of
the form Ψ†a(k− ka) · σΨa + Ψ†b(k− kb) · σΨb. Ψ† and Ψ are the creation and annihilation
operators satisfying the boundary condition Ψ(r + na3) = Ψ(r). To cast this into the form
of the effective Hamiltonian (8.1), we perform the gauge transformation Ψµ → Ψµe

ikµ·r for
each of the fermion species. The gauge transformation will, in general, change the boundary
condition for the operators Ψa and Ψb. Notice that exp[i(ka − kb) · (na3)] = (−1)n, and
hence for odd n the transformed operators will have differing boundary conditions: i.e., one
periodic and one antiperiodic. The mass term coupling the fermion species together in the
effective Hamiltonian must have antiperiodic boundary conditions and, hence, averages to
zero. Therefore, for an odd number of stacked QSH layers, m is zero and the surface (parallel
to the stacking direction) always flows to a metallic phase. These results settle the question
of which of the two possible flow diagrams consistent with the quasi-1D numerics in Ref. [64]
is actually realized.

8.3 Two-parameter scaling

The existence of one-parameter scaling along the line m = 0 suggests that there might
be a two-parameter scaling collapse for the entire range of parameters when the mass is
nonzero, analogous to the quantum Hall transition (in the A class) [245–247]. Figure 8.5
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Figure 8.5: Two-parameter flow diagram in the symplectic class.

Two-parameter flow which captures the QSH-metal-insulator transition in the AII class.
The scaling variables are σ and j, the latter of which separates the normal or QSH
insulator phases.

shows a possible flow for conductivity σ and the (unknown) second scaling parameter j. The
horizontal scale j distinguishes between the two topological phases, much in the same way
as the Hall conductivity in the quantum Hall case.

Even without a precise definition of j as an experimental quantity, we may still infer a
number of properties of the flow diagram.

1. For large conductivity σ, β(σ) is positive and σ flows upward towards infinity.

2. There are two insulating stable fixed points (crosses) at (σ, j) = (0,±∞) and regions
which flows toward them (shaded regions).

3. Consequently, there must be unstable fixed points (dots) at j = ±∞ which mark a
metal-insulator transition.

4. Near j = 0, the system must flow to a metallic phase, as there should not be a direct
phase transition between the two insulating phases.

Figure 8.5 gives the simplest flow diagram consistent with these requirements.
The two-parameter scaling of (σ, j) implies that σ(L/ξ) cannot be collapsed onto a single

scaling curve (as in Fig. 8.2), but onto a family of curves parametrized by a single variable
x. The scaling form is

σ = f(L/ξ∗;x) , (8.12)

where all the microscopic parameters m, µ, gαβ, ξ, etc., determine the conductivity only via
the two functions x and ξ∗.
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Figure 8.6: Two-parameter scaling data.

(Left) Numerical data σ(L/ξ∗), demonstrating that the conductivity curves may be
collapsed on to each other. The gray line is the data at m = 0 from Fig. 8.2 of the main
text. (Right) Raw data σ(L/ξ). For each data set (denoted by color), the parameters
ξ, µ, gαβ are fixed. The black data set has gx0 = gyz = g, while for other colors,
gαβ = g for all αβ. Within each data set, m is varied until σ(L/ξ∗) fit on top of one
another. The numerical values are given as m1, m2, m3. (Increasing m decreases the
conductivity, hence the top curve of a data set has the smallest m.)

In Fig. 8.6, we present the accompanied data for our two-parameter scaling hypothesis,
by collapsing σ vs. L/ξ∗ onto a family of curves. For each curve, the parameters µ and gαβ
were fixed while m is varied until σ(L) overlaps with the existing set of curves. The data
show reasonable agreement with the scaling form (8.12).

8.3.1 Possible realizations

Quantum transport at the surface of a weak topological insulator thus shows a scaling
structure similar to that of the quantum Hall plateau transitions. It should be possible to
interpret experiments on weak topological insulators in terms of the above Dirac model and
possibly to control the parameter m by choosing a substrate whose lattice potential generates
the massive perturbation.

In addition, the electronic structure of thin films of STIs can be mapped to the two Dirac
cone system studied here, with the tunneling between the surfaces taking the role of the
mass. The low-energy Hamiltonian for the thin film (with inversion symmetry) [137, 139] is

HSTI =

[
~vDσ × k ∆

∆ −~vDσ × k

]
+ V (r) , (8.13)

where σ×k = σxpy−σypx, and ∆ is the tunneling amplitude between the two surfaces. The
Hamiltonian is written in the basis (t↑, t↓, b↑, b↓), where t and b represents the excitations
for the top and bottom surfaces respectively.
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The model for WTI may be mapped to HSTI via the transformation

HSTI = UHU † , where U = exp
[
iπ

4
τ zσz

]
. (8.14)

(Again note that UΘU † = Θ = iσyK.) The mass corresponding to this system ism = 〈Vx0〉 =
∆/~vD, which is a measure of the tunneling amplitude between the surfaces. Consequently,
the physics described in the main text may also be realized experimentally by a thin film of
strong topological insulator, where the film’s thickness can be used to tune m. (The mass
m may oscillate between being positive and negative as the thickness is varied, as shown in
Refs. [136, 137].)

The results here should motivate the search for WTI candidate materials, of which there
are few, as well as further transport experiments in STI thin films. Finally, it remains to
be seen if the two-parameter flow is generic to all non-interacting disordered systems in the
symplectic class.
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