
UCLA
UCLA Electronic Theses and Dissertations

Title
Scalable Methods for Big Time-To-Event Data

Permalink
https://escholarship.org/uc/item/3h95x3km

Author
Kawaguchi, Eric Shinya

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3h95x3km
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Scalable Methods for Big Time-To-Event Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Biostatistics

by

Eric Shinya Kawaguchi

2019



c© Copyright by

Eric Shinya Kawaguchi

2019



ABSTRACT OF THE DISSERTATION

Scalable Methods for Big Time-To-Event Data

by
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Doctor of Philosophy in Biostatistics
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Professor Gang Li, Chair

Computational advancements and cost efficiency over the recent years have made big data

readily available to researchers. In the biomedical and public health fields analyzing time-

to-event data, where the outcome of interest is a time-to-event endpoint, is of particular

interest. However, big time-to-event data poses many challenges to currently-available sta-

tistical methods due to the large number of covariates and/or observations one can observe.

In this dissertation we propose scalable sparse regression methods for both big right-censored

and competing risks time-to-event data. We extend the recently-introduced broken adaptive

ridge (BAR) regression procedure to both the Cox (1972) proportional hazards for right-

censored data and the Fine and Gray (1999) proportional subdistribution hazards model for

competing risks data, establish its large-sample properties under diverging dimension, and

develop computational software that is scalable to big time-to-event data.
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CHAPTER 1

Introduction

Advancing informatics tools make big time-to-event data routinely accessible to biomedical

researchers. This data deluge offers unprecedented opportunities for new and innovative

approaches to improve research and learning (Schuemie et al., 2017) but also presents new

computational challenges and barriers for quantitative researchers as many current statis-

tical methodologies and computational tools may grind to a halt as the sample size (n)

grows large. Such challenges are particularly common in time-to-event data analyses where

the log-likelihood function for commonly-used semi-parametric regression models (such as

the Cox (1972) proportional hazards model for right-censored data or Fine and Gray (1999)

proportional subdistribution hazards model for competing risks data) and its derivatives typ-

ically require O(n2) number of operations, which will quickly explode as n grows large. The

computational burden can be further aggravated as the number of covariates (pn) increases

since 1) the computational cost is multiplied by a factor of pn for the gradient and p2
n for the

Hessian matrix, and 2) in addition to estimation, variable selection would add another layer

of computational complexity. Statistical methods coupled with high-performance algorithms

are critically needed for big time-to-event data analysis.

Generally, not all of the covariates we obtain are expected to be relevant to the outcome of

interest. Oftentimes researchers are interested in identifying covariates which have an effect

on the outcome. Penalization methods (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang

et al., 2010) offer a popular way to perform simultaneous variable selection and parameter

estimation through minimizing a penalized objective function. Several methods have been

proposed for the Cox proportional hazards model (Tibshirani, 1997; Fan and Li, 2002; Zhang

and Lu, 2007; Zhang, 2010; Simon et al., 2011; Johnson et al., 2012; Su et al., 2016) and,
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more recently, the Fine-Gray proportional subdistribution hazards model (Ha et al., 2014;

Fu et al., 2017; Ahn et al., 2018; Hou et al., 2018).

It is well known that `0-penalized regression is natural for variable selection and parameter

estimation with some optimal properties (Akaike, 1974; Schwarz, 1978; Volinsky and Raftery,

2000; Shen et al., 2012), but also known to have some limitations such as being unstable

(Breiman, 1996) and unscalable to high-dimensional settings. The broken adaptive ridge

(BAR) estimator, defined as the limit of an `0-based iteratively reweighted `2-penalization

algorithm, has been recently introduced for simultaneous variable selection and parameter

estimation and shown to possess some desirable selection and estimation properties under

several model settings (see, e.g. Zhao et al. (2018), Dai et al. (2018), Zhao et al. (2019),

and Zhao et al. (2019)). The idea of iteratively reweighted penalizations dates back at least

to the well-known Lawson’s algorithm (Lawson, 1961) in classical approximation theory,

which has been applied to various applications including `d (0 < d < 1) minimization

(Osborne, 1985), sparse signal reconstruction (Gorodnitsky and Rao, 1997), compressive

sensing (Candes et al., 2008; Chartrand and Yin, 2008; Gasso et al., 2009; Daubechies et al.,

2010; Wipf and Nagarajan, 2010), and variable selection for linear models and generalized

linear models (Liu and Li, 2016; Frommlet and Nuel, 2016). The BAR method aims to

yield a local solution of `0-penalized regression that preserves some desirable properties of

`0-penalized regression while avoiding its limitations. First, the BAR estimator is stable and

easily scalable to high-dimensional covariates. Second, the BAR estimator has a grouping

property for highly-correlated covariates. Lastly, the BAR estimator enjoys the best of

`0-penalized regression and the oracle ridge estimator. Specifically, the reweighted ridge

regression at each iteration step shrinks the small values of the initial ridge estimator towards

zero and drives its large values towards an oracle ridge estimator. Thus the resulting BAR

estimator is selection consistent and its nonzero component behaves like the oracle ridge

estimator in that it is asymptotically consistent and Gaussian.

Developing efficient algorithms is crucial in handling large-scale (massive sample size)

time-to-event data. We give two examples of such datasets and potential obstacles one may

encounter.
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• National Trauma Data Bank: Sparse high-dimensional massive sample size (sHDMSS)

data is a particular type of big data with the following characteristics: 1) high-

dimensional with a large number of covariates (pn in thousands or tens of thousands),

2) massive in sample-size (n in thousands to hundreds of millions), and 3) sparse in

covariates with only a very small portion of covariates being nonzero for each subject.

For sHDMSS time-to-event data, we also have the issue of rare events (i.e. high right

censoring). A typical example of sHDMSS time-to-event data is the pediatric trauma

mortality data (Mittal et al., 2014) from the National Trauma Data Bank (NTDB)

maintained by the American College of Surgeons (Mittal et al., 2014). This data set

includes 210,555 patient records of injured children under 15 collected over 5 years

from 2006 -2010. Each patient record includes 125,952 binary covariates that indicate

the presence, or absence, of an attribute (ICD9 Codes, AIS codes, etc.) as well as

their two-way interactions. The data matrix is extremely sparse with less than 1% of

the covariates being non zero. The event rate is also very low at 2%. The massive

sample size presents a critical barrier to the application of existing sparse time-to-event

regression methods in a high-dimensional setting.

While many sparse time-to-event regression methods (Tibshirani, 1997; Fan and Li,

2002; Zhang and Lu, 2007; Zhang, 2010; Simon et al., 2011; Johnson et al., 2012; Su

et al., 2016) are available, current methods and standard software become inoperable

for large datasets due to high computational costs and large memory requirements.

Mittal et al. (2014) presented tools for fitting `2- (ridge) and `1- (LASSO) penalized

Cox’s regressions on sHDMSS data. However, it is well known that ridge regression

is not sparse and that although LASSO produces a sparse solution, it tends to select

too many noise variables and is biased for estimation. Lastly, the commonly used “di-

vide and conquer” strategy for massive-size data is deemed inappropriate for sHDMSS

time-to-event data since each of the divided data would typically be too sparse for a

meaningful analysis.

• United States Renal Data Systems: The United States Renal Data System (US-

RDS) is a national data system funded by the National Institute of Diabetes and
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Digestive and Kidney Diseases (NIDDK) that collects information about end-stage re-

nal disease in the United States. Patients with end-stage renal disease are known to

have a shorter life expectancy compared to their disease-free peers (USRDS Annual

Report 2017) and kidney transplantation provides better health outcomes for patients

with end-stage renal disease (Wolfe et al., 1999; Purnell et al., 2016). However patients

may observe competing events such as death or renal function recovery or may wish

to discontinue dialysis for quality of life purposes before transplant.

While the number of demographic and clinical covariates is relatively small, the number

of subjects can easily exceed hundreds of thousands. Furthermore, the competing risks

nature of this dataset makes scalable computing particularly challenging. Current

methods calculate key components for parameter estimation in O(n2) calculations,

which prohibits its use for data with massive sample sizes. For example analyzing a

subset of 125,000 subjects, a fraction of the data available from the USRDS, with 63

covariates takes over one day to finish.

In addressing the above challenges, the key contributions of this dissertation is four-fold:

1. Methodology: We extend the BAR methodology to both the Cox proportional haz-

ards model (Chapter 3) and Fine-Gray subdistribution hazards model (Chapter 4) and

rigorously study its asymptotic properties. Specifically, we show that, for each model,

the BAR estimator is selection consistent and possesses an oracle property in the sense

that with probability tending to 1, it estimates the zero coefficients as zeros and esti-

mates the non-zero coefficients as if the true sub-model is known in advance. Further,

we prove that the BAR estimator retains the `2-property of grouping highly-correlated

covariates. The theoretical guarantees are derived in the diverging dimension scenario

for both models. Unlike most penalized regression methods that produce a sparse solu-

tion in a single step, the BAR method is not sparse, per se, at each iteration and only

achieves sparsity at its limit. Consequently, our theoretical derivations for the BAR

estimator are quite different from those for a single-step oracle estimator in the liter-

ature. Derivations are further complicated due to the log likelihood no longer being a
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sum of i.i.d. random variables and the standard martingale central limit theorem does

not apply when the number of parameters diverges. We also assess its finite-sample

operating characteristics along with other popular `1-penalization methods.

2. Extending BAR to sparse high dimensional massive sample size (sHDMSS)

right-censored data: Except for the linear model, current BAR algorithms are not

readily applicable to handle sHDMSS data. In Chapter 3, we implement an efficient

algorithm to apply BAR to sHDMSS data. The iterative reweighted `2 nature of

our estimator allows us to adapt existing efficient massive `2-penalized Cox regression

techniques. To this end, we implement BAR regression by imbedding an adaptive

version of Mittal et al. (2014)’s massive Cox’s ridge regression within each iteration

of the iteratively reweighted Cox’s ridge regression, allowing us to extend the reach of

our algorithm to the sHDMSS domain.

3. A novel cyclic coordinate-wise BAR algorithm: We propose a novel cyclic

coordinate-wise update algorithm, referred to as cycBAR, by deriving a coordinate-

wise update for a fixed point problem whose unique solution is the BAR estimator.

The cycBAR algorithm computes the BAR estimator without actually carrying out

iteratively reweighted `2-penalizations, resulting in substantial gains in computational

efficiency. Obviously, the cycBAR method is of interest on its own since its applica-

tion can be immediately applied to accelerate the BAR method for a variety of models

and data settings such as the linear model, generalized linear models, various time-

to-event models, as well as in other applications such as sparse signal reconstruction

(Gorodnitsky and Rao, 1997) and compressive sensing (Candes et al., 2008; Chartrand

and Yin, 2008; Gasso et al., 2009; Daubechies et al., 2010; Wipf and Nagarajan, 2010)

where the `0-based iteratively reweighted `2-penalization algorithm are popularly used.

We introduce and incorporate this algorithm in Chapter 4 for the Fine-Gray model.

4. Linearizing parameter estimation for the Fine-Gray model: As mentioned ear-

lier, calculating the log-pseudo likelihood function and its derivatives typically require

O(n2) number of operations. Commonly-used computational implementations quickly
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become inoperable or grind to a halt for massive n. For right-censored time-to-event

data Mittal et al. (2014), among others, have made significant progress in reducing

the computational complexity for the Cox proportional hazards model from O(n2) to

O(n) by taking advantage of the cumulative structure of the risk set. However, the

counterfactual construction of the risk set for the Fine-Gray model does not retain

the same structure and presents a barrier to reducing the complexity of the risk set

calculation. To the best of our knowledge, no further advancements in reducing the

computational complexity required for calculating the subject-specific risk sets exists.

By taking advantage of the ordering of the data and the special structure of both

the risk set and the subject specific weight functions associated with the Fine-Gray

log-pseudo likelihood and its derivatives, we derive a novel forward-backward scan al-

gorithm to reduce their computational costs from O(n2) to O(n), allowing for scalable

analyses of competing risks data. We incorporate this algorithm to BAR estimation

(Chapter 4) and expands its application to unpenalized and penalized Fine-Gray and

cumulative incidence function estimation (Chapter 5).

The rest of the dissertation is organized as follows. We present a brief literature review

in Chapter 2. In Chapter 3 we define the BAR estimator for the Cox proportional haz-

ards model, establish its large-sample properties for diverging dimension, and introduce an

efficient algorithm to tackle sHDMSS time-to-event data. Then in Chapter 4, we extend

the methodology and theory to the Fine-Gray proportional subdistribution hazards model

for competing risks data and develop both a novel cyclic coordinate-wise update algorithm

(cycBAR) for the BAR estimator and a forward-backward scan algorithm for linearizing

parameter estimation. Finally, Chapter 5 extends the forward-backward scan introduced in

Chapter 4 for parameter and cumulative incidence function estimation of unpenalized and

penalized Fine-Gray regression.
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CHAPTER 2

Preliminaries and literature review

The purpose of this chapter is to familiarize readers with the underlying methods that will

be presented in this dissertation. We briefly review the literature on the following topics:

1) the Cox proportional hazards model for right-censored time-to-event data; 2) penalized

variable selection procedures for the Cox proportional hazards model; and 3) the Fine-Gray

proportional subdistribution hazards model for competing risks time-to-event data.

2.1 Modeling the hazard function for right-censored time-to-event

data

The hazard function is a quantity of interest when studying right-censored time-to-event

data. Letting T be the time to event, we define the hazard function at time t as

h(t) = lim
∆t→0

Pr(t ≤ T ≤ t+ ∆t|T ≥ t)

∆t
. (2.1)

The Cox (1972) proportional hazards model is the most widely-used model to draw

inference about the covariate effect on the hazard function. For a cohort of n independent

individuals, let Ti be the event time of interest, Ci be the censoring time, and zi(·) =

(zi1(·), . . . , zipn(·))′ be a pn-dimensional, possible time dependent, covariate vector. Thus, one

observes the following n independent and identically distributed triplets, {(Xi, δi, zi(·))}ni=1,

where Xi = Ti∧Ci is the observed event time, and δi = I(Ti ≤ Ci) is the censoring indicator

where a ∧ b = min(a, b) and I(·) being an indicator function. It is assumed that for all

i = 1, . . . , n, Ti and Ci are independent conditional on zi(·).
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Cox (1972) proposed to model covariate effects on the conditional hazard function,

h{t|z(t)}, through the proportional hazards model:

h{t|z(t)} = h0(t) exp{z(t)′β}, (2.2)

where h0(t) is an unspecified baseline hazard and β is a pn-dimensional vector of regression

coefficients. Cox (1975) introduced the partial likelihood

Ln(β) =
n∏
i=1

{
exp{zi(t)′β}∑
j∈Ri

exp{zj(t)′β}

}δi

, (2.3)

where Ri = {j : Xj ≥ Xi} is the set of those at risk at the ith event time.

Andersen and Gill (1982) define the log-partial likelihood for (2.2) as

ln(β) = log{Ln(β)} =
n∑
i=1

∫ 1

0

zi(t)
′βdNi(s)−

∫ 1

0

ln

[
n∑
j=1

Yj(s) exp{zj(t)′β}

]
dN̄(s), (2.4)

where Ni(t) = I(Xi ≤ t, δi = 1) and Yi(t) = I(Xi ≥ t) are the counting and at-risk process

for subject i, respectively, and N̄(t) =
∑n

i=1 Ni(t). Without loss of generality, we work on

the time interval s ∈ [0, 1] as in Andersen and Gill (1982), which can be extended to the

time interval [0, τ ] for some τ ∈ (0,∞) without difficulty.

The maximum partial likelihood estimator of β0, β̂mple, can be obtained by solving the

following score equation

Un(β) =
n∑
i=1

∫ 1

0

{
zi(t)−

S(1)(β, t)

S(0)(β, t)

}
dNi(t) = 0, (2.5)

where S(0)(β, t) = n−1
∑n

i=1 Yi(t) exp{zi(t)′β} and S(1)(β, t) = n−1
∑n

i=1 Yi(t)zi(t) exp{zi(t)′β}.

Andersen and Gill (1982) proved that the covariance matrix for β̂mple can be consistently es-

timated by the inverse of the observed information matrix Σ̂−1 = −
{
∂Un(β)/∂β|β=β̂mple

}−1

and studied the large-sample properties of β̂mple under mild regularity conditions.
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2.2 Penalized variable selection procedures for the Cox propor-

tional hazards model

The concept of variable selection has been long used in the model building process to achieve

a balance between parsimony and goodness of fit. This is especially important today when

low costs and computational advancements allow us to collect and store large number of

covariates that are potentially related to the outcome of interest. Classical techniques such

as stepwise model building or best subset selection are known to be computationally intensive

and unstable Breiman (1996) even for moderate dimensions and their theoretical properties

remain unknown and underdeveloped. In recent years, penalized regression procedures have

been introduced to perform variable selection in a continuous fashion. This is accomplished

by minimizing a penalized objective function which consequently shrinks coefficient estimates

toward zero or sets them exactly to zero. Tuning parameters typically control the amount

of shrinkage imposed on the coefficients. Tibshirani (1996) popularized penalized regression

through the development of the least absolute shrinkage and selection operator (LASSO) for

ordinary least squares regression. Several well-established methods for linear models have

been introduced since the LASSO (see e.g., Fan and Li (2001), Zou and Hastie (2005), Zou

(2006), Zhang (2010)) and have been extended to the Cox model. This rest of the section

serves to acquaint readers to some popular approaches to penalized variable selection for the

Cox model and the list should not be regarded as a comprehensive review.

We define the penalized negative log-partial likelihood for the Cox model (2.3) as

pl(β) = −ln(β) +

pn∑
j=1

pλn(|βj|), (2.6)

where ln(β) is defined as in (2.4), and pλ(·) is a penalty function with nonnegative tuning

parameter λn. When λn = 0, the summation on the right is defined as zero and the usual

negative log-partial likelihood is recovered. Estimating the parameters for a penalized Cox

regression can be obtained through minimizing (2.6).

Tibshirani (1996) introduced LASSO regression for the linear model and quickly extended
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it to the Cox model (Tibshirani, 1997). The LASSO (`1) penalty is defined as

pλ(|βj|) = λn|βj|, j = 1, . . . , pn, (2.7)

and the LASSO estimator can be expressed as the minimizer of an `1-penalized negative

log-partial likelihood function. Tibshirani (1996) further showed that the LASSO procedure

shrinks all parameter estimates toward 0 and sets some estimates to exactly 0, depending on

the choice of the tuning parameter λn. While LASSO allows for variable selection, it is also

known to perform poorly with highly-correlated covariates and the estimate of β may suffer

from substantial bias depending on the value of λn. The seminal works of Tibshirani (1996)

and Tibshirani (1997) have propelled various extensions and improvements to LASSO.

Three such proposals are the smoothly clipped absolute deviation penalty (Fan and Li,

2001, 2002, SCAD), the minimax concave penalty (Zhang, 2010, MCP) and the adaptive

LASSO (Zou, 2006; Zhang and Lu, 2007). Both SCAD and MCP aim to address LASSO’s

significant bias toward 0 for large regression coefficients by initially applying the same rate

of penalization as the LASSO but continuously relaxing the amount of penalization toward

the unpenalized solution in their own respective manner. The adaptive LASSO is a direct

modification of LASSO by allowing each coefficient to be penalized differently based on

covariate-specific weights on the tuning parameter. An appealing property of SCAD, MCP,

and adaptive LASSO is that they are oracle estimators (Fan and Li, 2001); that is, methods

that asymptotically estimate the non-zero parameters as accurately and efficiently as if the

underlying true model was known a priori.

We now focus on `0- and `2-penalizations, the key motivation for BAR regression. Best

subset selection is a natural choice for variable selection by penalizing model complexity in

a straightforward manner. The penalty function associated with best subset selection is the

so-called `0 penalty,

pλ(|βj|) = λnI(βj 6= 0), j = 1, . . . , pn. (2.8)
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Although intuitive, exact `0-penalized regression has several limitations as explained in the

introduction of the section. Finding the optimal model using `0-penalized regression requires

the fitting of all possible models and then comparing the fitted models with some information

criterion such as AIC (Akaike, 1974) or BIC (Schwarz, 1978; Volinsky and Raftery, 2000). For

example, a model with pn = 15 requires 215 = 32768 model fits. Adding one more covariate

to the data will increase the number of candidate models by another 32768. While heuristic

surrogates like stepwise selection are available, this combinatorial optimization problem is

still infeasible for moderately large pn and is unstable.

Ridge (`2-penalized) regression was first introduced to prevent degeneracy due to mul-

ticollinearity in ordinary least squares regression (Hoerl and Kennard, 1970) and has been

extended to the Cox model (Verweij and Van Houwelingen, 1994). The corresponding penalty

function in (2.6) is defined as

pλ(|βj|) = λnβ
2
j , j = 1, . . . , pn. (2.9)

Ridge regression is known to have good prediction accuracy and is capable of grouping

highly-correlated covariates. The convexity of the penalty also makes it easy to implement

in software. On the other hand, ridge regression does not produce a sparse solution (i.e. every

variable is preserved in the model) and parameter estimates are known to be downwardly

biased.

Zou and Hastie (2005) proposed elastic net regression, which borrows strength from both

LASSO (`1) and ridge (`2) regression and can be interpreted as a linear combination of

the `1 and `2 penalties. By taking advantage of both penalties, the authors show that the

elastic net penalty allows for sparse regression, a drawback of `2, while dealing with issues of

collinearity, an `1 limitation. Wu (2012) extended the elastic net penalty to the Cox model

and developed a solution path algorithm for it.

Most penalized variable selection methods require the careful selection of a tuning param-

eter. Data-driven methods to find the “optimal” tuning parameter are generally employed.

Typically a grid search is implemented to identify the tuning parameter that minimizes some
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criterion. Although cross validation (Craven and Wahba, 1978; Verweij and Van Houwelin-

gen, 1993) has been a popular approach in selecting the tuning parameter, it has been shown

to be selection inconsistent, usually resulting in an overfitted model with positive probability

(Wang et al., 2007). Recently Ni and Cai (2018) extend the generalized information crite-

rion (Zhang et al., 2010, GIC) to the Cox model. The authors further proved that a family

of criteria, which include the BIC and GIC, can identify the true model with probability

tending to one as the sample size goes to infinity under mild conditions.

Finally, the number of parameters, pn, is generally categorized into three scenarios that

reflect its relationship with the sample size n; 1) pn is considered fixed as n→∞ (fixed finite

dimension), 2) pn is allowed to increase with n but at a slower rate (diverging dimension), and

3) pn is assumed to increase exponentially with n (ultrahigh-dimension). This dissertation

primarily concerns variable selection in the diverging dimension scenario.

2.3 Modeling the subdistribution hazard function for competing

risks data

In biomedical studies with time-to-event data, individuals are oftentimes susceptible to more

than one type of event (or cause) and the occurrence of one event oftentimes precludes

the others from happening. Such events that are not of primary interest are considered

as competing risks. In the USRDS example introduced in Chapter 1, researchers wish to

examine how certain covariates affect time until first kidney transplant for kidney dialysis

patients with end-stage renal disease. While subjects who are lost to follow up or dropout

from the study are generally considered as right censored, they may also observe terminating

events such death, renal function recovery, or discontinuation of dialysis. These events are

considered to be competing risks as their occurrence will prevent subjects from receiving a

transplant.

Before moving forward, we first establish some notation and the formal definition of the

data generating process for competing risks. For subject i = 1, . . . , n, let Ti, Ci, and εi be

the event time, possible right-censoring time, and cause (event type), respectively. Without
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loss of generality assume there are two event types ε ∈ {1, 2} where ε = 1 is the event of

interest (or primary event) and ε = 2 is the competing risk. With the presence of right-

censoring, we generally observe Xi = Ti ∧ Ci, δi = I(Ti ≤ Ci), where a ∧ b = min(a, b)

and I(·) is the indicator function. Letting zi be a p-dimensional vector of time-independent

subject-specific covariates, competing risks data consist of the following independent and

identically distributed quadruplets {(Xi, δi, δiεi, zi)}ni=1. Assume that there also exists a τ

such that 1) for some arbitrary time t, t ∈ [0, τ ] ; 2) Pr(Ti > τ) > 0 and Pr(Ci > τ) > 0 for

all i = 1, . . . , n, and that for simplicity, no ties are observed.

For competing risks data, the cumulative incidence function (CIF) is often of primary

interest. The CIF for the primary event conditional on the covariates z = (z1, . . . , zp) is

F1(t; z) = Pr(T ≤ t, ε = 1|z). To model the covariate effects on F1(t; z), Fine and Gray (1999)

introduced the now well-appreciated proportional subdistribution hazards (PSH) model:

h1(t|z) = h10(t) exp(z′β), (2.10)

where

h1(t|z) = lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), z}
∆t

= − d

dt
log{1− F1(t; z)}

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline subdis-

tribution hazard, and β is a p× 1 vector of regression coefficients. As Fine and Gray (1999)

mentioned, the risk set associated with h1(t; z) is somewhat counterfactual as it includes

subjects who are still at risk (T ≥ t) and those who have already observed the competing

risk prior to time t (T ≤ t ∩ ε 6= 1). However, this construction is useful for direct modeling

of the CIF.

Parameter estimation and large-sample inference of the PSH model follows from the
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log-pseudo likelihood:

l(β) =
n∑
i=1

∫ ∞
0

[
z′iβ − ln

{∑
k

ŵk(u)Yk(u) exp (z′kβ)

}]
ŵi(u)dNi(u), (2.11)

where Ni(t) = I(Xi ≤ t, εi = 1), Yi(t) = 1 − Ni(t−), and ŵi(t) is a time-dependent weight

based on the inverse probability of censoring weighting (IPCW) technique (Robins and Rot-

nitzky, 1992). To parallel Fine and Gray (1999), we define the IPCW for subject i at time t

as ŵi(t) = I(Ci ≥ Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t), where G(t) = Pr(C ≥ t) is the survival function of

the censoring variable C and Ĝ(t) is the Kaplan-Meier (Kaplan and Meier, 1958) estimate

for G(t). However, we can generalize the IPCW to allow for dependence between C and z.

Let β̂mple = arg minβ{−l(β)} be the maximum pseudo likelihood estimator of β. Fine

and Gray (1999) prove that, under certain regularity conditions, β̂mple is a consistent esti-

mator for β0, the true value of β, and

√
n(β̂mple − β0)→ N(0,Ω−1ΣΩ−1), (2.12)

where Ω is the limit of the negative of the partial derivative matrix of the score function

evaluated at β0, and Σ is the variance-covariance matrix of the limiting distribution of the

score function. We refer readers to Section 4 and Appendix A of Fine and Gray (1999)

for a more comprehensive derivation of the large-sample properties of β̂mple which we have

omitted for brevity.

While parameter estimation for the Fine-Gray model is relatively straightforward, the

interpretation of the regression coefficients is not without difficulty. For example, the mag-

nitude of the relative effect of the covariate on the subdistribution hazard function (i.e. the

subdistribution hazard ratio) is different from the magnitude of the effect of the covariate

on the CIF (Austin and Fine, 2017). We can, however, describe the direction of association

(e.g. If the subdistribution hazard ratio is greater than 1, then incidence of the event will

also increase). In testing statistical significance of the subdistribution hazard ratio, we are

also performing a test for the covariate effect on the CIF.
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An alternative use of the regression coefficients is to predict the CIF given a set of

covariates. Using a Breslow-type estimator (Breslow, 1974), we can obtain a consistent

estimate for H10(t) =
∫ t

0
h10(s)ds through

Ĥ10(t) =
1

n

n∑
i=1

∫ t

0

1

Ŝ(0)(β̂, u)
ŵi(u)dNi(u),

where Ŝ(0)(β̂, u) = n−1
∑n

i=1 ŵi(u)Yi(u) exp(z′iβ̂). The predicted CIF, conditional on z = z0,

is then

F̂1(t; z0) = 1− exp

{∫ t

0

exp(z′0β̂)dĤ10(u)

}
.

The quantities needed to estimate
∫ t

0
dĤ10(u) are already precomputed when estimating β̂.

Fine and Gray (1999) proposed a resampling approach to calculate confidence intervals and

confidence bands for F̂1(t; z0).

Variable selection follows directly from Section 2.2 for the Cox proportional hazards

model where the log-partial likelihood is replaced with the log-pseudo likelihood (2.11) in

(2.6). Recently, Fu et al. (2017) extended LASSO, SCAD, MCP, and adaptive LASSO to

the Fine-Gray model and established their large-sample properties for the fixed dimension

scenario.
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CHAPTER 3

Broken adaptive ridge for the Cox proportional

hazards model with applications to sparse

high-dimensional massive sample size (sHDMSS) data

This chapter develops the broken adaptive ridge estimator for the Cox proportional haz-

ards model for right-censored time-to-event data with applications to sHDMSS data. In

Section 3.1, we formally define the BAR estimator, state its theoretical properties for vari-

able selection and parameter estimation and describe an efficient implementation of BAR

for sHDMSS time-to-event data. Simulation studies are presented in Section 3.2 to demon-

strate the performance of the BAR estimator with both moderate and massive sample size

in various low and high-dimensional settings. A real data example including an application

of BAR on the pediatric trauma mortality data (Mittal et al., 2014) is given in Section 3.3.

Closing remarks and discussion are given in Section 3.4. Proofs of the theoretical results,

regularity conditions needed for the derivations, and supplementary material are collected

in the appendix. An R (R Core Development Team, 2019) package for BAR is available at

https:github.com/OHDSI/BrokenAdaptiveRidge.
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3.1 Methodology

3.1.1 Cox’s broken adaptive ridge regression and its large sample properties

3.1.1.1 The data structure, model, and estimator

Suppose that one observes a random sample of right-censored time-to-event data consisting

of n independent and identically distributed triplets, {(Xi, δi, zi(·))}ni=1, where for subject i,

Xi = min(Ti, Ci) is the observed event time, δi = I(Ti ≤ Ci) is the censoring indicator, Ti is

the event time of interest, and Ci is a censoring time that is conditionally independent of Ti

given a pn-dimensional, possibly time-dependent, covariate vector zi(·) = (zi1(·), . . . , zipn(·))′.

Assume the Cox (1972) proportional hazard model

h{t|z(t)} = h0(t) exp{z(t)′β}, (3.1)

where h{t|z(t)} is the conditional hazard function of Ti given {z(u), 0 ≤ u ≤ t, }, h0(t)

is an unspecified baseline hazard function, and β = (β1, . . . , βpn) is a vector of regression

coefficients. Denote by β1 and β2 the first qn and remaining pn − qn components of β,

respectively, and define β0 = (β′01,β
′
02)′ as the true values of β where, without loss of

generality, β01 = (β01 . . . , β0qn) is a vector of qn non-zero values and β02 = 0 is a pn − qn

dimensional vector of zeros. Further technical assumptions for β0 and pn are given later in

condition (C6) of Appendix A3.1. We work on the time interval s ∈ [0, 1] as in Andersen

and Gill (1982), which can be extended to the time interval [0, τ ] for 0 < τ < ∞ without

difficulty. Andersen and Gill (1982) defined the log-partial likelihood for the Cox model

ln(β) =
n∑
i=1

∫ 1

0

β′zi(s)dNi(s)−
∫ 1

0

ln

[
n∑
j=1

Yj(s) exp{β′zj(s)}

]
dN̄(s), (3.2)

where for subject i, Yi(s) = I(Xi ≥ s) is the at-risk process and Ni(s) = I(Xi ≤ s, δi = 1) is

the counting process of the uncensored event with intensity process

hi(t|β) = h0(t)Yi(t) exp{zi(t)′β} and N̄ =
∑n

i=1Ni. Let Hi(t) =
∫ 1

0
hi(u,β0)du, then

Mi(t) = Ni(t) − Hi(t) is a local square integrable martingale with respect to filtration
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Ft,i = σ{Ni(u), zi(u
+), Yi(u

+), 0 ≤ u ≤ t}, and M̄(t) =
∑n

i=1Mi(t) is a martingale with

respect to Ft = ∪ni=1Ft,i, the smallest σ-algebra containing all Ft,i’s.

Our Cox’s broken adaptive ridge (BAR) estimation of β starts with an initial Cox ridge

regression estimator (Verweij and Van Houwelingen, 1994)

β̂(0) = arg min
β

{
−2ln(β) + ξn

pn∑
j=1

β2
j

}
, (3.3)

which is updated iteratively by a reweighed `2-penalized Cox regression estimator

β̂(k) = arg min
β

−2ln(β) + λn

pn∑
j=1

β2
j(

β̂
(k−1)
j

)2

 , k ≥ 1. (3.4)

where ξn and λn are non-negative penalization tuning parameters. The BAR estimator is

defined as

β̂ = lim
k→∞

β̂(k). (3.5)

Since `2-penalization yields a non-sparse solution, defining the BAR estimator as the limit is

necessary to produce sparsity. Although λn is fixed at each iteration, it is weighted inversely

by the square of the ridge regression estimates from the previous iteration. Consequently,

coefficients whose true values are zero will have larger penalties in the next iteration, whereas

penalties for truly non-zero coefficients will converge to a constant. We will show later

in Theorem 3.1 that under certain regularity conditions, the estimates of the truly zero

coefficients shrink towards zero while the estimates of the truly non-zero coefficients converge

to their oracle estimates.

Remark 3.1 (Computational aspects of BAR) For moderate size data, one may calculate

β̂(k) in (3.4) using the Newton-Raphson method as in Frommlet and Nuel (2016) who out-

lined an iterative reweighted ridge regression for generalized linear models. It appears at the

first sight that (3.4) will encounter numerical overflow as some of the coefficients β̂
(k−1)
j will

go to zero as k increases. However, it can be shown that after some simple algebraic manip-

ulation, the Newton-Raphson updating formula will only involve multiplications, instead of
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divisions, by β̂
(k−1)
j s and numerical overflow can be avoided. This further implies that once

a β̂
(k−1)
j becomes zero, it will remain as zero in subsequent iterations. Thus one only needs

to update β̂(k) within the reduced nonzero parameter space, which is an appealing computa-

tional advantage for high-dimensional settings. For massive size data with large n and pn,

the Newton-Raphson procedure, which at each iteration calls for calculating both the gradi-

ent and Hessian, can become practically infeasible due to high computational costs, memory

requirements, and numerical instability. In Section 3.1.2 we will discuss how to adapt an

efficient algorithm for massive `2-penalized Cox regression via cyclic coordinate descent and

exploit the sparsity in the covariate structure to make BAR scalable to sHDMSS data.

3.1.1.2 Oracle property

We establish the oracle properties for the BAR estimator for simultaneous variable selection

and parameter estimation where we allow both qn and pn to diverge to infinity.

Theorem 3.1 (Oracle property) Assume the regularity conditions (C1) - (C6) in Ap-

pendix A3.1 hold. Let β̂1 and β̂2 be the first qn and the remaining pn− qn components of the

BAR estimator β̂, respectively. Then, as n→∞,

(a) β̂2 = 0 with probability tending to one;

(b)
√
nb′nΣ(β0)

−1/2
11 (β̂1 − β01)

D−→ N(0, 1), for any qn-dimensional vector bn such that

||bn||2 ≤ 1 and where Σ(β0)11 is the first qn × qn submatrix of Σ(β0), where Σ(β0) is

defined in Condition (C4).

Theorem 3.1(a) establishes selection consistency of the BAR estimator. Part (b) of the the-

orem essentially states that the nonzero component of the BAR estimator is asymptotically

normal and equivalent to the weighted ridge estimator of the oracle model as shown in the

proof provided in Appendix A3.2.
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3.1.1.3 The grouping property

When the true model has a group structure, it is desirable for a variable selection method to

either retain or drop all variables that are clustered within the same group. Ridge regression

has a grouping property, and it is intuitive to conjecture that the BAR method would as well

since the estimator is based on an iterative ridge regression. The following theorem states

the grouping property of the BAR estimator for highly-correlated covariates.

Theorem 3.2 Let λn, {(Xi, δi, zi)}ni=1 be given and assume that Z = (z′i, . . . z
′
n) is standard-

ized. That is, for all j = 1, . . . , pn,
∑n

i=1 zij = 0, z′[,j]z[,j] = n−1, where z[,j] is the jth column

of Z. Suppose the regularity conditions (C1) - (C6) in Appendix A3.1 hold and let β̂ be the

BAR estimator. Then for any β̂i 6= 0 and β̂j 6= 0,

|β̂−1
i − β̂−1

j | ≤
1

λn

√
2{(n− 1)(1− rij)}

√
n(1 + dn)2, (3.6)

with probability tending to one, where dn =
∑n

i=1 δi, and rij = 1
n−1

z′[,i]z[,j] is the sample

correlation of z[,i] and z[,j].

We can see that as rij → 1, the absolute difference between β̂i and β̂j approaches 0 implying

that the estimated coefficients of two highly correlated variables will be similar in magnitude.

The proof is provided in Appendix A3.3.

3.1.1.4 Selection of tuning parameters

Model complexity depends critically on the choice of the tuning parameters. The BAR

estimator depends on two tuning parameters: ξn for the initial ridge estimator in (3.3) and

λn for the iterative ridge step in (3.4). Our simulations in Section 3.2.1 illustrate that while

fixing λn, the BAR estimator is insensitive to the choice of ξn over a wide interval (Figure

3.1).

We optimize with respect to λn in a similar manner to currently-used penalization meth-

ods. A popular strategy for tuning parameter selection is to perform optimization with re-
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spect to a data-driven selection criterion such as cross-validation (Craven and Wahba, 1978;

Verweij and Van Houwelingen, 1993), Akaike information criterion (AIC) (Akaike, 1974),

and Bayesian information criterion (BIC) (Schwarz, 1978; Volinsky and Raftery, 2000; Ni

and Cai, 2018). Although cross validation has been used extensively in the literature, it has

been known to asymptotically overfit models with a positive probability (Wang et al., 2007;

Zhang et al., 2010). Recent theoretical work has shown that for penalized Cox models that

possess the oracle property, BIC-based tuning parameter selection identifies the true model

with probability tending to one (Ni and Cai, 2018).

3.1.2 Efficient implementation BAR for sparse high-dimensional massive sam-

ple size (sHDMSS) data

As mentioned in Remark 3.1, the Newton-Raphson algorithm used for each iteration of the

BAR algorithm will become infeasible in large-scale settings with large n and pn due to

high computational costs, high memory requirements, and numerical instability. Because

BAR only involves fitting a reweighted Cox’s ridge regression at each iteration step, it allows

us to adapt an efficient algorithm developed by Mittal et al. (2014) for massive Cox ridge

regression.

Mittal et al. (2014) developed an efficient implementation of the massive Cox’s ridge

regression for sHDMSS data. For parameter estimation, the authors adopted the column

relaxation with logistic loss (CLG) algorithm of Zhang and Oles (2001), which is a type

of cyclic coordinate descent algorithm that estimates the coefficients using one-dimensional

updates. The CLG easily scales to high-dimensional data (Wu and Lange, 2008; Simon et al.,

2011; Gorst-Rasmussen and Scheike, 2012) and has been recently implemented for fitting `2-

and `1-penalized generalized linear models (Suchard et al., 2013), parametric time-to-event

models (Mittal et al., 2013), and Cox’s model (Mittal et al., 2014). Readers are encouraged

to refer Section A3.4 of the Appendix for a detailed explanation of the algorithm.

The design matrix Z for sHDMSS data has few non-zero entries for each subject. Storing

such a sparse matrix as a dense matrix is inefficient and may increase computation time
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and/or cause standard software to crash due to insufficient memory allocation. To the best

of our knowledge, popular penalization packages such as glmnet (Friedman et al., 2010) and

ncvreg (Breheny and Huang, 2011) do not support a sparse data format as an input for right-

censored time-to-event models, although the former supports the input for other generalized

linear models. For sHDMSS data, we propose to use specialized, column-data structures as

in Suchard et al. (2013) and Mittal et al. (2014). The advantage of this structure is two-fold:

it significantly reduces the memory requirement needed to store the covariate information,

and performance is enhanced when employing cyclic coordinate descent. For example when

updating βj, efficiency is gained when computing and storing the inner product ri = z′iβ

using a low-rank update r
(new)
i = ri+zij +∆βj for all i (Zhang and Oles, 2001; Genkin et al.,

2007; Wu and Lange, 2008; Suchard et al., 2013; Mittal et al., 2014).

Furthermore, to calculate the gradient and Hessian diagonal, one requires a series of

cumulative sums introduced through the risk set Ri = {j : Xj > Xi} for each subject i.

These cumulative sums would need to be calculated when updating each parameter estimate

in the optimization routine. This can prove to be computationally costly, especially when

both n and pn are large. By taking advantage of the sparsity of the design matrix, one can

reduce the computational time needed to calculate these cumulative sums by entering into

this operation only if at least one observation in the risk set has a non-zero covariate value

along dimension j and embarking on the scan at the first non-zero entry rather than from the

beginning. Suchard et al. (2013) and Mittal et al. (2014) have implemented these efficiency

techniques for conditional Poisson regression and Cox’s regression, respectively. Our BAR

implementation naturally exploits the sparsity in the design matrix and the partial likelihood

by imbedding an adaptive version of Mittal et al. (2014)’s massive Cox’s ridge regression

within each iteration of the iteratively reweighted Cox’s ridge regression.

Remark 3.2 (Ultrahigh-dimensional time-to-event data) The asymptotic properties

of the BAR estimator in the Section 3.1.1.2 are derived for pn < n. In an ultrahigh di-

mensional setting where the number of covariates far exceeds the number of observations

(pn >> n), one may couple a sure screening (Fan et al., 2010) method with the BAR es-

timator to obtain a two-step estimator with desirable selection and estimation properties.
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There are a number of screening methods for right-censored time-to-event data, which in-

clude marginal screening methods (Fan et al., 2010; Zhao and Li, 2012; Gorst-Rasmussen

and Scheike, 2013; Song et al., 2014) and joint screening methods (Yang et al., 2016). For

example, the sure joint screening (SJS) method of Yang et al. (2016) is based on the joint

partial likelihood of potentially important covariates using a sparsity-restricted maximum par-

tial likelihood estimate. As an illustration, we consider a two-step estimator, referred to as

SJS-BAR, obtained by first performing SJS to reduce the covariate space to a subset ŝ of mn

covariates and then fit BAR to the screened model ŝ. Additional regularity conditions, the

conditional oracle property, and a proof are provided in Appendix A3.3.1.

3.2 Simulations

This section presents three simulation studies. First, we demonstrate in Section 3.2.1 that

for fixed λn, the BAR estimator is insensitive to the tuning parameter ξn of its initial ridge

estimator and does well in terms of performing variable selection and correcting possible bias

of the initial ridge estimator. Then in Section 3.2.2, we evaluate and compare the operating

characteristics of BAR with some popular penalized Cox regression methods, where we only

consider settings with moderate sample sizes because most of the competing methods are

inoperable for massive sample size data. Finally in Section 3.2.3, we use a sHDMSS setting

to illustrate the performance of BAR over its closest competitor.

Sections 3.2.1 and 3.2.2 employ the same simulation structure. Event times are drawn

from an exponential proportional hazards model with baseline hazard h0(t) = 1 and

β0 = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80,0pn−10), representing small to moderate effect

sizes, the design matrix Z = (z′1, . . . , z
′
n) is generated from a pn-dimensional normal distribu-

tion with mean zero and covariance matrix Σ = (σij) with an autoregressive structure such

that σij = 0.5|i−j| and independent censoring times are generated from uniform distribution

U(0, umax), where umax is chosen to achieve different percentages of censoring. We describe

how we simulate sHDMSS time-to-event data in Section 3.2.3.
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3.2.1 BAR estimator for varying values of ξn

We illustrate below how the BAR estimator behaves by fixing λn and varying the tuning

parameter ξn of the initial Cox ridge regression. Figure 3.1 (panels (b), (c) and (d)) depicts

the solution path plots average over 100 Monte Carlo simulations of the BAR estimator

with respect to ξn over a wide interval [10−2, 102] for n = 300, pn = 100, ≈ 25% censoring,

and λn = log(pn), 0.5 log(pn), 0.75 log(pn), respectively. The resulting BAR estimator is

essentially unchanged, regardless of the choice of λn, over a large interval of ξn, suggesting

that the BAR estimator is relatively insensitive to original ridge estimator.

As a reference, we also display the solution path plots of the corresponding initial ridge

estimator in panel (a). The initial ridge estimator starts to introduce over shrinkage and,

consequently, estimation bias when ξn exceeds 101. However, its bias has been effectively

corrected by BAR. Therefore, by iteratively refitting reweighted Cox ridge regression, the

BAR estimator not only performs variable selection by shrinking estimates of the true zero

parameters to zero, but also effectively corrects the estimation bias from the initial Cox ridge

estimator. Similar results are obtained for several different simulation scenarios and can be

found in Appendix A3.5.

3.2.2 Model selection and parameter estimation

In this simulation, we evaluate and compare the variable selection and parameter estimation

performance of BAR with four popular penalized Cox regression methods: LASSO (Tibshi-

rani, 1997), SCAD (Fan and Li, 2002) , adaptive LASSO (ALASSO) (Zhang and Lu, 2007),

and MCP (Zhang, 2010). We fix ξn = 1 for the BAR methods since Section 3.2.1 yields evi-

dence that the BAR estimator is insensitive to the selection of ξn. BIC-score minimization

is used to select the optimal tuning parameter for all five penalization methods.

Estimation bias is summarized through the mean squared bias (MSB), E(||β̂ − β0||2).

Variable selection performance is measured by a number of indices: the mean number of false

positives (FP), the mean number of false negatives (FN); and average similarity measure

(SM) for support recovery where SM = ||Ŝ ∩ S0||0/
√
||Ŝ||0 · ||S0||0 and S0 and Ŝ are the set
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Figure 3.1: Path plot for BAR regression with varying ξn and: (b) λn = log(pn), (c)
λn = 0.5 log(pn), and (d) λn = 0.75 log(pn) with estimates averaged over 100 Monte Carlo
simulations of size n = 300, pn = 100, and censoring rate ≈ 25%. Path plot for ridge
regression (d) with varying ξn is also included as a comparison.

of indices for the non-zero components of β0 and β̂, respectively (Zhang and Cheng, 2017).

The similarity measure can be viewed as a continuous measure for true model recovery: it

is close to 1 when the estimated model is similar to the true model and close to 0 when

the estimated model is highly dissimilar to the true model. We use the R package ncvreg

to perform LASSO, adaptive LASSO (ALASSO), SCAD, and MCP penalizations in our

simulations. For ALASSO, we let the initial weight be the maximum partial likelihood

estimator since pn < n. Partial simulation results are summarized in Table 3.1 where we fix

n = 300, 1000, pn = 100, a censoring rate of ≈ 25%, and average results over 100 replications.

It is observed from Table 3.1 that when the tuning parameter λ is selected by minimizing

the BIC score as the other methods, the performance of BAR is generally comparable to other

methods with respect to all measures across all scenarios. We have conducted more extensive
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Table 3.1: (Moderate dimension and sample size) Simulated estimation and variable selection
performance of BAR, LASSO, SCAD, ALASSO, and MCP where the BIC criterion was used
to select the tuning parameters via a grid search. (MSB = mean squared bias; FN = mean
number of false positives; FP = mean number of false negatives; SM = similarity measure;
BIC = average BIC score; Each entry is based on 100 Monte Carlo samples of size n = 300
(top), and 1000 (bottom), pn = 100, censoring rate ≈ 25%.)

MSB FN FP SM BIC
BAR 0.11 0.01 1.79 0.89 1919.26

LASSO 0.27 0.01 3.32 0.82 1958.40
SCAD 0.12 0.01 2.23 0.87 1933.43

ALASSO 0.11 0.04 1.48 0.90 1935.60
MCP 0.09 0.02 1.21 0.92 1929.33
BAR 0.02 0.00 0.73 0.95 8196.51

LASSO 0.10 0.00 2.77 0.84 8236.76
SCAD 0.01 0.00 0.23 0.98 8203.00

ALASSO 0.02 0.00 0.26 0.98 8204.58
MCP 0.01 0.00 0.08 0.99 8202.04

simulations with different combinations of model dimension, censoring rates, sample sizes,

and model sparsity, which yielded consistent findings and are reported in Appendix A3.6

3.2.3 Sparse high-dimensional massive sample size data

In this simulation, we simulate a sHDMSS time-to-event dataset with n = 200, 000 and

pn = 20, 000. Event times are generated from an exponential hazards model with baseline

hazard h0(t) = 1, regression coefficients β0 = (0.710,0.510,110,−0.710,−0.510,−110,0pn−60),

and a censoring rate of 95%. The covariates for each subject are simulated such, on average,

2% are assigned a non-zero value. The amount of memory used to store this dense design

matrix would require over 16GB, which exceeds the functional capacity of most statistical

software packages on standard hardware. To overcome this difficulty, we efficiently store

the information in a coordinate list fashion and compare our BAR method with the mas-

sive sparse Cox’s regression for LASSO (mCox-LASSO) using the Cyclops package (Suchard

et al., 2013; Mittal et al., 2014) which, to the best of our knowledge, is the fastest soft-

ware available today that exploits the sparsity of sHDMSS time-to-event data for efficient

computing and offers > 10-fold speedup (Mittal et al., 2014) over its competitors such as
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Table 3.2: (Sparse high dimensional and massive sample size) Estimation and variable selec-
tion results for BAR and massive Cox regression with LASSO penalty (mCox-LASSO, Mittal
et al. (2014)) for a simulated sHDMSS dataset with n = 200, 000, pn = 20, 000, and qn = 60.
(Bias = ||β̂ − β0||2; FP= number of false positives; FN = number of false negatives.)

Method Bias FP FN BIC score
BAR (BIC) 0.82 5 0 226200.5
mCox-LASSO (BIC) 2.49 5 0 227059.5
mCox-LASSO (CV) 2.02 120 0 227955.3

CoxNet (Simon et al., 2011) and FastCox (Yang and Zou, 2012). For LASSO, cross vali-

dation (mCox-LASSO (CV)), combined with a nonconvex optimization technique which is

more efficient than the classical grid search approach, and BIC score minimization (mCox-

LASSO (BIC)), implemented with the classical grid search approach, were used to find the

optimal value for the tuning parameter. For the BAR method, we also implement BIC score

minimization using a classical grid search. We report the bias (||β̂ − β0||2), number of false

positives (FP), false negatives (FN), and BIC score (−2ln(β̂)+log(n)
∑

j I(β̂j 6= 0)) in Table

3.2.

All three methods retain the 60 true nonzero coefficients; however, mCox-LASSO using

cross validation selects a large number of noise variables (120) compared to BAR and mCox-

LASSO using BIC minimization (5). In addition, of the five noise variables selected by both

BAR (BIC) and mCox-LASSO (BIC), four of them are overlapping. In terms of parameter

estimation, BAR is less biased (0.82) than mCox-LASSO (2.49 for BIC and 2.02 for CV). For

model fit, BAR has a much lower BIC score when compared to the mCox-LASSO methods.

In summary, this simulation illustrates that BAR produces a sparse model with less bias and

better model fit compared to mCox-LASSO.

We further examined the solution paths of mCox-LASSO and BAR in Figure 3.2. The

vertical solid and dashed lines in the mCox-LASSO solution path plot (Figure 3.2(a)) rep-

resent the estimates at the optimal tuning parameter obtained via cross validation and BIC

minimization, respectively. We can see that the mCox-LASSO solution path changes rapidly

as its tuning parameter varies. In contrast, the BAR solution path plot (Figure 3.2(b)) with

respect to λn changes very slowly over a relatively where the vertical line represents the es-
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Figure 3.2: Path plots for mCox-LASSO and BAR regression: (a) Path plot for mCox-
LASSO regression, where the black dashed line represents the estimates when using cross
validation to find the optimal value of the tuning parameter; (b) Path plot for BAR regression
with ξn = 1 and varying λn, where the black solid and dashed line represent estimates for
λn = ln(n) and λn = ln(dn), respectively; (c) Path plot for BAR regression with λn = ln(n)
and varying ξn, where the black solid line represent the estimates for BAR when ξn = 1.

timates at the optimal tuning parameter selected by BIC minimization and selects a model

that estimates with are less biased than LASSO (see Table 3.2). For the BAR method, we

also made a BAR solution path plot with respect to ξn, while fixing λn = ln(n) in Figure

3.2(c). It shows that the BAR estimates are very stable over a large range of ξn, affirming

our observation in Section 3.2.1 with small-scale data that BAR is generally insensitive ξn.

3.3 Pediatraic trauma mortality

For an application of BAR regression in the sHDMSS setting, we consider a subset of the

National Trauma Data Bank that involves children and adolescents. This dataset was previ-
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Table 3.3: (Pediatric NTDB data) Comparison of mCox-LASSO and BAR regression for
the pediatric NTDB data. (mCox-LASSO (CV) and mCox-LASSO (BIC) correspond to
mCox-LASSO using cross validation and BIC selection criterion, respectively. BAR (BIC)
denotes BAR using the BIC selection criterion while fixing ξn = log(pn). The training set
has a sample size of 168, 000 while the test set used for the c-index has a sample size of
45, 555.)

Method # Selected BIC score c-index
BAR (BIC) 83 51269.43 0.93

mCox-LASSO (BIC) 100 52544.90 0.91
mCox-LASSO (CV) 253 53165.44 0.92

ously analyzed by Mittal et al. (2014) as an example for efficient massive Cox regression with

mCox-LASSO and ridge regression to sHDMSS data. The dataset includes 210,555 patient

records of injured children under 15 that were collected over 5 years (2006 - 2010). Each

patient record includes 125,952 binary covariates which indicate the presence, or absence, of

an attribute (ICD9 Codes, AIS codes, etc.) as well as the two-way interactions. The outcome

of interest is mortality after time of injury. The data is extremely sparse, with less than 1%

of the covariates being non-zero and has a censoring rate of 98%. We randomly split the data

into training and test sets of 168,000 and 42,555, respectively. The mortality rate of both

sets were approximately equal to the combined rate. Similar to Section 3.2.3, we were unable

to load the training set (n = 168, 000, pn = 125, 000) into other popular oracle procedures

due to the memory requirements needed to support a dense design matrix of that size and

compare BAR to mCox-LASSO. BIC-score minimization over a coarse penalization path of

10 tuning parameters was used to select the final model for both BAR (fixing ξn = log(pn))

and mCox-LASSO. In addition, we perform mCox-LASSO using cross validation. The BIC

score based on the training data is used to compare selection performance between models

and discriminatory performance is measured using Harrell’s c-statistic (Harrell et al., 1982,

1996) based on the test data.

Table 3.3 summarizes the findings for our example. BAR, using BIC minimization, selects

fewer covariates than both mCox-LASSO methods. Both model selection and discriminatory

performance are similar to slightly superior for BAR over mCox-LASSO.
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3.4 Discussion

Although many penalized Cox regression methods for simultaneous variable selection and

parameter estimation are available, most current algorithms and software will grind to a halt

and become inoperable for sHDMSS data. We develop a new sparse Cox regression method

by iteratively performing reweighted `2-penalized Cox regression where the penalty is adap-

tively reweighted to approximate the `0 penalty. The resulting estimator can be viewed as a

special local `0-penalized Cox regression method and is shown to enjoy properties of both `0-

and `2-penalized Cox regression: it is selection consistent, oracle for parameter estimation,

computationally stable, and has a grouping property for highly-correlated covariates. We

illustrate through empirical studies that the BAR estimator has comparable or better per-

formance for variable selection and parameter estimation as compared to current penalized

Cox regression methods and, most importantly, can directly fit sHDMSS time-to-event data.

Its scalability to sHDMSS data is primarily due to the fact that the BAR algorithm allows

us to easily adapt existing algorithms and software for massive `2-penalized Cox regression

(Mittal et al., 2014).

It is also worth noting that our `0-based BAR method and theory can be easily extended

to an `d-based BAR method for any d ∈ [0, 1], by replacing (β̂
(k−1)
j )2 with |β̂(k−1)

j |2−d in

(3.4). We have observed empirically that as d increases towards 1, the resulting estimator

becomes less sparse, and the average number of false positives as well as estimation bias

tend to increase, especially for larger pn, while the average number of false negatives tends

to decrease. In practice, d can be used as a resolution tuning parameter. Finally, the

proposed BAR method can extended to obtain scalable sparse regression methods for more

complex sampling schemes such as cohort sampling, which is currently under investigation.
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Appendix to Chapter 3

A3.1 Regularity conditions for Theorem 3.1

Define

S(k)(β, s) =
1

n

n∑
i=1

Yi(s)zi(s)
⊗k exp{β′zi(s)}, k = 0, 1, 2,

E(β, s) = S(1)(β, s)/S(0)(β, s),

V (β, s) = S(2)(β, s)/S(0)(β, s)− E(β, s)⊗2,

where z⊗k = 1, z, zz′ for k = 0, 1, 2, respectively. Let || · ||p be the `p-norm for vectors and

the norm induced by the vector p-norm for matrices. The following technical conditions will

be needed in our derivations to establish the statistical properties of the BAR estimator.

(C1)
∫ 1

0
h0(t)dt <∞;

(C2) There exists some compact neighborhood, B0, of the true value β0 such that for

k = 0, 1, 2, there exists a scalar, vector, and matrix function s(k)(β, t) defined on

B0 × [0, 1] such that

sup
t∈[0,1],β∈B0

∥∥S(k)(β, t)− s(k)(β, t)
∥∥

2
= op(1), as n→∞;

(C3) Let s(1)(β, t) = ∂
∂β
s(0)(β, t) and s(2)(β, t) = ∂

∂β
s(1)(β, t). For k = 0, 1, 2, the functions

s(k)(β, t) are continuous with respect to β ∈ B0, uniformly in t ∈ [0, 1], and s(k)(β, t)

are bounded; furthermore, s(0)(β, t) is bounded away from zero on B0 × [0, 1];

(C4) Let e(β, t) = s(1)(β, t)/s(0)(β, t), v(β, t) = s(2)(β, t)/s(0)(β, t)− e(β, t)⊗2, and Σ(β) =∫ 1

0
v(β, t)s(0)(β, t)h0(t)dt.
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There exists some constant C1 > 0 such that

0 < C−1
1 < eigenmin{Σ(β)} ≤ eigenmax{Σ(β)} < C1 <∞,

uniformly in β ∈ B0, where for any matrix A, eigenmin(A) and eigenmax(A) represent

its smallest and largest eigenvalues, respectively;

(C5) Let Ui =
∫ 1

0
{zi(t)− e(β0, t)} dMi(t). There exists a constant C2 such that

sup1≤i≤nE(U2
ijU

2
il) < C2 <∞ for all 1 ≤ j, l ≤ pn, where Uij is the j-th element of Ui;

(C6) As n→∞, p4
n/n→ 0, λn →∞, ξn →∞, ξnbn/

√
n→ 0, pn/(na

2
n)→ 0, λnb

3
n

√
qn/
√
n→

0 and λn
√
qn/(a

3
n

√
n)→ 0, where an = minj=1,...,qn(|β0j|) and bn = maxj=1,...qn(|β0j|).

Condition (C1) ensures a finite baseline cumulative hazard over the interval [0, 1]. Condi-

tion (C2) ensures the asymptotic stability of S(k)(β, t), as required for Cox regression under

fixed dimension. Under diverging dimension, it follows from Theorem 3.1 of Kosorok and

Ma (2007) that under certain regularity conditions, supt∈[0,1],β∈B0

∥∥S(k)(β, t)− s(k)(β, t)
∥∥

2
≤√

pn ln pn/n, which implies that (C2) holds if pn ln pn/n → 0. Condition (C3) is an asymp-

totic regularity condition similar to that for the fixed dimension Cox model. Condition (C4)

guarantees that the covariance matrix of the score function is positive definite and has uni-

formly bounded eigenvalues for all n and β ∈ B0. Other authors in the variable selection

literature have also required a slightly weaker condition (Fan and Peng, 2004; Cai et al.,

2005; Cho and Qu, 2013; Ni et al., 2016). Condition (C5) is needed to prove the Lindeberg

condition under diverging dimension in our proof. Condition (C6) specifies the divergence

or convergence rates for the model size, the penalty tuning parameters, and the lower and

upper bound of the true signal. These technical assumptions are only sufficient conditions for

our theoretical derivations and it is possible that our theoretical results hold under weaker

conditions. For instance, we have observed in empirical studies that the BAR method has

good performance even when pn is at the same order as n. Further efforts to relax these

technical conditions are warranted in future research.
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A3.2 Proof of Theorem 3.1

To prove Theorem 3.1, we first establish five lemmas.

Lemma 3.1 (Asymptotic Variance of Ui) Let Ui =
∫ 1

0
{zi(t)− e(β0, t)} dMi(t) be de-

fined as in Condition (C5) and Σ = Σ(β0) =
∫ 1

0
v(β0, t)s

(0)(β0, t)h0(t)dt, e(β0, t), and

v(β0, t) be defined as in Condition (C4). Then under Conditions (C1) - (C4),

∥∥∥∥∥ 1

n

n∑
i=1

V ar(Ui)− Σ

∥∥∥∥∥
2

= op(1), (3.7)

as n→∞.

Proof. Denote by Uij the jth element of Ui and ej(β0, s) as the jth element of e(β0, s).

Then,

Cov(Uij, Uik) =

〈∫ 1

0

{zij(s)− ej(β0, s)}dMi(s),

∫ 1

0

{zik(s)− ek(β0, s)}dMi(s)

〉
=

∫ 1

0

{zij(s)− ej(β0, s)}{zik(s)− ek(β0, s)}Yi(s)h0(s) exp{β′zi(s)}ds.

Hence,

1

n

n∑
i=1

V ar(Ui) =

∫ 1

0

1

n

n∑
i=1

h0(s)Yi(s)zi(s)
⊗2 exp{β′0zi(s)}ds

−
∫ 1

0

1

n

n∑
i=1

h0(s)Yi(s)zi(s)e(β0, s)
′ exp(β′0zi(s)}ds

−
∫ 1

0

1

n

n∑
i=1

h0(s)Yi(s)e(β0, s)z
′
i(s) exp{β′0zi(s)}ds

+

∫ 1

0

e(β0, s)
⊗2 1

n

n∑
i=1

h0(s)Yi(s) exp(β′0zi(s)}ds

=

∫ 1

0

S(2)(β0, s)h0(s)ds−
∫ 1

0

S(1)(β0, s)e(β0, s)
′h0(s)ds

−
∫ 1

0

e(β0, s)S
(1)(β0, s)

′h0(s)ds+

∫ 1

0

e(β0, s)
⊗2S(0)(β0, s)h0(s)ds.
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Also note that

Σ(β0) =

∫ 1

0

v(β0, s)s
(0)(β0, s)h0(s)ds

=

∫ 1

0

{
s(2)(β0, s)

s(0)(β0, s)
− e(β0, s)

⊗2

}
s(0)(β0, s)h0(s)ds

=

∫ 1

0

s(2)(β0, s)h0(s)ds−
∫ 1

0

s(1)(β0, s)e(β0, s)
′h0(s)ds

−
∫ 1

0

e(β0, s)s
(1)(β0, s)

′h0(s)ds+

∫ 1

0

e(β0, s)
⊗2s(0)(β0, s)h0(s)ds,

since e(β0, t) = s(1)(β0, t)/s
(0)(β0, t). Therefore,

∥∥∥∥∥ 1

n

n∑
i=1

V ar(Ui)− Σ(β0)

∥∥∥∥∥
2

≤
∥∥∥∥∫ 1

0

{
S(2)(β0, s)− s(2)(β0, s)

}
h0(s)ds

∥∥∥∥
2

+

∥∥∥∥∫ 1

0

{
S(1)(β0, s)− s(1)(β0, s)

}
e(β0, s)

′h0(s)ds

∥∥∥∥
2

+

∥∥∥∥∫ 1

0

e(β0, s)
{
S(1)(β0, s)− s(1)(β0, s)

}′
h0(s)ds

∥∥∥∥
2

+

∥∥∥∥∫ 1

0

e(β0, s)
⊗2
{
S(0)(β0, s)− s(0)(β0, s)

}
h0(s)ds

∥∥∥∥
2

= o(1),

where the last step follows from Conditions (C1), (C2), and (C3). �

Lemma 3.2 (Asymptotic Normality of the Score Function) Let ln(β) be the log-partial

likelihood as defined in (3.2). For any pn-dimensional vector dn such that ||dn||2 = 1, under

Conditions (C1) - (C6), we have

n−1/2d′nΣ(β0)−1/2l̇n(β0)
D→ N(0, 1), (3.8)

where l̇n(β0) is the first derivative of ln(β0) and Σ(β0) is defined in Condition (C4).
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Proof: First, observe that

l̇n(β0) =
n∑
i=1

∫ 1

0

{zi(t)− E(β0, s)} dMi(s)

=
n∑
i=1

∫ 1

0

{zi(t)− e(β0, s)} dMi(s)−
n∑
i=1

∫ 1

0

{E(β0, s)− e(β0, s)} dMi(s)

=
n∑
i=1

Ui + op(
√
n), (3.9)

where Ui is defined as in condition (C4), and the right-hand side of the last equality is due to

||E(β0, s)− e(β0, s)||2 → op(1) from conditions (C2) and (C3), and n−1/2
∑n

i=1

∫ 1

0
dMi(s) =

Op(1). Therefore

n−1/2d′nΣ(β0)−1/2l̇n(β0) =
n∑
i=1

Yni + op(1),

where Yni = n−1/2d′nΣ(β0)−1/2Ui. Note that Yni has mean zero and

s2
n =

n∑
i=1

V ar(Yni) =
1

n

n∑
i=1

d′nΣ(β0)−1/2V ar(Ui)Σ(β0)−1/2dn

= d′nΣ(β0)−1/2

{
1

n

n∑
i=1

V ar(Ui)

}
Σ(β0)−1/2dn → 1,

where the last step follows from Lemma 3.1. Hence by the Lindeberg-Feller central limit

theorem,

∑n
i=1 Yni
sn

D→ N(0, 1), (3.10)

if the following Lindeberg condition for Yni holds: for all ε > 0,

1

s2
n

n∑
i=1

E{Y 2
niI(|Yni| ≥ εsn)} → 0, (3.11)

as n→∞. To verify (3.11) we note that
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n∑
i=1

E(Y 4
ni) = n−2

n∑
i=1

E
[{

d′nΣ−1/2Ui

}4
]

≤ n−2

n∑
i=1

E
[
||dn||42 · ||Σ(β0)−1/2||42 · ||Ui||42

]
= n−2eigen2

max{Σ(β0)−1}
n∑
i=1

E(||Ui||42)

= n−2eigen2
max{Σ(β0)−1}

n∑
i=1

pn∑
j=1

pn∑
k=1

E(U2
ijU

2
ik)

= O(p2
n/n), (3.12)

where the first inequality is due to Cauchy-Schwarz, the second equality is due to ||dn||2 = 1,

Condition (C4) and the definition of the spectral norm, and the last step follows from

Condition (C5). Therefore for any ε > 0,

1

s2
n

n∑
i=1

E
{
Y 2
niI(|Yni| > εsn)

}
≤ 1

s2
n

n∑
i=1

{
E(Y 4

ni)
}1/2 [

E {I(|Yni| > εsn)}2]1/2
≤ 1

s2
n

{
n∑
i=1

E(Y 4
ni)

}1/2

·

{
n∑
i=1

Pr(|Yni| > εsn)

}1/2

≤ 1

s2
n

O(pn/
√
n) ·

{
n∑
i=1

V ar(Yni)

ε2s2
n

}1/2

=
1

s2
nε
O(pn/

√
n)→ 0,

where the third inequality follows (3.12) and Chebyshev inequality, and last step is a conse-

quence of s2
n → 1 and the assumption p4

n/n→ 0. Thus, (3.11) is satisfied and consequently

n−1/2d′nΣ(β0)−1/2l̇n(β0) = sn
1

sn

n∑
i=1

Yni + op(1)
D→ N(0, 1),

by the Lindeberg-Feller central limit theorem and Slutsky’s theorem. This completes the

proof. �
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Lemma 3.3 (Consistency of Ridge Estimator) Let

β̂ridge = arg min
β

{
−2ln(β) +

pn∑
j=1

ξnβ
2
j

}
,

be the Cox ridge estimator defined in Equation (3.3). Assume that Conditions (C1) - (C5),

and (C6)(i) and (C6)(iii) hold. Then

||β̂ridge − β0||2 = Op

[√
pn{n−1/2(1 + ξnbn/

√
n)}
]

= Op(
√
pn/n), (3.13)

where bn is an upper bound of the true nonzero |β0j|’s defined in Condition (C6).

Proof. Let αn =
√
pn(n−1/2 + ξnbn/n) and `n(β) = −2ln(β) + ξn

∑pn
j=1 β

2
j . To prove

Lemma 3.3, it is sufficient to show that for any ε > 0, there exists a large enough constant

K0 such that

Pr

{
inf

||u||2=K0

Ln(β0 + αnu) > Ln(β0)

}
≥ 1− ε, (3.14)

since (3.14) implies that there exists a local minimum, β̂ridge, inside the ball {β0 + αnu :

||u||2 ≤ K0} such that ||β̂ridge − β0||2 = Op(αn), with probability tending to one. To prove

(3.14), we first note

1

n
Ln(β0 + αnu)− 1

n
Ln(β0) = − 1

n
{2ln(β0 + αnu)− 1

n
2ln(β0)}+

ξn
n

pn∑
j=1

{
(β0j + αnuj)

2 − β2
0j

}
= − 1

n
{2ln(β0 + αnu)− 2ln(β0)}+

ξn
n

pn∑
j=1

(
2β0jαnuj + α2

nu
2
j

)
≥ − 1

n
{2ln(β0 + αnu)− 2ln(β0)}+

2ξnαn
n

pn∑
j=1

β0juj

= − 1

n
{2ln(β0 + αnu)− 2ln(β0)}+

2ξnαn
n

qn∑
j=1

β0juj

≡ W1 +W2.
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By Taylor expansion, we have

W1 = − 2

n
αnu

′l̇n(β0)− 1

n
α2
nu
′l̈n(β∗)u

= W11 +W12,

where β∗ lies between β0 and β0 + αnu, and l̇n(β) and l̈n(β) denote the first and second

derivatives of ln(β), respectively. By the Cauchy-Schwartz inequality,

W11 = − 2

n
αnu

′l̇n(β0) ≤ 2

n
αn||l̇n(β0)||2 · ||u||2 =

2

n
αnOp(

√
npn)||u||2 ≤ Op(α

2
n)||u||2,

where the second equality holds because ||l̇n(β0)||2 = Op(
√
npn) from Lemma 3.2 under

Conditions (C1) - (C5), and the last inequality is due to
√
pn/n ≤ αn. By equation (A.4)

of Cai et al. (2005), under conditions (C1) - (C5) and p4
n/n→ 0, we have

∥∥∥n−1l̈n(β) + Σ(β)
∥∥∥

2
= op(p

−1
n ), (3.15)

in probability, uniformly in β ∈ B0. Hence

W12 = − 1

n
α2
nu
′l̈n(β∗)u = α2

nu
′Σ(β0)u{1 + op(1)}.

Since eigenmin{Σ(β0)} ≥ C−1
1 > 0 by Condition (C4), W12 dominates W11 uniformly in

||u||2 = K0 for a sufficiently large K0. Furthermore

W2 ≤
2ξnαn
n
|β′01u| ≤

2
√
qnξnαnbn

n
||u||2 = Op(α

2
n)||u||2,

where the last step follows from the fact that
√
qnξnbn/n <

√
pn(n−1/2 + ξnbn/n) = αn.

Therefore for a sufficiently large K0, we have that W12 dominates W11 and W2 uniformly in

||u||2 = K0. Since W12 is positive, (3.14) holds and therefore ||β̂ridge − β0||2 = Op(αn) =

Op

[√
pn{n−1/2(1 + ξnbn/

√
n)}
]

= Op(
√
pn/n), where the last step follows from condition

(C6)(iii). �
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Remark 3.3 Let β̂ridge,1 and β̂ridge,2 denote the first qn and the remaining pn − qn com-

ponents of β̂ridge, respectively. Then, Lemma 3.3 and condition (C6) imply that for j =

1, . . . , qn and sufficiently large n, an/2 ≤ |β̂ridge,1j| ≤ 2bn, where β̂ridge,1j is the jth component

of β̂ridge,1 and ||β̂ridge,2||2 = O(
√
pn/n).

Lemma 3.4 Let Mn = max{2/an, 2bn}. DefineHn ≡ {β = (β′1,β
′
2)′ : |β1| = (|β1|, . . . , |βqn|)′ ∈

[1/Mn,Mn]qn , 0 < ‖β2‖2 ≤ δn
√
pn/n, }, where δn is a sequence of positive real numbers sat-

isfying δn →∞ and pnδ
2
n/λn → 0. For any given β ∈ Hn, define

Qn(θ|β) = −2ln(θ) + λnθ
′D(β)θ, (3.16)

where ln(θ) is the pn-dimensional log-partial likelihood and D(β) = diag(β−2
1 , . . . , β−2

pn ). Let

g(β) = (g1(β)′, g2(β)′)′ be a solution to Q̇n(θ|β) = 0, where

Q̇n(θ|β) = −2l̇n(θ) + 2λnD(β)θ, (3.17)

is the derivative of Q(θ|β) with respective to θ. Assume that conditions (C1) - (C6) hold.

Then, as n→∞, with probability tending to 1,

(a) supβ∈Hn

‖g2(β)‖2
‖β2‖2 ≤

1
K1
, for some constant K1 > 1;

(b) |g1(β)| ∈ [1/Mn,Mn]qn.

Proof. By the first-order Taylor expansion and the definition of g(β), we have

Q̇n(β0|β) = Q̇n{g(β)|β}+ Q̈n(β∗|β){β0 − g(β)} = Q̈n(β∗|β){β0 − g(β)}, (3.18)

where β0 is the true parameter vector, and β∗ lies between β0 and g(β). Rearranging terms,

we have

Q̈n(β∗|β)g(β) = −Q̇n(β0|β) + Q̈n(β∗|β)β0, (3.19)
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which can be rewritten as

{
−2l̈n(β∗) + 2λnD(β)

}
g(β) = −

{
−2l̇n(β0) + 2λnD(β)β0

}
+
{
−2l̈n(β∗) + 2λnD(β)

}
β0

= 2l̇n(β0)− 2l̈n(β∗)β0.

Write Hn(β) ≡ −n−1l̈n(β), we have

{
Hn(β∗) +

λn
n
D(β)

}
g(β) = Hn(β∗)β0 +

1

n
l̇n(β0), (3.20)

which can be further written as

{g(β)− β0}+
λn
n
Hn(β∗)−1D(β)g(β) =

1

n
Hn(β∗)−1l̇n(β0). (3.21)

Now we partition Hn(β∗)−1 into

Hn(β∗)−1 =

 A B

B′ G


and partition D(β) into

D(β) =

 D1(β1) 0

0′ D2(β2)


where D1(β1) = diag(β−2

1 , ..., β−2
qn ) and D2(β2) = diag(β−2

qn+1, ..., β
−2
pn ). Then (3.21) can be

re-written as g1(β)− β01

g2(β)

+
λn
n

 AD1(β1)g1(β) +BD2(β2)g2(β)

B′D1(β1)g1(β) +GD2(β2)g2(β)

 =
1

n
Hn(β∗)−1l̇n(β0). (3.22)

Moreover, it follows from (3.15), condition (C4) and Lemma 3.2 that

∥∥∥n−1Hn(β∗)−1l̇n(β0)
∥∥∥

2
= Op(

√
pn/n). (3.23)
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Therefore,

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
B′D1(β1)g1(β) +

λn
n
GD2(β2)g2(β)

∥∥∥∥
2

= Op(
√
pn/n). (3.24)

Furthermore,

‖g(β)− β0‖2 =

∥∥∥∥∥−
{
Hn(β∗) +

λn
n
D(β)

}−1{
λn
n
D(β)β0 −

1

n
l̇n(β0)

}∥∥∥∥∥
2

≤
∥∥∥∥{Hn(β∗)}−1

{
λn
n
D(β)β0 −

1

n
l̇n(β0)

}∥∥∥∥
2

≤
∥∥{Hn(β∗)}−1

∥∥
2
·
{∥∥∥∥λnn D1(β1)β01

∥∥∥∥
2

+

∥∥∥∥ 1

n
l̇n(β0)

∥∥∥∥
2

}
= Op(1)

{
O(n−1λnM

3
n

√
qn) +Op(

√
pn/n)

}
= Op(

√
pn/n),

where the first equality follows from (3.20) and the fourth step follows from (3.15), condition

(C4), ‖n−1λnD1(β1)β01‖2 = O(n−1λnM
3
n

√
qn), and

∥∥∥n−1l̇n(β0)
∥∥∥

2
= Op(

√
pn/n), and the

last step holds since n−1λnM
3
n

√
qn = o(1/

√
n) under condition (C6). Hence,

‖g(β)‖2 ≤ ‖β0‖2 + ‖g(β)− β0‖2 = Op(Mn
√
qn). (3.25)

Also note that ‖B‖2 = Op(1) since ‖BB′‖2 ≤ ‖A2 +BB′‖2 + ‖A2‖2 ≤ 2 ‖A2 +BB′‖2 ≤

2 ‖Hn(β∗)−2‖2 = Op(1). This, combined with (3.25), implies that

sup
β∈Hn

∥∥∥∥λnn B′D1(β1)g1(β)

∥∥∥∥
2

≤ λn
n

sup
β∈Hn

‖B‖2 ‖D1(β1)‖2 ‖g1(β)‖2 = Op

(
λnM

3
n

√
qn

n

)
= o(1/

√
n).

(3.26)

It then follows from (3.24) and (3.26) that

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
GD2(β2)g2(β)

∥∥∥∥
2

≤ Op(
√
pn/n) + o(1/

√
n) = Op(

√
pn/n).

Since G is positive definite and symmetric with probability tending to one, by the spectral

decomposition theorem, G =
∑pn−qn

i=1 r2iu2iu
′
2i, where r2i and u2i are the eigenvalues and
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eigenvectors of G, respectively. Now with probability tending to one,

λn
n
‖GD2(β2)g2(β)‖2 =

λn
n

∥∥∥∥∥
(
pn−qn∑
i=1

r2iu2iu
′
2i

)
D2(β2)g2(β)

∥∥∥∥∥
2

≥ λn
n

∥∥∥∥∥ 1

C1

(
pn−qn∑
i=1

u2iu
′
2i

)
D2(β2)g2(β)

∥∥∥∥∥
2

≥ 1

C1

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

, (3.27)

where the first inequality is due to (3.15) and condition (C4) since we can assume that for

all i = 1, . . . , pn − qn, r2i ∈ (1/C1, C1) for some C1 > 1 with probability tending to one.

Therefore with probability tending to one,

1

C1

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

− ‖g2(β)‖2 ≤
∥∥∥∥g2(β) +

λn
n
GD2(β2)g2(β)

∥∥∥∥
2

≤ δn
√
pn/n, (3.28)

where δn diverges to ∞. Let mg2(β)/β2 = (g2(βqn+1)/βqn+1, . . . , g2(βpn)/βpn)′. Because

||β2||2 ≤ δn
√
pn/n, we have

1

C1

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

=
1

C1

λn
n

∥∥D2(β2)1/2mg2(β)/β2

∥∥
2
≥ 1

C1

λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥
2
,

(3.29)

and

‖g2(β)‖2 =
∥∥D2(β2)−1/2mg2(β)/β2

∥∥
2
≤
∥∥D2(β2)−1/2

∥∥
2
·
∥∥mg2(β)/β2

∥∥
2
≤
δn
√
pn√
n

∥∥mg2(β)/β2

∥∥
2
.

(3.30)

Hence it follows from (3.28), (3.29), and (3.30) that with probability tending to one,

1

C1

λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥
2
−
δn
√
pn√
n

∥∥mg2(β)/β2

∥∥
2
≤ δn

√
pn/n.

This implies that with probability tending to one,

∥∥mg2(β)/β2

∥∥
2
≤ 1

λn/(C1pnδ2
n)− 1

<
1

K1

, (3.31)
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for some constant K1 > 1 provided that λn/(pnδ
2
n) → ∞ as n → ∞. Now from (3.31), we

have

‖g2(β)‖2 ≤
∥∥mg2(β)/β2

∥∥
2

max
qn+1≤j≤pn

|βj| ≤
∥∥mg2(β)/β2

∥∥
2
‖β2‖2 ≤

1

K1

‖β2‖2 , (3.32)

with probability tending to one. Thus

Pr

(
sup
β∈Hn

‖g2(β)‖2

‖β2‖2

<
1

K1

)
→ 1 as n→∞

and (a) is proved.

To prove part (b), we first note from (3.32) that as n→∞, Pr(
∥∥mg2(β)/β2

∥∥
2
≤ δn

√
pn/n)→

1. Therefore it is sufficient to show that for any β ∈ Hn, |g1(β)| ∈ [1/Mn,Mn]qn with prob-

ability tending to 1. By (3.22) and (3.23), we have

sup
β∈Hn

∥∥∥∥(g1(β)− β01) +
λn
n
AD1(β1)g1(β) +

λn
n
BD2(β2)g2(β)

∥∥∥∥
2

= Op(
√
pn/n). (3.33)

Similar to (3.26), it can be shown that

sup
β∈Hn

∥∥∥∥λnn AD1(β1)g1(β)

∥∥∥∥
2

= Op

(
λnM

3
n

√
qn

n

)
= op(1/

√
n), (3.34)

where the last equality holds trivially under condition (C6). Furthermore, with probability

tending to one,

sup
β∈Hn

∥∥∥∥λnn BD2(β2)g2(β)

∥∥∥∥
2

≤ λn
n

sup
β∈Hn

‖B‖2 · ‖D2(β2)g2(β)‖2 ≤
λn
n

√
2K3

(
δn

√
pn
n

)2

,

(3.35)

for some K3 > 0, since ||g2(β)|| ≤ δn
√
pn/n, ||B||2 = Op(1) and ‖D2(β2)‖2 ≤ δn

√
pn/n.

Therefore, combining (3.33), (3.34) and (3.35) gives

sup
β∈Hn

‖g1(β)− β01‖2 ≤
λn
n

√
2K3

(
δn

√
pn
n

)2

+
δn
√
pn√
n

,
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with probability tending to one. Because λn/n→ 0 and δn
√
pn/n =

√
pnδ2

n/λn
√
λn/n→ 0

as n → ∞, we have Pr(|g1(β)| ∈ [1/Mn,Mn]qn) → 1. This completes the proof of part (b).

�

Lemma 3.5 Let β1 be the first qn components of β. Define f(β1) = arg minθ1{Qn1(θ1|β1)},

where Qn1(θ1|β1) = −2ln1(θ1) + λnθ
′
1D1(β1)θ1, is a weighted `2-penalized -2log-partial like-

lihood for the oracle model of model size qn, and D1(β1) = diag(β−2
1 , β−2

2 , . . . , β−2
qn ). Assume

that conditions (C1) - (C6) hold. Then with probability tending to one,

(a) f(β1) is a contraction mapping from [1/Mn,Mn]qn to itself;

(b)
√
nb′nΣ(β0)

1/2
11 (β̂◦1−β01)

D→ N(0, 1), for any qn-dimensional vector bn such that b′nbn =

1 and where β̂◦1 is the unique fixed point of f(β1) and Σ(β0)11 is the first qn × qn

submatrix of Σ(β0).

Proof: (a) First we show that f(·) is a mapping from [1/Mn,Mn]qn to itself with prob-

ability tending to one. Again through a first order Taylor expansion, we have

{f(β1)− β01}+
λn
n
Hn1(β∗1)−1D1(β1)f(β1) =

1

n
Hn1(β∗1)−1l̇n1(β01), (3.36)

where Hn1(β∗1) = −n−1l̈n1(β∗1) exists and is invertible for β∗1 between β01 and f(β1). We

have

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥∥f(β1)− β01 +
λn
n
Hn1(β∗1)−1D1(β1)f(β1)

∥∥∥∥
2

= Op(
√
qn/n),

where the right-hand side follows in the same fashion as (3.24). Similar to (3.26) we have

sup
|β1|∈[1/M0,M0]qn

∥∥∥∥λnn Hn1(β∗1)−1D1(β1)f(β1)

∥∥∥∥
2

= Op

(
λnM

3
n√
n

√
qn
n

)
= op

(
1/
√
n
)
.

Therefore, with probability tending to one

sup
|β1|∈[1/Mn,Mn]qn

‖f(β1)− β01‖2 ≤ δn
√
qn/n, (3.37)
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where δn is a sequence of real numbers diverging to ∞ and satisfies δn
√
pn/n → 0. As a

result, we have

Pr(f(β1) ∈ [1/Mn,Mn]qn)→ 1

as n → ∞. Hence f(·) is a mapping from the region [1/Mn,Mn]qn to itself. To prove that

f(·) is a contraction mapping, we need to further show that

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥ḟ(β1)
∥∥∥

2
= op(1). (3.38)

Since f(β1) is a solution to Q̇n1(θ1|β1) = 0, we have

− 1

n
l̇n1(f(β1)) = −λn

n
D1(β1)f(β1). (3.39)

Taking the derivative of (3.39) with respect to β′1 and rearranging terms, we obtain

{
Hn1(f(β1)) +

λn
n
D1(β1)

}
ḟ(β1) =

2λn
n
diag{f1(β1)/β3

1 , . . . , fqn(β1)/β3
qn}. (3.40)

With probability tending to one, we have

sup
|β1|∈[1/Mn,Mn]qn

2λn
n

∥∥diag{f1(β1)/β3
1 , . . . , fqn(β1)/β3

qn}
∥∥

2
= Op

(
λnM

4
n

n

)
= op(1),

where the last step follows from condition (C6). This, combined with (3.40) implies that

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥∥{Hn1(f(β1)) +
λn
n
D1(β1)

}
ḟ(β1)

∥∥∥∥
2

= op(1). (3.41)

Now, it can be shown that probability tending to one,

∥∥∥Hn1(f(β1))ḟ(β1)
∥∥∥

2
≥
∥∥∥ḟ(β1)

∥∥∥
2
·
∥∥Hn1(f(β1))−1

∥∥−1

2
≥ 1

K2

∥∥∥ḟ(β1)
∥∥∥

2
,
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for some K2 > 0, and that

λn
n

∥∥∥D1(β1)ḟ(β1)
∥∥∥

2
≥ λn

n

∥∥∥ḟ(β1)
∥∥∥

2

∥∥D1(β1)−1
∥∥−1

2
≥ λn

n

1

M2
n

∥∥∥ḟ(β1)
∥∥∥

2
.

Therefore, combining the above two inequalities with (3.40) and (3.41) gives

(
1

K2

− λn
nM2

n

)
sup

|β1|∈[1/Mn,Mn]qn

∥∥∥ḟ(β1)
∥∥∥

2
= op(1).

This, together with the fact that λn
n

1
M2

n
= o(1), implies that (3.38) holds. Therefore, with

probability tending to one, f(·) is a contraction mapping and consequently has a unique

fixed point, say β̂◦1, such that β̂◦1 = f(β̂◦1).

We next prove part (b). By (3.36) we have

f(β1) =

{
Hn1(β∗1) +

λn
n
D1(β1)

}−1{
Hn1(β∗1)β01 +

1

n
l̇n1(β01)

}
.

Now,

√
nb′nΣ(β0)

1/2
11 (β̂◦1 − β01) =

√
nb′nΣ(β0)

1/2
11

[{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1

Hn1(β∗1)− Iqn

]
β01

+
√
nb′nΣ(β0)

1/2
11

[{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1
1

n
l̇n1(β01)

]
= I1 + I2. (3.42)

Note that for any two conformable invertible matrices Φ and Ψ, we have

(Φ + Ψ)−1 = Φ−1 − Φ−1Ψ(Φ + Ψ)−1,
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Thus we can rewrite I1 as

I1 =
√
nb′nΣ(β0)

1/2
11

[{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1

Hn1(β∗1)− Iqn

]
β01

= − λn√
n

b′nΣ(β0)
1/2
11 Hn1(β∗1)−1D1(β̂◦1)

{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1

Hn1(β∗1)β01.

‖I1‖2 ≤
λn√
n

∥∥∥Σ(β0)
1/2
11

∥∥∥
2

∥∥Hn1(β∗1)−1
∥∥

2

∥∥∥D1(β̂◦1)
∥∥∥

2

∥∥∥∥∥
{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1
∥∥∥∥∥

2

‖Hn1(β∗1)‖2 ‖β01‖2

=
λn√
n
·O(1) ·Op(1) ·M2

n ·Op(1) ·Op(1) ·Mn
√
qn

= Op(λnM
3
n

√
qn/
√
n) = op(1), (3.43)

where the first equality follows from (3.15) and condition (C4), and the last equality is a

consequence of condition (C6). Similarly, we can rewrite I2 as

I2 =
√
nb′nΣ(β0)

1/2
11

[{
Hn1(β∗1) +

λn
n
D1(β̂◦1)

}−1
1

n
l̇n1(β01)

]
= b′nΣ(β0)

1/2
11 Hn1(β∗1)−1 1√

n
l̇n1(β01)

− λn√
n

b′nΣ(β0)
1/2
11 Hn1(β∗1)−1D1(β̂◦1)

{
Hn1(β∗1)−1 +

λn
n
D1(β̂◦1)

}−1
1

n
l̇n1(β01)

= b′nΣ(β0)
1/2
11 Hn1(β∗1)−1 1√

n
l̇n1(β01) + op(1). (3.44)

We now establish the asymptotic normality of n−1/2b′nΣ(β0)
1/2
11 Hn1(β∗1)−1l̇n1(β01), which will

be derived in a similar fashion to Lemma 3.2. By (3.15), (3.37), and the continuity of Σ(β0),

we can deduce that Hn1(β∗) = Σ(β0)11 + op(1), where Σ(β0)11 = Σ(β0)11 is the first qn × qn
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submatrix of Σ(β0). This, together with (3.9) and (3.44), implies that

I2 = n−1/2

n∑
i=1

b′nΣ(β0)
1/2
11 Hn1(β∗1)−1Ui1 + op(1)

= n−1/2

n∑
i=1

b′nΣ(β0)
−1/2
11 Ui1 +

{
n−1/2

n∑
i=1

b′nΣ(β0)
1/2
11 Ui1

}
op(1) + op(1)

= I21 + I22 · op(1) + op(1), (3.45)

where Ui1 consists of the first qn components of Ui. Letting Yni = n−1/2b′nΣ(β0)
−1/2
11 Ui1,

then

s2
n =

n∑
i=1

V ar(Yni) =
1

n

n∑
i=1

b′nΣ(β0)
−1/2
11 V ar(Ui1)Σ(β0)

−1/2
11 bn

= b′nΣ(β0)
−1/2
11

{
1

n

n∑
i=1

V ar(Ui1)

}
Σ(β0)

−1/2
11 bn → 1.

To prove the asymptotic normality of I21, we need to verify the Lindeberg condition: for all

ε > 0,

1

s2
n

n∑
i=1

E{Y 2
niI(|Yni| ≥ εsn)} → 0, (3.46)

as n→∞. Note that

n∑
i=1

E(Y 4
ni) = n−2

n∑
i=1

E

[{
b′nΣ(β0)

−1/2
11 Ui1

}4
]

≤ n−2

n∑
i=1

E
[
||bn||42 · ||Σ(β0)

−1/2
11 ||42 · ||Ui1||42

]
= n−2eigen2

max{Σ(β0)−1}
n∑
i=1

E(||Ui1||42)

= n−2eigen2
max{Σ(β0)−1}

n∑
i=1

pn∑
j=1

pn∑
k=1

E(U2
ijU

2
ik)

= O(p2
n/n), (3.47)
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where the first inequality is due to Cauchy-Schwarz, the second equality is due to ||bn||2 = 1

and the last step follows from conditions (C4) and (C5). Therefore for any ε > 0,

1

s2
n

n∑
i=1

E
{
Y 2
niI(|Yni| > εsn)

}
≤ 1

s2
n

n∑
i=1

{
E(Y 4

ni)
}1/2 [

E {I(|Yni| > εsn)}2]1/2
≤ 1

s2
n

{
n∑
i=1

E(Y 4
ni)

}1/2

·

{
n∑
i=1

Pr(|Yni| > εsn)

}1/2

≤ 1

s2
n

{
n∑
i=1

E(Y 4
ni)

}1/2

·

{
n∑
i=1

V ar(Yni)

ε2s2
n

}1/2

=
1

s2
n

{
O(p2

n/n)
}1/2 1

ε
→ 0.

Thus, (3.46) is satisfied and by the Lindeberg-Feller central limit theorem and Slutsky’s

theorem

I21 = sn

(
1

sn

n∑
i=1

Yni

)
D→ N(0, 1). (3.48)

Similarly, it can be shown that as n→∞,

I22√
b′nΣ(β0)2

11bn

D→ N (0, 1) . (3.49)

since
∥∥∥{b′nΣ(β0)2

11bn + o(1)}−1
∥∥∥

2
= O(1). Therefore I22 = Op(1) and by Slutsky’s theorem,

n−1/2b′nΣ(β0)
1/2
11 Hn1(β∗1)−1l̇n1(β01) = n−1/2

n∑
i=1

b′nΣ(β0)
−1/2
11 Ui1

+

{
n−1/2

n∑
i=1

b′nΣ(β0)
1/2
11 Ui1

}
op(1) + op(1)

= I21 + I22 · op(1) + op(1)

D→ N(0, 1).
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Hence, combining (3.42), (3.43), (3.45), (3.48) and (3.49) gives

√
nb′nΣ(β0)

1/2
11 (β̂◦1 − β01)

D→ N(0, 1),

which proves part (b). �

Proof of Theorem 3.1. Part (a) of the theorem follows immediately from part (a) of

Lemma 3.4. Part (b) of the theorem will follow from part (b) Lemma 3.5 and the following

Pr
(

lim
k→∞

∥∥∥g1(β(k))− β̂◦1

∥∥∥
2

= 0
)
→ 1, (3.50)

where β̂◦1 is the fixed point of f(β1) defined in Lemma 3.5. Note that g(β) is a solution to

− 1

n
D(β)−1l̇n(θ) +

1

n
λnθ = 0, (3.51)

where D(β)−1 = diag{β2
1 , . . . , β

2
qn , β

2
qn+1, . . . , β

2
pn}. It is easy to see from (3.51) that

lim
β2→0

g2(β) = 0pn−qn .

This, combined with (3.51), implies that for any β1

lim
β2→0

g1(β) = f(β1).

Hence, g(·) is continuous and thus uniform continuous on the compact set β ∈ Hn. Hence

as k →∞,

ωk ≡ sup
|g1(β)|∈[1/Mn,Mn]qn

∥∥∥g1(β1, β̂
(k)
2 )− f(β1)

∥∥∥
2
→ 0, (3.52)
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with probability tending to one. Furthermore,

∥∥∥β̂(k+1)
1 − β̂◦1

∥∥∥
2
≤
∥∥∥g1(β̂(k))− f(β̂

(k)
1 )
∥∥∥

2
+
∥∥∥f(β̂

(k)
1 )− β̂◦1

∥∥∥
2
≤ ωk +

1

K4

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥
2
,

(3.53)

for some K4 > 1 where the last inequality follows from (3.38) and the definition of ωk.

Denote by ak =
∥∥∥β̂(k)

1 − β̂◦1

∥∥∥
2
, we can rewrite (3.53) as

ak+1 ≤
1

K4

ak + ωk.

By (3.52), for any ε > 0, there exists an N > 0 such that ωk < ε for all k > N . Therefore

for k > N ,

ak+1 ≤
1

K4

ak + ωk

≤ ak−1

K2
4

+
ωk−1

K4

+ ωk

≤ a1

Kk
4

+
ω1

Kk−1
4

+ · · ·+ ωN

Kk−N
2

+

(
ωN+1

Kk−N−1
4

+ · · ·+ ωk−1

K4

+ ωk

)
≤ (a1 + ω1 + ...+ ωN)

1

Kk−N
4

+
1− (1/K4)k−N

1− 1/K4

ε→ 0, as k →∞,

with probability tending to one. Therefore,

Pr
(

lim
k→∞

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥
2

= 0
)

= 1

with probability tending to one, or equivalently

Pr(β̂1 = β̂◦1) = 1 (3.54)

with probability tending to one. This proves (3.50) and thus complete the proof of the

theorem. �
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A3.3 Proof of Theorem 3.2.

Under Conditions (C1) - (C6), by Theorem 3.1 we have that β̂ = lim
k→∞

β̂(k) , where

β̂(k+1) = g(β̂(k)) = arg min
β

−2ln(β) + λn

pn∑
j=1

I(βj 6= 0)β2
j(

β̂j
(k)
)2

 .

Looking at (3.17) we have,

D(β̂(k))−1l̇n(β̂(k+1)) = λnβ̂
(k+1)

Therefore for any l = i, j where β̂i 6= 0, β̂j 6= 0,

β̂
(k+1)
l =

(β̂
(k)
l )2

λn
l̇nl(β̂

(k+1)).

From Theorem 3.1, we also have that as k →∞, β̂(k) → β̂ and hence as k →∞, (4.60) can

be rewritten as

β̂−1
l =

1

λn
l̇nl(β̂).

Let η = Zβ and

ζ(ηi) =
∂

∂ηi
ln(β) = Ni(1)−

∫ 1

0

Yi(s) exp(ηi)∑n
j=1 Yj(s) exp(ηj)

dN̄(s) i = 1, . . . , n.

Then

|ζ(η̂i)| ≤ |Ni(1)|+

∣∣∣∣∣
∫ 1

0

Yi(s) exp(η̂i)∑n
j=1 Yj(s) exp(η̂j)

dN̄(s)

∣∣∣∣∣ ≤ 1 + dn i = 1, . . . , n,

since the integrand is at most one and where dn =
∑n

i=1 δi. Hence

‖ζ(η̂)‖2 ≤ ‖1 + dn1‖2 =
√
n(1 + dn)2.
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Let z[,i] denote the ith column of Z. Since Z is assumed to be standardized, z′[,i]z[,i] = n− 1

and z′[,i]z[,j] = (n − 1)rij, for all i 6= j and where rij is the sample correlation between z[,i]

and z[,j]. Since

β̂−1
i =

1

λn
z′[,i]ζ(η̂) and β̂−1

j =
1

λn
z′[,j]ζ(η̂),

we have

∣∣∣β̂−1
i − β̂−1

j

∣∣∣ =

∣∣∣∣ 1

λn
z′[,i]ζ(η̂)− 1

λn
z′[,j]ζ(η̂)

∣∣∣∣
=

∣∣∣∣ 1

λn
(z[,i] − z[,j])

′ζ(η̂)

∣∣∣∣
≤ 1

λn

∥∥(z[,i] − z[,j])
∥∥ ‖ζ(η̂)‖

≤ 1

λn

√
2{(n− 1)− (n− 1)rij}

√
n(1 + dn)2

for any β̂i 6= 0 and β̂j 6= 0. �

A3.3.1 High-dimensional data: additional regularity conditions, conditional or-

acle property of SJS-CoxBAR and proof

Let xj be the observed event time for subject j. Assume no ties are present, z is time

independent, and that qn = q is fixed. Define

Mj =
n∑
i=1

∫ xj

0

{
zi −

∑n
j=1 Yj(s)zj exp(z′jβ)∑n
j=1 Yj(s) exp(z′jβ)

}
dMi

Note that E(Mj|Fj−1) = Mj−1 or equivalently E(Mj −Mj−1|Fj−1) = 0. If bj = Mj −Mj−1,

then {bj}j=1,2,... is a sequence of bounded martingale differences on (Ω,F , P ), so bj is bounded

almost surely and E(bj|Fj−1) = 0 a.s. for j = 1, 2, . . .

Assume that the screening procedure retains m out of pn covariates such that q < m < pn.

Let s denote an arbitrary subset of {1, . . . , pn} which defines the submodel with covariates

zs = {zj, j ∈ s} and associated coefficients βs = {βj, j ∈ s}. Let s0 denote the true model.

For instance, in our construction of β0, s0 = {1, 2, . . . , q} with ‖|s0||0 = q, where ||a||0 is the
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cardinality of a.

(C8) There exist w1, w2 > 0 and some non-negative constants τ1, τ2 such that τ1 + τ2 < 1/2

with min1≤j≤q |β0j| ≥ w1n
−τ1 and q < m ≤ w2n

τ2 ;

(C9) log pn = O(nκ) for some 0 ≤ κ < 1− 2(τ1 + τ2);

(C10) There exists constants c1 > 0, δ1 > 0 such that for sufficiently large n, eigenmin[Hn(β0)] ≥

c1 for βs ∈ {β : ||βs−β0s||2 ≤ δ1} and s ∈ S2m
+ , where S2m

+ = {s : s0 ⊂ s; ||s||0 ≤ 2m};

(C11) There exists constants C3, C4 > 0 such that maxij |zij| < C3 and maxi |ziβ0| < C4.

(C12) There exists nonnegative constants γj such that for every real number t,

E{exp(tbj)|Fj−1} ≤ exp(γ2
j t

2/2),

almost surely for j = 1, 2, . . . , n. Further, for each j, define η(bj) = minj(γj). Now

|bj| ≤ Kj almost surely for j = 1, . . . , n and E{bj1 , bj2 , . . . bjk} = 0 for bj1 < bj2 < . . . <

bjk , k = 1, 2, . . ..

Arguably some of the conditions in Yang et al. (2016) are much stronger than some conditions

(C1) - (C7). For example, Condition (C10) requires the covariates and β0 to be bounded by

a constant. This is much stronger than our Condition (C7) where we allow β0 to diverge to

infinity. The authors also included the Lindeberg condition as a regularity condition in their

paper, which we note is unnecessary due to the bounded covariate assumption in Condition

(C10) [c.f. Section 4 in Andersen and Gill (1982)].

Theorem 3.3 Let ln(pn) = O(nκ), 0 ≤ κ < 1. Suppose that Conditions (C1) - (C12). Let

s0 = {j : β0j 6= 0} be the set of indices where β0j 6= 0, the true signal in the model and ŝ

be the set of indices obtained after the sure joint screening procedure of Yang et al. (2016).

Define lŝ(β) as the log-partial likelihood of the model corresponding to ŝ. Then

(a) (Sure screening property) Pr(s0 ⊂ ŝ)→ 1;
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(b) (Oracle Property) Conditional on s0 ⊂ ŝ, with probability tending to one, the CoxBAR

estimator β̂ =
(
β̂′1, β̂

′
2

)′
exists and is unique with β̂2 = 0 and β̂1 being the unique fixed

point of f(β1), where f(β1) is a solution to Q̇ŝ1(θ1|β1) = 0 for

Qŝ1(θ1|β1) = −2lŝ1(θ1|β1) + λnθ
′
1D1(β1)θ1,

with D1(β1) = diag(β−2
1 , β−2

2 , . . . , β−2
qn ) and lŝ1(θ1) being the first qn components of

lŝ(θ), and furthermore

√
nb′nΣ

−1/2
11 (β̂1 − β01)

D−→ N(0, 1),

where bn is a qn-dimensional vector such that ||bn||2 ≤ 1, and Σ is defined in Condition

(C4).

Proof: Part (a) is a direct consequence of Theorem 2 of Yang et al. (2016) and part (b)

is a consequence of part (a) and Theorem 3.1. �

A3.4 The CLG algorithm for Cox ridge regression as explained in Section 3.1.2

The CLG algorithm involves finding β
(new)
j , the value of the jth entry of β, that minimizes

the negative penalized log-partial likelihood, −lp(β), assuming that the other values of βj’s

are held constant at their current values. For a Cox ridge regression with tuning parameters

φj for j = 1, . . . , pn, finding β
(new)
j is equivalent to finding the v that minimizes,

g(v) = −v
n∑
i=1

δizij +
n∑
i=1

δi ln

{∑
y∈Ri

exp

(
pn∑

k=1,k 6=j

βkzyk + vzyj

)}
+
v2φj

2
,

where Ri = {y : Xy > Xi} is the risk set for observation i. Here we allow each parameter

to be penalized differently. For the BAR algorithm, φj = ξn and φj = λn/(β̂
(k−1)
j )2 in

Equations (3.3) and (3.4), respectively. An optimization procedure needs to be used since

there is no closed form solution. Using a Taylor series approximation at the current βj, one
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can approximate g(·) through

g(v) ≈ g(βj) + g′(βj)(v − βj) +
1

2
g′′(βj)(v − βj)2, (3.55)

where

g′(βj) =
d

dv
g(v)

∣∣∣∣
v=βj

= −
n∑
i=1

zijδi +
n∑
i=1

δi

∑
y∈Ri

zyj exp(z′yβ)∑
y∈Ri

exp(z′yβ)
+ βjφj, (3.56)

and

g′′(βj) =
d2

dv2
g(z)

∣∣∣∣
v=βj

=
n∑
i=1

δi

∑
y∈Ri

z2
yj exp(z′yβ)∑

y∈Ri
exp(z′yβ)

(3.57)

−

(
n∑
i=1

δi

∑
y∈Ri

zyj exp(z′yβ)∑
y∈Ri

exp(z′yβ)

)2

+ φj.

Consequently, the Taylor series approximation in Equation (3.55) has its minimum at

β
(new)
j = βj + ∆βj = βj −

g′(βj)

g′′(βj)
.

It is worth noting that as φj → ∞, g′(βj)/g
′′(βj) → βj and thus β

(new)
j → 0, which is

an important feature of our BAR algorithm as discussed in Remark 3.1. Furthermore, the

above algorithm of Mittal et al. (2014) adopts multiple aspects of the work by Zhang and

Oles (2001) and Genkin et al. (2007). For CLG, a trust region approach is implemented so

that |∆βj| is not allowed to be too large on a single iteration. This prevents large updates

in regions where a quadratic is a poor approximation to the objective. Second, rather than

iteratively updating β
(new)
j = βj + ∆βj until convergence, CLG does this only once before

going on to the next variable. Since the optimal value of β
(new)
j depends on the current value

of the other βj’s, there is little reason to tune each β
(new)
j with high precision. Instead, we

simply want to decrease −lp(β) before going on to the next βj.
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A3.5 Additional simulation results for Section 3.2.1
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Figure A3.1: Path plot for BAR regression with varying ξn and: (b) λn = log(pn), (c)
λn = 0.5 log(pn), and (d) λn = 0.75 log(pn) with estimates averaged over 100 Monte Carlo
simulations of size n = 300, pn = 40, censoring rate ≈ 25%, and β = (β∗,β∗,β∗,0pn−30)
where β∗ = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80). Path plot for ridge regression (d) with
varying ξn is also included as a comparison.
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Figure A3.2: Path plot for BAR regression with varying ξn and: (b) λn = log(pn), (c)
λn = 0.5 log(pn), and (d) λn = 0.75 log(pn) with estimates averaged over 100 Monte Carlo
simulations of size n = 300, pn = 40, censoring rate ≈ 60%, and β = (β∗,0pn−10) where β∗ =
(0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80). Path plot for ridge regression (d) with varying ξn
is also included as a comparison.
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Figure A3.3: Path plot for BAR regression with varying ξn and: (b) λn = log(pn), (c)
λn = 0.5 log(pn), and (d) λn = 0.75 log(pn) with estimates averaged over 100 Monte Carlo
simulations of size n = 1000, pn = 100, censoring rate ≈ 25%, and β = (β∗,β∗,β∗,0pn−30)
where β∗ = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80). Path plot for ridge regression (d) with
varying ξn is also included as a comparison.
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A3.6 Additional simulation results for Section 3.2.2

Table A3.1: Simulated estimation and variable selection performance of BAR, LASSO,
SCAD, ALASSO, and MCP where the BIC criterion was used to select the tuning param-
eters via a grid search. (MSB = mean squared bias; FN = mean number of false positives;
FP = mean number of false negatives; SM = similarity measure; BIC = average BIC score;
Each entry is based on 100 Monte Carlo samples of size n = 300, pn = 40, censoring rate
≈ 25% , and β = (β∗,β∗,β∗,0pn−30) where β∗ = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80))

MSB FN FP SM BIC
BAR 0.27 0.11 0.74 0.98 1600.72

LASSO 0.46 0.00 9.13 0.82 1608.98
SCAD 0.34 0.07 1.94 0.95 1601.59

ALASSO 0.30 0.06 2.36 0.94 1603.78
MCP 0.32 0.10 1.04 0.97 1600.12

Table A3.2: Simulated estimation and variable selection performance of BAR, LASSO,
SCAD, ALASSO, and MCP where the BIC criterion was used to select the tuning param-
eters via a grid search. (MSB = mean squared bias; FN = mean number of false positives;
FP = mean number of false negatives; SM = similarity measure; BIC = average BIC score;
Each entry is based on 100 Monte Carlo samples of size n = 300, pn = 40, censoring rate
≈ 60%, and β = (β∗,0pn−10) where β∗ = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80))

MSB FN FP SM BIC
BAR 0.15 0.14 0.67 0.94 1047.77

LASSO 0.31 0.02 3.21 0.82 1063.76
SCAD 0.27 0.11 2.22 0.86 1052.36

ALASSO 0.20 0.16 1.24 0.91 1053.77
MCP 0.23 0.23 1.14 0.91 1050.78
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Table A3.3: Simulated estimation and variable selection performance of BAR, LASSO,
SCAD, ALASSO, and MCP where the BIC criterion was used to select the tuning param-
eters via a grid search. (MSB = mean squared bias; FN = mean number of false positives;
FP = mean number of false negatives; SM = similarity measure; BIC = average BIC score;
Each entry is based on 100 Monte Carlo samples of size n = 1000, pn = 100, censoring rate
≈ 25% , and β = (β∗,β∗,β∗,0pn−30) where β∗ = (0.40, 0, 0.45, 0, 0.50, 0.55, 0, 0, 0.70, 0.80))

MSB FN FP SM BIC
BAR 0.06 0.00 0.71 0.98 6733.09

LASSO 0.43 0.00 11.98 0.79 6801.82
SCAD 0.06 0.00 0.50 0.99 6739.34

ALASSO 0.09 0.00 1.34 0.97 6744.73
MCP 0.05 0.00 0.26 0.99 6737.06
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CHAPTER 4

Broken adaptive ridge for the Fine-Gray proportional

subdistribution hazards model with applications to

large-scale competing risks data

This chapter develops the broken adaptive ridge estimator for the Fine-Gray proportional

subdistribution hazards (PSH) model for competing risks data with applications to large-

scale competing risks data. The rest of this chapter is organized as follows. In Section

4.1.1, we review the mathematical formulation of competing risks data and the Fine and

Gray (1999) proportional subdistribution hazards model. Section 4.1.2, introduces the BAR

estimator for the PSH model and state its large-sample properties. Section 4.1.3 derives

the cyclic coordinate-wise BAR algorithm. The forward-backward scan method for the

PSH model is described in Section 4.1.4. Section 4.2 presents some simulation studies to

demonstrate the selection and estimation performance and the computational efficiency gains

of our proposed method. A proof-of-concept real data example for fitting large competing

risks data is provided in Section 4.3 using a subset of the United States Renal Data System

(USRDS). Concluding remarks are given in Section 4.4. An R package for BAR is available

at https:github.com/erickawaguchi/pshBAR.
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4.1 Methodology

4.1.1 Preliminaries: Competing risks data, model, and parameter estimation

for fixed model dimension

Competing risks time-to-event data arises frequently in clinical trials, reliability testing, so-

cial science, and many other fields (Prentice et al., 1978; Pintilie, 2006; Putter et al., 2007).

Competing risks occur when individuals are susceptible to more than one types of possibly

correlated events or causes and the occurrence of one event precludes the others from hap-

pening. For example, one may wish to study time until first kidney transplant for kidney

dialysis patients with end-stage renal disease. Then terminating events such as death, renal

function recovery, or discontinuation of dialysis are competing risks as their occurrence will

prevent subjects from receiving a transplant. For i = 1, . . . , n, let Ti, Ci, εi, and zi be the

event time, possible right-censoring time, cause (event type), and a pn-dimensional vector of

time-independent covariates, respectively, for subject i. Without loss of generality assume

there are two event types ε ∈ {1, 2} where ε = 1 is the event of interest and ε = 2 is the

competing risk. With the presence of right-censoring, we generally observe Xi = Ti ∧ Ci,

δi = I(Ti ≤ Ci), where a ∧ b = min(a, b) and I(·) is the indicator function. Compet-

ing risks data consists of the following independent and identically distributed quadruplets

{(Xi, δi, δiεi, zi}ni=1. Assume that there exists a τ such that (1) t ∈ [0, τ ]; (2) Pr(Ti > τ) > 0

and Pr(Ci > τ) > 0 for all i = 1, . . . , n.

An important quantity for competing risks data is the cumulative incidence function

(CIF), which describes the probability of failing from a certain cause of interest before

the other causes. The CIF for cause 1 events conditional on the covariates is defined as

F1(t; z) = Pr(T ≤ t, ε = 1|z). To model the covariate effects on F1(t; z), Fine and Gray

(1999) introduced the now well- appreciated proportional subdistribution hazards (PSH)

model:

h1(t|z) = h10(t) exp(z′β), (4.1)

63



where

h1(t|z)= lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), z}
∆t

= − d

dt
log{1− F1(t; z)}

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline subdis-

tribution hazard, and β is a pn×1 vector of regression coefficients. As Fine and Gray (1999)

mentioned, the risk set associated with h1(t; z) is somewhat counterfactual as it includes

subjects who are still at risk (T ≥ t) and those who have already observed the competing

risk prior to time t (T ≤ t ∩ ε 6= 1). However, this construction is useful for direct modeling

of the CIF.

Assume that pn is fixed. Fine and Gray (1999) developed a parameter estimation method

and large sample inference for the PSH model based on the following log-pseudo likelihood:

ln(β) =
n∑
i=1

∫ τ

0

(
z′iβ − log

{∑
j

ŵj(s)Yj(s) exp(z′jβ)

})
× ŵi(s)dNi(s), (4.2)

where Ni(t) = I(Ti ≤ t, εi = 1), Yi(t) = 1 − Ni(t−), ŵi(t) is a time-dependent weight for

subject i at time t defined as ŵi(t) = I(Ci ≥ Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t), and Ĝ(t) is the Kaplan-

Meier estimate for G(t) = Pr(C ≥ t), the survival function of the censoring variable C. Note

that, for any subject i and time t, ŵi(t)Yi(t) = 0 if an individual is right censored or has

experienced the event of interest; and ŵi(t)Yi(t) = 1 if t < Xi, and ŵi(t)Yi(t) = Ĝ(t)/Ĝ(Xi)

for events due to the competing risk. Define

β̂mple = arg min
β
{−ln(β)}.

Fine and Gray (1999) showed that β̂mple is consistent and asymptotically normal with a

sandwich-type variance estimator.
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4.1.2 Broken adaptive ridge estimation for the proportional subdistribution

hazards model under diverging model dimension

Penalized regression is useful for simultaneous variable selection and parameter estimation.

Below we extend the broken adaptive ridge (BAR) estimator to the proportional subdistri-

bution hazards model and establish its large sample properties when the model dimension

pn is allowed to diverge with n.

Let ln(β) be the log-pseudo likelihood defined by (4.2). The BAR estimator of β starts

with an initial `2-penalized (or ridge) estimator

β̂(0) = arg min
β
{−2ln(β) + ξn

p∑
j=1

β2
j }, (4.3)

which is updated iteratively by a reweighted `2-penalized estimator

β̂(k) = arg min
β

{
−2ln(β) + λn

p∑
j=1

β2
j

|β̂(k−1)
j |2

}
, k ≥ 1, (4.4)

where ξn and λn are non-negative penalization tuning parameters. The BAR estimator of β

is defined as the limit of this iterative algorithm:

β̂ = lim
k→∞

β̂(k), (4.5)

which can be viewed as a surrogate to `0-penalized regression.

Note that adaptively reweighting the penalty of a coefficient by the inverse of its squared

estimate from the previous iteration allows each coefficient to be penalized differently. At

each successive iteration, coefficients whose true values are zero will have larger penalties

that will shrink the estimate further towards zero. On the other hand, at each iteration of

the BAR algorithm the solution will be non-sparse. In Theorem 4.1 below, we will show

that with probability tending to 1, the limit of the BAR algorithm defined by (4.5) will be

sparse, selection consistent, and has both an oracle and grouping property for estimation.

Let β1 and β2 be the first qn and remaining pn − qn components of β, respectively, and
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define β0 = (β′01,β
′
02)′ as the true values of β where, without loss of generality, β01 =

(β01 . . . , β0qn) is a vector of qn non-zero values and β02 = 0 is a pn − qn dimensional vector

of zeros. Further technical assumptions for β0 and pn are given later in condition (C6) in

Appendix A4.1. Below we state the asymptotic properties of the BAR estimator for the

PSH model under certain regularity conditions.

Theorem 4.1 (Oracle property) Assume the regularity conditions (C1) - (C6) in Ap-

pendix A4.1 hold. Let β̂1 and β̂2 be the first qn and the remaining pn− qn components of the

BAR estimator β̂, respectively. Then,

(a) β̂2 = 0 with probability tending to one;

(b)
√
nd′nΓ

−1/2
11 Ω11(β̂1−β01)→ N(0, 1), for any qn-dimensional vector dn such that ||dn||2 ≤

1 and where Γ11 and Ω11 are the first qn× qn submatrices of Γ and Ω, respectively, de-

fined in Condition (C4).

Theorem 4.1(a) establishes that with large probability, the true zero coefficients will be

estimated as zeros by the BAR estimator. Part (b) of the theorem essentially states that

the nonzero component of the BAR estimator is asymptotically normal and equivalent to

the weighted ridge estimator of the oracle model.

An appealing property of `2-penalized regression is its tendency to shrink correlated

covariates toward each other. As an `2-based procedure, the BAR method also retains this

grouping property for highly-correlated covariates. A proof is provided in Appendix A4.4.

Theorem 4.2 (Grouping property) Assume that Z = (zTi , . . . z
T
n ) is standardized. That

is, for all j = 1, . . . , pn,
∑n

i=1 zij = 0, zT[,j]z[,j] = n − 1, where z[,j] is the jth column of Z.

Suppose the regularity conditions (C1) - (C6) in Appendix A4.1 hold and let β̂ be the BAR

estimator. Then for any β̂i 6= 0 and β̂j 6= 0,

|β̂−1
i − β̂−1

j | ≤
1

λn

√
2{(n− 1)(1− rij)}

√
n(1 + en)2, (4.6)
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with probability tending to one, where en =
∑n

i=1 I(εi = 1), and rij = 1
n−1

zT[,i]z[,j] is the

sample correlation of z[,i] and z[,j].

We can see that as rij → 1, the absolute difference between β̂i and β̂j approaches 0 implying

that the estimated coefficients of two highly-correlated variables will be similar in magnitude.

Remark 4.1 (Penalization parameter selection) The BAR estimator has two penalization

parameters: ξn for the initial ridge estimator and λn for the subsequent reweighted ridge

estimators. We have observed through extensive simulations that the BAR estimator is not

sensitive to ξn and is stable over a huge interval as illustrated in Figures A4.3, A4.4, and

A4.5 of Appendix A4.8.1. In Table 4.1 and Tables A4.1, A4.2, and A4.3 of Appendix A4.8.2,

the BAR(λn) estimator with ξn = log(pn) and a grid search on λn showed essentially the same

performance as the BAR(ξn, λn) estimator using a two-dimensional grid search on ξn and λn

based on the BIC criterion.

Remark 4.2 (Computational aspects) The BAR estimator can be implemented using the

algorithm outlined in Algorithm 2 of Appendix A4.7 in which cyclic coordinate decent (CCD)

algorithm is employed to accelerate each reweighted `2-penalized regression. We point out that

there are still some key computational aspects that impact the runtime of the algorithm. First,

at the highest level (line 2), it runs a sequence (k = 0, 1, . . .) of adaptively reweighted ridge

regressions, which seems to add an extra layer of computational complexity as compared to

other popular single-step penalization methods such as LASSO and can become a bottleneck

when a large number of iterations is needed. Second, because ridge regression is not sparse

and thus the limit is never achieved at any given step of the BAR algorithm, an arbitrarily

small cutoff value ε∗ has to be used to induce sparsity in Algorithm 2 (line 18), which is an

unpleasant feature. These are obviously general issues for the BAR approach and are not

limited to the PSH model. Lastly, for the PSH model, direct calculation of the log-pseudo

likelihood and its derivatives involves O(n2) operations as explained later in Section 4.1.4,

which is highly impactful on the algorithm since it occurs at the lowest level (the innermost

loop). This is a common issue also shared by other (penalized or unpenalized) estimation
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methods for the PSH model. Below we derive new algorithms to address the above issues in

Sections 4.1.3 and 4.1.4.

4.1.3 A cyclic coordinate-wise BAR algorithm

In this section we derive a fast cyclic coordinate-wise BAR algorithm that will result in the

elimination of performing multiple ridge regressions and avoid using a cutoff ε∗ to introduce

sparsity as required by the original BAR algorithm (Algorithm 2). Let l̇(β) and l̈(β) denote

the first and second derivative of ln(β), respectively. For a consistent estimate β̃ of β,

consider the Cholesky decomposition −l̈(β̃) = X̃′X̃ and define ỹ = (X̃′)−1{−l̈(β̃)β̃+ l̇(β̃)} as

the pseudo-response vector. Approximating the negative log-pseudo likelihood by −ln(β) ≈

(1/2)(ỹ−X̃β)′(ỹ−X̃β) using a second-order Taylor expansion in (4.4) leads to the following

solution

β̂(k) = g(β̂(k−1)),

where

g(β) = {X̃′X̃ + λnD(β)}−1X̃′ỹ.

and D(β) = diag(β−2
1 , . . . , β−2

pn ). Hence, as k → ∞, the limit of the sequence {β̂(k)} is the

fixed point of the function g(·) or the solution of g(β) = β.

The next theorem shows that each component of the fixed-point solution of g can be

expressed as a function of all other components. The proof is deferred to Appendix A4.5.

Theorem 4.3 Let β̂ be the fixed-point solution of g(·). Then, for each j = 1, . . . , pn, the

jth component of β̂ can be expressed as follows

β̂j = gj(β̂−j) ≡


0, if |bj| < 2

√
λnx̃′jx̃j,

bj+sign(bj)
√

(bj)2−4λnx̃′j x̃j

2x̃′j x̃j
, otherwise,

(4.7)

where bj = x̃′j(ỹ −
∑

i 6=j x̃iβ̂i) and β̂−j = (β̂1, . . . , β̂j−1, β̂j+1, . . . , β̂pn)′ .

The above result motivates our cyclic coordinate-wise broken adaptive ridge (cycBAR)
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Algorithm 1: The cycBAR Algorithm

1 Set β(0) = β̂ridge;
2 for s = 1, 2, . . . do
3 # Enter cyclic coordinate-wise BAR algorithm
4 for j = 1, . . . pn do

5 Calculate c1j = −l̇j(β(s−1)), c2j = −l̈jj(β(s−1)) and b
(s)
j = c2jβ

(s−1)
j − c1j;

6 if |b(s)
j | < 2

√
c2jλn then

7 β
(s)
j = 0;

8 else

9 β
(s)
j =

b
(s)
j +sign(b

(s)
j )

√
(b

(s)
j )2−4c2jλn

2c2j
;

10 end

11 end

12 if
∥∥β(s) − β(s−1)

∥∥ < tol then

13 β̂BAR = β(s) and break;
14 end

15 end

algorithm which performs cyclic coordinate-wise updates for the fixed point of g(·) using

equation (4.7) as outlined in Algorithm 1 below. In Algorithm 1, X̃ and ỹ are initially

estimated using the initial ridge estimate β(0) and then subsequently updated at step s

using the previous estimate β(s−1) for s ≥ 1. Consequently, at step s, we have

b
(s)
j ≡ x̃′j

{
ỹ −

∑
i 6=j

x̃iβ
(s−1)
i

}
= −l̈jj(β(s−1))β

(s−1)
j + l̇j(β

(s−1)), for j = 1, . . . , pn,

where l̇j(β) is the jth element of −l̇(β) and −l̈jj(β) is the jth diagonal element of the matrix

l̈(β).

Remark 4.3 (Convergence of cycBAR) The cycBAR algorithm resembles the well-known

cyclic coordinate decent (CCD) algorithm. On the other hand, unlike CCD that decreases an

objective function with each coordinate update, the cycBAR algorithm makes coordinate-

wise updates for a fixed-point problem without explicitly decreasing an objective function.

Hence the numerical convergence of the cycBAR algorithm is guaranteed by a different

mechanism. To appreciate how the cycBAR algorithm behaves, in Figures A4.1 and A4.2

of Appendix A4.8.1, we illustrate under a simple scenario with pn = 2 that the cycBAR algo-
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rithm converges to the fixed point of g(β1, β2) along the graphs of β1 = g1(β2) and β2 = g2(β1),

with each coordinate-wise update moving monotonically a step closer to the fixed point. This

is further corroborated in our extensive numerical studies. A rigorous proof of the numerical

convergence of the cycBAR algorithm is however not trivial and needs to be investigated in

future research.

4.1.4 Scalable parameter estimation via forward-backward scan

Within the innermost loop of the cycBAR algorithm (Algorithm 1), we need to calculate

l̇j(β) =
n∑
i=1

I(δiεi = 1)zij −
n∑
i=1

I(δiεi = 1)

∑
k∈Ri

zkjw̃ik exp(ηk)∑
k∈Ri

w̃ik exp(ηk)
,

l̈jj(β) =
n∑
i=1

I(δiεi = 1)

[∑
k∈Ri

z2
kjw̃ik exp(ηk)∑

k∈Ri
w̃ik exp(ηk)

−
{∑

k∈Ri
zkjw̃ik exp(ηk)∑

k∈Ri
w̃ik exp(ηk)

}2
]
,

where

w̃ik = ŵk(Xi) = Ĝ(Xi)/Ĝ(Xi ∧Xk), k ∈ Ri,

Ri = {y : (Xy ≥ Xi)∪(Xy ≤ Xi∩εy = 2)} and ηk = z′kβ. Direct calculations using the above

formulas will need O(n2) operations because of the double summations a dis computationally

taxing for large n.

Before going further, we note that for the Cox proportional hazards model with no

competing risks, Ri = {y : Xy ≥ Xi} and w̃ik ≡ 1 for all i and k. Therefore the score

function can be written as

l̇j(β) =
n∑
i=1

I(δi = 1)zij −
n∑
i=1

I(δi = 1)

∑
k∈Ri

zkj exp(ηk)∑
k∈Ri

exp(ηk)
, (4.8)

for j = 1, . . . , pn. Again, if done directly, calculating l̇j(β) will require O(n2) calcula-

tions. Suchard et al. (2013) and Mittal et al. (2014), among others, have implemented

the following technique to calculate (4.8) in O(n) calculations. Note that if the event times

are arranged in decreasing order, both
∑

k∈Ri
zkj exp(ηk) and

∑
k∈Ri

exp(ηk) are a series of

cumulative sums. For example, given Xi > Xi′ , the set Ri′ consists of the observations
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from Ri and the set of observations {y : Xy ∈ [Xi′ , Xi)}, therefore
∑

k∈Ri′
zkj exp(ηk) =∑

k∈Ri
zkj exp(ηk) +

∑
k∈{y:Xy∈[Xi′ ,Xi)} zkj exp(ηk) and calculating both

∑
k∈Ri

zkj exp(ηk) and∑
k∈Ri

exp(ηk), and consequently its ratio, for all i = 1, . . . , n will only require O(n) cal-

culations in total. Furthermore, the outer summation of subjects who observe the event of

interest is also a cumulative sum since, provided that Xi > Xi′ and both δi = 1 and δi′ = 1,

i∑
l=1

I(δl = 1)

∑
k∈Rl

zkj exp(ηk)∑
k∈Rl

exp(ηk)
=

i′∑
l=1

I(δl = 1)

∑
k∈Rl

zkj exp(ηk)∑
k∈Rl

exp(ηk)
(4.9)

+ I(δi = 1)

∑
k∈Ri

zkj exp(ηk)∑
k∈Ri

exp(ηk)
, (4.10)

which will also only require O(n) calculations since the ratio can be precomputed in O(n)

calculations. The diagonal elements of the Hessian also follow a similar derivation and can

be calculated in O(n) calculations.

For the PSH model, however,
∑

k∈Ri
w̃ik exp (ηj), i = 1, . . . , n, are not a series of simple

cumulative sums because 1) the risk sets Ri are not monotone over time, and 2) for each i,

a different set of weights w̃ik = Ĝ(Xi)/Ĝ(Xi ∧ Xk), k ∈ Ri are required. To overcome this

problem, we show in Lemma 4.1 below that
∑

k∈Ri
w̃ik exp (ηj) can be decomposed into a

forward cumulative sum and a backward cumulative sum over two disjoint monotone sets.

A simple proof is provided in Appendix A4.6.

Lemma 4.1 Assume that no ties are present. Then

∑
k∈Ri

w̃ik exp (ηk) =
∑

k∈Ri(1)

exp (ηk) + Ĝ(Xi)
∑

k∈Ri(2)

exp (ηk) /Ĝ(Xk) (4.11)

where Ri(1) = {y : (Xy ≥ Xi)} and Ri(2) = {y : (Xy < Xi ∩ εy = 2)} are distinct partitions

of Ri. Furthermore, Ri(1) is monotonically decreasing over time and Ri(2) is monotonically

increasing over time.

Because Ri(1) grows cumulatively as the event times decrease from the largest to the

smallest, whereas Ri(2) grows cumulatively as the observed event times increase from the

smallest to the largest since it only involves subjects who observed a competing risk and had
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an observed event time smaller than subject i. Thus, similar to the Cox model, the ratio of

summations for the score and diagonal Hessian values can be calculated in linear time via

a forward-backward scan where one scan goes in one direction to calculate the cumulative

sums associated with Ri(1) and the other scan goes in the opposite direction to calculate

the cumulative sum associated with Ri(2). Therefore, we can effectively reduce the number

of operations from O(n2) to O(n).

4.2 Simulation study

Two simulation studies are presented in this section. First, in Section 4.2.2, we illustrate

the selection and estimation performance of the BAR method for the PSH model along

with several popular `1-based penalization methods: LASSO, adaptive LASSO (ALASSO),

smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). We use

the R package crrp (Fu et al., 2017) to perform LASSO ALASSO, SCAD, and MCP. Second,

in Section 4.2.3 we illustrate the computational efficiency gains for BAR obtained by the

cycBAR algorithm described in Section 4.1.3 and the forward-backward scan algorithm

described in Section 4.1.4. All simulations were performed on a system with an Intel Core

i5 2.9 GHz processor and 16GB of memory.

4.2.1 Simulation setup

We simulate datasets under various sample sizes and parameter dimensions. The design

matrix, Z was generated from a pn-dimensional standard normal distribution with mean

zero and pairwise correlation corr(zi, zj) = ρ|i−j|, where ρ = 0.5 simulates moderate cor-

relation. The vector of regression parameters for cause 1, the cause of interest, is β1 =

(0.40, 0.45, 0, 0.50, 0, 0.60, 0.75, 0, 0, 0.80,0p−10). The data generation scheme follows a sim-

ilar design to that of Fine and Gray (1999) and Fu et al. (2017). The CIF for cause 1 is

F1(t; zi) = Pr(Ti ≤ t, εi = 1|zi) = 1 − [1 − π{1 − exp(−t)}]exp(z′iβ1), which is a unit ex-

ponential mixture with mass 1 − π at ∞ when zi = 0. Unless otherwise noted, the value

of π is set to 0.5, which corresponds to a cause 1 event rate of approximately 41%. The

72



CIF for cause 2 is obtained by setting Pr(εi = 2|zi) = 1 − Pr(εi = 1|zi) and then using an

exponential distribution with rate exp(z′iβ2) for the conditional CIF Pr(Ti ≤ t|εi = 2, zi)

with β2 = −β1. Censoring times are independently generated from a uniform distribution

U(0, umax) where umax controls the censoring percentage. The average censoring percentage

for our simulations vary between 30− 35%.

4.2.2 Variable selection and parameter estimation performance

The operating characteristics of BAR with different tuning parameter selection strategies

along with LASSO, adaptive LASSO (ALASSO), SCAD and MCP are assessed by the follow-

ing measures. As a gold standard, we also fit the oracle model (ORACLE) as if the true model

was known a priori. Estimation bias is summarized through the mean squared bias (MSB),

E{
∑p

i=1(β̂i−β0i)
2}. Variable selection performance is measured by a number of indices: the

mean number of false positives (FP), the mean number of false negatives (FN); and average

similarity measure (SM) for support recovery where SM = ||Ŝ1 ∩ S1||0/
√
||Ŝ1||0 · ||S1||0 and

S1 and Ŝ1 are the set of indices for the non-zero components of β1 and β̂1, respectively

(Zhang and Cheng, 2017). The similarity measure can be viewed as a continuous measure

for true model recovery: it is close to 1 when the estimated model is similar to the true

model, and close to 0 when the estimated model is highly dissimilar to the true model.

For BAR, we investigate three tuning parameter selection approaches: 1) ξn and λn are

selected via a two-dimensional grid search to minimize the BIC criterion (BAR(ξn, λn)); 2)

λn is selected via grid search to minimize the BIC criterion; and ξn = log(pn) (BAR(λn)); and

3) fixed λn = log(pn) and ξn = log(pn) (BAREBIC), which corresponds to a local solution to

the extended BIC criterion (Chen and Chen, 2008; Gao and Carroll, 2017). The grids for ξn

and λn were chosen from a log-spaced interval of 25 values between [0.001, 3 log(pn)]. Unless

otherwise noted, we implement BAR using both the cycBAR and forward-backward scan

outlined in the section above. The tuning parameter for LASSO, ALASSO, SCAD, and MCP

is selected by minimizing the BIC-score through a grid search of 25 possible values for λn.

We only consider the pn < n scenario and thus use the maximum pseudo likelihood estimator

73



Table 4.1: Estimation and selection performance of BAR along with LASSO, ALASSO,
SCAD, and MCP. (BAR(ξn, λn): ξn and λn are found using a two-dimensional grid search;
BAR(λn): ξn = log(pn) and λn is found through a grid search; BAREBIC : ξn = log(pn)
and λn = log(pn); MSB = mean squared bias; FN = mean number of false positives; FP =
mean number of false negatives; SM = average similarity measure; Censoring rate ≈ 30%;
pn = 40; qn = 6. The BIC criterion is used for tuning parameter selection for all methods
except for BAREBIC . Each entry is based on 100 Monte Carlo samples. )

n = 300 n = 700
Method MSB FN FP SM MSB FN FP SM
ORACLE 0.09 0.00 0.00 1.00 0.04 0.00 0.00 1.00
BAR(ξn, λn) 0.20 0.26 0.69 0.93 0.05 0.00 0.39 0.97
BAR(λn) 0.20 0.29 0.64 0.93 0.05 0.00 0.41 0.97
BAREBIC 0.40 1.29 0.00 0.88 0.06 0.06 0.00 0.99
LASSO 0.31 0.02 3.09 0.82 0.15 0.00 2.69 0.84
ALASSO 0.23 0.22 1.05 0.91 0.06 0.00 0.61 0.96
SCAD 0.32 0.20 1.70 0.88 0.08 0.01 0.95 0.94
MCP 0.28 0.41 0.96 0.90 0.06 0.05 0.42 0.97

as the initial estimator for ALASSO. Tables 4.1 summarizes some results for pn = 40 and

two sample sizes n = 300, 700.

First, we observe from Table 4.1 that for BAR, the selection and estimation performances

between optimizing over both ξn and λn (BAR(ξn, λn)) and over only λn (BAR(λn)) are

similar, suggesting that the BAR estimator is insensitive over the choice of ξn. This is

corroborated by further simulations in Appendix A4.8.1 (Figures A4.3, A4.4, and A4.5)

where the solution path of the BAR estimator with various choices of λn are stable over

a large interval of ξn. Secondly, BAR(ξn, λn), BAR(λn), and MCP are generally the top

performers. Third, for the smaller sample size n = 300, BAREBIC can sometimes be overly

aggressive in misclassifying small effects as null, thus showing a tradeoff between a slightly

higher false zeros (FN) and a lower false non-zeros (FP). However when the sample size gets

sufficiently large (n = 700), BAREBIC performs as well as or better than other methods with

respect to all considered measures. This suggests that for large sample data, computational

savings can be achieved using BAREBIC by prefixing both ξn and λn at log(pn) and thus

avoiding costly data-driven tuning parameter selection. Lastly, we have conducted more

extensive simulations with different combinations of model dimension, event rate, signal
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value, sample sizes, and model sparsity, which yielded consistent findings. Some further

results are reported in Appendix A4.8.2.

4.2.3 Computational efficiencies

In this simulation we illustrate the computational savings obtained from cycBAR and the

forward-backward scan described in Sections 4.1.3 and 4.1.4. We compare three imple-

mentations of BAR for the PSH model: BAR(λn) with both the cycBAR algorithm and

forward-backward scan, BAR(λn) with the cycBAR algorithm and without the forward-

backward scan, and BAR(λn) without either. We let n vary from 600 to 2000, pn = 100, and

ρ = 0.5 and compute the runtime of each method averaged over 100 simulations. We report

timing on a system with an Intel Core i5 2.9 GHz processor and 16GB of memory.
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Figure 4.1: Runtime comparison between three BAR(λn) implementations (cyc. = cycBAR
described in Section 4.1.3; scan = forward-backward scan described in Section 4.1.4).
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Figure 4.1(a) displays the mean runtime (in seconds) for each method as the sample size

increases, which shows that the runtime of the original BAR(λn) increases quickly while the

runtime of BAR(λn) with both cycBAR and forward-backward scan grows at a much lower

rate. Panels (b) and (c) further demonstrate the separate contributions of cycBAR and the

forward-backward scan method, respectively, using fold change. Panel (b) shows a 15-20 fold

decrease in runtime between cycBAR and the original BAR. Panel (c) shows the benefit

of linearized estimation, with a 50-150 fold decrease in runtime between cycBAR with and

without the forward-backward scan. Panel (d) illustrates that using both cycBAR and the

forward-backward scan results in a multiplicative gain, yielding a 1,000-2,000 fold speedup

in runtime. Finally, the runtime reduction is expected to increase as n and/or pn grow larger

as illustrated by the real data example in the following section.

4.3 End-stage renal disease

The United States Renal Data System (USRDS) is a national data system that collects

information about end-stage renal disease in the United States. Patients with end-stage

renal disease are known to have a shorter life expectancy compared to their disease-free

peers (USRDS Annual Report 2017) and kidney transplantation has been shown to provide

better health outcomes for patients with end-stage renal disease (Wolfe et al., 1999; Purnell

et al., 2016). As an illustration of the scalability of various methods for large data, we run

penalized regressions for a PSH model with 63 demographic and clinical variables using a

subset of n = 225, 000 patients from the USRDS that spans a 10-year study time between

January 2005 to June 2015. The event of interest was first kidney transplant for patients who

were currently on dialysis. Death, renal function recovery, and discontinuation of dialysis

are competing risks. Subjects who are lost to follow up or had no event by the end of study

period are considered as right censored. We randomly split the data into a training set

(n = 125, 000) and test set (n = 100, 000). Table A4.4 in the Appendix A4.8.2 shows that

the proportions of each event type are similar across the training and test sets.

The BAR method along with SCAD and MCP are used to fit the PSH model using the
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training set. Similar to Section 4.2.3, we consider BAR(λn) with three implementations:

without cycBAR and the forward-backward scan; with cycBAR and without the forward-

backward scan; and with both cycBAR and the forward-backward scan. In addition, we

consider BAREBIC as defined earlier in Table 4.1 with both cycBAR and the forward-

backward scan. SCAD and MCP were performed using the crrp R package (Fu et al., 2017)

where its variance estimation component is removed to allow a fair comparison of their

runtime with BAR only for parameter estimation. To assess the predictive performance

of the selected models we calculate the concordance index (c-index) proposed by Wolbers

et al. (2009) using the test set. Table 4.2 summarizes the computational time (in hours), the

c-index, and the number of selected variables for each method.

We observe from Table 4.2 that cycBAR took 36 hours to finish, a marked reduction

in runtime over the original original BAR implementation which did not finish after 96

hours and was terminated. More impressively, BAR(λn) using the combination of cycBAR

and the forward-backward scan finished in 0.009 hours or 32 seconds, an enormous boost

in speeding up the computation. Furthermore, using a predetermined tuning parameter,

BAREBIC using the combination of cycBAR and the forward-backward scan finished in

0.002 hours or 7 seconds. Lastly, the current existing methods MCP and SCAD using crrp

both took over a day to finish. Therefore, when using the combination of cycBAR and the

forward-backward scan, the speedups of BAR(λn) and BAREBIC over the original BAR and

other existing methods are enormous. For example, the speedups of BAR(λn) (32 seconds)

and BAREBIC (7 seconds) over MCP (28.6 hours) are 3,177 and 14,300 folds, respectively.

The predictive and selection performances of all methods are comparable with similar c

index and model size (number of selected variables), which can be attributed to the massive

sample size of both the training and test set and the fact that the considered methods are

selection consistent and have oracle properties. Many of the selected variables by all four

methods such as racial differences (Kasiske et al., 1991; Purnell et al., 2016, 2018), insurance

type (Keith et al., 2008; Schold et al., 2011), neighborhood poverty (Patzer et al., 2009),

and smoking (Stack et al., 2016) have been previously reported to have an impact on kidney

transplantation.
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Table 4.2: Analysis results of a USRDS data using BAR with four different implementations
along with MCP and SCAD (BAR(λn): ξn = log(pn) and λn selected through a grid search;
BAREBIC : ξn = λn = log(pn); cyc. = cycBAR; lin. = forward-backward scan; Except
for BAREBIC , BIC was used to select tuning parameters; *The original BAR(λn) without
cycBAR and forward-backward scan did not finish after 96 hours.)

BAR(λn) BAR(λn) BAR(λn) BAREBIC MCP SCAD
(no cyc+no scan) (cyc+no scan) (cyc+scan) (cyc+scan)

c-index – 0.85 0.85 0.85 0.85 0.85
Model size 96∗ 42 42 40 48 49

4.4 Discussion

We have extended the BAR method for simultaneous parameter estimation and variable

selection to the Fine and Gray (1999) PSH model for competing risks data and developed

its large-sample properties. More importantly, to make the BAR method scalable to large-

scale competing risks data, we have further developed 1) a novel coordinate-wise update

(cycBAR) algorithm to avoid carrying out multiple ridge regressions in the original BAR

implementation and 2) a forward-backward scan algorithm to reduce the computational cost

of the log-likelihood and its derivatives for the PSH model from the order of O(n2) to O(n).

While showing comparable selection and estimation performance, the BAR method for the

PSH model using the two new algorithms has produced thousands to tens of thousands

fold speedups over some current penalization methods for the PSH model in numerical

studies. Furthermore, when the sample size is very large and the true model is sparse, further

computational savings can be achieved by using BAR with the pre-determined λn = log(pn)

according to an extend BIC criterion to avoid costly data-driven tuning parameter selection.

An important domain of application of the developed scalable sparse regression method

is large comparative effectiveness and drug safety studies using massive electronic health

record (EHR) databases such as the Observational Health Data Sciences and Informatics

(OHDSI) program (Hripcsak et al., 2015) (https://ohdsi.org/ ) and the U.S. FDA’s Sentinel

Initiative (https://www.fda.gov/safety/fdassentinelinitiative/ucm2007250.htm). These mas-

sive databases typically contain millions to hundreds of millions patient records with tens of

thousands patient attributes, which are particularly useful for drug safety studies of a rare
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event (such as an unexpected adverse event (AE) or severe adverse event (SAE)) to protect

public health. As illustrated by the USRDS data example in Section 4.3, while existing

methods for the PSH model is likely to grind to a halt, the developed scalable BAR method

with high performance algorithms has made it possible to analyze these massive data in real

time. To this end, we point out that for a large data with millions of patient records on tens

of thousands covariates, it may not always be feasible to fit a model when the data is stored

in the standard dense format due to the high memory requirement. On the other hand,

these massive datasets are often sparse with only a small portion of covariates are being

nonzeros for a given subject. We are currently working on implementing the developed BAR

method for sHDMSS competing risks data by exploiting the sparsity in the data matrix as

in Chapter 3.

Finally, we emphasize that the developed cycBAR method in Section 4.1.3 and the

forward-backward scan method of Lemma 4.1 in Section 4.1.4 are of interest on their own.

The cycBAR method can be applied directly to other models and data settings. It is also

straightforward to apply the forward-backward scan method to accelerate other estimation

methods for the PSH model including the unpenalized estimation method of Fine and Gray

(1999) and other popular penalization methods such as LASSO, SCAD and MCP, which we

have developed in Chapter 5.

Appendix to Chapter 4

A4.1 Regularity conditions

Define

S(k)(β, s) =
1

n

n∑
i=1

ŵi(s)Yi(s)z
⊗k
i exp(z′iβ), k = 0, 1, 2,

E(β, s) = S(1)(β, s)/S(0)(β, s),

and

V (β, s) = S(2)(β, s)/S(0)(β, s)− E(β, s)⊗2,
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where x⊗k = (1,x,xx′) for k = 0, 1, 2, respectively. Moreover, with Ni(t) = I(Ti ≤ t, εi = 1)

and Yi(t) = 1 − Ni(t−) define Mi(β, t) =
∫ t

0
dNi(u) −

∫ t
0
Yi(u)h10(u) exp(z′iβ)du. Similarly,

with defining N c
i (t) = I(Ci ≤ t) and Hc(t) being the cumulative hazard function by treating

the censored observations as events, M c
i (t) = N c

i (t)−
∫ t

0
I(Xi ≥ u)dHc(u). Let || · ||p be the

`p-norm for vectors and the norm induced by the vector pn-norm for matrices. The following

technical conditions will be needed in our derivations for the statistical properties of the

pshBAR estimator.

(C1)
∫ τ

0
h01(t)dt <∞;

(C2) There exists some compact neighborhood, B0, of the true value β0 such that for

k = 0, 1, 2, there exists a scalar, vector, and matrix function s(k)(β, t) defined on

B0 × [0, τ ] such that

sup
t∈[0,τ ],β∈B0

∥∥S(k)(β, t)− s(k)(β, t)
∥∥

2
= op(1), as n→∞;

(C3) Let s(1)(β, t) = ∂s(0)(β, t)/∂β and s(2)(β, t) = ∂s(1)(β, t)/∂β. For k = 0, 1, 2, the

functions s(k)(β, t) are continuous with respect to β ∈ B0, uniformly in t ∈ [0, τ ],

and are bounded on β0 × [0, τ ]; furthermore, s(0)(β, t) is bounded away from zero on

B0 × [0, τ ];

(C4) Let e(β, t) = s(1)(β, t)/s(0)(β, t), v(β, t) = s(2)(β, t)/s(0)(β, t)− e(β, t)⊗2, and

Ω =
∫ τ

0
v(β0, u)s(0)(β0, u)h10(u)du. There exists some constants C2 and C3 such that

0 < C2 < eigenmin(Ω) ≤ eigenmax(Ω) < C3 <∞,

where for any real diagonalizable matrix A, eigenmin(A) and eigenmax(A) represent its

smallest and largest eigenvalues, respectively; furthermore, there also exists a matrix

Γ such that ‖n−1
∑n

i=1 var(Ui)− Γ‖2 → 0, where

Ui =

∫ τ

0

{zi(u)− e(β0, u)}wi(u)dMi(β0, u) +

∫ τ

0

q(u)/π(u)dM c
i (u),
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for

wi(t) = I(Ci ≥ Ti ∧ t)G(t)/G(Xi ∧ t)

q(u) = − lim
n→∞

1

n

n∑
i=1

∫ τ

0

{zi(t)− e(β0, t)}wi(t)I(Xi < u ≤ t)dMi(β0, t)

π(u) = lim
n→∞

1

n

n∑
i=1

I(Xi ≥ u)

(C5) There exists a constant C6 such that sup1≤i≤nE(U2
ijU

2
il) < C6 <∞ for all 1 ≤ j, l ≤ p,

where Uij is the j-th element of Ui defined in (C4);

(C6) As n→∞, p4
n/n→ 0, λn →∞, ξn →∞, ξnbn/

√
n→ 0, p/(na2

n)→ 0, λnb
3
n

√
qn/
√
n→

0 and λn
√
qn/(a

3
n

√
n)→ 0, where an = minj=1,...,qn(|β0j|) and bn = maxj=1,...qn(|β0j|).

The above conditions (C1)-(C5) are similar to those proposed by Cai et al. (2005) and

Ahn et al. (2018) and have been discussed in Appendix A3.1.

Remark 4.4 Ahn et al. (2018) showed that under Conditions (C1) - (C5) and p4
n/n→ 0

||l̇(β0)||2 = Op(
√
npn) (4.12)

and

n−1l̈(β) = Ω + op(1), (4.13)

in probability, uniformly in β ∈ B0.

The proof of Theorem 4.1 parallels the proof of Theorem 3.1 in Appendix A3.2.
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A4.2 Proof of Lemmas for Theorem 4.1

Lemma 4.2 (Consistency of Ridge Estimator) Let

β̂ridge = arg min
β

{
−2l(β) +

pn∑
j=1

ξnβ
2
j

}
,

be the PSH ridge estimator defined in Equation (3). Assume that Conditions (C1) - (C6)

hold. Then

||β̂ridge − β0||2 = Op

[√
pn{n−1/2(1 + ξnbn/

√
n)}
]

= Op(
√
pn/n), (4.14)

where bn is an upper bound of the true nonzero |β0j|’s defined in Condition (C6).

Proof. Let αn =
√
pn(n−1/2+ξnbn/n) and `(β) = −2l(β)+ξn

∑pn
j=1 β

2
j . To prove Lemma

4.2, it is sufficient to show that for any ε > 0, there exists a large enough constant K0 such

that

pr

{
inf

||u||2=K0

L(β0 + αnu) > L(β0)

}
≥ 1− ε, (4.15)

since (4.15) implies that there exists a local minimum, β̂ridge, inside the ball {β0 + αnu :

||u||2 ≤ K0} such that ||β̂ridge − β0||2 = Op(αn), with probability tending to one. To prove
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(4.15), we first note

1

n
L(β0 + αnu)− 1

n
L(β0) = − 1

n
{2l(β0 + αnu)− 1

n
2l(β0)}+

ξn
n

pn∑
j=1

{
(β0j + αnuj)

2 − β2
0j

}
= − 1

n
{2l(β0 + αnu)− 2l(β0)}+

ξn
n

pn∑
j=1

(
2β0jαnuj + α2

nu
2
j

)
≥ − 1

n
{2l(β0 + αnu)− 2l(β0)}+

2ξnαn
n

pn∑
j=1

β0juj

= − 1

n
{2l(β0 + αnu)− 2l(β0)}+

2ξnαn
n

qn∑
j=1

β0juj

≡ W1 +W2.

By Taylor expansion, we have

W1 = − 2

n
αnu

′l̇(β0)− 1

n
α2
nu
′l̈(β∗)u

= W11 +W12,

where β∗ lies between β0 and β0 + αnu, and l̇(β) and l̈(β) denote the first and second

derivatives of l(β), respectively. By the Cauchy-Schwartz inequality,

W11 = − 2

n
αnu

′l̇(β0) ≤ 2

n
αn||l̇(β0)||2 · ||u||2 =

2

n
αnOp(

√
npn)||u||2 ≤ Op(α

2
n)||u||2,

where the second equality is due to (4.12). By (4.13) we have

W12 = − 1

n
α2
nu
′l̈(β∗)u = α2

nu
′Ωu{1 + op(1)}.

Since eigenmin(Ω) ≥ C2 > 0 by Condition (C4), W12 dominates W11 uniformly in ||u||2 = K0

for a sufficiently large K0. Furthermore

W2 ≤
2ξnαn
n
|β′01u| ≤

2
√
qnξnαnbn

n
||u||2 = Op(α

2
n)||u||2,

83



where the last step follows from the fact that
√
qnξnbn/n <

√
pn(n−1/2 + ξnbn/n) = αn.

Therefore for a sufficiently large K0, we have that W12 dominates W11 and W2 uniformly in

||u||2 = K0. Since W12 is positive, (4.15) holds and therefore ||β̂ridge − β0||2 = Op(αn) =

Op

[√
pn{n−1/2(1 + ξnbn/

√
n)}
]

= Op(
√
pn/n), where the last step follows from condition

(C6). �

Remark 4.5 Recall β = (β′1,β
′
2)′ where β′1 and β′2 correspond to the first qn and remaining

pn − q components of β, respectively. Let

Qn(θ | β) = −2l(θ) + λnθ
′D(β)θ, (4.16)

where D(β) = diag(β−2
1 , β−2

2 , . . . , β−2
qn , β

−2
qn+1, . . . , β

−2
pn ) and l(θ) is the pn-dimensional log-

pseudo likelihood of the reduced model. Let Q̇(θ | β) and Q̈(θ | β) be the first and second

derivatives of Q(θ | β) with respective to θ, respectively. Then

Q̇(θ | β) = −2l̇(θ) + 2λnD(β)θ, (4.17)

Q̈(θ | β) = −2l̈(θ) + 2λnD(β). (4.18)

Remark 4.6 Let β̂ridge,1 and β̂ridge,2 denote the first qn and the remaining pn − qn com-

ponents of β̂ridge, respectively. Then, Lemma 4.2 and condition (C6) imply that for j =

1, . . . , qn and sufficiently large n, an/2 ≤ |β̂ridge,1j| ≤ 2bn, where β̂ridge,1j is the jth component

of β̂ridge,1 and ||β̂ridge,2||2 = O(
√
pn/n).

Remark 4.7 Recall β = (β′1,β
′
2)′ where β′1 and β′2 correspond to the first qn and remaining

pn − q components of β, respectively. Let

Qn(θ | β) = −2l(θ) + λnθ
′D(β)θ, (4.19)

where D(β) = diag(β−2
1 , β−2

2 , . . . , β−2
qn , β

−2
qn+1, . . . , β

−2
pn ) and l(θ) is the pn-dimensional log-

pseudo likelihood of the reduced model. Let Q̇(θ | β) and Q̈(θ | β) be the first and second

84



derivatives of Q(θ | β) with respective to θ, respectively. Then

Q̇(θ | β) = −2l̇(θ) + 2λnD(β)θ, (4.20)

Q̈(θ | β) = −2l̈(θ) + 2λnD(β). (4.21)

Lemma 4.3 Let Mn = max{2/an, 2bn}. DefineHn ≡ {β = (β′1,β
′
2)′ : |β1| = (|β1|, . . . , |βqn|)′ ∈

[1/Mn,Mn]qn , 0 < ‖β2‖2 ≤ δn
√
pn/n, }, where δn is a sequence of positive real numbers sat-

isfying δn →∞ and pnδ
2
n/λn → 0. For any given β ∈ Hn, define

Qn(θ | β) = −2l(θ) + λnθ
′D(β)θ, (4.22)

where l(θ) is the pn-dimensional log-pseudo likelihood and D(β) = diag(β−2
1 , . . . , β−2

pn ). Let

g(β) = (g1(β)′, g2(β)′)′ be a solution to Q̇(θ | β) = 0, where

Q̇(θ | β) = −2l̇(θ) + 2λnD(β)θ, (4.23)

is the derivative of Q(θ | β) with respective to θ. Assume that conditions (C1) - (C6) hold.

Then, as n→∞, with probability tending to 1,

(a) supβ∈Hn

‖g2(β)‖2
‖β2‖2 ≤

1
K1
, for some constant K1 > 1;

(b) |g1(β)| ∈ [1/Mn,Mn]qn.

Proof. By the first-order Taylor expansion and the definition of g(β), we have

Q̇(β0|β) = Q̇{g(β) | β}+ Q̈(β∗ | β){β0 − g(β)} = Q̈(β∗ | β){β0 − g(β)}, (4.24)

where β0 is the true parameter vector, and β∗ lies between β0 and g(β). Rearranging terms,

we have

Q̈(β∗ | β)g(β) = −Q̇(β0|β) + Q̈(β∗ | β)β0, (4.25)
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which can be rewritten as

{
−2l̈(β∗) + 2λnD(β)

}
g(β) = −

{
−2l̇(β0) + 2λnD(β)β0

}
+
{
−2l̈(β∗) + 2λnD(β)

}
β0

= 2l̇(β0)− 2l̈(β∗)β0.

Write H(β) ≡ −n−1l̈(β), we have

{
H(β∗) +

λn
n
D(β)

}
g(β) = H(β∗)β0 +

1

n
l̇(β0), (4.26)

which can be further written as

{g(β)− β0}+
λn
n
H(β∗)−1D(β)g(β) =

1

n
H(β∗)−1l̇(β0). (4.27)

Now we partition H(β∗)−1 into

H(β∗)−1 =

 A B

B′ G


and partition D(β) into

D(β) =

 D1(β1) 0

0′ D2(β2)


where D1(β1) = diag(|β1|−2, ..., |βqn|−2) and D2(β2) = diag(|βqn+1|−2, ..., |βpn|−2). Then

(4.27) can be re-written as

 g1(β)− β01

g2(β)

+
λn
n

 AD1(β1)g1(β) +BD2(β2)g2(β)

B′D1(β1)g1(β) +GD2(β2)g2(β)

 =
1

n
H(β∗)−1l̇(β0). (4.28)

Moreover, it follows from (4.12), (4.13), and condition (C5) that

∥∥∥n−1H(β∗)−1l̇(β0)
∥∥∥

2
= Op(

√
pn/n). (4.29)
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Therefore,

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
B′D1(β1)g1(β) +

λn
n
GD2(β2)g2(β)

∥∥∥∥
2

= Op(
√
pn/n). (4.30)

Furthermore,

‖g(β)− β0‖2 =

∥∥∥∥∥−
{
H(β∗) +

λn
n
D(β)

}−1{
λn
n
D(β)β0 −

1

n
l̇(β0)

}∥∥∥∥∥
2

≤
∥∥∥∥{H(β∗)}−1

{
λn
n
D(β)β0 −

1

n
l̇(β0)

}∥∥∥∥
2

≤
∥∥{H(β∗)}−1

∥∥
2
·
{∥∥∥∥λnn D1(β1)β01

∥∥∥∥
2

+

∥∥∥∥ 1

n
l̇(β0)

∥∥∥∥
2

}
= Op(1)

{
O(n−1λnM

3
n

√
qn) +Op(

√
pn/n)

}
= Op(

√
pn/n),

where the first equality follows from (4.26) and the fourth step follows from (4.13), condition

(C3), ‖n−1λnD1(β1)β01‖2 = O(n−1λnM
3
n

√
qn), and

∥∥∥n−1l̇(β0)
∥∥∥

2
= Op(

√
pn/n), and the last

step holds since n−1λnM
3
n

√
qn = o(1/

√
n) under condition (C6). Hence,

‖g(β)‖2 ≤ ‖β0‖2 + ‖g(β)− β0‖2 = Op(Mn
√
qn). (4.31)

Also note that ‖B‖2 = Op(1) since ‖BB′‖2 ≤ ‖A2 +BB′‖2 + ‖A2‖2 ≤ 2 ‖A2 +BB′‖2 ≤

2 ‖H(β∗)−2‖2 = Op(1). This, combined with (4.31), implies that

sup
β∈Hn

∥∥∥∥λnn B′D1(β1)g1(β)

∥∥∥∥
2

≤ λn
n

sup
β∈Hn

‖B‖2 ‖D1(β1)‖2 ‖g1(β)‖2 = Op

(
λnM

3
n

√
qn

n

)
= o(1/

√
n).

(4.32)

It then follows that

sup
β∈Hn

∥∥∥∥g2(β) +
λn
n
GD2(β2)g2(β)

∥∥∥∥
2

≤ Op(
√
pn/n) + o(1/

√
n) = Op(

√
pn/n).

Since G is positive definite and symmetric with probability tending to one, by the spectral

decomposition theorem, G =
∑pn−qn

i=1 r2iu2iu
′
2i, where r2i and u2i are the eigenvalues and
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eigenvectors of G, respectively. Now with probability tending to one,

λn
n
‖GD2(β2)g2(β)‖2 =

λn
n

∥∥∥∥∥
(
pn−qn∑
i=1

r2iu2iu
′
2i

)
D2(β2)g2(β)

∥∥∥∥∥
2

≥ λn
n

∥∥∥∥∥C2

(
pn−qn∑
i=1

u2iu
′
2i

)
D2(β2)g2(β)

∥∥∥∥∥
2

≥ C2

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

, (4.33)

where the first inequality is due to (4.13) and condition (C4) since we can assume that for

all i = 1, . . . , p − q, r2i ∈ (C2, C3) for some C2 < C3 < ∞ with probability tending to one.

Therefore with probability tending to one,

C2

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

− ‖g2(β)‖2 ≤
∥∥∥∥g2(β) +

λn
n
GD2(β2)g2(β)

∥∥∥∥
2

≤ δn
√
pn/n, (4.34)

where δn diverges to ∞. Let mg2(β)/β2 = (g2(βqn+1)/βqn+1, . . . , g2(βpn)/βpn)′. Because

||β2||2 ≤ δn
√
pn/n, we have

C2

∥∥∥∥λnn D2(β2)g2(β)

∥∥∥∥
2

= C2
λn
n

∥∥D2(β2)1/2mg2(β)/β2

∥∥
2
≥ C2

λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥
2
, (4.35)

and

‖g2(β)‖2 =
∥∥D2(β2)−1/2mg2(β)/β2

∥∥
2
≤
∥∥D2(β2)−1/2

∥∥
2
·
∥∥mg2(β)/β2

∥∥
2
≤
δn
√
pn√
n

∥∥mg2(β)/β2

∥∥
2
.

(4.36)

Hence it follows from (4.34), (4.35), and (4.36) that with probability tending to one,

C2
λn
n

√
n

δn
√
pn

∥∥mg2(β)/β2

∥∥
2
−
δn
√
pn√
n

∥∥mg2(β)/β2

∥∥
2
≤ δn

√
pn/n.

This implies that with probability tending to one,

∥∥mg2(β)/β2

∥∥
2
≤ 1

λn/(C1pδ2
n)− 1

<
1

K1

, (4.37)
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for some constant K1 > 1 provided that λn/(pnδ
2
n) → ∞ as n → ∞. Now from (4.37), we

have

‖g2(β)‖2 ≤
∥∥mg2(β)/β2

∥∥
2

max
q+1≤j≤p

|βj| ≤
∥∥mg2(β)/β2

∥∥
2
‖β2‖2 ≤

1

K1

‖β2‖2 , (4.38)

with probability tending to one. Thus

pr

(
sup
β∈Hn

‖g2(β)‖2

‖β2‖2

<
1

K1

)
→ 1 as n→∞

and (a) is proved.

To prove part (b), we first note from (4.38) that as n→∞, pr(
∥∥mg2(β)/β2

∥∥
2
≤ δn

√
pn/n)→

1. Therefore it is sufficient to show that for any β ∈ Hn, |g1(β)| ∈ [1/Mn,Mn]qn with prob-

ability tending to 1. By (4.28) and (4.29), we have

sup
β∈Hn

∥∥∥∥(g1(β)− β01) +
λn
n
AD1(β1)g1(β) +

λn
n
BD2(β2)g2(β)

∥∥∥∥
2

= Op(
√
pn/n). (4.39)

Similar to (4.32), it can be shown that

sup
β∈Hn

∥∥∥∥λnn AD1(β1)g1(β)

∥∥∥∥
2

= Op

(
λnM

3
n

√
qn

n

)
= op(1/

√
n), (4.40)

where the last equality holds trivially under condition (C6). Furthermore, with probability

tending to one,

sup
β∈Hn

∥∥∥∥λnn BD2(β2)g2(β)

∥∥∥∥
2

≤ λn
n

sup
β∈Hn

‖B‖2 · ‖D2(β2)g2(β)‖2 ≤
λn
n

√
2K3

(
δn

√
pn
n

)2

,

(4.41)

for some K3 > 0, since ||g2(β)|| ≤ δn
√
pn/n, ||B||2 = Op(1) and ‖D2(β2)‖2 ≤ δn

√
pn/n.

Therefore, combing (4.39), (4.40) and (4.41) gives

sup
β∈Hn

‖g1(β)− β01‖2 ≤
λn
n

√
2K3

(
δn

√
pn
n

)2

+
δn
√
pn√
n

,
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with probability tending to one. Because λn/n→ 0 and δn
√
pn/n =

√
pnδ2

n/λn
√
λn/n→ 0

as n → ∞, we have pr(|g1(β)| ∈ [1/Mn,Mn]qn) → 1. This completes the proof of part (b).

�

Lemma 4.4 Let β1 be the first qn components of β. Define f(β1) = arg minθ1{Qn1(θ1 |

β1)}, where Qn1(θ1 | β1) = −2ln1(θ1) + λnθ
′
1D1(β1)θ1, is a weighted `2-penalized -2log-

pseudo likelihood for the oracle model of model size qn, and D1(β1) = diag(β−2
1 , β−2

2 , . . . , β−2
qn ).

Assume that conditions (C1) - (C6) hold. Then with probability tending to one,

(a) f(β1) is a contraction mapping from [1/Mn,Mn]qn to itself;

(b)
√
nd′nΓ

−1/2
11 Ω11(β̂◦1 − β01) → N(0, 1), for any qn-dimensional vector dn such that

d′ndn = 1 and where β̂◦1 is the unique fixed point of f(β1) and Σ11 and Ω11 are the first

qn × qn submatrices of Σ and Ω, respectively.

Proof: (a) First we show that f(·) is a mapping from [1/Mn,Mn]qn to itself with prob-

ability tending to one. Again through a first order Taylor expansion, we have

{f(β1)− β01}+
λn
n
H1(β∗1)−1D1(β1)f(β1) =

1

n
H1(β∗1)−1l̇1(β01), (4.42)

where H1(β∗1) = −n−1l̈1(β∗1) exists and is invertible for β∗1 between β01 and f(β1). We have

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥∥f(β1)− β01 +
λn
n
H1(β∗1)−1D1(β1)f(β1)

∥∥∥∥
2

= Op(
√
qn/n),

where the right-hand side follows in the same fashion as (4.32). Similar to (4.32) we have

sup
|β1|∈[1/M0,M0]qn

∥∥∥∥λnn H1(β∗1)−1D1(β1)f(β1)

∥∥∥∥
2

= Op

(
λnM

3
n√
n

√
qn
n

)
= op

(
1/
√
n
)
.

Therefore, with probability tending to one

sup
|β1|∈[1/Mn,Mn]qn

‖f(β1)− β01‖2 ≤ δn
√
qn/n, (4.43)
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where δn is a sequence of real numbers diverging to ∞ and satisfies δn
√
pn/n → 0. As a

result, we have

pr(f(β1) ∈ [1/Mn,Mn]qn)→ 1

as n → ∞. Hence f(·) is a mapping from the region [1/Mn,Mn]qn to itself. To prove that

f(·) is a contraction mapping, we need to further show that

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥ḟ(β1)
∥∥∥

2
= op(1). (4.44)

Since f(β1) is a solution to Q̇1(θ1 | β1) = 0, we have

− 1

n
l̇1(f(β1)) = −λn

n
D1(β1)f(β1). (4.45)

Taking the derivative of (4.45) with respect to β′1 and rearranging terms, we obtain

{
H1(f(β1)) +

λn
n
D1(β1)

}
ḟ(β1) =

2λn
n
diag{f1(β1)/β3

1 , . . . , fqn(β1)/β3
qn}. (4.46)

With probability tending to one, we have

sup
|β1|∈[1/Mn,Mn]qn

2λn
n

∥∥diag{f1(β1)/β3
1 , . . . , fqn(β1)/β3

qn}
∥∥

2
= Op

(
λnM

4
n

n

)
= op(1),

where the last step follows from condition (C6). This, combined with (4.46) implies that

sup
|β1|∈[1/Mn,Mn]qn

∥∥∥∥{H1(f(β1)) +
λn
n
D1(β1)

}
ḟ(β1)

∥∥∥∥
2

= op(1). (4.47)

Now, it can be shown that probability tending to one,

∥∥∥H1(f(β1))ḟ(β1)
∥∥∥

2
≥
∥∥∥ḟ(β1)

∥∥∥
2
·
∥∥H1(f(β1))−1

∥∥−1

2
≥ 1

K2

∥∥∥ḟ(β1)
∥∥∥

2
,
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for some K2 > 0, and that

λn
n

∥∥∥D1(β1)ḟ(β1)
∥∥∥

2
≥ λn

n

∥∥∥ḟ(β1)
∥∥∥

2

∥∥D1(β1)−1
∥∥−1

2
≥ λn

n

1

M2
n

∥∥∥ḟ(β1)
∥∥∥

2
.

Therefore, combining the above two inequalities with (4.46) and (4.47) gives

(
1

K2

− λn
nM2

n

)
sup

|β1|∈[1/Mn,Mn]qn

∥∥∥ḟ(β1)
∥∥∥

2
= op(1).

This, together with the fact that λn
n

1
M2

n
= o(1), implies that (4.44) holds. Therefore, with

probability tending to one, f(·) is a contraction mapping and consequently has a unique

fixed point, say β̂◦1, such that β̂◦1 = f(β̂◦1).

We next prove part (b). By (4.42) we have

f(β1) =

{
H1(β∗1) +

λn
n
D1(β1)

}−1{
H1(β∗1)β01 +

1

n
l̇1(β01)

}
.

Now,

√
nd′nΓ

−1/2
11 Ω11(β̂◦1 − β01) =

√
nd′nΓ

−1/2
11 Ω11

[{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1

H1(β∗1)− Iqn

]
β01

+
√
nd′nΓ

−1/2
11 Ω11

[{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1
1

n
l̇1(β01)

]
= I1 + I2. (4.48)

Note that for any two conformable invertible matrices Φ and Ψ, we have

(Φ + Ψ)−1 = Φ−1 − Φ−1Ψ(Φ + Ψ)−1,
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Thus we can rewrite I1 as

I1 =
√
nd′nΓ

−1/2
11 Ω11

[{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1

H1(β∗1)− Iqn

]
β01

= − λn√
n

d′nΓ
−1/2
11 Ω11H1(β∗1)−1D1(β̂◦1)

{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1

H1(β∗1)β01.

Moreoever

‖I1‖2 ≤
λn√
n

∥∥∥Γ
−1/2
11 Ω11

∥∥∥
2

∥∥H1(β∗1)−1
∥∥

2

∥∥∥D1(β̂◦1)
∥∥∥

2

∥∥∥∥∥
{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1
∥∥∥∥∥

2

‖H1(β∗1)‖2 ‖β01‖2

=
λn√
n
·O(1) ·Op(1) ·M2

n ·Op(1) ·Op(1) ·Mn
√
qn

= Op(λnM
3
n

√
qn/
√
n) = op(1), (4.49)

where the first equality follows from (4.13) and condition (C4), and the last equality is a

consequence of condition (C6). Similarly, we can rewrite I2 as

I2 =
√
nd′nΓ

−1/2
11 Ω11

[{
H1(β∗1) +

λn
n
D1(β̂◦1)

}−1
1

n
l̇1(β01)

]
= d′nΓ

−1/2
11 Ω11H1(β∗1)−1 1√

n
l̇1(β01)

− λn√
n

d′nΓ
−1/2
11 Ω11H1(β∗1)−1D1(β̂◦1)

{
H1(β∗1)−1 +

λn
n
D1(β̂◦1)

}−1
1

n
l̇1(β01)

= d′nΓ
−1/2
11 Ω11H1(β∗1)−1 1√

n
l̇n1(β01) + op(1). (4.50)

We now establish the asymptotic normality of n−1/2d′nΓ
−1/2
11 Ω11H1(β∗1)−1l̇1(β01) which will

be derived in a similar manner to the proof of Theorem 2 in (Cai et al., 2005). By (4.13),
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(4.43), and the continuity of Ω, we can deduce that H1(β∗) = Ω11 + op(1). This implies that

I2 = n−1/2

n∑
i=1

d′nΓ
−1/2
11 Ω11H1(β∗1)−1Ui1 + op(1)

= n−1/2

n∑
i=1

d′nΓ
−1/2
11 Ui1 +

{
n−1/2

n∑
i=1

d′nΓ
−1/2
11 Ω11Ui1

}
op(1) + op(1)

= I21 + I22 · op(1) + op(1), (4.51)

where Ui1 consists of the first qn components of Ui. Letting Yni = n−1/2d′nΓ
−1/2
11 Ui1, then

by condition (C5)

s2
n =

n∑
i=1

var(Yni) =
1

n

n∑
i=1

d′nΓ
−1/2
11 var(Ui1)Γ

−1/2
11 dn

= d′nΓ
−1/2
11

{
1

n

n∑
i=1

var(Ui1)

}
Γ
−1/2
11 dn → 1.

To prove the asymptotic normality of I21, we need to verify the Lindeberg condition: for all

ε > 0,

1

s2
n

n∑
i=1

E{Y 2
niI(|Yni| ≥ εsn)} → 0, (4.52)

as n→∞. Note that

n∑
i=1

E(Y 4
ni) = n−2

n∑
i=1

E

[{
d′nΓ

−1/2
11 Ui1

}4
]

≤ n−2

n∑
i=1

E
[
||dn||42 · ||Γ

−1/2
11 ||42 · ||Ui1||42

]
= n−2eigen2

max{Γ−1
11 }

n∑
i=1

E(||Ui1||42)

= n−2eigen2
max{Γ−1

11 }
n∑
i=1

pn∑
j=1

pn∑
k=1

E(U2
ijU

2
ik)

= O(p2/n), (4.53)
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where the first inequality is due to Cauchy-Schwarz, the second equality is due to ||dn||2 = 1

and the last step follows from conditions (C4) and (C5). Therefore for any ε > 0,

1

s2
n

n∑
i=1

E
{
Y 2
niI(|Yni| > εsn)

}
≤ 1

s2
n

n∑
i=1

{
E(Y 4

ni)
}1/2 [

E {I(|Yni| > εsn)}2]1/2
≤ 1

s2
n

{
n∑
i=1

E(Y 4
ni)

}1/2

·

{
n∑
i=1

pr(|Yni| > εsn)

}1/2

≤ 1

s2
n

{
n∑
i=1

E(Y 4
ni)

}1/2

·

{
n∑
i=1

var(Yni)

ε2s2
n

}1/2

=
1

s2
n

{
O(p2/n)

}1/2 1

ε
→ 0.

Thus, (4.52) is satisfied and by the Lindeberg-Feller central limit theorem and Slutsky’s

theorem

I21 = sn

(
1

sn

n∑
i=1

Yni

)
→ N(0, 1). (4.54)

Similarly one can show that I22 = Op(1) and by Slutsky’s theorem,

n−1/2d′nΓ
−1/2
11 Ω11H1(β∗1)−1l̇1(β01) = n−1/2

n∑
i=1

d′nΓ
−1/2
11 Ui1

+

{
n−1/2

n∑
i=1

d′nΓ
−1/2
11 Ω11Ui1

}
op(1) + op(1)

= I21 + I22 · op(1) + op(1)

→ N(0, 1).

Hence, combining (4.48), (4.49), (4.51), and (4.54) gives

√
nd′nΓ

−1/2
11 Ω11(β̂◦1 − β01)→ N(0, 1),

which proves part (b). �
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A4.3 Proof of Theorem 4.1

Part (a) of the theorem follows immediately from part (a) of Lemma 3 in the Supplementary

Material. Part (b) of the theorem will follow from part (b) Lemma 4 in the Supplementary

Material and the following

Pr
(

lim
k→∞

∥∥∥g1(β(k))− β̂◦1

∥∥∥
2

= 0
)
→ 1, (4.55)

where β̂◦1 is the fixed point of f(β1) defined in Lemma 4 in the Supplementary Material.

Note that g(β) is a solution to

− 1

n
D(β)−1l̇(θ) +

1

n
λnθ = 0, (4.56)

where D(β)−1 = diag{β2
1 , . . . , β

2
qn , β

2
qn+1, . . . , β

2
pn}. It is easy to see from (4.56) that

lim
β2→0

g2(β) = 0pn−qn .

This, combined with (4.56), implies that for any β1

lim
β2→0

g1(β) = f(β1).

Hence, g(·) is continuous and thus uniform continuous on the compact set β ∈ Hn. Hence

as k →∞,

ωk ≡ sup
|g1(β)|∈[1/Mn,Mn]qn

∥∥∥g1(β1, β̂
(k)
2 )− f(β1)

∥∥∥
2
→ 0, (4.57)

with probability tending to one. Furthermore,

∥∥∥β̂(k+1)
1 − β̂◦1

∥∥∥
2
≤
∥∥∥g1(β̂(k))− f(β̂

(k)
1 )
∥∥∥

2
+
∥∥∥f(β̂

(k)
1 )− β̂◦1

∥∥∥
2
≤ ωk +

1

K4

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥
2
,

(4.58)
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for some K4 > 1, where the last inequality follows from (4.44) and the definition of ωk.

Denote by ak =
∥∥∥β̂(k)

1 − β̂◦1

∥∥∥
2
, we can rewrite (4.58) as

ak+1 ≤
1

K4

ak + ωk.

By (4.57), for any ε > 0, there exists an N > 0 such that ωk < ε for all k > N . Therefore

for k > N ,

ak+1 ≤
1

K4

ak + ωk

≤ ak−1

K2
4

+
ωk−1

K4

+ ωk

≤ a1

Kk
4

+
ω1

Kk−1
4

+ · · ·+ ωN

Kk−N
2

+

(
ωN+1

Kk−N−1
4

+ · · ·+ ωk−1

K4

+ ωk

)
≤ (a1 + ω1 + ...+ ωN)

1

Kk−N
4

+
1− (1/K4)k−N

1− 1/K4

ε→ 0, as k →∞,

with probability tending to one. Therefore,

Pr
(

lim
k→∞

∥∥∥β̂(k)
1 − β̂◦1

∥∥∥
2

= 0
)

= 1

with probability tending to one, or equivalently

Pr(β̂1 = β̂◦1) = 1 (4.59)

with probability tending to one. This proves (4.55) and thus complete the proof of the

theorem. �
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A4.4 Proof of Theorem 4.2.

Under Conditions (C1) - (C6) in Appendix A4.1, by Theorem 4.1 we have that β̂ = lim
k→∞

β̂(k),

where

β̂(k+1) = g(β̂(k)) = arg min
β

−2ln(β) + λn

pn∑
j=1

I(βj 6= 0)β2
j(

β̂j
(k)
)2

 .

Note that

D(β̂(k))−1l̇n(β̂(k+1)) = λnβ̂
(k+1).

Therefore for any l = i, j where β̂i 6= 0, β̂j 6= 0,

β̂
(k+1)
l =

(β̂
(k)
l )2

λn
l̇nl(β̂

(k+1)).

Letting k →∞, (4.60), we have

β̂−1
l =

1

λn
l̇nl(β̂).

Letting η = Zβ we can rewrite the score function

ζ(ηi) =
∂

∂ηi
ln(η) =

∫ τ

0

ŵi(s)dNi(s) +

∫ τ

0

ŵ2
i (s)Yi(s) exp(η̂i)∑n

j=1 ŵj(s)Yj(s) exp(η̂j)
dN̄(s) i = 1, . . . , n.

Recall that ŵi(s)Yi(s) ∈ [0, 1] for all i = 1, . . . n. Then

|ζ(η̂i)| ≤ |Ni(1)|+

∣∣∣∣∣
∫ τ

0

ŵ2
i (s)Yi(s) exp(η̂i)∑n

j=1 ŵj(s)Yj(s) exp(η̂j)
dN̄(s)

∣∣∣∣∣ ≤ 1 + en i = 1, . . . , n,

where en =
∑n

i=1 I(εi = 1). Hence

‖ζ(η̂)‖2 ≤ ‖1 + en1‖2 =
√
n(1 + en)2.

Let z[,i] denote the ith column of Z. Since Z is assumed to be standardized, z′[,i]z[,i] = n− 1

and z′[,i]z[,j] = (n − 1)rij, for all i 6= j and where rij is the sample correlation between z[,i]
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and z[,j]. Since

β̂−1
i =

1

λn
z′[,i]ζ(η̂) and β̂−1

j =
1

λn
z′[,j]ζ(η̂),

we have

∣∣∣β̂−1
i − β̂−1

j

∣∣∣ =

∣∣∣∣ 1

λn
z′[,i]ζ(η̂)− 1

λn
z′[,j]ζ(η̂)

∣∣∣∣
=

∣∣∣∣ 1

λn
(z[,i] − z[,j])

′ζ(η̂)

∣∣∣∣
≤ 1

λn

∥∥(z[,i] − z[,j])
∥∥ ‖ζ(η̂)‖

≤ 1

λn

√
2{(n− 1)− (n− 1)rij}

√
n(1 + en)2

for any β̂i 6= 0 and β̂j 6= 0. �
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A4.5 Proof of Theorem 4.3

Because β̂ is a fixed point of g(·) or β̂ = g(β̂), we have for j = 1, . . . , p

{X̃′X̃ + λnD(β̂)}





β̂1

...

0
...

β̂p


+



0
...

β̂j
...

0




= X̃′ỹ. (4.60)

Alternative, one can rewrite (4.60) as

{D(β̂)−1X̃′X̃ + λnIp}





β̂1

...

0
...

β̂p


+



0
...

β̂j
...

0




= D(β̂)−1X̃′ỹ. (4.61)

By extracting the jth element of (4.61), we have

x̃′j
∑
i 6=j

x̃iβ̂
3
i + λn · 0 + x̃′jx̃j · β̂3

j + λnβ̂j = x̃′jỹβ̂
2
j , (4.62)

Letting b∗j = x̃′j(ỹ −
∑

i 6=j x̃iβ̂i), simple algebra will allow us to rewrite (4.62) as

β̂j(x̃
′
jx̃j · β̂2

j − b∗j β̂j + λn) = 0, (4.63)

which yields

β̂j =


0, if |b∗j | < 2

√
x̃′jx̃jλn

b∗j+sign(b∗j )
√

(b∗j )2−4x̃′j x̃jλn

2x̃′j x̃j
, otherwise.

(4.64)

for j = 1, ..., p. �
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A4.6 Proof of Lemma 4.1

Recall that, for the PSH model, w̃ik = Ĝ(Xi)/Ĝ(Xk ∧ Xi). Because Ri = {y : (Xy ≥

Xi) ∪ (Xy ≤ Xi ∩ εy = 2)}, k ∈ Ri implies that either k ∈ {y : (Xy ≥ Xi)} or k ∈

{y : (Xy ≤ Xi ∩ εy = 2)}. If k ∈ {y : (Xy ≥ Xi)}, then w̃ik = Ĝ(Xi)/Ĝ(Xi) = 1. If

k ∈ {y : (Xy ≤ Xi ∩ εy = 2)}, then w̃ik = Ĝ(Xi)/Ĝ(Xk). Therefore

∑
k∈Ri

w̃ik exp (ηk) =
∑

k∈Ri(1)

w̃ik exp (ηk) +
∑

k∈Ri(2)

w̃ik exp (ηy)

=
∑

k∈Ri(1)

exp (ηk) + Ĝ(Xi)
∑

k∈Ri(2)

exp (ηk) /Ĝ(Xk),

where Ri(1) = {y : (Xy ≥ Xi)} and Ri(2) = {y : (Xy < Xi ∩ εy = 2)}.
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A4.7 BAR implementation via CCD

Algorithm 2: The BAR algorithm using cyclic coordinate descent optimization

1 Set β̂(0) = β̂ridge;
2 for k = 1, 2, . . . do

3 β(0) = β̂(k−1);
4 for s = 1, 2, . . . do
5 # Enter cyclic coordinate descent
6 for j = 1, . . . p do

7 Calculate c1j = l̇j(β
(s−1)) and c2j = −l̈jj(β(s−1));

8 β
(s)
j = (c2jβ

(s−1)
j + c1j)/{c2j + λn/(β̂

(k−1)
j )2};

9 end

10 if
∥∥β(s) − β(s−1)

∥∥ < tol1 then

11 β̂(k) = β(s) and break;
12 end

13 end

14 if
∥∥∥β̂(k) − β̂(k−1)

∥∥∥ < tol2 then

15 β̂BAR = β̂(k) and break ;
16 end

17 end

18 β̂BAR = β̂BAR × I(|β̂BAR| > ε∗) # Induce sparsity;
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A4.8 Additional figures and tables

A4.8.1 Figures
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Figure A4.1: Graphs of β1 = g1(β2) (solid line) and β2 = g2(β1) (dotted line) under selected
scenarios, which by Theorem 2, intersect at the fixed-point of g(β1, β2).
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Figure A4.2: An illustration of the cycBAR algorithm in a zoomed in picture of Figure
S1(a). The BAR estimator is the fixed point of g(β1, β2), which, by Theorem 2, is the
intersection of β1 = g1(β2) and β2 = g2(β1).
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Figure A4.3: Path plot for BAR regression with varying ξn and several fixed values of λn
where n = 300 and pn = 40. The path plots are averaged over 100 simulations.
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Figure A4.4: Path plot for BAR regression with varying ξn and several fixed values of λn
where n = 300 and pn = 100. The path plots are averaged over 100 simulations.
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Figure A4.5: Path plot for BAR regression with varying ξn and several fixed values of λn
where n = 700 and pn = 40. The path plots are averaged over 100 simulations.
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A4.8.2 Tables

Table A4.1: Additional simulation results for model comparison. Based on 100 replica-
tions with ρ = 0.5, β1 = (β∗,0pn−10) where β∗ = (0.40, 0.45, 0, 0.50, 0, 0.60, 0.75, 0, 0, 0.80),
censoring rate ≈ 33% and type 1 event rate ≈ 41%.

n = 300; p = 100 n = 700; p = 100
Method MSB FN FP SM MSB FN FP SM

ORACLE 0.09 0.00 0.00 1.00 0.04 0.00 0.00 1.00
BAR(ξn, λn) 0.31 0.40 1.87 0.85 0.06 0.01 0.89 0.94

BAR(λn) 0.32 0.49 1.70 0.85 0.06 0.01 0.86 0.94
BAREBIC 0.51 1.68 0.03 0.84 0.10 0.25 0.00 0.98

LASSO 0.44 0.10 2.82 0.83 0.21 0.00 2.49 0.85
ALASSO 0.39 0.75 2.00 0.81 0.09 0.00 0.73 0.95

SCAD 0.43 0.33 2.73 0.82 0.12 0.02 1.39 0.91
MCP 0.37 0.56 1.89 0.84 0.08 0.08 0.65 0.95

Table A4.2: Additional simulation results for model comparison. Based on 100 replica-
tions with ρ = 0.5, β1 = (β∗,0pn−10) where β∗ = (0.40, 0.45, 0, 0.50, 0, 0.60, 0.75, 0, 0, 0.80),
censoring rate ≈ 33% and type 1 event rate ≈ 32%(π = 0.4) and ≈ 43%(π = 0.75).

n = 700; p = 100;π = 0.4 n = 700; p = 100;π = 0.75
Method MSB FN FP SM MSB FN FP SM

ORACLE 0.04 0.00 0.00 1.00 0.03 0.00 0.00 1.00
BAR(ξn, λn) 0.08 0.03 0.88 0.94 0.04 0.00 0.65 0.96

BAR(λn) 0.08 0.04 0.84 0.94 0.05 0.00 0.67 0.95
BAREBIC 0.12 0.36 0.00 0.97 0.05 0.07 0.00 0.99

LASSO 0.23 0.00 2.63 0.85 0.18 0.00 2.51 0.86
ALASSO 0.11 0.06 0.94 0.93 0.06 0.00 0.58 0.96

SCAD 0.15 0.08 1.44 0.90 0.09 0.00 0.96 0.93
MCP 0.11 0.13 0.73 0.94 0.06 0.02 0.35 0.97
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Table A4.3: Additional simulation results for model comparison. Based on 100 replications
with ρ = 0.5, β1 = (β∗,β∗,β∗,0pn−30) where β∗ = (0.40, 0.45, 0, 0.50, 0, 0.60, 0.75, 0, 0, 0.80),
censoring rate ≈ 33% and type 1 event rate ≈ 41%.

n = 300; p = 100 n = 700; p = 100
Method MSB FN FP SM MSB FN FP SM

ORACLE 0.40 0.00 0.00 1.00 0.13 0.00 0.00 1.00
BAR(ξn, λn) 0.84 0.24 3.60 0.91 0.16 0.01 1.38 0.96

BAR(λn) 0.79 0.36 3.27 0.91 0.16 0.01 1.33 0.97
BAREBIC 4.41 7.77 0.01 0.75 0.33 0.08 0.00 1.00

LASSO 2.32 0.05 11.02 0.79 1.27 0.00 11.92 0.78
ALASSO 1.21 0.57 6.35 0.85 0.32 0.00 2.40 0.94

SCAD 0.98 0.19 7.00 0.85 0.16 0.01 1.54 0.96
MCP 1.03 0.33 3.59 0.91 0.15 0.02 0.73 0.98

Table A4.4: Additional information about the USRDS subset. Summary of event count (%)
observed for the training (n = 125, 000) and test (n = 100, 000) sets for the USRDS subset.
(Disc: Discontinued dialysis; Recov: Renal function recovery; RC: Right censored including
loss-to-follow up and end of study time.)

Set Transplant Death Disc. Recov. RC Total

Training 11,943(10%) 60,175 (48%) 8,160 (6%) 7,555 (6%) 37,167 (30%) 125,000 (100%)

Test 9,642 (10%) 47,830 (48%) 6,459 (7%) 6,057 (6%) 30,012 (29%) 100,000 (100%)
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CHAPTER 5

Fast and scalable Fine-Gray regression and cumulative

incidence function estimation

This chapter extends the forward-backward scan introduced in Section 4.1.4 for parameter

and cumulative incidence function estimation of unpenalized and penalized Fine-Gray regres-

sion. The chapter is organized as follows. We briefly review the basic definition of the Fine-

Gray proportional subdistribution hazards model, the CIF, and penalized Fine-Gray regres-

sion. We introduce our forward-backward scan algorithm in Section 5.2. Then, in Section 5.3

we describe the main functionalities of the fastcmprsk package that we developed for R which

utilizes the aforementioned algorithm, which include unpenalized and penalized parameter

estimation and CIF estimation. We perform simulation studies in Section 5.4 to compare

the performance of our proposed method to some of their popular competitors. Section 5.5

provides an illustration on real data using a subset of the United States Renal Data Systems.

The fastcmprsk package is available at https:github.com/erickawaguchi/fastcmprsk.

5.1 Data structure and model

Recall that for subject i = 1, . . . , n, let Ti, Ci, and εi be the event time, possible right-

censoring time, and cause (event type), respectively. Without loss of generality assume

there are two event types ε ∈ {1, 2} where ε = 1 is the event of interest (or primary event)

and ε = 2 is the competing risk. With the presence of right-censoring, we generally observe

Xi = Ti ∧ Ci, δi = I(Ti ≤ Ci), where a ∧ b = min(a, b) and I(·) is the indicator function.

Letting zi be a p-dimensional vector of time-independent subject-specific covariates, compet-

ing risks data consist of the following independent and identically distributed quadruplets
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{(Xi, δi, δiεi, zi)}ni=1. Assume that there also exists a τ such that 1) for some arbitrary time t,

t ∈ [0, τ ] ; 2) Pr(Ti > τ) > 0 and Pr(Ci > τ) > 0 for all i = 1, . . . , n, and that for simplicity,

no ties are observed.

The CIF for the primary event conditional on the covariates z = (z1, . . . , zp) is F1(t; z) =

Pr(T ≤ t, ε = 1|z). To model the covariate effects on F1(t; z), Fine and Gray (1999) intro-

duced the now well-appreciated proportional subdistribution hazards (PSH) model:

h1(t|z) = h10(t) exp(z′β), (5.1)

where

h1(t|z) = lim
∆t→0

Pr{t ≤ T ≤ t+ ∆t, ε = 1|T ≥ t ∪ (T ≤ t ∩ ε 6= 1), z}
∆t

= − d

dt
log{1− F1(t; z)}

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline subdis-

tribution hazard, and β is a p× 1 vector of regression coefficients. As Fine and Gray (1999)

mentioned, the risk set associated with h1(t; z) is somewhat counterfactual as it includes

subjects who are still at risk (T ≥ t) and those who have already observed the competing

risk prior to time t (T ≤ t ∩ ε 6= 1). However, this construction is useful for direct modeling

of the CIF.

5.1.1 Parameter estimation for unpenalized Fine-Gray regression

Parameter estimation and large-sample inference of the PSH model follows from the log-

pseudo likelihood:

l(β) =
n∑
i=1

∫ ∞
0

[
β′zi − ln

{∑
k

ŵk(u)Yk(u) exp (z′kβ)

}]
ŵi(u)dNi(u), (5.2)

where Ni(t) = I(Xi ≤ t, εi = 1), Yi(t) = 1 − Ni(t−), and ŵi(t) is a time-dependent weight

based on the inverse probability of censoring weighting (IPCW) technique (Robins and Rot-
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nitzky, 1992). To parallel Fine and Gray (1999), we define the IPCW for subject i at time t

as ŵi(t) = I(Ci ≥ Ti ∧ t)Ĝ(t)/Ĝ(Xi ∧ t), where G(t) = Pr(C ≥ t) is the survival function of

the censoring variable C and Ĝ(t) is the Kaplan-Meier estimate for G(t). However, we can

generalize the IPCW to allow for dependence between C and z.

Let β̂mple = arg minβ{−l(β)} be the maximum pseudo likelihood estimator of β. Fine

and Gray (1999) investigate the large-sample properties of β̂mple and prove that, under

certain regularity conditions,

√
n(β̂mple − β0)→ N(0,Ω−1ΣΩ−1), (5.3)

where β0 is the true value of β, Ω is the limit of the negative of the partial derivative

matrix of the score function evaluated at β0, and Σ is the variance-covariance matrix of the

limiting distribution of the score function. The package cmprsk implements this estimation

procedure.

5.1.2 Estimating the cumulative incidence function

An alternative interpretation of the coefficients from the Fine-Gray model is to model their

effect on the CIF. Using a Breslow-type estimator (Breslow, 1974), we can obtain a consistent

estimate for H10(t) =
∫ t

0
h10(s)ds through

Ĥ10(t) =
1

n

n∑
i=1

∫ t

0

1

Ŝ(0)(β̂, u)
ŵi(u)dNi(u),

where Ŝ(0)(β̂, u) = n−1
∑n

i=1 ŵi(u)Yi(u) exp(z′iβ̂). The predicted CIF, conditional on z = z0,

is then

F̂1(t; z0) = 1− exp

{∫ t

0

exp(z′0β̂)dĤ10(u)

}
.

We refer the readers to Appendix B of Fine and Gray (1999) for the large-sample properties

of F̂1(t; z0). The quantities needed to estimate
∫ t

0
dĤ10(u) are already precomputed when
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estimating β̂. Fine and Gray (1999) proposed a resampling approach to calculate confidence

intervals and confidence bands for F̂1(t; z0).

5.1.3 Penalized Fine-Gray regression for variable selection

Oftentimes, reserachers are interested in identifying which covariates have an effect on the

CIF. Penalization methods (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang et al., 2010)

offer a popular way to perform variable selection and parameter estimation simultaneously

through minimizing the objective function

Q(β) = −l(β) +

p∑
j=1

pλ(|βj|), (5.4)

where l(β) is defined in (5.2), pλ(|βj|) is a penalty function where the sparsity of the model is

controlled by the non-negative tuning parameter λ. Fu et al. (2017) recently extend several

popular variable selection procedures - LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001),

adaptive LASSO (Zou, 2006), and MCP (Zhang, 2010) - to the Fine-Gray model, explore

its asymptotic properties under fixed model dimension, and develop the R package crrp

(Fu, 2016) for implementation. Parameter estimation in the crrp package employs a cyclic

coordinate algorithm.

The sparsity of the model depends heavily on the choice of the tuning parameters. Prac-

tically, finding a suitable (or optimal) tuning parameter involves applying a penalization

method over a sequence of possible candidate values of λ and finding the λ that minimizes

some metric such as the Bayesian information criterion (Schwarz, 1978) or generalized cross

validation measure (Craven and Wahba, 1978). A more thorough discussion on tuning pa-

rameter selection can partially be found in Wang et al. (2007); Zhang et al. (2010); Wang

and Zhu (2011); Fan and Tang (2013); Fu et al. (2017); Ni and Cai (2018).
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5.2 Forward-backward scan for parameter estimation

This section discusses a novel forward-backward scan algorithm that reduces the computa-

tional complexity associated with parameter estimation from O(n2) to O(n). Commonly-

used optimization routines generally require the calculation of the log-pseudo likelihood (5.2),

the score function

l̇j(β) =
n∑
i=1

I(δiεi = 1)zij −
n∑
i=1

I(δiεi = 1)

∑
k∈Ri

zkjw̃ik exp(ηk)∑
k∈Ri

w̃ik exp(ηk)
, (5.5)

and, in some cases, the Hessian diagonals

l̈jj(β) =
n∑
i=1

I(δiεi = 1)

[∑
k∈Ri

z2
kjw̃ik exp(ηk)∑

k∈Ri
w̃ik exp(ηk)

−
{∑

k∈Ri
zkjw̃ik exp(ηk)∑

k∈Ri
w̃ik exp(ηk)

}2
]
, (5.6)

where

w̃ik = ŵk(Xi) = Ĝ(Xi)/Ĝ(Xi ∧Xk), k ∈ Ri,

Ri = {y : (Xy ≥ Xi) ∪ (Xy ≤ Xi ∩ εy = 2)} and ηk = z′kβ for use within cyclic coordinate

descent. Direct calculations using the above formulas will need O(n2) operations due to the

double summations, that becomes computationally taxing for large n. Below we will show

how to calculate the double summation linearly, allowing us to compute (5.2), (5.5), and

(5.6) in O(n) time.

Before proceeding with the algorithm, we first define what we mean by a forward and

backward scan. A forward (prefix) scan maps {a1, a2, . . . , an} 7→ {a1, a1 + a2, . . . ,
∑n

i=1 ai};

whereas a backward (prefix) scan maps to {
∑n

i=1 ai,
∑n

i=2 ai, . . . , a1}. First, note that Ri

partitions into two disjoint subsets: Ri(1) = {y : Xy ≥ Xi} and Ri(2) = {y : (Xy ≤

Xi ∩ εy = 2)}. Here Ri(1) is the set of observations that have an observed event time after

Xi and Ri(2) is the set of observations that have observed the competing event before time

Xi. Further, w̃ik = 1 if k ∈ Ri(1) and w̃ik = Ĝ(Xi)/Ĝ(Xk), if k ∈ Ri(2). Since Ri(1) and

Ri(2) are disjoint, we can write the double summation of, for example, the score function
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(5.5) as

n∑
i=1

I(δiεi = 1)

∑
k∈Ri(1) zkj exp(ηk) + Ĝ(Xi)

∑
k∈Ri(2) zkj exp(ηk)/Ĝ(Xk)∑

k∈Ri(1) exp(ηk) + Ĝ(Xi)
∑

k∈Ri(2) exp(ηk)/Ĝ(Xk)
. (5.7)

We will first tackle the denominator term
∑

k∈Ri(1) exp(ηk)+ Ĝ(Xi)
∑

k∈Ri(2) exp(ηk)/Ĝ(Xk).

If we arrange the observed event times in decreasing order, we see that
∑

k∈Ri(1) exp(ηk)

is a series of cumulative sums. For example, given Xi > Xi′ , the set Ri′(1) consists

of the observations from Ri(1) and the set of observations {y : Xy ∈ [Xi′ , Xi)}, there-

fore
∑

k∈Ri′ (1) exp(ηk) =
∑

k∈Ri(1) exp(ηk) +
∑

k∈{y:Xy∈[Xi′ ,Xi)} exp(ηk) and thus calculating∑
k∈Ri(1) exp(ηk) for all i = 1, . . . , n requires O(n) calculations in total. However,

Ĝ(Xi)
∑

k∈Ri(2) exp(ηk)/Ĝ(Xk) does not monotonically increase as the event times decrease.

Instead, we observe that Ĝ(Xi)
∑

k∈Ri(2) exp(ηk)/Ĝ(Xk) is a series of cumulative sums as

the event times increase. Thus calculating the denominator term will requires two scans:

one forward scan going forward from largest observed event time to smallest to calculate∑
k∈Ri(1) exp(ηk) and one backward scan from smallest observed event time to largest to

calculate Ĝ(Xi)
∑

k∈Ri(2) exp(ηk)/Ĝ(Xk). Likewise, we calculate both
∑

k∈Ri
zkj exp(ηk) and∑

k∈Ri
z2
kj exp(ηk) in linear time since the terms zkj and z2

kj are multiplicative constants that

do not affect the cumulative structures of the summations. As a consequence, the ratio in

the double summation is available in O(n) time.

Furthermore, the outer summation of subjects who observe the event of interest is also a

cumulative sum since, provided that Xi > Xi′ and both δi = 1 and δi′ = 1,

i∑
l=1

I(δlεl = 1)

∑
k∈Rl

zkj exp(ηk)∑
k∈Rl

exp(ηk)
=

i′∑
l=1

I(δlεl = 1)

∑
k∈Rl

zkj exp(ηk)∑
k∈Rl

exp(ηk)
(5.8)

+ I(δiεi = 1)

∑
k∈Ri

zkj exp(ηk)∑
k∈Ri

exp(ηk)
, (5.9)

that also only requires O(n) calculations since the ratios are precomputed in O(n) calcula-

tions and thus the score function (5.5) can be calculated in linear time. Similarly, both the

log-pseudo likelihood (5.2) and the diagonal elements of the Hessian (5.6) are also calculated
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Table 5.1: Currently available functions in fastcmprsk (as of May 15, 2019).

Function name Basic description
Modeling functions
fastCrr Fits unpenalized Fine-Gray regression
fastCrrp Fits penalized Fine-Gray regression
Utilities
summary Returns ANOVA table from fastCrr output
predict Estimates CIF given a vector of covariates
plot Plots output (object dependent)
varianceControl Options for bootstrap variance
simulateTwoCauseFineGrayModel Simulates two-cause competing risks data

linearly.

5.3 The fastcmprsk package

We utilize this forward-backward scan algorithm for both penalized and unpenalized parame-

ter estimation for the Fine-Gray model in linear time. Furthermore, we also develop scalable

methods to estimate the predicted CIF and its corresponding confidence interval/band. For

convenience to researchers and readers, we further include a function to simulate two-cause

competing risks data. Table 5.1 provides a quick summary of the currently available functions

provided in fastcmprsk. We briefly detail the use of these functions below.

5.3.1 Simulating competing risks data

Researchers can simulate two-cause competing risks data using the

simulateTwoCauseFineGrayModel function in fastcmprsk. The data generation scheme

follows a similar design to that of Fine and Gray (1999) and Fu et al. (2017). Given a

design matrix Z = (z′1, . . . , z
′
n), β1, and β2, let the cumulative incidence function for cause

1 (the event of interest) be defined as F1(t; zi) = Pr(Ti ≤ t, εi = 1|zi) = 1 − [1 − π{1 −

exp(−t)}]exp(z′iβ1), which is a unit exponential mixture with mass 1 − π at ∞ when zi = 0

and where π controls the cause 1 event rate. The cumulative incidence function for cause

2 is obtained by setting Pr(εi = 2|zi) = 1 − Pr(εi = 1|zi) and then using an exponential
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distribution with rate exp(z′iβ2) for the conditional cumulative incidence function Pr(Ti ≤

t|εi = 2, zi). Censoring times are independently generated from a uniform distribution

U(umin, umax) where umin and umax control the censoring percentage. Appendix A5.1 provides

more details on the data generation process. Below is a toy example of simulating competing

risks data where n = 500, β1 = (0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80), β2 = −β1,

umin = 0, umax = 1, π = 0.5, and where Z is simulated from a multivariate standard normal

distribution with unit variance. This simulated dataset will be used to illustrate the use of

the different modeling functions within fastcmprsk.

R> library(fastcmprsk)

R> set.seed(2019)

R> nobs <- 500

R> beta1 <- c(0.40, -0.40, 0, -0.50, 0, 0.60, 0.75, 0, 0, -0.80)

R> beta2 <- -beta1

R> Z <- matrix(rnorm(nobs * length(beta1)), nrow = nobs)

R> dat <- simulateTwoCauseFineGrayModel(nobs, beta1, beta2,

+ Z, u.min = 0, u.max = 1, p = 0.5)

R> table(dat$fstatus) # Event counts

0 1 2

241 118 141

R> head(dat$ftime) # First 6 observed survival times

[1] 0.098345608 0.008722629 0.208321175 0.017656904 0.495185038 0.222799124

5.3.2 Unpenalized parameter estimation and inference

We first illustrate the coefficient estimation from (5.1) using the Fine-Gray log-pseudo like-

lihood. The fastCrr function estimates these parameters using our forward-backward scan
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algorithm and is functionally similar to the crr function from the cmprsk package.

# cmprsk package

R> fit1 <- cmprsk::crr(dat$ftime, dat$fstatus, Z, failcode = 1, cencode = 0,

+ variance = FALSE)

# fastcmprsk package

R> fit2 <- fastcmprsk::fastCrr(dat$ftime, dat$fstatus, Z,

+ failcode = 1, cencode = 0,

+ variance = FALSE, returnDataFrame = TRUE)

R> max(abs(fit1$coef - fit2$coef))

[1] 8.534242e-08

As expected, the fastCrr function calculates nearly identical parameter estimates to the

crr function. We compare the runtime performance between these two methods in Section

5.4.1.

We now show how to obtain the variance-covariance matrix for the parameter estimates.

The variance-covariance matrix for β̂ can not be directly estimated using the fastCrr func-

tion. First, the asymptotic expression requires estimating both Ω and Σ, which can not be

trivially calculated in linear time. Second, for large-scale data where both n and p can be

large, matrix calculations, storage, and inversion can be computationally prohibitive. In-

stead, we propose to estimate the variance-covariance matrix using the bootstrap (Efron,

1979). Let β̃(1), . . . β̃(B) be bootstrapped parameter estimates obtained by resampling sub-

jects with replacement from the original data B times. Unless otherwise noted, the size of

each resample is the same as the original data. For j = 1, . . . , p and k = 1, . . . , p, we can

estimate the covariance between β̂j and β̂k by

Ĉov(β̂j, β̂k) =
1

B − 1

B∑
b=1

(β̃
(b)
j − β̄j)(β̃

(b)
k − β̄k), (5.10)
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where β̄j = 1
B

∑B
b=1 β̃

(b)
j . Therefore, with σ̂2

j = Ĉov(β̂j, β̂j), a (1 − α) × 100% confidence

interval for βj is given by

β̂j ± z1−α/2σ̂j, (5.11)

where z1−α/2 is the (1 − α) × 100th percentile of the standard normal distribution. Since

parameter estimation for the Fine-Gray model can be done in linear time using our forward-

backward scan algorithm, the collection of parameter estimates obtained by bootstrapping

can also be obtained linearly. The varianceControl function controls the parameters used

for bootstrapping, that one then passes into the var.control argument in fastCrr.

R> vc <- varianceControl(B = 100, seed = 2019)

R> fit3 <- fastcmprsk::fastCrr(dat$ftime, dat$fstatus, Z,

+ failcode = 1, cencode = 0, variance = TRUE,

+ var.control = vc, returnDataFrame = TRUE)

# returnDataFrame = TRUE is necessary for CIF estimation (next section)

R> sqrt(diag(fit3$var))

[1] 0.099 0.096 0.099 0.104 0.099 0.113 0.103 0.097 0.104 0.135

R> summary(fit3, conf.int = FALSE, digits = 2)

Fine-Gray Regression via fastcmprsk package.

Call:

fastcmprsk::fastCrr(dat$ftime, dat$fstatus, Z, failcode = 1,

cencode = 0, variance = TRUE, var.control = vc, returnDataFrame = TRUE)

fastCrr converged in 24 iterations.
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coef exp(coef) se(coef) z p-value

[1,] 0.19228 1.212 0.0993 1.9358 5.3e-02

[2,] -0.38640 0.679 0.0963 -4.0142 6.0e-05

[3,] 0.01816 1.018 0.0988 0.1838 8.5e-01

[4,] -0.39769 0.672 0.1042 -3.8169 1.4e-04

[5,] 0.10571 1.111 0.0986 1.0724 2.8e-01

[6,] 0.57494 1.777 0.1130 5.0895 3.6e-07

[7,] 0.77884 2.179 0.1032 7.5478 4.4e-14

[8,] -0.00611 0.994 0.0972 -0.0628 9.5e-01

[9,] -0.06571 0.936 0.1040 -0.6315 5.3e-01

[10,] -0.99687 0.369 0.1346 -7.4054 1.3e-13

Pseudo Log-likelihood = -590

Null Pseudo Log-likelihood = -675

5.3.3 Cumulative incidence function and interval/band estimation

The CIF is also available in linear time in the fastcmprsk package. Fine and Gray (1999)

propose a Monte Carlo simulation method for interval and band estimation. We imple-

ment a slightly different approach using bootstrapping for interval and band estimation in

our package. Let F̃
(1)
1 (t; z0), . . . , F̃

(B)
1 (t; z0) be the bootstrapped predicted CIF obtained by

resampling subjects with replacement from the original data B times and let m(·) be a

known, monotone, and continuous transformation. In our current implementation we let

m(x) = log{− log(x)}; however, we plan on incorporating other transformations in our fu-

ture implementation. We first estimate the variance function σ2(t; z0) of the transformed

CIF through

σ̂2(t; z0) =
1

B

B∑
b=1

[
m{F̃ (b)

1 (t; z0)} − m̄{F̃1(t; z0)}
]2

, (5.12)
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where m̄{F̃1(t; z0)} = 1
B

∑B
b=1m{F̃

(b)
1 (t; z0)}. Using the functional delta method, we can

now construct (1− α)× 100% confidence intervals for F1(t; z0) by

m−1
[
m{F̂1(t; z0)} ± z1−α/2σ̂(t; z0)

]
. (5.13)

Next we propose a symmetric global confidence band for the estimated CIF F̂1(t; z0),

t ∈ [tL, tU ] via bootstrap. We first determine a critical region C1−α(z0) such that

Pr

 sup
t∈[tL,tU ]

|m{F̂1(t; z0)} −m{F1(t; z0)}|√
V̂ ar[m{F̂1(t; z0)}]

≤ C1−α(z0)

 = 1− α. (5.14)

While Equation (5.12) estimates V̂ ar[m{F̂1(t; z0)}] we still need to find C1−α(z0) by the

bootstrap (1 − α)th percentile of the distribution of the supremum in the equation above.

The algorithm is as follows:

1. Resample subjects with replacement from the original data B times and estimate

F̃
(b)
1 (t; z0) for b = 1, . . . , B and σ̂2(t; z0) using (5.12).

2. For the bth bootstrap sample , b ∈ {1, . . . , B}, calculate

C(b) = sup
t∈[tL,tU ]

|m{F̃ (b)
1 (t; z0)} −m{F̂1(t; z0)}|

σ̂(t; z0)
.

3. Estimate C1−α(z0) from the sample (1−α)th percentile of the B values of C(b), denoted

by Ĉ1−α(z0).

Finally, the (1− α)× 100% confidence band for F1(t; z0), t ∈ [tL, tU ] is given by

m−1
[
m{F̂1(t; z0)} ± Ĉ1−α(z0)σ̂(t; z0)

]
. (5.15)

One can perform CIF estimation and interval/band estimation using the predict function.

R> set.seed(2019)
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Figure 5.1: CIF estimate and corresponding 95% confidence intervals between tL = 0.2 and
tU = 0.9.

R> z0 <- rnorm(10) # New covariate entries to predict

R> cif.point <- predict(fit2, cov = z0, getBootstrapVariance = TRUE,

+ type = "interval", B = 100, seed = 2019,

+ tL = 0.2, tU = 0.9)

R> plot(cif.point) # Figure 4.1

5.3.4 Penalized Fine-Gray regression via forward-backward scan

We extend our forward-backward scan approach for for penalized Fine-Gray regression as

described in Section 5.1.3. The fastCrrp function performs LASSO, SCAD, MCP, and ridge

(Hoerl and Kennard, 1970) penalization. The advantage of implementing this algorithm for

penalized Fine-Gray regression is two fold. Since the cyclic coordinate descent algorithm used

in the crrp function calculates the gradient and Hessian diagonals in O(pn2) time, as opposed

to O(pn) using our approach, we expect to see drastic differences in runtime for large sample

sizes. Second, as mentioned earlier, researchers generally tune the strength of penalization

through multiple model fits over a grid of candidate tuning parameter values. Thus the
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difference in runtime between both methods grows larger as the number of candidate values

increases. Below provides an example of performing LASSO-penalized Fine-Gray regression

using 25 candidate values for λ. The syntax for fastCrrp is nearly identical to the syntax

for crrp.

R> library(crrp)

R> lam.path <- 10^seq(log10(0.1), log10(0.001), length = 25)

R> # crrp package

R> fit.crrp <- crrp::crrp(dat$ftime, dat$fstatus, Z, penalty = "LASSO",

+ lambda = lam.path, eps = 1E-6)

R> # fastcmprsk package

R> fit.fcrrp <- fastcmprsk::fastCrrp(dat$ftime, dat$fstatus, Z,

+ penalty = "LASSO", lambda = lam.path)

R> max(abs(fit.fcrrp$coef - fit.crrp$beta))

[1] 1.110223e-15

R> plot(fit.fcrrp) # Figure 4.2

5.4 Simulation studies

This section provides a more comprehensive illustration of the computational performance of

the fastcmprsk package over two popular competing packages cmprsk and crrp. We simulate

datasets under various sample sizes and fix the number of covariates p = 100. We generate

the design matrix, Z from a p-dimensional standard normal distribution with mean zero,

unit variance, and pairwise correlation corr(zi, zj) = ρ|i−j|, where ρ = 0.5 simulates moderate

correlation. For Section 5.4.1, the vector of regression parameters for cause 1, the cause of
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Figure 5.2: Path plot for LASSO-penalized Fine-Gray regression in our toy example.

interest, is β1 = (β∗,β∗, . . . ,β∗), where β∗ = (0.40,−0.40, 0,−0.50, 0, 0.60, 0.75, 0, 0,−0.80).

For Section 5.4.2, β1 = (β∗,0p−10). We let β2 = −β1. We set π = 0.5, which corresponds

to a cause 1 event rate of approximately 41%. The average censoring percentage for our

simulations varies between 30−35%. We use simulateTwoCauseFineGrayModel to simulate

these data and average results over 100 Monte Carlo replicates. We report timing on a system

with an Intel Core i5 2.9 GHz processor and 16GB of memory.

5.4.1 Comparison to the crr package

In this section, we compare the runtime and estimation performance of the fastCrr function

to crr. We vary n from 1000 to 4000 and run fastCrr and crr both with and without

variance estimation. We take 100 bootstrap samples to obtain the bootstrap standard errors

with fastCrr.

Figure 5.3 illustrates the runtime performance (in seconds) between both fastCrr (dashed

lines) and crr (solid lines) as n increases. It is clear that the performance of the crr meth-

ods increases quadratically while the fastCrr methods remain approximately linear. This

leads to substantial improvement in computational performance for large sample sizes. Sec-
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Figure 5.3: Runtime comparison between fastCrr and crr with and without variance estima-
tion.

Table 5.2: Coverage probability (and standard errors) of 95% confidence intervals for β11 =
0.4. Standard errors for fastCrr are obtained using 100 bootstrap samples.

n = 1000 2000 3000 4000
crr 0.93 (0.03) 0.90 (0.03) 0.93 (0.03) 0.95 (0.02)
fastCrr 1.00 (0.00) 0.96 (0.02) 0.96 (0.02) 0.96 (0.02)

ond, the forward-backward scan allows us to efficiently compute variance estimates through

bootstrapping. We see that bootstrapping for smaller sample sizes may not result in com-

putational gains; however, notable differences are observed for larger sample sizes.

To assess the performance of the bootstrap procedure for variance estimation, Table 5.2

shows the coverage probability (and standard errors) of the 95% confidence intervals for

β11 = 0.4. We see confidence intervals are generally wider for the bootstrap approach but

are close to the nominal 95% level.

5.4.2 Comparison to the crrp package

As mentioned in Section 5.1.3, Fu et al. (2017) provide an R package crrp for performing

penalized Fine-Gray regression using the LASSO, SCAD, and MCP penalties. We com-
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Figure 5.4: Runtime comparison between the crrp and fastcmprsk implementations of
LASSO, SCAD, and MCP penalization. Solid and dashed lines represent the crrp and
fastcmprsk implementation, respectively. Square, circle, and triangle symbols denote the
penalties MCP, SCAD, and LASSO, respectively.

pare the runtime between fastCrrp with the implementation in the crrp package. To level

comparisons, we modify the source code in crrp so that the function only calculates the coef-

ficient estimates and BIC score. We vary n = 1000, 1500, . . . , 4000, fix p = 100, and employ

a 25-value grid search for the tuning parameter. Figure 5.4 illustrates the computational

advantage the fastCrrp function has over crrp.

The computational performance of crrp (solid lines) increases quadratically while fasrCrrp

(dashed lines) increases linearly, resulting in a 200 to 300-fold speed up in runtime when

n = 4000. This, along with the previous section, strongly suggests that for large-scale com-

peting risks datasets, analyses that may take several hours or days to perform using currently

implemented methods are available within seconds or minutes using our forward-backward

scan algorithm. We illustrate this in our real data analysis in the following section.
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5.5 End-stage renal disease

We analyze data collected from the United States Renal Data System, a national data system

funded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

that collects information about end-stage renal disease in the United States. Patients with

end-stage renal disease are known to have a shorter life expectancy compared to their disease-

free peers (USRDS Annual Report 2017) and kidney transplantation provides better health

outcomes for patients with end-stage renal disease (Wolfe et al., 1999; Purnell et al., 2016).

However patients may observe competing events such as death or renal function recovery or

may wish to discontinue dialysis for quality of life purposes before transplant.

We extract a subset of the United States Renal Data System that spans a 10-year study

time between January 2005 to June 2015 and a subsample to 125,000 subjects. We consider

63 demographic and clinical covariates. The event of interest is first kidney transplant for

patients who were currently on dialysis. Death, renal function recovery, and discontinuation

of dialysis are competing risks. Subjects who are lost to follow up or had no event by the

end of study period are considered as right censored.

Table 5.3 shows the runtime results between both the crr and fastCrr implementations

for unpenalized Fine-Gray regression. Using the crr function, parameter estimation without

variance estimation took 1.3 hours to finish and with variance estimation took 26.7 hours to

complete. The fastCrr function performed the same tasks within seconds, resulting in an

over 1000-fold speedup for parameter estimation and an over 390-fold speedup for parameter

and variance estimation. With respect to estimation, both approaches return nearly identical

parameter estimates (maximum absolute difference of 3.29× 10−7).

To compare variance estimation, Figure 5.5 plots the 95% confidence intervals for the first

six covariates: age at dialysis, sex, and presence of diabetes, hypertension, atherosclerotic

heart disease, and cardiac failure. Both procedures return similar confidence intervals for

all six covariates and we also observe similar results for the covariates not included in the

figure.

Finally, we apply the LASSO, SCAD, and MCP variable selection routines to the dataset.
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Table 5.3: Timing comparison using a subset of the USRDS dataset. The first two rows
correspond to unpenalized Fine-Gray regression with and without variance estimation using
crr and fastCrr. The last three rows correspond to penalized Fine-Gray regression using crrp
and fastCrrp.

Timing comparison (seconds)
Unpenalized crr fastCrr
w.o. variance 4,544 4
w. variance 96,120 246
Penalized crrp fastCrrp
LASSO 86,304 32
SCAD 92,591 35
MCP 102,585 33

HYPER COMO_ASHD CARFAIL

AGE_DIAL SEX DIABETES

fastCrr crr fastCrr crr fastCrr crr
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Figure 5.5: Point estimate and 95% confidence intervals reported by fastCrr (using 100
bootstrap samples) and crr.

Following Section 5.4.2, we use a grid of 25 candidate tuning parameters. The final model for

each penalization method is chosen by selecting the tuning parameter that minimizes the BIC

score. The runtime results can be found in last three rows of Table 5.3 which shows that the

current implementations for variable selection are drastically slower than our package (an over

2000-fold difference in runtime). To assess the performance of each method, we consider a test

set of 100,000 additional subjects and asses prediction performance through the concordance

index (Wolbers et al., 2009). The predictive performance of all three methods are comparable
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with similar concordance index values (≈ 0.85) that we attribute to the massive sample size

of both the training and test set. As expected, both MCP and SCAD produce similar-sized

models (48 variables for MCP and 49 variables for SCAD) due, in part, to their oracle

behavior while LASSO selects 62 variables and are a superset of the variables selected by

both MCP and SCAD. The variables selected by MCP are also all contained in the SCAD

model.

In conclusion, our forward-backward scan algorithm results in a significant reduction in

runtime for unpenalized and penalized Fine-Gray regression for large-scale competing risks

data. Analyses using current packages may take hours or even over a day to finish; whereas

the fastcmprsk package completes the same tasks within seconds or minutes.

5.6 Discussion

The fastcmprsk package provides a set of scalable tools for the analysis of large-scale compet-

ing risks data by developing an approach to linearize the computational complexity required

to estimate the parameters of the Fine-Gray proportional subdistribution hazards model.

The package implements both penalized and unpenalized Fine-Gray regression. We can con-

veniently extend our forward-backward algorithm to other applications such as stratified and

clustered Fine-Gray regression. Calculating standard errors for both the parameter estimates

and the CIF involves bootstrapping. We may further speed up standard error estimation

through parallelization using, for example, the doParallel (Calaway et al., 2018) package.

Lastly, our current implementation assumes that covariates are densely observed across

subjects. This is problematic in the sparse high-dimensional massive sample size (sHDMSS)

domain (Mittal et al., 2014) where the number of subjects and sparsely-represented covariates

easily exceed tens of thousands. These sort of data are typical in large comparative effec-

tiveness and drug safety studies using massive administrative claims and electronic health

record (EHR) databases and typically contain millions to hundreds of millions of patient

records with tens of thousands patient attributes, which such settings are particularly useful

for drug safety studies of a rare event such as unexpected adverse events (Schuemie et al.,
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2018) to protect public health. We are currently extending our algorithm to this domain in

a sequel paper.

Appendix to Chapter 5

A5.1 Data generation scheme

We describe the data generation process for the simulateTwoCauseFineGrayModel function.

Let n, p, Zn×p, β1, β2, umin, umax and π be specified. We first generate independent Bernoulli

random variables to simulate the cause indicator ε for each subject. That is, εi ∼ 1 +

Bern{(1 − p)exp(z′iβ1)} for i = 1, . . . , n. Then, conditional on the cause, event times are

simulated from

Pr(Ti ≤ t|εi = 1, zi) =
1− [1− π{1− exp(−t)}]exp(z′iβ1)

1− (1− π)exp(z′iβ1)

Pr(Ti ≤ t|εi = 2, zi) = 1− exp{−t exp(z′iβ2)},

and Ci ∼ U(umin, umax). Therefore, for i = 1, . . . , n, we can obtain the following quadruplet

{(Xi, δi, δiεi, zi)} where Xi = Ti ∧ Ci, and δi = I(Xi ≤ Ci). Below is an excerpt of the code

used in simulateTwoCauseFineGrayModel to simulate the observed event times, cause and

censoring indicators.

#START CODE

...

...

# nobs, Z, p = pi, u.min, u.max, beta1 and beta2 are already defined.

# Simulate cause indicators here using a Bernoulli random variable

c.ind <- 1 + rbinom(nobs, 1, prob = (1 - p)^exp(Z %*% beta1))

ftime <- numeric(nobs)
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eta1 <- Z[c.ind == 1, ] %*% beta1 #linear predictor for cause on interest

eta2 <- Z[c.ind == 2, ] %*% beta2 #linear predictor for competing risk

# Conditional on cause indicators, we simulate the model.

u1 <- runif(length(eta1))

t1 <- -log(1 - (1 - (1 - u1 * (1 - (1 - p)^exp(eta1)))^(1 / exp(eta1))) / p)

t2 <- rexp(length(eta2), rate = exp(eta2))

ci <- runif(nobs, min = u.min, max = u.max) # simulate censoring times

ftime[c.ind == 1] <- t1

ftime[c.ind == 2] <- t2

ftime <- pmin(ftime, ci) # X = min(T, C)

fstatus <- ifelse(ftime == ci, 0, 1) # 0 if censored, 1 if event

fstatus <- fstatus * c.ind # 1 if cause 1, 2 if cause 2

...

...
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CHAPTER 6

Concluding remarks and future research

In this dissertation we have 1) extended the BAR methodology to the Cox proportional haz-

ards model and the Fine-Gray proportional subdistribution hazards model; 2) implemented

an efficient algorithm to allow BAR regression for right-censored sHDMSS time-to-event

data; 3) developed a cyclic coordinate-wise BAR algorithm that can compute the BAR es-

timator without carrying out iterative reweighted `2-penalizations and apply it to BAR for

competing risks data; and 4) linearize parameter estimation for unpenalized and penalized

Fine-Gray models.

In Chapter 3, we developed a new sparse Cox regression method by iteratively perform-

ing reweighted `2-penalized Cox regression where the penalty is adaptively reweighted to

approximate the `0 penalty. The resulting estimator, known as BAR, can be viewed as a

special local `0-penalized Cox regression method and is shown to enjoy properties of both `0-

and `2-penalized Cox regression: it is selection consistent, oracle for parameter estimation,

stable, and has a grouping property for highly-correlated covariates. Further, we illustrate

through empirical studies that the BAR estimator has comparable or better performance for

variable selection and parameter estimation as compared to current penalized Cox regression

methods and, most importantly, can directly fit sHDMSS time-to-event data. In Chapter 4,

we extended the BAR method for simultaneous parameter estimation and variable selection

to the Fine-Gray model for competing risks data. More importantly, to make the BAR

method scalable to large data, we have further developed 1) a novel coordinate-wise update

(cycBAR) algorithm to avoid carrying out multiple ridge regressions in the original BAR

implementation and 2) a forward-backward scan algorithm to reduce the computational cost

of the log-likelihood and its derivatives for the Fine-Gray model from the order of O(n2) to
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O(n). While showing comparable selection and estimation performance, the BAR method

for the Fine-Gray model using the two new algorithms has produced thousands to tens of

thousands fold speedups over some current penalization methods for the PSH model in nu-

merical studies. In Chapter 5, we shifted our focus to implementing the forward-backward

scan algorithm to parameter and cumulative incidence function estimation for unpenalized

Fine-Gray regression and variable selection using LASSO, SCAD, and MCP penalizations.

Our implementation, fastcmprsk, results in a significant reduction in runtime (up to 3000-

fold) when compared to some of its popular competitors. Analyses using current packages

may take hours or even over a day to finish; whereas our proposed implementation completes

the same tasks within seconds or minutes.

There are several future directions where we can extend the research presented in this

dissertation.

In my current work, we have shown the model selection consistency of BAR under diverg-

ing dimension. Expanding the BAR methodology to ultrahigh-dimensional time-to-event,

where the number of covariates far exceeds the sample size, is of particular interest. One

possibility is to replace the initial ridge estimator with a “truncated ridge” estimator in the

algorithm to allow proper convergence rates needed for the initial estimator. The theoretical

derivations will require more care and attention since standard techniques do not apply in

ultrahigh-dimensional covariate spaces. Second, my current work focuses on estimation and

model selection for both right-censored and competing risks data. In the variable selection

community, there has been a surge of interest in post-selection inference. We can extend

BAR to post-selection inference, allowing one to develop confidence intervals and perform

hypothesis tests after penalization.

The fastcmprsk package can be further developed. We can conveniently extend our

forward-backward algorithm to other applications such as stratified and clustered Fine-Gray

regression. Calculating standard errors for both the parameter estimates and the CIF in-

volves bootstrapping. We may further speed up standard error estimation through paral-

lelization or estimate parameters for different strata or clusters in parallel. Further, this

package currently only handles covariates that are densely observed across subjects. This
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is problematic in the sparse high-dimensional massive sample size (sHDMSS) domain where

the number of subjects and sparsely-represented covariates easily exceed tens of thousands.

Extending this approach to handle sHDMSS data is critical in analyzing large comparative

effectiveness and drug safety studies that use massive administrative claims and electronic

health record (EHR) databases.
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