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ABSTRACT While Vibrio splendidus is best known as an opportunistic pathogen in oys-
ters, Vibrio splendidus strain 1A01 was first identified as an early colonizer of synthetic chi-
tin particles incubated in seawater. To gain a better understanding of its metabolism, a
genome-scale metabolic model (GSMM) of V. splendidus 1A01 was reconstructed. GSMMs
enable us to simulate all metabolic reactions in a bacterial cell using flux balance analysis.
A draft model was built using an automated pipeline from BioCyc. Manual curation was
then performed based on experimental data, in part by gap-filling metabolic pathways
and tailoring the model’s biomass reaction to V. splendidus 1A01. The challenges of build-
ing a metabolic model for a marine microorganism like V. splendidus 1A01 are described.

IMPORTANCE A genome-scale metabolic model of V. splendidus 1A01 was reconstructed
in this work. We offer solutions to the technical problems associated with model recon-
struction for a marine bacterial strain like V. splendidus 1A01, which arise largely from the
high salt concentration found in both seawater and culture media that simulate seawater.

KEYWORDS metabolic modeling

The heterotrophic, Gram-negative species Vibrio splendidus is found ubiquitously in
the ocean, both in close association with marine animals (like bivalves [1–3]) and as

an “environmental” microorganism in marine microbial communities (4, 5). When asso-
ciated with marine animals, V. splendidus, as a pathogen, induces vibriosis (6) and is of
relevance to the aquaculture industry, causing outbreaks in hatcheries around the
world, at great economic cost (2). But it is as an environmental microorganism, with an
ecological role to play in establishing microbial communities on ocean particles, that
the V. splendidus 1A01 strain was first isolated (5). V. splendidus 1A01 was identified as
an early colonizer of synthetic chitin particles incubated in seawater samples, secreting
enzymes that break down chitin, thereby laying the groundwork for microbial commu-
nity assembly (5).

Genome-scale metabolic models (GSMMs) have proven to be powerful tools in sys-
tems biology for simulating the metabolism of bacteria such as Escherichia coli (7–9).
Mathematically, a GSMM is comprised of a stoichiometric matrix encoding all of the
reactions in a cell, in addition to exchange fluxes with the environment (7, 10). The
model also includes a biomass reaction that converts, in experimentally measured pro-
portions, the building blocks of a cell (e.g., nucleic acids, amino acids, vitamins, and
cofactors) into biomass (7, 10). Finally, upper and lower bounds are imposed on the
permissible flux through every reaction (7, 10). Thus, the model captures the metabolic
capabilities of a microorganism for growth conditions where measurements are avail-
able or can be extrapolated.
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Constraint-based computational methods like flux balance analysis (FBA) can be used
to simulate the distribution of fluxes through a whole-cell metabolic network, when sup-
plied with an objective function and constraints (7, 10). Often, the objective function being
optimized under steady-state exponential growth is biomass production (7, 10), while a
constraint can be the measured carbon uptake rate (7, 10). If so, FBA will calculate the opti-
mal flux through the biomass reaction of a cell given this constraint. By virtue of its imple-
mentation through linear programming, FBA is computationally inexpensive (10). Beyond
calculating optimal growth rates, FBA has been successfully applied in the context of meta-
bolic engineering (11–13), identifying drug targets (14–16), studying the properties of met-
abolic networks (17), simulating bacterial growth in three dimensions (18), and predicting
cross-feeding interactions within microbial communities (19–21). Finally, metabolic models
can be integrated with a variety of omics data, including metabolomics (22–24), transcrip-
tomics (25–27), and proteomics (26, 28).

To facilitate the study of V. splendidus 1A01, a GSMM was reconstructed, which is the first
one for a Vibrio splendidus strain (Fig. 1). Reconstruction began by feeding the annotated ge-
nome of V. splendidus 1A01 into an automated pipeline from BioCyc (a database of meta-
bolic reactions [29]) to obtain a draft metabolic model. Limited by the well-known incom-
pleteness of genomic annotation (recent estimates of the average annotation completeness
for bacterial genomes range from 52% to 79%, depending on the annotation method [30]),
the draft metabolic model had to undergo extensive manual curation. First, based on the
growth of V. splendidus 1A01 on a wide variety of carbon sources, metabolic pathways were
gap-filled (31). Second, the proportions in which cellular building blocks are converted into
V. splendidus 1A01 biomass were experimentally measured to curate the biomass reaction
of the model. Third, the growth-associated maintenance (GAM) (32) and non-growth-associ-
ated maintenance (NGAM) (32) of V. splendidus 1A01 were also measured. The curated
model was then quantitatively validated, using still more experimental data. Along the way,
building a model for a marine microbe like V. splendidus 1A01 presented a number of tech-
nical challenges, which are addressed in the Discussion.

RESULTS

Due to scientific knowledge gaps with regard to protein function and gene-to-protein
mapping, genome annotations are, in general, incomplete (33). Since draft models are
automatically reconstructed from genome annotations (32), the shortcomings of genome
annotations propagate directly to draft models, which display missing reactions in many
metabolic pathways (31). The process of restoring these missing reactions, and obtaining a
functional metabolic model, is called gap-filling (31), and it demands phenotypic data (34).
In order to test its metabolic capabilities, V. splendidus 1A01 was first cultured on 78 carbon
sources for 10 days to obtain a coarse growth phenotype (see Fig. S4 in the supplemental
material). Out of these 78 sources, V. splendidus 1A01 grew successfully on 35 carbon sour-
ces (Table 1). After gap-filling the relevant metabolic pathways (see Materials and

FIG 1 Computational pipeline for building the metabolic model of V. splendidus 1A01.

A Genome-Scale Metabolic Model of V. splendidus 1A01 mSystems

March/April 2023 Volume 8 Issue 2 10.1128/msystems.00377-22 2

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00377-22


TABLE 1 Experimental phenotyping

Substrate
Enabled growth in vivo and in silicoa

Acetic acid
Aspartic acid
Citrate
D-Alanine
D-Cellobiose
D-Fructose
D-Galactose
D-Glucosamine
D-Glucose
D-Glucuronic acid
D-Mannose
D-Melibiose
Fumaric acid
GlcNAc
Gluconate
Glutamic acid
Glycerol
Glycine
Histidine
L-Arginine
L-Asparagine
L-Glutamine
L-Lactic acid
L-Proline
L-Serine
L-Threonine
Lactose
Malic acid
Maltose
Mannitol
Oxaloacetic acid
Propionic acid
Pyruvic acid
Succinic acid
Taurine

Enabled growth neither in vivo nor in silicob

Arabinose
Beta-alanine
Butyrate
Cystine
D-Galactosamine
Dulcitol
GalNAc
Glycolate
Isoleucine
L-Cysteine
L-Fucose
L-Lysine
L-Lyxose
L-Rhamnose
L-Sorbose
Lactulose
Leucine
m-Inositol
Maleic acid
Maltitol
Methionine
PABA
PHBA
Propanol

(Continued on next page)
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Methods), the model yielded growth on all 35 carbon sources (Table 1). Out of the 43 car-
bon sources V. splendidus 1A01 failed to grow on, 10 of them enabled growth according to
the model (Table 1), provided that, in the model, they freely diffused through the inner
membrane of the cell (i.e., they did not require designated transporters to enter the cyto-
plasm). If, on the contrary, they were barred from freely diffusing through the cell’s inner
membrane (i.e., if they required designated transporters to enter the cytoplasm), then only
4 substrates out of 43 enabled growth in the model (Table 1). The discrepancy may be due
to the lack of expression of these transporters under the conditions studied.

Following gap-filling, the model contained 1,867 reactions and 1,565 metabolites
(Table 2). To further characterize the model, every reaction was assigned, if possible, to
a metabolic pathway in BioCyc and every metabolic pathway to a broad functional cat-
egory. Figure S5 in the supplemental material shows the relative distribution of these
broad functional categories across all assigned reactions.

While enzyme-catalyzed reactions make up the bulk of a metabolic model, it also con-
tains a biomass reaction that converts cellular building blocks (such as amino acids and nu-
cleotides) into biomass, in experimentally measured proportions (32). Quantifying these
proportions is a vital part of model curation. Instead of measuring the exact concentration
of every chemical compound to be found in biomass, it is both sufficient (for modeling

TABLE 1 (Continued)

Substrate
Raffinose
Sarcosine
Sucrose
Urea
Valeric acid
Valine
Xylitol
Xylose

Enabled growth in silico but not in vivoc

Acetaldehyde
Adenine
Ethanol
Ethylene glycol
Formate*
Glyoxylic acid
Methanol
Norvaline
Phenylalanine*
Sorbitol*
Tyrosine*

aThe 35 carbon sources V. splendidus 1A01 can grow on, both in vivo and in silico.
bThe 43 carbon sources V. splendidus 1A01 failed to grow on, both in vivo and in silico.
cThe 10 carbon sources V. splendidus 1A01 grew on in silico but failed to grow on in vivo. The 4 carbon sources
that enabled growth in silico when diffusing freely into the periplasm but not into the cytoplasm are indicated
by asterisks. Of these 4 carbon sources, sorbitol is the only one that did not yield growth when diffusing directly
into the cytoplasm (without active transport) because its metabolism requires a phosphorylation reaction
catalyzed by a transporter.

TABLE 2 Overview of the V. splendidus 1A01 model

Parameter n
Total reactions 1,867
Internal reactions 1,392
Transport reactions 409
Exchange reactions 66

Total metabolites 1,565
Intracellular metabolites 1,287
Periplasmic metabolites 210
Extracellular metabolites 68
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purposes) and convenient (experiment-wise) to measure the overall macromolecular com-
position and to fill the leftover knowledge gaps with data from the better-studied E. coli,
which, like V. splendidus 1A01, is a Gram-negative gammaproteobacterium (35). With
regard to the biomass coefficients supplied by E. coli, a sensitivity analysis (described in
Materials and Methods) was carried out and showed the performance of the model to be
robust against slight deviations from the exact values in E. coli (see Fig. S3 in the supple-
mental material).

Protein, RNA, and osmolytes were expected to dominate the macromolecular composi-
tion of V. splendidus 1A01 and were quantified accordingly. Since they are known to be
generically growth-rate dependent (36), we measured the content of RNA and proteins in
a culture volume of V. splendidus 1A01 grown on a variety of carbon sources, covering a
spectrum of growth rates (representative growth curves are shown in Fig. 2a). The results
were obtained per optical density at 600 nm (OD600)*mL of culture volume, shown in or-
ange (RNA) and red (protein) in Fig. 2b. To make them biologically meaningful, we addi-
tionally measured the cell dry weight (CDW) per OD600*mL of culture volume for each
growth medium. This process required the development of a new protocol as described in
the Materials and Methods, and the results are displayed in black in Fig. 2b. Our data show
that the RNA, protein, and CDW composition of an exponentially growing culture of V.
splendidus 1A01 all vary linearly as a function of growth rate, as indicated by the best-fit
lines in Fig. 2b. These linear growth rate dependencies are used in our growth-rate de-
pendent formulation of FBA (see Materials and Methods). Additionally, we found very high
glutamate pools in V. splendidus 1A01, amounting to 5 to 6% of CDW (blue symbols in
Fig. 2b). (In comparison, the pool of glutamine, which is closely related to glutamate meta-
bolically, was found to be over 10� lower, as shown in Table S2 online at http://github
.com/ArionIfflandStettner/1A01). Such large amounts of glutamate suggest it is the major
osmolyte of V. splendidus 1A01 (see Discussion). As the data do not indicate a clear
growth-rate dependence for glutamate content, in the biomass reaction of the model, we
used the average glutamate content on glucose (5%), which is very close to the average
glutamate content measured across all media tested (5.3%). Together, the trends in Fig. 2b

FIG 2 Determination of macromolecular composition during exponential growth. V. splendidus 1A01 was grown in marine broth (l) and in minimal
medium on glucose (h), GlcN (�), glycerol (l), and galactose (1), following the protocol described in the Materials and Methods to ensure that each
culture was in exponential growth. (a) OD600 was recorded during exponential growth, and linear regression was used on these data to determine growth
rates. Three replicates (indicated by different colors) are shown for each growth medium. The growth rates obtained were 1.38 6 0.05 h21 (marine broth),
0.79 6 0.01 h21 (glucose), 0.40 6 0.01 h21 (glycerol), and 0.28 6 0.01 h21 (galactose), with standard deviations computed based on the replicates. The
average growth rate for each medium is indicated by a line. (b) For each replicate during exponential growth, the total content of RNA (orange), protein
(red), and glutamate (blue) was determined per OD600*mL of culture and plotted against growth rate. For four of the growth media, CDW (black) of the
culture was also obtained, as described in the Materials and Methods. The lines are the best linear fits to the respective data sets (with y = 0.05x 1 0.05
for the total RNA content, y = 20.09x 1 0.38 for the total protein content, and y = 20.13x 1 0.64 for CDW) with the exception of the glutamate pool,
where no clear growth-rate dependence can be seen from the data and the blue line indicates the average value measured for growth on glucose (5.0%),
which is similar to the average measured for the four used growth media (5.3%).
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define the major components of the GR-dependent biomass composition of V. splendidus
1A01, as determined by our experiments.

The biomass composition of V. splendidus 1A01 growing on glucose (at a growth rate
of 0.79 h21) is shown in Fig. 3a. (In Fig. S6 in the supplemental material is shown the bio-
mass composition of E. coli, which is qualitatively similar.) For comparison, Fig. 3b shows
the biomass composition of V. splendidus 1A01 growing on galactose, at the lower growth
rate of 0.29 h21. As expected from Fig. 2b, due to the higher growth rate associated with
glucose compared with that associated with galactose, RNA accounts for a visibly greater
percentage of CDW in Fig. 3a than that in Fig. 3b. We selected the biomass composition of
V. splendidus 1A01 growing on glucose to build the biomass reaction of the model (which
can be found in Table S3 at http://github.com/ArionIfflandStettner/1A01).

The third and final step of model curation is to estimate the NGAM, which corresponds
to the amount of energy the cell consumes just to survive (32) (by, for example, maintaining
the integrity of its membrane), and the GAM, which corresponds to the amount of energy
the cell consumes to produce biomass (32) (by, for example, polymerizing amino acids into
protein). To estimate these values, V. splendidus 1A01 was grown in batch culture on glucose
and on galactose as the sole carbon substrate. The optical density, concentration of the car-
bon substrate, and concentration of the excreted acetate were measured at various time
intervals throughout exponential batch-culture growth. From the temporal dependence of
the optical density measurements, growth rates were deduced (0.79 h21 for glucose and
0.29 h21 for galactose). Plotting the concentration of the carbon substrate or the excreted
acetate against optical densities, we obtained the consumption yields of growth on glucose
and on galactose, together with the excretion yield of acetate, as the slopes of the respec-
tive plots (Fig. 4a and b). The difference of the consumption and excretion yields (in units of
carbon monomer per OD600) was then multiplied by the growth rate to obtain the carbon
utilization rate (i.e., the rate at which carbon monomers are either incorporated into biomass
or used for energy biogenesis) in each growth medium. The resulting carbon utilization
rates were plotted in Fig. 4c against the corresponding growth rates. The y-intercept of this
plot, 4.22 mM-C/OD600/h, represents the rate of carbon utilization by V. splendidus 1A01 at
zero growth rate, when carbon is utilized, not to produce biomass, but strictly to generate
energy for cell “maintenance.” Using FBA, we found the maximal rate of ATP production
given this carbon utilization rate and zero flux through the biomass reaction. The NGAM cor-
responds to this maximal rate of ATP production in the absence of growth and shows up in
the model as the minimum allowable flux (12.8 mmol/gCDW/h) through an ATP hydrolysis
reaction, which must be satisfied under all conditions (32). However, the GAM (measured at

FIG 3 Macromolecular biomass composition of V. splendidus 1A01 growing on glucose (a) and galactose (b). Bold text shows the three components of
biomass (protein, RNA, and osmolytes) for which experimental data were collected (together with percentage values of total CDW 6 one standard
deviation). Combined, they make up 83% of the CDW of V. splendidus 1A01 (on glucose). The remaining 17% of its biomass (DNA, LPS, lipids, murein,
inorganic ions, and soluble pools) reflect the E. coli model iAF1260 (37).
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15.8 mmol/gCDW) features in the biomass reaction of the model (32) and reflects the slope
of the line in Fig. 4c (23.3 mM-C/OD600). For comparison, the E. coli model iAF1260 (37) has
an NGAM of 8.39 mmol/gCDW/h (versus 12.8 mmol/gCDW/h in 1A01) and a GAM of
59.81 mmol/gCDW (versus 15.8 mmol/gCDW in 1A01).

As mentioned above, we selected the biomass composition of V. splendidus 1A01
grown on glucose to build the biomass reaction of the model (see Table S3 online at
http://github.com/ArionIfflandStettner/1A01). However, as shown in Fig. 3 and 4, the
biomass composition of 1A01 varies based on growth rate. Therefore, after quantifying
the GAM and NGAM, we investigated whether taking the GR dependence of the bio-
mass composition of 1A01 into account (instead of applying the same glucose-derived
biomass reaction to all conditions) would significantly improve the model’s predicted
growth rates on carbon sources other than glucose. To wrap the GR dependence of
the biomass composition of 1A01 into FBA (see Script S1 online at http://github.com/
ArionIfflandStettner/1A01 for the full code), a growth rate on a given carbon source is

FIG 4 GAM and NGAM. (a and b) Shown in red is acetate accumulation, and shown in blue is glucose or galactose depletion for a single
batch culture of V. splendidus 1A01 (no replicates were performed). Acetate is not secreted when V. splendidus 1A01 is grown on galactose.
The consumption yields of growth on glucose and galactose, together with the excretion yields of acetate, correspond to the slopes of blue
and red plots, respectively. (c) The carbon utilization rate then corresponds to the difference between consumption and excretion yields,
multiplied by the growth rate on each carbon source. The GAM is calculated based on the slope of the line, the NGAM is calculated based
on its y-intercept. Regarding the units, mM C corresponds to mM of carbon atoms in the substrates.
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first guessed and the corresponding biomass composition incorporated into the model
via the biomass reaction. FBA then uses the model to predict an optimal growth rate. If
this optimal growth rate matches the initially guessed growth rate, the script stops.
Otherwise, the cycle repeats itself, with the FBA-predicted growth rate generating a
new biomass composition (and, by extension, a new biomass reaction in the model),
until the script converges (i.e., until the input and output growth rates match). We
found that the script converges to approximately the same final growth rate, regard-
less of the initially guessed growth rate. For example, on galactose, it converges to a
growth rate of about 0.27 h21, regardless of whether one initially guesses 0.01 h21 or
1 h21. Comparing the results of GR-dependent FBA to “standard” FBA with a glucose-
derived biomass reaction, both applied to growth on galactose, we found that the two
gave very similar growth rates (see Fig. S7a in the supplemental material). The two
methods gave larger differences in fluxes, with about half of the fluxes showing differ-
ences of at least 20% between glucose and galactose (Fig. S7b), reflecting substantially
different dry mass compositions. Overall, even though the GR-dependent biomass
composition can be accommodated, running FBA on the glucose-derived model pro-
vides reasonable approximations of both growth rates and flux distributions.

Next, the metabolic model was quantitatively tested against growth on carbon sub-
strates other than those used to parameterize the model (i.e., glucose and galactose). This
time, V. splendidus 1A01 was grown in batch on pyruvate and on N-acetylglucosamine.
Again, the optical density, concentration of substrate, and concentration of acetate were
measured at time intervals throughout exponential batch-culture growth (Fig. 5a and b).
Rates of substrate consumption and acetate secretion were measured as before, but now

FIG 5 Quantitative testing of model predictions. (a and b) Shown in red is acetate accumulation, and shown in blue is pyruvate or N-acetylglucosamine
(GlcNAc) depletion for a single batch culture of V. splendidus 1A01 (no replicates were performed). (c) Along the x axis are plotted experimentally measured
growth rates of V. splendidus 1A01, and along the y axis are plotted theoretical growth rates predicted by the model. Shown in gray are substrates the
model was trained on (glucose and galactose). Shown in black are substrates the model is being tested against (pyruvate and N-acetylglucosamine). The
dashed line denotes perfect agreement between model and experiment. Note the model cannot be fit arbitrarily well to the training data, which is why
the two points for glucose and galactose do not lie perfectly along the dashed line.
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they served as input into FBA rather than for inferring the parameters of the model
(namely, the GAM and NGAM). More precisely, the model’s carbon uptake flux and acetate
secretion flux were set to the observed values, and flux through the biomass reaction was
optimized using FBA. For comparison, the same process was repeated for glucose and gal-
actose. The good agreement between experiment and theory we observe for these last
two substrates (as shown in Fig. 5c) is expected, given that the model was trained on
them. However, we see the same agreement for pyruvate and, to a less extent, N-acetylglu-
cosamine. (This imperfect agreement, in the case of N-acetylglucosamine, might be due to
the coupling of carbon and nitrogen sources in this compound [38].) We conclude that the
predictive power of the model extends beyond merely its training data. Still, the high-pres-
sure liquid chromatography (HPLC) analysis in Fig. 4a and b and Fig. 5a and b was admit-
tedly performed on single cultures of V. splendidus 1A01, without replicates. The absence
of replicates prevents the calculation of a statistical measure of the model’s performance
against experimental data, which future work will have to address.

DISCUSSION

Despite its abovementioned shortcoming in terms of statistical testing (namely, the
lack of batch-culture replicates), a GSMM was reconstructed in this work for V. splen-
didus 1A01, a chitin-degrading opportunistic pathogen in the ocean (5, 39). The model
reconstruction required measuring a number of physiological parameters, which gave
rise to the following technical challenges, partly due to the high salt concentration
found in seawater (and in synthetic culture media that simulate seawater).

First, the GAM and NGAM are conventionally found by growing microbes in a che-
mostat (32). However, adapting wild organisms to long-term chemostat growth is of-
ten difficult (e.g., due to foaming, flocculation, and biofilm formation), and we opted
for growing batch cultures (40–42) of V. splendidus 1A01 on different glycolytic carbon
sources, at the maximal growth rate permitted by each carbon source (i.e., at saturat-
ing concentrations of the substrate). Because different carbon sources allow for differ-
ent maximal growth rates, we were able to obtain a spread of growth rates that is
obtained in a chemostat by tuning the dilution rate on a single carbon source.
However, because strong overflow metabolism can occur at high growth rates (41), ac-
etate excretion also had to be measured. This method of measuring the GAM and
NGAM, while imperfect due to minor differences in metabolism due to differences
associated with the specific substrates (e.g., glucose versus galactose), may be the
most practical solution for wild organisms. For model organisms, the equivalence
between metabolic parameters obtained from growth in batch culture and running a
chemostat has been demonstrated (43).

Second, marine microbes differ in their biomass composition from other bacterial
species, due at least in part to the high salt concentration in seawater (;0.3 to 0.4 M
NaCl). For example, the RNA/protein ratio is reduced by ;25% when growing E. coli in
;0.3 to 0.4 M NaCl compared with growing it at its optimal osmolarity, although, given
the growth-rate dependence of the RNA/protein ratio, this reduction in the ratio could
be accounted for largely by the negative effect of salt on growth rate (44). However,
high salt concentrations also lead to other physiological effects. Since all bacteria must
produce osmolytes to balance external osmolarity, marine bacteria must produce
more osmolytes, and this fact should be taken into account in their biomass composi-
tion, in order to arrive at a more accurate biomass reaction in the model. Determining
the major osmolyte(s) employed by an organism is in principle nontrivial and would
require quantitative metabolomics. In this case, we caught a break; we found the gluta-
mate pool in V. splendidus 1A01 to be very high (;200 nmol/OD600/mL), over 10�
times higher than the closely related glutamine pool and almost 50% higher than that
in E. coli under similar osmolarity (;135 nmol/OD600/mL), as shown in Fig. S8 in the
supplemental material. For E. coli (which has a cytoplasmic water content of ;2 mL/mg
CDW (45), corresponding to ;1 mL/OD600/mL), the glutamate content (corresponding,
again, to ;135 mM) together with the counterion potassium (of equal molarity) add
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up to ;270 mM osmolytes. This amount accounts for a large fraction of the external
osmolarity imposed by salt, with the remainder balanced largely by the accumulation
of trehalose (45). The amount of cytoplasmic water in V. splendidus 1A01 has not been
measured. Assuming a similar amount of cytoplasmic water as in E. coli, the measured
glutamate pool, together with the potassium counterion, would add up to ;400 mM
osmolytes, which is similar to the external osmolarity of the medium. Our data thus
suggest that glutamate is the sole major osmolyte used by V. splendidus 1A01 under
growth conditions studied here.

Third, the high medium osmolarity made it challenging to measure the conversion fac-
tor of OD600 to CDW, which must be known to convert experimental measurements (most
often conveniently done per culture volume, in units of per OD600*mL) to the unit of flux in
FBA, mmol/gCDW/h, with gCDW corresponding to grams of CDW. To measure this conver-
sion factor in a model organism like E. coli at normal osmolarity, the first step is to spin
down a culture sample in a centrifuge and resuspend it in water, in order to wash away
extracellular metabolites contained in the medium. However, if V. splendidus 1A01 is resus-
pended in water, a substantial fraction of cells burst due to its adaptation to the higher
osmolarity in the sea, leading to a significant loss of biomass. We therefore had to develop
a novel experimental technique (described in the Materials and Methods) to measure the
CDW of a marine bacterium like V. splendidus 1A01.

In conclusion, we expect many of the technical issues we faced in building a model
for V. splendidus 1A01 to reappear when building models for other marine microbes.
Thus, we hope this work will not only shed light on the metabolic capabilities and
behavior of V. splendidus 1A01 but also guide the reconstruction of GSMMs for the
myriad other bacteria that populate our oceans.

MATERIALS ANDMETHODS
Culture conditions for quantitative measurements. The growth media used were marine broth

(Difco marine broth 2216) and a complete minimal medium for growing copiotrophic, heterotrophic ma-
rine bacteria. Marine broth was prepared by dissolving 37.4 g/L in double-distilled water (ddH2O), boil-
ing for 1 min, and filtering through a 0.22-mm filter for sterilization. It was stored at room temperature.
The minimal medium consisted of a carbon source, 10 mM NH4Cl, 0.5 mM Na2HPO4, 1 mM Na2SO4, sim-
ple salts to mimic seawater (0.343 M NaCl, 14.75 mM MgCl2 � 6H2O, 4 mM CaCl2 � 2H2O, and 27 mM KCl,
which is designated 1� SW), 40 mM HEPES (pH 8) as the buffer, and trace metals such as iron. All com-
ponents were filter sterilized using a 0.22-mm filter. The minimal medium was stored at 4°C. For a full
description of the preparation and composition of the minimal medium, see reference 46.

Preparing batch cultures used for measuring RNA, protein, metabolites, and cell dry weight of 1A01
involved three steps, as follows: (i) a seed culture, (ii) a preculture, and (iii) an experimental culture. The
seed culture was started by inoculating 2 mL of marine broth in a 16- by 125-mm test tube (borosilicate
glass; Fisherbrand, cat. no. 14-961-30) from a single colony on a marine broth/agar plate. Once the seed
culture saturated (which took ;7 h), the cells were washed and resuspended in 1� SW to an OD600 of
;1 before being diluted into the preculture with experimental medium (3 mL in a 18- by 150-mm tube)
for growth overnight, such that, by the following day, the preculture doubled $10 times and remained
growing exponentially. While the preculture was still in exponential growth, we diluted it into fresh ex-
perimental medium prewarmed to 27°C to an OD600 of 0.01 to 0.02 to start the experimental culture.
This culture was allowed to grow for several doublings before samples were taken for quantitative meas-
urements. Altogether, this growth protocol ensures that each culture was grown continuously for 5 to 7
doublings under the same condition by the time of measurements (see reference 46 for details). All cul-
tures (seed, preculture, and experimental) were grown in a water bath shaker at 27°C with shaking at
250 rpm. OD600 was measured using a Thermo Scientific Genesys 20 or 30 spectrophotometer calibrated
to the same standard. Growth rates were determined by linear regression from exponential-phase
growth curves, as shown in Fig. 2a.

Culture conditions for growth phenotype screening. High-throughput screening was also per-
formed to obtain a coarse growth phenotype for V. splendidus 1A01. A frozen culture sample (5% di-
methyl sulfoxide [DMSO]) was thawed (at room temperature), then 20 mL of the stock culture was trans-
ferred to 180 mL marine broth in 96-well plates, and the culture was grown for 94 h at room
temperature without shaking. The cultures were diluted 1:1 in carbon-free minimal medium (see Text S1
in the supplemental material for the full recipe) for 2 h and then transferred into 384-well plates filled
with 70 mL minimal medium per well and 1 of 78 added carbon sources (see Table S1 online at http://
github.com/ArionIfflandStettner/1A01 for full list) using a pinning tool (V&P Scientific VP 408;
0.2-mL hanging drop volume). The concentration of carbon atoms was normalized to 40 mM for each
carbon source. All plates were then covered with transparent film (Life Technologies MicroAmp Optical
Adhesive Film) and stored in the dark at room temperature. All plates were read at least once a day for
10 days using a stack plate reader (Tecan Spark) to measure optical density at 600 nm.
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RNA, protein, and metabolite measurements. RNA and proteins were measured as described before
(40), with modifications. Since the cells from cultures grown on glucose, N-acetylglucosamine (GlcNAc), and
glucosamine were not harvested well by the short centrifugation employed in the regular protocol, they
were first chilled on ice-water for 5 min and harvested by centrifugation at 15,000 rpm (Eppendorf Centrifuge
5424) for 15 to 20 min at 4°C. For protein measurements, the cells were further rinsed in the minimal medium
lacking carbon, nitrogen, and phosphorus sources and harvested by centrifugation for 15 to 20 min. The
effects of the long centrifugation at 4°C were assessed by comparing measured protein concentrations with
those using the regular short centrifugation for cells grown on glycerol since glycerol cultures were harvested
well by the regular short centrifugation. Little difference (,2%) was observed.

For RNA measurements, 1.5 mL of an exponentially growing culture was pelleted, fast frozen on dry
ice, and stored. Pellets were thawed, washed twice with 0.7 M cold HClO4, and then digested for 60 min
at 37°C using 300 mL of 0.3 M KOH. Samples were stirred periodically. The cell extracts were then neu-
tralized with 100 mL of 3 M HClO4 and centrifuged at 13,000 rpm for 3 min. The soluble fraction was col-
lected and the remaining pellets washed twice with 550 mL of 0.5 M HClO4. The resulting final volume of
1.5 mL was centrifuged once more to eliminate remaining debris, and its absorbance at 260 nm was
measured using a Bio-Rad spectrophotometer. The RNA concentration was determined as OD260*31/
OD600, where the conversion factor is based on RNA’s extinction coefficient (40).

Protein amounts were quantified using the Biuret method. A total of 1.5 mL of an exponentially growing
culture was pelleted, washed with 1� SW, resuspended in 200 mL of 1� SW, and fast frozen on dry ice. The
cell pellet was then thawed at room temperature. Next, 100 mL of 3 M NaOH was added to the pellet, and
samples were incubated on a heat block at 100°C for 5 min to hydrolyze the proteins. Protein amounts in the
samples were determined using the Biuret method. A total of 100 mL of 1.6% CuSO4 was added to the pro-
tein extracts, and samples were centrifuged for 3 min at 13,000 rpm. The absorbance of the soluble fraction
was read at OD555 using a spectrophotometer. A series of 200 mL bovine serum albumin (BSA) standards
were taken through the same procedure to get a standard curve.

Glutamate and glutamine pools in minimal medium were measured by HPLC with the no-harvest proto-
col as described previously (47–49). Since glutamate and glutamine were also found in the medium, the intra-
cellular glutamate or glutamine pool was obtained by subtracting the amount of glutamate or glutamine in
the medium from that in the whole culture. The amount of glutamate in the medium depends on OD600 and
ranges between 5 and 16mM on glucose and GlcNAc, which corresponds to 10 to 20% of the whole culture,
The amount of glutamine also depends on the OD600 and ranges between 0.4 and 1.1 mM, which corre-
sponds to 50 to 90% of the whole culture grown on galactose. Extracellular carbohydrates were measured by
HPLC using a refractive index column as described in reference 46.

According to its genome, V. splendidus 1A01 also has the capability to produce carbon storage com-
pounds, such as polyhydroxybutyrate (PHB). However, the amount of carbon storage compounds in a
culture of V. splendidus 1A01 was not measured in this study. Therefore, carbon storage compounds
were excluded from the biomass reaction of the model.

Cell dry weight measurements. In a regular protocol to measure cell dry weight (CDW), a cell pellet is
washed with water to remove salts from the culture medium. However, such a protocol cannot be applied to
bacterial cells grown at high osmolarity because a substantial fraction of the cells are lysed in water. Therefore,
we had to develop a novel protocol to estimate the CDW of bacterial cells grown at high osmolarity.

A V. splendidus 1A01 culture was grown to an OD600 of 0.5, chilled on ice-cold water for 5 to 15 min, and
harvested by centrifugation at 15,000 rpm (Eppendorf Centrifuge 5424) at 4°C. The cell pellet was washed
with the same volume of cold NaCl solution as the culture and washed again with 40 mL of the same NaCl
solution. Concentrations of NaCl were 0.45 M for cultures grown at 1� SW and 0.52 M for cultures grown at
1.25� SW or in marine broth. The density of the washing NaCl solution was measured with water as a refer-
ence. After the wet pellet was weighed, it was suspended in water, transferred to a weighing dish, and dried
in an oven at 85 to 95°C until the weight became stable, typically for 3 days. The dry pellet was weighed
within 10 s before it absorbed water and thereby significantly increased in weight.

CDW was estimated as follows. Let x and y be the weights of dry and wet cell pellets, respectively; r
the weight of NaCl per the weight of water in the washing solution; w the harvested amount of cells in
units of OD600�mL; and z the weight of extracellular water in the wet pellet. With these parameters, we
can represent a, the CDW per OD600�mL, as a function of b , the cellular water weight per CDW.

From the equality of CDW,

aw ¼ x 2 rz (1)

From the equality of water weight present in the wet pellet,

z ¼ y 2 x 2 baw (2)

From the above two equations, we obtain

a ¼ x 1 1 rð Þ 2 ry
wð1 2 rb Þ (3)

In E. coli, b is reported to be ;2 mg/mg CDW (45). Like E. coli, V. splendidus 1A01 is a rod-shaped,
Gram-negative bacterium. Hence, we assumed b ¼ 26 1 mg cellular water/mg CDW for V. splendidus
1A01. The difference between x and y sets the upper bound on the weight of cellular water in a wet pel-
let, xbmax , which leads to b, bmax ¼ y

x 2 1. If the supernatant after washing was carefully removed,
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bmax is typically below 5. Within 0, b , bmax ;5; a is only weakly dependent on b (Fig. S1), and
hence, robust to error in the estimation of b within this range. This weak dependence results from the
much lower density of the NaCl washing solution than the cellular mass density (r ¼ 0:0306 for 0.52 M
NaCl washing solution compared to ;0.5 mg CDW/mg cellular water).

Equation 3 can also be rewritten as follows:

y ¼ r21 1 1
� �

x 2
ð1 2 rb Þwa

1 1 r

� �
(4)

Equation 4 predicts that a linear relation is obtained when y is plotted against x and that r and a

can be estimated from its slope and x-intercept, respectively. To test this prediction, we dispensed the
culture grown at 1.25 � SW on glucose into three aliquots of the same volume and obtained three
washed wet pellets. Then we added back 0, 100, and 200 mL of the washing solution to each wet cell
pellet and measured x and y for each pellet. As predicted, x and y showed a linear relation (R2 = 0.9991,
Fig. S2). r ¼ 0:0298 was estimated from the slope, which is close to the measured value (r ¼ 0:0306).
a ¼ 0:550 was estimated from the x-intercept with b ¼ 2, which is also close to those estimated from
Equation 3 for the three pellets (a ¼ 0:5476 0:001). This result also demonstrates that the direct esti-
mate from Equation 3 is precise enough. The CDW of V. splendidus 1A01 growing in a number of differ-
ent media was estimated in this way using Equation 3 and is shown in Fig. 2b.

Constructing a model of biomass composition. V. splendidus 1A01 was grown in marine broth and in
minimal medium on glucose, glucosamine, glycerol, and galactose. RNA, protein, and CDW were quantified
in each culture (in units of mg/OD600/mL) and plotted against the growth rate, yielding the linear relations
shown in Fig. 2b. For the model, RNA and protein measurements corresponding to growth on glucose were
used to build the biomass reaction (after converting from mg/OD600/mL to mg/mg CDW using the mg CDW/
OD600/mL for glucose). These measurements quantify the total RNA and protein in a biomass sample, not the
relative proportions of the monomers that make up RNA and protein. As an approximation frequently made
in the FBA literature (32), the relative proportions of the 20 amino acids that make up protein were inferred
from their relative proportions in the protein-coding regions of the genome of V. splendidus 1A01. Likewise,
the relative proportions of the 4 nucleotides that make up RNA were inferred from their relative proportions
in the rRNA-coding regions of the V. splendidus 1A01 genome (rRNA makes up the bulk of RNA in bacterial
cells [50]). The major osmolyte (glutamate) was quantified at the standard osmolarity of 1 � SW on glucose
(10 mM), galactose (10 mM), glycerol (20 mM), and GlcN (20 mM), and the results are shown in Fig. 2b.
Intracellular glutamine, which was measured as a comparative reference, was found at much lower levels
(see Table S2 online at http://github.com/ArionIfflandStettner/1A01) but was also included in the model. Like
with RNA and protein, osmolyte measurements corresponding to growth on glucose (see Table S2 online at
http://github.com/ArionIfflandStettner/1A01) were used to build the biomass reaction of the model. The
unquantified components of biomass (namely, DNA, lipopolysaccharides [LPS], lipids, murein, inorganic ions,
and soluble pools) reflect the E. coli model iAF1260 (37). Because they represent 20% of E. coli biomass and
only 17% of V. splendidus 1A01, the total fraction of biomass these unquantified components represent was
scaled down for V. splendidus 1A01, while keeping their relative proportions the same as those in E. coli. As
with RNA and protein, the relative proportions of the 4 nucleotides that make up DNA were inferred from
their relative proportions in the V. splendidus 1A01 draft genome. Since populating parts of the biomass reac-
tion of 1A01 with coefficients from E. coli is an approximation, a sensitivity analysis of the model performance
to slight deviations from E. coli (see Fig. S3) was carried out. In this analysis, for every unquantified compo-
nent of biomass (DNA, LPS, lipids, murein, inorganic ions, or soluble pools), the fraction of biomass it repre-
sents was raised or lowered arbitrarily by up to 25%, which led to only negligible changes in flux through the
biomass reaction (less than 1.4%). The complete biomass reaction is shown in Table S3 (online at http://
github.com/ArionIfflandStettner/1A01), along with all calculations that lead from the above measurements
and approximations to the final biomass reaction.

Although the model biomass reaction reflects the biomass composition of V. splendidus 1A01 grown
on glucose, the biomass composition for cells grown in other media varies based on growth rate (GR), as
shown in Fig. 2b. We therefore wrote a MATLAB script (see Script S1 online at http://github.com/
ArionIfflandStettner/1A01) to incorporate the GR-dependent biomass composition of 1A01 in FBA, using
the linear fits of RNA, protein, and CDW content given in Fig. 2b.

Reconstruction and gap-filling of draft metabolic model. Estimated to be 99.4% complete by
CheckM (51, 52) (using the g__Vibrio marker gene set; the missing marker genes being PF07219, HemY pro-
tein N terminus; TIGR01389, ATP-dependent helicase RecQ; TIGR02195, lipopolysaccharide heptosyltransfer-
ase II; and TIGR02143, tRNA [(uracil(54)-C(5))-methyltransferase]), the annotated genome of V. splendidus
1A01 was uploaded to BioCyc, where it was reconstructed into a draft metabolic model (in the form of an
SBML file) using Pathway Tools (53). The reactions and metabolites of the model therefore conform to BioCyc
nomenclature (except where reactions from the BiGG (54) database were inserted to fill gaps in metabolic
pathways). The SBML file was then imported into MATLAB for model curation (32), which included the follow-
ing gap-filling. If V. splendidus 1A01 grew on a given carbon source in vivo (growth being defined as achiev-
ing an OD600 increase of at least 0.9 after 20 h), the minimum number of reactions were added to the model
that enabled flux through its biomass reaction on the same carbon source. Exchange reactions were added
to the model only for such experimentally verified carbon sources.

Flux balance analysis. Flux balance analysis (FBA) is a widely adopted computational method to
model cellular metabolism (10). When applied to a GSMM, FBA predicts the steady-state distribution of
fluxes that optimizes a certain objective function. In this work, to simulate bacterial growth, biomass
production was chosen as the objective function. To calculate the NGAM, ATP production was chosen as
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the objective function (see “Estimation of GAM and NGAM”). Briefly, FBA is implemented as a linear pro-
gramming problem and formulated in matrix notation as follows:

maximize Z ¼ cTv
subject to Sv ¼ 0

and vmin # v# vmax

(5)

where Z denotes the objective function, c the relative weight of every reaction in the objective function,
v the flux distribution, S the stoichiometric matrix, vmin the lower bounds on metabolic fluxes, and vmax

the upper bounds. We performed FBA in MATLAB using the Gurobi optimizer (55). A simple script for
performing FBA with the V. splendidus 1A01 model is provided (see Script S2 online at https://github
.com/ArionIfflandStettner/1A01).

Estimation of GAM and NGAM. To determine the GAM and NGAM of V. splendidus 1A01, we measured
batch-culture growth rate and net carbon influx on glucose and galactose (Fig. 4c). For a detailed description
of growth medium, measurement and calculation of growth rate, as well as measurement and calculation of
substrate intake and organic acid excretion, please see reference 46. During constant exponential growth on
glucose in batch culture, V. splendidus 1A01 excreted acetate at a constant rate (a previous study [46] found
no other significantly excreted hydrocarbon). The rate of acetate accumulation was subtracted from the rate
of substrate depletion to calculate the net carbon influx (or carbon utilization rate). By plotting carbon utiliza-
tion rate against growth rate and taking the y-intercept of the line (see Fig. 4c), we obtained the baseline rate
of carbon utilization by V. splendidus 1A01 in the absence of biomass production. We then imposed this car-
bon utilization rate in FBA (by manipulating upper and lower bounds on substrate uptake and acetate secre-
tion fluxes) and maximized ATP production (while setting flux through the biomass reaction to zero) to arrive
at the value of the NGAM, which in the model is its own ATP hydrolysis reaction (ATP 1 H2O ! ADP 1 Pi).
The GAM (which can be found in Table S3 online at http://github.com/ArionIfflandStettner/1A01, as part of
the complete biomass reaction of the model) was also calculated using FBA, by fitting the model’s perform-
ance to the line in Fig. 4c. More precisely, we imposed the observed carbon utilization rates in FBA (again, by
manipulating upper and lower bounds on substrate uptake and acetate secretion fluxes) and increased the
GAM until FBA-predicted growth rates matched experimental values.

Model validation. A metabolic model must be validated against experimentally measured growth
on substrates other than those used to parameterize the model (in this work, 5 mM glucose and 5 mM
galactose). Therefore, batch cultures of V. splendidus 1A01 were grown on 10 mM pyruvate and 5 mM N-
acetylglucosamine (the monomer of chitin, on which particles 1A01 was first isolated [5]), while, again,
tracking growth rate, substrate depletion, and acetate accumulation (Table S4 online at http://github
.com/ArionIfflandStettner/1A01). Experimentally measured rates of substrate uptake and acetate secre-
tion were then used, in FBA, to constrain the corresponding fluxes in the model to their observed values,
before optimizing flux through the biomass reaction, thereby obtaining theoretically optimal growth
rates, which, for model validation, were compared to experimentally measured growth rates.

Software availability. The genome-scale metabolic model of V. splendidus 1A01, as well as the code
to run FBA (Script S2) and GR-dependent FBA (Script S1) on this model, are available in a GitHub reposi-
tory online at https://github.com/ArionIfflandStettner/1A01.
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