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ABSTRACT: The phenomenon of granular magnetoresist-
ance offers the promise of rapid functional materials discovery
and high-sensitivity, low-cost sensing technology. Since its
discovery over 25 years ago, a major challenge has been the
preparation of solids composed of well-characterized, uniform,
nanoscale magnetic domains. Rapid advances in colloidal
nanochemistry now facilitate the study of more complex and
finely controlled materials, enabling the rigorous exploration
of the fundamental nature and maximal capabilities of this
intriguing class of spintronic materials. We present the first
study of size-dependence in granular magnetoresistance using colloidal nanoparticles. These data demonstrate a strongly
nonlinear size-dependent magnetoresistance with smaller particles having strong ΔR/R ∼ 18% at 300 K and larger particles
showing a 3-fold decline. Importantly, this indicates that CoFe2O4 can act as an effective room temperature granular
magnetoresistor and that neither a high superparamagnetic blocking temperature nor a low overall resistance are determining
factors in viable magnetoresistance values for sensing applications. These results demonstrate the promise of wider exploration
of nontraditional granular structures composed of nanomaterials, molecule-based magnets, and metal-organic frameworks.

Controlling the flow of electrons by switching magnet-
ization was one of the most impactful advancements of

the digital revolution. In particular, the discovery of giant
magnetoresistance (GMR) led to the first commercial
applications of spintronic technology nearly 40 years ago.1,2

From its initial use in hard drive read-heads, a continuous
stream of advances in giant (GMR), tunnelling (TMR),
anisotropic (AMR), and other forms of MR have led to
smaller, faster, and more sensitive electrical detection.
Although reading and writing digital data remains a main
driver of MR research, other detection platforms where speed
and sensitivity are important have also become prominent.
These technologies include navigation,3−5 biochemical and
chemical detection,6−8 magnetic relaxometry,9,10 and non-
destructive materials testing.11−13

One method to improve the sensitivity of an MR-based
sensor is to increase the number of magnetic layers traversed
by an electron moving through the device. The magnetization
of these layers can be either maximally aligned to enhance the
current or antialigned to impede it. In commercial devices, this
can be done by deposition of multilayer thin-film devices of
increasingly complex architecture. Very early on in the
development of MR devices, an alternative geometry was
proposed wherein small-grain bulk materials would be pressed
together, or bulk mixtures would be phase-separated into small
magnetic domains surrounded by conducting or insulating
material.14,15 Ideally in this geometry, each magnetic grain
boundary can be a spin-selecting junction, and the total
number of junctions is increased by many orders of magnitude.

With simple device preparation, minimal materials cost, and
low equipment investment, such an architecture could rapidly
expand the scope and viability of MR sensing devices.
Although early formulations suffered from poor grain
boundaries and size distributions, advances in colloidal
nanoparticle synthesis over the past few decades now allow
many types of nanoparticles to be chemically synthesized as
free-standing particles with tight control over size, morphology,
and surface chemistry. This developing synthetic control has
led to a re-examining of the viability of granular magneto-
resistance via a bottom-up nanochemistry approach.
Overwhelmingly, the most studied material to date is the

ferrimagnetic inverse spinel Fe3O4 (magnetite). Ease of
synthesis, stability, strong magnetization, and predicted half-
metallicity with full spin polarization have all contributed to
the prevalence of Fe3O4 nanoparticle composites as research
MR materials. Recent work on granular MR in Fe3O4 has
demonstrated its promise by increasing differential magneto-
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from 1.2% (ΔH = 450 mT)17 to values exceeding 20% at
equivalent ΔH.18 It should be noted that by this definition a
perfect magnetoresistor will have ΔR/R = 100% instead of
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approaching infinity, as in definitions that divide by the lower
value of the resistance (Figure S1). This empirical evidence
suggests that nanostructuring is capable of transforming
granular MR from a curiosity into a viable technology;
however, from a synthetic chemistry perspective, only the
barest surface of the materials parameter space has been
explored.17−28

Magnetic properties such as coercivity, saturation magnet-
ization, and remanent magnetization are strongly size-depend-
ent in nanomaterials of d = 1−20 nm, yet a study on the MR of
well-defined, colloidally prepared materials is lacking from the
literature. In this work we perform the first such study using
nanoparticles of CoFe2O4. The greater anisotropy of CoFe2O4
compared to Fe3O4 has been used to enhance the MR
properties of Fe3O4 through doping29 and exchange
coupling,30,31 but the MR of stoichiometric CoFe2O4 alone
has not been studied. Intriguingly, we find that single-domain
ferrimagnetism or even blocked superparamagnetism is
unnecessary to observe viable MR at 300 K; the most
important factor is nanoparticle size.
Nanoparticles in this work were synthesized according to

literature heat-up processes involving the thermal decom-

position of Fe(III) and Co(II) acetylacetonate salts in the
presence of oleic acid and oleylamine in high-boiling-point
solvents.32,33 Transmission electron microscopy (TEM)
statistics were used to verify consistent size and shape for
five separate synthetic preparations of CoFe2O4 (d = 5.3, 8.4,
12.7, 12.9, 20.7 nm) (Figure 1b−f) as well as an Fe3O4 sample
(d = 8.7 nm) for comparison. Smaller nanoparticles (d = 5−9
nm) were roughly spherical in shape, and larger nanoparticles
exhibited some faceting due to growth along preferential
crystalline faces. The d = 12.7 nm and d = 12.9 nm samples
showed polyhedral shapes, while convex cubes are observed for
the d = 20.7 nm sample. Of particular note are d = 12.9 nm
CoFe2O4 nanoparticles (Figure 1e), which took truncated
octahedral forms allowing them to self-assemble into semi-
regular lattices. Powder-averaged X-ray diffraction (pXRD)
confirmed the inverse spinel crystal structure of AB2O4 ferrites
for all samples (Figure S2).
As-synthesized nanoparticles form stable colloidal suspen-

sions in nonpolar solvents due to the presence of long-chain
ligands such as oleic acid and oleylamine. Ligand exchange of
the native long-chain ligands to the small inorganic BF4

− ion
was performed according to a literature procedure34 in order to

Figure 1. (a) Scheme of the evolution of MR from single-junction thin-film devices to multijunction granular materials to multijunction
nanoparticulate materials with exquisite control over grain properties. Transmission electron micrographs and size distribution histograms of (b)
Fe3O4 and (c−g) CoFe2O4 nanoparticles used in this study. The diameter d in parts b−f was calculated from the projected area A ( π=d A4 / )
while the side length a in part g was calculated as =a A .16
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improve the conductivity of the final nanoparticle pellets.
Although significant work has been done to improve
conductivity and even control spin-transport through ligand
design,19,20,28 in this work we focus on high-temperature
properties, and simply decreasing interparticle distance was
sufficient to achieve viable conductivity. The removal of the
hydrophobic ligands was evident from the ability to disperse
ligand-exchanged nanoparticles in polar solvents such as
dimethylformamide. TEM also demonstrates a reduced
interparticle spacing in self-assembled layers cast from the
BF4

−-exchanged nanoparticles, compared to the TEM of the
nanoparticles with their original ligands (Figure S3).
In the nanoregime, magnetic properties become strongly

size-dependent as the particle transitions from multidomain to
single-domain to superparamagnetic behavior. To characterize
the properties of each particle sample, the temperature-
dependence of the magnetic moment was examined. Initially,
samples were cooled to T = 5 K in the absence of a magnetic
field and subsequently subjected to a small field of H = 100 Oe.
For samples of all particle diameters, these zero-field-cooled
(ZFC) samples are unable to magnetize due to the large
thermal barrier to reorienting their magnetic moments. As
temperature is raised, the magnetic moment becomes able to
freely respond to the external field at its blocking temperature
(TB), reaching a magnetic moment equivalent to that of a
sample that was cooled under field-cooled (FC) conditions. As
expected, TB is a function of d, with only CoFe2O4 (d = 5.3
nm) and Fe3O4 (d = 8.7 nm) becoming unblocked below T =
300 K (Figure 2, Figure S3). To determine the saturation

magnetization (Ms) and coercive field (Hc) of each sample,
moment vs field scans were collected from −7 to 7 T at 300 K.
Again, the expected size-dependence is observed, with larger
particles displaying stronger Hc and higher Ms. These results
confirm that all samples are within the superparamagnetic
regime (Table S1).
With a structurally and magnetically characterized array of

particle sizes, each material was then tested for magneto-
resistive properties. For these measurements, pressed pellets of
each sample were electrically contacted and subjected to a
variable magnetic field (Figure 3a). At 300 K, CoFe2O4 (d =

5.3 nm) was biased under H = −7 T, and its resistance (R) was
monitored as a function of increasing magnetic field. At large
negative fields, the resistance is only weakly dependent on
field, yet as H approaches 0 T, the resistance rapidly increases,
reaching a maximum value only after reaching Hc. Since
CoFe2O4 is an unblocked superparamagnet at 300 K, Hc = 0 T.
This behavior is consistent with minimal resistance at
maximum spin alignment (M = Ms) and maximum resistance
at minimal spin alignment (M = 0; H = Hc, Figure S4). When
field is scanned in the reverse direction (7 to −7 T), the
resistance values are mirrored across the y-axis. When
subjected to the maximum magnetic field, CoFe2O4 (d = 5.3
nm) exhibits ΔR/R = 19.2%. These results indicate that the
MR mechanism at work here does not necessitate ordered
magnetism. In fact, since TB = 175 K for these particles, MR
does not even require blocked superparamagnetism. By
comparison, Fe3O4 (d = 8.7 nm) in an equivalent sample
and electrode configuration results in ΔR/R = 10%, despite
significantly higher magnetization values (Figure S5).

Figure 2. (a) Plots of magnetic moment vs temperature under zero-
field-cooled (ZFC, solid lines) and field-cooled (FC, dashed lines)
conditions with an applied field of 100 Oe. (b) Field-dependence of
the magnetic moment of CoFe2O4 nanoparticles measured at 300 K.

Figure 3. (a) CoFe2O4 magnetoresistance at 300 K as a function of
magnetic field, H, and particle diameter, d. The split peaks observed
for d = 20.7 nm are a result of magnetic hysteresis (Figure S4). (b)
Temperature-dependent resistance of CoFe2O4 nanoparticle pellets
without an applied magnetic field. Symbols represent measured data
points while colored lines are fits based on eq 2.
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To study the effect of increasing particle size on the MR,
CoFe2O4 (d = 8.4, 12.7, 20.7 nm) was tested as well. Each
sample displays progressively higher Ms, Hc, and TB values as
expected for superparamagnets with more spin centers, yet a
contrasting trend was observed in their MR. CoFe2O4 (d = 8.4
nm) possesses similar MR (ΔR/R = 18.4%) to CoFe2O4 (d =
5.3 nm) despite an enhancement in Ms of over 25%.
Surprisingly, this seems to indicate an inherent granular MR
value that is inert to size-based effects. When size is further
increased, however, a precipitous drop in MR is observed with
ΔR/R = 6.6% and 6.1% for CoFe2O4 (d = 12.7 nm) and
CoFe2O4 (d = 20.7 nm), respectively. One possible
explanation for this behavior is that the 5.3 and 8.4 nm
nanoparticles have significantly lower Hc than the 12.7 and
20.7 nm nanoparticles. Coercive granular samples have been
predicted to show a decreased magnetoresistance due to
decreased ability to break alignment with the anisotropy axis
and align with the magnetic field.35 However, magneto-
resistance curves taken at 175 K, where all four nanoparticle
samples are blocked, show the same trend in ΔR/R (Figure
S6), and it is clear from the M vs H data that the external field
is able to magnetize the sample in all cases. Another possibility
is that spin polarization increases as the nanoparticle size
decreases. This is consistent with a smaller carrier concen-
tration and shorter distances for electrons to travel between
grain interfaces.
Further insight into the charge transport mechanism in these

samples can be gleaned from the temperature-dependence of
the resistance (Figure 3b). The zero-field resistance of each
CoFe2O4 sample was measured between 300 K and a lower
bound dictated by the instrumentation and sample quality.
Within the measured regime, all CoFe2O4 samples displayed a
linear relationship between ln R and T−0.5, where R and T are
resistance and temperature, respectively. This linear relation-
ship indicates that electrical conductivity occurs via tunnelling
of charge carriers between nanoparticles.35,36 Although exact
resistivity values were only obtained for two samples due to
sample fragility, the measured resistance values scale similarly
due to roughly similar sample geometry. These values follow
the trend of larger particles leading to larger resistance per unit
length. Resistivity from intergranular tunnelling can be
generally described as

ρ κ∝ + − i
k
jjjj

y
{
zzzzP m

C
kT

(1 ) exp
22 2 1
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where P is the spin polarization, m is the reduced magnet-
ization, κ is a tunnelling constant, C is a charging energy, and k
is the Boltzmann constant.35 The (1 + P2m2)−1 factor
determines the magnetoresistance, while the κC kTexp( 2 / )
factor determines the overall tunnelling rate. In our samples,
the tunnelling rate should be determined primarily by the
charging energy. The tunnelling constant κ depends on barrier
height and width, as well as intrinsic material properties, which
are invariant across the four CoFe2O4 samples. However, the
charging energy should decrease significantly as the size of the
nanoparticles increases, explaining the decreasing resistivity
with nanoparticle size observed.
In the course of our study, one sample of CoFe2O4 (d = 12.9

nm) was discovered to display wholly anomalous MR behavior.
Despite size, compositional, and magnetic similarity (Figure
S7), these particles were synthesized to have an octahedral
habit. Temperature-dependence of their resistance lacks the

characteristic ln R ∝ T−0.5 relationship, and the magnitude of
the resistance is orders of magnitude lower than that of our
other CoFe2O4 and Fe3O4 samples. In fact, the temperature-
dependence shown in Figure 4 looks like that of a bulk

semiconductor, with an intrinsic region from about 100 to 300
K and an extrinsic region below 100 K. The greatly decreased
resistance of the sample supports the idea that it is behaving as
a bulk semiconductor. The truncated octahedral form, lack of
bulky ligands, and pressure applied during pellet formation
could promote enhanced contact between nanoparticles along
matching crystal facets. Fusing of faceted nanoparticles upon
ligand removal has been observed in the literature.37,38

Although discrete particles are still distinguishable by scanning
electron microscopy (Figure S8), the interfacing of some
crystal planes between nanoparticles could provide increased
wave function overlap between particles, forming a conductive
pathway and eliminating the TMR effect. Charge carriers are
able to conduct through this sample similarly to bulk material,
rather than by tunnelling between individual nanoparticles. In
other applications requiring high conductivity in nanoparticle
solids, this mechanism could provide a new materials
processing strategy. The decreased ΔR/R of the 12.9 nm
pellet (maximum ΔR/R = 2.2%) compared to the other
CoFe2O4 samples demonstrates the importance of tunnelling
barriers and TMR to strong granular MR.
In this work we have performed the first analysis of the

importance of size on the strength of nanoparticle granular
MR. Our results demonstrate that the size regime of the
particle, more than any specific magnetic parameter,
determines the strength of the MR effect. In fact, magnetic
ordering or superparamagnetic blocking are not required
thus opening the door to a much wider range of potential MR
materials that have remained unexplored. Additionally, it was
determined that CoFe2O4 nanoparticles have comparable or
favorable MR values when compared to Fe3O4. Despite the
status of Fe3O4 as the material of choice in the field, owing to
its high predicted spin polarization, the (d = 8.4 nm) CoFe2O4
nanoparticles showed a higher room temperature maximum
ΔR/R of 18.4%, compared to 10.8% for similarly sized Fe3O4.
These data help demonstrate the value of colloidal synthesis to
this field, allowing for wide-ranging and inexpensive explora-
tion of materials with well-defined composition and size in a
way that is not possible by traditional top-down methods.
Although the methods employed here lack the atomic
precision of traditional multilayer thin films, the sheer number
of junctions drastically enhances the chances of an observable
effect. This both allows for simple screening conditions and

Figure 4. Temperature-dependence of the resistance of octahedrally
faceted d = 12.9 nm CoFe2O4 nanoparticles. Inset: room temperature
magnetoresistance behavior of the same nanoparticles.
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suggests that optimization of promising materials could result
in drastic improvements.
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