
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Quantitative dissection of pattern formation along the central dogma in the early fly 
embryos

Permalink
https://escholarship.org/uc/item/3gm309d9

Author
Kim, Yang Joon

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3gm309d9
https://escholarship.org
http://www.cdlib.org/


Quantitative dissection of pattern formation along the central dogma in the early fly embryos

by

Yang Joon Kim

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Biophysics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Hernan G. Garcia, Chair
Professor Michael Eisen

Professor Xavier Darzacq
Professor Rob Phillips

Fall 2021



Quantitative dissection of pattern formation along the central dogma in the early fly embryos

Copyright 2021
by

Yang Joon Kim



1

Abstract

Quantitative dissection of pattern formation along the central dogma in the early fly embryos

by

Yang Joon Kim

Doctor of Philosophy in Biophysics

University of California, Berkeley

Professor Hernan G. Garcia, Chair

The question of how a cell determines which cell fate it will adopt is at the heart of
developmental biology. In most cases, morphogens (mainly transcription factors or signaling
molecules) control cell fates by directing cells to activate or repress downstream gene expression
programs containing a specific subset of genes required for the desired cell function and
morphology. Over the past few decades, this question has been dissected in great detail in
several model organisms. One of the best-studied examples is the early embryo of the fruit
fly, Drosophila melanogaster, whose cascade of gene expression network has been revealed by
decades of hard work. Indeed, the fruit fly is one of the first organisms whose morphogens
were identified using mutant screens pioneered by Christiane Nüsslein-Volhard and Eric
Wieschaus. The identified morphogens revealed how the initial gradients of morphogens
instruct cells at different positions along the embryo body axis to adopt different fates, such
as those corresponding to legs or antennae, by activating differential transcriptional programs.

For the past decade, this knowledge of classic developmental biology, which revealed great
details about the underlying gene regulatory networks, has been under quantitative dissection
via the development of a wide array of new experimental techniques. The accumulation of
these quantitative data demands quantitative models to understand the underlying principles
behind the gene regulation. Ultimately, one of the dreams of developmental biologists is to
have a predictive understanding of gene expression patterns solely from the patterns of input
morphogens and the regulatory DNA sequences.

I believe that the field of developmental biology is at an exciting new phase where quantitative
measurements meet theoretical modeling to unveil the molecular underpinnings of transcrip-
tional and translational regulation. In my view, the dream of predictive developmental biology
can only be achieved by an active dialogue between theoretical modeling that generates
experimentally testable hypotheses and quantitative measurements to test these hypotheses.

My dissertation is an attempt to contribute to this new phase of quantitative data meeting
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theoretical modeling by developing and characterizing molecular tools for quantitative mea-
surements of gene expression following the central dogma (transcription and translation),
and theoretical frameworks to understand and predict transcriptional regulation and protein
pattern formation.
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Chapter 1

Lighting up the Central Dogma
during the development of early fly
embryos - An Introduction

The question of how a cell determines which cell fate it will adopt is at the heart of
developmental biology. In most cases, morphogens (mainly transcription factors or signaling
molecules) control cell fates by directing cells to activate or repress downstream gene expression
programs containing a specific subset of genes required for the desired cell function and
morphology. Over the past few decades, this question has been dissected in great detail in
several model organisms. One of the best-studied examples is the early embryo of the fruit
fly, Drosophila melanogaster, whose cascade of gene expression network has been revealed by
decades of hard work as shown in Figure 1.1A (Garcia et al. 2020; Gilbert 2010). Indeed,
the fruit fly is one of the first organisms whose morphogens were identified using mutant
screens (Nusslein-Volhard and Wieschaus 1980; Nusslein-Volhard, Wieschaus, and Kluding
1984). The identified morphogens revealed how the initial gradients of morphogens instruct
cells at different positions along the embryo body axis to adopt different fates, such as
those corresponding to legs or antennae, by activating differential transcriptional programs
(Fig. 1.1A).

For the past decade, this knowledge of classic developmental biology, which revealed
great details about the underlying gene regulatory networks, has been under quantitative
dissection via the development of a wide array of new experimental techniques (Garcia et al.
2020; Small and Arnosti 2020). The accumulation of these quantitative data (see Bothma
et al. (2014), Garcia et al. (2013b), Gregor et al. (2007b), Lammers et al. (2020), Lucas et al.
(2013), and Reeves et al. (2012)) demands quantitative models to understand the underlying
principles behind the gene regulation (Garcia et al. 2020). Ultimately, one of the dreams of
developmental biologists is to have a predictive understanding of gene expression patterns
solely from the patterns of input morphogens and the regulatory DNA sequences.

I believe that the field of developmental biology is at an exciting new phase where quan-
titative measurements meet theoretical modeling to unveil the molecular underpinnings of
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A

Figure 1.1: Drosophila melanogaster gene regulatory network. (A) Current state-
of-the-art mapping of the gene regulatory network in segmentation of anterior-
posterior axis of the fruit fly Drosophila melanogaster. Figure and caption are
adapted from (Garcia et al. 2020).

transcriptional and translational regulation. In my view, the dream of predictive develop-
mental biology can only be achieved by an active dialogue between theoretical modeling that
generates experimentally testable hypotheses and quantitative measurements to test these
hypotheses.

My dissertation is an attempt to contribute to this new phase of quantitative data
meeting theoretical modeling by developing and characterizing molecular tools for quantitative
measurements of gene expression following the central dogma (transcription and translation),
and theoretical frameworks to understand and predict transcriptional regulation and protein
pattern formation (outlined in Fig. 1.2). In this chapter, I will provide a preview of the later
chapters of this thesis together with a summary of the key experiments and results.
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mRNA patterns

(iii) Mechanisms of
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(iv) Correlating mRNA and protein patterns:
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Figure 1.2: Outline of the thesis. The chapters are organized loosely following
the steps of the Central Dogma. (i) Understanding the input-output function
of transcriptional initiation (Chapter 2). (ii) Comparative study on methods
to quantify cytoplasmic mRNA (Chapter 3). (iii) Quantification of translation
dynamics (Chapter 4). (iv) Quantifying the pattern formation along the Central
Dogma using reaction-diffusion models (Chapter 5).

1.1 Preview of Chapter 2: Understanding the

transcriptional input-output function in

repression

In the early fruit fly embryo, most morphogens are transcription factors that either activate or
repress the level of transcription of downstream genes. These transcription factors bind to a
sequence of regulatory DNA called an enhancer that dictates the output level of transcription
as a function of input transcription factor concentrations. Thus, enhancer sequence define
gene regulatory input-output functions (Furlong and Levine 2018). The study of these input-
output functions has accumulated great knowledge of the architectures of various enhancers
and the number and position of each transcription factor binding site inside that enhancer
(Small and Arnosti 2020).

From this knowledge of activators and repressors (especially where they bind to exert their
regulatory action), synthetic enhancers where one introduces transcription factor binding
sites in existing scaffold have been used to characterize the identity of a given transcription
factor as either activator or repressor (Chen et al. 2012; Löhr et al. 2009; Papagianni et al.
2018). However, we are still far from rationally designing enhancer sequences with precisely
predicted output levels of transcription. For example, if we want to decrease the transcription
level by a factor of two, how many repressor binding sites should we add in an enhancer, or
how much do we need to increase the concentration of the repressor protein? These questions



CHAPTER 1. LIGHTING UP THE CENTRAL DOGMA DURING THE
DEVELOPMENT OF EARLY FLY EMBRYOS - AN INTRODUCTION 4

no repressor
binding site

re
gu

la
to

ry
 a

rc
hi

te
ct

ur
e

fre
e 

pa
ra

m
et

er
s

one repressor
binding site

two repressor
binding sites

three repressor
binding sites

I

B

A

II III IV

[000] [010] [110]

[011]

[001] [101]

[111]

R

Kp

RNAP

Runt

[100]Kr

ωrp

transcription rate, R 
RNAP dissociation

constant, Kp 

Runt dissociation
constant, Kr

Runt-RNAP
interaction, ωrp 

DNA regulatory
sequence

        Repressor 
binding site number

Output
Rate of transcription

Input
TF concentration 

gradients

Bicoid

Runt

Figure 1.3: Preview of chapter 2. See caption in the next page.

clearly show our lack of predictive understanding of transcriptional input-output function
where inputs are the concentration of transcription factors and their binding sites in a given
enhancer, and the output is the level of transcription.

In this chapter, we chose a simple system of synthetic enhancers with binding sites for
an activator, Bicoid, and a repressor, Runt, that we can use to build tractable theoretical
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Figure 1.3: Preview of chapter 2. (A) Input-Output function framework of
transcriptional regulation. Here, we present a case study with one activator
(Bicoid) and one repressor (Runt) that regulate synthetic enhancers where the
number and position of repressor binding sites can be systematically tuned. (B) A
theoretical model of transcriptional repression. (I) We assume that transcription
occurs with a rate R when the promoter is occupied by RNA polymerase II
(RNAP), and that RNAP has a dissociation constant to the promoter of Kp. (II)
The one-Runt binding site at different positions: when the Runt repressor is bound
to its binding site, it interacts with RNAP with an interaction term, ωrp. We
assume that all Runt binding sites have the same dissociation constant of Kr.
(III, IV) Two- and three- Runt binding sites as combinatorics of (II): the minimal
model assumes that the two Runt molecules act independently with the RNAP. In
this case, we can generate quantitative predictions for the transcriptional output
from these two- or three-Runt binding sites cases.

models with a handful of parameters (Fig. 1.3 A and B). Specifically, we tested whether
widespread thermodynamic models could be used to infer parameters describing simple
regulatory architectures that inform parameter-free predictions of more complex enhancers
in the context of transcriptional repression by Runt in the early fruit fly embryo (shown in
Fig. 1.4).

By modulating the number and placement of Runt binding sites within an enhancer
and quantifying the resulting transcriptional activity using live imaging, we discovered
that thermodynamic models could successfully explain the experimental data for one-Runt
binding site cases. However, the parameter-free prediction for two- or three-Runt binding site
constructs cannot recapitulate the experimental data and could explain the data only when
we invoke interaction terms between multiple molecular players beyond pairwise interactions
between transcription factors and RNA polymerases. This multi-component interaction
captures the combinatorial complexity underlying eukaryotic transcriptional regulation and
cannot be determined from simpler regulatory architectures, highlighting the challenges in
reaching a predictive understanding of transcriptional regulation in eukaryotes and calling
for approaches that quantitatively dissect their molecular nature.
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Figure 1.4: Thermodynamic model of transcriptional regulation by Bicoid activator
and Runt repressor generates quantitative, experimentally testable predictions
of transcriptional output. (A) States and statistical weights for the regulation
of hunchback P2 with one Runt binding site in the limit of strong Bicoid-Bicoid
cooperativity. Here, we use the dimensionless parameters b = [Bicoid]/Kb, r =
[Runt]/Kr, and p = [RNAP ]/Kp, where Kb, Kr, and Kp are the dissociation
constants of Bicoid, Runt, and RNAP, respectively. ωbp represents the cooperativity
between Bicoid and RNAP, ωrp captures the cooperativity between Runt and
RNAP, and R represents the rate of transcription when the promoter is occupied
by RNAP. The top two rows correspond to states where only Bicoid and RNAP
act, while the bottom two rows represent repression by Runt. (B) Representative
prediction of RNAP loading rate as a function of Bicoid and Runt concentrations
for ωbp = 3, ωrp = 0.001, p = 0.001, R = 1(AU/min).
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1.2 Preview of Chapter 3: Comparison of methods to

quantify cytoplasmic mRNA patterns

Chapter 3 focuses on a comparative study of experimental methods to measure cytoplasmic
mRNA patterns in the fly embryo. An accurate quantification method is essential to
characterizing the patterns of transcription factors and their downstream gene products.
There are several experimental methods that have been widely used by developmental
biologists to quantify cytoplasmic mRNA patterns. However, there is lack of comparative
studies in assessing these methods in terms of their quantitative power. In this chapter, we
want to compare these methods to test whether different methods give equivalent quantitative
results or not.

One of the widely used techniques to measure the gene expression pattern is in situ
hybridization. Here, the RNA of interest is hybridized with complementary DNA probes
followed by the tagging of those complexes with fluorophores or enzymatic probes for
characterization of the gene expression patterns. There are broadly two categories of in situ
hybridization methods depending on the source of the signal: chemogenic and fluorogenic.
The chemogenic method is called colorimetric in situ hybridization (which we refer to as
in situ throughout this thesis). It relies on an enzymatic reaction, such as that catalyzed
by alkaline phosphatase, with its substrate bound which generates a colored precipitate
(as showcased in Fig. 1.5 A) (Small 2000). The fluorogenic method is called fluorescence
in situ hybridization (which we refer to as FISH), relying on fluorophores attached to the
primary or secondary antibodies that bind to the DNA probe, thus generating a fluorescence
signal that is proportional to the number of mRNA molecules (as showcased in Fig. 1.5B).
These in situ hybridization methods could be multiplexed to detect multiple mRNA species
simultaneously (Chen et al. 2015). An alternative approach is tagging the nascent transcripts
using bacteriophage stem-loop structures such that the inserted sequence of MS2 (or PP7)
forms a loop structure upon transcription which is then bound by bacteriophage coat proteins
such as MCP (or PCP) fused to fluorescent proteins (Bertrand et al. 1998). This tagging
system enables quantification of the number of nascent transcripts actively being transcribed
in real-time by monitoring the MS2 spots as shown in Figure 1.5C (Garcia et al. 2013b).
By integrating the MS2 spot fluorescence intensity over time, it is possible to calculate the
accumulated mRNA quantity (Garcia et al. 2013b).

All of the methods mentioned above have different types of caveats. For example, in situ
hybridization methods could be used for the multiplexed detection of hundreds to thousands
of mRNA species, whereas stem-loop methods can detect no more than two or three genes
at a time. Also, while stem-loop methods enable the tracking of transcriptional dynamics
in real-time at the single-cell level, in situ hybridization methods require fixed samples and
thus offer data from a snapshot. Of course, there is no perfect method; instead, for each
experimental need, there is one method more suitable than the other in terms of throughput,
ease of use, and accuracy. In this section, we will perform a comparative study for colorimetric
in situ hybridization (in situ), fluorescence in situ hybridization (FISH), and MS2-MCP
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Figure 1.5: Experimental methods to measure cytoplasmic mRNA patterns.
(A,B,C) Snapshot of fly embryos featuring cytoplasmic mRNA patterns driven
by the hunchback P2 enhancer in nuclear cycle 14. (A) Colorimetric in situ
hybridization. Scale bar represents 100 µm. (B) Fluorescence in situ hybridization
(FISH) with red probe and co-stained with Bicoid protein with green probe. Scale
bar represents 100 µm. (B) is adapted from Park et al. (2019). (C) MS2 with
MCP-GFP. Green dots represent loci of active transcription. The embryo image
shows 20-60% of the embryo length along the anterior-posterior axis. Scale bar
represents 20 µm. (D) Comparison of the patterns of cytoplasmic mRNA acquired
using different experimental methods. The y-axis shows the accumulated mRNA
from each method normalized by the accumulated mRNA values at 20% of the
embryo length.



CHAPTER 1. LIGHTING UP THE CENTRAL DOGMA DURING THE
DEVELOPMENT OF EARLY FLY EMBRYOS - AN INTRODUCTION 9

techniques to assess their accuracy in quantifying the cytoplasmic mRNA patterns in the
fruit fly embryos.

To compare these three different methods in their ability to quantify the cytoplasmic
mRNA patterns, we chose the well-characterized system of the hunchback P2 enhancer that
is known to drive a step-like pattern of mRNA (Perry, Boettiger, and Levine 2011). We used
all three methods for the same construct that drives transcription under the hunchback P2
enhancer. We observed a difference in the patterns of cytoplasmic mRNA between the three
methods as shown in Figure 1.5D. Briefly, the FISH and MS2 data showed agreement while
the in situ showed a more posteriorly shifted pattern. In conclusion, we revealed the pros
and cons of different methods of quantifying the patterns of cytoplasmic mRNA, facilitating
the choice of experimental method that is more suitable for one’s specific scientific question.

1.3 Preview of Chapter 4: Quantitative dissection of

the translational regulation dynamics

Although most studies in developmental biology have treated mRNA and protein patterns
more or less equivalently (Gilbert2014), there is emerging evidence that this equivalence
might not hold true for some cases. Indeed, studies suggest that translation efficiency is not
uniform across space and time and is under regulation (Dufourt et al. 2021; Surkova et al.
2019; Vinter et al. 2021). One of the most well-known examples of translational regulation is
the regulation of maternal gradients in the early fruit fly embryos. For example, caudal mRNA
is supplied maternally with a uniform distribution along the embryo’s anterior-posterior
axis. The translation of caudal mRNA is repressed by Bicoid, which forms an exponentially
decaying gradient along the anterior-posterior axis. Thus, Bicoid represses the translation of
caudal mRNA mainly at the anterior pole, leading to an opposite gradient of Caudal protein
which peaks at the posterior and decreases towards anterior as shown in Figure 1.6 A and B.
Another well-studied example is the translational regulation of maternal hunchback mRNA.
The maternal gene nanos is expressed in a protein concentration gradient which is high in
the posterior end of the embryo and low in the anterior end. Nanos protein is known to bind
to the 3’UTR of the hunchback mRNA via Pumilio. Nanos protein represses the translation
of maternal hunchback mRNA, which leads to a step-like expression emerging from uniform
mRNA distribution along the anterior-posterior axis (Murata and Wharton 1995; Wharton
et al. 1998). Our goal in this chapter is to dissect the translational regulatory logic encoded
by different 3’UTR sequences, such as those corresponding to caudal and maternal hunchback.
Although it has been known that the protein levels are downregulated by these translational
repressors (either Bicoid or Nanos), the molecular mechanism by which this repression is
achieved still remains elusive. For example, there could be different strategies to achieve
an equivalent level of translational repression: either regulating the rate of translational
initiation, the fraction of mRNA engaged in translation, or any combination thereof as shown
in Figure 1.6 C (Vinter et al. 2021).
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Figure 1.6: Translational regulation generates spatial protein gradients out of
spatially uniform mRNA patterns. (A) Example of translational repression of
caudal mRNA by Bicoid protein. Bicoid protein is expressed in an exponentially
decaying gradient along the anterior-posterior axis of the embryo. caudal mRNA
is supplied maternally and distributed uniformly along the anterior-posterior axis.
Bicoid protein represses the translation of the caudal mRNA, thus generating the
spatial gradient of the Caudal protein. (A) is adapted from (Rödel, Gilles, and
Averof 2013). (B) A schematic figure of concentration profile along the anterior-
posterior axis of the fly embryo for caudal mRNA, Bicoid protein, and Caudal
protein. (C) There could be different ways to achieve translational repression.
For example, the rate of translation, the fraction of mRNA molecules translated,
or both could be under regulation by Bicoid to achieve the spatial gradient of the
resulting Caudal protein. Note that, here, we have chosen arbitrary functional
forms for the translation rate and the fractoin of mRNA molecules being translated
for illustrative purposes.
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Figure 1.7: SunTags enable the visualization of nascent loci of translation and
the quantificaiton of the number of nascent polypeptides. (A) Schematic of the
SunTag:scFv-GFP to tag the nascent polypeptides and PP7:PCP to tether the
mRNA to the cell membrane. This tethering is done for more extended tracking
of the loci.

In order to dissect these molecular details, we need a tool to monitor and quantify
translation dynamics at the single-ribosome level. To fluorescently label nascent polypeptides,
we used the recently developed SunTag system. This system consists of repeated peptides
(SunTag) inserted into the N-terminal of the protein of interest that can be bound by a
single-chain variable fragment of an antibody (scFv) fused to fluorescent proteins (shown in
Fig. 1.7 A) (Tanenbaum et al. 2014; Yan et al. 2016). Recent studies in the early fruit fly
embryos using the SunTag reporter system reported on the spatio-temporal heterogeneities
in translational dynamics, such as along the apical-basal axis (Dufourt et al. 2021) or along
the anterior-posterior axis (Vinter et al. 2021). These studies have revealed that translational
control is an uncharted area that could be under regulation by a group of unknown factors
that could be associated with translation machinery and mRNA molecules.

Our initial goal was to implement the SunTag system in fruit fly embryos by adding
the SunTag sequences upstream of the hunchback mRNA under the hunchback P2 minimal
enhancer in a synthetic platform shown in Fig. 1.8A. Given that this mRNA pattern is very
well characterized, we could then use it as a platform to dissect the translational pattern
(Perry et al. 2012). We used scFv fused to sfGFP to quantify the SunTag upon translation and
PCP-mCherry to tether the mRNA to the membrane as well as visualization of single mRNA
molecules. Our preliminary data showed a promising result that demonstrated punctuated
signals from the SunTag-scFv channel that recapitulate the step-like hunchback mRNA
pattern along the anterior-posterior axis. The zoomed-in image in Figure 1.8 B clearly shows
puncta of translation. As the next step, We sought to take the image this same construct
over time. The zoomed-in movie on the hunchback boundary region again showed punctuated
loci of translation as shown in Figure 1.8 C. We took two representative time traces from the
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Figure 1.8: Proof-of-principle: hunchback P2P driven SunTag reporter recapit-
ulates the step-like spatial pattern of hunchback mRNA and captures its trans-
lational dynamics. (A) Schematics of the reporter constructs. hunchback P2P
driver followed by 24 repeats of SunTag, the lacZ coding sequence, 24 repeats of
the PP7 loop, and the hunchback 3’UTR. The PP7 loops are used to tether the
mRNA molecules to the membrane for a imaging. (B) Snapshots of embryos with
or without the SunTag reporter shown in (A). (Top Left) A full embryo snapshot
with the SunTag reporter and (Top Right) a zoomed-in image from the white
squared region in the full embryo image. (Bottom Left) A full embryo snapshot
without the SunTag reporter and (Bottom Right) a zoomed-in image from the
white squared region in the full embryo image. Scale bars on the full embryo
images represent 100µm. Scale bars on the zoomed-in images represent 10µm.
(C) A zoomed-in image of the hunchbackP2P driven SunTag construct with scFv-
sfGFP and PCP-mCherry-CAAX. The green puncta represent the nascent loci
of translation, and the membrane is marked with PCP-mCherry-CAAX. Blue
and Red squared regions mark two nascent loci of translation whose temporal
dynamics are shown in (D). (D) Time traces of the two loci of translation shown
in (C) over 10 minutes in nuclear cycle 14.
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same movie, marked with blue and red squares in Figure 1.8 C. These two time traces in
Figure 1.8 D show the downregulation of translational activity over time in nuclear cycle 14,
which is consistent with previous results Vinter et al. (2021).

Upon successful implementation of the SunTag approach, we aim to quantitatively dissect
the differential translation dynamics from different 3’UTR sequences, such as caudal and
maternal hunchback. Thus, we created synthetic reporter constructs with a gene cassette
followed by different 3’UTR sequences. Careful characterization of these reporters remains as
future work.

1.4 Preview of Chapter 5: Reaction-Diffusion models

to connect transcriptional and translational

pattern formation

So far, we have looked into different steps along the Central Dogma, from a set of transcription
factors binding to a regulatory DNA sequence to drive transcription initiation, leading to
the accumulation of mRNA molecules forming a gene expression pattern along the embryo’s
body axes, which then leads to a pattern of protein which acts onto the gene regulatory
network. Classic developmental biology work has treated the patterns of transcripts and
protein as almost equivalently. Only recently with the advent of techniques capable of
measuring, for example, real-time translational regulation, was it proposed that mRNA
and protein patterns are not always the same (Fig. 1.9 A) (Surkova et al. 2019). In this
chapter, we connect quantitative measurements of transcription and translation under the
reaction-diffusion modeling framework (Jaeger et al. 2004).

The reaction-diffusion model was proposed by Alan Turing to explain pattern formation
in nature: patterns of stripes or spots emerging autonomously from homogeneous, uniform
state (Turing 1952). A widespread application of the reaction-diffusion model in the fruit fly
embryo is the so-called Synthesis, Degradation, and Diffusion (SDD) model (Gregor et al.
2007a). This model has been used to explain pattern formation of a maternal gene, bicoid.

Inspired by the SDD modeling framework, we wondered to which degree we could explain
the protein pattern solely from the knowledge of mRNA patterns. Moreover, we wanted to
challenge the SDD model by generating experimentally testable predictions. For example,
the SDD model often assumes that parameters such as diffusion coefficients, synthesis or
degradation rates for mRNA or protein are static (Gregor et al. 2007a). The SDD model
works quite well with this simple assumption for systems with slow dynamics (on the order
of a few hours) such as the spatial gradient formation of the maternal protein Bicoid (Gregor
et al. 2007a). However, it remains unclear whether this assumption of parameters being static
would hold for other genes with faster dynamics (on the order of tens of minutes) such as the
pattern formation for zygotic proteins. By contrasting the predictions generated from this
simple assumption with quantitative data, we can test this widespread assumption.
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Figure 1.9: Conceptual framework to predict protein patterns from transcriptional
initiation patterns using the reaction-diffusion model. (A) Schematic showing
pattern formation along the Central Dogma. Pattern formation starts with a
pattern of transcription initiation, leading to a pattern of cytoplasmic mRNA,
then ultimately to a protein pattern. (B) A conceptual framework of the reaction-
diffusion model. Reaction entails the synthesis and degradation of both mRNA
and protein. Both mRNA and protein diffuse through the embryo. For simplicity,
we assume that the embryo is one-dimensional along the anterior-posterior axis.
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In the SDD model, there are parameters as follows: synthesis and degradation of both
mRNA and protein as well as diffusion coefficients of both mRNA and protein. For simplicity,
we assume that the embryo is one-dimensional along the anterior-posterior axis (Fig. 1.9 B).
From previous measurements, some of these parameters were readily available, and if not, we
could make educated guesses from the measurements from similar systems (Abu-Arish et al.
2010; Little, Tikhonov, and Gregor 2013) With these parameters at hand, we are ready to
generate predictions of the protein pattern given the rate of transcription as a function of
space and time.

To test the predictive power of our model, we built an experimental system where we
can simultaneously measure the transcription dynamics and protein output in real-time.
Specifically, we combined the MS2-MCP system with the LlamaTag in a synthetic gene
cassette to simultaneously monitor the transcription and translation events (Fig. 1.10 A).
With this reporter system, we could monitor the transcription initiation and output protein
level in real-time as shown in Figure 1.10 B,C, and D.

By plugging in the rate of transcription from the MS2-MCP measurement, combined with
the best estimates of the SDD model parameters, we could get a quantitative prediction for the
protein level along space and time. This predicted protein pattern along the anterior-posterior
axis can be directly compared with the measured protein pattern revealed by the LlamaTag.

As a proof of concept, we chose a set of parameters based of previous measurements for a
variety of mRNA and protein species in the early fly embryo (Abu-Arish et al. 2010; Little,
Tikhonov, and Gregor 2013). These parameters were used to generate the predicted protein
patterns at different time points as shown in Figure 1.11 A. To contrast this prediction with
the experimental data shown in Figure 1.11 B, we made a one-to-one comparison of the
prediction and measurement at each position and time point (shown in Fig. 1.11 C). If our
prediction is accurate, we should be able to get a perfect correlation between the prediction
and the measurement, meaning the Pearson’s correlation coefficient is one. However, as we
investigated for all time points from our measurements acquired every minute, we could never
observe this perfect correlation with any combinations of static parameters. We hypothesized
that this might suggest that some parameters could change over time or space.

This hypothesis is in line with recent experimental results proposing that the translation
of zygotic hunchback mRNA is under spatio-temporal regulation (Vinter et al. 2021). Further
investigations are needed in both theoretical modeling and experimental measurements to
dissect the spatiotemporal dependence of these biophysical parameters, which could potentially
reveal the hidden knobs of gene regulation during development.
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Figure 1.10: Experimental methods to simultaneously measure the transcriptional
activity and protein patterns. (A) Schematics of our construct. hunchback
P2P driver is followed by 24 repeats of the MS2 loop, a LlamaTag, hunchback
coding sequence (CDS), and hunchback 3’UTR. (B) Two snapshots of an embryo
expressing the reporter construct shown in (A). (Left) An embryo in early nucelar
cycle 14. Transcriptional loci are shown as red spots. The protein pattern has not
emerged yet. (Right) The same embryo as on the left, but in late nuclear cycle 14.
Transcriptional activity has halted at this point, and the protein pattern emerged.
The scale bar represents 100µm. (C) MS2 spot fluorescence time trace averaged
over 2.5% spatial bin at 25% of the embryo length (EL). (D)The LlamaTag
protein nuclear fluorescence time trace averaged over 2.5% spatial bin at 25% of
the embryo length.
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Figure 1.11: Comparison of predicted and experimentally measured protein pat-
terns. (A,B) Using the Reaction-Diffusion model, we generated the predicted
protein pattern for a set of parameters that are our best estimates. A Predicted
protein level along the anterior-posterior axis during nuclear cycle 14, for four
time points. (B) Measured protein level along the anterior-posterior axis during
nuclear cycle 14, for the same four time points as in (A). (C) Comparison between
prediction and measurement shown in (A). The Pearson’s correlation coefficient
gives an estimate of how good the prediction is.
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Chapter 2

Predictive modeling for
transcriptional repression in a
synthetic developmental enhancer

1 Introduction

During embryonic development, transcription factors bind stretches of regulatory DNA termed
enhancers to dictate the spatiotemporal dynamics of gene expression patterns that will lay out
the future body plan of multicellular organisms (Small and Arnosti 2020; Spitz and Furlong
2012). One of the greatest challenges in quantitative developmental biology is to predict
these patterns from knowledge of the number, placement, and affinity of transcription factor
binding sites within enhancers. The early embryo of the fruit fly Drosophila melanogaster has
become one of the main workhorses in this attempt to achieve a predictive understanding of
cellular decision-making in development due to its well-characterized gene regulatory network
and transcription factor binding motifs, and the ease with which its development can be
quantified using live imaging (Garcia et al. 2020; Rivera et al. 2019; Small and Arnosti 2020).

Predictive understanding calls for the derivation of theoretical models that generate
quantitative and experimentally testable predictions. Thermodynamic models based on
equilibrium statistical mechanics have emerged as a widespread theoretical framework to
achieve this goal (Ackers, Johnson, and Shea 1982; Bintu et al. 2005a,b; Bolouri and Davidson
2003; Eck et al. 2020; Fakhouri et al. 2010; Phillips et al. 2019; Sayal et al. 2016; Segal et al.
2008; Vilar and Leibler 2003). For instance, over the last decade, a dialogue between these
thermodynamic models and experiments demonstrated the capacity to quantitatively predict
bacterial transcriptional regulation from knowledge of the DNA regulatory architecture
(Brewster et al. 2014; Garcia and Phillips 2011; Garcia et al. 2012; He et al. 2010; Sepulveda
et al. 2016).

The predictive power of these models is evident when inferring model parameters from
simple regulatory architectures (Boedicker, Garcia, and Phillips 2013; Boedicker et al. 2013;
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Phillips et al. 2019; Razo-Mejia et al. 2018). Consider, for example, that RNA polymerase II
(RNAP)—which we take as a proxy for the whole basal transcriptional machinery—binds
to a promoter with a dissociation constant Kp. When RNAP is bound, transcription is
initiated at a rate R (Fig. 1A). In the absence of any regulation, a thermodynamic model
will only have Kp and R as its free parameters which can be experimentally determined by,
for example, measuring mRNA distributions (Razo-Mejia et al. 2020). Now, we assume that
the parameters Kp and R inferred in this step do not just enable a fit to the data, but that
their values represent physical quantities that remain unaltered as more complex regulatory
architectures are iteratively considered. As a result, when we consider the case where a single
repressor molecule can bind, our model calls for only two new free parameters: a dissociation
constant for repressor to its binding motif Kr, and a negative cooperativity between repressor
and RNAP, ωrp, that makes the recruitment of RNAP less favorable when the repressor is
bound to its binding site (Fig. 1B). Once again, after determining Kr and ωrp experimentally
(Phillips et al. 2019), we consider the case where two repressors can bind simultaneously
(Fig. 1C). If the repressors interact with RNAP independently of each other, then our model
has no remaining free parameters such that we will have reached complete predictive power.
However, protein-protein interactions between repressors could exist or even higher-order
interactions giving rise to a repressor-repressor-RNAP ternary complex might be present.
The extra complexity represented by these interactions would require yet another round of
experimentation to quantify these interactions represented by ωrr and ωrrp in Figure 1C,
respectively. Even after quantifying these parameters, predictive power might not be reached
if, after adding yet another repressor binding site, a complex between all three repressors and
RNAP can be formed (Fig. 1D).

While protein-protein cooperativity captured by ωrr has been studied both in bacteria
(Ackers, Johnson, and Shea 1982; Ptashne and Gann 2002) and eukaryotes (Fakhouri et al.
2010; Giniger and Ptashne 1988; Lebrecht et al. 2005; Ma et al. 1996; Parker et al. 2011;
Sayal et al. 2016), the necessity of accounting for the higher-order interactions such as those
described in our example by the ωrrp and ωrrrp terms had only been demonstrated in archeae
(Peeters et al. 2013) and bacteria (Dodd et al. 2004). The need to invoke this higher-order
cooperativity in eukaryotes only became apparent in the last few years (Biddle et al. 2020;
Estrada et al. 2016a; Park et al. 2019). These higher-order cooperativities might be necessary
in order to account for the complex interactions mediated by, for example, the recruitment of
co-repressors (Courey and Jia 2001; Walrad, Hang, and Gergena 2011), mediator complex
(Park et al. 2019), or any other element of the transcriptional machinery. As a result, while
posing a challenge to reaching a parameter-free predictive understanding of transcriptional
regulation, higher-order cooperativity provides an avenue for quantifying the complexity of
the molecular processes underlying eukaryotic cellular decision-making.

In this paper, we sought to test whether an iterative and predictive approach, such as
that outlined in Figure 1, was possible for transcriptional repression in the early embryo
of the fruit fly Drosophila melanogaster or whether it is necessary to invoke higher-order
cooperativities that challenge the reach of our predictive models as we add more complexity
to the system. To make this possible, we engineered binding sites for the Runt repressor into
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Figure 1: Building up predictive models of transcriptional repression. (A) In the
absence of repressor binding, gene expression can be characterized by a dissociation
constant between RNAP and the promoter Kp and the rate of transcription
initiation when the promoter is bound by RNAP R. (B) In the presence of a
single repressor binding site, models need to account for two additional parameters
describing the repressor dissociation constant Kr and a repressor-RNAP interaction
term ωrp. (C) For two-repressor architectures, parameters accounting for repressor-
repressor interactions ωrr and for interactions giving rise to a repressor-repressor-
RNAP complex could also have to be incorporated. (D) For the case of three
repressor binding sites, additional parameters ωrrr and ωrrrp capturing the higher-
order cooperativity between three repressor molecules and between three Runt
molecules and RNAP, respectively, could be necessary. Note the nomenclature
shown below each construct, which indicates which Runt binding sites are present
in each construct.



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 21

the Bicoid-activated hunchback P2 minimal enhancer. We systematically varied the number
and placement of Runt binding sites within this enhancer (Chen et al. 2012) in order to
determine whether model fits to real-time transcriptional measurements from the enhancer
constructs containing only one-Runt binding site could accurately predict repression in two-
and three-Runt binding site constructs (Fig. 1A and B). We found that a thermodynamic
model can recapitulate all our data. However, we also discovered that, while the model could
describe repression by a single Runt repressor, protein-protein and higher-order cooperativities
had to be invoked in order to quantitatively account for regulation by two or more repressor
molecules. While these higher-order cooperativities limit the iterative bottom-up discourse
between theory and experiment that has been successful in bacteria (Phillips, Kondev,
and Theriot 2009), they also provide a concrete theoretical framework for quantifying the
complexities behind eukaryotic transcriptional control, and calling for the development of new
theories and experiments specifically conceived to uncover the the molecular underpinnings
of this complexity.

2 Results

Predicting transcription rate using a thermodynamic model of
Bicoid activation and Runt repression

We built a predictive model of Runt repression on the Bicoid-activated hunchback P2 enhancer
using the thermodynamic model framework (Bintu et al. 2005a,b; Phillips et al. 2019) with
the goal of predicting the rate of transcription initiation as a function of input transcription
factor concentration, and the number and placement of Runt repressor binding sites. Our
model rests on the “occupancy hypothesis” that states that the rate of mRNA production,
d[mRNA]/dt, is proportional to the probability of the promoter being bound by RNA
polymerase II (RNAP), pbound, such that

d [mRNA]

dt
= R pbound, (1)

where R is the rate of mRNA production when the promoter is occupied by RNAP. Note that,
throughout this study, we treat the rate of transcription initiation and the rate of RNAP
loading interchangeably.

To generate intuition, we start by modeling the case of hunchback P2 with one Runt
binding site. Figure 2A illustrates the possible states the system can be found in. Each state
has an associated statistical weight which can be calculated as prescribed by equilibrium
statistical mechanics (Bintu et al. 2005a,b). Here, we assume that there are six Bicoid
binding sites with the same dissociation constant given by Kb, one Runt binding site with a
dissociation constant specified by Kr, and a promoter with a dissociation constant for RNAP
prescribed by Kp. In the absence of Runt, we consider four states as shown in the top two rows
of Figure 2A. Here, we assume that Bicoid-Bicoid cooperativity is so strong that the enhancer
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can either be unoccupied or completely bound by Bicoid molecules (Gregor et al. 2007b; Park
et al. 2019). Further, we consider an interaction between Bicoid and RNAP given by ωbp.
For simplicity, we use the dimensionless parameters b = [Bicoid]/Kb, r = [Runt]/Kr and
p = [RNAP ]/Kp. These assumptions lead to a functional form reminiscent of a Hill function
that explains the sharp step-like expression pattern along the embryo’s anterior-posterior
axis of the hunchback gene (Driever and Nusslein-Volhard 1988, 1989; Gregor et al. 2007b;
Park et al. 2019). A full thermodynamic model in which we do not make this assumption of
high Bicoid-Bicoid cooperativity is discussed in detail in Section S1 and Section S2 .

The molecular mechanism by which Runt downregulates transcription of its target genes
remains unclear (Chen et al. 2012; Hang and Gergen 2017; Koromila and Stathopoulos 2017,
2019). Here, we assume the so-called “direct repression” model (Gray, Szymanski, and Levine
1994) that posits that Runt operates by inhibiting RNAP binding to the promoter through a
direct Runt-RNAP interaction term given by ωrp < 1 independently of Bicoid. As a result,
in the presence of Runt, we consider four additional states as shown in the bottom two
rows of Figure 2A. Other potential mechanisms of Runt repression are further discussed in
Supplementary Section S5 ), where we also show that the choice of specific mechanism does
not change our conclusions.

Given these assumptions, we arrive at the microstates and corresponding statistical
weights shown in Figure 2A. The probability of finding RNAP bound to the promoter, pbound,
is calculated by dividing the sum of all statistical weights featuring RNAP by the sum of the
weights of all possible microstates. The calculation of pbound combined with Equation 1 leads
to the expression

Rate = R pbound = R
p+ b6 p ωbp + r p ωrp + b6 r p ωbp ωrp

1 + b6 + r + b6 r + p+ b6 p ωbp + r p ωrp + b6 r p ωbp ωrp
, (2)

which makes it possible to predict the output rate of mRNA production as a function of the
input concentrations of Bicoid and Runt (Fig. 2B). With this theoretical framework in hand,
we experimentally tested the predictions of this model.

Measuring transcriptional input-output to test model predictions

The transcriptional input-output function in Figure 2B indicates that, in order to predict
the rate of RNAP loading and to test our theoretical model, we need to first measure the
concentration of the input Bicoid and Runt transcription factors. In order to quantify the
concentration profile of Bicoid, we used an established eGFP-Bicoid line (Gregor et al. 2007b)
and measured mean Bicoid nuclear concentration dynamics along the anterior-posterior axis of
the embryo over nuclear cycles 13 and 14 (nc13 and nc14, respectively) as shown in Movie S1
(Eck et al. 2020). An example snapshot and time trace of Bicoid nuclear concentration
dynamics at 40% of the embryo length appear in Figure 3A and B.

Quantification of the Runt concentration using standard fluorescent protein fusions is
not possible due to the slow maturation times of these proteins (Bothma et al. 2018). We
therefore measured Runt concentration dynamics using our recently developed LlamaTags,
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which are devoid of such maturation dynamics artifacts (Bothma et al. 2018). Specifically, we
generated a new fly line harboring a fusion of a LlamaTag against eGFP to the endogenous
runt gene using CRISPR/Cas9-mediated homology-directed repair (Materials and Methods;
??).

Using this LlamaTag fusion, we measured the mean Runt nuclear fluorescence along the
anterior-posterior axis of the embryo over nc13 and nc14 (Materials and Methods; Figure 3B;
Movie S2). As expected due to the location of the runt gene on the X chromosome (Lott
et al. 2011), there is a sex dependence in the nuclear concentration levels in nc13, with
males displaying lower Runt levels than females; this difference is compensated by early nc14
(Fig. 3C,D). As a result, for ease of analysis, we focused subsequent quantitative dissection
on nc14.

We used the measured input protein concentration profiles to predict the output tran-
scription rate. To make this possible, we invoked previous observations stating that the
concentration dynamics of input transcription factors does not significantly affect the initial
rate of RNAP loading (Eck et al. 2020; Garcia et al. 2013b). As a result, we decided to use the
time-averaged concentration dynamics of Bicoid and Runt over a time window spanning 5 min
after the 13th anaphase to 10 min after this anaphase (gray shaded region in Fig. 3B and D)
as inputs to our model, resulting in static spatial concentration profiles shown in Figure 3E.
We then used these time-averaged concentration profiles of input transcription factors to
calculate the time-averaged rate of transcription initiation over the same time window. In
the Supplementary Information Section S3 we compare this methodology with one that
acknowledges input transcription factor concentration dynamics and show that the prediction
stemming from both approaches leads to equivalent theoretical predictions. Notably, the
time-averaged rate of transcription predicted by the dynamic inputs was similar to the rate
of transcription predicted by the static inputs.

Along the anterior-posterior axis of the embryo, the measured Bicoid and Runt concen-
tration profiles define a trajectory through the input-output function (Fig. 2B). Given a set
of parameters, this trajectory predicts the initial rate of RNAP loading. This quantitative
prediction can be directly compared with experimentally measured transcription initiation
rates. For example, given the concentration profiles shown in Figure 3E, we calculate the
RNAP loading rate as a function of the position along the embryo for different values of the
Runt-RNAP interaction, captured by ωrp (Fig. 3F). As expected, we predict that the rate of
transcription decreases as ωrp, describing Runt-RNAP cooperativity, decreases.

Next, we sought to experimentally test these predictions by measuring the rate of RNAP
loading using the MS2 system (Bertrand et al. 1998; Garcia et al. 2013b; Lucas et al. 2013).
Here, we inserted 24 repeats of the MS2 loop sequence following the hunchback P2 enhancer
and even-skipped promoter in our reporter construct, which leads to the fluorescent labeling
of sites of active transcription in living embryos (Fig. 3G and H; Movie S3). The fluorescence
intensity of each MS2 spot is proportional to the number of actively transcribing RNAP
molecules (Garcia et al. 2013b). In order to quantify the transcriptional activity reported by
MS2, we measured the mean MS2 spot fluorescence over nuclei in a narrow spatial window
(Fig. 3I (Eck et al. 2020; Garcia et al. 2013b). To measure the initial rate of RNAP loading, we



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 24

obtained the slope of the initial rise in the number of actively transcribing RNAP molecules
over the same time window used to average input transcription factor concentration (Fig. 3I,
brown line). The resulting RNAP loading rate plotted over the anterior-posterior axis is in
qualitative agreement with the classic pattern driven by the hunchback P2 minimal enhancer
(Fig. 3J; ???).

While we chose the initial rate of transcription as the experimental measurable to confront
against our model predictions, the MS2 technique can also report on other dynamical features
of transcription such as the time window over which transcription occurs and the fraction
of loci that engage in transcription at any point over the nuclear cycle. While these two
quantities have been shown to be relevant in shaping gene expression patterns in other
regulatory contexts (Dufourt et al. 2018; Eck et al. 2020; Garcia et al. 2013b; Lammers et al.
2020; Reimer et al. 2021), we found that the transcription time window was not significantly
regulated in the presence of Runt. As described in Section S8 , we did find some modulation of
the fraction of transcriptionally engaged loci for a subset of our synthetic enhancer constructs
but, as we could not detect a clear trend in how this fraction of active loci was modulated,
we did not pursue a theoretical dissection of the control of this quantity by Runt.

Enhancer sequence dictates unrepressed transcription rates by
determining RNAP-promoter interactions

A major assumption of our theoretical approach is that the model parameters obtained from
simple regulatory architectures can be used as inputs for more complex constructs. For
instance, we assume that the Runt-independent model parameters for Bicoid and RNAP
action—Kb, ωbp, p and R (Fig. 2A)—are conserved for all constructs containing Runt binding
sites regardless of their number and placement in the enhancer. If model parameters can
be shared across constructs, then our model should predict the same profile for the rate of
transcription across all synthetic enhancer constructs.

To test this assumption, we measured the initial rate of RNAP loading in all of our
reporter constructs, in runt null embryos (Materials and Methods). Notably, unrepressed
transcription rates varied significantly across synthetic enhancers (Fig. 5A). For example,
despite no Runt being present, the [001] construct had almost twice the unrepressed rate of
[000] .

This large construct-to-construct variability in unrepressed transcription rates likely
originates from the Runt binding site sequences interfering with some combination of Bicoid
and RNAP function. To uncover the mechanistic effect of these Runt binding sites sequences
on unrepressed activity, we sought to determine which parameters in our thermodynamic
model varied across constructs. In the absence of Runt repressor, only four states remain
corresponding to the two top rows of Figure 2A. In this limit, the predicted rate of transcription
is given by

Rate = R
p+ b6 p ωbp

1 + p+ b6 + b6 p ωbp
, (3)
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where we have invoked the same parameters as in Equation 2.
To obtain the model parameters for each construct measured in Figure 5A, we used

the Bayesian inference technique of Markov Chain Monte Carlo (MCMC) sampling that
has been widely used for inferring the biophysical parameters from theoretical models (???;
Supplementary Section S4 ). A representative comparison of the MCMC fit to the experimental
data reveals good agreement between theory and experiment (Fig. 5B). MCMC sampling also
gives the distribution of the posterior probability for each parameter as well as their cross-
correlation (Fig. 5C). These corner plots reveal relatively unimodal posterior distributions,
suggesting that a unique set of parameters can explain the data.

Note that, while the Bicoid dissociation constant Kb and the Bicoid-RNAP interaction
term ωbp remain largely unchanged regardless of enhancer sequence, there is considerable
variability in the inferred mean RNAP-dependent parameters p and R (Fig. 5D). This
variability can be further quantified by examining the coefficient of variation,

CV =
σ

µ
, (4)

where σ and µ are the standard deviation and the mean of each parameter, respectively,
calculated over all constructs. The coefficients of variation for the RNAP and promoter-
dependent parameters are much higher than those for Bicoid-dependent parameters (≈ 40%
versus < 10%; Fig. 5E). This suggests that the variability in unrepressed transcription rates
due to the presence of Runt binding sites is due to differences in the behavior of RNAP at
the promoter rather than differences in Bicoid binding or activation being. As a result, as we
consider increasingly more complex regulatory architectures, each construct will necessitate its
own specific Bicoid- and RNAP-dependent parameters as inferred in Figure 5D. However, we
will conserve Runt-dependent parameters as we consider increasingly more complex constructs
featuring more Runt binding sites.

The thermodynamic model recapitulates repression by one Runt
binding site

Next, we asked whether our model recapitulates gene expression for the hunchback P2 enhancer
with a one-Runt binding site in the presence of Runt repressor as predicted by Equation 2.
We posited that, since the binding site sequence remains unaltered throughout our constructs
(Fig. S9), the value of the Runt dissociation constant Kr would also remain unchanged across
these enhancers regardless of Runt binding site position; however, we assumed that, as the
distance between Runt and the promoter varied, so could the Runt-RNAP interaction term
ωrp.

We measured the initial rate of transcription along the embryo for all our constructs
containing one Runt binding site in the presence of Runt protein. We then used MCMC
sampling to infer the Runt-dependent parameters Kr and ωrp for each of these constructs
while retaining the mean values of Runt-independent parameters (Kb, ωbp, p, and R) obtained
from the experiments performed in the absence of Runt (Fig. 5). The resulting MCMC fits



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 26

show significant agreement with the experimental data (Fig. 6A), confirming that, within our
model, the same dissociation constant Kr can be used for all Runt binding sites regardless of
their position within the enhancer. Further, the corner plot yielded a unimodal distribution
of posterior probability of the inferred parameters (Fig. 6B), indicating the existence of a
unique set of most-likely model parameters.

The observed trend in the Runt-RNAP interaction captured by ωrp qualitatively agrees
with the “direct repression” model. Specifically, because the model assumes that Runt
interacts directly with RNAP, it predicts that, the farther apart Runt and the promoter are,
the lower this interaction should be (Gray, Szymanski, and Levine 1994). In agreement with
this prediction, the mean value of ωrp obtained from our fits changes from high repression
(ωrp ≈ 0.1) in the [001] construct to almost no repression (ωrp ≈ 1) in the [100] construct
as the Runt site is moved away from the promoter (Fig. 6C). Thus, the direct repression
model recapitulates repression by a single Runt molecule using the the same dissociation
constant regardless of Runt binding site position, and displays the expected dependence of
the Runt-RNAP interaction term on the distance between these two molecules.

Predicting repression by two-Runt binding sites requires both
Runt-Runt and Runt-Runt-RNAP higher-order cooperativity

Could the parameters inferred in the preceding section be used to accurately predict repression
in the presence of two Runt binding sites? An extra Runt binding site enables new protein-
protein interactions between Runt molecules and RNAP (Fig. 7A). First, we considered
individual Runt-RNAP interaction terms, ωrp1 and ωrp2, whose values were already inferred
from the one-Runt binding site constructs as ωrp[001] , ωrp[010] , and ωrp[100] (Fig. 6D). Second, we
considered protein-protein interactions (positive or negative) between two Runt molecules, ωrr.
Third, following recent studies of Bicoid activation of the hunchback P2 minimal enhancer
(Estrada et al. 2016b; Park et al. 2019), we also posited the existence of simultaneous Runt-
Runt-RNAP higher-order cooperativity ωrrp. Given these different cooperativities, and as
shown in detail in Figure S16B, the predicted rate of transcription is

Rate =R
(
p+ b6 p ωbp + r p (ωrp1 + ωrp2) + r2 p ωrp1ωrp2ωrrωrrp + b6 r p ωbp (ωrp1 + ωrp2)+

(5)

b6 r2 p ωbpωrp1ωrp2ωrrωrrp
) (

1 + b6 (1 + 2r + p ωbp) + 2r + p+ r p (ωrp1 + ωrp2) + r2 (ωrr

+p ωrp1ωrp2ωrrωrrp) + b6 r p ωbp (ωrp1 + ωrp2) + b6 r2 ωrr + b6 r2 p ωbpωrp1ωrp2ωrrωrrp
)−1

.

Despite the complexity of this equation, note that its only free parameters are the cooperativity
parameters ωrr and ωrrp. As a result, we sought to determine whether the Runt-RNAP
cooperativity terms, ωrp1 and ωrp2, are sufficient to predict repression by two Runt molecules,
or whether the cooperativities given by ωrr and ωrrp also need to be invoked.

Consider the simplest case where two Runt molecules bind and interact with RNAP
independently from each other. Here, ωrr = 1, and ωrrp = 1. This model has no free
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parameters; all parameters have already been determined by the inferences performed on
Runt null datasets and one-Runt binding site constructs (Fig. 5 and Fig. 6, respectively).
While there was some agreement between the model and the data for the [101] construct
(Fig. 7B, center), significant deviations from the prediction occurred for the other two
constructs. These deviations ranged from less repression than predicted for [011] (Fig. 7B,
left) to more repression than predicted for [110] (Fig. 7B, right). Thus, this simple model of
Runt independent repression is not supported by the experimental data, suggesting additional
regulatory interactions between the Runt molecules and RNAP.

A first alternative to the independent repression model is the consideration of Runt-Runt
cooperative interactions such as those that characterize many transcription factors (Estrada
et al. 2016a; He et al. 2010; Park et al. 2019; Ptashne 2004; Segal et al. 2008). However,
adding a Runt-Runt cooperativity term, ωrr, was insufficient to account for the observed
regulatory behavior (Fig. 7C; Fig. S13 more thoroughly analyzes this discrepancy). A second
alternative consists in incorporating a Runt-Runt-RNAP higher-order cooperativity term,
ωrrp. While the best MCMC fits revealed significant improvements in predictive power,
important deviations still existed for the [110] construct (Fig. 7D, right; Fig. S15 more
thoroughly analyzes the MCMC inference results).

Not surprisingly, given the agreement of the higher-order cooperativity model with the data
for the [011] and [101] constructs (Fig. 7D, left and center), this agreement persisted when both
Runt-Runt cooperativity and Runt-Runt-RNAP higher-order cooperativity were considered
(Fig. 7E, left and center). However, including these two cooperativities also significantly
improved the ability of model at explaining the [110] experimental data (Fig. 7E, right).
Thus, while higher-order cooperativity is the main interaction necessary to quantitatively
describe repression by two Runt repressors, pairwise cooperativity also needs to be invoked.
This conclusion is supported by our MCMC sampling: posterior distributions for the Runt-
Runt cooperativity term are not well constrained for the [011] or [101] constructs, whereas
Runt-Runt-RNAP higher-order cooperativity is constrained very well across all constructs
(Fig. S16D; Fig. S16 more thoroughly analyzes the MCMC inference results). As a result,
accounting for both pairwise and higher order cooperativity is necessary for the model to
explain the observed rate of RNAP loading of all three constructs.

The higher-order cooperativity revealed by our analysis can lead to more or less repression
than predicted by the independent repression model, motivating us to determine the magnitude
of this cooperativity across constructs. To make this possible, we inferred the magnitude of
the Runt-Runt cooperativity ωrr and the Runt-Runt-RNAP higher-order cooperativity ωrrp.
As shown in Figure 7F, depending on the spatial arrangement of Runt binding sites, the
Runt-Runt-RNAP higher-order cooperativity term ωrrp can be below or above 1. Note that,
in doing these fits, we first set the Runt-Runt cooperativity, ωrr, values for [011] and [101] to
1 because, as we had demonstrated in Figure 7D, only the higher-order Runt-Runt-RNAP
cooperativity was necessary. Thus, different placements of Runt molecules on the enhancer
lead to distinct higher-order interactions with RNAP which, in turn, can result in less or
more repression than predicted by a model where Runt molecules act independently of each
other.
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Repression by three-Runt binding sites also requires higher-order
cooperativity

Building on our success in deploying thermodynamic models to explain repression by one-
and two-Runt binding sites, we investigated repression by three-Runt binding sites. First,
we accounted for pairwise interactions between Runt and RNAP, which were inferred from
measurements of the one-Runt binding site constructs (Fig. 1B), yielding ωrp[001] , ωrp[010] , and
ωrp[100] from [001], [010], and [100]. Second, we considered pairwise protein-protein interactions
between Runt molecules (Fig. 1C), which were inferred from the two-Runt binding sites
constructs through the parameters ωrr[011] , ωrr[101] , and ωrr[110] . Finally, we incorporated Runt-
Runt-RNAP higher-order cooperativity acquired from the two-Runt binding sites constructs
(Fig. 1C) captured by ωrrp[011] , ωrrp[101] , and ωrrp[110] . we tested our model predictions using
a similar scheme to that described in the previous section: we generated a parameter-free
prediction for the initial rate of transcription by using the inferred parameters from the one-
and two-Runt binding sites constructs, including the pairwise and higher-order interactions
described above.

Figure 8A shows the resulting parameter-free prediction. As seen in the figure, our model
could not qualitatively recapitulate the experimental data as it predicted too much repression.
Such disagreement suggests that additional regulatory interactions are at play. Building
on the need for higher-order cooperativity in the two-Runt binding site case, we propose
the existence of higher order cooperativities necessary to describe regulation by three Runt
molecules—Runt-Runt-Runt higher-order cooperativity, ωrrr and Runt-Runt-Runt-RNAP
higher-order cooperativity, ωrrrp (Fig. 1D). The resulting expression for the predicted rate of
transcription in the presence of all these sources of cooperativity is shown in Equation ??
in Section S2 . Importantly, we did not try to find the optimal value for these higher-order
cooprativities through fitting. Instead, our objective was to determine whether the addition
of any of these new parameters was sufficient to explain our data. When including only a
Runt-Runt-Runt-RNAP higher-order cooperativity parameter of ωrrrp = 2300, our model
recapitulated the experimental data (Fig. 8B). Thus, our results further support the view in
which the addition of Runt repressor binding motifs in an enhancer cannot be explained by a
simple additive interaction between each bound repressor. Rather, their combinatorial effect
must be taken into account.
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Figure 2: Thermodynamic model of transcriptional regulation by Bicoid activator
and Runt repressor. (A) States and statistical weights for the regulation of
hunchback P2 with one Runt binding site in the limit of strong Bicoid-Bicoid
cooperativity. Here, we use the dimensionless parameters b = [Bicoid]/Kb, r =
[Runt]/Kr, and p = [RNAP ]/Kp, where Kb, Kr, and Kp are the dissociation
constants of Bicoid, Runt, and RNAP, respectively. ωbp represents the cooperativity
between Bicoid and RNAP, ωrp captures the cooperativity between Runt and
RNAP, and R represents the rate of transcription when the promoter is occupied
by RNAP. The top two rows correspond to states where only Bicoid and RNAP
act, while the bottom two rows represent repression by Runt. (B) Representative
prediction of RNAP loading rate as a function of Bicoid and Runt concentrations
for ωbp = 3, ωrp = 0.001, p = 0.001, R = 1(AU/min).



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 30

0 10 20 30 40 50100

150

200

250

300

R
un

t (
A

U
)

male
female

A

B D

C

nc13 nc14
time window

eGFP-Bicoid LlamaTag-Runt

time (min)

decreasing 

pr
ed

ic
te

d 
R

N
A

P
 

lo
ad

in
g 

ra
te

 (A
U

/m
in

)

nascent RNA
fused GFP

MS2 coat
protein

24x MS2 stem loops

nascent RNA
nuclei

G

[tr
an

sc
rip

tio
n 

fa
ct

or
] (

A
U

)

30 40 50 60 70 80 2020 30 40 50 60 70 80
position along the embryo

 (% embryo length)

0

200

400

600

Runt (+)
Runt (-)

TON

initial RNAP
loading rate

0 10 20 30 40
 time into nc14 (min)

0
200
400
600
800

1000
1200

R
N

A
P

 n
um

be
r (

A
U

)

B
ic

oi
d 

(A
U

)

0 10 20 30 40 50
time (min)

0

100

200

300

400

500

Bicoid
Runt

ωrp

H

I
nc13 nc14

time window time window

E F J

position along the embryo
 (% embryo length)

input transcription factor concentration dynamics output transcriptional dynamics
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rate of transcription to test model predictions. See caption in the next page.
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Figure 4: Measurement of input transcription factor concentrations and output
rate of transcription to test model predictions. (A) Snapshot of an embryo
expressing eGFP-Bicoid spanning 20-60% of the embryo length. (For a full time-
lapse movie, see Movie S1.) (B) Bicoid nuclear fluorescence dynamics taken at
40% of the embryo. (C) Snapshot of an embryo expressing eGFP:LlamaTag-
Runt spanning 20-60% of the embryo length. (For a full time-lapse movie, see
Movie S2.) (D) Runt nuclear concentration dynamics in males and females. (E)
Measured transcription factor concentration profiles along the anterior-posterior
axis of the embryo. The concentration profiles are averaged over the gray shaded
regions shown in (B) and (D) which corresponds to a time window between 5
and 10 minutes into nc14. (F) Predicted RNAP loading rate for hunchback
P2 with one Runt binding site over the anterior-posterior axis generated for a
reasonable set of model parameters Kb = 30 AU, Kr = 100 AU, ωbp = 100,
p = 0.001, and R = 1 AU/min for varying values of the Runt-RNAP interaction
term ωrp = [10−2, 1]. (G) Schematic of the MS2 system where 24 repeats of
the MS2 loop sequence are inserted downstream of the promoter followed by the
lacZ gene. The MS2 coat protein (MCP) fused to GFP binds the MS2 loops.
(H) Example snapshot of an embryo expressing MCP-GFP and Histone-RFP.
Green spots to active transcriptional loci and red circles correspond to nuclei.
Spot intensities are proportional to the number of actively transcribing RNAP
molecules. (I) Representative MS2 fluorescence averaged over a narrow window
(2.5% of the embryo length) along the anterior-posterior axis of the embryo. The
initial rate of RNAP loading was obtained by fitting a line (brown) to the initial
rise of the data. (J) Measured initial rate of RNAP loading (over a spatial bin
of 2.5% of the embryo length) across the anterior-posterior axis of the embryo,
from the hunchback P2 enhancer. (B, D, E, and J, error bars represent standard
error of the mean over ≥ 3 embryos; I, error bars represent standard error of the
mean over the spatial averaging corresponding to roughly ten nuclei; A, C, and H,
white scale bars represent 20 µm.)
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Figure 5: Enchancer-to-enhancer variability in the unrepressed transcription level
stems from unique RNAP-dependent parameters. (A) Measured initial rates of
RNAP loading across the anterior-posterior axis of the embryo for all synthetic
enhancer constructs in the absence of Runt protein. (B) Representative best
MCMC fit and (C) associated corner plot for the [001] construct in the runt null
background. (D) Inferred model parameters for all synthetic enhancers in the
absence of Runt repressor. (E) Coefficient of variation of inferred parameters.
(B, C, error bars represent standard error of the mean over ¿3 embryos; E, error
bars represent standard deviations calculated from the MCMC posterior chains;
F, error bars are calculated by propagating the standard deviation of individual
parameters from their MCMC chains.)
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two-Runt binding sites under different models of cooperativity. See caption in the
next page.
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Figure 7: Prediction for the transcription initiation rate of hunchback P2 with two-
Runt binding sites under different models of cooperativity. (A) Direct repression
model for hunchback P2 with two-Runt binding sites featuring Runt-RNAP
interaction terms given by ωrp1 and ωrp2, Runt-Runt cooperativity captured by
ωrr, and Runt-Runt-RNAP higher-order cooperativity accounted for by ωrrp. (B)
Parameter-free model prediction for two-Runt binding sites when the two Runt
molecules bind the DNA and interact with RNAP independently of each other.
(C,D,E) Best MCMC fits for the data for two-Runt binding site constructs
for models with various combinations of cooperativity parameters. (C) Model
incorporating Runt-Runt cooperativity. (D) Model incorporating Runt-Runt-
RNAP higher-order cooperativity. (E) Model accounting for both Runt-Runt
cooperativity and Runt-Runt-RNAP higher-order cooperativity. (F) Fixed or
inferred parameters ωrr and ωrrp for all two-Runt binding site constructs. Note
that ωrr is fixed to 1 for [011] and [101] constructs due to the fact that no Runt-
Runt cooperativity is necessary to quantitatively describe the expression driven
by these constructs; only the [110] construct is used to infer both rr and ωrrp.
The horizontal line of ω = 1 denotes the case of no cooperativity other than
Runt-RNAP cooperativity, ωrp. (B-E, data points represent mean and standard
error of the mean over > 3 embryos; F, data and error bars represent the mean
and standard deviation of the posterior chain, while the standard deviation for
the fixed ωrr is set to 0.)
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Figure 8: Prediction for hunchback P2 with three-Runt binding sites and multiple
sources of cooperativity. (A) Prediction using previously inferred Runt-RNAP,
Runt-Runt, and Runt-Runt-RNAP cooperativity parameters. (B) Prediction
as in (A), but incorporating an additional Runt-Runt-Runt-RNAP higher-order
cooperativity parameter of ωrrrp = 2300, corresponding to roughly 8 kBT of free
energy. (Data points represent mean and standard error of the mean over ¿3
embryos.)
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3 Discussion

One of the challenges in generating predictions to probe thermodynamic models is that,
often, these models are contrasted against experimental data from endogenous regulatory
regions (Park et al. 2019; Sayal et al. 2016; Segal et al. 2008). Here, the presence of multiple
binding sites for several transcription factors—known and unknown (Vincent, Estrada, and
DePace 2016)—leads to models with a combinatorial explosion of free parameters. Like the
proverbial elephant that can be fit with four parameters (Mayer, Khairy, and Howard 2010),
experiments with endogenous enhancers typically contain enough parameters to render it
possible to explain away apparent disagreement between theory and experiment (Garcia et al.
2020).

To close this gap, synthetic minimal enhancers have emerged as an attractive alternative
to endogenous enhancers (Crocker, Ilsley, and Stern 2016; Fakhouri et al. 2010; Park et al.
2019; Sayal et al. 2016). Here, the presence of only a handful of transcription factor binding
sites and the ability to systematically control their placement and affinity dramatically reduce
the number of free parameters in the model (Garcia et al. 2020). Inferences performed on
these synthetic constructs could then inform model parameters that would make it possible
to quantitatively predict transcriptional output of de novo enhancers (Sayal et al. 2016).

Building on these works, in the present investigation we sought to predict how the Runt
repressor, which counteracts activation by Bicoid along the anterior-posterior axis of the
early fly embryo (Chen et al. 2012), dictates the output level of transcription. To dissect
repression, a strong and detectable level of expression in the absence of the repressor was
needed, prompting us to choose a simple system of synthetic enhancers based on the strong
hunchback P2 minimal enhancer (Chen et al. 2012; Garcia et al. 2013b). This enhancer has
been carefully dissected in terms of its activator Bicoid and the pioneer-like transcription
factor Zelda in the early embryo (Driever and Nusslein-Volhard 1988; Eck et al. 2020; Garcia
et al. 2013b; Park et al. 2019), making it easier to identify neutral sequences within the
enhancer for introducing Runt binding sites (Chen et al. 2012). Further, when inserted into
hunchback P2, Runt binding site number determines the level of transcription incrementally
(Chen et al. 2012). Thus, hunchback P2 provided an ideal scaffold onto which to quantitatively
and systematically dissect repression by Runt.

Previous studies using synthetic enhancers relied on measurements of input transcription
factor patterns using fluorescence immunostaining, and of cytoplasmic mRNA patterns
using fluorescence in situ hybridization (FISH) or single-molecule FISH. These fixed-tissue
techniques have key differences from the live-imaging approach adopted here. First, given the
dynamical nature of development, it is necessary to know when data were acquired. Doing so
with high temporal resolution using FISH is challenging, although it can be accomplished to
some degree by synchronizing embryo deposition before fixation (Park et al. 2019). Second,
while most transcription factors directly dictate the rate of RNAP loading, and hence the
rate of mRNA production (Eck et al. 2020; Garcia et al. 2013b; Spitz and Furlong 2012),
typical FISH measurements report on the accumulated mRNA in the cytoplasm, which is a
convolution of all processes of the transcription cycle—initiation, elongation, and termination
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(Alberts 2015; Liu et al. 2021)—as well as mRNA nuclear export dynamics, diffusion, and
degradation. These processes could be modulated in space and time, potentially confounding
measurements. Here, we overcame these challenges by using the MS2 technique to precisely
time our embryos and acquire the rate of transcription initiation.

Interestingly, our initial dissection of constructs containing various combinations of Runt
binding sites, but in the absence of Runt protein, revealed that unrepressed gene expression
levels depend strongly on the number and placement of the binding sites within the enhancer
(Fig. 5A). These results challenge previous assumptions that unregulated gene expression
levels would stay unchanged as enhancer architecture is modulated (Barr et al. 2017; Fakhouri
et al. 2010; Sayal et al. 2016), but they are in accordance with observations in bacterial systems
(Garcia et al. 2012). As a result, our measurements call for accounting for unregulated levels
in future quantitative dissections of eukaryotic enhancers, or to study relative magnitudes such
as the fold-change in gene expression that has driven the dissection of bacterial transcriptional
regulation (Phillips et al. 2019).

Once we accounted for this difference in unrepressed gene expression levels, we determined
that the repression profiles obtained for constructs bearing one-Runt binding site could
be described by a simple thermodynamic model (Fig. 2). Specifically, we showed that the
same dissociation constant described Runt binding regardless of the position of its binding
site along the enhancer (Fig. 6A). Further, the Runt-RNAP interaction terms describing
repressor action decreased as the binding site was placed farther from the promoter (Fig. 6C),
qualitatively consistent with a “direct repression” model in which Runt needs to physically
contact RNAP in order to realize its function (Gray, Szymanski, and Levine 1994; Hewitt
et al. 1999; Jaynes and O’Farrell 1991).

Although our model recapitulated repression by a one-Runt binding site, the inferred
parameters were insufficient to quantitatively predict repression by two-Runt binding sites
(Fig. S6B). These results suggest that multiple repressors do not act independently of each
other. Instead, new parameters describing both Runt-Runt cooperativity and Runt-Runt-
RNAP higher-order cooperativity had to be incorporated into our models to quantitatively
describe Runt action in these constructs (Fig. S6C-E).

While we have long known about protein-protein cooperative interactions (Ackers, Johnson,
and Shea 1982), in the last few years it has become clear that higher-order cooperativity can
also be at play in eukaryotic systems (Biddle et al. 2020; Estrada et al. 2016b; Park et al. 2019)
as well as in bacteria (Dodd et al. 2004) and archaea (Peeters et al. 2013). The existence of
this higher-order cooperativity suggests that, to predict gene expression from DNA sequence,
it might be necessary to build an understanding of the many simultaneous interactions that
precede transcriptional initiation. Our discovery of higher-order cooperativity in the action
of multiple Runt molecules opens up new avenues to uncover the molecular nature of this
phenomenon. For example, following an approach developed in (Park et al. 2019), it could be
possible to determine whether and how these cooperativity parameters are modulated upon
perturbation of molecular players such as the Groucho or CtBP co-repressors, Big-brother, a
co-factor facilitating the Runt binding to DNA, and components of the mediator complex
(Courey and Jia 2001; Park et al. 2019; Walrad, Hang, and Gergena 2011). Indeed, (Park
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et al. 2019) recently showed that co-activators and mediator units are involved in dictating
the magnitude of similar higher-order cooperativity terms in activation by Bicoid. Thus, our
thermodynamic models provide a lens through which to dissect the molecular underpinnings
of Runt interactions with itself and with the transcriptional machinery.

Notably, the need to invoke cooperative interactions as more Runt binding sites are being
added opposes our goal of predicting complex regulatory architectures from experiments
with simpler architectures without the need to invoke new parameters. However, it will be
interesting to determine whether more parameters need to be invoked as the number of Runt
binding sites increases beyond three, or whether the parameters already inferred are sufficient
to endow our models with parameter-free predictive power.

Importantly, while our model adopted a “direct repression” view of the mechanism of
Runt action, other mechanisms of repression such as “quenching” could also describe the data.
While all such models call for higher-order cooperativity to describe the data (Supplementary
Section S5 ), our data cannot differentiate among those models. Thus, we did not attempt to
distinguish different molecular mechanisms of Runt transcriptional repression.

Finally, even though the work presented here has relied exclusively on thermodynamic
models, it is important to note that a much more general approach based on non-equilibrium
models could also be appropriate for describing our data. Indeed, an increasing body of
work over the last few years has provided evidence for the necessity of invoking these more
complex models in the context of transcriptional regulation in eukaryotes (Eck et al. 2020;
Estrada et al. 2016b; Li et al. 2018; Park et al. 2019). In future work, it will be interesting to
determine whether, when our data is viewed through the lens of these non-equilibrium models,
invoking higher-order cooperativity is still necessary or whether, instead, simple pairwise
protein-protein interactions suffice to reach an agreement between theory and experiment.

Overall, the work presented here establishes a framework for systematically and quantita-
tively studying repression in the early fly embryo. As showcased here, synthetic enhancers
based on the hunchback P2 minimal enhancer constitute an ideal scaffold for the study of
other repressors in early fly embryos. For example, we envision that this approach could
be used to dissect repression by other transcription factors such as Capicua or Krüppel
(Chen et al. 2012; Löhr et al. 2009; Papagianni et al. 2018; Sauer and Jackle 1991), and to
probe observations of multiple repressors working together to oppose activation by Bicoid in
establishing gene expression patterns along the anterior-posterior axis (Briscoe and Small
2015; Chen et al. 2012). We anticipate that a similar approach could be used to dissect
repression along the dorso-ventral axis of the embryo, by for example, adding repressor
binding sites to well-established reporter constructs that are only regulated by the Dorsal
activator (Jiang and Levine 1993). Critically, we need to understand not only how one
species of repressor works in concert with an activator, but also how multiple species of
repressors work together as a system. The approach presented here provides a way forward for
predictively understanding the complex gene regulatory network that shapes gene expression
patterns in the early fly embryo.
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4 Materials and Methods

Generation of synthetic enhancers with MS2 reporters

The synthetic enhancer constructs used in this study are based off of ?. In summary, the
hunchback P2 enhancer was used as a scaffold to introduce Runt binding sites at different
positions that are thought to be neutral (i.e. these Runt binding sites do not interfere with any
other obvious binding sites for other transcription factors in the early Drosophila embryos as
shown in Fig. S9). For the three positions chosen to introduce Runt binding sites in ?, the Gene
Synthesis service from Genscript was used to generate synthetic enhancers with all possible
configurations of zero-, one-, two-, and three-Runt binding sites in hunchback P2 as shown in
Figure 1A. The enhancer sequences were placed into the original plasmid pIB backbone (Chen
et al. 2012) using the Gene Fragment Synthesis service in Genscript, followed by the even-
skipped promoter, and 24 repeats of MS2v5 loops (Wu et al. 2015), the lacZ coding sequence,
and the α-Tubulin 3’UTR sequence (Chen et al. 2012). These plasmids were injected into the
38F1 landing site using the RMCE method (Bateman, Lee, and Wu 2006) by BestGene Inc.
Flies were screened by selecting for white eye color and made homozygous. The orientation
of the insertion was determined by genomic PCR to ensure a consistent orientation across all
of our constructs. Specifically, we used two sets of primers that each amplified one of these
two possible orientations: “Upward”, where the forward primer binds to a genomic location
outside of 38F1 (TTCTAGTTCCAGTGAAATCCAAGCA) and the reverse primer binds
to a location in our reporter transgene (ACGCCAGGGTTTTCCCAG), and “Downward”,
where the forward primer remains the same as the “Upward” set and the reverse primer binds
to a location in our reporter transgene (CTCTGTTCTCGCTATTATTCCAACC) when the
insertion is the opposite orientation to the “Upward” orientation. As a result, only amplicons
from either one of the orientations of insertion in the 38F1 landing site can be obtained. We
chose the “Downward” orientation for all our constructs.

CRISPR-Cas9 knock-in of the green LlamaTag in the endogenous
runt locus

We used CRISPR-Cas9 mediated Homology Directed Repair (HDR) to insert the LlamaTag
against eGFP into the N-terminal of the runt endogenous locus (Bothma et al. 2018; Gratz
et al. 2015). The donor plasmid was constructed by stitching individual fragments—PCR
amplified left/right homology arms from the endogenous runt locus roughly 1 kb in length
each, LlamaTag, and pHD-scarless vector—using Gibson assembly (Gratz et al. 2015). The
PAM sites in the donor plasmid were mutated such that the Cas9 only cleaved the endogenous
loci, not the donor plasmid, without changing the amino acid sequence of the Runt protein.
The final donor plasmid contained the 3xP3-dsRed marker such that dsRed is expressed in the
fly eye and ocelli for screening. Positive transformant flies were screened using a fluorescence
dissection scope and set up for single fly crosses to establish individual lines that were then
verified with PCR amplification and Sanger sequencing (UC Berkeley Sequencing Facility).



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 41

Importantly, this llamaTag-runt allele rescues development to adulthood as a homozygous.
Thus we concluded that the LlamaTag-Runt allele can be used to monitor the behavior of
endogenous Runt protein.

Fly strains

Transcription from the synthetic enhancer reporter constructs was measured by using embryos
from crossing yw;his2av-mRFP1;MCP-eGFP(2) females and yw;synthetic enhancer-MS2v5-
lacZ;+ males as described in (Eck et al. 2020; Garcia et al. 2013b; Lammers et al. 2020).

eGFP-Bicoid measurements were performed using the fly line from (Gregor et al. 2007b).
The LlamaTag-Runt measurements were done using the fly line LlamaTag-Runt; +; vasa-
eGFP, His2Av-iRFP illustrated in Table 2. Briefly, eGFP was supplied by a vasa mater-
nal driver. Females carrying both the LlamaTag-Runt and the vasa-driven eGFP were
crossed with males carrying the LlamaTag-Runt, the progeny from this cross were imaged
and then recovered to determine the embryo’s sex using PCR. PCR was run with three
sets of primers: Y chr1 (Forward: CGATCCAGCCCAATCTCTCATATCACTA, Reverse:
ATCGTCGGTAATGTGTCCTCCGTAATTT), Y chr2 (Forward: AACGTAACCTAGTCG-
GATTGCAAATGGT, Reverse: GAGGCGTACAATTTCCTTTCTCATGTCA), and Auto1
(Forward: GATTCGATGCACACTCACATTCTTCTCC , Reverse: GCTCAGCGCGAAAC-
TAACATGAAAAACT). Two of primer sets (Y chr1 and Y chr2) bind to the Y chromosome
while the other one (Auto1) binds to the autosome and constitutes a positive control (Lott
et al. 2011).

To generate the embryos that are zygotic null for the runt allele, we used a fly cross scheme
consisting of two crosses. In the first generation, we crossed LlamaTag-Runt;+;+ males with
run3/FM6;+;MCP-eGFP(4F),his2av-mRFP1 females. run3 is the null allele for runt, missing
around 5 kb including the coding sequence of the runt locus (Chen et al. 2012; Gergen and
Butler 1988). The MCP-eGFP(4F) transgene expresses approximately twice the amount
of MCP protein than the MCP-eGFP(2) (Eck et al. 2020; Garcia et al. 2013b) and thus
results in similar levels of MCP to those of MCP-eGFP(2) in the trans-heterozygotes. The
female progeny from this cross, LlamaTag-Runt/run3;+;MCP-eGFP(4F),his2av-mRFP1/+
was then crossed with males whose genotype was LlamaTag-Runt/Y;synthetic enhancer-
MS2v5-lacZ;+ to produce the embryos that we used for live imaging. The resulting embryos
carried maternally supplied MCP-eGFP and His-RFP for visualization of nascent transcripts
and nuclei. The X chromosome contained LlamaTag-Runt allele or run3 null allele. We could
differentiate between these two genotypes because, when the embryo had the Runt allele, a
stripe pattern would appear in late nc14. We imaged all embryos until late nc14 to make
sure that we were capturing the nulls.

Sample preparation and data collection

Sample preparation was done following the protocols described in ?. Briefly, embryos
were collected, dechorionated with bleach for 1-2 minutes, and then mounted between a
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semipermeable membrane (Lumox film, Starstedt, Germany) and a coverslip while embedded
in Halocarbon 27 oil (Sigma-Aldrich). Live imaging was performed using a Leica SP8 scanning
confocal microscope, a White Light Laser and HyD dectectors (Leica Microsystems, Biberach,
Germany). Imaging settings for the MS2 experiments with the presence of MCP-eGFP and
Histone-RFP were the same as in ? except that we used 1024x245 (pixels) format to image
a wider field of view along the anterior-posterior axis. The settings for the eGFP-Bicoid
measurements were the same as described in ?.

The settings for the eGFP:LlamaTag-Runt measurements were similar to that of eGFP-
Bicoid except for the following. To increase our imaging throughput, we utilized the “Mark and
Position” functionality in the LASX software (Leica SP8) to image 5-6 embryos simultaneously.
To account for the decreased time resolution, we lowered the z-stack size from 10 µm to
2.5 µm, keeping the 0.5 µm z-step. By doing this, we could maintain 1 minute frame
rate for each imaged embryo. Additionally, these flies expressed Histone-iRFP, instead of
Histone-RFP as in ?, so that we used a 670 nm laser at 40 µW (measured at a 10x objective)
for excitation of the histone channel, and the HyD detector was set to a 680 nm-800 nm
spectral window.

Image Analysis

Images were analyzed using custom-written software (MATLAB, mRNA Dynamics Github
repository) following the protocol in ? and ?. Briefly, this procedure involved segmentation
and tracking of nuclei and transcription spots. First, segmentation and tracking of individual
nuclei were done using the histone channel as a nuclear mask. Second, segmentation of
each transcription spot was done based on its fluorescence intensity and existence over
multiple z-stacks. The intensity of each MCP-GFP transcriptional spot was calculated by
integrating pixel intensity values in a small window around the spot and subtracting the
background fluorescence measured outside of the active transcriptional locus. When there
was no detectable transcriptional activity, we assigned NaN values for the intensity. The
tracking of transcriptional spots was done by using the nuclear tracking and proximity of
transcriptional spots between consecutive time points. The nuclear protein fluorescence
intensities from the eGFP-Bicoid and LlamaTag-Runt fly lines, which we use as a proxy
for the protein nuclear concentration, were calculated as follows. Using the nuclear mask
generated from the histone channel, we performed the same nuclear segmentation and tracking
as described above for the MS2 spots. Then,for every z-section, we extracted the integrated
fluorescence over a 2µm diameter circle on the xy-plane centered on each nucleus. For each
nucleus, the recorded fluorescence corresponded to the z-position where the fluorescence
was maximal. This resulted in an average nuclear concentration as a function of time for
each single nucleus. These concentrations from individual nuclei were then averaged over
a narrow spatial window (2.5% of the embryo length) to generate the spatially averaged
protein concentration reported in the main text. For the eGFP:LlamaTag-Runt datasets,
we had to subtract the background eGFP fluorescence due to the presence of an unbound

https://github.com/GarciaLab/mRNADynamics
https://github.com/GarciaLab/mRNADynamics
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eGFP population (Bothma et al. 2018). We used the same protocol described in ? and in
the Supplementary Section S7 to extract this background.

Bayesian inference procedure: Markov Chain Monte Carlo
sampling

Parameter inference was done using the Markov Chain Monte Carlo (MCMC) method. We
used a well-established package MCMCstat that uses an adaptive MCMC algorithm (Haario,
Saksman, and Tamminen 2001; Haario et al. 2006). A detailed description on how we
performed the MCMC parameter inference, for example setting the priors and bounds for
parameters, is illustrated in Supplementary Section S4 .
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Biological Materials

Plasmids
Name (hyperlinked to Benchling) Function
pIB-hbP2-evePr-MS2v5-LacZ-Tub3UTR [000]-MS2v5 reporter con-

struct
pIB-hbP2+r1-far-evePr-MS2v5-LacZ-
Tub3UTR

[100]-MS2v5 reporter con-
struct

pIB-hbP2+r1-mid-evePr-MS2v5-LacZ-
Tub3UTR

[010]-MS2v5 reporter con-
struct

pIB-hbP2+r1-close-evePr-MS2v5-LacZ-
Tub3UTR

[001]-MS2v5 reporter con-
struct

pIB-hbP2+r2-2+3-evePr-MS2v5-LacZ-
Tub3UTR

[011]-MS2v5 reporter con-
struct

pIB-hbP2+r2-1+3-evePr-MS2v5-LacZ-
Tub3UTR

[101]-MS2v5 reporter con-
struct

pIB-hbP2+r2-1+2-evePr-MS2v5-LacZ-
Tub3UTR

[110]-MS2v5 reporter con-
struct

pIB-hbP2+r3-evePr-MS2v5-LacZ-Tub3UTR [111]-MS2v5 reporter con-
struct

pHD-scarless-LlamaTag-Runt Donor plasmid for LlamaTag-
Runt CRISPR knock-in fu-
sion for the N-terminal

pU6:3-gRNA(Runt-N-2) gRNA plasmid for LlamaTag-
Runt CRISPR knock-in fu-
sion for the N-terminal

pCasper-vasa-eGFP vasa maternal driver for ubiq-
uitous eGFP expression in the
early embryo

Table 1: List of plasmids used to create the transgenic fly lines used in this study.

https://benchling.com/s/seq-CtJkZj8b9fZOA44dt3S0
https://benchling.com/s/seq-khw23IpDT6gyRSF1CnOW
https://benchling.com/s/seq-khw23IpDT6gyRSF1CnOW
https://benchling.com/s/seq-hvNlApGeChDY5EJPTPea
https://benchling.com/s/seq-hvNlApGeChDY5EJPTPea
https://benchling.com/s/seq-ZiSKi0AeRx5mOjFSmwQN
https://benchling.com/s/seq-ZiSKi0AeRx5mOjFSmwQN
https://benchling.com/s/seq-3Lu8QomvXMx5P14pAqEi
https://benchling.com/s/seq-3Lu8QomvXMx5P14pAqEi
https://benchling.com/s/seq-Ix6xBOFhK3zUNbcMTO19
https://benchling.com/s/seq-Ix6xBOFhK3zUNbcMTO19
https://benchling.com/s/seq-VqdJoO9BfAM39fJvjkI6
https://benchling.com/s/seq-VqdJoO9BfAM39fJvjkI6
https://benchling.com/s/seq-xonwgLWdN9vNhNq2qidS
https://benchling.com/s/seq-xnIiriNyQU1FeZCyxOOy
https://benchling.com/s/ZtYYP9Gl
https://benchling.com/s/seq-9aUVfFh9tip3JtTTFHhi
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Fly lines
Genotype Use
LlamaTag-Runt; +; vasa-eGFP, His2Av-iRFP Visualize LlamaTagged

Runt protein and label
nuclei

LlamaTag-Runt; +; MCP-eGFP(4F), His2Av-
iRFP

Visualize LlamaTagged
Runt protein, nascent
transcripts and label
nuclei

run3/FM6; +; + Visualize LlamaTagged
Runt protein, nascent
transcripts and label
nuclei

yw; His2Av-mRFP; MCP-eGFP Females to label nascent
RNA and nuclei

yw; [000]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [100]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [010]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [001]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [011]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [101]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [110]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

yw; [111]-MS2v5 ; + Males carrying the MS2 re-
porter transgene

Table 2: List of fly lines used in this study and their experimental usage
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guidance and comments on our manuscript. This work was supported by the Burroughs
Wellcome Fund Career Award at the Scientific Interface, the Sloan Research Foundation,
the Human Frontiers Science Program, the Searle Scholars Program, the Shurl and Kay
Curci Foundation, the Hellman Foundation, the NIH Director’s New Innovator Award (DP2
OD024541-01), and NSF CAREER Award (1652236) to HGG, and a KFAS scholarship to
YJK.

S1 Derivation of the general thermodynamic model

for the hunchback P2 enhancer

In this section, we rederive the thermodynamic model presented in the main text, now without
the assumption of strong Bicoid-Bicoid cooperativity. The equilibrium thermodynamic
modeling framework that we used in this paper is described in more detail in ??.

We start by modeling the case of hunchback P2 without any Runt binding sites, which
is believed to have at least six Bicoid binding sites (Driever, Thoma, and Nusslein-Volhard
1989; Park et al. 2019). As shown by the states and weights presented in Figure S1A, in our
thermodynamic model, we assume that the six Bicoid binding sites have the same dissociation
constant given by Kb, and we posit that RNAP-promoter binding is governed by a dissociation
constant given by Kp. We also assume pairwise cooperativity between Bicoid molecules
given by ωb, and cooperativity between each Bicoid molecule and RNAP given by ωbp. For
simplicity, we will use the dimensionless parameters b = [Bicoid]/Kb and p = [RNAP ]/Kp,
where [Bicoid], and [RNAP ] are the concentrations of Bicoid and RNAP, respectively, and
Kb and Kp are their corresponding dissociation constants.

We factor the total partition function into two categories: Zb corresponding to states that
only have Bicoid bound, and Zbp describing states with both Bicoid and RNAP bound. Then
then calculate each component separately. The sum of microstates for Zb is

Zb = 1 + 6b+ 15b2ωb + · · ·+ b6ω5
b = 1 +

6∑
i=1

(
6

i

)
biωi−1

b . (S1)

Using the binomial theorem, we can simplify Equation S1 leading to

Zb = 1 +
6∑
i=1

(
6

i

)
biωi−1

b = 1 +
1

ωb

[
(1 + b ωb)

6 − 1
]
. (S2)
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Using the same logic, we obtain Zbp such that

Zbp =

(
p+ p

6∑
i=1

(
6

i

)
biωi−1

b ωibp

)
= p+

p

ωb

[
(1 + b ωb ωbp)

6 − 1
]
. (S3)

Using these two partition functions, we then calculate the probability of the promoter being
bound by RNAP, pbound as

Pbound =
Zbp

Zb + Zbp
=

p+ p
ωb

[(1 + b ωb ωbp)
6 − 1]

1 + 1
ωb

[(1 + b ωb)6 − 1] + p+ p
ωb

[(1 + b ωb ωbp)6 − 1]
. (S4)

Following recent work (Gregor et al. 2007b; Park et al. 2019), we now assume that
the Bicoid-Bicoid pairwise cooperativity is very strong (ωb � 1). We can then simplify
Equation S4 to obtain

Pbound =
p+ p b6 ω5

b ω
6
bp

1 + p+ b6 ω5
b + p b6 ω5

b ω
6
bp

. (S5)

If we now define a new binding constant for Bicoid, K ′b = Kb ∗ ( 1
ωb

)
5
6 , such that b′ = b ω

5
6
b ,

and a new cooperativity term between Bicoid and RNAP given by ω′bp = ω6
bp, we can then

rewrite Equation S5 as

Pbound =
p+ b′6 p ω′bp

1 + p+ b′6 + b′6 p ω′bp
, (S6)

which is the expression we use throughout the main text. Thus, strong pairwise cooperativity
between Bicoid molecules leads to a functional form where only the state with all Bicoid
molecules bound remain (six in this case). This strong cooperativity can explain the sharp
step-like expression pattern along the embryo’s anterior-posterior axis of the hunchback gene
(Fig. 3J; ????).
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Figure S1: General thermodynamic model for a hunchback P2 enhancer with
six Bicoid binding sites. (A) States, weights, and degeneracy considered for our
thermodynamic model. (B) Simpler form of the thermodynamic model in the
limit of ωb � 1.

S2 Derivation of the general and simpler

thermodynamic model for the hunchback P2

enhancer with one Runt binding site

Having derived the equation for the strong cooperative binding of Bicoid to the wild-type
hunchback P2 enhancer, we will now extend that model to the case of hunchback P2 with
one Runt binding site. The corresponding states and weights of our full model are shown in
Figure S2A.

Using a similar logic for calculating the partition functions as described in the previous
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section, we can compute the probability of the promoter being bound by RNAP as

pbound =

Bicoid and RNAP︷ ︸︸ ︷(
p+ p

6∑
i=1

(
6

i

)
biωi−1

b ωibp

)
+

Bicoid, Runt, and RNAP︷ ︸︸ ︷(
r p ωrp + r p ωrp

6∑
i=1

(
6

i

)
biωi−1

b ωibp

)
(

1 +
6∑
i=1

(
6

i

)
biωi−1

b

)
︸ ︷︷ ︸

Bicoid only

+

(
p+ p

6∑
i=1

(
6

i

)
biωi−1

b ωibp

)
︸ ︷︷ ︸

Bicoid and RNAP

+

(
r + r

6∑
i=1

(
6

i

)
biωi−1

b

)
︸ ︷︷ ︸

Bicoid and Runt

+

(
rpωrp + rpωrp

6∑
i=1

(
6

i

)
biωi−1

b ωibp

)
︸ ︷︷ ︸

Bicoid, Runt, and RNAP

,

(S7)
where, in addition to the parameters defined in the above section for the wild-type hunchback
P2 case in the absence of Runt, we have added two parameters: the dissociation constant for
Runt given by Kr, and a Runt-RNAP interaction term (an anti-cooperativity), ωrp. Using
the binomial theorem as in Equation S2, we can simplify Equation S7 to obtain

pbound =
p+ p

ωb
[(1+bωbωbp)

6−1]+rpωrp+
rpωrp
ωb

[(1+bωbωbp)
6
)−1]

1+ 1
ωb

[(1+bωb)6−1]+p+ p
ωb

[(1+bωbωbp)
6−1]+r+ r

ωb
[(1+bωb)6−1]+rpωrp+

rpωrp
ωb

[(1+bωbωbp)
6
−1]
.

(S8)
We now again assume that Bicoid-Bicoid cooperativity is very strong such that ωb � 1.

Then, we can combine Equation S8 with Equation 1 to obtain

Rate = R pbound = R
p+ b′6 p ωbp + r p ωrp + b′6 r p ω′bp ωrp

1 + b′6 + r + b′6 r + p+ b′6 p ω′bp + r p ωrp + b′6 r p ω′bp ωrp
, (S9)

where the new parameters, b′ and ω′bp are defined in the same way as in Equation S6. The
effective states and weights remaining after taking this limit are shown in Figure S2B.
Similarly, we can derive expressions for pbound in the presence of two and three Runt binding
sites, and in the strong Bicoid-Bicoid cooperativity limit in order to obtain the predictions
used throughout this text. We show this expression for two Runt binding sites in Equation 5.
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Figure S2: General thermodynamic model for an enhancer with six-Bicoid binding
sites and one Runt binding site. (A) Statistical weights and degeneracy of each
state the system can be found in. (B) Simpler form of the model from (A) in the
limit of strong Bicoid-Bicoid cooperativity.
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S3 Comparing using static versus dynamic

transcription factor concentrations as model

inputs

In this section, we tested whether using static, time-averaged transcription factor concentration
profiles yielded comparable theoretical predictions than when instead acknowledging the fact
that input transcription factor concentration changes over time. Briefly, we compared the
predicted rate of transcription calculated in two ways: (1) time-averaging the instantaneous
rate from the dynamic transcription factor concentration profiles over a specified time window
(from 5 to 10 minutes from the 13th anaphase) and (2) using static input transcription factors
already time-averaged over the same time window.

As a concrete example, we focused on the hunchback P2 enhancer with one Runt binding
site. We calculated the predicted rate of transcription using the thermodynamic model given
by Equation 2. First, we performed this calculation using the dynamic concentration profiles
of Bicoid and Runt shown in Figure 3B and D, respectively. Briefly, the terns b and r in
Equation 2 now become functions of time such that

Rate(t) = R
p+ b6(t) p ωbp + r(t) p ωrp + b6(t) r(t) p ωbp ωrp

1 + b6(t) + r(t) + b6(t) r(t) + p+ b6(t) p ωbp + r(t) p ωrp + b6(t) r(t) p ωbp ωrp
,

(S10)
where b(t) = [Bicoid](t)/Kb and r(t) = [Runt](t)/Kr. We choose a set of reasonable values
for the model parameters to illustrate the calculation of Rate(t) at 30% of the embryo length.
The resulting dynamic rate of transcription profile is shown in Figure S3A (blue curve). We
then use this profile to calculate the time-averaged rate of transcription over the time window
of 5 to 10 minutes from the 13th anaphase, resulting in the green area shown in Figure S3A.

The predicted average rate of RNAP loading given dynamic input transcription factors can
be compared to the predicted rate of RNAP loading given the average input concentrations
that we used throughout the main text (Fig. 3E). Specifically, we plug the static concentration
profiles of Bicoid and Runt shown in Figure 3E into Equation 2 to obtain the red area shown
in Figure S3A. As shown in the figure, the predicted rate of transcription obtained by these
two analysis methodologies are equivalent within error.

Finally, we performed this comparison between different approaches to calcualte the rate
of transcription as a function of position along the embryo (from 20% to 70% of the embryo
length). As shown in Figure S3B, the resulting spatial profiles are comparable within error.
Thus, we have shown that our approach of using time-averaged, static transcription factor
concentrations as inputs to our model yield quantitatively equivalent result as accounting for
the dynamic concentration profiles of these transcription factors.
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Figure S3: Comparison of the predicted rate of transcription using dynamic and
time-averaged transcription factor concentration profiles as inputs. (A) Instan-
taneous predicted rate of transcription calculated using dynamic transcription
factor concentration profiles at each time point (blue) and resulting averaged
rate of transcription averaged over the time window of 5-10 minutes from the
13th anaphase (green) compared to the predicted rate of transcription obtained
using the static transcription factor concentrations of Bicoid and Runt shown
in Figure 3E (red). (Illustrative predictions calculated at 30% of the embryo
length using Kb = 30(AU), Kr = 100(AU), ωbp = 100, ωrp = 0.1, p = 0.001,
R = 300(AU/min).) (B) Spatial profile of the predicted rate of transcription
calculated by averaging the instantaneous transcription rate (green) or by using
the averaged input transcription factor concentrations as inputs (red). (A, B,
error bars and shaded areas represent the standard error of mean over embryos 42
embryos generated from making pairs of independently measured six eGFP-Bicoid
embryo and seven GreenLlamaTag-Runt embryo.)
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S4 Markov Chain Monte Carlo inference protocol

Markov Chain Monte Carlo (MCMC) sampling is a widely used technique for robust parameter
estimation using Bayesian statistics (Geyer and Thompson 1992; Sivia and Skilling 2006).
We used the MATLAB package MCMCstat, an adaptive MCMC technique, which we could
directly implement downstream of our data analysis pipeline (Haario, Saksman, and Tamminen
2001; Haario et al. 2006). Detailed instructions on how to implement the MCMCstat package
can be found in https://mjlaine.github.io/mcmcstat/.

MCMC allows for an estimation of the set of parameter values of a model that best explain
the experimental data along with their associated errors. In this work, we used MCMC to
infer the set of best fit values of the parameters in our thermodynamic models given the
observed profile of the rate of transcription initiation along the anterior-posterior axis of the
embryo.

MCMC calculates a Bayesian posterior probability distribution of each free parameter
given the data by stochastically sampling different parameter values. For a given set of
observations D and a model with parameters θ, the posterior probability distribution of a
particular set of values is given by Bayes’ theorem

p(θ|D)︸ ︷︷ ︸
posterior

∝ p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

. (S11)

The prior function represents the a priori assumption about the probability distribution
of parameter values θ. Here, we assumed a uniform prior distribution for all parameters to
reflect our ignorance about the model parameters within the following intervals:

• Kb: [0, 100] AU

• ωbp: [0, 200]

• p: [0, 1]

• R: [0, 400] AU/min

• Kr: [0, 100] AU

• ωrp: [0, 1.2]

• ωrr: [0, 100]

• ωrrp: [0, 100]

These intervals were justified using the following arguments.
First, because we observed a gradual modulation of the rate of transcription by both Bicoid

and Runt in the middle region of the embryo we reasoned that the binding sites for these
transcription factors were not saturated. As a result, we posited that the real dissociation

https://mjlaine.github.io/mcmcstat/
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constant should be between the minimum and maximum measured values of Bicoid and Runt
(Fig. S10). Our measurements of Bicoid and Runt concentration yield fluorescence values
over the 0-100 AU range for the embryo region that we used for contrasting our model and
experimental data (20-50% of the embryo length), such that the dissociation constants (Kb

and Kr) should not exceed the maximum value of the Bicoid or Runt concentration.
Second, ωbp represents the cooperativity between Bicoid complex and RNAP. In the

statistical mechanics framework, this cooperativity can be expressed using the interaction
energy between Bicoid and RNAP, ∆εbp, such that ωbp = exp(−β∆εbp), where β = 1

kB T
, kB

is the Boltzmann constant and T is the temperature. There is not much known about in
vivo interaction energies between Bicoid and RNAP complex, thus we tried several different
bounds until we found a narrow enough parameter bound with unimodal distribution of
the posterior chain. As we could see from the corner plots in Figure 5C, there is a positive
correlation between Kb and ωbp. Thus, we constrained the ωbp intervals by finding an interval
that gives both well-constrained Kb and ωbp (Fig. 5C).

Third, R represents the rate of RNAP loading when the promoter is occupied, thus it is
constrained by the maximum observed rate of RNAP loading (Fig. S10).

Fourth, p = [RNAP ]/Kp) represents the concentration of RNAP divided by its dissociation
constant. Recall that the predicted rate of transcription from hunchback P2 in the limit
where the Bicoid concentration reaches zero is given by

Rate([Bicoid]→ 0) = R
p

1 + p
. (S12)

This rate of transcription at the posterior region, where Bicoid reaches zero, is much lower
than that at the anterior region where Bicoid saturates given by R (Fig. S10). As a result,
we can write the inequality

R
p

1 + p
� R. (S13)

such that
p

1 + p
� 1, (S14)

which holds if p� 1.
Finally, we did not have good estimates for the intervals of either Runt-Runt cooperativity,

ωrr, or higher-order cooperativity, ωrrp. Thus, we initially started with an interval of [0, 100],
of the same order as the interval we used ωbp. We then explored whether this parameter bound
was sufficient to give us constrained values of ωrr and ωrrp. As we showed in Figure S16D,
this interval gives reasonably constrained values of ωrr and ωrrp. As shown in Figure 7 and
Figure S16, we posit that the ωrr parameter is not well-constrained not because of its width
of the interval, but because it is not as essential for the model fit to the data as it is to
include ωrrp into the model. Overall, our MCMC inference results as well as the corner plots
shown demonstrate that our parameter intervals chosen were reasonable.
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S5 Comparison of different modes of repression

Transcriptional repressors have been classified into two broad categories: short-range and
long-range, depending on the genomic length scale that they act on (Courey and Jia 2001;
Li and Gilmour 2011). Long-range repression is realized by the recruitment of chromatin
modifiers. In contrast, short-range repressors act within 100-150 bp by interacting with
nearby transcription factors or with the promoter (Li and Gilmour 2011). Traditionally, the
molecular mechanism of short-range repressors, such as Runt, have been further classified
into three categories: “direct repression”, “competition”, and “quenching” (Arnosti et al.
1996; Gray, Szymanski, and Levine 1994; Jaynes and O’Farrell 1991; Kulkarni and Arnosti
2005). In “direct repression”, the repressor inhibits the binding of RNAP to the promoter
(Fig. S4A). “Competition” denotes a repressor that competes with an activator for the same
DNA binding location (Fig. S4B). This molecular mechanisms has been proposed for the
action of Giant and Krüppel repressors on the even-skipped stripe 2 enhancer, where some
activator and repressor binding sites partially overlap (Small, Blair, and Levine 1992). Lastly,
“quenching” corresponds to the case where the repressor and activator do not interact with
each other directly. Instead, the repressor inhibits the activators’ action of recruiting the
RNAP (Fig. S4C).

Despite several classic studies of the molecular mechanism of repressors in the early fly
embryo (Bothma, Magliocco, and Levine 2011; Gray, Szymanski, and Levine 1994; Ip et al.
1992; Jaynes and O’Farrell 1991), the mechanisms of many repressors remain unknown. Note
that, even for the same repressor, the mode of repression might not be the same depending
on, for example, its sequence context (Hang and Gergen 2017; Koromila and Stathopoulos
2019). For example, it has been proposed that Runt repressor acts with different mechanisms
in different regulatory elements of the sloppy-paired gene (Hang and Gergen 2017). In this
section, we derive a thermodynamic model from each mode of repression and compare their
explanatory power in the context of our data stemming from the hunchback P2 enhancer
containing one Runt binding site. Note that, in the main text, we already developed a
thermodynamic model for the “direct repression” scenario (Section S2 ). As a result, in
this section, we focus on deriving the thermodynamic models for the “competition” and
“quenching” scenarios, but repeat the result of the derivation for the “direct repression” here
for ease comparison between different models.

Derivation of models for each scenario of repression for
hunchback P2 with one Runt binding site

Modeling repression for hunchback P2 with one Runt binding site: direct
repression

For completeness, we repeat the expression for the direct repression scenario as shown in
Section S2 and Figure S4A. The probability of finding RNAP bound to the promoter, pbound,
is calculated by dividing the sum of all statistical weights featuring RNAP by the sum of



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 56

STATE STATEWEIGHT WEIGHT

1 p

b6 b6 p ωbp

r r p ωrp

b6 r b6 r p ωbp ωrp

RNAP

Bicoid

Runt

ωbp

ωrp

ωbr

ωrp

ωbp

STATE STATEWEIGHT WEIGHT

1 p

b6 b6 p ωbp

r r p

b6 r ωbr b6 r p ωbp ωbr

ωbp

ωbp

ωbp

STATE STATEWEIGHT WEIGHT

1 p

b6 b6 p ωbp

r r p

b6 r b6 r p ωbp ωbrp

ωbp

ωbrp

ωbr

ωbr

ωrp

ωbrp

A   direct repression

B   competition

C   quenching

Figure S4: Thermodynamic models for different modes of repression. States and
statistical weights corresponding to the hunchback P2 enhancer with one Runt
binding site for the (A) direct repression, (B) competition, and (C) quenching
mechanisms.
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the weights of all possible microstates. The calculation of pbound, combined with Equation 1,
leads to the expression

Rate = R pbound = R
p+ b6 p ωbp + r p ωrp + b6 r p ωbp ωrp

1 + b6 + r + b6 r + p+ b6 p ωbp + r p ωrp + b6 r p ωbp ωrp
, (S15)

where the parameters are as defined in Figure 2.

Modeling repression for hunchback P2 with one Runt binding site:
competition

In the competition scenario, Runt binding makes Bicoid binding less likely. This mechanism
can be captured by an interaction term between Bicoid and Runt given by ωbr. Building on
our assumption of strong Bicoid-Bicoid cooperativity, we posit that Runt disfavors the state
with six bound Bicoid molecules. We can enumerate the states and weights from Fig. S4B to
calculate the Rate (∝ pbound) , which leads to

Rate = R
p+ b6 p ωbp + r p+ b6 r p ωbp ωbr

1 + p+ b6 + r + b6 r ωbr + b6 p ωbp + r p+ b6 r p ωbp ωbr
. (S16)

Modeling repression for hunchback P2 with one Runt binding site: quenching

In the quenching scenario, Runt reduces the magnitude of the cooperativity between the
Bicoid complex and RNAP by a factor ωbrp. We can enumerate the states and weights from
Fig. S4C, leading to a rate of transcription given by

Rate = R
p+ b6 p ωbp + r p+ b6 r p ωbp ωbrp

1 + p+ b6 + r + b6 r + b6 p ωbp + r p+ b6 r p ωbp ωbrp
. (S17)

With these expressions for each repression mechanism in hand, we can now compare how
each model fares against our experimental data.

Comparing the three models of repression with the one-Runt
binding site data

We used the MCMC sampling to fit each model to our experimentally measured initial rate of
transcription over the anterior-posterior axis of the embryo. As shown in Figure S5A, B, and C,
we see that all three models can explain the [100] and [010] construct data relatively well.
However, the competition model resulted in a qualitatively poor fit to the [001] construct as
shown by the lack of saturation in the most anterior region of the embryo (Fig. S5C, ii). The
direct repression and quenching models showed equally good fits to the data stemming from
this construct.
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Figure S5: MCMC fitting to the hunchback P2 with one Runt binding site
constructs using different models of repression. (A,B,C) MCMC fits for three
modes of repression, (i) direct repression, (ii) competition, and (iii) quenching,
for our three one-Runt site constructs, (A) [100], (B) [101], and (C) [001].
(D) Corner plots resulteing from MCMC inference on the three one-Runt site
constructs for each model. (E) Inferred parameters from MCMC fitting. (A,B,
and C, error bars represent standard error of the mean over ≥ 3 embryos; E, error
bars represent standard deviation of the posterior chain.)
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Predicting two-Runt binding sites data for each mode of
repression

We further tested these different models of repression by using the parameters inferred from
the one-Runt binding site constructs to predict the rate of initiation for the two-Runt binding
sites constructs. As reasoned in the main text, we began by assuming that the two Runt
molecules act independently of each other such that there are no interactions between Runt
molecules. Figure S6 shows this parameter-free prediction for our two-Runt binding sites
constructs for all three modes of repression. As shown in the figure, none of the models can
explain the data, suggesting the need to invoke additional interactions between the molecular
players of our model.

Next, we considered whether Runt-Runt pairwise or higher-order cooperativities had to
be invoked in order to explain the two-Runt binding sites data for both the competition and
quenching mechanisms. For the competition model, we considered Runt-Runt cooperativity,
ωrr, and Runt-Runt-Bicoid higher-order cooperativity, ωbrr in addition to the Runt-Bicoid
interaction term ωbr. In the quenching scenario, we accounted for Runt-Runt cooperativity,
ωrr, and Runt-Runt-Bicoid-RNAP higher-order cooperativity, ωbrrp. For both the competition
(Fig. S7) and quenching (Fig. S8) mechanisms, we observed a qualitatively similar trend to
that observed for direct repression (Fig. 7). Specifically, as shown in Figures S7C and S8C,
considering pairwise cooperativity did not significantly improve the MCMC fits to the
data for either model considered. Further, considering only the higher-order cooperativity
also did not improve the fits for both competition and quenching mechanisms as shown
in Figure S7D and Figure S8D. Invoking both Runt-Runt cooperativity and higher-order
cooperativity improved the fits qualitatively for both competition and quenching mechanisms
as shown in Figure S7E and Figure S8E.

While the quenching model showed almost equally good MCMC fits to the data as
the direct repression model, the competition model showed qualitatively poor fits in any
combination of cooperativities. In particular, there was a significant mismatch in the most
anterior region of the embryo, where Bicoid is thought to saturate hunchback expression.
While we do not view these fits as conclusive evidence to support one mechanism over the
other, an exercise that would require a new round of experimentation, we conclude that
higher-order cooperativity is required to explain the data from the two-Runt binding sites
constructs regardless of the choice of mechanism of Runt.
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Figure S7: Prediction for hunchback P2 transcription initiation rate with two-
Runt binding sites under the competition scenario for different combinations of
cooperativities. See caption in the next page.
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Figure S7: Prediction for hunchback P2 transcription initiation rate with two-
Runt binding sites under the competition scenario for different combinations
of cooperativities. (A) Schematic of cooperativity terms considered: Runt-
Runt cooperativity given by ωrr and Runt-Runt-Bicoid complex higher-order
cooperativity captured by ωbrr, in addition to the competition terms ωbr1 and
ωbr2. (B) Zero-parameter prediction using the inferred parameters from zero-
and one-Runt binding site constructs. (C,D,E) Best MCMC fits for our three
two-Runt binding sites constructs considering (C) Runt-Runt cooperativity, (D)
Runt-Runt-Bicoid complex higher-order cooperativity, and (E) both Runt-Runt
cooperativity and Runt-Runt-Bicoid complex higher-order cooperativity. (B,C,D,
and E, error bars represent standard error of the mean over ≥ 3 embryos.)
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Figure S8: Prediction for hunchback P2 transcription initiation rate with two-
Runt binding sites under the quenching mechanism for different combinations of
cooperativities. See caption in the next page.
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Figure S8: Prediction for hunchback P2 transcription initiation rate with two-Runt
binding sites under the quenching mechanism for different combinations of coop-
erativities. (A) Schematics of additional cooperativities considered: Runt-Runt
cooperativity ωrr and Runt-Runt-Bicoid-RNAP complex higher-order coopera-
tivity ωbrrp. (B) Zero-parameter prediction using the inferred parameters from
one-Runt binding site constructs. (C,D,E) Best MCMC fits for our three two-
Runt binding sites constructs considering (C) Runt-Runt cooperativity, (D)
Runt-Runt-Bicoid-RNAP higher-order cooperativity, and (E) both Runt-Runt
cooperativity and Runt-Runt-Bicoid-RNAP higher-order cooperativity. (B,C,D,
and E, error bars represent standard error of the mean over ≥ 3 embryos.)
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S6 Design of synthetic enhancer constructs based on

the hunchback P2 enhancer

The Runt binding sites were introduced into the hunchback P2 minimal enhancers at the
positions determined by ?. To make this possible, the authors chose positions containing
presumed neutral DNA sequences, meaning that these DNA locations did not contain obvious
motifs for Bicoid or Zelda, the major input transcription factors that regulate this enhancer.
Then, these DNA sequences were mutated to turn them into Runt binding sites.

To ensure that this process did not perturb the binding sites for Bicoid and Zelda we
resorted to the Advanced PATSER entry form (Hertz, Hartzell, and Stormo 1990; Hertz
and Stormo 1999) which identifies the location of transcription factor binding sites from a
sequence of DNA based on position weight matrices. We used position weight matrices for
Bicoid and Zelda from ?. PATSER was run with the settings described in ? for both the
hunchback P2 enhancer and the hunchback P2 enchancer with three Runt binding sites (from
?) for Bicoid and Zelda, respectively. The result of this analysis for these two constructs
is shown for each transcription factor in Figure S9A. Here, we took a the PATSER score
cutoff—for considering a given sequence to be a binding site—of 3 as in ?. We observed
that the recognized binding motifs for both Bicoid and Zelda were identical between the
two constructs, meaning that we did not add additional Bicoid or Zelda binding sites by
introducing the Runt motifs. The resulting synthetic enhancer with three Runt binding sites
with mapped binding sites for Bicoid, Zelda (Fig. S9A), and Runt (Chen et al. 2012) is shown
in Figure S9B as a reference. The position of the Runt binding sites are noted from their
distance from the promoter (which is marked as 0).

http://stormo.wustl.edu/consensus/cgi-bin/Server/Interface/patser.cgi
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S7 Quantifying the nuclear concentration of

LlamaTag-Runt

The major caveat in the eGFP:LlamaTag-Runt fluorescence measurements is that the raw
nuclear fluorescence that we measured consists of two populations: eGFP bound to the
LlamaTag-Runt, and free, unbound eGFP. Thus, in order to measure nuclear Runt concentra-
tion, we need to factor out the contribution from free eGFP to the overall fluorescence.

We followed the procedure described in ? which consists of using cytoplasmic fluorescence
to calculate the free nuclear eGFP under two assumptions. First, we posit that most of
the transcription factors reside in the nucleus such that the cytoplasmic fluorescence mostly
reports on free cytoplasmic eGFP. Second, we assume that the nucleus-to-cytoplasm ratio of
free eGFP is kept constant at a measured chemical equilibrium of KG = GFPC/GFPN = 0.8,
where GFPC and GFPN are the eGFP fluorescence in nuclei and cytoplasm in the absence
of LlamaTag (Bothma et al. 2018).

As shown in ?, the nuclear concentration of the GFP-tagged transcription factor, GFP −
TFN , is given by

GFP − TFN = FluoN −
FluoC
KG

, (S18)

where FluoN and FluoC are the eGFP fluorescence in nuclei and cytoplasm, respectively,
that we measured in the embryos with both eGFP and LlamaTagged Runt. The resulting
nuclear concentration of LlamaTag-Runt is shown in Figure 3B.

S8 Quantitative interpretation of MS2 signals

The MS2 signal reports on three features of transcriptional dynamics: 1) the initial RNAP
loading rate, 2) the duration of transcription, and 3) the fraction of loci that engage in
transcription at any time point in the nuclear cycle. In this section, we will explain in further
detail how we extract these features from the MS2 signal over nuclear cycle 14.

Extracting the initial RNAP loading rate

The initial rate of RNAP loading corresponds the average transcription rate observed after
transcriptional onset and until the MS2 signal reaches its peak value during nuclear cycle 14.
In order to measure this rate, we followed the protocol described in ?. Briefly, as shown in
Figure S10A, we fitted a line to the MS2 time trace (averaged over nuclei within a spatial
window of 2.5% of the embryo length) within the time window of 5 to 10 minutes after the
13th anaphase. The slope of this line reported on the initial rate of RNAP loading (Fig. 3G).
The spatial profiles of this initial rate of RNAP loading across all our synthetic enhancer
constructs and genotypes are shown in Figure S10B.
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Figure S10: Initial rate of RNAP loading in nuclear cycle 14 across the anterior-
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in the presence and absence of Runt for each of our synthetic enhancer construct.
(B, Error bars represent standard error of the mean over ≥ 3 embryos.)
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Extracting the duration of transcription

In the main text, we focused on the theoretical prediction of the initial rate of transcription.
However, the length of the time window over which transcription occurs (Lammers et al.
2020) is another regulatory knob that, in principle, Runt could modulate to dictate gene
expression patterns. We sought to determine the duration of time over which transcription
occurs to assess whether Runt affects not only the initial rate of transcription, but also the
time window over which transcription could initiate. To quantify the effective duration of
transcription initiation, we resorted to the analysis methodology developed in ?. Briefly, we
parametrized the MS2 signal decay regime—after transcription reaches its peak and becomes
slower than the unloading rate (Garcia et al. 2013b)—as an exponential decay (Fig. S11A).
Thus, we can describe the MS2 spot fluorescence trace in the decay regime as

Fluo(t) = Fluomaxe
−(t−Tpeak)/τ , (S19)

where Tpeak represents the time point where the MS2 spot fluorescence reaches its peaks, and
τ is the decay time.

Given the sometimes noisy MS2 traces (data not shown), we fitted an exponential curve
to the more robust integral of the MS2 spot fluorescence over time from Tpeak to the end
of nuclear cycle 14 as shown in Figure S11B. This quantity is proportional to the amount
of mRNA produced between the integration bounds (Garcia et al. 2013b). The resulting
accumulated mRNA time trace is then fitted to the integrated form of Equation S19, which
is given by

mRNA (t) = mRNAmax(1− e(t−Tpeak)/τ ), (S20)

where mRNAmax is the accumulated mRNA at the end of nuclear cycle 14.
The resulting profiles of the duration of transcription along the embryo for our all synthetic

enhancer constructs are illustrated in Figure S11C in the presence and absence of Runt
protein. As shown in the figure, this duration time is not significantly modulated by Runt
repressor.

Calculation of the fraction of competent nuclei

Another quantity that could be modulated by Runt repressor is the fraction of loci that
ever engage in transcription during a given nuclear cycle, which we termed as the “fraction
of competent loci”. As demonstrated by ??? and ?, this fraction of transcriptionally
competent loci is modulated along the anterior-posterior axis, presumably due to the action
of transcription factor gradients.

To show a concrete example of how this quantity is calculated, we take data from one
construct ([000]) showing the MS2 spot fluorescence time traces from individual loci of
transcription as shown in Figure S12A. Here, columns represent time points during nuclear
cycle 14, and rows represent individual transcriptional loci. As shown in the figure, roughly
80% of the loci, labeled as “competent loci”, show active transcription during nuclear cycle



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 70

0 5 10 15 20 25 30 35 40
time into nc14 (min)

0

200

400

600

800

1000

m
ea

n 
sp

ot
 fl

uo
re

sc
en

ce
 (A

U
)

A B

0 5 10 15 20 25 30 35 40
time into nc14 (min)

0

2000

4000

6000

8000

m
R

N
A

 p
ro

du
ce

d 
du

rin
g

de
ca

y 
re

gi
m

e 
(A

U
) integrated

Fit

Decay regime Decay time

Maximum

Maximum x (1-1/e)

TOFFTPEAK

MS2
TON TOFFTPEAK

20 30 40 50 60

20 30 40 50 60

20 30 40 50 60 20 30 40 50 60 20 30 40 50 60

20 30 40 50 60 20 30 40 50 60

20 30 40 50 60
0

10

20

30

40

50

60

du
ra

tio
n 

(m
in

)

0

10

20

30

40

50

60

du
ra

tio
n 

(m
in

)

0

10

20

30

40

50

60

du
ra

tio
n 

(m
in

)

C

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

position along the embryo (% embryo length)

position along the embryo (% embryo length)

position along the embryo (% embryo length)

[010][001] [100]

[101][011] [110]

[000] [111]

Figure S11: Durationof transcription over nc14. See Caption in the next page.
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Figure S11: Duration of transcription over nc14. (A) An example MS2 time trace
in nuclear cycle 14. The decay regime is defined from the peak of the signal to
the end of the measurement. TON is defined by the x-intercept of the slope of
the fitted line. Toff is determined by the decay time in the exponential function.
The gray shaded region from TON to TOFF is defined as the transcriptional time
window. (B) The decay time can be extracted from the accummulated mRNA
signal obtained by integrating the MS2 fluorescence. Here, decay time is defined
as the time it takes to reach (1-1/e) of that maximum accumulated mRNA. (C)
Transcriptional time window along the anterior-posterior axis for each construct
with and without Runt protein. (A, error bars represent standard error of the
mean over the spatial averaging corresponding to roughly ten nuclei; C, error bars
represent standard error of the mean over ≥ 3 embryos.)

14. However, the remaining 20% of the loci never engage in transcription, which we termed
as “incompetent loci”. Because these two populations exhibit wildly different behaviors, we
define the fraction of competent loci as

fraction of competent loci =
number of competent loci

number of total loci
. (S21)

Thus, in this example in Figure S12A, the fraction of competent loci is approximately 0.8.
Figure S12B shows the measured fraction of active loci for all synthetic enhancer constructs

in the presence and absence of Runt repressor. As seen in the figure, although this quantity
can be modulated by the presence of Runt repressor, this is not always the case (e.g., [010]
and [11]). Moreover, we could not find a trend for how the fraction of competent loci is
modulated by different combinations of Runt binding sites. For example, the [100] construct
alone did show a change in the fraction of active loci in the presence of Runt, whereas the
[010] construct did not. When these two binding sites were combined as the [110], there was
no significant modulation of the fraction of competent loci when adding Runt repressor. In
another example, the [001] construct showed a mild modulation of the fraction of competent
loci. However, when this Runt binding site was combined with the [010], which did not show
any modulation, the [011] construct showed a much bigger modulation of the fraction of
competent loci than the [001]. Thus, the [010] Runt binding site could drive more or less
modulation of the fraction of competent loci when combined with different Runt binding sites
in a context-dependent manner. As a result of our failure to uncover an apparent trend in
terms of which regulatory architectures lead to a stronger modulation of the fraction of active
loci, we did not attempt to theoretically explain the regulation of this fraction of active loci
in this study.



CHAPTER 2. PREDICTIVE MODELING FOR TRANSCRIPTIONAL REPRESSION IN
A SYNTHETIC DEVELOPMENTAL ENHANCER 72

A

B

0

0.2

0.4

0.6

0.8

1

1.2

   
 fr

ac
tio

n 
of

 
co

m
pe

te
nt

 lo
ci

0

0.2

0.4

0.6

0.8

1

1.2

   
 fr

ac
tio

n 
of

 
co

m
pe

te
nt

 lo
ci

0

0.2

0.4

0.6

0.8

1

1.2

   
 fr

ac
tio

n 
of

 
co

m
pe

te
nt

 lo
ci

incom
petent

      loci
com

petent
     loci

0 10 20 30

time into nc14 (min)

50

100

150

200

250

nu
cl

ei

   MS2 spot 
fluorescence

0

200

400

600

800

1000

20 30 40 50 60

20 30 40 50 60 20 30 40 50 60 20 30 40 50 60

20 30 40 50 60 20 30 40 50 60

20 30 40 50 60 20 30 40 50 60

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

+ Runt
- Runt

position along the embryo (% embryo length)

position along the embryo (% embryo length)

position along the embryo (% embryo length)

[010][001] [100]

[101][011] [110]

[000] [111]

Figure S12: Fraction of competent loci in nuclear cycle 14 across the anterior-
posterior axis for different constructs in the presence and absence of Runt protein.
See caption in the next page.
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Figure S12: Fraction of competent loci in nuclear cycle 14 along the anterior-
posterior axis for each synthetic enhancer construct in the presence and absence
of Runt protein. (A) Heatmap showing the transcriptional signal from the
hunchback P2 enhancer for individual nuclei (rows) demonstrating that there are
two populations of loci: transcriptionally active and inactive loci. (B) Fraction of
transcriptionally active loci along the embryo for each construct for wild-type and
runt null backgrounds. (B, error bars represent standard error of the mean over
≥ 3 embryos.)
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S9 Supplementary figures
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Figure S13: Invoking Runt-Runt cooperativity in the thermodynamic model is
not sufficient to explain the experimental data from hunchback P2 with two Runt
binding sites. See caption in the next page.
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Figure S14: Invoking Runt-Runt cooperativity in the thermodynamic model is
not sufficient to explain the experimental data from hunchback P2 with two
Runt binding sites. (A) Model schematics where we add a new ωrr parameter
representing Runt-Runt cooperativity. (B) Corresponding states and weights
for hunchback P2 with two Runt binding sites in the presence of Runt-Runt
cooperativity. (C) Prediction of the initial rate of RNAP loading profiles over a
range of Runt-Runt cooperativity strength, ωrr = [10−6, 1024], for all constructs
of hunchback P2 with 2 Runt binding sites with different configurations. (Left)
[011], (Center) [101], (Right) [110]. (C, error bars represent standard error of the
mean over ≥ 3 embryos)
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Figure S15: Invoking Runt-Runt-RNAP higher-order cooperativity is not sufficient
to explain the two-Runt sites data. See caption in the next page.
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Figure S15: Invoking Runt-Runt-RNAP higher-order cooperativity is not sufficient
to explain the two-Runt sites data. (A) Schematics of a model where we add Runt-
Runt-RNAP higher-order cooperativity represented by ωrrp. (B) Thermodynamic
model states and weights for hunchback P2 with two Runt binding sites in the
presence of Runt-Runt-RNAP higher-order cooperativity. (C) Histograms showing
the posterior distribution of the inferred ωrrp parameter from the best MCMC
fit shown in Figure 7D. The black line represents the mean and the dotted lines
represent standard deviation from the mean.
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See caption in the next page.
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Figure S16: Invoking Runt-Runt cooperativity and higher-order cooperativity can
explain the experimental data from hunchback P2 with two Runt binding sites.
(A) Schematic showing Runt-Runt cooperativity and higher-order cooperativity.
(B) States and weights for hunchback P2 with two Runt binding sites with Runt-
Runt cooperativity and higher-order cooperativity. (C) Corner plots associated
with the MCMC inference performed on two-Runt binding sites data from the
best MCMC fit shown in Figure 7E. While ωrr is not very well constrained, ωho
shows a unique optimal value.
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S10 Supplementary videos

For better quality of visualization, we recommend downloading these videos.

S1. Video S1. eGFP-Bicoid confocal movie. Confocal microscopy movie taken on a
developing fly embryo (eGFP-Bicoid; His2Av-mRFP; +) during nuclear cycle 13 and 14.

S2. Video S2. eGFP:LlamaTag-Runt confocal movie. Confocal microscopy movie taken
on a developing fly embryo (eGFP-Bicoid; His2Av-mRFP; +) during nuclear cycle 13
and 14.

S3. Video S3. [001]-MS2V5:MCP-GFP (+Runt) confocal movie. Confocal mi-
croscopy movie taken on a developing fly embryo (yw; His2Av-mRFP; MCP-eGFP)
for the [001] construct with MS2 reporter during nuclear cycle 13 and 14.

https://www.dropbox.com/s/6d1fygdsfkm1wpm/eGFP-Bicoid_2018_06_11_eGFP-Bicoid_scaleBar_timestamp.avi?dl=0
https://www.dropbox.com/s/ib29k6bz5bz24lb/eGFP-JB3-Runt-2018-12-04-Pos15-scalebar_timestamp.avi?dl=0
https://www.dropbox.com/s/ytuh6a5vnppotxy/MS2-MCP-eGFP-001.avi?dl=0
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Chapter 3

Comparison of methods to quantify
cytoplasmic mRNA concentration

1 Introduction

An accurate quantification method is essential in characterizing the patterns of transcription
factors and their downstream gene products. One of the widely used techniques to measure
the gene expression pattern is in situ hybridization - hybridizing the RNA of interest with
the complementary DNA probes followed by tagging those complexes with fluorophores or
enzymatic probes for characterization of the gene expression patterns. There are broadly two
categories of in situ hybridization methods depending on the source of the signal:chemogenic
and fluorogenic. The chemogenic method is called colorimetric in situ hybridization (which
we refer to as in situ throughout this thesis). It relies on an enzymatic reaction such
as horseradish peroxidase (HRP) with its substrate bound in the probe which generates
luminescence (as showcased in Fig. 1A). The fluorogenic method is called fluorescence in situ
hybridization (which we refer to as FISH), relying on fluorophores attached to the primary
or secondary antibodies that bind to the DNA probe, thus generating a fluorescence signal
that is proportional to the number of mRNA molecules (as showcased in Fig. 1B). These
in situ hybridization methods could be multiplexed to detect multiple species of mRNA
simultaneously (Chen et al. 2015). An alternative approach is tagging the nascent transcripts
using the bacteriophage stem-loop structures such that the inserted sequence of MS2 (or PP7)
forms a loop structure upon transcription which is then bound by bacteriophage coat proteins
such as MCP (or PCP) fused to fluorescent proteins (Bertrand et al. 1998). This tagging
system enables quantification of the number of nascent transcripts actively being transcribed
in real-time by monitoring the MS2 spots as shown in Figure 1C (Garcia et al. 2013b). By
integrating the MS2 spot fluorescence intensity over time, it is possible to calculate the
accumulated mRNA quantity (Garcia et al. 2013b).

All of these methods mentioned above have different types of caveats. For example, in
situ hybridization methods could be used for multiplexed detection of hundreds to thousands
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Figure 1: Experimental methods to measure the patterns of cytoplasmic mRNA.
(A,B,C) Snapshot of fly embryos with mRNA expression driven by hunchback
P2 enhancer in nuclear cycle 14. (A) colorimetric in situ hybridization. Scale
bar represents 100µm (B) Fluorescence in situ hybridization (FISH) with the
Alexa488 probe. Scale bar represents 100µm. (C) MS2 with MCP-GFP. Green
dots represent the loci of active transcription. The embryo image shows 20-60%
of the embryo length along the anterior-posterior axis. Scale bar represents 20µm.
(D) Comparison of the patterns of cytoplasmic mRNA acquired from different
experimental methods. The y-axis is showing the accumulated mRNA from each
method normalized by the accumulated mRNA values at 20% of the embryo
length.
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of mRNA species, whereas stem-loop methods can detect two or three genes at a time.
Also, while stem-loop methods enable the tracking of temporal dynamics in real-time at the
single-cell level, the in situ hybridization methods require fixed samples, thus offering data
from a snapshot. In my view, there is no perfect method in the world; instead, there is one
method more suitable than the other in terms of throughput, ease of use, and accuracy. In
this section, we will perform a comparative study for colorimetric in situ hybridization (in
situ), fluorescence in situ hybridization (FISH), and MS2-MCP techniques to assess their
accuracy in quantifying the cytoplasmic mRNA patterns in the fruit fly embryos.

To compare these three different methods in their ability to quantify the cytoplasmic
mRNA patterns, we chose a well-characterized system of hunchback P2 enhancer that is
known to drive a step-like pattern of mRNA (Perry, Boettiger, and Levine 2011). We used
all three methods for the same construct that is driving transcription under the hunchback
P2 enhancer. We observed a difference in the patterns of cytoplasmic mRNA between the
three methods as shown in Figure 1D. Briefly, the FISH and MS2 data showed agreement
while the in situ showed a more posteriorly shifted pattern. To further dissect this, we
made a one-on-one comparison between these three methods. First, we reveal a striking
disagreement in patterns of cytoplasmic mRNA between in situ hybridization and MS2 data.
Specifically, when examining a hunchback step-like gene expression pattern, in situ patterns
of accumulated mRNA have wider plateaus along the AP axis compared to those reported
by MS2. We show that, by assuming saturation in the in situ signal, both in situ and MS2
measurements can qualitatively agree. Finally, we find that measurements by FISH and MS2
lead to similar results across the AP axis. Thus, we provide evidence that MS2 and FISH can
capture a wider dynamic range of accumulated mRNA than in situ measurements, making
them more appropriate for quantifying the pattern of gene expression. In conclusion, we
revealed the pros and cons of different methods of quantifying the patterns of cytoplasmic
mRNA, facilitating the choice of experimental method that is more suitable for one’s specific
scientific question.

2 Results

We started by making a one-to-one comparison of methods to quantify the cytoplasmic
mRNA patterns. First, we compare in situ and MS2 using the constructs with hunchback
P2 enhancer with differing number of Runt binding sites. Next, we compare MS2 and FISH
by using the FISH data from Park et al. (2019). Lastly, we make a comparison between all
three methods for hunchback P2 driven construct.

Comparison of accumulated mRNA pattern from in situ vs MS2

We compare the accumulated mRNA profiles during the nuclear cycle 13 and 14 for constructs
with hunchback P2 enhancer with zero-, one-,two-, or three- Runt binding sites side-by-side in
Figure 2 A and B. Here, each profile was normalized so as to compare the overall features of
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the pattern such as boundary position and sharpness. As revealed by the Figure 2 C and F,
there are significant differences in patterns between the mRNA profiles acquired with in situ
and MS2-MCP.

We hypothesized that the difference between the two methodologies could stem from
the fact that the signal from colorimetric in situs could saturate. To test this hypothesis,
we incorporated saturation into our MS2 data by finding a saturation point that, after
renormalization, can qualitatively match the data from the two techniques (Fig. 3B, black
line). As shown in Figure 3C-F, after incorporating this saturation both measurements yield
similar gene expression patterns for most constructs. Critically, for all constructs but r0, the
boundary position and sharpness now become comparable. It is important to note that, in
Figure 3, we are assuming the same saturation value for all in situ measurements. However,
we speculate that this saturation value could fluctuate due to staining variability or variation
in the illumination conditions, for example.

Comparison of accumulated mRNA pattern from FISH vs MS2

We compared MS2-MPC and FISH through measurements of a hunchback P2 enhancer and
promoter driving lacZ (with MS2 repeats in the case of MS2-MCP), to take advantage of
the data sets from the DePace lab. The FISH data that was acquired roughly five minutes
into nuclear cycle 14. At this early time point in the nuclear cycle, transcription has not yet
started. Thus, we assumed that they (Park et al. (2019)) measured accumulated mRNA up
until NC13. The MS2-MCP datasets are from nine embryos spanning 20% to 80% of the
embryo length. The profiles resulting from each method are shown in Figure 5 A and B,
respectively. As shown in Figure 5 C, after normalization we could get qualitatively similar
patterns of accumulated mRNA with the boundary position and sharpness being comparable.

Comparison of in situ vs FISH vs MS2

In the above sections, we have compared FISH vs MS2, and in situ vs MS2. In this section,
we will try to compare all three methods for the accumulated mRNA profile in the early
nuclear cycle 14. For FISH and MS2, we already have datasets for hunchback P2 enhancer
and promoter, but we do not have datasets for the same construct with in situ. Thus, we
assumed that the hunchback P2 with even-skipped promoter would drive similar pattern of
expression as
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Figure 2: Comparison of accumulated mRNA profiles between in situ hybridization
and MS2-MCP. See caption in the next page.
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Figure 2: Comparison of accumulated mRNA profiles between in situ hybridization
and MS2-MCP. (A,B) Accumulated (cytoplasmic) mRNA for hunchback P2
enhancer with differing number of Runt binding sites constructs acquired by (A)
in situ hybridization and (B) MS2-MCP. (C,D,E,F) Comparison of normalized
accumulated mRNA profile for each construct shown in (A) and (B). Schematics
of each construct is shown at the top of each plot.
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Figure 3: Comparison of accumulated mRNA profiles between in situ hybridization
and MS2-MCP assuming there is saturation in the in situ data. See caption in
the next page.
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Figure 4: Comparison of accumulated mRNA profiles between in situ hybridization
and MS2-MCP assuming there’s saturation in the in situ data. (A,B) Accumu-
lated mRNA profiles for the hunchback P2 enhancer constructs with zero-, one-,
two-, or three-Runt binding sites acquired by (A) in situ hybridization and (B)
MS2-MCP. In (B), a saturation point is chosen such that the renormalized profiles
from the two methods become comparable. Accumulated mRNA values larger
than this saturation point are set to this saturation value. (C,D,E,F) Comparison
of re-normalized accumulated mRNA profile for hunchback P2 enhancer with (C)
zero-Runt site, (D) one-Runt site, (E) two-Runt sites, (F) three-Runt sites.
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Figure 5: Comparison of accumulated mRNA profiles measured by FISH and MS2.
(A) Accumulated mRNA (FISH intensity) from P2P construct from individual
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Chapter 4

Development of live-imaging toolkits
for monitoring translation dynamics
in developing fly embryos

1 Introduction

Translational control is a widely used strategy to regulate gene expression across different cell
types and organisms. This regulation is especially relevant for biological systems where local
control of protein accumulation is needed such as developing syncytial embryos or neuronal
synapses (Gebauer and Hentze 2004).

In the context of developing embryos, translational regulation has been studied primarily
focusing on understanding how the spatial patterns of transcription factors emerge. One
of the most well-known examples of translational regulation is the regulation of maternal
gradients in the early fruit fly embryo. For example, caudal mRNA is supplied maternally
with a uniform distribution along the embryo’s anterior-posterior axis. The translation
of caudal mRNA is repressed by Bicoid, which forms an exponentially decaying gradient
along the anterior-posterior axis. Thus, Bicoid represses the translation of caudal mRNA
mainly at the anterior pole, leading to an opposite gradient of Caudal protein which peaks
at the posterior and decreases towards anterior as shown in Figure 1.6 A and B. Another
well-studied example is the translational regulation of maternal hunchback mRNA. Unlike
zygotic hunchback mRNA whose expression pattern is a step-like, which resembles that of
the Hunchback protein pattern, the maternal hunchback mRNA is distributed uniformly
along the anterior-posterior axis of the embryo. The maternal gene nanos is expressed in a
protein concentration gradient which is high in the posterior end of the embryo and low in
the anterior end. Nanos protein is known to bind to the 3’UTR of the hunchback mRNA
via Pumilio. Nanos protein represses the translation of maternal hunchback mRNA, which
leads to a step-like expression pattern emerging from uniform mRNA distribution along the
anterior-posterior axis (Murata and Wharton 1995; Wharton et al. 1998). Although it is
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known that protein levels are downregulated by these translational repressors (either Bicoid
or Nanos), the molecular mechanism by which this repression is achieved still remains elusive.
For example, there could be different strategies to achieve an equivalent level of translational
repression: either regulating the rate of translational initiation or elongation, the fraction of
mRNA engaged in translation, or any combination thereof as shown in Figure 1.6 C (Vinter
et al. 2021).

In order to determine which scenario is at play in the regulation of translation, we
need a tool to monitor and quantify translation dynamics at the single ribosome level. To
fluorescently label nascent polypeptides, we used the recently developed SunTag system. This
system consists of repeated peptides (SunTag) inserted into the N-terminal of the protein of
interest that can be bound by a single-chain variable fragment of an antibody (scFv) fused
to fluorescent proteins (shown in Fig. 1.7 A and B) (Tanenbaum et al. 2014; Yan et al. 2016).
Recent studies in the early fruit fly embryos using the SunTag reporter system reported on
the spatio-temporal heterogeneities in translational dynamics, such as along the apical-basal
axis (Dufourt et al. 2021) or along the anterior-posterior axis (Vinter et al. 2021). Briefly,
Dufourt et al. (2021) reported that the translation efficiency (number of actively translating
ribosomes per mRNA molecules) of twist mRNA is higher in the basal region of the embryo
compared to the apical region. Additionally, Vinter et al. (2021) revealed that hunchback
mRNA translation is also under regulation along the anterior-posterior axis, in this case, by
modulating both the number of ribosomes associated with single mRNA molecules and the
fraction of mRNA molecules that engage in translation. These studies have revealed that
translation could be under regulation whose exact molecular mechanisms or quantitative
details still remain unclear.

Our initial goal was to implement the SunTag system in fruit fly embryos by plugging
in the SunTag sequences in a synthetic gene cassette with the PP7 sequences for tethering
the mRNA (Yan et al. 2016). We chose the hunchback P2 minimal enhancer as the driver,
as its mRNA pattern is very well characterized thus could be used as a platform to dissect
the translational pattern (Perry et al. 2012). We used scFv fused to sfGFP to quantify the
SunTag translation and PCP-mCherry with CAAX motif that binds to the plasma membrane
to visualize and tether the mRNA molecules (Yan et al. 2016).

Our preliminary results are promising: we could see a punctuated signal in the SunTag-
scFv channel that recapitulated the step-like hunchback pattern along the anterior-posterior
axis. Next step, we sought to image this construct over time during nuclear cycle 14. Some
representative time traces showed downregulation of transcription over time in nuclear cycle
14, which is consistent with Vinter et al. (2021).

Upon validation of the SunTag approach, we aimed to quantitatively dissect the dif-
ferential translation dynamics controlling caudal and maternal hunchback. Specifically, we
generated SunTag reporter constructs whose gene cassettes are followed by different 3’UTR
sequences, such as caudal or maternal hunchback. As a control we used the 3’UTR sequence
whose translation is not known to be regulated in space and time, such as α-tubulin. The
characterization of these constructs was not done yet, thus I only summarize our current
state of the project for future references.
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Figure 1: Translational regulation generates a spatial protein gradient out of a
spatially uniform mRNA pattern. (A) An example of translational repression of
caudal mRNA by Bicoid protein. Bicoid protein is expressed in an exponentially
decaying gradient along the anterior-posterior axis of the embryo. caudal mRNA
is supplied maternally and distributed uniformly along the anterior-posterior axis.
Bicoid protein represses the translation of the caudal mRNA, thus generating
the spatial gradient of the Caudal protein. (A) is adapted from (Rödel, Gilles,
and Averof 2013). (B) A schematic figure of the concentration profiles along
the anterior-posterior axis of the fly embryo for caudal mRNA, Bicoid protein,
and Caudal protein. (C) Different strategies to achieve translational repression.
Either the rate of translation or the fraction of mRNA translated (or both) could
be under regulation by Bicoid to achieve the spatial gradient of the resulting
Caudal protein.
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Figure 2: SunTag enables visualizing nascent loci of translation and quantifying
the number of nascent polypeptides. (A) Schematics of the SunTag:scFv-GFP
to tag the nascent polypeptides and PP7:PCP to tether the mRNA to the cell
membrane. Usually, tethering is done for more extended tracking of the loci. (B)
A series of snapshots of the SunTag:scFv-GFP, PP7:PCP with a reporter construct
with SunTag over 30 minutes. Two example time traces from translation puncta
are shown at the bottom. (B) is adapted from Yan et al. (2016).

2 Results

Establishing the SunTag reporter system in the early fly embryos

To establish the SunTag reporter system in the early fly embryos, we generated the fluorescent
protein components for visualization of nascent polypeptides as well as mRNA molecules. To
visualize the SunTag and individual mRNA molecules, we expressed a single-chain variable
fragment (scFv) fused to sfGFP, and PCP fused to mCherry and CAAX tag to tether the
reporter mRNA to the membrane (Yan et al. 2016). As our initial trial, we chose to drive
these two components using independent constructs driven by a nanos promoter as shown in
Figure 3 A (Garcia et al. 2013b). This promoter ensures sufficiently high levels of maternal
protein expression in the early embryos as shown in Figure 3 B. Briefly, in the absence of the
SunTag reporter, we could observe scFv-sfGFP uniformly distributed across nuclei and the
cytoplasm. Additionally, we could clearly see cellular boundaries with membrane-tethered
PCP-mCherry-CAAX. Interestingly, we could see this cellular boundaries during early nuclear
cycles such as nuclear cycle 12 or 13 which are known to be syncytial and before complete
cellularization occurs. We suspect that the cell membrane precursors form as early as nuclear
cycle 12 or 13, yet we do not know how stable these structures are.

We then tested the SunTag reporter construct driven by the hunchback P2 minimal
enhancer (Fig. 4 A). The hunchback mRNA pattern has been extensively characterized Perry
et al. (2012) and thus could be used as a platform to dissect the underlying translational
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Figure 3: Establishment of fluorescent protein components for the SunTag system.
(A) Schematics of the constructs expressing either scFv-sfGFP or PCP-mCherry-
CAAX under the maternal nanos driver. (B) Example snapshots of fly embryos
expressing either scFv-sfGFP (Top) or PCP-mCherry-CAAX (Bottom). Scale
bars represent 100µm.

pattern .
Our promising preliminary data showed a punctuated signal in the SunTag-scFv channel

that recapitulated the step-like hunchback mRNA pattern along the anterior-posterior axis.
This pattern did not exist in the control embryo lacking the hunchback driven SunTag
reporter but containing scFv-sfGFP and PCP-mCherry-CAAX (Fig. 4 B). As the next step,
we sought to image the temporal dynamics reported by our construct. Some representative
time traces showed down regulation of translation over time in nuclear cycle 14, which is
consistent with previous measurements of hunchback translational dynamics Vinter et al.
(2021) (Fig. 4 C and D).
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Figure 4: Proof-of-principle: hunchback P2P driven SunTag reporter recapitulat-
edsthe step-like spatial pattern of hunchback mRNA and captures its translational
dynamics. (A) Schematics of the reporter constructs. The hunchback P2P driver
is followed by 24 repeats of SunTag, the hunchback coding sequence, 24 repeats of
PP7 loops, and the hunchback 3’UTR. PP7 loops are used to tether the mRNA
molecules to the membrane and simplify live imaging. (B) Snapshots of embryos
with or without the SunTag reporter shown in (A). (Top Left) A full embryo
snapshot with the SunTag reporter and (Top Right) a zoomed-in image from
the white squared region in the full embryo image. (Bottom Left) A full embryo
snapshot without the SunTag reporter and (Bottom Right) a zoomed-in image
from the white squared region in the full embryo image. Scale bars on the full
embryo images represent 100µm. Scale bars on the zoomed-in images represent
10µm. (C) A zoomed-in image of the hunchbackP2P driven SunTag construct with
scFv-sfGFP and PCP-mCherry-CAAX. The green puncta represent the nascent
loci of translation, and the membrane is marked with PCP-mCherry-CAAX. Blue
and Red squared regions mark two nascent loci of translation whose temporal
dynamics are shown in (D). (D) Time traces of the two loci of translation over 10
minutes in nuclear cycle 14. The two spots were chosen from the movie shown in
(C).
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Construction of synthetic reporter constructs with different 3’
UTRs

After we validated the SunTag approach, we sought to dissect the molecular mechanisms of
translational regulation corresponding to different 3’UTRs. As mentioned in the introduction,
we chose the 3’UTR sequences of caudal and hunchback maternal transcripts as our initial
targets. For controls, we chose the 3’UTRs of tubulin and hunchback zygotic transcripts
respectively. We used the bicoid maternal driver to drive moderate levels of mRNA and
prevent potential crowding of the mRNA molecules. Such crowding could complicate our
detection of translation events from single, individual mRNA molecules (Hannon, Blythe,
and Wieschaus 2017). Our construct design is illustrated in Figure.XX.

Further dissection of these constructs remains as future work. For example, we can start
by acquiring the snapshots at different positions along the embryo’s anterior-posterior axis
for different nuclear cycles. This could narrow down when and where exactly we need to look
at to see the translational repression either driven by Bicoid or Nanos for caudal or maternal
hunchback 3’UTRs respectively. After we get a better sense of when and where in the embryo
the translational repression is prominent, we could focus on those for further investigation
of the temporal dynamics of translation. We envision that the translational repression for
caudal 3’UTR would be more prominent in the earlier cycles, such as nuclear cycle 12 or 13
as the Bicoid protein level decreases over nuclear cycle 14.

3 Discussion

Translational dynamics studies have greatly progressed with the development of new live-
imaging tools that make it possible to monitor the translation event in real-time at single-
molecule scale (Tanenbaum et al. 2014; Yan et al. 2016). These technological advances have
revealed the inherent stochasticity in translation process that gives rise to heterogenous
translation in the absence of any specific regulation (Yan et al. 2016). The application of
these techniques to multicellular organisms have revealed similar translational heterogenieties
as well as unknown translational regulation along the apico-basal and anterior-posterior axes
(Dufourt et al. 2021; Vinter et al. 2021).

Building on the research summarized above, we implemented the SunTag system in the
early fly embryos. However, we found a number of technical challenges that we have yet to
overcome. One of the biggest challenges was that it was hard to identify individual mRNA
molecules from the PCP-mCherry channel. This lack of single mRNA resolution probably
stems from the high background level of expression of the PCP-mCherry. We tried different
maternal drivers (such as vasa or multimerized version of minimal vasa driver) that are
known to drive lower level of protein expression, but with no luck. Briefly, 1xvasa driver
drove almost no PCP-mCherry, whereas with 2xvasa driver drove too high of PCP-mCherry.
Thus, we probably need more fine-tuning of the protein expression level to find the sweet
spot where we can detect individual mRNA molecules. The fact that we cannot be certain
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that the fluorescence signal from each individual translational locus comes from individual
mRNA molecules complicates our interpretation of the data. For example, the fluorescence
intensity from the translational spots could stem from one, two, or multiple mRNA molecules.
However, we can still quantitatively assess the amount of translated peptides over time and
space which already gives new insights on the spatio-temporal translational dynamics and
regulation encoded by the different 3’UTR sequences.

Secondly, imaging translational loci over a long time period requires tethering of the
mRNA to the membrane such that we do not lose track of the loci due to the diffusion
of mRNA molecules (Vinter et al. 2021). Although this tethering strategy was shown to
be effective for long-term imaging (Vinter et al. 2021), it is unclear whether this tethering
could impact the translational dynamics that we are interested in. For example, tethering to
the cytoplasmic membrane brings mRNA to the inner border of the cell, which could have
a different microenvironment for translation than the cytoplasm in terms of, for example,
the availability of the translational machinery. Further characterization of the translational
dynamics between tethered and untethered mRNA molecules could shed light on this potential
issue.

4 Materials and Methods

Construct Design

We used Genscript’s Gene Synthesis service to generate all plasmids used for this study. The
transgene cassettes were synthesized and subcloned into the pBphi vector with an attB site
such that we could insert the transgene cassette into VK landing sites (Venken and Bellen
2007).

All of the plasmids that were generated from this study can be found in Benchling folder,
https://benchling.com/garcialab/f_/Z8JML0RT-translation-reporter/.

Generation of transgenic fly lines

The transgenic fly lines were generated by Bestgene’s plasmid injection and screening services.
Briefly, the pBphi plasmids were injected into the fly lines carrying VK landing sites (Venken
and Bellen 2007).

For the hunchback P2P driven SunTag reporter, we chose the VK33 site as this site
has shown good level of expression from our previous studies (unpublished). For bicoid
driven SunTag reporters with different 3’UTRs, we made two variants, VK33 and VK20,
expecting to see some titration in case we want weaker expression for easier segmentation of
the translational loci.

We inserted scFv-sfGFP and PCP-mCherry-CAAX into the same chromosome (chromo-
some II) for easier fly husbandry. The scFv-sfGFP transgene was inserted into the VK02 site
and the PCP-mCherry-CAAX transgene was inserted into the VK22 site. These two VK sites

https://benchling.com/garcialab/f_/Z8JML0RT-translation-reporter/
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which are known to have orange eye color, rather than dark red. As a result, recombination to
combine these two constructs into the same chromosomes could be done by screening for the
red eyes resulting from the simultaneous presence of the two transgenes. For recombination,
we crossed these two lines, did single-fly crosses with balancers, then screened for darker
red eyes. Although not all of the darker red eyed fly lines carried both transgenes, we could
confirm that more than 50% of the fly lines that we screened for indeed have both transgenes.

Sample preparation and data collection

Sample preparation was done following the protocols described in ?. Briefly, embryos
were collected, dechorionated with bleach for 1-2 minutes, and then mounted between a
semipermeable membrane (Lumox film, Starstedt, Germany) and a coverslip while embedded
in Halocarbon 27 oil (Sigma-Aldrich). Live imaging was performed using a Leica SP8 scanning
confocal microscope, a White Light Laser and HyD dectectors (Leica Microsystems, Biberach,
Germany). Imaging settings for the SunTag experiments with the presence of scFv-sfGFP
and PCP-mCherry-CAAX were the same as in ? except that we used 512x512 (pixels) format
with a tiling option to image a wider field of view along the anterior-posterior axis.

Image Analysis

Images were analyzed using custom-written software (MATLAB, mRNA Dynamics Github
repository) following a simpler version of the protocol in ? and ?. Briefly, this procedure
involved segmentation and tracking of translational spots (from SunTag and scFv-sfGFP).
First, segmentation of each transcription spot was done based on its fluorescence intensity
and existence over multiple z-stacks. The intensity of each SunTag:scFv-sfGFP translational
spot was calculated by integrating pixel intensity values in a small window around the spot
and subtracting the background fluorescence measured outside of the active translational
locus. When there was no detectable translational activity, we assigned NaN values for the
intensity. The tracking of translational spots was done by using the proximity of translational
spots between consecutive time points.

https://github.com/GarciaLab/mRNADynamics
https://github.com/GarciaLab/mRNADynamics
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Chapter 5

A theory-experiment dialogue to
connect patterns of transcription and
translation

1 Introduction

So far, we have looked into different steps along the Central Dogma, from a set of transcription
factors binding to a regulatory DNA sequence to drive transcription initiation, leading to the
accumulation of mRNA molecules forming a gene expression pattern along the embryo’s body
axes, which then leads to a pattern of protein which acts onto the gene regulatory network.
Classic developmental biology work has treated the patterns of transcripts and protein as
almost equivalent. Only recently, it was proposed that this is not always the case, especially
with novel techniques revealing the translational regulation (Fig. 1 A) (Surkova et al. 2019).
In this chapter, we connect quantitative measurements of transcription and translation under
the reaction-diffusion modeling framework (Jaeger et al. 2004).

The reaction-diffusion model was proposed by Alan Turing to explain pattern formation
in nature: patterns of stripes or spots emerging autonomously from homogeneous, uniform
state (Turing 1952). A widespread application of the reaction-diffusion model in the fruit fly
embryo is the so-called Synthesis, Degradation, and Diffusion (SDD) model (Gregor et al.
2007a). This model has been used to explain pattern formation of a maternal gene, bicoid.

Inspired by the SDD modeling framework, we wondered to which degree we could explain
the protein pattern solely from the knowledge of mRNA patterns. Moreover, we wanted to
challenge the SDD model by generating experimentally testable predictions. For example, the
widespread SDD model assumes static parameters (such as diffusion coefficients, synthesis or
degradation rates for mRNA or protein (Gregor et al. 2007a). By contrasting the predictions
generated from this simple assumption with quantitative data, we can test this widespread
assumption.

The SDD model has parameters as follows: synthesis and degradation of both mRNA and
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Figure 1: Conceptual framework to predict protein patterns from transcriptional
initiation patterns using the reaction-diffusion model. (A) Schematic showing
pattern formation along the Central Dogma. Pattern formation starts with a
pattern of transcription initiation, leading to a pattern of cytoplasmic mRNA,
then ultimately to a protein pattern. (B) A conceptual framework of the reaction-
diffusion model. Reaction entails the synthesis and degradation of both mRNA
and protein. Both mRNA and protein diffuse through the embryo. For simplicity,
we assume that the embryo is one-dimensional along the anterior-posterior axis.

protein as well as diffusion coefficients of both mRNA and protein. For simplicity, we assume
that the embryo is one-dimensional along the anterior-posterior axis (Fig. 1 B). From previous
measurements, some of these parameters were readily available, and if not, we could make
educated guesses from the measurements from similar systems (Abu-Arish et al. 2010; Little,
Tikhonov, and Gregor 2013) With these parameters at hand, we could generate predictions
of the protein pattern given the rate of transcription as a function of space and time.

To test the predictive power of our model, we built an experimental system where we
can simultaneously measure the transcription dynamics and protein output in real-time.
Specifically, we combined the MS2-MCP system with the LlamaTag in a synthetic gene
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cassette to simultaneously monitor the transcription and translation events (Bertrand et al.
1998; Bothma et al. 2018; Garcia et al. 2013b; Lucas et al. 2013). By plugging in the rate of
transcription from the MS2-MCP measurement, combined with the best estimates of the SDD
model parameters, we could get a quantitative prediction for the protein level along space
and time. This predicted protein pattern along the anterior-posterior axis can be directly
compared with the measured protein pattern revealed by the LlamaTag.

As a proof of concept, we chose two sets of parameters, one that is our best guess and
the other that deviates from our best guess (Abu-Arish et al. 2010; Little, Tikhonov, and
Gregor 2013), to generate the predicted patterns of protein at different time points. To
contrast this prediction with the experimental data, we calculated the correlation coefficients
between predictions and measurement. We expected to see a better correlation from our
best-guessed parameters than the one that deviates from our best guesses. As expected, the
correlation between experiments and predictions was higher for our best-guessed parameters.
This suggested that the reaction-diffusion model could explain the experimental data quite
nicely, and that the inferred parameters roughly match previously measured values.

We noticed one caveat that the predicted protein level always has non-zero values in
nuclear cycle 13 due to active transcription during nuclear cycle 13. However, the measured
protein level shows almost the background level of fluorescence during nuclear cycle 13 and
increases only during nuclear cycle 14. A couple of scenarios could explain this discrepancy:
First, the translation is more active during nuclear cycle 14 compared to nuclear cycle 13.
Second, our measurement is limited for detecting a low level of nuclear protein due to the
high background of fluorophores by the design of the LlamaTag scheme (Bothma et al. 2018).

The first hypothesis is in line with recent experimental results proposing that the transla-
tion of zygotic hunchback mRNA is under spatio-temporal regulation (Vinter et al. 2021).
Further investigation is needed in theoretical modeling and experimental measurements to
test the spatiotemporal dependence of these biophysical parameters, potentially revealing
another hidden knobs of gene regulation during development.

Our result showcases what we can learn from the dialogue between theoretical modeling
and quantitative measurements. Starting from the simplest assumption that the biophysical
parameters for the SDD model are static, we generated an experimentally testable prediction.
By contrasting this prediction to quantitative data measured by live-imaging techniques, we
could falsify our prediction, which led us to revise and build new hypotheses.

2 Results

A theoretical framework of reaction-diffusion model to predict the
protein pattern from transcriptional pattern

The theoretical framework is based on the reaction-diffusion model, where we assume that the
major events in the embryo are synthesis, degradation, and diffusion of mRNA and protein,
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respectively. The functional form of reaction-diffusion equations for mRNA and protein are
given in Eqn.1 and Eqn.2.

∂mRNA(x, t)

∂t
= Dm

∂2mRNA(x, t)

∂x2︸ ︷︷ ︸
Diffusion

+ rm(x, t)︸ ︷︷ ︸
Synthesis

+ γmmRNA(x, t)︸ ︷︷ ︸
Degradation

, (1)

∂Protein(x, t)

∂t
= Dp

∂2Protein(x, t)

∂x2︸ ︷︷ ︸
Diffusion

+ rpmRNA(x, t)︸ ︷︷ ︸
Synthesis

+ γpProtein(x, t)︸ ︷︷ ︸
Degradation

, (2)

, where the parameters D, r, γ represent diffusion coefficient, synthesis rate, and degrada-
tion rate with subscripts m represents mRNA and p represents protein.

In this chapter, we focus on an example of hunchback gene as its biophysical parameters
have been characterized reasonably well. Not all of these parameters have been measured
experimentally, but some are better characterized than the others in the early fly embryo. To
summarize our current knowledge, we put the best estimates of these parameters in Table 1
along with references. Briefly, the diffusion coefficient for protein was measured for Bicoid,
a maternal transcription factor, using Fluorescence Correlation Spectroscopy (FCS) in the
early fly embryo (Abu-Arish et al. 2010). FCS measures the fluctuation of fluorescence in a
small volume, calculates the auto-correlation of the fluorescence, which gives a proxy for the
concentration of molecules as well as the diffusion coefficient (Hess et al. 2002). The diffusion
coefficient of mRNA was measured for twist mRNA using single-molecule live-imaging of
mRNA tagged with fluorescent proteins (Dufourt et al. 2021). Notably, it is two orders of
magnitude smaller than that of protein.

The half-life of protein was measured for Bicoid by using a photo-convertible fluorescent
protein fusion followed by a scheme of converting bright-dark states repeatedly and measuring
the remaining population of undegraded protein (Drocco et al. 2011). Drocco et al. (2011)
measured the half-life of Bicoid protein to be roughly 50 minutes prior to nuclear cycle 14,
then to be shorter after nuclear cycle 14. The half-life of mRNA was measured by halting the
transcription initiation followed by quantification of mRNA at different time points after the
transcription is stopped (Little, Tikhonov, and Gregor 2013). Little, Tikhonov, and Gregor
(2013) measured the half-life of hunchback mRNA in the early fly embryos, acquiring roughly
60 minutes of half-life.

Measurement of transcription and protein level in real time

To generate the predicted protein pattern using the reaction-diffusion model at each position
and time, we need to measure the transcription rate at each position and time. For example, we
used the MS2-MCP technique, which labels the nascent transcripts whose fluorescence readout
reports the number of nascent transcripts being transcribed in real-time (Bertrand et al. 1998;
Garcia et al. 2013b; Lucas et al. 2013). To measure the protein pattern at each time and
position, we used the LlamaTag approach, where the nanobody-tagged transcription factors
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Parameter Significance Value Reference

Dp Protein diffusion coefficient 7µm2/sec Abu-Arish, et al, 2010

Dm mRNA diffusion coefficient 0.016− 0.051µm2/sec Dufourt, et al, 2020

Tp Protein half-life 50 min Drocco, et al., 2011

Tm mRNA half-life 60 min Little, et al, 2013

rp Translation rate 2 (molecules/ mRNA /min) Petkova, et al, 2014

Table 1: Parameters for the reaction-diffusion model for mRNA and protein.

bind to fluorescent proteins that are already mature. This approach ensures no complication
of slow maturation of fluorophores in the early fly embryo. Hence the fluorescence readout is
proportional to the number of transcription factor protein molecules (Bothma et al. 2018).

Our construct design is illustrated in Figure 2 A. We chose the hunchback gene cassette
as a case study because its mRNA half-life and expression pattern have been characterized
very well (Little, Tikhonov, and Gregor 2013; Perry et al. 2012). Briefly, under the hunchback
driver, we placed 24 repeats of MS2 loops for mRNA detection and LlamaTag in the N-
terminal of the Hunchback coding sequence followed by hunchback 3’UTR. Snapshots of
live-imaging measurements of this construct are shown in Figure 2 B for two different time
points in nuclear cycle 14. As shown in the quantification in Figure2 C, we could see that
the peak in transcription in nuclear cycle 14 (around 10 minutes into the cycle) precedes the
peak of the nuclear protein (around 50-60 minutes into the cycle).

The MS2-MCP fluorescence signal is the readout of the number of actively transcribing
RNA polymerases, which then can be converted to the rate of transcription initiation
(Bothma et al. 2014). This rate of transcription at each time and position can be fed into
the reaction-diffusion model to generate the predicted patterns of protein given a set of
parameters.

Comparing model predictions with experimental measurements

With these measurements in our hand, we sought to generate predictions of protein patterns
for different sets of parameters for the reaction-diffusion model (as shown in Fig. 3 A). As a
proof-of-concept, we chose two sets of parameters. One set is from Table 1, which is closer to
hunchback gene (or other gap genes), and the other set is closer to pair-rule genes, such as
even-skipped, which are known to have shorter half-lives of mRNA and protein (Bothma et al.
2014). For convenience, we termed the former as hunchback (hb) parameters and the latter
as even-skipped (eve) parameters.

As showcased in Figure 3 B, we could generate two predicted patterns of protein (at
different time points) for these two sets of parameters. We can then compare these two
predictions with the measured protein patterns shown in Figure 3 B.
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We calculated the correlation coefficients between predictions and measurement to contrast
this prediction with the experimental data. We expected to see a better correlation from our
best-guessed parameters than the one that deviates from our best guesses. As expected, the
correlation between experiments and predictions were higher for the hunchback parameters
than the even-skipped parameters. This result suggested that the reaction-diffusion model
could explain the experimental data nicely and that the inferred parameters roughly match
previously measured values.

Lastly, we tested the parameter sensitivity by fixing all the parameter values as hunchback
parameters, then changed two parameters at a time. We could see how sensitive this
correlation is for each parameter by monitoring Pearson’s correlation coefficient. As shown in
Figure 4 A (Left), we could see that the diffusion of mRNA should be slow, and the half-life
of mRNA should be quite long such that on the order of tens of minutes. Furthermore,
as shown in Figure 4 A (Right), the protein diffusion has a sweet spot, which means that
it should not be too fast nor too slow, but on the order of 1 − 10µm2/sec, which is closer
to the measured values for Bicoid. Also, the protein half-life should be longer than tens
of minutes, similar to the mRNA half-life. Overall, this exploration matches well with our
previous knowledge of biophysical parameters for the reaction-diffusion model. Of course,
a more systematic exploration of the parameter sensitivity is needed. Since we have five
parameters, the exhaustive parameter sensitivity test was challenging. We discuss how we
could explore this parameter sensitivity from the Bayesian inference viewpoint and further
challenge our models in the Discussion.
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Figure 2: Schematics of the reporter construct for monitoring transcription and
translation in real-time. Experimental methods to simultaneously measure the
transcriptional activity and protein patterns. (A) Schematics of our construct.
hunchback P2P driver is followed by 24 repeats of the MS2 loop, a LlamaTag,
hunchback coding sequence (CDS), and hunchback 3’UTR. (B) Two snapshots of
an embryo expressing the reporter constructs are shown in (A). (Left) An embryo
in early nuclear cycle 14. Transcriptional loci are shown as red spots. The protein
pattern has not emerged yet. (Right) The same embryo as on the left, but in late
nuclear cycle 14. Transcriptional activity has halted at this point, and the protein
pattern emerged. The scale bar represents 100µm. (C) MS2 spot fluorescence
time trace averaged over 2.5% spatial bin at 25% of the embryo length (EL).
(D)The LlamaTag protein nuclear fluorescence time trace averaged over 2.5%
spatial bin at 25% of the embryo length.
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Figure 3: Prediction of protein pattern using the coupled Reaction-Diffusion
model. See caption in the next page.
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Figure 3: Prediction of protein pattern using the coupled Reaction-Diffusion
model.(A) Example of numerical calculation for the accumulated mRNA and
protein time-trace using the equation in (A), with a set of parameters from Table.1
at the position of 25% of the embryo length. (Left) Averaged MS2 spot fluorescence
(over ON nuclei) (Center) Accumulated mRNA (Right) Protein over the time
course of nc13 and nc14. (B) The spatial profile of protein at four time points
: (Left and Center) the predicted paterrns of protein with two different sets of
parameters (Right) measured protein patterns. (Left) using the hb parameters
(Dm = 0µm2/sec, Tm = 60 min, Dp = 7µm2/sec, Tp = 50 min), (Center) using
the eve parameters (Dm = 0µm2/sec, Tm = 7 min, Dp = 7µm2/sec, Tp = 7 min).
The difference between the hb and eve parameters are different half-lives of mRNA
and protein. (C) Comparison of prediction and measurement for two different sets
of parameters used in (B). The prediction and measurement values are one-to-one
paired by the time point and their position along the anterior-posterior axis. (Left,
comparison drawn in black lines) hb parameters, (Right, comparison drawn in
purple lines) eve parameters. In an ideal scenario where we can predict the protein
pattern perfectly at each time point, the prediction and measurement should be
perfectly correlated. Thus, we used Pearson’s correlation coefficient to score the
predictability of a specific set of parameters. Correlation coefficients for the two
sets of parameters are shown at the bottom of each plot.
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A

Figure 4: Parameter sensitivity for Pearson’s correlation coefficient of prediction
and measurement. (A) Here, we fixed either mRNA or protein parameters, then
see how the correlation coefficient changes for different parameter regimes of
protein or mRNA. (Left) Protein parameters are fixed as in Table 1. mRNA
parameters (Dm,Tm) are tuned for 4 orders of magnitude. For each set of mRNA
parameters, the correlation coefficient is shown in Z-axis, color-coded as the color
bar shown in right. (Right) mRNA parameters are fixed as in Table 1. Protein
parameters (Dp,Tp) are tuned for 4 orders of magnitude. For each set of protein
parameters, the correlation coefficient is shown in Z-axis, color coded as the
colorbar shown in right. These plots show that there is a regime of parameters
that shows a higher correlation between prediction and measurement.
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3 Discussion

Overall, we have built a theoretical framework to connect the patterns of transcription to
the patterns of protein using the reaction-diffusion framework. Most studies have focused
on using this model to infer the biophysical parameters, yet missing one or two parameters
depending on circumstances (Jaeger et al. 2004; Surkova et al. 2019). This leaves a question
on how much we can justify the inferred parameters to biologically meaningful parameters.
Here, we take another approach to challenge the model by starting from the prediction and
testing it experimentally.

Using the MS2-MCP technique to measure the rate of transcription, we could generate
experimentally testable predictions of the protein patterns. We then contrasted the predicted
protein patterns with experimentally measured protein patterns using the LlamaTag at each
point in space and time. By doing this, we could assess whether a given set of parameters
could explain our data well or not. Finally, our proof-of-concept test using two widely different
sets of parameters revealed that this framework of comparing predictions and measurements
could work to favor one set of parameters over another.

For future directions, we note a couple of points to discuss. First, we have seen that our
modeling-experiment dialogue could work as a framework to infer the biophysical parameters,
such as diffusion, synthesis, or degradation of mRNA and protein. We can use this framework
to measure these parameters for different genes or under different conditions, which are
thought to have a huge impact on these parameters. Second, we can imagine performing a
more systematic parameter sensitivity test following the last section of the Results. We do
not have a clear suggestion on how to approach this. However, we hope a Bayesian inference
approach such as Markov-Chain Monte-Carlo (MCMC) could work as a framework to scan a
wide range of parameters in an unbiased way. We hope that this could give a clearer idea of
which parameters have a bigger impact in dictating the protein patterns.

4 Materials and Methods

Plasmid design and fly transgenesis

The hb P2 promoter and proximal enhancer are followed by 24 repeats of MS2V5 loops (Wu
et al. 2015) flanked by the hunchback intron, and coding sequence of LlamaTag (Bothma et al.
2018) and Hunchback protein-coding sequence linked by 6xGlycine linker. This construct is
subcloned into the pBphi vector, which can be integrated into specific landing sites (attP)
on the fly genome by the φC31 integrase mediated insertion (Venken et al. 2011). This
manuscript used the VK00033 fly line, which has a landing site on chromosome III. The
VK00033 fly line is w(−), and the pBphi vector carries mini-white gene as a positive marker
for transformants. Thus, a positive selection method was used to identify transformants. The
injected flies were crossed with the balancer line on chromosome III, Dr/TM3,Sb, and w(+)
F1 progeny with the balancer were selected and used to establish homozygous stocks.
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To supply fluorescent protein components for both MS2 and LlamaTag, we combined
nanos driven MCP-mCherry and vasa driven eGFP (Kim et al. 2021; Reimer et al. 2021).
The fly line that we used has the genotype as following yw; MCP-mCherry, Histone-iRFP;
MCP-mCherry, vasa-eGFP, where Histone-iRFP was recombined with the MCP-mCherry
allele for an accurate determination of the mitosis timing.

S1 Establishment of MCP-mCherry to measure the

transcription

To use the MS2-MCP signal for estimation of the mRNA production, we need to validate
that the MS2 signal reports the number of RNA polymerases reliably. One way to validate
this is titrating the MCP dosage and monitoring whether the MS2 signal saturates in our
concentration regime of the MCP protein. MCP protein is supplied by maternal nanos driver
randomly inserted into the fly genome using the P-element method. Thus, we could combine
multiple copies of the transgene by genetic crosses to generate a wide range of MCP levels.
In practice, we used two transgenic MCP lines that have the MCP transgene on either II
or III. (yw; Nos-MCP-mCherry(6); +, yw; + ; Nos-MCP-mCherry(3)). Then, we used the
hb P2 -MS2 line from (?) to measure the transcriptional activity for different levels of MCP
protein. The transcriptional activity of hb P2 reporter peaks around 10 minutes into nc14
then decreases. We used the feature of the hb P2 reporter that the expression peaks around
ten minutes into nc14 as shown in Fig. S1 A. We used the peak intensity as a proxy for the
transcriptional activity, which should be consistent over embryos if MCP protein saturates
the MS2 loops. As Fig. S1 B shows, the MS2 signal saturates with 3, 4 copies of MCP
transgenes but under-saturated with two copies. We could use this conclusion to construct
our experimental reporter lines with saturating MCP levels.
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Figure S1: MCP-mCherry saturation test. (A) MS2 spot fluorescence traces
during nuclear cycle 14 at 30 percent of embryo length for different MCP-mCherry
dosages. Different traces are synchronized using the time point when the trace
peaks. Blue, green, and red lines represent two, three, and four copies, respectively.
(B) The maximum MS2 spot fluorescence at nuclear cycle 14 at the same spatial bin
(along the anterior-posterior axis) for different MCP-mCherry dosages. Dosages
are inferred from the offset values.
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