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ABSTRACT OF THE DISSERTATION

Algorithms for Active Learning

by

Daniel Joseph Hsu

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Sanjoy Dasgupta, Chair

This dissertation develops and analyzes active learning algorithms for bi-

nary classification problems. In passive (non-active) learning, a learner uses a

random sample of labeled examples from a fixed distribution to select a hypothesis

with low error. In active learning, a learner receives only a sample of unlabeled

data, but has the option to query the label of any of these data points. The hope

is that the active learner needs to query the labels of just a few, carefully chosen

points in order to produce a hypothesis with low error.

The first part of this dissertation develops algorithms based on maintaining

a version space—the set of hypotheses still in contention to be selected. The version

space is specifically designed to tolerate arbitrary label noise and model mismatch

in the agnostic learning model. The algorithms maintain the version space using

a reduction to a special form of agnostic learning that allows for example-based

constraints; this represents a computational improvement over previous methods.

The generalization behavior of one of these algorithms is rigorously analyzed using

a quantity called the disagreement coefficient. This algorithm is shown to have

label complexity that improves over that of previous methods, and matches known

xii



label complexity lower bounds in certain cases.

The second part of this dissertation develops algorithms based on simpler

reductions to agnostic learning that more closely match the standard abstraction

of supervised learning procedures. The generalization behavior of these algorithms

are also analyzed in the agnostic learning model, and are shown to have label com-

plexity similar to the version space methods. Therefore, these algorithms represent

qualitative improvements over version space methods, as strict version space meth-

ods can be risky to deploy in practice. The first of these algorithms is based on a

relaxation of a version space method, and the second is based on an importance

weighting technique. The second algorithm is also shown to automatically adapt

to various noise conditions that imply a tighter label complexity analysis. Exper-

iments using this algorithm are also presented to illustrate some of the promise of

the method.
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Chapter 1

Introduction

We present an overview of active learning and the contributions of this

dissertation.

1.1 Active and Passive Learning

This dissertation is concerned with automated procedures for active learn-

ing. Active learning is best described in contrast to passive learning—a standard,

well-studied learning framework established in statistics and machine learning. In

passive learning (sometimes referred to simply as supervised learning), the goal of

a learner is to infer an accurate predictor from labeled training data. The labeled

training data are examples of input-output pairs (x, y): the output (or label) y

represents the correct answer to a question associated with the input x. For ex-

ample, in the problem of e-mail classification, the label y may be the “yes” / “no”

answer to whether a particular e-mail message x is spam or not. These labeled

examples are collected prior to the learning (training) process, and the intention is

to deploy a learned predictor to predict the labels of input instances x encountered

in the future. The goal of the learner, during the training process, is to infer such

a predictor from the training data that is accurate with respect to these future

input instances.

Active learning models a slightly different framework in which the initially

available data does not come with any labels. That is, each training data point

1
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is simply an input x without an associated label y. The goal of the active learner

is the same as that of a passive learner: to infer an accurate predictor of labels

from inputs. However, the active learner is allowed to request the label y of any

particular input x in the training data; these requests can be made sequentially,

so as to adapt to the results of previous label requests. In the e-mail classification

example, this function of the active learner can be seen as asking the user whether a

particular e-mail in the mailbox is spam or not. This interactive process of building

up a (partially) labeled data set may continue for some time, but eventually a

predictor must be returned by the active learner for use in predicting the labels of

future input instances.1

The practical motivations of the active learning framework are grounded

in the disparity between the availability of labeled and unlabeled data. Unlabeled

data is nowadays often available in vast quantities, with the raw features of input

instances easily collected by automatic processes. For instance, the internet con-

tains trillions of web pages that are readily collected by robots. However, assigning

a label to a web page (say, of the page’s subject matter) may demand significantly

more effort. Labeling typically requires some manual intervention to evaluate or

judge input instances, and this can be a costly enterprise (e.g., in terms of time or

money), especially relative to the high-throughput collection of the unlabeled data

itself. Therefore, in many modern applications of machine learning, only unlabeled

data is available cheaply and in large quantities, whereas the labels are expensive

to obtain.

The active learning framework addresses the challenge faced in these mod-

ern applications by explicitly modeling the process of obtaining labels for unlabeled

data. The hope is that the active learner just needs to request the labels of just a

few, carefully chosen points during the interactive process in order to produce an

accurate predictor.

This dissertation explores both the algorithmic and statistical aspects of

1An intermediate framework between supervised (passive) learning and active learning is called
semi-supervised learning [CSZ06]. There, the learner is given both labeled data and unlabeled
data (and typically the latter is in relative abundance), but otherwise the learning process is the
same as passive learning.
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active learning for binary classification. What are effective procedures for deter-

mining which data to label? How can these procedures take advantage of the

interactive learning process, and in what circumstances do they yield improved

learning performance compared to standard passive learners? To answer these

questions, we develop and rigorously analyze a broad class of general active learn-

ing methods that address the essential algorithmic and statistical difficulties of the

problem.

1.2 Some Motivating Examples

Learning Threshold Functions

Consider first the task of learning a threshold function of a single variable.

A single-variable threshold function fθ : R → {±1}, parameterized by the real

number θ ∈ R (the threshold value), is defined by

fθ(x) :=

{
+1 if x ≥ θ

−1 if x < θ

for all x ∈ R. Threshold functions are a basic tool for classifying univariate data.

Suppose a (passive) learner is presented with n labeled examples, i.e., pairs

(xi, yi) ∈ R × {±1} for 1 ≤ i ≤ n. A reasonable predictor that the learner could

produce is one for which the number of disagreements with the given examples is

minimal. That is, the learner could choose θ ∈ R such that

|{1 ≤ i ≤ n : fθ(xi) 6= yi}|

is as small as possible. For now, we assume that all of the labels actually correspond

to some threshold function fθ∗ , so yi = fθ∗(xi) for all 1 ≤ i ≤ n. Therefore, the

learner can easily find some threshold value θ ∈ R that has no disagreements with

the given examples, so |{1 ≤ i ≤ n : fθ(xi) 6= yi}| = 0.

Suppose now the same examples are presented to an active learner, except

that the labels yi are initially withheld. It turns out that an active learner can also

find a threshold value θ ∈ R such that fθ has no disagreements with the (xi, yi),
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and it can do so after requesting just log2 n of the labels! To see this, note the

correspondence of this problem to binary search for the target threshold θ∗: if a

requested label yi is +1, then we can infer that θ∗ ≤ xi, and therefore yj = +1

for all xj ≥ xi; if yi is −1, then θ∗ > xi, and therefore yj = −1 for all xj ≤ xi.

Thus, one can simply choose to request the label of a point xi at the median of the

unlabeled points; this is guaranteed to result in an outcome that lets the learner

label (for free) at least half of the other unlabeled points.

+

must also be +query point
(label is +)

Active Learning as Binary Search?

The strategy for learning single-variable threshold functions represents a

best-case scenario for active learning: just log2 n label requests are needed to

deduce all of the n labels, after which standard passive learning techniques (such

as returning a consistent predictor) can be readily applied. What aspects of the

learning problem made this possible?

1. At any point in the interactive process, the active learner could always make

a query (label request) that results in labeling (for free) at least half of the

other unlabeled points. Viewed another way, the query eliminates at least

half of the potential classifiers still in contention.

2. We crucially made an assumption that the labels yi = fθ∗(xi) correspond to

some threshold function fθ∗ .

Unfortunately, these aspects do not always carry over to other learning problems:

there need not always be queries that provide the information needed for a binary

search-like process, even when the labels perfectly correspond to a simple function.

And, of course, labels are often noisy, whether due to the occasional erroneous

annotation or because of model mismatch.
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Learning Interval Functions

Consider now the problem of learning single-variable interval functions fa,b :

R → {±1}, where

fa,b(x) :=

{
+1 if a ≤ x < b

−1 if x < a or x ≥ b.

Even in the case where the labels correspond exactly to some interval function

fa∗,b∗ , the active learner may need to request all labels in order to distinguish

between intervals that include any particular xi (i.e., one for which fa,b(xi) = +1),

and an interval that includes none of the xi (i.e., one for which fa,b(xi) = −1 for

all 1 ≤ i ≤ n) [Das05]. In the example depicted below, all of the boxed points are

determined to be −1, and still the active learner cannot avoid requesting the label

of the final point to choose between fa,b and fa′,b′ .

b

a′ b′

a

all − all −?

Thus, the active learning process need not take the form of a straightforward binary

search.

Consider the following two-phase strategy for learning a single-variable in-

terval function fa,b, also described in [Das05].

1. Request the label of randomly chosen xi until some yi is found such that

yi = +1. If no yi = +1, then return the empty interval function.

2. Use the binary search-like procedure for learning single-variable threshold

functions to determine the interval boundaries a and b, and return fa,b.

The crucial observation behind this algorithm is that an interval function can be

described by two single-variable threshold functions

fa,b(x) =

{
+1 if fa(x) = +1 and fb(x) = −1

−1 if fa(x) = −1 or fb(x) = +1.

The binary search for b pretends that all points to the left of positive point xi have

a negative label; the binary search for a is similar.
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The first phase of the algorithm is certainly not like binary search, but it

serves the useful purpose of identifying a starting point for binary search in the

second phase. In the worst case, the algorithm may end up querying every label

before transitioning into this second phase. But if a significant fraction of the

points are labeled +1 by fa∗,b∗ , then the first phase ends quickly.

Both phases of the algorithm are susceptible to noise. Can it be made more

robust? Suppose it is known that

|{1 ≤ i ≤ n : fa∗,b∗(xi) 6= yi}| ≤ 1

2
· |{1 ≤ i ≤ n : fa∗,b∗(xi) = +1}|.

Then, the first phase is modified so that instead of using the first positively-labeled

point as the basis for the start of the binary searches for a and b, we use the

median of the first several positively labeled points (the precise number depends

on the level of confidence desired). Note that this median point will be positively

labeled by fa∗,b∗ as long as a majority of the positively labeled points are as well.

Therefore, this modified procedure produces a point that reduces the task to that of

active learning threshold functions. Although this was not a complete nor general

solution, it suggests that with some care, active learning methods can in fact be

made robust to noise.

General Procedures

Instead of developing specific procedures for each individual learning prob-

lem of interest (e.g., a special procedure for learning of threshold functions, a

different procedure for learning interval functions, and so on), we will develop gen-

eral methods that tackle broad classes of learning problems together. Of course,

this approach cannot yield better solutions for individual problems than special-

ized methods. However, by approaching the problem of active learning from a

more abstract perspective, we can identify general issues specific to active learn-

ing algorithms that are distinguished from the concerns of passive learning. The

general procedures that are developed can then be specialized to specific problems

with fine tuning that is often anyway required in practice.
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1.3 Literature Review

The review in this section focuses primarily on algorithmic techniques for

active learning that have been rigorously analyzed. For a review of various heuristic

techniques, applications, and model extensions, see the survey of [Set09].

The theoretical study of active learning for binary classification initially

focused on a model of learning with membership queries [Ang98, Ang04]. In this

model, the learner is allowed to query the label of any unlabeled data point, even

an artificially created one. The primary drawback of this model is that the syn-

thesized data points may be too unnatural for a human to label them [LB92].

Therefore, the theoretical focus of active learning has turned to a model in which

the learner is only allowed to query the label of data points drawn from the un-

derlying distribution.

The work of Cohn, Atlas, and Ladner [CAL94] (which will be discussed in

Chapter 2) presented a selective sampling scheme based on uncertainty sampling

in noise-free settings. This scheme has been the inspiration for many subsequent

work on active learning, including the algorithms developed in this dissertation.

The idea of uncertainty sampling—querying the label of points about which the

learner is least sure about—quickly took on many forms, both in probabilistic and

non-probabilistic settings [LC94, LG94, SC00]. The query-by-committee (QBC)

algorithm of Seung, Opper, and Sompolinsky [SOS92] considered a form of uncer-

tainty sampling grounded in a Bayesian framework, where uncertainty is measured

relative to a prior distribution over hypotheses or models. QBC was formally an-

alyzed in [FSST97], where it was shown that the class of linear separators under a

uniform data distribution could be learned exponentially faster in the active learn-

ing model than in a passive learning model. A simpler (non-Bayesian) algorithm

for this task was given in [DKM05].

In the noise-free setting, active learning was abstractly studied by Dasgupta

in [Das04, Das05]. The work in [Das04] analyzed a greedy algorithm that is often

approximated by Bayesian methods (e.g., [TK00]). It also initiated the rigorous

study of the generalization properties of active learning algorithms. The work

in [Das05] characterized the label complexity of active learning problems with a
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parameter called the splitting index—upper and lower bounds on label complexity

were proved in terms of this quantity. Unfortunately, the algorithm achieving the

upper bound is generally intractable. A different perspective on sample complexity

considered in [BHW08] shows that active learning always strictly improves on the

label complexity of passive learning, although the improvement may be very small.

In the noisy setting, Kääriäinen showed a lower bound on the number of

label queries required for any active learner to achieve a particular generalization

error relative to the inherent noise rate [Kää06]. This lower bound is matched in

certain cases by an algorithm developed by Balcan, Beygelzimer, and Langford

called A2 [BBL06] (which we discuss in Chapter 2). A2 was subsequently analyzed

by Hanneke, who proved an upper bound on its label complexity in terms of a pa-

rameter called the disagreement coefficient [Han07]. The disagreement coefficient

was further studied in [Fri09, Wan09], giving further justification to algorithms

with label complexity bounded in terms of this quantity. Koltchinskii remarks

that a similar parameter was previously used for studying ratio-type empirical

processes, which has applications in passive learning [Ale87, GK06, Kol09]. A gen-

eralization of the disagreement coefficient to a certain class of loss functions was

presented in [BDL09]. This work of [BDL09] also presents a framework called im-

portance weighted active learning (which we discuss in Chapter 5), upon which one

of the algorithms in this dissertation is based. (One of the algorithms in [BDL09]

generalizes an algorithm developed in this dissertation in Chapter 4.) Finally, re-

strictions on the noise model (based on the low-noise condition of [Tsy04]) have also

been studied and algorithmically exploited [BBZ07, CN06, CN07, Han09, Kol09];

under these restrictions, the achievable label complexity interpolates between what

is achievable in the noise-free setting and the general (agnostic) noisy setting con-

sidered by [Kää06, BBL06].

1.4 Summary of Contributions

We begin by studying general approaches to active learning based on the

idea of uncertainty sampling—querying the label of points about which the learner
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is “uncertain” in a precise sense. In Chapter 2, we describe the methods of [CAL94]

and [BBL06] for (respectively) PAC and agnostic active learning. We describe a

novel analysis of the [CAL94] procedure, specifically using a parameter called the

disagreement coefficient, which was used by [Han07] for analyzing the [BBL06]

procedure. This analysis turns out to be tighter than the corresponding analysis

of [BBL06] when specialized to the PAC setting. We compare the results of both

analyses to other upper and lower bounds for active and passive learning.

Both of the procedures from [CAL94] and [BBL06] are algorithmically un-

derspecified: they require a mechanism for maintaining a subset of the hypotheses

still under consideration by the algorithm; doing this efficiently was a challenge

in the work of [CAL94] and not addressed by [BBL06]. In Chapters 3, 4, and 5,

we present reduction-based active learning methods that are more algorithmic. In

Chapter 3, we show how the procedure of [CAL94] can be viewed as a reduction

to a very standard form of PAC learning. This immediately yields efficient proce-

dures for PAC active learning whenever the corresponding PAC (passive) learning

problems can be solved. The analysis also yields general upper bounds for these

PAC active learning problems.

In Chapter 4, we show how to make the procedure of [BBL06] more algo-

rithmic by recasting it using reductions to a particular form of agnostic learning.

Unfortunately, this algorithm, like the [BBL06] procedure, suffers from a subop-

timal analysis when specialized to the PAC setting. Thus, we also describe a

more straightforward extension of the [CAL94] procedure that does recover the

tighter analysis. We show how the corresponding notions used in the analysis of

the [CAL94] procedure carry over to the agnostic setting for this new algorithm.

In Chapter 5, we describe two new algorithms based on reductions to simpler

forms of agnostic learning. These algorithms have qualitative advantages over

those in Chapter 4. The first algorithm is a relaxation of the second method

from Chapter 4 that allows for the use of reductions to simpler forms of agnostic

learning. The second algorithm is based on importance weighting [BDL09], a

technique for ensuring unbiased error estimates. We present a novel analysis of

these error estimates, which is crucial for the analysis of the importance weighting
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active learning algorithm itself.

1.5 Learning Framework

We develop and analyze our algorithms with the standard PAC and agnostic

learning frameworks in mind [Val84, KSS94]. These are standard in the study of

supervised (passive) learning, and thus will allow us to compare the performance

of our active learning procedures to their passive learning counterparts.

Let D be a distribution over X×Y where X is the input space and Y = {±1}
are the possible labels. Let (X,Y ) ∈ X × Y be a pair of random variables with

joint distribution D. Here, X represents an unlabeled data point, and Y is its

corresponding label.

Let H be a set of hypotheses mapping from X to Y . The error of a hypoth-

esis h : X → Y is

err(h) := Pr(h(X) 6= Y ).

Let h∗ := arg min{err(h) : h ∈ H} be a hypothesis of minimum error in H—we

assume for simplicity that the minimum always exist. The goal of the learner is to

return a hypothesis h ∈ H with error err(h) not much more than err(h∗).

In the realizable (PAC) setting of learning (active and passive), we assume

that h∗ has zero error err(h∗) = 0, i.e., that the labels perfectly correspond to

the optimal hypothesis h∗. In this case, we can simply write err(h) = Pr(h(X) 6=
h∗(X), since the conditional distribution of Y given X = x is deterministic. In the

agnostic setting, the distribution of (X,Y ) is arbitrary—no assumption is made

about err(h∗).

We assume a learner has access to independent and identically distributed

(iid) copies of the pair (X,Y ). However, the active learner is not immediately

given access to the labels; the labels are hidden from the learner unless the learner

explicitly queries to see them. The active learner therefore has the added objective

of minimizing the number of label queries (in addition to returning a low-error

hypothesis).

The sample complexity of an algorithm (with respect to D and H) is the
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required number of labeled examples randomly drawn from D so that, with proba-

bility at least 1−δ over the choice of the random examples, the algorithm produces

a hypothesis h ∈ H with error err(h) ≤ err(h∗) + ǫ. The label complexity of an

active learning algorithm is the number of label queries required to achieve the

same goal. Note that a standard passive learning algorithm can be viewed as an

active learning algorithm that simply queries every label. Therefore it has label

complexity equal to its sample complexity. We are interested in active learning

algorithms that improve on this baseline.



Chapter 2

Active Learning with Version

Spaces

We present two active learning algorithms based on a simple version space

approach, as well as a concept called the disagreement coefficient for analyzing the

label complexity of active learning algorithms.

2.1 Introduction

One technique that has proved theoretically profitable is to maintain a

candidate set of hypotheses (sometimes loosely called a version space), and to

query the label of a point only if there is disagreement within this set about how

to label the point. Note that if there is no disagreement within the set about how

to label a point (i.e. every hypothesis there labels the point the same way), then

the label of the point cannot be used to distinguish between any hypotheses in the

set. Now, the criteria for membership in this candidate set need to be carefully

defined so that the optimal hypothesis h∗ is always included, but otherwise the set

can be quickly pared down as more labels are queried.

To apply this technique, we need to resolve two issues: (i) what are the

criteria for membership in the candidate set, and (ii) if there are several data

points of disagreement for a candidate set, which one should we label?

In this chapter, we describe two algorithms based on this paradigm: the first

12
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for the (realizable) PAC setting due to [CAL94], and the second for the agnostic

setting due to [BBL06]. The algorithms differ in the way they address the first

issue above (due to the assumptions made in PAC learning), but are similar in the

way they address the second.

2.2 PAC Active Learning

2.2.1 Algorithm

In PAC (active) learning, we assume there exists a hypothesis h∗ ∈ H that

correctly labels every example, i.e. Pr(h∗(X) = Y ) = 1. Although this is often an

unrealistic assumption in practice, we will see that some of the algorithmic ideas

in this setting can be transferred to the more realistic agnostic setting.

The algorithm of [CAL94], which we henceforth refer to as CAL, is shown in

Figure 2.1. CAL proceeds by examining the unlabeled data points X1, X2, . . . one

at a time, and decides after each point Xt whether or not to examine (i.e. query)

its label Yt. Whenever CAL doesn’t query the label Yt, it synthesizes one Ỹt on its

own. Thus, after examining t unlabeled data points, the algorithm has a set of t

labeled examples Zt.

As suggested at the beginning of this chapter, the choice of whether or not

to query yt is made based on whether there is disagreement about how to label xt

among hypotheses in the version space Vt := V(Zt), where

Definition 2.1. For a set of labeled examples Z ⊂ X ×Y, the version space V(Z)

with respect to a hypothesis class H is

V(Z) := {h ∈ H : h(x) = y ∀(x, y) ∈ Z}

the subset of hypotheses in H consistent with the examples in Z.

For example, suppose the hypothesis class H is the set of linear separators

in the plane. The version space for the set of points depicted below contains all

linear separators consistent with the labeling of these points.



14

������
��

��

��

��

(Just two of the hypotheses are depicted.)

Formally, CAL chooses to query the label Yt if and only if Xt is in the region

of disagreement R(Vt−1) for Vt−1:

Definition 2.2. For a set of hypotheses V , the region of disagreement1 R(V ) is

R(V ) := {x ∈ X : ∃h, h′ ∈ V such that h(x) 6= h′(x)}

the set of unlabeled examples x for which there are hypotheses in V that disagree

on how to label x.

Continuing our previous example, the indicated point in the figure below is

not in the region of disagreement with respect to the current version space.

���� ��
��

��
��

����

����
��
��

Clearly, all of the hypotheses in the version space also assign the indicated point

a −1 label.

Note that Step 2(b) in CAL is unnecessary (and can simply be replaced by

Zt := Zt−1). This is because if Step 2(b) is executed in, say, iteration t, then every

h ∈ Vt−1 has h(Xt) = Ỹt; in this case,

Vt = Vt−1 ∩ {h ∈ Vt−1 : h(Xt) = Ỹt} = Vt−1.

Put another way, the version space is unchanged by the synthesized labels.

2.2.2 Correctness Analysis

CAL correctly deduces the labels assigned by h∗ whenever it doesn’t query

the true label Yt. This is formalized in the following theorem.

1[CAL94] defines a region of uncertainty with respect to a set of labeled examples Z ⊂ X ×Y;
it is equivalent to R(V(Z)).
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Algorithm 2.1 (CAL)

Initialize: Z0 := ∅, V0 := H.

For t = 1, 2, . . . , n:

1. Obtain unlabeled data point Xt.

2. If there exist h, h′ ∈ Vt−1 such that h(Xt) 6= h′(Xt):

(a) Then: Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.

(b) Else: Set Ỹt := h(Xt) for any h ∈ Vt−1, and set Zt := Zt−1 ∪
{(Xt, Ỹt)}.

3. Set Vt := {h ∈ H : h(Xi) = Yi ∀(Xi, Yi) ∈ Zt}.

Return: any h ∈ Vn.

Figure 2.1: The algorithm of [CAL94] for PAC active learning.

Theorem 2.1. Assume h∗ ∈ H satisfies h∗(Xt) = Yt for all t. Every label Ỹt

synthesized by CAL (in Step 2(b)) is the true label ( i.e. Ỹt = h∗(Xt)).

Proof. By induction on t. If CAL synthesizes the label Ỹt, then every hypothesis

h ∈ Vt−1 assigns h(Xt) = Ỹt. If t = 1 (the base case), then h∗ ∈ H = V0

so h∗(Xt) = Ỹt. If t > 1, we assume as the inductive hypothesis that Zt−1 =

{(X1, h
∗(X1)), . . . , (Xt−1, h

∗(Xt−1))}; this implies h∗ ∈ Vt−1 so h∗(Xt) = Ỹt.

We conclude that the final hypothesis returned by CAL after seeing n ran-

dom unlabeled examples is, in fact, consistent with n random labeled examples.

This means that CAL has label complexity bounded by that of a passive learning

algorithm that simply returns a hypothesis consistent with a given labeled sample.

2.2.3 Disagreement Coefficient

The cases in which CAL will have an improved label complexity over pas-

sive learning are particular to the hypothesis class H and the data distribution

D. The relevant quantity that characterizes the label complexity of CAL is the



16

disagreement coefficient, which was used in [Han07] for analyzing the label com-

plexity of the A2 algorithm of [BBL06]. A similar quantity was previously used for

studying ratio-type empirical processes in passive learning [Ale87, GK06, Kol09].

To introduce the disagreement coefficient, we first define a metric on the

set of hypotheses H.

Definition 2.3. For a random variable X ∈ X , the disagreement (pseudo) metric

ρ on H is defined by

ρ(h, h′) := Pr(h(X) 6= h′(X)).

The disagreement metric is a pseudo-metric because we may have ρ(h, h′) =

0 but h 6= h′. Nevertheless, it inherits the other metric properties from the L1

probability metric induced by the distribution of X (e.g., the triangle inequality).

Let B(h, r) := {h′ ∈ H : ρ(h, h′) ≤ r} denote the ball centered at h ∈ H of

radius r ≥ 0. We can now define the disagreement coefficient.

Definition 2.4. The disagreement coefficient θ(H,D) with respect to a hypothesis

class H and distribution D is

θ(H,D) := sup

{
Pr(X ∈ R(B(h∗, r)))

r
: r > 0

}
(2.1)

where h∗ is a (particular) hypothesis of minimum error under D.

Note that we can also consider a variant of the disagreement coefficient

in Eq. (2.1) so that the supremum is taken over r = Ω(ǫ) where ǫ > 0 is the

target error rate. This is sensible because we may only care about the distinction

between hypotheses up to some tolerable error rate ǫ. In this case, we always have

θ(H,D) ≤ O(1/ǫ).

We now give some intuition behind the disagreement coefficient. Suppose

in the course of active learning, an algorithm has narrowed down its current set of

candidate hypotheses Vt to just those of error at most rt. In the notation above,

this means that

err(h) = Pr(h(X) 6= Y ) = Pr(h(X) 6= h∗(X)) = ρ(h, h∗) ≤ rt
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for every h ∈ Vt; i.e. Vt ⊆ B(h∗, rt). Now, the only examples that can possibly help

distinguish hypotheses in Vt are those in R(Vt) ⊆ R(B(h∗, rt). This is because all

x 6∈ R(Vt) are labeled in the same way by every h ∈ Vt. As learning progresses, we

expect Vt to shrink and rt to decrease: the algorithm will need to consider fewer

hypotheses, and will be able to return a more accurate result. If the active learning

algorithm simply chooses to query the label of any randomly chosen example that

is in R(Vt), then the size of this region relative to rt will determine its label

complexity. This is the ratio captured by the disagreement coefficient.

The disagreement coefficient is derived for various (H,D) pairs in [Han07].

If H is the class of single-variable threshold functions, and X has a uniform

distribution on [0, 1], then θ(H,D) = 2. To see this, any hθ ∈ B(hθ∗ , r) has

θ ∈ [θ∗ − r, θ∗ + r], which has probability mass 2r.

r

θ∗

In the case of single-variable interval functions with the same distribution on X,

we have that θ(H,D) = max(4, 1/ Pr(h∗(X) = 1)). To see this, note that if

r < (b∗−a∗), then any ha,b ∈ B(ha∗,b∗ , r) has a ∈ [a∗−r, a∗+r] and b ∈ [b∗−r, b∗+r],

which accounts for a region of probability mass 4r;

r

a∗ b∗

if r ≥ (b∗− a∗), then B(ha∗,b∗ , r) contains every ha,b with b− a ≤ r− (b∗− a∗), and

such hypotheses potentially disagree with ha∗,b∗ everywhere.

a∗ b∗

a′ b′ a′′

r

b′′

Finally, if H = {hw : w ∈ R
d, hw(x) = sgn(w · x)} is the class of homogeneous

linear separators in R
d, and X is uniformly distributed on the surface of the unit

ball {x ∈ R
d : ‖x‖ = 1}, then π

√
d/4 ≤ θ(H,D) ≤ π

√
d.
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Algorithm 2.2 (Phased CAL)

Initialize: Z0 := ∅, V0 := H, p := 0, t0 := 0.

For t = 1, 2, . . . , T :

1. Repeatedly sample Xt until Xt ∈ R(Vtp).

2. Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.

3. Set Vt := {h ∈ H : h(Xi) = Yi ∀(Xi, Yi) ∈ Zt}.

4. If Pr(X ∈ R(Vt)) ≤ 1
2
Pr(X ∈ R(Vtp)), then set tp+1 := t and p := p + 1

(i.e. advance to the next phase).

Return: any h ∈ VT .

Figure 2.2: A variant of the CAL algorithm.

2.2.4 Label Complexity Analysis

We now give a label complexity analysis of CAL. The goal of this analysis

is to determine the number of label queries required for the algorithm to return a

hypothesis of error at most ǫ.

To more transparently illustrate the version space technique, we will ac-

tually analyze a slight variant of CAL which we call Phased CAL (Figure 2.2).

Phased CAL has similar correctness and label complexity analyses as CAL proper.

The differences between Phased CAL and CAL proper are as follows. In

Phased CAL, we assume for simplicity of analysis that H is finite. The arguments

can be made to work for infinite classes using, say, covering arguments, but we

omit these details because they distract from the core ideas.

Another difference is that the iterations of Phased CAL are divided into

phases p = 0, 1, 2, . . .. Let Ip := {tp + 1, tp + 2, . . . , tp+1} be the iterations in phase

p; each phase p is characterized by a version space Vtp fixed at the beginning of

the phase. By construction, the regions of disagreement Rtp := R(Vtp) decrease

geometrically in probability mass with p. Note that this aspect of Phased CAL

is the main point of inefficiency relative to CAL proper. CAL will query Yt only
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if Xt is in the region of disagreement for Vt, which is just a subset of Vtp if t ∈
Ip. Therefore the label complexity of Phased CAL essentially bounds the label

complexity of CAL proper.

The final difference is that Xt for t ∈ Ip is repeatedly sampled (i.e. inde-

pendent copies are instantiated) until Xt ∈ Rtp . This can be seen as a form of

rejection sampling—passing up unlabeled data points until we find one in Rtp . We

note that this is actually only a cosmetic difference, since CAL proper effectively

does this as well.

Theorem 2.2. Fix any ǫ ∈ (0, 1) and δ ∈ (0, 1). With probability at least 1 − δ,

Phased CAL returns a hypothesis h ∈ H with err(h) ≤ ǫ after querying at most

O

(
θ(H,D) ·

(
log

|H|
δ

+ log log
1

ǫ

)
· log

1

ǫ

)

labels.

Proof. Fix some p ≥ 0. Let Hp := {h ∈ Vtp : ρ(h, h∗) > rp} for some rp > 0. These

are the “bad” hypotheses in Vtp that the algorithm will eliminate before moving

onto the next phase. A bad hypothesis is eliminated (in Step 3) by observing an

example (x, y) for which h(x) 6= y. For any h ∈ Hp, we have

Pr(h(X) 6= h∗(X)|X ∈ Rtp) ≥
rp

Pr(X ∈ Rtp)
=: cp

and thus

Pr(h(Xt) = h∗(Xt) ∀t ∈ Ip|Xt ∈ Rtp ∀t ∈ Ip) ≤ (1 − cp)
tp+1−tp

by the independence of the xt. By a union bound over all h ∈ Hp, we have

Pr(∃h ∈ Hp � h(Xt) = h∗(Xt) ∀t ∈ Ip|Xt ∈ Rtp ∀t ∈ Ip) ≤ |Vtp |(1−cp)
tp+1−tp =: δp.

The above inequality states that the probability the algorithm fails to eliminate

all of the bad hypotheses Hp is at most δp.

In order to have Pr(X ∈ Rtp+1
) ≤ (1/2) Pr(X ∈ Rtp), it suffices to ensure
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that Vtp+1
⊆ B(h∗, rp) with rp := Pr(X ∈ Rtp)/(2θ(H,D)). This is because

Pr(X ∈ Rtp+1
) ≤ Pr(X ∈ R(B(h∗, rp)))

≤ θ(H,D) · rp

≤ θ(H,D) · Pr(X ∈ Rtp)

2θ(H,D)

=
1

2
· Pr(X ∈ Rtp).

With the above choice of rp, we have cp = 1/(2θ(H,D)) (for all p), so

δp = |Vtp|
(

1 − 1

2θ(H,D)

)tp+1−tp

≤ |V0|e−(tp+1−tp)/(2θ(H,D))

using the fact 1 + a ≤ ea as well as the crude bound |Vtp | ≤ |V0|. So, by a union

bound over phases p = 0, 1, . . . , P − 1, the bad hypotheses Hp are eliminated in

each phase p with probability at least

1 − |V0|
P−1∑

p=0

e−(tp+1−tp)/(2θ(H,D)).

Note that if

tp+1 − tp =

⌈
2θ(H,D) log

P |V0|
δ

⌉

for each 0 ≤ p ≤ P , then the success probability above is at least 1 − δ. That

is, with probability at least 1 − δ, the algorithm will successfully eliminate the

bad hypotheses Hp after querying at most O(θ(H,D) · log(P |V0|/δ)) labels in each

phase p. In this event, with P = O(log 1/ǫ), the final hypothesis returned has error

at most ǫ, and the number of labels queried is

P−1∑

p=0

tp+1 − tp = O

(
θ(H,D) · log

1

ǫ
·
(

log
|V0|
δ

+ log log
1

ǫ

))

as claimed.

When is the bound from Theorem 2.2 an improvement over passive learn-

ing? Suppose θ(H,D) = O(1). The bound states that, in terms of ǫ, the number

of labels required by Phased CAL is just O(log(1/ǫ) · log log(1/ǫ)). In contrast,

the number of labeled examples required of a passive learner is Ω(1/ǫ). Therefore,
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in this case, active learning provides an exponential improvement over passive

learning in label complexity.

Of course, we have assumed here that θ(H,D) is bounded. which is not

always the case. However, if we consider the alternative definition of θ(H,D) in

which the supremum is taken over r = Ω(ǫ) in Eq. (2.1), then it may be possible

to explicitly consider the dependence on ǫ and achieve a tighter label complexity

analysis. We may then view the analysis in Theorem 2.2 as applicable in the

regime where θ(H,D) is constant, understanding that another analysis may better

characterize what happens outside of this regime.

2.2.5 Discussion

We remark that CAL (and Phased CAL) is a suboptimal strategy for active

learning for a simple reason: it is content with querying the label of any point in

the disagreement region. This is evident in the analysis of Phased CAL, which

says that the number of queries to advance from one phase to the next is roughly

proportional to the disagreement coefficient θ(H,D). A better strategy would be

to query a point that potentially eliminates as many bad hypotheses as possible;

this may be many more than can be eliminated by a typical (random) point in the

region of disagreement.

A simple example of this disparity is the case where X is uniformly dis-

tributed on the unit sphere in R
d, and H is the set of homogeneous linear sepa-

rators. In this case, θ(H,D) ≈
√

d [Han07]; however, there are always points to

query that will eliminate a constant fraction of the bad hypotheses [Das05, BBZ07].

Therefore, CAL is roughly
√

d times suboptimal in label complexity, due to its con-

servativeness in choosing points to query.

A more aggressive active learning strategy was discovered by Dasgupta, who

characterized the label complexity of the algorithm by a sharper quantity called

the splitting index [Das05]. However, Dasgupta’s algorithm is computationally

intractable, whereas CAL can be made computationally tractable, as we will see

in the next chapter. We leave as an open problem whether Dasgupta’s algorithm

can be made computationally tractable, perhaps in the similar manner as CAL.
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Note that in special cases, there are efficient algorithms that achieve the same label

complexity as Dasgupta’s algorithm [FSST97, GBNT05, DKM05, BBZ07].

2.3 Agnostic Active Learning

Agnostic (active) learning differs from PAC (active) learning in that we no

longer assume there exists a hypothesis in H that correctly labels every example.

Therefore, the learner only hopes to return a hypothesis with error not much more

than that of a hypothesis h∗ ∈ H with minimum error

h∗ := arg min
h∈H

errD(h)

(we assume the minimum exists for simplicity).

The correctness of the CAL algorithm crucially relies on the assumption

that the hypothesis class H contains a classifier h∗ that perfectly labels all of the

data. Such an assumption is both often unrealistic and potentially dangerous in

practice. The second point here deserves further explanation. The consistency

analysis in Theorem 2.1 actually implies that CAL is always able to find a hy-

pothesis in H consistent with its set of labeled examples Zt, even if no h ∈ H is

consistent with the true labels. This is because the synthesized labels Ỹt always

correspond to some h ∈ Vt−1 ⊆ H, and true labels Yt are only queried if there

are hypotheses in Vt−1 consistent with both Yt = +1 and Yt = −1. Therefore,

CAL never discovers if the data is actually inconsistent with every hypotheses in

H (which is often easily checked in the non-active setting), and the hypothesis

returned can be significantly worse than the best hypothesis in the class. Thus

assuming the existence of a perfect hypothesis can be a self-fulfilling delusion in

active learning. Related inconsistency issues arise with a variety of active learn-

ing methods, including many based on uncertainty sampling and other similar

heuristics.
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2.3.1 Algorithm

The first algorithm designed for the agnostic setting is the A2 algorithm

of [BBL06], specified in Figure 2.3; it can be seen as a generalization of CAL (or

Phased CAL) to the agnostic setting. A2 proceeds in phases p = 0, 1, 2, . . . relative

to version spaces Vp, and points are drawn from the distribution conditioned falling

in R(Vp). The variable k is used to index a sequence of confidence parameters

δk := δ/(k2 + k), which guarantees that
∑

k≥1 δk ≤ δ.

The core of the algorithm is in the “else” clause of Step 2: the algorithm

draws and labels examples from the distribution D restricted to R(Vp), and then

eliminates hypotheses from Vp based on these examples. The aim here is to elim-

inate enough hypotheses so that the next disagreement region R(V ′
p+1) is half as

large in probability mass as the current one. This elimination step is based on er-

ror upper- and lower-bounds UB and LB. The requirement of these bounds is the

following. If Z is a sample drawn iid from a distribution D, then with probability

at least 1 − δ,

LB(Z, h, δ) ≤ errD(h) ≤ UB(Z, h, δ)

for all h ∈ H. For concreteness, we use

UB(Z, h, δ) := err(h, Z) + O

(√
d + log(1/δ)

|Z|

)

and

LB(Z, h, δ) := err(h, Z) − O

(√
d + log(1/δ)

|Z|

)

where d is the VC dimension of H [Tal94]. Because these bounds are allowed to

fail with probability δ, the algorithm splits the overall allowed failure probability

over successive applications of the bound by setting δk := δ/(k2 + k).

Assuming the validity of these bounds, the algorithm ensures that the op-

timal hypothesis h∗ is never eliminated. This is clear to see when the bounds

are applied to errors with respect to D: if a hypothesis h is eliminated, then

errD(h) ≥ LB(Z0, h, δk) > minh′ UB(Z0, h
′, δk) ≥ errD(h∗), so h 6= h∗. The same

logic also continues to hold by induction when applied to the restricted distribu-
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Algorithm 2.3 (A2)

Notes: δk := δ/(k2 + k) for all k ≥ 1.

Initialize: Z0 := ∅, V0 := H, k := 1.

For p = 0, 1, 2, . . . until

Pr(X ∈ R(Vp)) ·
(

min
h′∈Vp

UB(Zp, h
′, δk) − min

h′∈Vp

LB(Zp, h
′, δk)

)
≤ ǫ :

1. Let Zp := ∅, np := 0, V ′
p+1 := Vp, k := k + 1.

2. Repeat until Pr(X ∈ R(V ′
p+1)) ≤ 1

2
Pr(X ∈ R(Vp)):

If

Pr(X ∈ R(Vp)) ·
(

min
h′∈Vp

UB(Zp, h
′, δk) − min

h′∈Vp

LB(Zp, h
′, δk)

)
≤ ǫ

Then: return h := arg minh′∈Vp
UB(Zp, h

′, δk).

Else:

i. Let k := k + 1.

ii. Let np := 2np + 1.

iii. For t = 1, . . . , np:

A. Repeatedly sample Xp,t until Xp,t ∈ R(Vp).

B. Query Yp,t, and add (Xp,t, Yp,t) to Zp.

iv. Let V ′
p+1 := {h ∈ Vp : LB(Zp, h, δk) ≤ minh′∈Vp

UB(Zp, h
′, δk)}

and k := k + 1.

3. Let Vp+1 := V ′
p+1 and p := p + 1.

Return: h := arg minh∈Vp
UB(Zp, h, δk).

Figure 2.3: The A2 algorithm of [BBL06] for agnostic active learning.
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tions. In this way, the algorithm pares down the version space while ensuring

convergence towards h∗.

2.3.2 Label Complexity Analysis

The following theorem about A2 is due to [Han07].

Theorem 2.3 ([Han07]). With probability at least 1 − δ, A2 returns a hypothesis

h with error err(h) ≤ err(h∗) + ǫ and requests at most

O

(
θ(H,D)2 ·

(
err(h∗)2

ǫ2
+ 1

)
·
(

d log2 1

ǫ
+

(
log

1

δ
+ log log

1

ǫ

)
· log

1

ǫ

))

labels, where d is the VC dimension of H.

To interpret the label complexity guarantee, we first ignore the dependence

on the disagreement coefficient. The supervised sample complexity is

O

((
err(h∗)

ǫ2
+

1

ǫ

)
·
(

d log
1

ǫ
+ log

1

δ

))

[VC71]. Up to logarithmic factors, the d err(h∗)/ǫ2 term in the supervised bound

is scaled by a factor of err(h∗) in the A2 bound, while the explicit d/ǫ term in

the supervised bound is reduced to d. Note that if err(h∗) = 0, then the label

complexity is completely reduced to d times logarithmic factors in 1/ǫ.

We can also compare this upper bound for A2 to lower bounds on the num-

ber of labels that any active learner must query in order to produce a hypothesis

of error at most err(h∗) + ǫ. First, there is a lower bound of

Ω

(
d err(h∗)2

ǫ2

)

due to [BDL09]. This explains the d err(h∗)2/ǫ2 term in the A2 bound.

Second, there is an information-theoretic lower bound of

Ω(logM(ǫ))

where M(ǫ) is the size of the largest ǫ-packing of the metric space (H, ρ) (this is

argued in [KMT93]: each label query provides a single bit of information, and at
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least logM(ǫ) bits are needed to describe a hypothesis in a maximal packing). A

result due to [Hau95] states that there exist data distributions for which M(ǫ) =

Ω((1/ǫ)d). Therefore, we have a lower bound of

Ω(d log 1/ǫ).

This explains the d term in the A2 bound.

Now we consider the disagreement coefficient. If err(h∗) = 0, then Phased

CAL depends only linearly on θ(H,D), whereas A2 depends quadratically on it. In

fact, this is not due to slack in the analysis; it is shown in [Han07] that A2 queries

at least Ω(θ(H,D)2) labels. It was posed as an open question by Hanneke whether

this quadratic dependence was necessary of any agnostic active learner. We will

see in a later chapter that, in fact, a linear dependence is sufficient. It is, however,

an open question as to whether any dependence on the disagreement coefficient is

necessary in the label complexity of all active learners.



Chapter 3

Reduction to PAC Learning

We recast the active learning algorithm of [CAL94] as a reduction to PAC

learning. This view of the algorithm also leads to a simpler analysis of its label

complexity.

3.1 Introduction

The CAL algorithm from the previous chapter (Algorithm 2.1) may appear

to require explicit bookkeeping of which hypotheses remain in the version space

Vt. While this is certainly doable when the hypothesis class is small and easily

enumerable, it appears intractable for large or infinite classes.

However, with some thought, it can be seen that the task of determining

membership in the version space Vt can be reduced to a standard method for PAC

learning – that of checking the existence of a hypothesis consistent with a set of

labeled data. This can be much easier than an explicit enumeration of the version

space. For instance, when H is the class of linear separators in R
d, checking for the

existence of consistent hypothesis can be done by solving a simple linear program.

Viewing CAL as a reduction not only provides a tractable implementation

for many hypothesis classes, it also allows for a simpler label complexity analysis.

The analysis given in Theorem 2.2 focuses on eliminating hypotheses in the version

space Vt. We will show another, comparable analysis that avoids this fixation on

Vt. Instead, the analysis will more directly relate to the task of finding consistent

27
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Algorithm 3.1 (Reduction-based CAL)

Initialize: Z0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. If there exists both

• h+1 ∈ H consistent with Zt−1 ∪ {(Xt, +1)}, and

• h−1 ∈ H consistent with Zt−1 ∪ {(Xt,−1)}

(a) Then: Query Yt, and set Zt := Zt−1 ∪ {(Xt, Yt)}.

(b) Else if only hy exists (for some y ∈ {±1}): Set Ỹt := y and set

Zt := Zt−1 ∪ {(Xt, Ỹt)}.

Return: any h ∈ H consistent with Zn.

Figure 3.1: The CAL algorithm recast using reductions.

hypotheses, i.e., the reduction to PAC learning.

3.2 A Reduction-based Characterization of CAL

The key to the reduction (Algorithm 3.1) is that the version space Vt used

by CAL can be implicitly tracked through the labeled sample Zt. The existence of

h, h′ ∈ Vt−1 such that h(Xt) 6= h′(Xt) is equivalent to the existence of both

1. a hypothesis h+1 ∈ H consistent with Zt−1 ∪ {(Xt, +1)}, and

2. a hypothesis h−1 ∈ H consistent with Zt−1 ∪ {(Xt,−1)}.

Finding hypotheses consistent with a set of labeled examples is a standard approach

to PAC learning. Indeed, it is well-known that if Zn is a random sample of n

examples labeled by some h∗ ∈ H, then with probability at least 1− δ, any h ∈ H
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consistent with Zn has error err(h) at most

O

(
1

n

(
d log n + log

1

δ

))
(3.1)

where d is the VC dimension of H [BEHW89]. Moreover, the task of finding consis-

tent hypotheses can be reduced to (distribution-free) PAC learning. In this sense,

CAL can be viewed as a reduction from PAC active learning to PAC supervised

learning.

To see the claimed equivalence of Algorithm 2.1 (CAL) and Algorithm 3.1

(Reduction-based CAL), we proceed by induction as in Theorem 2.1 by assuming

h∗(X) = Y for all (X,Y ) ∈ Zt−1, including the synthesized labels. This means

h∗ ∈ Vt−1. If both h+1 and h−1 exist, then they are both consistent with Zt−1 and

therefore both in Vt−1. But because h+1(Xt) 6= h−1(Xt), CAL would query the

label Yt = h∗(Xt) in this case. On the other hand, if (say) h−1 does not exist, then

no hypothesis consistent with Zt−1 is also consistent with (Xt,−1). This means

every hypothesis consistent with Zt−1 (i.e., every hypothesis in Vt−1), including h∗,

must label Xt as +1.

3.3 A Simpler Label Complexity Analysis

In light of the reduction in Algorithm 3.1, we can give a simpler label

complexity analysis of the algorithm.

3.3.1 Some Refined Disagreement Metric Notions

First, we define some refined notions of region of disagreement and the

disagreement coefficient.

Definition 3.1. The region of disagreement R(h, r) of radius r around a hypoth-

esis h ∈ H in the disagreement metric space (H, ρ) is

R(h, r) := {x ∈ X : ∃h′ ∈ B(h, r) such that h(x) 6= h′(x)}

the set of unlabeled examples x for which there exists a hypothesis h′ at distance at

most r from h (under ρ) that disagrees with h on x.
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The quantity is more refined than the earlier notion of the region of dis-

agreement with respect to a set of hypotheses V , because it restricts attention to

disagreement with a particular hypothesis, rather than any pair of hypotheses V .

For instance, we have R(h∗, r) ⊆ R(B(h∗, r)), but the reverse may not be true.

Definition 3.2. The disagreement coefficient θ(h,H,D) for a hypothesis h ∈ H
in the disagreement metric space (H, ρ) is

θ(h,H,D) := sup

{
Pr(X ∈ R(h, r))

r
: r > 0

}
.

We will often simply write θ to mean θ(h∗,H,D).

3.3.2 Label Complexity Analysis

We are now ready to give the new label complexity analysis.

Theorem 3.1. Conditioned on an event that occurs with probability at least 1− δ,

the expected number of labels queried by Reduction-based CAL after n iterations is

at most

O

(
θ ·
(

d log n + log
1

δ

)
· log n

)
.

Proof. First, we argue that with probability at least 1 − δ, we have the following

property. For all t ≥ 1, every h ∈ H consistent with Zt has error err(h) at most

O

(
1

t

(
d log t + log

t(t + 1)

δ

))
. (3.2)

This simply follows from applying Eq. (3.1) for every t ≥ 1, substituting δ/(t2 + t)

in place of δ, and then applying a union bound over all t.

Now we condition on the event that the above property holds. The algo-

rithm queries Yt if and only if there exists h ∈ H such that:

1. h is consistent with Zt−1, and

2. h disagrees with h∗ on Xt.

The first condition implies that the error of such a hypothesis h ∈ H can be

bounded using Eq. (3.2), i.e. err(h) ≤ O((1/t)(d log t + log(t/δ))). Let rt denote
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the value of this bound. This, combined with the second condition, implies that

Xt is in the region of disagreement for the subset of hypotheses at most rt away

from h∗, i.e. Xt ∈ R(h∗, rt). By the definition of the disagreement coefficient θ, we

have

Pr(Xt ∈ R(h∗, rt)) ≤ θ · rt.

Let Qt ∈ {0, 1} be the random variable that indicates if the label Yt is

queried. Then the expected number of queries after n iterations is

E

[
n∑

t=1

Qt

]
=

n∑

t=1

E[E[Qt|Zt−1, Xt]]

≤
n∑

t=1

E [Pr(∃h ∈ H consistent with Zt−1 ∪ {(Xt,−h∗(Xt))}|Zt−1, Xt)]

≤
n∑

t=1

Pr(∃h ∈ B(h∗, rt) s.t. h(Xt) 6= h∗(Xt))

=
n∑

t=1

Pr(Xt ∈ R(h∗, rt))

≤
n∑

t=1

θ · O
(

1

t

(
d log t + log

t(t + 1)

δ

))

= O

(
θ ·
(

d log n + log
1

δ

)
· log n

)

as claimed.

The label complexity guarantee in Theorem 3.1 can be related back to that

in Theorem 2.2 as follows. First, while Theorem 3.1 is stated in terms of the (condi-

tional) expectation of the number of labels queried, it can easily be converted into

a high-probability guarantee by simply applying standard large deviation bounds

for martingales (see, e.g., [MR95]). Second, to give a label complexity guarantee

in terms of the target error rate ǫ, one simply needs to substitute a value of n

for which the error in Eq. (3.1) is at most ǫ. This is because the final hypothesis

returned by the algorithm is consistent with n labeled examples drawn iid from D,

and therefore has error bounded as in Eq. (3.1). Finally, we allow any hypothesis

class H with finite VC dimension d in Theorem 3.1 (but note that d ≤ log |H|,
so the bound here can only be tighter) and use the more refined variant of the
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disagreement coefficient1. Now, it should be clear that the two stated theorems

provide essentially the same guarantee on the label complexity of CAL.

1We note that the argument in Theorem 2.2 can be reworked in terms of the VC dimension
d by working with a finite covering of H of size O((1/ǫ)d), and also be written in terms of
θ(h∗,H,D) rather than θ(H,D).



Chapter 4

Reduction to Agnostic Learning I:

Implicit Version Spaces

We recast the A2 algorithm of [BBL06] as a reduction to a form of agnos-

tic learning. We also describe a generalization the algorithm of [CAL94] to the

agnostic setting.

4.1 Introduction

Viewing the CAL algorithm using reductions to a form of PAC learning

is rather straightforward, as testing for membership in the current version space

precisely corresponds to checking for consistency with the current set of labeled

examples. Such a test fails in the agnostic setting since it may be that no hypothesis

in the version space is consistent with the examples.

Recall our example from Chapter 2 where H was the class of two-dimensional

linear separators, and the first six data were labeled in the following manner.

���� ���
�
�
�

��
��

����

����
��
��

If it is assumed that the data is linearly separable (i.e., the labels correspond to

some h∗ ∈ H), then the label of the indicated point is already determined: it must

be labeled −1, as every linear separator consistent with the first six data label it

33
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as −1. But this logic is invalid without the separability assumption, as it could

be that the optimal hypothesis in H disagrees with these first six labels. The

sampling error with just six data is too large to reliably conclude that the optimal

hypothesis would label the seventh point as −1. On the other hand, with more

labeled data (as depicted below), such a conclusion becomes more plausible.
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A hypothesis that labels the indicated point +1 label would have to misclassify

many other points—an unlikely event if the optimal hypothesis has low error.

We need to generalize the test developed for the separable setting to the

agnostic setting. Our reduction will divide the examples into two sets, S̃ and T

(the significance of the ornament on S̃ will be explained later). The set S̃ will

always contain examples consistent with the best hypothesis in the class, while

T may contain examples on which even the best hypothesis errs. Assuming we

can manage this, it would be reasonable for a learning algorithm to simply locate

a hypothesis h ∈ H consistent with S̃, and otherwise with minimum error with

respect to T . Thus, the form of agnostic learning we use for our reductions is

a variant of empirical risk minimization, which we encapsulate in the following

subroutine LEARNH:

LEARNH(S̃, T ) returns h ∈ H such that err(h, S̃) = 0 and err(h, T ) is
minimum over all h ∈ H. If no hypothesis h ∈ H is consistent with S̃,
signal this failure by returning ⊥.

It is well-known that standard empirical risk minimization is a consistent method

for agnostic learning: if Zt is a random sample of t examples from D, then with

probability at least 1 − δ, the empirical minimizer h := arg minh∈H err(h, Zn) has

error err(h) at most

err(h∗) + O

(√
err(h∗) · d log n + log(1/δ)

n
+

d log n + log(1/δ)

n

)
(4.1)

where d is the VC dimension of H and h∗ ∈ H is a hypothesis of minimum (true)

error [VC71]. Therefore, the extra stipulation—requiring the hypothesis h :=
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LEARNH(S̃, T ) be consistent with S̃—is the mechanism we use to maintain an

implicit version space, which we hope to gradually reduce in the same manner as

the CAL algorithm for the PAC setting.

We note that exact implementation of the LEARNH subroutine is often

intractable in high dimensions. Indeed, agnostic supervised learning is computa-

tionally hard for many hypothesis classes such as half-spaces [Fel06, GR06], and of

course, agnostic active learning is at least as hard in the worst case. However, we

will see that the LEARNH subroutine is only called on samples from the underlying

unlabeled data distribution, and not on pathologically hard instances (like those

arising from hardness reductions) unless they are inherent in the data. Therefore,

we think of LEARNH as an ideal abstraction of agnostic supervised learning, with

the understanding that it may be only approximately implemented in practice.

4.2 A Reduction-based Variant of A2

We first describe a method for recasting the A2 algorithm of [BBL06] using

reductions to agnostic learning. The reduction (Algorithm 4.1) is specified in

terms of the LEARNH subroutine detailed above. There are two key differences

between Reduction-based A2 algorithm and A2 proper (Algorithm 2.3). First,

Reduction-based A2 operates on an initial sample U0 of iid copies of X, whereas

A2 involves computing probabilities with respect to the distribution of X. Using a

uniform distribution over the sample U0 is sufficient as long as U0 is large enough

for true errors of hypotheses err(h) to be closely approximated by empirical errors

computed with respect to the sample U0 (assuming that the proper labels are

given). Second, Reduction-based A2 implicitly maintains a version space through

example-based constraints (enforced using the constraint mechanism in LEARNH).

Examples are added to the constraint set S̃ only if they are consistent with the h∗,

the best hypothesis in the class. This guarantees that h∗ is never eliminated from

the version space.
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Algorithm 4.1 (Reduction-based A2)

Notes: δk := δ/(k2 + k) for all k ≥ 1; see Eq. (4.2) for the definition of ∆.

Initialize: U0 := {x1, x2, . . . , xm}, S̃0 := ∅, n0 := 1, k := 0.

For phase p = 0, 1, 2, . . .:

1. k := k + 1; pk := p.

2. Let U ′ be a random subset of Up of size np.

3. Let Tp := {(xi, yi) : xi ∈ U ′}, querying the labels yi as needed.

4. Let hp := LEARNH(S̃p, Tp).

5. If (|Up|/|U0|) · ∆(Tp, δk) ≤ ǫ, then return hp.

6. Let U ′ := ∅ and S̃ ′ := ∅.

7. For each x ∈ Up:

(a) Let h′
x,p := LEARNH(S̃p ∪ {(x,−hp(x))}, Tp).

(b) If h′
x,p = ⊥ or err(h′

x,p, Tp) − err(hp, Tp) > ∆(Tp, δk), then U ′ :=

U ′ ∪ {x} and S̃ ′ := {(x, hp(x))}.

8. Let Up+1 := Up \ U ′ and S̃p+1 := S̃p ∪ S̃ ′.

9. If |Up+1|/|U0| ≤ ǫ, then return hf := LEARNH(S̃p+1, ∅).

10. If |Up+1| > (1/2)|Up|:

(a) Then: repeat phase p with np := 2np.

(b) Else: continue to phase p + 1 with np+1 := 1.

Figure 4.1: The A2 algorithm recast using reductions.
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4.2.1 Active Learning with a Fixed Sample

We will view U0 as the unlabeled components of m iid copies of (X,Y )—

call them (X1, Y1), . . . , (Xm, Ym). The labels Yi corresponding to the Xi are hidden

unless the algorithm queries for them. Let Z0 := {(X1, Y1), . . . , (Xm, Ym)} be the

fully-labeled set. Uniform convergence results imply that

m = Ω

(
1

ε2

(
d + log

1

η

))

suffices to ensure, with probability at least 1−η/2, that | err(h)−err(h, Z0)| ≤ ε/3

for all h ∈ H, where d is the VC dimension of H [Tal94]. If the goal of the learning

algorithm is to return a hypothesis of error minh∈H err(h) + ε with probability at

least 1−η, we simply need to find a hypothesis of error at most minh∈H err(h, Z0)+

ε/3 with probability at least 1−η/2 (conditioned on the initial sample Z0). This see

that this is sufficient, let h∗
D := arg minh∈H err(h) and h∗ := arg minh∈H err(h, Z0).

If err(h, Z0) ≤ err(h∗, Z0) + ε/3, then

err(h) = err(h∗
D) + (err(h, Z0) − err(h∗

D, Z0))

+ (err(h) − err(h, Z0)) + (err(h∗
D, Z0) − err(h∗

D))

≤ err(h∗
D) + (err(h∗, Z0) + ε/3 − err(h∗

D, Z0)) + ε/3 + ε/3

≤ err(h∗
D) + ε.

Therefore, we simply set the target ǫ := ε/3 and allow probability of failure δ :=

η/2; now treat the uniform distribution over a realization of the initial sample

Z0 = {(x1, y1), . . . , (xm, ym)} as the base distribution for which h∗ is optimal.

4.2.2 Deviation Bounds for Bootstrap Samples

As in the original A2 algorithm, we will evaluate upper- and lower-bounds

on the error of hypotheses. These bounds will be probabilistic, holding with prob-

ability at least 1 − δ over a random sample from Z0 (or some subset thereof).

Because we draw multiple random samples over the course of the algorithm, we

allow the bounds to fail with probability δk := δ/(k2 +k) on the kth sample (which

comes during phase pk), so that the total failure probability is at most
∑

k≥1 δk ≤ δ.
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The quantity ∆(T, η) is derived from deviation bounds for bootstrap sam-

ples. Note that the projection of the hypothesis class H onto U0 is bounded in size

by S(H,m) = O(md) [Sau72], where for a family F of functions f : Z → {0, 1},

S(F ,m) := sup{|{(f(z1), . . . , f(zm))}| : (z1, . . . , zm) ∈ Zm}

is the mth shatter coefficient of F . (This is a worst case bound; the size of the

projection can be much smaller.)

Therefore we only need to bound the deviations of errors for at most O(md)

hypotheses. This observation is standard in the proof of many uniform convergence

bounds [VC71], but here we use it explicitly because we are actually dealing with

a fixed, finite sample U0.

We can therefore employ large deviation inequalities to bound the deviation

of err(h, T ) from err(h, Z0), where T is a random subset of Z0.

Lemma 4.1. Pick any η ∈ (0, 1) and finite Z0 ⊆ X ×Y. With probability at least

1 − η over the choice of a random subset T of Z0,

| err(h, Z0) − err(h, T )| ≤
√

log(2M/η)

2|T |

for all h ∈ H, where M := |{(h(x) : (x, y) ∈ Z0) : h ∈ H}|.

Proof. An easy application of Hoeffding’s inequality and the union bound.

In light of this, we set

∆(T, η) := 2 ·
√

log(2M/η)

2|T | (4.2)

where M is the quantity specified in the lemma, noting that M = O(md). The

following corollary is immediate given the definition of ∆ and δk.

Corollary 4.1. With probability at least 1 − δ over the choice of random samples

{Tpk
: k ≥ 1},

|(err(h, Zpk
) − err(h∗, Zpk

)) − (err(h, Tpk
) − err(h∗, Tpk

))| ≤ ∆(Tpk
, δk) (4.3)

for all h ∈ H and all k ≥ 1.
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4.2.3 Correctness Analysis

For each p, let Zp be the subset of labeled examples from Z0 whose unlabeled

component is in Up. Note that Z0 \ Zp = Sp, where Sp (lacking the ornament) is

the same as S̃p, except with the true labels y swapped in for the synthesized labels

ỹ. Therefore, if h, h′ ∈ H agree on how to label points in S̃p, then err(h, Z0 \Zp) =

err(h′, Z0 \ Zp). This will be a key point used to prove the following lemma.

Lemma 4.2. Assume the bound from Eq. (4.3) holds for all h ∈ H and all k ≥ 1.

For all p ≥ 0, h∗ is consistent with all examples in S̃p, and

err(h∗, Zp) ≤ err(h, Zp) (4.4)

for all h ∈ H consistent with examples in S̃p.

Proof. By induction on p. The base case p = 0 is trivially true by the definitions

of Z0, S̃0, and h∗. So pick ℓ ≥ 0 and assume as the inductive hypothesis that h∗ is

consistent with all examples in Sℓ and that Eq. (4.4) holds for p = ℓ. First, it is clear

that hℓ 6= ⊥ by the inductive hypothesis, since h∗ is consistent with Sℓ. Suppose

for sake of contradiction that some (x, ỹ) is added to S̃ ′, but h∗(x) 6= ỹ = hℓ(x). It

must be that h′
x,ℓ 6= ⊥ and

err(h′
x,ℓ, Tℓ) − err(hℓ, Tℓ) > ∆(Tℓ, δk)

for the current value of k. Moreover, since Tℓ is a random subset of Zℓ, we have

by Corollary 4.1 and the definition of h′
x,ℓ, that

err(h∗, Zℓ) − err(hℓ, Zℓ) ≥ err(h∗, Tℓ) − err(hℓ, Tℓ) − ∆(Tℓ, δk)

≥ err(h′
x,ℓ, Tℓ) − err(hℓ, Tℓ) − ∆(Tℓ, δk)

> ∆(Tℓ, δk) − ∆(Tℓ, δk) = 0

so err(h∗, Zℓ) > err(hℓ, Zℓ), a contradiction of the inductive hypothesis. Therefore

h∗(x) = ỹ for all (x, ỹ) added to S̃ ′, which are those ultimately added to S̃ℓ+1.

Note that each such x ∈ U ′, so x /∈ Uℓ+1.
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Take any h ∈ H consistent with examples in S̃ℓ+1; such an h therefore

agrees with h∗ on S̃ℓ+1. Then err(h, Z0 \ Zℓ+1) = err(h∗, Z0 \ Zℓ+1), so

err(h, Z0) =
|Z0 \ Zℓ+1|

m
· err(h, Z0 \ Zℓ+1) +

|Zℓ+1|
m

· err(h, Zℓ+1)

=
|Z0 \ Zℓ+1|

m
· err(h∗, Z0 \ Zℓ+1) +

|Zℓ+1|
m

· err(h, Zℓ+1)

= err(h∗, Z0) +
|Zℓ+1|

m
· (err(h, Zℓ+1) − err(h∗, Zℓ+1)).

Because err(h, Z0) ≥ err(h∗, Z0) by definition of h∗, it must be that err(h, Zℓ+1) ≥
err(h∗, Zℓ+1).

Theorem 4.1. The following holds with probability at least 1 − δ over the choice

of random subsets generated by Reduction-based A2. If Reduction-based A2 returns

a hypothesis h, then err(h, Z0) ≤ err(h∗, Z0) + ǫ.

Proof. We first apply the bounds from Corollary 4.1, which hold with probability

at least 1− δ. Then, Lemma 4.2 implies that h∗ is consistent with all examples in

S̃p for all p ≥ 0. Therefore,

err(h, Z0) =
|Z0 \ Zp|

m
· err(h, Z0 \ Zp) +

|Zp|
m

· err(h, Zp)

=
|Z0 \ Zp|

m
· err(h∗, Z0 \ Zp) +

|Zp|
m

· err(h, Zp)

= err(h∗, Z0) +
|Zp|
m

· (err(hp, Zp) − err(h∗, Zp))

= err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Zp) − err(h∗, Zp)). (4.5)

If a hypothesis h is returned in phase p, then either (|Up|/|U0|)·∆(Tp, δk) ≤ ǫ,

or |Up+1|/|U0| ≤ ǫ. In the former case, we have h = hp = LEARNH(S̃p, Tp). Using

Eq. (4.5) and Corollary 4.1, we have

err(h, Z0) = err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Zp) − err(h∗, Zp))

≤ err(h∗, Z0) +
|Up|
|U0|

· (err(hp, Tp) − err(h∗, Tp) + ∆(Tp, δk))

≤ err(h∗, Z0) +
|Up|
|U0|

· ∆(Tp, δk)

≤ err(h∗, Z0) + ǫ.
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In the latter case, we have h = LEARNH(S̃p+1, ∅), so using Eq. (4.5), we have

err(h, Z0) = err(h∗, Z0) +
|Up+1|
|U0|

· (err(h, Zp+1) − err(h∗, Zp+1))

≤ err(h∗, Z0) + ǫ

as required.

4.2.4 Discussion

Reduction-based A2 essentially provides a particular implementation of A2

proper using the LEARNH primitive on a finite random sample. This is a sort

of “batch mode” active learning algorithm in that all of the unlabeled data is

accessed up front. One advantage of such methods is that decisions for whether

to query a label can be made with full knowledge of other points that could also

be labeled. Note that it is not completely clear if Reduction-based A2, or even A2

proper, fully exploits this advantage—we leave this as an interesting open question.

On the other hand, if additional unlabeled data is acquired, it is not immediately

obvious how to incorporate them into the active learning process.

In contrast to Reduction-based A2, CAL operates by examining the data

one at a time. In this “online mode” of active learning, the label of an unlabeled

point is either queried upon first seeing this point, or never at all. Thus, this

style of active learning is complementary in the above mentioned strength and

weakness of “batch mode” active learning. In the next section, we present a more

direct generalization of CAL to agnostic active learning that retains the “online”

aspect. It will also improve on the label complexity guarantees in Theorem 2.3

that were afforded to A2 proper.

4.3 An Agnostic Generalization of CAL

A more direct generalization of CAL to the agnostic setting comes from

viewing CAL in reduction form (Algorithm 3.1). By replacing the PAC notions

used in CAL with appropriate agnostic analogues, we arrive at the Agnostic CAL

algorithm, which is specified in Algorithm 4.2. Specifically:
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Algorithm 4.2 (Agnostic CAL)

Notes: δt := δ/(t2 + t) for all t ≥ 1; see Eq. (4.10) for the definition of ∆.

Initialize: S̃0 := ∅, T0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := LEARNH(S̃t−1, Tt−1), and

(b) h′
t := LEARNH(S̃t−1 ∪ {(Xt,−ht(Xt))}, Tt−1).

3. If h′
t 6= ⊥ and

err(h′
t, S̃t−1 ∪ Tt−1) − err(ht, S̃t−1 ∪ Tt−1) ≤ ∆(h′

t, ht, S̃t−1 ∪ Tt−1, δt−1)

(a) Then: Query Yt, and set S̃t := S̃t−1 and Tt := Tt−1 ∪ {(Xt, Yt)}.

(b) Else: Set Ỹt := ht(Xt), and S̃t := S̃t−1 ∪ {(Xt, Ỹt)} and Tt := Tt−1.

Return: hn+1 := LEARNH(S̃n, Tn).

Figure 4.2: The Agnostic CAL algorithm.
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• In place of the reduction to finding consistent hypotheses, we use the sub-

routine LEARNH to select minimize empirical error over an implicit version

space.

• Instead of simply checking for the existence of consistent hypotheses, we use

a robust test that compares empirical errors.

4.3.1 Deviation Bounds for Error Differences

The test used by Agnostic CAL (Step 3 in Algorithm 4.2) appears similar

to the one used in Reduction-based A2 (Step 7(b) in Algorithm 4.1). However, the

test used by Reduction-based A2 compares the empirical errors estimated from a

random labeled samples, whereas this does not appear to be the case with that of

Agnostic CAL: the empirical errors are computed using labels in S̃t−1 determined

by the algorithm, rather than queried (i.e., drawn from the underlying distribu-

tion).

The key trick to justifying the test is to consider the deviations of empirical

error differences from their expectations, rather than simply the deviations of

empirical errors from their expectations (as was done in Lemma 4.1 for Reduction-

based A2). For any n, let

Sn := {(Xi, Yi) : (Xi, Ỹi) ∈ S̃n}

be the set of labeled examples the same as S̃n, except with the true labels swapped

in. Note, then, that Sn ∪ Tn is an iid sample of n labeled examples. Consider two

hypotheses h and h′, both of which are consistent with a set of labeled examples

S̃n. Then, we have

err(h, S̃n ∪ Tn) − err(h′, S̃n ∪ Tn) = err(h, Sn ∪ Tn) − err(h′, Sn ∪ Tn).

In other words, the difference in empirical errors on S̃n ∪ Tn is precisely the same

as the difference in empirical errors on Sn ∪ Tn. Therefore, we can apply bounds

similar to those from Lemma 4.1, so long as we are concerned only with hypotheses

that agree on S̃n.
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However, the bounds similar to those from Lemma 4.1 are insufficient for

our purposes. This is because such bounds do not take into account variance in-

formation: specifically, the fact that deviations scale not only with the size of the

random sample, but also with the variance. The variance of err(h, Sn ∪ Tn) is

err(h)(1− err(h))/n, so the further err(h) is from 1/2, the smaller the variance is.

Note that if err(h) = 0, then the deviations ought to behave like the bounds used

in the analysis of CAL (e.g., Eq. (3.1)). We will instead use normalized uniform

convergence bounds [VC71], which interpolate between O(1/
√

n) and O(1/n), de-

pending on expectation of the random variable in question.

There is one more detail to deal with. The bound we will use deals with

{0, 1}-valued functions, whereas the empirical error differences err(h, Sn ∪ Tn) −
err(h′, Sn ∪ Tn) are the averages of {−1, 0, +1}-valued functions. We will work

around this in the following manner. Let Zn := Sn ∪ Tn and Z̃n := S̃n ∪ Tn. Let

A := {ah,h′ : (h, h′) ∈ H2} and B := {bh,h′ : (h, h′) ∈ H2}, where

ah,h′(x, y) := 1(h(x) 6= y ∧ h′(x) = y)

bh,h′(x, y) := 1(h(x) = y ∧ h′(x) 6= y).

Then, define

an(h, h′) :=
1

n

∑

(Xi,Yi)∈Zn

ah,h′(Xi, Yi)

bn(h, h′) :=
1

n

∑

(Xi,Yi)∈Zn

bh,h′(Xi, Yi).

Define ãn and b̃n similarly, replacing Zn with Z̃n. We have

an(h, h′) − bn(h, h′) = err(h, Zn) − err(h′, Zn)

E[an(h, h′) − bn(h, h′)] = err(h) − err(h′).

We can now state our deviation bounds for error differences.

Lemma 4.3. Pick any n ≥ 1 and η ∈ (0, 1). Let

εn :=
4

n
·
(

2d ln
2en

d
+ ln

24

η

)
.
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Let Zn := {(X1, Y1), . . . , (Xn, Yn)} be a set of n iid copies of (X,Y ), Sn ⊆ Zn

an arbitrary subset; Tn := Zn \ Sn; S̃n := {(Xi, ỹi) : (Xi, Yi) ∈ Sn} for any

ỹ1, . . . , ỹn ∈ Y; and Z̃n := S̃n ∪ Tn. The following holds with probability at least

1 − η.

For all h ∈ H,

−min
(
εn +

√
εn · err(h),

√
εn · err(h, Zn)

)

≤ err(h) − err(h, Zn) ≤ min
(√

εn · err(h), εn +
√

εn · err(h, Zn)
)

. (4.6)

For all (h, h′) ∈ H2,

err(h, Zn) − err(h′, Zn) ≤ err(h) − err(h′) + εn +
√

εnan(h, h′) +
√

εnbn(h, h′).

(4.7)

For all (h, h′) ∈ H2 such that h and h′ agree on S̃n,

err(h, Z̃n) − err(h′, Z̃n)

≤ err(h) − err(h′) + εn +
√

εnãn(h, h′) +

√
εnb̃n(h, h′) (4.8)

≤ err(h) − err(h′) + εn +

√
εn err(h, Z̃n) +

√
εn err(h′, Z̃n). (4.9)

Proof. First, Lemma A.2 (with failure probability η/3) easily applies to the loss

class {(x, y) 7→ 1(h(x) 6= y) : h ∈ H} to give Eq. (4.6). Next, note that

max(S(A,m),S(B,m)) ≤ S(H,m)2 ≤ (em/d)d by Sauer’s Lemma [Sau72]. There-

fore, we can apply Lemma A.2 to the class A and B (with failure probability η/3

each) to give Eq. (4.7). To get Eq. (4.8) from Eq. (4.7), we just notice that

err(h, Z̃n) − err(h′, Z̃n) = err(h, Zn) − err(h′, Zn)

ãn(h, h′) = an(h, h′)

b̃n(h, h′) = bn(h, h′)

for all (h, h′) ∈ H2 that agree on S̃n. Finally, to get Eq. (4.9), we use the facts

ãn(h, h′) ≤ err(h, Z̃n) and b̃n(h, h′) ≤ err(h′, Z̃n).

In light of Lemma 4.3, we will define ∆ as

∆(h, h′, Z̃, η) := ε|Z̃| +
√

ε|Z̃| err(h, Z̃) +
√

ε|Z̃| err(h
′, Z̃) (4.10)
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where

εn :=
4

n
·
(

2d ln
2en

d
+ ln

24

η

)
. (4.11)

We use δt := δ/(t2 + t) so that
∑

t≥1 δt ≤ δ.

We remark that our choice of the threshold function ∆ is based on the

agnostic learning model. In general, however, it can be based on any computable

deviation bound suitable for the learning model.

4.3.2 Correctness Analysis

The following is an agnostic analogue of Theorem 2.1—the consistency guar-

antee for CAL in the PAC setting. Here, we prove that the version space implicitly

defined by the set S̃t always contains the optimal hypothesis h∗.

Lemma 4.4. Assume the bound from Eq. (4.9) holds for all (h, h′) ∈ H2 and all

n ≥ 1, using η = δn when applied to Zn. The hypothesis h∗ is consistent with all

examples in S̃n for all n ≥ 0.

Proof. First, note that the bounds from Eq. (4.9) trivially hold for n = 0, so we

have by assumption that they hold for all n ≥ 0. Now we proceed by induction

on n. The base case of n = 0 holds trivially since S̃0 = ∅. So pick any n ≥ 1 and

assume as the inductive hypothesis that h∗ is consistent with S̃n−1. Suppose, in

iteration n, that (Xn, Ỹn) is added to S̃n. If h′
n = ⊥, then every h ∈ H consistent

with S̃n−1 must label Xn the same as hn(Xn). By the inductive hypothesis, it must

be that h∗(Xn) = hn(Xn) = Ỹn. If h′
n 6= ⊥, then

err(h′
n, Z̃n−1)−err(hn, Z̃n−1) > εn−1+

√
εn−1 · err(h′

n, Z̃n−1)+

√
εn−1 · err(hn, Z̃n−1).

In particular, err(h′
n, Z̃n−1) ≥ εn−1. Suppose, for sake of contradiction, that

h∗(Xn) 6= hn(Xn). Then err(h∗, Z̃n) ≥ err(h′
n, Z̃n) > εn−1 by definition of h′

n

(by the inductive hypothesis, h∗ is consistent with S̃n, yet LEARNH returns h′
n in
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preference to it). Therefore,

err(h∗, Z̃n−1) − err(hn, Z̃n−1)

= err(h∗, Z̃n−1) − err(h′
n, Z̃n−1) + err(h′

n, Z̃n−1) − err(hn, Z̃n−1)

>

√
err(h′

n, Z̃n−1)

(√
err(h∗, Z̃n−1) −

√
err(h′

n, Z̃n−1)

)

+ εn−1 +

√
εn−1 · err(h′

n, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1)

>

√
εn−1 · err(h∗, Z̃n−1) −

√
εn−1 · err(h′

n, Z̃n−1)

+ εn−1 +

√
εn−1 · err(h′

n, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1)

= εn−1 +

√
εn−1 · err(h∗, Z̃n−1) +

√
εn−1 · err(hn, Z̃n−1).

Now, the bounds from Eq. (4.9) implies err(h∗) > err(hn), a contradiction.

Lemma 4.4, together with the deviation bounds in Lemma 4.3, immediately

implies that Agnostic CAL has essentially the same sample complexity bound as

a supervised learner based on empirical risk minimization.

Theorem 4.2. With probability at least 1 − δ,

err(hn+1) ≤ err(h∗) + O

(√
err(h∗) · d log n + log(1/δ)

n
+

d log n + log(1/δ)

n

)
.

Proof. Follows from the deviation bounds in Lemma 4.3, the consistency guarantee

from Lemma 4.4, and some simple algebraic manipulations.

The error bound in Theorem 4.2 differs from the error bound of a fully-

supervised learner (see Eq. (4.1)) by constant factors.

4.3.3 Label Complexity Analysis

We now give a bound on the number of labels requested by Agnostic CAL

after n iterations. This will recover the label complexity analysis for Reduction-

based CAL (Theorem 3.1) when err(h∗) = 0.

Lemma 4.5. Assume the bounds from Eq. (4.6) and Eq. (4.9) hold for all (h, h′) ∈
H2 and all n ≥ 1, using η = δn when applied to Zn. There exists a universal
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constant C ∈ (0, 25) such that the following holds. Pick any n ≥ 1, and let

Qn+1 ∈ {0, 1} be the random variable that indicates if Yn+1 is queried. Then

E[Qn+1] ≤ θ ·
(

(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· 4

n
·
(

2d ln
2en

d
+ 2 ln

24n

δ

))

for any λ > 0.

Proof. We apply Lemma 4.4 to ensure that h∗ is consistent with S̃n. Agnostic

CAL queries Yn+1 iff

err(h′
n+1, Z̃n) − err(hn+1, Z̃n) ≤ εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(hn+1, Z̃n)

where εn is defined in Eq. (4.11). Assume that h∗(Xn+1) 6= h′
n+1(Xn+1)—this is

without loss of generality since, as we could otherwise exchange the roles of hn+1

and h′
n+1 in the subsequent argument. The left-hand side of the above inequality

is bounded below using

err(h′
n+1, Z̃n) − err(hn+1, Z̃n) ≥ err(h′

n+1, Z̃n) − err(h∗, Z̃n)

= err(h′
n+1, Zn) − err(h∗, Zn),

and the right-hand side is bounded above using

εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(hn+1, Z̃n)

≤ εn +

√
εn · err(h′

n+1, Z̃n) +

√
εn · err(h∗, Z̃n)

≤ εn +
√

εn · err(h′
n+1, Zn) +

√
εn · err(h∗, Zn);

the last inequality follows because err(h, Z̃n) ≤ err(h, Zn) for all h is consistent

with S̃n. Therefore

err(h′
n+1, Zn) − err(h∗, Zn) ≤ εn +

√
εn · err(h′

n+1, Zn) +
√

εn · err(h∗, Zn).

Now, we use the bounds from Eq. (4.6) to give

err(h′
n+1) − err(h∗) ≤ err(h′

n+1, Zn) − err(h∗, Zn)

+ εn +
√

εn · err(h′
n+1, Zn) +

√
εn · err(h∗, Zn).
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Combining the previous two inequalities, applying Eq. (4.6) to the empirical error

terms err(h′
n+1, Zn) and err(h∗, Zn) inside the square-roots, and simplifying the

quadratic inequalities gives

err(h′
n+1) ≤ (1 + λ) · err(h∗) + C ·

(
1 +

1

λ

)
· εn

for any λ > 0. Here C ∈ (0, 25) is some universal constant (which is almost

certainly loose). By the triangle inequality, we have

ρ(h∗, hn+1) ≤ err(h∗) + err(h′
n+1)

≤ (2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn =: rn.

Therefore, since h∗(Xn+1) = hn+1(Xn+1) 6= h′
n+1(Xn+1) (by assumption), it must

be that Xn+1 ∈ R(h∗, rn). The result now follows from the definition of the

disagreement coefficient θ:

E[Qn+1] = E[E[Qn+1|Zn, Xn+1]] ≤ E[Pr(Xn+1 ∈ R(h∗, rn))] ≤ θ · rn.

Theorem 4.3. There exists a universal constant C ∈ (0, 25) such that the following

holds. Conditioned on an event that occurs with probability at least 1 − δ, the

expected number of labels queried by Agnostic CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1)

+ 4 · θ ·
√

C · err(h∗) ·
(

2d ln
2en

d
+ 2 ln

24n

δ

)
· (n − 1) · ln n

+ 4C · θ ·
(

2d ln
2en

d
+ 2 ln

24n

δ

)
· ln n.

Proof. Assume Y1 is always queried. Apply Lemmas 4.3 and 4.5, and linearity of

expectation to bound E[Q2 + . . . + Qn]. Then optimize over the choice of λ.

The bound here implies a label complexity that is essentially a factor of θ

smaller than the label complexity guarantee for A2 (Theorem 2.3).
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4.3.4 Discussion

Relation to Previous and Subsequent Work

In many ways, Agnostic CAL can be seen as a direct generalization of

Reduction-based CAL that imports the robustness of A2 using deviation bounds.

Note that if it is assumed that err(h∗) = 0, then it would be enough to set

∆ ≈ O(d/n) in iteration n, and we would still recover the same correctness and

label complexity guarantees as those afforded to CAL. Thus, the setting of ∆ in

Eq. (4.10) is specifically designed to handle the adversarial noise that is allowed in

the agnostic learning model. The influence of A2 and Reduction-based A2 is clear,

as ∆ is based on a deviation bound for error differences.

In subsequent work, Hanneke has shown that by using a more sophisticated

setting of ∆ based on Rademacher complexities, Agnostic CAL can yield improved

label complexity bounds under a different noise model [Han09]. A very similar

algorithm is analyzed using localized Rademacher complexities by Koltchinskii for

similar label complexity improvements [Kol09]. We leave as an open question as to

whether the setting of ∆ prescribed in Eq. (4.10) can be shown to adapt to these

noise models. It would also be interesting to develop variants of Agnostic CAL

that operate in even more adversarial settings, such as the malicious noise model

or mistake-bound models. Finally, a similar algorithm that also used importance-

weights was developed by Beygelzimer et al for certain loss functions such as

logistic loss [BDL09].

Version Spaces

Thus far, the algorithms described (including the above mentioned subse-

quent work) are all based on either an explicit or implicit version space. That is,

the hypothesis returned by the algorithm is selected from a restricted subset of

the hypothesis class. In Reduction-based A2 and Agnostic CAL, we have encapsu-

lated enforcement of the hard constraints defining the implicit version space in the

LEARNH subroutine. However, hard constraints can make the algorithm brittle,

as a single mishap by the algorithm can potentially evict the optimal hypothesis
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h∗. Moreover, hard constraints can be computationally cumbersome to enforce, es-

pecially for complex hypothesis classes. Instead, we would prefer algorithms that

avoid explicit enforcement of a version space when selecting a hypothesis to return.

This will be explored in the next chapter.

4.4 Bibliographic Notes

This chapter is based on joint work with Sanjoy Dasgupta and Claire Mon-

teleoni titled “A General Agnostic Active Learning Algorithm”, published in the

proceedings of the Twenty-First Annual Conference on Neural Information Pro-

cessing Systems in 2007 [DHM07]. The dissertation author was the primary inves-

tigator and author of this paper.



Chapter 5

Reduction to Agnostic Learning

II: Error Minimization Oracles

We describe agnostic active learning algorithms that are not explicitly based

on the version space approach. These algorithms use error minimization oracles

that are simpler than the LEARNH subroutine of A2 and Agnostic CAL.

5.1 Introduction

The A2 and Agnositc CAL algorithms use a set of labeled examples S̃

together with hard constraints (enforced by the subroutine LEARNH) in order to

maintain an implicit version space, and hypotheses selected by these algorithms

are always chosen from this space. The approach ensures a simple monotonicity

property H = V0 ⊇ V1 ⊇ V2 ⊇ . . . that appears to both simplify and sharpen

the label complexity analysis: the deviation bounds for error differences only need

to apply to pairs of hypotheses within the version space, and the restriction to a

subset of hypothesis class yields a tighter bound on the size of the disagreement

region.

Strict adherence to an implicit version space, however, has potential draw-

backs. The first is the computational difficulty of respecting the hard constraints

that define the version space. For instance, with the class of linear separators,

the version space is the intersection of several half-spaces, one per example in S̃.

52
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Although some of the constraints will likely be redundant and thus safe to ignored,

the constraints nonetheless complicate the implementation of the LEARNH sub-

routine. Moreover, the difficulty is only increased with more complicated predictors

(e.g., decision trees, neural networks). The plausibility of LEARNH matching our

abstraction of practical supervised learning algorithm is therefore jeopardized by

this computational difficulty.

The second drawback of the implicit version space is the danger of evicting

the optimal hypothesis h∗. The same monotonicity property that appeared to be

a blessing for A2 and Agnostic CAL is also a liability in this sense. The analysis of

A2 and Agnostic CAL proves that h∗ is never evicted, but only with the specified

choice of the threshold function ∆. In practice, the large constants in the definition

of ∆ may render nil the potential benefits of active learning, but a more optimistic

choice may be dangerous when coupled with a strict version space.

We address both of these drawbacks in this chapter by developing algo-

rithms that (i) rely on an error minimization oracle simpler than LEARNH, and

(ii) avoid strict adherence to a version space.

5.2 A Modification of Agnostic CAL

Our first algorithm (Algorithm 5.1) is a simple modification of Agnostic

CAL; we call this new algorithm Oracular CAL. Relative to Agnostic CAL, the

primary differences are:

1. The threshold function ∆ treats the sets S̃t and Tt separately (rather than

together as S̃t ∪ Tt, as in Agnostic CAL).

2. The use of the LEARNH subroutine is restricted in that at most one hard

constraint is used in each invocation.

Moreover, the final hypothesis returned is obtained via a call to LEARNH

with no hard constraints.

The restricted use of LEARNH makes it a more plausible abstraction of

standard supervised learning algorithms. In fact, all of the hypotheses ht—and
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Algorithm 5.1 (Oracular CAL)

Notes: δt := δ/(t2 + t) for all t ≥ 1; see Eq. (5.3) for the definition of ∆.

Initialize: S̃0 := ∅, T0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := LEARNH(∅, S̃t−1 ∪ Tt−1), and

(b) h′
t := LEARNH({(Xt,−ht(Xt))}, S̃t−1 ∪ Tt−1).

3. If h′
t 6= ⊥ and

err(h′
t, S̃t−1 ∪ Tt−1) − err(ht, S̃t−1 ∪ Tt−1) ≤ ∆(ht, S̃t−1, Tt−1, δt−1)

(a) Then: Query Yt, and set S̃t := St−1 and Tt := Tt−1 ∪ {(Xt, Yt)}.

(b) Else: Set Ỹt := ht(Xt), and S̃t := S̃t−1 ∪ {(Xt, Ỹt)} and Tt := Tt−1.

Return: hn+1 := LEARNH(Z̃n).

Figure 5.1: The Oracular CAL algorithm.
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therefore the hypothesis finally returned by the algorithm—are obtained using

standard empirical risk minimization without any hard constraints; only the “al-

ternative” hypotheses h′
t are obtained using a single hard constraint. In this sense,

the version space approach is almost entirely avoided by Oracular CAL.

However, this relaxation appears to come at a cost in terms of the formal

label complexity analysis. The cause of this is related to the specification of the

threshold function ∆. The deviation bound (Lemma 4.3) that underlies the choice

of ∆ for Agnostic CAL is only valid for error differences between hypotheses that

agree on the set of examples S̃t. However, the hypotheses selected by Oracular

CAL are not subject to hard constraints on the set S̃t, so the same deviation

bound cannot be applied to such hypotheses. Instead, Oracular CAL (and its

analysis) will rely on a different, conservative bound that appears to lead to a

somewhat worse label complexity guarantee.

To simplify the exposition, we will assume that for each x ∈ X , there exists

some h, h′ ∈ H such that h(x) = +1 and h′(x) = −1. In other words, the entire

hypothesis class H does not completely agree on any single data point. This is

without loss of generality, because data points for which there is no disagreement

in the entirety of H have no contribution to the error relative to the optimal

hypothesis h∗ ∈ H.

5.2.1 A Conservative Threshold

Similar to Agnostic CAL, we will base our threshold function ∆ on a devi-

ation bound. Here, we will derive a bound that is normalized by the disagreement

with the optimal hypothesis h∗.

First, recall the following definitions from the analysis of Agnostic CAL.

• Sn: the set S̃n with the true labels swapped in.

• Zn := Sn ∪ Tn and Z̃n := S̃n ∪ Tn.

• ah,h′(x, y) := 1(h(x) 6= y ∧ h′(x) = y).

• bh,h′(x, y) := 1(h(x) = y ∧ h′(x) 6= y).
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• an(h, h′) := (1/n)
∑

(Xi,Yi)∈Zn
ah,h′(Xi, Yi).

• bn(h, h′) := (1/n)
∑

(Xi,Yi)∈Zn
bh,h′(Xi, Yi).

Note that

an(h, h′) − bn(h, h′) = err(h, Zn) − err(h′, Zn)

E[an(h, h′) − bn(h, h′)] = err(h) − err(h′)

an(h, h′) + bn(h, h′) = ρn(h, h′)

E[an(h, h′) + bn(h, h′)] = ρ(h, h′)

where

ρn(h, h′) :=
1

n

n∑

i=1

1(h(Xi) 6= h′(Xi))

is the empirical disagreement between h and h′.

Lemma 5.1. Pick any n ≥ 1 and η ∈ (0, 1). Let

εn :=
4

n
·
(

d ln
2en

d
+ ln

16

η

)
.

Let Zn := {(X1, Y1), . . . , (Xn, Yn)} be a set of n iid copies of (X,Y ). Fix any

h∗ ∈ H. The following holds with probability at least 1 − η. For all h ∈ H,

|(err(h, Zn) − err(h∗, Zn)) − (err(h) − err(h∗))|
≤ εn + min

(√
2εnρn(h, h∗),

√
2εnρ(h, h∗)

)
(5.1)

and

|ρn(h, h∗) − ρ(h, h∗)| ≤ εn + min
(√

2εnρn(h, h∗),
√

2εnρ(h, h∗)
)

. (5.2)

Proof. We apply Lemma A.2 to classes {ah,h∗ : h ∈ H} and {bh,h∗ : h ∈ H} (with

failure probability η/2 each), and then use the fact that
√

x +
√

y ≤
√

2(x + y)

for nonnegative x and y.

It may not be obvious why the above deviation bounds are useful for de-

riving a threshold function ∆, since the bound quantities are not obviously com-

putable by the algorithm. However, recall that in the correctness analysis Ag-

nostic CAL, we were able to prove that h∗(Xi) = Ỹi whenever the algorithm
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avoided querying the label Yi. It turns out that we will be able to prove the same

guarantee for Oracular CAL; so assume for now that it is possible to compute

1(h(Xi) 6= h∗(Xi)) for all (Xi, Ỹi) ∈ S̃n. Then, the only trouble that remains is

computing 1(h(Xi) 6= h∗(Xi)) for (Xi, Yi) ∈ Tn. For these examples, we can use

a pessimistic bound 1(h(Xi) 6= h∗(Xi)) ≤ 1 that assumes disagreement with h∗.

Therefore, we have the following computable bound on ρn(h, h∗):

ρn(h, h∗) ≤ 1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= h∗(Xi))





=
1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= Ỹi)





where the equality uses the assumption that Ỹi = h∗(Xi). This suggests that a

suitable setting of ∆ is

∆(h, S̃, T, η) := ε|S̃∪T | +

√√√√√2ε|S̃∪T | ·
1

|S̃ ∪ T |
·



|T | +
∑

(x,ỹ)∈S̃

1(h(x) 6= ỹ)



 (5.3)

where

εn :=
4

n
·
(

d ln
2en

d
+ ln

16

η

)
. (5.4)

We use δt := δ/(t2 + t) so that
∑

t≥1 δt ≤ δ.

5.2.2 Correctness Analysis

The analysis of Oracular CAL begins with a lemma that captures the follow-

ing intuition. If some of the labels in a data set are replaced by the labels assigned

by a hypothesis h∗, then h∗ only appears more attractive compared to other hy-

pothesis. This is because the substitutions penalizes hypotheses that disagree with

h∗ on the examples where the change is made.

Lemma 5.2. Pick any h∗ : X → Y and any S, T ⊆ X × Y. If S̃ := {(x, h∗(x)) :

(x, y) ∈ S}, then

err(h, S̃ ∪ T ) − err(h∗, S̃ ∪ T ) ≥ err(h, S ∪ T ) − err(h∗, S ∪ T ) (5.5)

for all h : X → Y.
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Proof. It suffices to show that

1(h(x) 6= ỹ) − 1(h∗(x) 6= ỹ) ≥ 1(h(x) 6= y) − 1(h∗(x) 6= y)

whenever (x, y) ∈ S and h(x) = y 6= ỹ = h∗(x). Note that

−1(h∗(x) 6= ỹ) = 0 ≥ −1 = −1(h∗(x) 6= y).

Since h(x) = y, we have

1(h(x) 6= ỹ) = 1 ≥ 0 = 1(h(x) 6= y).

Combining these inequalities completes the proof.

Next, we prove an analogue of Lemma 4.4, which states that the optimal

hypothesis h∗ agrees with the synthesized labels in S̃n.

Lemma 5.3. Assume the bound from Eq. (5.1) holds for all h ∈ H and all n ≥ 1,

using η = δn when applied to Zn. The hypothesis h∗ is consistent with all examples

in S̃n for all n ≥ 0.

Proof. First, note that the bounds from Eq. (5.1) trivially hold for n = 0, so we

have by assumption that they hold for all n ≥ 0. Now we proceed by induction

on n. The base case of n = 0 holds trivially since S̃0 = ∅. So pick any n ≥ 1 and

assume as the inductive hypothesis that h∗ is consistent with S̃n−1. A consequence

of this is that the deviation of err(hn, Sn−1 ∪ Tn−1)− err(h∗, Sn−1 ∪ Tn−1) below its

mean is bounded by ∆(hn, S̃n−1, Tn−1, δn−1). That is,

(err(hn) − err(h∗)) − (err(hn, Zn−1) − err(h∗, Zn−1))

≤ εn +
√

2εnρn(h, h∗) ≤ ∆(hn, S̃n−1, Tn−1, δn−1) (5.6)

where the first inequality follows from the deviation bound in Eq. (5.1); and the

second follows from the inductive hypothesis Ỹi = h∗(Xi) for all (Xi, Ỹi) ∈ S̃n−1,

together with the conservative bound 1(hn(Xi) 6= h∗(Xi)) ≤ 1 for all (Xi, Yi) ∈
Tn−1 .

Suppose the label Yn is not queried, so (Xn, Ỹn) ∈ S̃n. In this case,

err(h′
n, Z̃n−1) − err(hn, Z̃n−1) > ∆(hn, S̃n−1, Tn−1, δn). (5.7)
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It suffices to show that err(h′
n, Z̃n−1) > err(h∗, Z̃n−1); this implies Ỹn = hn(xn) =

h∗(xn) because h′
n minimizes err(h′

n, Z̃n−1) over all h ∈ H with h(Xn) 6= hn(Xn).

Indeed,

err(h′
n, Z̃n−1) − err(h∗, Z̃n−1)

= err(h′
n, Z̃n−1) − err(hn, Z̃n−1) + err(hn, Z̃n−1) − err(h∗, Z̃n−1)

≥ err(h′
n, Z̃n−1) − err(hn, Z̃n−1) + err(hn, Zn−1) − err(h∗, Zn−1)

> ∆(hn, S̃n−1, Tn−1, δn) + err(hn, Zn−1) − err(h∗, Zn−1)

≥ err(hn) − err(h∗)

≥ 0.

Above, the inequalities follow (respectively) from Lemma 5.2 (with the inductive

hypothesis), Eq. (5.7), Eq. (5.6), and the definition of h∗.

Theorem 5.1. With probability at least 1 − δ,

err(hn+1) ≤ err(h∗) + O

(
d log n + log(1/δ)

n
+

√
err(h∗) · d log n + log(1/δ)

n

)
.

Proof. We apply the bounds from Lemma 5.1 for all n ≥ 1, using η = δn when

applied to Zn. These bounds hold with probability at least 1 − δ; we henceforth

condition on this event. By Lemma 5.2 and Lemma 5.3, we have

err(hn+1, Zn) − err(h∗, Zn) ≤ err(hn+1, Z̃n) − err(h∗, Z̃n) ≤ 0.

Now, using the deviation bounds,

err(hn+1) − err(h∗) ≤ εn +
√

2εnρ(hn+1, h∗)

≤ εn +
√

2εn(err(hn+1) + err(h∗))

≤ εn +
√

2εn err(hn+1) +
√

2εn err(h∗)

where the second inequality follows from the triangle inequality. Solving the

quadratic inequality for err(hn+1) implies

err(hn+1) − err(h∗) ≤ 2εn +

√
2εn(err(h∗) +

√
2εn err(h∗))

≤ 2εn +
√

2εn err(h∗) +

√
2εn

√
2εn err(h∗)

≤ (2 + 1/
√

2)εn + (3/2)
√

2εn err(h∗)
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where we have used the fact 2
√

xy ≤ x + y in the last step.

Once again, we have a basic consistency guarantee implies a label com-

plexity bound for Oracular CAL no worse (up to constants) than that of a fully-

supervised learner (see Eq. (4.1)).

5.2.3 Label Complexity Analysis

We now bound the number of labels requested by Oracular CAL after n

iterations. First, we show a bound on the threshold value ∆(hn+1, S̃n, Tn, δn).

Lemma 5.4. Assume the bounds from Eq. (5.1) and Eq. (5.2) hold for all h ∈ H
and all n ≥ 1, using η = δn when applied to Zn. For all n ≥ 1,

∆(hn+1, S̃n, Tn, δn) ≤ 3.2εn +
√

2εn|Tn|/n + 1.5
√

2εnρ(hn+1, h∗)

where εn is defined in Eq. (5.4) (with η = δn).

Proof. Lemma 5.3 implies that

∆(hn+1, S̃n, Tn, δn) = εn +

√√√√√2εn · 1

n
·



|Tn| +
∑

(Xi,Ỹi)∈S̃n

1(h(Xi) 6= h̃∗(Xi))





≤ εn +
√

2εn|Tn|/n +
√

2εnρn(hn+1, h∗)

Now applying the deviation bound from Eq. (5.2) to ρn(hn+1, h
∗) and simplifying

(using 2
√

xy ≤ x + y) gives the claim.

Lemma 5.5. Assume the conditions from Lemma 5.4. There exists a universal

constant C ∈ (0, 27) such that the following holds. Let Qn+1 ∈ {0, 1} be the random

variable that indicates if Yn+1 is queried. For all n ≥ 1,

E[Qn+1] ≤ θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√√√√εn · 1

n

n∑

i=1

E[Qn]





for all λ > 0.
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Proof. Let

h :=

{
hn+1 if h′

n+1(Xn+1) = h∗(Xn+1)

h′
n+1 if hn+1(Xn+1) = h∗(Xn+1)

so h(Xn+1) 6= h∗(Xn+1). Suppose Yn+1 is queried (Qn+1 = 1). We consider two

possible cases:

1. If h = hn+1, then

err(h) − err(h∗) = err(hn+1) − err(h∗)

≤ err(hn+1, Zn) − err(h∗, Zn) + εn +
√

2εnρ(h, h∗)

≤ err(hn+1, Zn) − err(h′
n+1, Zn) + εn +

√
2εnρ(h, h∗)

≤ εn +
√

2εnρ(h, h∗)

where the first inequality follows from Eq. (5.1), and the second follows from

the fact h′
n+1(Xn+1) = h∗(Xn+1) and the definition of h′

n+1.

2. If instead h = h′
n+1, then

err(h) − err(h∗) = err(h′
n+1) − err(h∗)

≤ err(h′
n+1, Zn) − err(h∗, Zn) + εn +

√
2εnρ(h, h∗)

≤ err(h′
n+1, Zn) − err(hn+1, Zn) + εn +

√
2εnρ(h, h∗)

≤ ∆(h, S̃n, Tn, δn) + εn +
√

2εnρ(h, h∗)

≤ 4.2εn + 2.5
√

2εnρ(h, h∗) +
√

2εn|Tn|/n

where the last inequality follows from Lemma 5.4.

In either case, we have by the triangle inequality,

ρ(h, h∗) ≤ 2 err(h∗) + 4.2εn + 2.5
√

2εnρ(h, h∗) +
√

2εn|Tn|/n.

Solving the quadratic inequality for ρ(h, h∗) and simplifying gives

ρ(h, h∗) ≤ (2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√
εn · |Tn|

n
=: rn
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for any λ > 0. Therefore Xn+1 ∈ R(h∗, rn). Now using the definition of the

disagreement coefficient θ,

E[Qn+1] = E[E[Qn+1|Zn, Xn+1]]

≤ E[Pr(Xn+1 ∈ R(h∗, rn))]

≤ E[θ · rn]

= θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + E



3.2 ·

√√√√εn · 1

n

n∑

i=1

Qn









≤ θ ·



(2 + λ) · err(h∗) + C ·
(

1 +
1

λ

)
· εn + 3.2 ·

√√√√εn · 1

n

n∑

i=1

E[Qn]





where the last two steps use linearity of expectation and Jensen’s inequality.

Theorem 5.2. There exists a universal constant C > 0 such that the following

holds. Conditioned on an event that occurs with probability at least 1 − δ, the

expected number of labels queried by Oracular CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1) + C · θ2 ·
(

d + log
1

δ

)
· ln3 n

+ C · θ3/2 ·
√(

d + log
1

δ

)
· err(h∗) · (n − 1) · ln3 n.

Proof. Assuming Y1 is always queried; applying Lemmas 5.1 and 5.5, and linearity

of expectation; and optimizing over λ gives the bound

n∑

i=1

E[Qi] ≤ 1 + 2 · θ · err(h∗) · (n − 1) + C ·
∫ n

1

εxdx

+ 2 · θ ·
√

err(h∗) · (n − 1) · C ·
∫ n

1

εxdx

+ 3.2 · θ ·
∫ n

1

√
εx

x
dx ·

√√√√
n∑

i=1

E[Qi].

Evaluating the integrals and solving the quadratic for E[Q1]+. . .+E[Qn] completes

the proof.
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The bound given here is worse than the bound for Agnostic CAL (The-

orem 4.3) in its dependence on the disagreement coefficient θ in the sub-linear

terms, but still implies a label complexity bound that improves over that of A2

(Theorem 2.3).

5.2.4 Discussion

Comparing Agnostic CAL and Oracular CAL

The label complexity bound we derived for Oracular CAL appears to be

weaker than that of Agnostic CAL. There are two possible avenues of improvement:

1. Tighten the analysis.

2. Use a different threshold function ∆.

The latter option can be carried out to some degree. In the (n + 1)th iteration,

the basic mechanism of inferring the label assigned by the optimal hypothesis h∗

can be applied to every data point in Tn, in addition to the current point Xn+1

(Lemma 5.3). Whenever it is possible to infer h∗(Xi) for some (Xi, Yi) ∈ Tn, the

example is removed from Tn and placed in S̃n, using the label Ỹi := h∗(Xi). This

has the effect of lessening effect of the over-approximation

∑

(Xi,Yi)∈Tn

1(h(Xi) 6= h∗(Xi)) ≤ |Tn|

used in the threshold function ∆. Unfortunately, carrying out this improvement

does not seem to reduce the label complexity to that of Agnostic CAL. Thus, it

seems that Oracular CAL pays a price for abandoning the strict version space

approach, at least relative to Agnostic CAL.

On the other hand, Oracular CAL has qualitative advantages over Agnostic

CAL that may be important in practice. The first is that tweaking ∆ to be more

aggressive has less severe consequences in Oracular CAL than in Agnostic CAL.

That is, the failure mode of Oracular CAL is that it sometimes sets Ỹi 6= h∗(Xi),

which seems fine as long as it doesn’t happen too often. In contrast, if Agnostic
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CAL sets Ỹi 6= h∗(Xi), then h∗ is evicted from the implicit version space, which

can be devastating.

The second advantage is the computational advantage of the restricted use

of the LEARNH subroutine, a clear practical improvement.

Favorable Bias

Both Agnostic CAL and Oracular CAL ultimately create a labeled data set

Z̃n = S̃n ∪ Tn that is biased. The bias is favorable in that it only makes h∗ more

attractive to a learner—this idea is formally expressed in Lemma 5.2.

However, sometimes even such a favorable bias can be undesirable. For

instance, the empirical error of a hypothesis computed on Z̃n is no longer an

unbiased estimator of its true error; this cannot even be compensated for with

uniform deviations bounds. Moreover, the bias may drop out of favor if h∗ is no

longer sought after, e.g., if the hypothesis class changes.

5.3 An Importance Weighting Algorithm

We now describe an algorithm that overcomes the issue of creating a bi-

ased data set. In fact, the algorithm will avoid synthesizing labels altogether,

and instead add importance weights to data for which labels are queried. For an

importance weighted set of examples S ⊂ X × Y × R+, the importance weighted

empirical error of a hypothesis h : X → Y is

err(h, S,m) :=
1

m

∑

(x,y,w)∈S

w · 1(h(x) 6= y) (5.8)

(m is a suitable normalizing constant). The weights will be set in such a way that

guarantees E[err(h, S,m)] = err(h). Here, the expectation includes the internal

randomness used by the algorithm in forming the weighted set of examples S. The

primary challenge, then, will be in controlling the variance of these estimates.

The algorithm (Algorithm 5.2) is based on the Importance Weighted Ac-

tive Learning (IWAL) framework of [BDL09]; we call our particular instantiation

IWAL-CAL, as it combines a technique from Oracular CAL with the importance
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Algorithm 5.2 (IWAL-CAL)

Notes: see Eq. (5.8) for the definition of err (importance weighted error), and

Section 5.3.4 for the definitions of C0, c1, and c2.

Initialize: S0 := ∅.
For t = 1, 2, . . . , n:

1. Obtained unlabeled data point Xt.

2. Let

(a) ht := arg min{err(h, St−1, t − 1) : h ∈ H}, and

(b) h′
t := arg min{err(h, St−1, t − 1) : h ∈ H ∧ h(Xt) 6= ht(Xt)}.

3. Let Gt := err(h′
t, St−1, t − 1) − err(ht, St−1, t − 1), and

Pt :=





1 if Gt ≤

√
C0 log t

t−1
+ C0 log t

t−1

s(Gt, t) otherwise

where s(g, t) ∈ (0, 1) is the positive solution s to the equation

g =

(
c1√
s
− c1 + 1

)
·
√

C0 log t

t − 1
+
(c2

s
− c2 + 1

)
· C0 log t

t − 1
.

4. Toss a biased coin with Pr(heads) = Pt.

(a) If heads, then query Yt, and let St := St−1 ∪ {(Xt, Yt, 1/Pt)}.

(b) Else, let St := St−1.

Return: hn+1 := arg min{err(h, Sn) : h ∈ H}.

Figure 5.2: The IWAL-CAL algorithm.
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weighting trick. Note that, like Oracular CAL, IWAL-CAL only requires the en-

forcement of a single hard constraint for determining h′
t, and does not require any

hard constraints for determining ht. However, it does require the minimization

of an importance weighted empirical error, which may add some computational

complexity.

As we did for Oracular CAL, we will assume for simplicity that the entire

hypothesis class H does not completely agree on any single data point x ∈ X .

That is, for each x ∈ X , there exists h, h′ ∈ H such that h(x) = 1 and h′(x) = −1.

If the learner should come across any points for which this assumption fails, it

can choose any query probability Pt ∈ (0, 1] (e.g., Pt = 1/t) without affecting the

behavior of the algorithm with respect to the rest of the data points. We will also

assume for simplicity that H is finite. This can be relaxed by letting H be a finite

ǫ-cover of an infinite class.

In the remainder of this chapter, we will use the notation a1:n to denote a

sequence (a1, a2, . . . , an).

5.3.1 Importance Weighted Active Learning

In the IWAL framework, the learner chooses a query probability Pt ∈ (0, 1]

after receiving each new point Xt. Then, a coin with heads bias Pt is tossed; the

label Yt is queried if the coin comes up heads, and otherwise the label is foregone.

The query probability Pt can depend on all previous unlabeled examples, any

previously queried labels, the outcomes of any of the past coin tosses, and the

current unlabeled point Xt.

Formally, an IWAL algorithm specifies a rejection threshold function p :

(X × Y × {0, 1})∗ × X → (0, 1] for determining these query probabilities. Let

Qt ∈ {0, 1} be a random variable conditionally independent of the current label Yt

Qt ⊥⊥ Yt | X1:t, Y1:t−1, Q1:t−1

and with conditional expectation

E[Qt|X1:t, Y1:t−1, Q1:t−1] = Pt := p(Z1:t−1, Xt).
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where

Zt := (Xt, Yt, Qt).

That is, Qt indicates if the label Yt is queried (the outcome of the coin toss). The

query probability Pt is allowed to depend on a label Yt if and only if it has been

queried, i.e., iff the corresponding Qt = 1.

5.3.2 Importance Weighted Estimators

Let f : X × Y → R be a function over X × Y . The importance weighted

estimator of E[f(X,Y )] from Z1:n ∈ (X × Y × {0, 1})n is

f̂(Z1:n) :=
1

n

n∑

i=1

Qi

Pi

· f(Xi, Yi).

Note that this quantity depends on a label Yi only if it has been queried (i.e., only

if Qi = 1; it also depends on Xi only if Qi = 1). The IWAL-CAL algorithm uses

a rejection threshold function solely based on estimators of this type.

A basic property of the importance weighted estimator f̂ is unbiasedness :

E[f̂(Z1:n)] =
1

n

n∑

i=1

E

[
Qi · f(Xi, Yi)

Pi

]

=
1

n

n∑

i=1

E

[
E

[
Qi · f(Xi, Yi)

Pi

∣∣∣∣X1:i, Y1:i, Q1:i−1

]]

=
1

n

n∑

i=1

E

[
E [Qi|X1:i, Y1:i, Q1:i−1]

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E

[
E [Qi|X1:i, Y1:i−1, Q1:i−1]

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E

[
Pi

Pi

· f(Xi, Yi)

]

=
1

n

n∑

i=1

E[f(Xi, Yi)]

= E[f(X,Y )].

For instance, an unbiased estimator of the error of a hypothesis h : X → Y is

err(h, Z1:n) :=
1

n

n∑

i=1

Qi

Pi

· 1(h(Xi) 6= Yi).
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In the notation of Algorithm 5.2 and Eq. (5.8), this is equivalent to err(h, Sn, n),

where

Sn := {(Xi, Yi, 1/Pi) : 1 ≤ i ≤ n ∧ Qi = 1}

is the importance weighted data set collected by IWAL-CAL.

5.3.3 A Deviation Bound for Importance Weighted Esti-

mators

As mentioned before, the rejection threshold used by IWAL-CAL is based

on importance weighted error estimates err(h, Z1:n). Even though these estimates

are unbiased, they are only reliable when the variance is not too large. To get a

handle on this, we need a deviation bound for importance weighted estimators.

This is complicated by two factors:

1. The importance weighted samples (Xi, Yi, 1/Pi) (or equivalently, the Zi =

(Xi, Yi, Qi)) are not iid. This is because the query probability Pi (and thus

the importance weight 1/Pi) generally depends on Z1:i−1 and Xi.

2. The effective range of each term in the estimator is, itself, a random variable.

To address these issues, we develop a deviation bound based on a martingale

technique from [Zha05].

Let f : X × Y → [−1, 1] be a bounded function. Consider any rejection

threshold function p : (X ×Y ×{0, 1})∗×X → (0, 1] for which Pn = p(Z1:n−1, Xn)

is bounded below by some quantity (which may depend on n). Equivalently, the

query probabilities Pn should have inverses 1/Pn bounded above by some rmax

(which, again, may depend on n). The a priori upper bound rmax on 1/Pn can be

pessimistic, as the dependence on rmax in the final deviation bound will be very

mild: it enters in as log log rmax.

Let

Wi :=
Qi

Pi

· f(Xi, Yi)

be the ith term in the importance weighted estimator

f̂(Z1:n) :=
1

n

n∑

i=1

Wi.
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Our goal is to prove a bound on |f̂(Z1:n)−E[f(X,Y )]| that holds with high prob-

ability over the joint distribution of Z1:n.

To start, we establish bounds on the range and variance of each term

Wi in the estimator, conditioned on (X1:i, Y1:i, Q1:i−1). Write Ei[ · ] to denote

E[ · |X1:i, Y1:i, Q1:i−1]. Note that

Ei[Wi] =
Ei[Qi]

Pi

· f(Xi, Yi) =
Pi

Pi

· f(Xi, Yi) = f(Xi, Yi) (5.9)

so if Ei[Wi] = 0, then Wi = 0. Therefore, the (conditional) range and variance are

non-zero only if Ei[Wi] 6= 0. For the range, we have

|Wi| =
|Qi|
Pi

· |f(Xi, Yi)| ≤ 1

Pi

(5.10)

and, for the variance,

Ei[(Wi − Ei[Wi])
2] ≤ Ei[Q

2
i ]

P 2
i

· f(Xi, Yi)
2 =

Pi

P 2
i

· f(Xi, Yi)
2 ≤ 1

Pi

. (5.11)

Our approach is as follows. First, we show via a martingale inequality that
∣∣∣∣∣
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi]

∣∣∣∣∣ ≤ O

(√
1

Pmin

· log log rmax

n
+

1

Pmin

· log log rmax

n

)

with high probability, where Pmin := min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} and

1/Pmin ≤ rmax. As Ei[Wi] = f(Xi, Yi), this is a bound on the difference between

the importance-weighted estimator and the fully-supervised estimator. Next, we

use Hoeffding’s inequality to get
∣∣∣∣∣
1

n

n∑

i=1

f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≤ O

(√
1

n

)

with high probability. Finally, we combine the two bounds with the triangle in-

equality.

The techniques here are mostly developed in [Zha05]; for completeness, we

detail the proofs for our particular application. The first two lemmas establish a

basic bound in terms of conditional moment generating functions.

Lemma 5.6. For all n ≥ 1 and all functionals Ξi := ξi(Z1:i),

E

[
exp

(
n∑

i=1

Ξi −
n∑

i=1

ln Ei[exp(Ξi)]

)]
= 1.
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Proof. A straightforward induction on n.

Lemma 5.7. For all t ≥ 0, λ ∈ R, n ≥ 1, and functionals Ξi := ξi(Z1:i),

Pr

(
λ

n∑

i=1

Ξi −
n∑

i=1

ln Ei[exp(λΞi)] ≥ t

)
≤ e−t.

Proof. The claim follows by Markov’s inequality and Lemma 5.6 (replacing Ξi with

λΞi).

In order to specialize Lemma 5.7 for our purposes, we first analyze the

conditional moment generating function of Wi − Ei[Wi].

Lemma 5.8. If 0 < λ < 3Pi, then

ln Ei[exp(λ(Wi − Ei[Wi]))] ≤ 1

Pi

· λ2

2(1 − λ/(3Pi))
.

If Ei[Wi] = 0, then

ln Ei[exp(λ(Wi − Ei[Wi]))] = 0.

Proof. Let g(x) := (exp(x) − x − 1)/x2 for x 6= 0, so exp(x) = 1 + x + x2 · g(x).

Note that g(x) is non-decreasing. Thus,

Ei [exp(λ(Wi − Ei[Wi]))]

= Ei

[
1 + λ(Wi − Ei[Wi]) + λ2(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ(Wi − Ei[Wi]))
]

≤ 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2 · g(λ/Pi)
]

= 1 + λ2 · Ei

[
(Wi − Ei[Wi])

2
]
· g(λ/Pi)

≤ 1 + (λ2/Pi) · g(λ/Pi)

where the first inequality follows from the range bound (Eq. (5.10)) and the second

follows from variance bound (Eq. (5.11)). Now the first claim follows from the

definition of g(x), the facts exp(x) − x − 1 ≤ x2/(2(1 − x/3)) for 0 ≤ x < 3 and

ln(1 + x) ≤ x.

The second claim is immediate from the facts Ei[Wi] = f(Xi, Yi) (Eq. (5.9))

and Wi = (Qi/Pi) · f(Xi, Yi).
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We now combine Lemma 5.8 and Lemma 5.7 to bound the deviation of the

importance weighted estimator f̂(Z1:n) from (1/n)
∑n

i=1 Ei[Wi].

Lemma 5.9. Pick any t ≥ 0, n ≥ 1, and pmin > 0, and let E be the (joint) event

1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

1

pmin

· 2t

n
+

1

pmin

· t

3n

and min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin.

Then Pr(E) ≤ e−t.

Proof. With foresight, let

λ := 3pmin ·

√
1

3pmin
· 2t

3n

1 +
√

1
3pmin

· 2t
3n

.

Note that 0 < λ < 3pmin. By Lemma 5.8 and the choice of λ, we have that if

min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin, then

1

nλ
·

n∑

i=1

ln Ei[exp(λ(Wi − Ei[Wi]))] ≤ 1

pmin

· λ

2(1 − λ/(3pmin))
=

√
1

pmin

· t

2n

(5.12)

and
t

nλ
=

√
1

pmin

· t

2n
+

1

pmin

· t

3n
. (5.13)

Let E ′ be the event that

1

n
·

n∑

i=1

(Wi − Ei[Wi]) −
1

nλ
·

n∑

i=1

ln Ei[exp(λ(Wi − Ei[Wi]))] ≥ t

nλ

and let E ′′ be the event min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ≥ pmin. Together,

Eq. (5.12) and Eq. (5.13) imply E ⊆ E ′ ∩ E ′′. And of course, E ′ ∩ E ′′ ⊆ E ′, so

Pr(E) ≤ Pr(E ′ ∩ E ′′) ≤ Pr(E ′) ≤ e−t by Lemma 5.7.

To do away with the joint event in Lemma 5.9, we use the standard trick

of taking a union bound over a geometrical sequence of possible values for pmin.

Lemma 5.10. Pick any t ≥ 0 and n ≥ 1. Assume 1 ≤ 1/Pi ≤ rmax for all

1 ≤ i ≤ n, and let Rn := 1/ min{Pi : 1 ≤ i ≤ n ∧ Ei[Wi] 6= 0} ∪ {1}. We have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi]

∣∣∣∣∣ ≥
√

2Rnt

n
+

Rnt

3n

)
≤ 2(2 + log2 rmax)e

−t/2.
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Proof. The assumption on Pi implies 1 ≤ Rn ≤ rmax. Let rj := 2j for −1 ≤ j ≤
m := ⌈log2 rmax⌉. Then

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2Rnt

n
+

Rnt

3n
∧ rj−1 < Rn ≤ rj

)

≤
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj−1t

n
+

rj−1t

3n
∧ Rn ≤ rj

)

=
m∑

j=0

Pr

(
1

n

n∑

i=1

Wi −
1

n

n∑

i=1

Ei[Wi] ≥
√

2rj(t/2)

n
+

rj(t/2)

3n
∧ Rn ≤ rj

)

≤ (2 + log2 rmax)e
−t/2

where the last inequality follows from Lemma 5.9. Replacing Wi with −Wi bounds

the probability of deviations in the other direction in exactly the same way. The

claim then follows by the union bound.

Finally, we bound the deviation of the supervised estimator from E[f(X, y)],

and combine this with Lemma 5.10 to give our final deviation bound.

Theorem 5.3. Pick any t ≥ 0 and n ≥ 1. Assume 1 ≤ 1/Pi ≤ rmax for all

1 ≤ i ≤ n, and let Rn := 1/ min{Pi : 1 ≤ i ≤ n ∧ f(Xi, Yi) 6= 0} ∪ {1}. With

probability at least 1 − 2(3 + log2 rmax)e
−t/2,

∣∣∣∣∣
1

n

n∑

i=1

Qi

Pi

· f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≤
√

2Rnt

n
+

√
2t

n
+

Rnt

3n
.

Proof. By Hoeffding’s inequality and the fact |f(Xi, Yi)| ≤ 1, we have

Pr

(∣∣∣∣∣
1

n

n∑

i=1

f(Xi, Yi) − E[f(X,Y )]

∣∣∣∣∣ ≥
√

2t

n

)
≤ 2e−t/2.

Since Ei[Wi] = f(Xi, Yi), the claim follows by combining this and Lemma 5.10

with the triangle inequality and the union bound.
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5.3.4 The IWAL-CAL Rejection Threshold

First, we state a deviation bound for the importance weighted error of

hypotheses in a finite hypothesis class H that holds for all n ≥ 1. It is a simple

consequence of Theorem 5.3 and union bounds.

Lemma 5.11. Pick any δ ∈ (0, 1). For all n ≥ 1, let

εn :=
16 log(2(3 + n log2 n)n(n + 1)|H|/δ)

n
= O

(
log(n|H|/δ)

n

)
. (5.14)

Let (Z1, Z2, . . .) ∈ (X ×Y×{0, 1})∗ be the sequence of random variables specified in

Section 5.3.1 using a rejection threshold function p : (X ×Y×{0, 1})∗×X → [0, 1]

that satisfies

p(z1:n, x) ≥ 1/nn

for all n ≥ 1 and all (z1:n, x) ∈ (X × Y × {0, 1})n ×X .

The following holds with probability at least 1 − δ. For all n ≥ 1 and all

h ∈ H,

|(err(h, Z1:n) − err(h∗, Z1:n)) − (err(h) − err(h∗))|

≤
√

1

Pmin,n(h)
· εn +

1

Pmin,n(h)
· εn (5.15)

where

Pmin,n(h) = min{Pi : 1 ≤ i ≤ n ∧ h(Xi) 6= h∗(Xi)} ∪ {1}.

We let C0 ≥ 2 be a quantity such that εn (as defined in Eq. (5.14)) is

bounded as

εn ≤ C0 · log(n + 1)

n
.

The following constants are used in the description of the IWAL-CAL rejection

threshold and the subsequent analysis:

c1 := 5 + 2
√

2 c2 := 5 c3 := max




(

c1 +
√

2

c1 − 2

)2

,
c2 + 2

c2 − 2





c4 := (c1 +
√

c3)
2 c5 := c2 + c3.
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The rejection threshold (line 3 in Algorithm 5.2) is based on the devia-

tion bound from Lemma 5.11. First, the importance weighted error minimizing

hypothesis ht and the “alternative” hypothesis h′
t are found, and their difference

in importance weighted errors Gt is computed. If Gt ≤
√

(C0 log t)/(t − 1) +

(C0 log t)/(t− 1), then the query probability Pt is set to 1. Otherwise, Pt is set to

the positive solution s to the quadratic equation

Gt =

(
c1√
s
− c1 + 1

)
·
√

C0 log t

t − 1
+
(c2

s
− c2 + 1

)
· C0 log t

t − 1
. (5.16)

It can be checked that Pt ∈ (0, 1] and that Pt is non-increasing with Gt. It is also

useful to note that log(t + 1)/t is monotonically decreasing with t ≥ 0 (we use the

convention log(1)/0 = ∞).

In order to apply Lemma 5.11 with the IWAL-CAL rejection threshold, we

need to establish the (very crude) bound Pt ≥ 1/tt for all t.

Lemma 5.12. The IWAL-CAL rejection threshold satisfies

p(z1:n, x) ≥ 1/nn

for all n ≥ 1 and all (z1:n, x) ∈ (X × Y × {0, 1})n−1 ×X .

Proof. By induction on n. Trivial for n = 1 (since p(ε, x) = 1 for all x ∈ X ), so

now assume as the inductive hypothesis pn−1 = p(z1:n−2, x) ≥ 1/(n − 1)n−1 for all

(z1:n−2, x) ∈ (X ×Y×{0, 1})n−2×X . Fix any (z1:n−1, x) ∈ (X ×Y×{0, 1})n−1×X ,

and consider the error difference gn used to determine pn = p(z1:n, x). We only

have to consider the case gn >
√

(C0 log n)/(n − 1) + (C0 log n)/(n − 1). By the

inductive hypothesis, we have gn ≤ 2(n − 1)n−1. Let C ′
0 := C0 log n. Solving the

quadratic in Eq. (5.16) implies

√
pn =

c1 ·
√

C′

0

n−1
+

√
c2
1
·C′

0

n−1
+ 4 ·

(
gn + (c1 − 1) ·

√
C′

0

n−1
+ (c2 − 1) · C′

0

n−1

)
· c2·C′

0

n−1

2

(
gn + (c1 − 1) ·

√
C′

0

n−1
+ (c2 − 1) · C′

0

n−1

)

so, very loosely,

pn >
c2 · C ′

0

c1 · (n − 1) · gn

≥ c2 · C ′
0

2c1 · (n − 1) · (n − 1)n−1
>

1

e(n − 1)n
≥ 1

nn

as required.
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5.3.5 Correctness Analysis

We first prove a consistency guarantee for IWAL-CAL that bounds the

generalization error of the importance weighted empirical error minimizer. The

proof actually establishes a lower bound on the query probabilities Pi ≥ 1/2 for

Xi such that hn(Xi) 6= h∗(Xi). This offers an intuitive characterization of the

weighting landscape induced by the importance weights 1/Pi.

Theorem 5.4. The following holds with probability at least 1− δ. For any n ≥ 1,

0 ≤ err(hn)−err(h∗) ≤ err(hn, Z1:n−1)−err(h∗, Z1:n−1)+

√
2C0 log n

n − 1
+

2C0 log n

n − 1
.

This implies, for all n ≥ 1,

err(hn) ≤ err(h∗) +

√
2C0 log n

n − 1
+

2C0 log n

n − 1
.

Proof. We condition on the 1−δ probability event that the deviation bounds from

Lemma 5.11 hold. The proof now proceeds by induction on n. The claim is trivially

true for n = 1. Now pick any n ≥ 2 and assume as the inductive hypothesis that

0 ≤ err(hτ )−err(h∗) ≤ err(hτ , Z1:τ−1)−err(h∗, Z1:τ−1)+

√
2C0 log τ

τ − 1
+

2C0 log τ

τ − 1
.

(5.17)

for all 1 ≤ τ ≤ n − 1. We need to show Eq. (5.17) holds for τ = n.

Let Pmin := min{Pi : 1 ≤ i ≤ n − 1 ∧ hn(Xi) 6= h∗(Xi)} ∪ {1}. If

Pmin ≥ 1/2, then Eq. (5.15) implies that Eq. (5.17) holds for τ = n as needed. So

assume for sake of contradiction that Pmin < 1/2, and let n0 := max{i ≤ n − 1 :

Pi = Pmin ∧ hn(Xi) 6= h∗(Xi)}. By definition of Pn0
, we have

err(h′
n0

, Z1:n0−1) − err(hn0
, Z1:n0−1)

=

(
c1√
Pmin

− c1 + 1

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 + 1

)
· C0 log n0

n0 − 1
.
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Using this fact together with the inductive hypothesis, we have

err(h′
n0

, Z1:n0−1) − err(h∗, Z1:n0−1)

= err(h′
n0

, Z1:n0−1) − err(hn0
, Z1:n0−1) + err(hn0

, Z1:n0−1) − err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 + 1

)
· C0 log n0

n0 − 1

−
√

2C0 log n0

n0 − 1
− 2C0 log n0

n0 − 1

=

(
c1√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1
(5.18)

> (c1 − 1) · (
√

2 − 1) ·
√

C0 log n0

n0 − 1
+ (c2 − 1) · C0 log n0

n0 − 1

where the last step uses the fact that Pmin < 1/2. Since this final quantity is

positive, we have err(h′
n0

, Z1:n0−1) > err(h∗, Z1:n0−1). By the definition of h′
n0

, this

implies h′
n0

(Xn0
) 6= h∗(Xn0

). Therefore, hn(Xn0
) = h′

n0
(Xn0

) so err(hn, Z1:n0−1) ≥
err(h′

n0
, Z1:n0−1). Using this fact, Eq. (5.15), and Eq. (5.18), we have

err(hn, Z1:n−1) − err(h∗, Z1:n−1)

≥ err(hn) − err(h∗) −
√

1

Pmin

· C0 log n

n − 1
− 1

Pmin

· C0 log n

n − 1
≥ err(hn, Z1:n0−1) − err(h∗, Z1:n0−1)

−2 ·
√

1

Pmin

· C0 log n0

n0 − 1
− 2 · 1

Pmin

· C0 log n0

n0 − 1

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1

>
(
(c1 − 1) · (

√
2 − 1) − 2

√
2
)
·
√

C0 log n0

n0 − 1
+ (c2 − 5) · C0 log n0

n0 − 1

where, again, the last step uses the fact that Pmin < 1/2. This final quantity is

non-negative, so we have the contradiction err(hn, Z1:n−1) > err(h∗, Z1:n−1).

5.3.6 Label Complexity Analysis

We now bound the number of labels requested by IWAL-CAL after n it-

erations. First, we establish a property about the query probabilities that relates

error deviations (via Pmin) to empirical error differences (via Pn). Both quantities
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play essential roles in bounding the label complexity through the disagreement

metric structure around h∗.

Lemma 5.13. Assume the bounds from Eq. (5.15) holds for all h ∈ H and n ≥ 1.

For any n ≥ 1, we have Pn ≤ c3 · Pmin, where Pmin := min({Pi : 1 ≤ i ≤
n − 1 ∧ h(Xi) 6= h∗(Xi)} ∪ {1}) and

h :=

{
hn if h′

n(Xn) = h∗(Xn)

h′
n if hn(Xn) = h∗(Xn).

Proof. Assume for sake of contradiction that Pmin < Pn/c3 ≤ 1/c3, and let n0 :=

max{i ≤ n − 1 : Pi = Pmin ∧ h(Xi) 6= h∗(Xi)}. Then, an argument similar to

that from Theorem 5.4 (with the fact c3 ≥ 2) implies

err(h, Z1:n0−1) − err(h∗, Z1:n0−1)

≥
(

c1√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1
.

Therefore (again, similar to the proof of Theorem 5.4),

err(h, Z1:n−1) − err(h∗, Z1:n−1)

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n0

n0 − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n0

n0 − 1

≥
(

c1 − 2√
Pmin

− c1 + 1 −
√

2

)
·
√

C0 log n

n − 1
+

(
c2 − 2

Pmin

− c2 − 1

)
· C0 log n

n − 1
(5.19)

> 0.

If h = hn, then by the definition of hn and h′
n,

err(h, Z1:n−1) − err(h∗, Z1:n−1) = err(hn, Z1:n−1) − err(h∗, Z1:n−1)

≤ err(hn, Z1:n−1) − err(h′
n, Z1:n−1)

≤ 0,

a contradiction of the lower bound from above. Otherwise h = h′
n, so the definitions
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of hn, h′
n, and Pn imply that

err(h, Z1:n−1) − err(h∗, Z1:n−1)

= err(h′
n, Z1:n−1) − err(h∗, Z1:n−1)

≤ err(h′
n, Z1:n−1) − err(hn, Z1:n−1)

=

(
c1√
Pn

− c1 + 1

)
·
√

C0 log n

n − 1
+

(
c2

Pn

− c2 + 1

)
· C0 log n

n − 1
. (5.20)

Combining the lower bound in Eq. (5.19) and upper bound Eq. (5.20), and using

the assumption Pmin < Pn/c3 gives

(
c1 −

√
c3(c1 − 2)√
Pn

+
√

2

)
·
√

C0 log n

n − 1
+

(
c2 − c3(c2 − 2)

Pn

+ 2

)
· C0 log n

n − 1
> 0.

But Pn ≤ 1, so each of the parenthesized terms is non-positive. This is a contra-

diction.

The next lemma bounds the probability of querying the label Yn; this is

subsequently used to establish the final bound on the expected number of labels

queried.

Lemma 5.14. Assume the bounds from Eq. (5.15) holds for all h ∈ H and n ≥ 1.

Let η := err(h∗). For any n ≥ 1,

E[Qn] ≤ θ·
(

2η +

√
6c4 ·

C0 log n

n − 1
+

(
1 +

1

2
log

1
3
2
c4 · C0 log n

n−1

)
· 3

2
c5 ·

C0 log n

n − 1

)

for all λ > 0.

Proof. Define

h :=

{
hn if h′

n(Xn) = h∗(Xn)

h′
n if hn(Xn) = h∗(Xn).

By Lemma 5.13, we have

min ({Pi : 1 ≤ i ≤ n − 1 ∧ h(Xi) 6= h∗(Xi)} ∪ {1}) ≥ Pn/c3.
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If h = h′
n, then by Eq. (5.15) and the definitions of hn, h′

n, and Pn,

err(h) − err(h∗)

= err(h′
n) − err(h∗)

≤ err(h′
n, Z1:n−1) − err(h∗, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤ err(h′
n, Z1:n−1) − err(hn, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

=

(
c1 +

√
c3√

Pn

− c1 + 1

)
·
√

C0 log n

n − 1
+

(
c2 + c3

Pn

− c2 + 1

)
· C0 log n

n − 1

≤
√

c4

Pn

·
√

C0 log n

n − 1
+

c5

Pn

· C0 log n

n − 1

where the last inequality follows because c1 ≥ 1 and c2 ≥ 1. If instead h = hn,

then again using the definitions of hn, h′
n, and Pn,

err(h) − err(h∗)

= err(hn) − err(h∗)

≤ err(hn, Z1:n−1) − err(h∗, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤ err(hn, Z1:n−1) − err(h′
n, Z1:n−1) +

√
c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤
√

c3

Pn

· C0 log n

n − 1
+

c3

Pn

· C0 log n

n − 1

≤
√

c4

Pn

·
√

C0 log n

n − 1
+

c5

Pn

· C0 log n

n − 1
.

If err(h) − err(h∗) = γ > 0, then solving the above quadratic inequality for

Pn gives the bound

Pn ≤ 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
.

If err(h) − err(h∗) ≤ γ, then by the triangle inequality we have

ρ(h∗, h) ≤ err(h∗) + err(h) ≤ 2 err(h∗) + γ

which in turn implies Xn ∈ R(h∗, 2η + γ). Note that Pr(Xn ∈ R(h∗, 2η + γ)) ≤
θ · (2η + γ).
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Fix γ0 > 0. We have

E[Qn] = Pr(err(h) − err(h∗) ≤ γ0) · E[Qn| err(h) − err(h∗) ≤ γ0]

+

∫ 1

γ0

∂ Pr(err(h) − err(h∗) ≤ γ)

∂γ
· E[Qn| err(h) − err(h∗) = γ] · dγ

≤ θ · (2η + γ0) +

∫ 1

γ0

θ · 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
· dγ

≤ θ ·
(

2η + γ0 +
3

2
· C0 log n

n − 1
·
(

c4

γ0

+ c5 · log
1

γ0

))
.

Optimizing with respect to γ0 completes the proof.

Theorem 5.5. Conditioned on an event that occurs with probability at least 1− δ,

the expected number of labels queried by IWAL-CAL after n iterations is at most

1 + 2 · θ · err(h∗) · (n − 1) + θ
√

6c4C0n log n + θ

(
1 +

1

2
log

n

C0

)
3

2
c5 log2 n.

Proof. Follows from assuming Y1 is always queried; applying Lemmas 5.11, 5.14,

and linearity of expectation.

This label complexity bound has the same leading terms 1 + 2 · θ · err(h∗) ·
(n − 1) as that of Agnostic CAL; the remaining terms somewhat worse than that

of Agnostic CAL, but are still sublinear.

5.3.7 Labeling Rates Under Low Noise Conditions

Some recent work on active learning has focused on improved label complex-

ity under certain noise conditions [CN06, BBZ07, CN07, Han09, Kol09]. Specifi-

cally, it is assumed that there exists constants κ > 0 and 0 < α ≤ 1 such that

ρ(h, h∗) ≤ κ · (err(h) − err(h∗))α (5.21)

for all h ∈ H. This is related to Tsybakov’s low noise condition [Tsy04]. Es-

sentially, this condition requires that low error hypotheses not be too far from

the optimal hypothesis h∗ under the disagreement metric. Under this condition,

Lemma 5.14 can be improved.

In the remainder of this section, we assume that for some value of κ > 0

and 0 < α ≤ 1, the condition in Eq. (5.21) holds for all h ∈ H.
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Lemma 5.15. Assume the bounds from Eq. (5.15) hold for all h ∈ H and n ≥ 1.

For any n ≥ 1,

E[Qn] ≤ θ · κ · cα ·
(

C0 log n

n − 1

)α/2

where cα is a constant that depends only on α.

Proof. For the most part, the proof is the same as that of Lemma 5.14, so we just

show where the noise condition from Eq. (5.21) enters. For α < 1,

E[Qn] = Pr(err(h) − err(h∗) ≤ γ0) · E[Qn| err(h) − err(h∗) ≤ γ0]

+

∫ 1

γ0

∂ Pr(err(h) − err(h∗) ≤ γ)

∂γ
· E[Qn| err(h) − err(h∗) = γ] · dγ

≤ θκγα
0 +

∫ 1

γ0

θκ

α
· 1

γ1−α
· 3

2
·
(

c4

γ2
+

c5

γ

)
· C0 log n

n − 1
· dγ

≤ θκγα
0 +

3θκ

2α
· C0 log n

n − 1
·
(

c4

2 − α
· 1

γ2−α
0

+
c5

1 − α
· 1

γ1−α
0

)
.

The case α = 1 can be handled similarly. Optimizing over γ0 completes the

proof.

This lemma immediately implies the following bound on the number of label

queries, which is sublinear for all 0 < α ≤ 1.

Theorem 5.6. Conditioned on an event that occurs with probability at least 1− δ,

the expected number of labels queried by IWAL-CAL after n iterations is at most

θ · κ · cα · (C0 log n)α/2 · n1−α/2

where cα is a constant that depends only on α.

5.3.8 Discussion

In this chapter, we have demonstrated that the strict version space approach

can be relaxed with two different methods. The first (Oracular CAL) achieves this

by relying on a more pessimistic threshold function ∆, while the second (IWAL-

CAL) uses importance weights. These algorithms have qualitative advantages over

Agnostic CAL that may be useful in practice.
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The work of [BDL09], which originally introduced the IWAL framework,

also presents a rejection threshold method called loss-weighting based on differences

in importance weighted errors. In fact, the method is more general in that it works

for other loss functions such as logistic loss, which can be efficiently optimized

in certain cases. However, loss-weighting is unsatisfactory in two ways. First,

computing the query probabilities requires an optimization over a strictly defined

version space (similar to that used in an algorithm studied by [Kol09]). Second, the

label complexity bound established in [BDL09] actually only holds for a hypothesis

selected from this version space, rather than from the entire hypothesis class. In

comparison, IWAL-CAL only requires optimizations over the entire hypothesis

class, and its performance guarantees avoid any reliance on a version space.

5.4 Bibliographic Notes

This chapter is based on unpublished joint work with Alina Beygelzimer,

John Langford, and Tong Zhang. The dissertation author was the primary inves-

tigator and author of this material.



Chapter 6

Experimental Evaluation

We report empirical results of applying the IWAL-CAL algorithm from

Chapter 5 to various classification tasks.

6.1 Introduction

We are interested in experimentally comparing the practical performance

of active learning to that of passive learning. It has previously been reported that

some active learning algorithms actually perform worse than their passive learning

counterparts [Set09]. This can likely be attributed to the mismanagement of the

sampling bias that active learning introduces [SVP06, DH08]. Therefore, active

learning has represented a risky endeavor by machine learning practitioners, who

may simply opt for the safer approach of passive learning. On the other hand,

the active learning algorithms presented in the previous chapters come with safety

guarantees which roughly state that the algorithms enjoy label complexity bounds

comparable to those of their passive learning counterparts. This mitigates the risk

of employing active learning to some degree. However, an experimental study is

still needed because

1. the label complexity bounds of active learning hide constants and logarithmic

factors, which may be significant in practice, and

2. the algorithms described are often not implemented exactly, due to compu-

83
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tational and other practical limitations.

In this chapter, we describe experiments using two instantiations of the

IWAL-CAL algorithm (Algorithm 5.2) which differ in their (approximate) imple-

mentation of the error minimization oracle. The first uses a soft-margin support

vector machine, and the second uses a standard decision tree learning algorithm.

We compare their performance to that of a passive learner using the same base

learning methods.

6.2 Algorithms

As mentioned above, we used two simple base learning algorithms to ap-

proximately implement the required error minimization oracle used by IWAL-CAL.

In both cases, the unlabeled data space X is a d-dimensional Euclidean space R
d,

so each x ∈ X is represented by d real-value features.

6.2.1 Soft-Margin Support Vector Machine

The first base learning algorithm trains a linear classifier hw represented by a

weight vector w ∈ R
d (hw(x) = 1 iff w⊤x ≥ 0) to optimize the soft-margin support

vector machine (SVM) objective [CV95], suitably modified to handle importance

weights. For S ⊆ R
d × {±1} × R+, we select w to minimize

1

2
· ‖w‖2

2 +
1

|S|
∑

(x,y,1/p)∈S

1

p
· max

(
0, 1 − y · x⊤w

)
(6.1)

(the regularization parameter typically denoted by λ is fixed to 1). To enforce a

single example constraint (x, y), we minimize the objective in Eq. (6.1) subject to

the linear constraint y · x⊤w ≥ 0. We used a dual Gauss-Seidel method for solving

the optimization problems [Zha02].

6.2.2 Decision Tree

The second base learning algorithm uses the J48 decision tree learning al-

gorithm implemented in the Weka v3.6.2 data mining software [HFH+09], with
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all default parameters. J48 is a Java implementation of the popular C4.5 proce-

dure [Qui93] for growing (and pruning) a decision tree, and it readily accommo-

dates importance weights. To enforce a single example constraint (x, y), we use a

simple heuristic: we learn a decision tree using the J48 algorithm as is, and then

change the label of the leaf node that predicts on x to y.

6.2.3 Rejection Threshold

We used the IWAL-CAL rejection threshold described in Chapter 5 (with

different constants and logarithmic factors) for setting the query probabilities for

both the SVM and decision tree methods. Recall, given the hypotheses ht and

h′
t in iteration t, the query probability Pt is determined in the following manner.

Let Gt := err(h′
t, St−1) − err(ht, St−1) be the difference of empirical importance

weighted errors. If Gt ≤
√

C0/(t − 1) + C0/(t − 1), then the query probability Pt

is set to 1. Otherwise, Pt is set to the positive solution s to the quadratic equation

Gt =

√
1

s
· C0

t − 1
+

1

s
· C0

t − 1
,

which is

s =
C0

t − 1
·
(

1 +
√

1 + 4Gt

2Gt

)2

.

We still have to specify the bound constant C0. Our theoretical analysis

uses

C0 = O

(
log

|H|n
δ

)

where H is the hypothesis class, n is the total number of data, and δ is the confi-

dence parameter. However, it is well-known that theoretical generalization bounds

are loose in practice, even when they account for various data-dependent factors

such as the margin [SFBL98]. Therefore, we use much more optimistic settings

of C0. Our results are reported using C0 = 1/4 for the SVM method, and C0 = 8

for the decision tree method. Of course, using significantly smaller settings of C0

results in overly-aggressive algorithms, while using larger choices of C0 results in

overly-conservative algorithms. We found that our algorithm is somewhat robust

to the setting of C0, and a single setting of C0 worked well across different data
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sets with different characteristics (except for the extrinsic dimension, which was

fixed in the experiments). One might imagine tuning C0 using held-out (labeled)

data, but (i) it is not obvious how to do so, and (ii) held-out data may be costly to

obtain anyway. Therefore, it is an important open problem to develop a practical

method of parameter tuning in active learning.

6.3 Experimental Setup

6.3.1 Binary Classification Tasks

We used the following data sets for binary classification experiments.

1. ADULT [AN07]: income prediction (> $50000 vs ≤ $50000) from census

data. We randomly chose 4000 of the 48842 data for training, and used the

rest for testing.

2. KDDCUP99 [AN07]: network intrusion detection (“bad” vs “good” connec-

tion) from network usage statistics and connection features. We randomly

choose 5000 of the 4000000 data for training, and another 5000 for testing.

3. MNIST3v5 [LBBH98]: handwritten digit classification (“3” vs “5”) from

pixel intensity values. We randomly chose 4000 of the 11552 training images

for training, and used all of the 1902 testing images for testing.

These data sets were selected because they roughly correspond to three different

levels of achievable error rate, with ADULT having the highest error rate, followed

by MNIST3v5, and then KDDCUP99. We reduced the dimension of each data set

to 25 using PCA and randomized the order of the training data. For the SVM

base learner, we also normalized the length of each data vector.

6.3.2 Multi-Class Classification Task

We also conducted a multi-class classification experiment using the entire

MNIST data set (all 10 digits). We only used the decision tree base learner for
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this experiment, since it naturally accommodates multi-class. The “alternative

hypothesis” h′
t is forced to disagree with ht on xt by changing the label of the leaf

node that predicts on xt to the next best label. For this experiment, the number

of training data is 60000 and the number of testing data is 10000. We reduced the

dimension of the data to 40 using PCA and randomized the order of the training

data.

6.3.3 Evaluation Procedure

We compared the performance of IWAL-CAL to a passive learner using the

same base learning algorithm. The passive learner can be thought of as an active

learner that simply chooses unlabeled data at random to label; alternatively, in the

“online” framework in which the unlabeled data arrive one at a time, the passive

learner simply queries every label.

We consider two different error rates. First, we consider the test error after

each learner has observed n unlabeled data. We call this the unlabeled error rate.

Second, we consider the test error after each learner has queried n labels. We call

this the labeled error rate. Note that the unlabeled and labeled error rates are the

same for the passive learner.

6.4 Results

6.4.1 Binary Classification Experiments

The unlabeled error rates for both base learners are plotted in Figure 6.1.

In most of the cases, the plots for active and passive learning are similar, which is

in accord with the safety guarantee of IWAL-CAL—that the active learner enjoys

roughly the same unlabeled error rate as a passive learner. The error rate somewhat

more variable for the active learner, which may be due to the use of an importance

weighted sample. As discussed in Chapter 5, the importance weighted sample

provides unbiased estimates of the error, but the variance of these estimates are

larger than the usual fully-supervised estimates.
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The labeled error rates for both base learners are plotted in Figure 6.2, with

close-ups in Figure 6.3. The active learner dramatically improves over the passive

learner on the KDDCUP99 data set with both the base learners. The improvement

is very modest on ADULT and MNIST3v5 using the decision tree base learner, and

non-existent on ADULT and MNIST3v5 using the SVM base learner. Note that

the error rate on KDDCUP99 is also very small, so the good performance there

relative to the other two data sets is explained by the dependence on the noise rate

in the label complexity bounds for IWAL-CAL (Theorems 5.5 and 5.6). It seems

that the benefits of active learning are most apparent with learning problems with

low levels of noise.

Finally, we also plot the labeling rates (the number of labels queried versus

the number of unlabeled data seen) in Figure 6.4. These plots confirm the dramatic

improvement of the active learner over the passive learner on KDDCUP99, where

the labeling rate appears very sublinear, and the modest improvements on ADULT

and MNIST3v5 using the decision tree base learner, where the labeling rate appears

linear or only slightly sublinear. The labeling rate on ADULT and MNIST3v5 using

the SVM base learner is almost exactly the same as that for passive learning, i.e.,

the active learner queries almost every label. Therefore, the degraded (and more

variable) test error may be due to the increased variance in the error estimates due

to the non-unitary importance weights.

6.4.2 Multi-Class Classification Experiment

The plots for the multi-class classification experiment are in Figure 6.5.

Here, we observe a modest improvement of the active learner over the passive

learner in the labeled error rate. The active learner queried a little over 2/3 of

the labels. While this may be seen as a sizable fraction of the data set, it does

correspond to noticeable savings. For instance, the passive learner required over

6500 more label queries than the active learner to achieve an error rate of 0.175.
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Figure 6.1: Unlabeled error rates for the binary classification experiments.
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Figure 6.2: Labeled error rates for the binary classification experiments.
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Figure 6.3: Labeled error rates (close-ups) for the binary classification experiments.
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Figure 6.4: Labeling rates for the binary classification experiments.
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Figure 6.5: Error rates and labeling rates for the multi-class experiment.
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Appendix A

Deviation Bounds

A.1 Finite Families of Functions

The following lemma summarizes basic Chernoff bounds estimating the bias

of a coin.

Lemma A.1. Pick any n ≥ 1, η ∈ (0, 1), and function f : Z → {0, 1}. Let

εn :=
log(2/η)

n
.

Let Z1, . . . , Zn be n iid copies of a random variable Z ∈ Z, and define

µn(f) :=
1

n

n∑

i=1

f(Zi).

With probability at least 1 − η,

|µn(f) − E[f(Z)]| ≤
√

εn/2.

Also, with probability at least 1 − η,

µn(f) − E[f(Z)] ≤ min
(√

3E[f(Z)] · εn, 4εn + 2
√

µn(f) · εn

)

and

E[f(Z)] − µn(f) ≤ min
(√

2E[f(Z)] · εn, 2εn +
√

2µn(f) · εn

)
.

To get a uniform bound for a finite family F of functions f : Z → {0, 1},
we can simply apply a union bound.
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A.2 Infinite Families of Functions

The following lemma gives a uniform bound for an infinite family of func-

tions with finite VC dimension.

Lemma A.2 ([VC71]). Pick any n ≥ 1, η ∈ (0, 1), and family F of functions

f : Z → {0, 1} with finite VC dimension. Let

εn :=
4

n
·
(

lnS(F , 2n) + ln
8

η

)
.

Let Z1, . . . , Zn be n iid copies of the random variable Z ∈ Z, and define

µn(f) :=
1

n

n∑

i=1

f(Zi).

With probability at least 1 − η,

µn(f) − E[f(Z)] ≤ min
(
εn +

√
E[f(Z)] · εn,

√
µn(f) · εn

)

and

E[f(Z)] − µn(f) ≤ min
(√

E[f(Z)] · εn, εn +
√

µn(f) · εn

)

for all f ∈ F .
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