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Abstract

Background: Adolescence/early adulthood coincides with accelerated pruning of cortical 

synapses and the onset of schizophrenia. Cortical gray matter reduction and dysconnectivity in 

schizophrenia are hypothesized to result from impaired synaptic plasticity mechanisms, including 

long-term potentiation (LTP), since deficient LTP may result in too many weak synapses that are 

then subject to over-pruning. Deficient plasticity has already been observed in schizophrenia. 

Here, we assessed whether such deficits are present in the psychosis risk syndrome (PRS), 

particularly those who subsequently convert to full psychosis.

Methods: An interim analysis was performed on a sub-sample from the NAPLS-3 study, 

including 46 healthy controls (HC) and 246 PRS participants. All participants performed an LTP-

like visual cortical plasticity paradigm involving assessment of visual evoked potentials (VEPs) 

elicited by vertical and horizontal line gratings before and after high frequency (“tetanizing”) 

visual stimulation with one of the gratings to induce “input-specific” neuroplasticity (i.e., VEP 

changes specific to the tetanized stimulus). Non-parametric, cluster-based permutation testing was 

used to identify electrodes and timepoints that demonstrated input-specific plasticity effects.

Results: Input-specific pre-post VEP changes (i.e., increased negative voltage) were found in a 

single spatio-temporal cluster covering multiple occipital electrodes in a 126–223 ms time 

window. This plasticity effect was deficient in PRS individuals who subsequently converted to 

psychosis, relative to PRS non-converters and HC.

Conclusions: Input-specific LTP-like visual plasticity can be measured from VEPs in 

adolescents and young adults. Interim analyses suggest that deficient visual cortical plasticity is 

evident in those PRS individuals at greatest risk for transition to psychosis.

Keywords

schizophrenia; psychosis; clinical high risk; visual evoked potentials; plasticity
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INTRODUCTION

Deficient neuroplasticity in schizophrenia has been theorized to underlie developmental 

deficits in sensorimotor systems, cognitive function, learning and memory, and to contribute 

to the emergence of psychotic symptoms (Forsyth and Lewis, 2017; Haracz, 1984; Stephan 

et al., 2006). Genetic evidence implicates reduced synaptic strength (Fromer et al., 2014; 

Kirov et al., 2012; Marshall et al., 2016; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014) and excess synaptic pruning (Sekar et al., 2016) in 

schizophrenia. A basic form of neuroplasticity by which synapses are strengthened with 

experience is long-term potentiation (LTP) (Ho et al., 2011), widely considered the leading 

candidate mechanism underlying learning and memory (Lamprecht and LeDoux, 2004; 

Malenka and Nicoll, 1999; Nithianantharajah and Hannan, 2006). LTP critically depends on 

glutamatergic NMDAR transmission (Ho et al., 2011). Furthermore, multiple lines of 

evidence implicate NMDAR hypofunction as a core pathophysiological mechanism in 

schizophrenia (Coyle, 2012; Javitt et al., 2012; Javitt and Zukin, 1991; Krystal et al., 2002; 

Moghaddam and Krystal, 2012; Uno and Coyle, 2019), including: 1) NMDAR antagonists 

such as ketamine, when administered in drug challenge studies to healthy participants, 

transiently induce many of the clinical features and cognitive deficits that characterize 

schizophrenia (Anticevic et al., 2012; Gunduz-Bruce et al., 2012; Schmidt et al., 2012; 

Umbricht et al., 2000; van Berckel et al., 1998), 2) schizophrenia risk genes influence 

NMDAR function (Hall et al., 2015; Harrison and Weinberger, 2005; Kantrowitz and Javitt, 

2010), 3) NMDAR abnormalities have been identified in schizophrenia post-mortem tissue 

(Deakin et al., 1989; Ibrahim et al., 2000; Simpson et al., 1992; Föcking et al., 2015; Funk et 

al., 2009; Kristiansen et al., 2006; Nascimento and Martins-de-Souza, 2015) 4) NMDAR 

density measured with Single Photon Emission Tomography is reduced in schizophrenia 

(Bressan et al., 2005; Pilowsky et al., 2006). Taken together, the dependence of LTP on 

NMDAR function and the evidence for NMDAR hypofunction in schizophrenia provide a 

mechanistic basis for hypothesizing dysfunction of LTP and related NMDAR-dependent 

forms of synaptic plasticity in schizophrenia. The effects of NMDAR hypofunction on 

neurodevelopmental processes related to synaptic connectivity have also been theorized to 

contribute to the emergence of psychosis (Eastwood, 2004; Zhang et al., 2013).

1.1 Non-Invasive Recording of LTP-like Neuroplasticity and Schizophrenia

LTP is classically studied in animal tissue slice preparations, wherein electrical high-

frequency stimulation (HFS) is utilized to tetanize afferent pathways to induce lasting 

potentiation of the postsynaptic response (Citri and Malenka, 2008; Cooke and Bliss, 2006; 

Feldman, 2009). Recently developed non-invasive paradigms can induce LTP-like 

potentiation of visual cortex in humans via HFS by presenting a visual stimulus at a high 

“tetanizing” frequency (Clapp et al., 2012; Teyler et al., 2005a) or at a slower frequency for 

a prolonged period (Elvsåshagen et al., 2012; Normann et al., 2007). The potentiation of 

visual cortex induced by these paradigms has been documented using visual evoked 

potentials (VEPs) (Clapp et al., 2006b; Klöppel et al., 2015; McNair et al., 2006; Ross et al., 

2008), functional MRI (Clapp et al., 2005b), and behavioral performance (Beste et al., 2011; 

Clapp et al., 2012).
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Plasticity induced by non-invasive sensory stimulation shares much in common with basic 

synaptic LTP, including frequency dependence (potentiation by HFS and depotentiation by 

low frequency stimulation (Beste et al., 2011; Clapp et al., 2012; Teyler et al., 2005b), 

persistence (VEP changes lasting at least 1 hour [Clapp et al., 2012; Teyler et al., 2005b]; 

behavioral changes lasting up to 1 week [Beste et al., 2011]), input specificity (little or no 

potentiation of a non-tetanized control stimulus, analogous to synaptic input specificity in 

LTP [Beste et al., 2011; McNair et al., 2006; Ross et al., 2008; Wynn et al., 2019]), and 

temporal and spatial specificity (VEP potentiation effects limited to distinct time windows 

and scalp topographies [Cavuş et al., 2012; Clapp et al., 2006b; Clapp et al., 2005a; McNair 

et al., 2006; Ross et al., 2008; Teyler et al., 2005b]). In one rodent study, potentiation of 

visual cortex local field potentials by visual HFS was blocked by administration of an 

NMDAR antagonist (Clapp et al., 2006a), although this failed to replicate in a subsequent 

study (Eckert et al., 2013). A number of rodent studies support lower frequency prolonged 

visual stimulation (over multiple days) as effectively inducing visual cortical LTP (Cooke et 

al., 2015; Cooke and Bear, 2012, 2010).

Evidence for impaired LTP-like plasticity in schizophrenia has emerged using these sensory 

neuroplasticity paradigms, revealing deficient evoked potential changes induced by sensory 

HFS in patients relative to controls (Cavuş et al., 2012; Jahshan et al., 2017; Mears and 

Spencer, 2012). To date, most of the visual LTP-like plasticity paradigms showing plasticity 

deficits in schizophrenia have used a single checkerboard stimulus without a control 

stimulus, preventing demonstration of input-specific plasticity effects (i.e., greater VEP 

changes for the “tetanized” visual stimulus than for a non-tetanized control stimulus). There 

is limited evidence suggesting impaired input-specific plasticity in a small sample of chronic 

schizophrenia patients compared to controls using an auditory HFS task (Mears and 

Spencer, 2012), but we recently found evidence for a normal input-specific plasticity effect 

in chronic patients using the same visual paradigm employed in the present study (Wynn et 

al., 2019). While deficits in plasticity in schizophrenia may depend on as yet poorly 

understood variations in plasticity paradigms and sample characteristics, there is additional 

evidence for deficient LTP-like neuroplasticity in schizophrenia using somewhat more 

established motor plasticity paradigms such as transcranial magnetic stimulation (Mehta et 

al., 2019) and direct current stimulation (Hasan et al., 2011). In any case, the impact of 

deficient LTP may be most evident during the pathogenesis of schizophrenia in late 

adolescence/early adulthood.

1.2 Deficient Neuroplasticity, Synaptic Over-pruning, and the Pathogenesis of 
Schizophrenia

Neurodevelopment is characterized by an initial overgrowth of synaptic connections, 

followed by pruning of weak synapses that have not been strengthened by experience (Marin 

and Kipnis, 2013; Schafer et al., 2012). Pruning of cortical synapses is accelerated during 

adolescent brain development (Huttenlocher, 1979; Huttenlocher and Dabholkar, 1997; 

Rakic et al., 1986), an observation that contributed to Feinberg’s seminal hypothesis 

(Feinberg, 1982) that synaptic over-pruning could account for the typical onset of 

schizophrenia during late adolescence/early adulthood. While recent genetic evidence 

implicates a variant of the complement C4 gene in synaptic over-pruning in schizophrenia 
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(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Sekar et al., 

2016), it is also possible that deficient LTP could result in too many weak synapses that are 

then subject to over-pruning during late adolescence as part of the pathogenic cascade 

toward schizophrenia. Thus, deficient synaptic plasticity in schizophrenia could contribute to 

the reduced cortical neuropil evident in post-mortem studies (Glausier and Lewis, 2013; 

Selemon et al., 1998; Selemon and Goldman-Rakic, 1999), as well as cortical gray matter 

volume deficits (Levitt et al., 2010; Shenton et al., 2001) and regional brain dysconnectivity 

(Fitzsimmons et al., 2013; Giraldo-Chica and Woodward, 2017; Sheffield and Barch, 2016; 

van den Heuvel and Fornito, 2014) evident in vivo in magnetic resonance imaging (MRI) 

studies (Stephan et al., 2006). Importantly, these in vivo structural (Cannon et al., 2015; 

Chung and Cannon, 2015; Ding et al., 2019) and functional (Anticevic et al., 2015; Chung 

and Cannon, 2015) brain abnormalities have been observed prior to psychosis onset in 

young people who meet criteria for the psychosis risk syndrome (PRS) (McGlashan et al., 

2010), particularly those who subsequently transition to full psychosis. Thus, deficient 

neuroplasticity may be present in the PRS before psychosis onset, contributing to the gray 

matter loss (Cannon et al., 2015) and functional dysconnectivity (Anticevic et al., 2015) 

evident in PRS individuals who progress to full psychosis.

1.3 Goals of Current Study

To investigate the hypothesis that LTP-like input-specific visual cortical plasticity is 

deficient in individuals meeting PRS clinical criteria, we conducted an interim analysis in a 

large sample of healthy control (HC) and PRS participants from the ongoing NAPLS-3 study 

(Addington et al., 2020). We employed a visual cortical plasticity paradigm consisting of 

vertical and horizontal square-wave grating stimuli, where only one of these stimuli is 

presented at a high (tetanizing) frequency to induce neuroplastic changes in VEP amplitude 

selective to the tetanized stimulus. We used cluster-based permutation testing (Groppe et al., 

2011), including all participants, to rigorously identify clusters (electrodes and time 

windows) showing significant input-specific plasticity effects. Once identified, we tested for 

group differences between PRS participants who subsequently converted to psychosis, PRS 

non-converters followed for at least 18 months, and HC. We hypothesized that plasticity 

deficits would be evident in PRS individuals, particularly those who transitioned to 

psychosis.

METHODS

2.1. Participants

Participants (N=293) from the third phase of the 9-site North American Prodrome 

Longitudinal Study (NAPLS-3) (Addington et al., 2020) who had received a baseline 

electroencephalography (EEG) assessment prior to January 1st, 2016 were considered in this 

interim analysis. One participant’s data were excluded due to intermittent electrode failure 

during EEG recording. The remaining 292 participants, comprising 246 PRS (139 males, 

107 females) and 46 HC (23 males, 23 females) individuals, are included.

PRS participants met the Criteria of Psychosis-Risk Syndromes (COPS) based on the 

Structured Interview for Psychosis-Risk Syndromes (SIPS) (McGlashan et al., 2010; Miller 
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et al., 2002) administered by trained interviewers who met high reliability standards 

(Addington et al., 2012). PRS participants were diagnosed with at least one of three non-

mutually exclusive PRS sub-syndromes: Attenuated Positive Symptom Syndrome (n=243), 

Brief Intermittent Psychotic Syndrome (n=1), and/or Genetic Risk and Deterioration 

Syndrome (n=13). All participants were between 12 and 30 years old (mean ± SD: 

PRS=19.19 ± 4.02 years, HC=21.66 ± 4.81 years), and were excluded for any past or current 

history of a psychotic disorder, significant central nervous system disorder, history of serious 

head trauma, or impaired intellectual functioning (i.e., Wide Range Achievement Test 

Reading score ≤ 75). HC participants were also excluded if they had a first-degree relative 

with a past or current psychotic disorder. Detailed recruitment procedures have been 

previously described (Addington et al., 2020). The study was approved by the Institutional 

Review Board at each study site. Adult participants provided written informed consent, and 

minors provided written assent with parents providing written consent. At the time this 

interim analysis was completed, most enrolled PRS participants had not reached the 18-

month follow-up time point, 22 PRS participants had been clinically followed for at least 18 

months without evidence of conversion (PRS-NC; age mean ± SD = 19.46 ± 4.88 years; 12 

males, 10 females), and 20 PRS participants had converted to a psychotic disorder (PRS-C; 

age mean ± SD = 19.07 ± 4.42 years; 12 males, 8 females). At the time of this interim 

analysis, 7 PRS-C and 9 PRS-NC participants, but none of the HC, were taking psychiatric 

medication.

2.2. Visual Cortical Plasticity Paradigm

The visual cortical plasticity paradigm involved EEG-based VEP assessments before and 

after exposure to tetanizing visual HFS (VHFS, Figure 1). While maintaining focus on a 

central fixation cross, participants viewed vertical and horizontal square wave line grating 

stimuli presented centrally against a gray background on a 55 cm ViewSonic VX2252mn 

liquid crystal display (1920×1080 pixels; 60 Hz refresh rate; 268 mm viewable height; 

identical at all 9 sites) located 90 cm in front of them. Each line grating stimulus was a 

square subtending 17° visual angle and consisted of alternating light and dark 6-pixel bars 

(~5.3 light-dark cycles per degree) that phase reversed with each presentation to reduce 

adaptation effects. Each VEP assessment block comprised a pseudorandom oddball 

sequence of 133 line grating stimuli, including frequent (90%) low-contrast (35% contrast) 

standard stimuli and infrequent (10%) high-contrast (72% contrast) target stimuli. For both 

standard and target line grating stimuli, half were horizontal and half were vertical. In order 

to focus and monitor attention, participants responded to target stimuli with a right index 

finger button press.

In each VEP block (duration 5:45), stimuli were presented at .833 Hz (1200 ms mean 

stimulus-onset asynchrony, range 1067–1333 ms). Stimulus duration was jittered (375 ms 

mean duration, uniformly distributed range 250 – 500 ms) to minimize any offset potentials. 

A 20 second break was built into the middle of each block to mitigate fatigue. VEP 

assessment blocks were administered approximately 12 and 6 minutes before VHFS (pre) as 

well as 30 and 36 minutes after VHFS (post). An unrelated auditory task was performed in 

the interval between VHFS and the post-VHFS VEP assessments.
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The VHFS block designed to induce LTP-like plasticity changes in VEP amplitudes 

comprised repeated presentation of either a vertical or horizontal line grating (orientation 

randomly counter-balanced between participants) at 10 Hz (100 ms mean SOA; 33 ms 

duration). VHFS was delivered in an intermittent (5 s on – 5 s off) temporal pattern, rather 

than continuously, based on pilot data and evidence from other visual (Beste et al., 2011) 

and theta burst rTMS motor plasticity studies (Huang et al., 2005). This intermittent VHFS 

continued for 1067 stimulus presentations (approximately 4 minutes), followed by 2 minutes 

of blank, gray screen to allow any after effects of VHFS to dissipate. Similar to the pre-

VHFS baseline VEP assessment blocks, high-contrast target stimuli were included. Targets 

(n=11) were presented (100 ms stimulus duration) to keep the frequency of targets per 

minute similar to their frequency in the baseline VEP blocks (approximately 1 target trial 

every 20 s). Additional physical parameters of the visual stimuli are described in 

Supplementary Material. All participants viewed instructions and had practice at the 

beginning of the experiment, and the experimenter provided feedback and conducted 

additional practice, if necessary, to ensure the participants understood the task.

2.3. EEG Acquisition and Pre-processing

EEG data were recorded from 64 channels using identical BioSemi ActiveTwo systems 

(www.biosemi.com) across the 9 NAPLS sites. Electrodes placed at the outer canthi of both 

eyes, and above and below the right eye, were used to record vertical and horizontal electro-

oculogram data. EEG data were continuously digitized at 1024 Hz and referenced offline to 

averaged mastoid electrodes before applying a 0.1 Hz high-pass filter using ERPlab (Lopez-

Calderon and Luck, 2014). Data were next subjected to Fully Automated Statistical 

Thresholding for EEG artifact Rejection (FASTER) using a freely distributed toolbox (Nolan 

et al., 2010). Following artifact rejection and baseline correction, VEP average waveforms 

were calculated separately for each stimulus orientation for standard trials only in pre- and 

post-VHFS VEP assessment blocks on a per subject basis. Additional details pertaining to 

data pre-processing have been described previously (Wynn et al., 2019) and are discussed in 

Supplemental Material. Individual participant pre- and post-VHFS VEP waveforms were 

low-pass filtered at 50 Hz and re-referenced to the common average reference prior to 

subsequent statistical analysis.

2.4. EEG Analysis - Non-parametric, Cluster-based Permutation Testing

Initial data-driven testing in the full (N=292) sample focused on identifying time periods (or 

temporal clusters) that demonstrated input-specific plasticity effects, without making any a 
priori assumptions about specific VEP components or inspection of grand average 

waveforms to decide which time windows to measure to capture such effects. As noted 

below, the only assumptions made in our analytic approach was that plasticity effects of 

interest in the VEP would occur somewhere between 50ms and 250ms post-stimulus onset 

(based on prior literature), and that these effects would be evident among occipital scalp 

electrodes.

Given the task design, input-specific effects were defined as pre- versus post-VHFS changes 

in the VEP for the stimulus orientation that was tetanized during the VHFS block, relative to 

pre- versus post-VHFS changes in the VEP for the control stimulus orientation that was not 
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tetanized. These input-specific plasticity effects, if present, should be evident in the VEP 

double-difference waveforms (i.e., [tetanized orientation post-VHFS VEP – pre-VHFS VEP] 

– [control orientation post-VHFS VEP – pre-VHFS VEP]). Double-difference waveforms 

from seven occipital electrodes nearest to Oz (PO3, POz, PO4, O1, Oz, O2, Iz) for each 

subject were down-sampled to 512Hz and limited to the period of the epoch from 50 ms to 

250 ms. One-sample t-tests then tested whether the mean double-difference score was 

different from zero at each time point in the pre-specified 50–250 ms time window of the 

VEP double-difference waveforms from each electrode, and these t-tests served as input to a 

subsequent permutation test procedure. It should be noted that each t-test on the double-

difference VEP waveform is equivalent to a test of the Time (Pre- vs. Post-VHFS) X 

Stimulus Type (Tetanized vs. Non-tetanized Control) interaction effect in an analysis of 

variance model. Permutation testing of the t-values across time points and electrodes 

allowed testing for significant spatio-temporal clusters representing input-specific plasticity 

effects while controlling for the family-wise error (FWE) rate (cluster-corrected FWE p<.05, 

two-tailed). Cluster-based permutation tests of ERP data have been described previously 

(Maris and Oostenveld, 2007), but the setup along with specific parameters for this analysis 

are described in greater detail in Supplementary Material.

2.5. Group Comparisons

For any given cluster that showed cluster-corrected statistical significance (cluster p < .05), 

the mean amplitude was calculated from the time points in the double difference VEP 

waveform and the electrodes associated with the cluster. These mean values were entered 

into a mixed effects model analysis conducted in SAS v9.4 (PROC MIXED) treating 

NAPLS Site and Subject, nested within Group, as random factors and Group as the between-

subjects factor. We probed two planned contrasts of interest to examine differences between 

PRS and HC as well as between PRS-C and PRS-NC.

RESULTS

There were no significant differences in target reaction time between HC and PRS 

participants, or between PRS-C and PRS-NC participants.

3.1 Cluster-Based Permutation Testing

One-sample t-statistics performed on the VEP double difference waveforms ([(tetanized 

post-VHFS – pre-VHFS) minus (control post-VHFS – pre-VHFS)]) isolated input-specific 

plasticity effects of VHFS tetanization in the full participant sample (Figure 2A). Applying 

an initial height threshold to the t-statistic raster plots (−1.96 ≤ t ≤ 1.96) and subsequent 

permutation testing of the t-sum statistics yielded one significant negative cluster (FWE 

cluster-corrected p = 0.012). spanning a 126–223 ms time window, as well as a single 

positive cluster that did not achieve FWE-corrected cluster-level significance (FWE p = 

0.624) (Figure 2A). For the significant negative cluster, electrode O2 yielded the largest t-

sum statistic and was therefore the strongest contributor, with all of the remaining electrodes 

except for O1 also contributing. Cluster means for the paradigm conditions shows the input-

specific interaction effect captured by the cluster (Figure 2B). Inspection of the mean VEP 

double-difference waveform from electrode O2 shows that the input-specific plasticity effect 
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involved a ~0.25 μV increased negativity (or, equivalently, decreased positivity) (Figure 3A). 

Separate VEP difference waveforms (post-VHFS – pre-VHFS) from electrode O2 for both 

the tetanized and the non-tetanized control stimuli are presented in Figure 3B. Both 

tetanized and control stimuli showed increased negativity (or reduced positivity) in the post-

pre difference waveforms within the cluster’s time window, but this effect was more 

prominent for the tetanized stimulus (Figure 3B). The simple grand average VEP waveforms 

from electrode O2 for the pre-VHFS and post-VHFS VEP assessments, separately presented 

for the tetanized and control stimuli, show classic pattern-onset VEP morphology, with an 

N1 peaking at ~90 ms, a P2 peaking at ~140 ms, and an N2 peaking at ~195 ms (Figure 3C 

and 3D). The overlay of the significant cluster’s time window on these simple pattern onset 

VEPs indicate that the VHFS-induced plasticity effect was reflected by superimposed 

enhanced negativity beginning during the transition from N1 to P2, continuing past the P2 

peak, and resolving just after the N2.

3.2 Converters and Non-converters

We conducted two planned follow-up tests of group differences in mean amplitude within 

the negative spatiotemporal cluster. There was no difference in mean cluster amplitude 

between HC and all PRS participants (F(1,85)=0.01, p=0.9204). The mean cluster amplitude 

was reduced (more positive) in PRS-C relative to PRS-NC (Figure 4A, F(1,85)=5.32, 

p=0.0235), reflecting a deficient input-specific plasticity effect in the PRS-C. The Group x 

Time x Stimulus Type interaction effect captured by the group difference in the cluster mean 

is presented in Figure 4A (right panel). This reflects a Time x Stimulus interaction effect that 

is present for the PRS-NC participants (Figure 4B) but not the PRS-C participants (Figure 

4C).

DISCUSSION

In a large sample of PRS and HC adolescents and young adults, we found that 4 minutes of 

10 Hz VHFS (5 s off/on) induced a significant LTP-like input-specific visual cortical 

plasticity effect that was evident in the VEP waveforms as an increase in negativity over 

posterior occipital electrodes between 126 and 223 ms post-stimulus onset and endured for 

at least 40 minutes. We did not observe a significant difference in this neuroplasticity effect 

between the HC and PRS groups, contrary to our hypothesis. However, a preliminary 

comparison of PRS-C and PRS-NC followed for at least 18 months did support our 

hypothesis that PRS individuals who progress to full-blown psychosis have deficient LTP-

like visual cortical plasticity relative to PRS individuals who do not progress.

4.1 Comparison with Previous Literature

Previous VHFS plasticity paradigms using checkerboard stimuli have reported impaired 

plasticity in schizophrenia (Cavuş et al., 2012), and greater impairments at 20 minutes post-

VHFS correlated with worse overall cognitive performance (Jahshan et al., 2017). Deficient 

LTP in schizophrenia may be one consequence of genetically-mediated NMDAR 

hypofunction (Hall et al., 2015; Harrison and Weinberger, 2005; Kantrowitz and Javitt, 

2010). Consistent with this, a glycine transporter inhibitor was shown to enhance LTP-like 

visual cortical plasticity in schizophrenia, presumably through enhanced co-agonism of 
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glycine at the NMDAR (D’Souza et al., 2018). In contrast, D-cycloserine, which also 

modulates NMDAR function at the glycine site, was shown to enhance LTP-like visual 

plasticity in healthy participants (Forsyth et al., 2015) but not in schizophrenia patients 

(Forsyth et al., 2017). While it remains unclear whether this plasticity deficit in 

schizophrenia can be rescued with pharmacological augmentation of NMDAR 

neurotransmission, both of these studies can be viewed as broadly consistent with NMDAR-

dependent plasticity deficits in schizophrenia. NMDAR involvement in this visual cortical 

plasticity effect is also supported by a magnetic resonance spectroscopy study in healthy 

volunteers. This study showed concentrations of glutamine (and less strongly, glutamate and 

GABA) in occipital cortex to predict the magnitude of the increases in visual cortical 

activation induced by VHFS when fMRI is used to read out the plasticity effect (Wijtenburg 

et al., 2017). While the above studies are suggestive of NMDAR-mediated LTP-like visual 

cortical plasticity impairments in schizophrenia, the paradigms employed did not include a 

non-tetanizing control stimulus.

Several previous VHFS studies have demonstrated input-specific LTP-like visual cortical 

plasticity effects in healthy participants by assessing VEPs to two visual stimuli with 

different spatial frequencies (McNair et al., 2006) or line-grating orientations (Ross et al., 

2008; Spriggs et al., 2019), but tetanizing with only one of them, with the other serving as a 

“control” stimulus. Although a few prior human visual stimulation studies (McNair et al., 

2006; Ross et al., 2008; Sumner et al., 2019) have shown input-specific plasticity effects on 

the measured VEPs, tetanization effects were not tested directly using a difference wave 

approach nor reported as stimulus-by-tetanization interaction effects. Moreover, none of 

these studies included patients with schizophrenia or participants with the PRS.

We note that impairment in visual plasticity has been demonstrated in major depressive 

disorder (Normann et al., 2007) and bipolar disorder (Elvsåshagen et al., 2012; Zak et al., 

2018) using a low frequency (2Hz) visual stimulation paradigm that has been shown to 

induce LTP-like VEP amplitude changes, although input-specificity has not been assessed in 

these studies. While the plasticity effects elicited using such single-stimulus paradigms 

appear to be replicable (Elvsåshagen et al., 2012; Normann et al., 2007; Zak et al., 2018) the 

lack of a control stimulus leaves open the possibility that effects are not specifically related 

to the features of the tetanizing stimulus, reflecting either a global change in visual cortical 

excitability, or simply changes in the subject’s state (e.g., arousal level) over the course of 

the paradigm due to the passage of time. Because synaptic input-specificity is a 

characteristic feature of LTP (Beste et al., 2011; McNair et al., 2006; Ross et al., 2008; 

Wynn et al., 2019), the ties between visual sensory stimulation-induced plasticity and LTP 

are strengthened by demonstration of plasticity effects specific to the tetanizing stimulus, 

relative to a control stimulus.

In the visual cortical plasticity paradigm implemented in the current study, and in our prior 

report using this same paradigm (Wynn et al., 2019), we collected pattern onset VEPs from 

two square wave line gratings with orthogonal orientations, but used only one of them as a 

visual tetanus. This two stimulus approach, which has been used by others as well (McNair 

et al., 2006; Ross et al., 2008), capitalizes on the orientation-specific columnar organization 

of the visual cortex (Gilbert and Wiesel, 1983; Mountcastle, 1997) in order to minimize the 
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overlap between the tetanized and control neuronal populations. While input-specific 

(McNair et al., 2006; Mears and Spencer, 2012; Ross et al., 2008; Sumner et al., 2019) and 

non-specific effects (Cavuş et al., 2012; Clapp et al., 2006b; Clapp et al., 2005a; Klöppel et 

al., 2015; Lei et al., 2017) have been reported using such paradigms, the purpose of 

incorporation of a control stimuli is to demonstrate input-specific plasticity effects. Our 

analysis focused exclusively on testing for such effects, reflecting our view that they are the 

only effects we can confidently attribute to the visual tetanus.

Our focus on input-specificity motivated our analysis of double difference waveforms, which 

effectively isolated the Time (Pre- vs. Post-VHFS) X Stimulus Type (Tetanized vs.Non-

tetanized) interaction effect. In adopting this approach, we deliberately depart from prior 

approaches that measure and assess amplitude changes in specific VEP components (e.g., 

C1, N1, N1b, P2), instead adopting a more conservative view that any changes in VEP 

voltages induced by VHFS are simply superimposed on the VEP components without 

assuming that they reflect specific “potentiation” or “depotentiation” of these components 

(Jahshan et al., 2017). Our results demonstrated a significant spatio-temporal VEP cluster 

showing an increased negativity over occipital electrodes that was specific to the tetanizing 

stimulus, persistent over time (evident 30–42 minutes post-tetanus), and identified by a 

statistically rigorous clustering approach, similar to what we previously found using this 

paradigm (Wynn et al., 2019).These findings parallel stimulus-specific response potentiation 

effects in animal models that rely on feedforward, excitatory connections and the NMDA 

receptor (Cooke and Bear, 2012, 2010).

Of note, in our first application of the current version of the LTP-like visual cortical 

plasticity paradigm (Wynn et al., 2019), while we observed a similar significant spatio-

temporal input-specific cluster, we did not observe a deficit in this effect in patients with 

chronic schizophrenia. This contrasts with several prior studies showing plasticity deficits in 

schizophrenia patients using single-checkerboard visual paradigms (Cavuş et al., 2012; 

Forsyth et al., 2017). It is unclear at this point whether our failure to demonstrate a deficit in 

chronic schizophrenia patients is somehow related to poorer sensitivity of our paradigm in 

an older age range or during chronic stages of schizophrenia (Wynn et al., 2019), unique 

features of our paradigm, or idiosyncrasies of the patient and HC samples. More research is 

needed to map the task conditions and parameters that capture sparing and loss of plasticity 

function across the illness course of schizophrenia.

4.2 Plasticity in the Psychosis Risk Syndrome

As predicted, we observed deficient input-specific LTP-like visual cortical plasticity in PRS 

participants who later converted to psychosis relative to PRS participants who did not 

convert to psychosis after at least 18 months of follow-up. This plasticity deficit in PRS-C 

participants is consistent with a pathogenic model of schizophrenia onset involving NMDA-

glutamate hypofunction and an impairment in the ability to strengthen synapses with 

experience.

We theorize that the cortical gray matter decline (Cannon et al., 2015) and functional 

dysconnectivity (Anticevic et al., 2015) previously observed in PRS individuals who 

transition to psychosis results from the failure to strengthen synapses (Citri and Malenka, 
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2008; Cooke and Bliss, 2006; Feldman, 2009), leading to an overabundance of weak 

synapses that are then subject to over-pruning (Feinberg, 1982). This could contribute to 

gray matter loss during the transition from the PRS to full-blown psychosis (Cannon et al., 

2015; Chung and Cannon, 2015; Ding et al., 2019), gray matter reduction in chronic 

schizophrenia (Levitt et al., 2010; Shenton et al., 2001), and the reduced neuropil evident in 

post-mortem studies (Glausier and Lewis, 2013; Selemon et al., 1998; Selemon and 

Goldman-Rakic, 1999). Among promising cellular mediators is dysregulated activation of 

microglia, resident immune cells in the brain that influence synaptic plasticity in health 

(Schafer et al., 2013; Zhang et al., 2014) and impair plasticity in disease (Takano et al., 

2014). In the developing brain there is an excess of synaptic connections, sculpted by 

dynamic iterations of formation and elimination on the basis of experience dependent 

patterns of neural activity (Hua and Smith, 2004), an NMDA receptor-dependent process 

(Zhang et al., 2013) supported by LTP (Durand et al., 1996). In late-childhood and 

adolescence, synaptic density decreases (Huttenlocher, 1979; Huttenlocher and Dabholkar, 

1997; Rakic et al., 1986) mediated by microglial pruning of weak/inactive synapses 

(Chechik et al., 1998; Hua and Smith, 2004; Paolicelli et al., 2011; Schafer et al., 2013, 

2012). Thus, deficient LTP may result in over-pruning of an excessive number of weak 

synapses by microglia, thereby contributing to gray matter decline and functional 

dysconnectivity (Zhan et al., 2014) during the transition to psychosis. Prenatal 

neuroinflammatory processes (Meyer, 2013) or genetic risk background (Fromer et al., 

2014; Sekar et al., 2016) could “program” for vulnerability. However, subsequent exposure 

to stress, infection, autoimmune processes and/or synaptic pruning during adolescent brain 

development may represent influences more proximal to psychosis onset.

4.3 Limitations, Future Directions

The present investigation has several important limitations. First and foremost, this is an 

interim analysis of NAPLS-3. As this study remains ongoing, group differences reported 

here await confirmation in the final sample. In addition, examination of correlations with 

clinical, behavioral and cognitive measures also awaits completion of the study. Second, 

although attempts were made to standardize VEP methods across sites, and site was 

included in statistical models, subtle differences in the recording environment across sites 

may have introduced additional variance, a price that is often paid in cross-site EEG studies 

in order to benefit from the larger sample sizes afforded by such studies. Third, VEP 

recordings in this study reflect a single assessment in time and future studies might employ 

serial recordings to observe how LTP-like visual cortical plasticity changes over time and 

correlates with changes in clinical and cognitive measures. In our prior work, we found 

limited test-retest reliability of the input-specific visual cortical plasticity effect in older HC 

and patients with chronic schizophrenia (Wynn et al., 2019), the test-retest reliability of the 

plasticity effects observed here remains to be determined. Finally, while current efforts to 

develop and validate paradigms to assess LTP-like cortical plasticity in vivo in humans have 

great potential to identify plasticity deficits as a pathophysiological mechanism in 

psychiatric disorders including schizophrenia and its prodrome, more research is needed to 

determine to how to best optimize these paradigms for induction of input-specific plasticity 

effects and for detection of abnormal plasticity in patients.
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Figure 1. 
The visual stimuli and behavioral paradigm used in these studies. A. Example tetanized, 

control, standard and target stimuli. Note: targets are always 72% contrast, but tetanized and 

target stimuli can be either vertical or horizontal gratings. B. Left: The VEP pre-VHFS 

stimulus stream consists of two 5 minute and 45 second blocks with randomly interleaved 

horizontal and vertical square wave gratings (35% contrast) at a rate of 0.83 Hz. Target 

stimuli occur approximately every 20 sec, at 72% contrast, for either stimulus orientation 

and require a button press. Center: The 4 minute VHFS session consists of 10 Hz 
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presentation of one of the orientations in 5 second blocks. Target stimuli are the same as for 

the VEP trials. Right: The VEP post-VHFS stimulus stream is the same as the pre-HFS 

blocks and occurs ~30 minutes after HFS.
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Figure 2. 
A. Double difference waves [tetanized (post-VHFS minus pre-VHFS) minus control (post-

VHFS minus pre-VHFS)] (all participants, n=292) from seven occipital electrodes nearest to 

Oz (PO3, POz, PO4, O1, Oz, O2, Iz) limited to the epoch 50 to 250 milliseconds (ms) 

served as input for permutation testing. Left: One-sample t-test statistics are calculated for 

every time sample and electrode on the double difference wave. This tests the null 

hypothesis that the double difference value is equal to zero. Right: Test statistics that 

survived an initial height-threshold (right, −1.96 ≤ t ≤ 1.96) reveal two clusters, one positive 
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cluster that was not significant (yellow, FWE p = 0.6243) and one negative cluster that was 

significant (blue, FWE p = 0.0116). Red lines define the temporal boundaries of the cluster. 

B. Double difference waves are equivalent to a Time (pre-VHFS/post-VHFS) x Stimulus 

Type (control/tetanized) interaction effect.
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Figure 3. 
A. Visual evoked potential double difference waveforms [tetanized (post-VHFS minus pre-

VHFS) minus control (post-VHFS minus pre-VHFS)] reveal a negative deflection peaking 

between 125–175 ms (right, all participants, n=292). Red lines with yellow shaded 

background indicate the time window of the significant input-specific cluster. The voltage 

scalp map (right) for this waveform displays prominent occipital/posterior activity in the 

126–223 ms time window. B. Difference waves post-VHFS minus pre-VHFS, for the 

tetanized (black) and control (green) stimuli show a negative deflection peaking between 
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100–150 ms. Voltage scalp maps (right panels) display prominent occipital/posterior activity 

in the 126–223 ms ms time window. Grand averaged VEPs for the tetanized stimulus (C) 

and control stimulus (D) during pre-VHFS (gray) and post-VHFS (purple) conditions show a 

similar C1-P1 waveform (all participants, n=292). Voltage scalp maps (right panels) display 

prominent occipital/posterior activity in the 126–223 ms time window for both stimuli and 

conditions. T-tests of pre-VHFS vs post-VHFS (in the time window of the significant cluster, 

see main text) yields a significant difference for the tetanized stimulus only: tetanized t(291) 

= −3.543, p = 0.0005; non-tetanized: t(291) = −.507, p = .613.
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Figure 4. 
A. Double difference waves [tetanized (post-VHFS minus pre-VHFS) minus control (post-

HFS minus pre-HFS)] reveal a loss of a negative deflection 125–200 ms in PRS-C (red) 

relative to PRS-NC (blue; F(1,85)=5.32, p=0.0235). Mean amplitude is plotted in the right 

panel. B. Difference waves (post-VHFS minus pre-VHFS), for the tetanized (solid) and 

control (dashed) stimuli for PRS-NC participants (blue, n=22). Right panel: A Time (pre-

VHFS/post-VHFS) x Stimulus Type (control/tetanized) interaction effect is present for PRS-

NC participants. C. Difference waves (post-VHFS minus pre-VHFS), for the tetanized 
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(solid) and control (dashed) stimuli for PRS-C (red, n=20) participants. Right panel: There is 

no time (pre-VHFS/post-VHFS) x Stimulus Type (control/tetanized) interaction effect for 

PRS-C participants.
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