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ABSTRACT 
 
 

Understanding the molecular and functional consequences of epigenome dynamics in cell fate, 
aging, and disease 

 
By 

 
Julien Laurent Pierre Morival 

 
Doctor of Philosophy in Biomedical Engineering 

 
University of California, Irvine, 2021 

 
Professor Timothy L. Downing, Chair 

 
 

 
 DNA replication plays an important part in allowing cells to proliferate and develop into 

complex tissues. The advent of multicellular organisms, however, has been theorized to be 

intertwined with the tradeoff of aging and disease. These events are highly associated with 

drastic changes in gene expression across a cell population, often regulated by the epigenome. 

The set of heritable modifications that make up the epigenetic landscape are known to be 

altered by cell fate, aging, and disease. However, the dynamic processes by which the changes 

in the epigenome, and subsequently transcriptome, lead to these modified cell states are not 

clearly understood. In this dissertation, we demonstrate that DNA replication leads to a transient 

window of epigenetic entropy, providing the first evidence of a molecular link between cell fate, 

aging, and disease. In order to elucidate this link, we made use of replication-associated 

bisulfite sequencing (Repli-BS) and replication-associated assay for transposase-accessible 

chromatin sequencing (Repli-ATAC) datasets in human embryonic stem cells (hESCs). Our 

results suggest that the temporality of this window for both the chromatin architecture and DNA 

methylation differs across the genome. Specifically, we identified that the regions with the most 

prolonged window of epigenetic entropy are located at regulatory features, associate with 

expression variability, and are susceptible to age- and disease-related epigenetic drift. 

Additionally, this dissertation explores the impact of individual LMNA mutations on the 



 x 

epigenome that lead to unique disease outcomes of dilated cardiomyopathy (DCM) and 

brachydactyly using patient-derived fibroblasts and induced pluripotent stem cells (iPSCs). 

Analyses combining multiple epigenetic features and transcriptomic data suggest that 

differentially methylated regions (DMRs) are associated with the misregulation of regulatory 

elements, and that, in combination with chromatin remodeling, could lead to gene dysregulation 

ending in DCM. Ultimately, our results provide evidence that somatic and reprogrammed patient 

cells could serve as models to understand the mechanism behind which disease-related 

regulatory abnormalities lead to laminopathies like DCM and brachydactyly.
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INTRODUCTION 
 

DNA replication allows for the faithful inheritance of genetic information from one cell 

generation to the next, giving way to proliferation. In certain eukaryotic organisms, proliferative 

events like asymmetric division allow for multicellular life to develop. This mechanism, by which 

stem cells simultaneously self-proliferate and give rise to a differentiated daughter cell, is 

accompanied by unique changes in gene expression which help define a new cell state[1]. The 

central regulating mechanism of gene expression in cells is the epigenome, a group of 

modifications that affect genes without modifying the genetic sequence. These modifications are 

inherited from parental to daughter strands through maintenance enzymes. The epigenome 

operates at the chromatin (chromatin architecture, hetero- vs. euchromatin), the nucleosome 

(histone post-translation modifications), and the DNA (DNA methylation). Due to their 

involvement in gene expression, it is not surprising that events like cell fate have been 

associated with a modified epigenome[1]. Over the course of multiple cycles and mutation 

events, however, a cell’s ability to correctly perform cellular functions can degrade[2], resulting 

in an altered epigenome and ultimately replicative aging[3,4] and disease[5,6]. The underlying 

mechanism by which the epigenome dynamically changes and allows for these modified cell 

states to arise is not fully understood. 

In order to explore this problem, we mainly focused on DNA methylation, as it is a highly 

characterized epigenetic modification in cell fate[1,7], aging[4,8], and disease[9,10]. In 

mammals, this modification, consisting of a methyl (CH3), is added to cytosines at CpG 

dinucleotide locations by enzymes, which copy methylation from parental strands to daughter 

strands. Its presence has directly been linked to changes in protein binding to the DNA, as well 

as a direct correlation with gene inhibition. Using this known epigenetic modification, we aim to 

elucidate the mechanism by which DNA methylation, in conjunction with other epigenetic 

features, can give rise to unique cellular events like multicellular organisms, aging, and disease. 

Ultimately, understanding the underlying role that the epigenome plays in allowing for these 
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dynamic processes to take place could prove to be essential to understanding how to modulate 

or negate them.
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SECTION 1 

Genome replication programs both cell fate and aging 

 

1.1 Introduction 

1.1.1 DNA replication plays a role in cell fate transitions 

All living systems utilize DNA replication as a means to proliferate and increase population 

size. During this process, the genetic and epigenetic codes are dismantled, copied, and faithfully 

re-established in both parental and daughter cells, as part of the reliable maintenance of cell 

identity. In certain eukaryotic organisms, replication can also bring about the rise of multicellular 

life, associated with drastic changes in the transcriptome and epigenome across the cell 

population[1]. Understanding how this change is initiated, during a cell’s replication, has been a 

key point of interest for developmental research[11]. Recently, the rise of single-cell technology 

has revealed the presence of a previously unappreciated molecular variability across cell 

populations taking place at the proteomic[11,12], transcriptomic[13], and epigenetic level[14]. This 

intrinsic regulatory noise has been suggested to be a potential source for explaining how 

seemingly homogeneous cell populations can give rise to a multitude of cell types over the course 

of several cell divisions[11]. 

1.1.2 Multicellular life and aging are intrinsically linked 

The advent of complex organisms, however, has been theorized to be evolutionarily 

intertwined with the tradeoff of aging and disease, as a means of regulating resource demand 

and therefore population size[15]. Similar to cell fate transitions, aging also leads to 

transcriptomic[16] and epigenetic changes[17]. The molecular and functional mechanisms that 

connect and allow for both cell fate transition and aging to take place on such different timescales 

(days vs a lifetime) still remain unclear. 

1.1.3 DNA methylation is temporally dynamic 
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Cytosine methylation, a highly conserved epigenetic modification across DNA replication, 

has been shown to be variable in cell populations at regulatory domains[18], and also across 

multiple cell generations[15]. As such, DNA methylation has been implicated in stem cell 

differentiation[19–21], aging[4,22,23], and the emergence of age-related diseases [3,24,25]. 

Although originally attributed to cell-to-cell heterogeneity, we have previously shown that much of 

the observed DNA methylation heterogeneity is actually due to a global delay in post-replication 

maintenance of this epigenetic mark[26]. 

We hypothesize that the temporal re-establishment of epigenetic marks, initiated by 

replication, could have a role in both creating regulatory noise needed for cell fate transitions to 

take place and for age-related epigenetic drift to arise. To explore this, we investigated the post-

replication landscape of epigenetic modifications and chromatin architecture in a human 

embryonic stem cell (hESC) line. We provide the first direct evidence of a molecular framework 

that describes the co-dependency of multicellular life with mechanisms of aging. 

 

1.2 Results and Discussion 

1.2.1 Post-replication DNA remethylation kinetics create a transient window of epigenetic 

entropy 

Quantification of the modification’s genome-wide stochasticity through normalized 

methylation entropy (NME) revealed a gradual decrease in NME across timepoints, eventually 

reaching bulk levels (Figure 1.1A). This indicated the presence of a previously unappreciated 

transient window of time during which methylation entropy is elevated. To explore this temporary 

heterogeneity, we focused our analyses on the two most extreme changes in methylation levels 

(0hr and 16hr timepoints). Genome-wide, differences in methylation between the two timepoints 

appeared to vary considerably based on the region of interest (Figure 1.1B). Breaking the genome 

up into 1Kb tiles further revealed that this temporal difference was inconsistent across the tiles 

(mean methylation difference: 33.25 ± 14.39) (Figure 1.2). In order to capture local regions where 
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substantial methylation differences were most prevalent, we further refined our analysis to custom 

region tiles. Tiles were generated by grouping only CpGs showing an increase in methylation over 

time, and were separated into decile bins (D1-D10) of increasing average methylation difference 

across each tile (Figure 1.1C). Tiles with the largest differences in methylation over time (D10) 

were referred to as replication-associated differentially methylated regions (Repli-DMRs). 

Although efficient to get general genomic trends of remethylation, Repli-DMRs are limited due to 

data scarcity and tile requirements, thus leaving some CpGs from being taken into account 

(Figure 1.1C gray shading). In order to achieve CpG-specific resolution, we made use of 

previously established kinetic rate parameters that numerically reflect the speed at which 

individual cytosines achieve steady-state methylation levels after replication[27]. Despite greater 

CpG coverage, rates appeared to confirm the temporal remethylation delay in our generated tiles, 

as the two were found to inversely correlate, with the slowest rates found in Repli-DMRs (Figure 

1.3). 

NME results informed of the presence of a temporal heterogeneity across the tiles, the 

implication that this may have across a cell population cannot be fully appreciated using averages 

across reads at individual CpGs (Figure 1.1D). We therefore decided to perform read-level 

analyses to resolve how this temporal heterogeneity presented on an inter-cellular level. We first 

calculated the proportion of discordant reads (PDR), interpreted as the fraction of cells with locally 

disordered methylation at each CpG[28]. In agreement with our NME data, mean PDR decreased 

over time (Figure 1.1E), suggesting that following the re-establishment of methylation, reads 

become more homogeneously methylated throughout. Interestingly, within dynamic tiles, PDR 

was found to be significantly lower (1-way ANOVA post hoc Tukey: p <2.2x10-16) in temporally 

dynamic tiles from D8-D10, compared to other groups of tile bins. This points to the fact that reads 

had more consecutive methylation compared to other regions with less drastic changes in 

methylation over time. 
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Although insightful, PDR remains limited in its ability to identify the degree of disorder in 

methylation across a read (Figure 1.1D). Understanding the way in which the methylation pattern 

presents itself temporally across a cell population could have important functional consequences 

on gene expression regulation. We therefore made use of the transition score calculation[26], 

which determines the number of transitions in methylation state that take place along a read 

between neighboring CpGs. This measurement can more clearly distinguish between a “cell state” 

and “random” pattern of methylation along reads. To do so, we generated a set of synthetic 

transition score distributions, modeling a population of reads with either a “randomized” or “cell 

state” methylation pattern (Figure 1.1D), and compared it to each deciles’ distribution using 

Jensen-Shannon divergence (JSD). JSD was significantly lower (student t-test: p£0.033) for the 

“cell state” comparison for all groupings of temporally dynamic tiles (Figure 1.1F), indicating that 

following replication, methylation transiently takes on this pattern across the cell population. This 

agrees with a stochastic state that allows for the development of multicellular tissues from 

seemingly homogenous cell populations[11].  
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Figure 1.1: Entropy and read-level analyses of replication-associated bisulfite 

sequencing (Repli-BS) data reveal a temporal window of epigenetic entropy. A. Barplot showing 

the normalized methylation entropy (NME) for Repli-BS methylation data from timepoints collected 

following replication. B. Top, Genome browser track (chr5:140,740,000-140,7407,000) displaying 

a smooth average curve fitting for 0hr (light blue) and 16hr (dark blue) CpG methylation 

percentage from Repli-BS data. Bottom, Depiction of RefSeq gene annotation. C. Genome 

browser track (chr17:8,625,887-8,650,300) showing Top, Barplot of whole genome bisulfite 

sequencing (WGBS) methylation percentage, Middle Top, Scatter plot of methylation difference 

(16hr minus 0hr) for Repli-BS data. Dashed line indicates 20% methylation, the minimum 

methylation required for a methylation value to be considered to generate temporally dynamic 

tiles. Gray region contains CpGs that could not be captured in temporally dynamic tiles. Middle 

Bottom, Location of tiles generated using Repli-BS data, and separated into ten decile bins (D1-

D10). Red tiles represent Repli-DMRs, the tiles with the largest difference in methylation over 

time. Bottom, Depiction of RefSeq gene annotation. D. Schematic depicting CpGs (blue circles) 

on nascent DNA (blue lines) either methylated (filled blue circles) or unmethylated (empty circles) 

in four theoretical models of methylation across a cell population. Below each CpG is the mean 

methylation and proportion of discordant reads (PDR) values per CpG. Each row indicates a read 

from a different cell in the population, along with its corresponding transition score. E. Barplot 

showing the mean PDR per CpG calculated across reads in the 0hr timepoint (light blue) either 

only at particular groups of temporally dynamic tile deciles or across all CpGs, 16hr timepoints 

(dark blue), or steady state (s.s., black). 1-way ANOVA post hoc Tukey test: **** P £ 0.0001. F. 

Barplot of the mean Jensen-Shannon Distance (JSD) between the transition score from 0hr 

timepoint reads of samples and a synthetic dataset from the “randomized” or “cell state” 

methylation pattern models. This was performed at decile groups of temporally dynamic tile and 

all CpGs. Student t-test: * P £ 0.05, ** P £ 0.01, **** P £ 0.0001. 
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Figure 1.2: Temporal methylation differences vary widely across 1Kb tile fragmented 

genome.  Histogram of mean methylation differences (16hr minus 0hr) from Repli-BS data at 1,000 

bp (1Kb) tiles generated across the genome.  
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Figure 1.3: Remethylation rates and temporally dynamic tiles inversely correlate. Violin 

plots showing the distribution of remethylation rates captured in the different temporally dynamic tile 

deciles. Linear fit of the data is shown as a red line, with the corresponding formula and statistics 

shown at the bottom. 

 

1.2.2 Coordinated temporal dynamics across the epigenome point to a regulatory 

function of the DNA replication-associated transient window of entropy 

The presence of a transient window of inter-cellular methylation entropy can have 

important consequences in the context of regulatory function. However, it is also important to note 

that the epigenome operates on multiple levels, and that these are interconnected. Indeed, 

several studies have also demonstrated, through single cell or newly-developed sequencing 

techniques, that the chromatin is both disrupted by the replication fork[29–31], and that 

nucleosome occupancy is inversely correlated with DNA methylation[32,33]. In order to 
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investigate if post-replication chromatin accessibility operates on a similar time scale as our DNA 

methylation results, we performed an altered form of Repli-ATAC-seq[29], enabling us to capture 

reads representative of integer multiples of nucleosomes in hESCs over the same timecourse as 

our Repli-BS data (Figure 1.4A). Density plots of Repli-ATAC-seq insert size confirmed the 

expected nucleosome compaction periodicity observed from ATAC-seq[34]. Over time, though, a 

shift from less compact nucleosomes to a higher density of compacted chromatin emerged 

(median: 0h: 476.63, 1h: 490.78, 4h: 513.29, 16h: 604.18) (Figure 1.4B). Furthermore, 

accessibility entropy (replication-associated entropy minus sample background entropy) of insert 

size decreased over time (Figure 1.4C), mirroring our observations in DNA methylation (Figure 

1.1A and 1.5). Repli-DMRs were additionally found to be strongly enriched for DNase I 

hypersensitivity sites (DHS) (Figure 1.4D), further confirming a possible coordination in post-

replication remodeling of the chromatin architecture and DNA remethylation kinetics. 

 Interestingly, intersection of Repli-DMRs showed a fold enrichment for several epigenetic-

modifying enzymes chromatin immunoprecipitation sequencing (ChIP-seq) peaks (Figure 1.4D). 

CTCF, a methylation-sensitive protein[35] involved in controlling chromatin architecture, was 

strongly associated with Repli-DMRs, indicative of a possible mechanism by which slow 

remethylation kinetics could account for dynamic changes in accessibility. Additionally, while 

EZH2, known for inhibitory H3K4me27 deposition, was only slightly enriched in Repli-DMRs, while 

P300, a histone acetyltransferase, had a 4-fold higher log odds ratio. This observation is 

particularly interesting as EZH2 is intrinsically linked to DNA methylation as part of the repression 

machinery[36], whereas histone acetylation deposition by P300 is typically associated with 

transcriptional activation[37]. We decided to elucidate the relationship of DNA remethylation 

kinetics with histone post-translational modifications, as these have also been found to undergo 

cyclic changes in levels[30] with different rates of recovery[31,38,39]. Intersection of our 

temporally dynamic tile deciles with ChIP-seq peaks for several histone marks revealed that some 

were represented across all tiles (H3K27Ac, H3K27me3, H3K4me3), while others had a clear 
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bias toward smaller (H3K36me3, H3K9me3) or larger (H3K4me1) temporal methylation 

differences (Figure 1.4E). To understand the significance of temporal methylation heterogeneity 

on histone marks, we decided to focus our analysis on regions of the genome where the window 

of inter-cellular methylation heterogeneity/entropy was most prolonged, namely Repli-DMRs. 

Intersection of Repli-DMRs with these histone marks revealed the highest enrichment for 

H3K4me1 (avg: 0.35), both uniquely and overlapped with either H3K4me3 or H3K27me3 (Figure 

1.4F). Interestingly, H3K4me1 sites were previously found to have high heterogeneity and 

oscillations of DNA methylation in primed ESCs[40]. Consistent with our observations in histone 

modifications, Repli-DMRs enriched for enhancers, specifically hESC-specific non-super 

enhancers (Figure 1.4G). Interestingly, promoters were found to be enriched in both D1 and Repli-

DMR (D10) tiles (Figure 1.6). This observation prompted us to question if the subgroups of 

promoters on either end of the epigenetic temporal spectrum had unique functions. Bivalent 

promoters, traditionally marked by both H3K27me3 and H3K4me3, were previously identified at 

developmental genes when the latter modification was cell cycle-regulated in hESCs[30]. Overlap 

of promoter regions with remethylation rates revealed that this subclass of cell cycle-regulated 

bivalent promoters had significantly slower kinetics (1-way ANOVA post hoc Tukey test: p 

<2.2x10-16), in comparison to other forms of promoters (Figure 1.4H). Furthermore, bivalency has 

been theorized to be brought on by the co-occupancy of repressive H3K27me3 and P300[37], 

which could explain the large enrichment of the acetyltransferase in Repli-DMRs (Figure 1.4D). 

The presence of a prolonged window of epigenetic heterogeneity at regulatory elements known 

to be associated with development suggests that this transient state may play a part in regulating 

cell fate. 
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Figure 1.4: Temporal dynamics in chromosomal architecture and post-translational 

histone modifications associate with DNA remethylation kinetics at regulatory elements of 

the genome A. Schematic showing the methodology of replication-associated assay for 

transposase-accessible chromatin sequencing (Repli-ATAC-seq) and the expected entropy 

outputs. B. Density distributions of insert sizes captured in Repli-ATAC-seq for different timepoints 

after replication (0hr, 1hr, 4hr, and 16hr). The number of compacted nucleosomes is depicted 

above each of their corresponding peaks. C. Barplot showing accessibility entropy across each 

of the timepoints. D. Barplot showing the log odds ratio enrichment of DNase hypersensitivity sites 

(DNase HS) and epigenetic-modifying proteins in Repli-DMR tiles. E. Heatmap showing the log 

odds ratio enrichment of histone modifications in temporally dynamic tiles from each decile group. 

F. Venn diagram showing the log odds ratio (logOR) enrichment of unique, overlapping, no 

histone modifications in Repli-DMR tiles. G. Barplot showing the log odds ratio enrichment of 

genomic features in Repli-DMRs. H. Smooth median curve fitting for remethylation rates at and 

within ±10Kb of all promoters (dark blue), bivalent (light blue), and cell cycle-regulated H3K4me3 

bivalent promoters (yellow). 
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Figure 1.5 Accessibility and methylation entropy exponentially decays with time. 

Non-linear fitting for accessibility entropy (dark blue) and normalized methylation entropy (NME, 

red) across Repli-BS timepoints.  

 

 

Figure 1.6 Temporally dynamic tiles associate with various genomic features. 

Heatmap showing the log odds ratio enrichment of genomic features in temporally dynamic tiles 

from each decile group. 

 

1.2.3 Slow remethylation kinetics may provide a prolonged window of time for increased 

gene expression variability, allowing for cell fate transitions  

Epigenetic memory, in other words, the faithful inheritance of epigenetic marks from 

parental to daughter cells, plays an important role in maintaining the transcriptional state of 

cells[41]. It is therefore unsurprising that previous studies have noted that the epigenetic memory 

of the transcriptional state also gets disrupted by replication[42]. Considering that the epigenome 

of silenced regions may be transiently heterogeneous at regulatory features, we theorized DNA 

may be left temporarily vulnerable to transcription factor (TF) binding, which could lead to further 

cellular changes. TF binding site analysis of Repli-DMRs revealed the presence of several 
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development-regulating transcription factor families, including POU, FOX, GATA, and HOX 

(Figure 1.7A, Appendix 1.1). Gene ontology (GO) term analysis of the top 20 most significant TFs 

confirmed their association with cell fate, development, and transcription regulation (Appendix 

1.2). Seeing the enrichment of these TFs in our Repli-DMRs, regions with prolonged epigenetic 

heterogeneity that associate with regulatory features, we next decided to investigate if gene 

expression could be impacted. Transcriptional noise, fluctuations in gene expression in cells, has 

recently been identified as an important tool for stem cells to undergo specific cell fate 

specification[11,43]. In order to determine if the identified window of epigenetic heterogeneity 

could account for some of these increased fluctuations in gene expression, we measured gene 

expression variability across single cells, using previously published scRNA-seq data in 

hESC[44]. We observed that gene expression variability had an inverse relationship with 

remethylation rates at and around the gene’s body, with lower variability genes having significantly 

higher remethylation kinetics (1-way ANOVA post hoc Tukey test: p <2.2x10-16; Figure 1.7B and 

1.8). We theorized that remethylation rates may dictate the duration of methylation heterogeneity 

at a particular gene’s regulatory domain, and therefore impact the likelihood of cells yet to have 

promoter remethylation, resulting in temporary heterogeneous gene expression across the cell 

population (Figure 1.7C). With this in mind, we hypothesized that, in the event of a TF binding 

and leading to sustained transcription, regions with slow remethylation kinetics could remain 

hypomethylated in their new cell state. We therefore intersected Repli-DMRs with previously 

identified hypomethylated DMRs during the transition from hESCs to each of the three germ 

layers (ectoderm, mesoderm, and endoderm)[7]. We found that Repli-DMRs were enriched in 

hypomethylated DMRs for all three cell types, particularly in these found in ectoderm (Figure 

1.7D). Separately, GO analysis of genes associated with Repli-DMRs also showed a strong 

enrichment for developmental genes (Figure 1.7E). The noticeable presence of neuro-related 

terms also reflected the ectoderm DMR results mentioned above. Seeing as a group of cell-cycle 

regulated genes has previously been shown to be made up of developmental regulators[45], we 
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calculated the average remethylation rate across their promoters. We found that rates were 

significantly lower in this cluster, as opposed to other cell-cycle regulated genes (Figure 1.7F). 

Overall, our results point to a potential mechanism by which this temporal window of epigenetic 

heterogeneity could play a role in development and cell fate transitions. 
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Figure 1.7: Post-replication remethylation kinetics associate with gene expression 

variability and developmental elements A. Table highlighting the top 20 most significant 

transcription factor binding site (TFBS) motifs enriched in Repli-DMRs. TFs are organized by 

protein family and heatmap reports the degree of statistical significance for TFBS motif 

enrichment. B. Smooth median curve fitting for remethylation rates at and within ±15Kb of genes. 

Each line depicts different bins of gene expression variability from low (light blue) to high (dark 

blue). C. Schematic depicting the theoretical mechanism by which slow (top) and fast (bottom) 

DNA remethylation rates could influence gene expression variability across a population. D. 

Barplot showing the log odds ratio enrichment of regions, hypomethylated in differentiated 

mesoderm (dME), endoderm (dEN), and ectoderm (dEC), in Repli-DMRs. E. Top 23 most 

significant gene ontology biological process terms enriched in genes associated with Repli-DMRs, 

related to development (top) and ectoderm development (bottom). F. Violin plots showing the 

distribution of mean promoter remethylation rates for all genes, cell-cycle variable genes, and 

cell-cycle variable genes involved in regulating development. The number of genes included is 

displayed below each category. 1-way ANOVA post hoc Tukey test: * P £ 0.05, ** P £ 0.01, N.S. 

= non-significant. 
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Figure 1.8: Remethylation kinetics inversely correlates with single cell RNA 

sequencing (scRNA-seq) gene expression variability. Boxplot showing the distribution of 

mean remethylation rates within ±10Kb of the transcription start site (TSS) of genes binned 

according to expression variability in the cell population. Dark line indicates the median and edges 

of the box show the 25th and 75th percentile values. Linear fit of the data is shown as a red line, with 

the corresponding formula and statistics shown at the bottom. 1-way ANOVA post hoc Tukey test: 

**** P £ 0.0001. 

 

1.2.4 The transient window of regulatory heterogeneity leaves the genome vulnerable to 

age-related epigenetic drift over an organism’s lifetime 

Our results suggest that delays in remethylation are associated with transient regulatory 

heterogeneity from cell-to-cell, which can be essential for allowing important developmental 
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changes to take place. Over the course of multiple cycles, however, a cell’s ability to perform 

cellular functions can degrade, leading to observed replicative aging[2,3]. In order to elucidate if 

post-replication DNA methylation maintenance kinetics could be the common molecular link 

between cell fate and aging, we compared the methylation level of newborn and 

nonagenarians/centenarian DNA[4,46] across the temporally dynamic decile tiles. We observed 

an increase in age-related methylation difference in tiles of increasing temporal methylation 

difference (Figure 1.9A and 1.10A), suggesting that increases in the duration of the window of 

heterogeneity could account for increased loss of methylation with age. These results prompted 

us to question whether certain regions of the genome may be more susceptible to epigenetic drift, 

while others remain resilient with age. Previously, CpG density was found to be an important 

factor in susceptibility to age-related epigenetic drift[15], attributed to the methylation enzymes’ 

processivity[5]. As expected, we observed a larger loss in methylation at CpGs with fewer 

neighbors (Figure 1.9B). However, we also found a positive correlation between remethylation 

rate and CpG density (Figure 1.9C), suggesting that CpG-poor regions may be more vulnerable 

to age-related epigenetic drift due to lack of maintenance exacerbated by slower remethylation 

kinetics (Figure 1.9D). This theory is in line with others that highlight a deregulation of 

maintenance machinery with age[15]. Local loss of methylation accumulated across multiple 

mitotic divisions has also been reported in the context of diseases, like cancer, where CpG context 

can be predictive of susceptibility. Specifically, CpGs in the WCGW context, where W stands for 

A or T, have been shown to be more prone to loss in methylation in cancer, unlike those in a 

SCGS context, where S strands for C or G[5]. CpGs in the SCGS context were found to have 

significantly faster remethylation kinetics (1-way ANOVA post hoc Tukey test: p < 2.2x 10-16) than 

genome-wide CpGs, unlike WCGW CpGs which had significantly slower rates (1-way ANOVA 

post hoc Tukey test: p < 2.2x 10-16; Figure 1.9E). Breaking WCGW CpGs according to the number 

of neighboring CpGs, within ±35bp window, we observed two different types of behaviors related 

to age-related loss and remethylation rate (Figure 1.9F and 1.10B). Notably, WCGW CpGs with 



 22 

0 to 1 neighbors seemed to be most susceptible to methylation loss with slower remethylation 

rates, consistent with our previous findings. However, more surprisingly, CpGs with 2 or more 

neighbors seemed uncorrelated, regardless of the remethylation rate, suggesting that CpG 

density may overcome a susceptibility factor like CpG context. Overall, our results suggest that 

while a transient window of epigenetic entropy at regulatory regions provides context for 

multicellular development, it may also be the source of both age and disease-related methylation 

loss in situations where maintenance is not reliably copied to the newly divided cells (Figure 1.9D). 
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Figure 1.9: CpG density and context combined with slow remethylation kinetics 

affect CpG susceptibility to age-related epigenetic drift. A. Barplot showing the average 

difference in methylation (young - old) from methylation array data across each of the temporally 

dynamic tile decile groups. The number of CpGs captured in each group is shown below each 

category. 1-way ANOVA post hoc Tukey test: *** P £ 0.001, *** P £ 0.0001. B. Boxplot showing 

the distribution of methylation difference (young – old) from methylation array data according to 

the number of neighboring CpGs present within ±35bp. Dark line indicates the median and edges 

of the box show the 25th and 75th percentile values. C. Boxplot showing the distribution of 

remethylation rates according to the number of neighboring CpGs present within ±35bp. D. 

Schematic showing the theoretical by which transient epigenetic heterogeneity acts as a double-

edged sword, able to bring about multicellular life, while being susceptible to age-related 

epigenetic drift over time. Here, CpGs are depicted as circles on nascent reads, with methylation 

represented with filled blue circles. E. Violin plots showing the distribution of remethylation rates 

(in log form) at CpGs in different contexts (W = A or T, S = C or G). Red circles indicate the mean, 

and the number of CpGs is indicated under each condition. 1-way ANOVA post hoc Tukey test: 

**** P £ 0.0001. F. Smooth average curve fitting of methylation difference (young - old) from 

methylation array data versus remethylation rates (in log form) at CpGs in the WCGW context. 

Line colors indicate a different number of neighboring CpGs within ±35bp and all CpGs in WCGW 

context. 
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Figure 1.10: Whole genome bisulfite sequencing (WGBS) methylation data for 

newborn and centenarian samples. A. Barplot showing the average difference in methylation 

(young - old) from WGBS data across each of the temporally dynamic tile decile groups. The 

number of CpGs captured in each group is shown below each category. B. Smooth average curve 

fitting of methylation difference (young - old) from WGBS data versus remethylation rates (in log 
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form) at CpGs in the WCGW context. Line colors indicate a different number of neighboring CpGs 

within ±35bp and all CpGs in WCGW context. 

 

1.3 Materials and Methods 

1.3.1 Replication-associated bisulfite sequencing (Repli-BS) datasets 

 Repli-BS datasets for 0hr, 1hr, 4hr, 16hr, and arrested HUES64 human embryonic stem 

cell (hESC) samples were accessed from GSE82045[26]. Raw fastq files for the 0hr (S1-S6 

fractions), 16hr, and arrested timepoints were downloaded and had adapters trimmed using 

TrimGalore (Version 0.4.4)[47]. Trimmed reads were then aligned to hg19/GRCh37 using Bowtie2 

[48] as part of Bismark (Version 0.20.1) [49]. Paired-end read mapping efficiency varied between 

70.4-87.9%, with an average of 81.13% (Appendix 1.3). Aligned BAM files from each of the 6 S 

fractions of the 0hr time point were merged. Methylation calls were finally generated through 

Bismark, with values from neighboring CpGs on opposite sides of the strand merged. Finally, the 

methylation ratios generated were filtered to keep only CpGs with a minimum read coverage of ³ 

5x, for increased confidence in CpG methylation ratios. 

 

1.3.2 Temporally dynamic tile generation and binning 

 0hr and 16hr Repli-BS BED files, containing methylation score values across captured 

CpGs, were downloaded from GSE82045[26]. Files were then filtered for CpGs with a minimum 

read coverage of ³ 5x and overlapping both timepoints. CpGs were further filtered so as to keep 

only those with a methylation difference (16hr minus 0hr) ³ 20%. The remaining CpGs were then 

either tiled every 1000bp or through a custom method. For the custom method, CpGs within 

±250bp were merged into a single tile using BEDTools’ (Version 2.25.0) merge function[50]. To 

ensure that captured tiles were rich in CpGs, only the top 10% of tiles with the highest number of 

CpGs (220877 tiles) were kept. Generate tiles (both 1Kb and custom) were then intersected with 
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files containing CpGs with at least ³ 5x coverage and a methylation difference (16hr minus 0hr) 

> 0 for both 16hr and 0hr. Tiles were then sorted by mean methylation difference (16hr minus 0hr) 

and binned into deciles. Tiles in the bin with the highest mean methylation difference were termed 

Repli-DMRs.  

 

1.3.3 Methylation entropy and read-level calculations 

 Normalized methylation entropy (NME) was calculated by normalizing Shannon entropy 

(H) using the previously derived formula !"# =	−	 !
"#$!(&'()

[51], where N represents the number 

of CpGs used in the calculation. Shannon entropy was calculated using the “entropy” function 

from python’s SciPy.stats package[52] (Version 1.5.2), and histogram distributions of CpG 

methylation ratios from Repli-BS BED files for the 0hr, 4hr, 16hr, and arrested timepoints, with 

CpGs filtered for ³ 5x coverage, as inputs. 

 Read-level methylation calculations were performed on reads from Repli-BS BAM files for 

the 0hr (all reads and filtered by dynamic tile decile overlap), 16hr, and arrested. To do so, 

methylation calls along reads, generated by Bismark[49], were extracted and filtered for CpG 

methylation information only. 1) Proportion of discordant reads (PDR) and 2) transition scores 

were then calculated as follows: 1) Each read’s methylation calls were first analyzed to assign 

concordance or discordance to each read, using a custom python script. Reads were then filtered 

to retain only those with methylation for ³ 2 CpGs per read. The remaining were intersected with 

a BED file of CpGs captured in 0hr Repli-BS data, and the number of discordant reads overlapping 

each CpG was determine using BEDTools’[50] intersect and merge functions. PDR was finally 

calculated at each CpG based using the previously described formula #	#,	-./0#1-234	152-/6#42"	#	#,	152-/  [28]. A 

mean PDR was then calculated for each timepoint. The same analysis was performed using only 

reads and CpGs present in dynamic tile deciles. 2) From read-level methylation, consecutive CpG 
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methylation status was determined to calculate the number of transitions taking place along the 

read. Transition score calculations were then calculated as #	#,	4123/.4.#3/	2"#3$	475	152-#	#,	89:/	;/5-	.3	475	152- .  

 In order to create both the “random” and the “cell state” distribution models, reads were 

split according to the total number of CpGs present in each read, and the total number of 

methylated CpGs and total number of CpGs captured were determined. Total methylation was 

then reassigned either randomly or in a consecutive fashion along the reads until no methylated 

CpGs were left. Transition scores were calculated, as described above, for the synthetically 

methylated reads in each model. Jensen-Shannon distance (JSD) was then calculated between 

the histogram distributions of the transition score for either the “random” or “cell state” models 

and the distribution of the actual data. This was performed using the distance.jensenshannon 

function from the SciPy.spatial[52] (version 1.1.0) python package. This calculation was done only 

between reads with the same number of CpGs so as to ensure a fair comparison between 

distributions.  A mean JSD was then calculated using values from every instance of number of 

CpGs per read. 

   

1.3.4 Stochastic modeling of post-replication remethylation kinetics 

 Post-replication rates of methylation re-establishment were generated from HUES64 

Repli-BS data[26] using a previously established stochastic model[27]. Briefly, a maximum 

likelihood estimation was used to infer a per-CpG remethylation rate (k) and steady-state 

methylation fraction (f). So as to investigate the consequences of remethylation kinetics at 

methylation-rich CpGs, only CpGs assigned with a value f ³ 0.8. 

 

1.3.5 Annotations and downloaded datasets 

 In order to determine the impact of our generated temporally dynamic tiles and 

remethylation rates, files were intersected with genomic features, histone modification and protein 
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(EP300, EZH2, CTCF) chromatin immunoprecipitation sequencing (ChIP-seq) peak files, and 

DNase hypersensitivity peaks for H1 hESCs from the UCSC genome table browser[53], using 

BEDtools’ intersection function[50]. Additionally, Repli-DMR tiles were intersected with 

hypomethylated differentially methylated regions (DMRs) between the hESC cell line HUES64 

and each of the three germ layers (mesoderm, ectoderm, endoderm), downloaded from the 

roadmap epigenomics project database[7], and with a track of super-enhancer locations in H1 

hESCs[54].  

 For the bivalent promoter analysis, a list of regions for bivalent promoters (defined as 1Kb 

upstream of the transcription start site (TSS) and 1.5Kb downstream of the TSS) with cell-cycle 

regulated H3K4me3[30], and a list of genes with bivalent promoters[55] were downloaded. In 

order to identify promoters from the gene list, promoter regions were generated using TSS of 

genes acquired from the hg19 biomart database[56]. Promoter regions were generated using the 

definition above, namely 1Kb upstream of the TSS and 1.5Kb downstream of the TSS. Finally, a 

median rate of remethylation was calculated in 100bp windows within a ±10Kb region around 

promoters using deeptools’[57] computeMatrix function (Version 3.5.0). 

 For our gene expression analyses, scRNA-seq data from H1-hESCs was downloaded 

from GSE36552[44]. Variation was calculated at each gene using the coefficient of variation 

equation (standard deviation/mean) on gene expression RPKM values for each cell at that 

particular gene. Remethylation rates, described above, within ±15Kb from each gene’s TSS were 

then identified. Genes were then filtered to retain only those with RPKM contributions from at least 

3 cells, and having at least 20 remethylation rates within the ±15Kb region. The remaining genes 

were then separated into 5 bins of equal size. A median rate of remethylation was then calculated 

in 1Kb windows within a ±15Kb region around each gene using deeptools’[57] computeMatrix 

function (Version 3.5.0). Additionally, a list of cell-cycle regulated genes was downloaded[45] and 

promoter regions were generated by extending 2Kb upstream and 500bp downstream of gene 
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TSS. These were then intersected with remethylation rates using BEDtools’ intersection 

function[50].  

 Age-related epigenetic analyses were performed using both DNA methylation information 

from a WGBS study of newborn and centenarian blood samples (GSE31263)[4], for fair CpG 

comparability to our Repli-BS dataset, and a methylation microarray dataset of 19 newborn and 

19 nonagenarians (GSE30870)[46], for increased sample size. For disease-related loses in 

methylation at different CpG contexts, WCGW and SCGS locations were identified in the genome 

using the Hypergeometric Optimization of Motif EnRichment (HOMER)[58] (Version 4.7) 

software’s seq2profile.pl function to create .motif files for each that were then scanned across the 

hg19 genome using scanMotifGenomeWide.pl function.  Finally, the number of neighboring CpGs 

was calculated within a window of ±35bp around each CpG, as previously defined[10], using a 

combination of BEDTool’s[50] getfasta function (Version 2.25.0) and UCSC’s[59] faCount 

(Version 327).  

 

1.3.6 Transcription factor binding site (TFBS) enrichment and gene ontology (GO) 

analyses 

 In order to determine TFBS present within the Repli-DMR tiles, we made use of the 

HOMER software[58] (Version 4.7). Using the tiles as inputs, HOMER was performed using the 

hg19 genome as background, along with a specified motif size parameter based on average tile 

size. TFBS motif results were finally filtered for p-value £ 0.01. As part of HOMER, a gene ontology 

term enrichment analysis was also performed using the parameters above. GO term analysis was 

performed on the top 20 most significant TF results from HOMER through the Gene Ontology 

Resource’s PantherDB[60].  

 

1.3.7 Replication-associated assay for transposase-accessible chromatin sequencing 

(Repli-ATAC) and insert size entropy calculations 
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A Repli-ATAC-seq protocol was derived from an established ATAC-seq protocol[61], with 

modifications for nascent read pulldown. Human embryonic stem cells (HUES64) were grown on 

in feeder-free conditions using Geltrex (Thermo Fisher Scientific). Once ready, cells were given 

fresh mTesr1 media (STEMCELL Technologies) and were treated with 50 mM BrdU (BD 

Pharmingen, BD Biosciences) for 1 hour.  Following treatment, media, containing BrdU, was 

aspirated and cells were washed twice with mTesr1 media. Cells were then collected at timepoints 

(0, 1, 4, 16 hour) post-BrdU treatment, through Accutase (Innovative Cell Technology Inc.) 

treatment and subsequent wash and spin steps. Following collection, cells were counted to 

ensure retrieval of at least 100,000 cells, and were immediately assayed using the ATAC-seq 

protocol described previously [61] up to the PCR Amplification step 2.  Thermal cycling was 

performed for 1 cycle at 72˚C to allow for extension of both ends of primer after transposition.  At 

this point, the DNA was purified using a Qiagen MinElute PCR Purification Kit and half of the 

sample were immunoprecipitated with anti-BrdU antibody (BD Pharmagen).  For 

immunoprecipitation, DNA was first denatured through incubation 95˚C for 5 mins, then cooled 

for 2 mins on ice-water and added to a tube with IP buffer (1 mM sodium phosphate, 140 mM 

NaCl and 0.02% TritonX-100).  0.5 mg anti-BrdU antibody (BD Pharmagen) was added to the 

sample and incubated for 20 min at room temperature with constant rotation in the dark.  20 µg 

of rabbit anti-mouse IgG (BD Biosciences) was added for 20 mins at room temperature with 

constant rotation before centrifugation at 17000xg for 5 min at 4˚C.  The supernatant was entirely 

removed and ice-cold IP buffer was added, followed by a centrifugation step at 17000xg for 5 

mins at 4˚C.  Following removal of the supernatant, the pellet was resuspended in 200 µl of 

digestion buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA, and 0.5% SDS) with 0.25 mg/ml 

proteinase K before incubating the samples overnight at 37˚C. A further 100 µl of fresh digestion 

buffer with 0.25 mg/ml proteinase K was added to samples before incubating for another 60 mins 

at 56˚C.  DNA purification was performed using AMPure XP beads (Beckman Coulter).  The 

ATAC-seq protocol described in [61] was then continued from step 1 of the PCR Amplification 
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step until library completion. Repli-ATAC-seq libraries were sent to the UCI Genomics High-

Throughput Facility and sequenced on an Illumina NovaSeq6000 sequencer. We performed 

paired-end sequencing runs for a total of 200 cycles.  

Reads were analyzed using the nfcore/atacseq package[62] (Version 1.2.1), available on 

Github. The pipeline performs the following steps: 1) Raw read QC on FASTQ files with FastQC, 

2) Adapter trimming with Trim Galore!, 3) Alignment with BWA to generate BAM files, 4) Alignment 

quality control removing mitochondrial DNA, blacklisted regions, duplicates, unmapped reads, 

reads mapping to multiple locations, reads with mismatches, reads with insert size >2kb, and 

reads that map to different chromosomes with a combination of SAMtools, BAMTools, and 

Pysam, 5) Creation of bigWig files scaled to 1 million mapped reads with BEDTools and 

bedGraphToBigWig, and finally 6) peak-calling with MACS2. 

Insert length distributions were then generated from BAM files using custom code in 

Python (Version 3.8.4). Insert length entropy at a particular timepoint was calculated using the 

following formula: 

'()159 *+ ,(..)041" ∗ ln ,(..)041" − + ,(..).9 ∗ ln ,(..).9	
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where  ,(..) is the probability of occurrence of an insert of a particular length i. 

The central calculation is the Shannon's entropy of insert length in both the IP and control 

samples. The IP sample can be considered a subsampling of the control sample; thus a 

differential entropy is taken between the two to ascertain the difference in entropy by taking the 

subsampling. The final value is the mean of differential entropies across replicates. The time-

dependent decrease in entropy is present in both replicates, irrespective of the mean. This 

calculation was performed in Python 3.8.4 using the SciPy package[52]. 

 
 
1.3.8 Statistical analyses 

All statistical tests were performed through R (Version 3.6.2) [63]. Student t-test and 1-
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way ANOVA, followed by a subsequent post-hoc Tukey Honest Significant Differences, were 

performed on samples to determine significance.  

Odds ratio (OR) analyses were performed to determine the significance of Repli-DMR 

association to particular features (for example, histone modifications and genomic features). OR 

were calculated as follows: 2 0	⁄
@ -⁄ , where a = the number of basepairs that fall within a Repli-DMR 

and within the context of interest, b = the number of basepairs that fall within Repli-DMRs and 

outside of the context of interest, c = the number of basepairs that fall outside of Repli-DMRs and 

within the context of interest, d = the number of basepairs that fall outside of Repli-DMRs and 

outside of the context of interest. The logarithmic OR value (logOR) was then reported for each 

context of interest. Fisher’s exact test was used to determine significance of odds ratios. 

Finally, non-linear least squares (NLS) curve fitting was performed on accessibility entropy 

and NME using values for each timepoint using self-starter parameters generated by the 

SSAsymp from the stats R package.
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SECTION 2  

DNA methylation analysis reveals epimutation hotspots in patients with dilated 

cardiomyopathy-associated laminopathies 

 

2.1 Introduction  

2.1.1 Lamin A/C in the nuclear envelope 

The gene LMNA gives rise to both Lamin A and C through alternative splicing. These two 

intermediate filaments line the inner membrane of the nuclear envelope, and are essential in 

providing structure to the nucleus, while simultaneously linking the chromatin to the cytoskeleton 

[64]. 

2.1.2 Lamins interact with DNA 

DNA regions associated to lamins at the periphery of the nucleus, termed lamina-

associated domains (LADs), have previously been shown to be part of heterochromatin, the 

condensed region of chromatin where gene expression is silenced [65]. These structural 

associations, however, are disrupted in cases of mutated LMNA, leading to nuclear blebbing and 

subsequently nuclear envelope rupture [66]. Together, these events lead to DNA damage [67], 

as well as altered gene expression and chromatin organization [68]. 

2.1.3 Laminopathies and Dilated Cardiomyopathy 

Mutations in the LMNA gene cause a variety of diseases, called laminopathies, including 

premature aging, muscular dystrophy, lipodystrophy, and bone abnormities. Cardiac disease 

such as dilated cardiomyopathy (DCM) remains the most common type among the LMNA-related 

diseases. Patients with DCM typically present with enlargement of the ventricles, resulting in 

systolic dysfunction, eventually leading to heart failure [69]. While cardiac symptoms typically 

present in adulthood, other laminopathy-associated phenotypes, such as facial and digital bone 

abnormalities (ex. brachydactyly), are congenital and indicative of disease mechanisms occurring 

early in development. 
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2.1.4 DNA methylation in LMNA-mutated DCM samples 

The role of DNA methylation, which works in conjunction with the chromatin to control 

gene expression, has not been thoroughly investigated in the context of LMNA mutations. A 

recent study examined the impact of DNA methylation in heart tissue from patients with DCM [6]. 

This study concluded that altered CpG methylation, in combination with LAD redistribution and 

dysregulated gene expression, plays a key role in DCM pathogenesis. Although this study further 

solidifies the potential role of DNA methylation in the context of DCM, the individual impact of 

each family-specific LMNA mutation was not considered. Taking into account the specific 

mutation remains important since laminopathies arise in a large variety of tissue types and tissue 

abnormalities often appear in a mutation-specific fashion [69–71]. Furthermore, it was previously 

shown that methylation levels varied at the promoter of laminopathy-related genes in cells with 

two distinct LMNA mutations [72]. 

 
2.2 Results 
2.2.1 Genome-wide DNA methylation analysis within family-specific primary fibroblasts 

and iPSCs 
 To investigate the effect of LMNA mutations on the DNA methylation landscape, RRBS 

was performed on primary skin fibroblasts (and their iPSC derivatives) obtained from two families 

harboring unique LMNA mutations, and an additional unaffected (and unrelated) donor control 

cell line (Figure 2.1A). After filtering, we captured an average of 2.2 million CpGs per sample in 

both cell types (Appendix 2.1), of which 1539576 (62.2-73.2% of total CpGs) and 1418269 (58.2-

62.9% of total CpGs) overlapped all samples in fibroblasts and iPSCs, respectively (Figure 2.2A). 

Filtered CpGs represented a large portion of CpGs found in exons (13.7-20.0%) and promoters 

(12.1-20.5%) in fibroblasts, and in iPSCs (12.0-19.2% and 12.8-19.9%, respectively) (Figure 

2.1B). This represented a coverage of approximately half of all promoters in both fibroblasts and 

iPSCs (Appendix 2.2). The relative distribution of CpGs captured in exon, intergenic, intron, and 

promoter was similar within each sample, in both cell types. These results agree with previous 

reports that RRBS captures about 2.8 million CpGs, within 60% of promoters [73,74].  
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Globally, average methylation levels of controls (60.6 ± 0.6 in fibroblast and 69.7 ± 0.3% 

in iPSC) and patients (61.42 ± 0.9% in fibroblast and 70.9 ± 0.6% in iPSC) did not vary between 

the two groups (Figure 2.1C). This observation was consistent when separated by family. At the 

single CpG level, however, we observed differences between patient and control sample 

methylation levels in both fibroblast and iPSCs (Figure 2.2B), with the largest differences 

observed at CpGs with intermediate methylation (30-60%) in controls. To obtain a regional view 

of how methylation patterns change in patient samples compared to unaffected controls, we 

focused on differences in methylation levels over sections of the genome rather than individual 

CpGs. Interestingly, some differences in methylation, in the fibroblast genome for example, 

appeared to be shared across both families (Figure 2.1D). In contrast, other methylation 

differences were unique to one family, with little differences seen across samples in the other 

family. Due to the presence of distinct regional methylation difference between patient samples 

and unaffected controls, we focused our analysis on DMR tiles (Figure 2.3), classified as “Shared” 

(Figures 2.1D & E, orange shaded region), “Family A-specific” (green shaded region), or “Family 

C-specific” (purple shaded region). Methylation differences of Family A and Family C samples 

were confirmed to significantly correlate genome-wide at shared DMRs (Figure 2.1E, left panel, 

Pearson correlation: R = 0.49, p <2.2x10-16), while no positive correlation was observed at Family-

specific DMRs (Pearson correlation: R = -0.017, p =0.026 for Family A; R = -0.026, p = 0.0019 for 

Family C).  
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Figure 2.1: Characterization of DNA methylation in LMNA-mutant fibroblasts and iPSCs. A, 
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Schematic representation of the experimental setup. Cluster branches indicate groups of samples 

by family. B, Stacked bar plot showing the percentage of CpGs (³ 5x depth) in a particular feature 

(Exon, Intergenic, Introns, Promoter from bottom to top) for all samples individually and merged 

in fibroblast (top) and iPSC (bottom). C, Bar plot displaying mean genome-wide DNA methylation 

percentage using CpGs (³ 5x depth) across all samples individually and merged by groups in 

fibroblasts (tan) and iPSCs (brown). D, Example of regions with CpG methylation differences 

between patient and control fibroblasts. Top, Genome browser track (chr5:497,300-501,700 and 

chr5:524,000-527,000) displaying DMRs based on mean methylation differences (patient minus 

control) by group (Family A-specific – green, Family C-specific – purple, Shared – orange). 

Middle, Methylation levels for patient and control samples by group. Gray regions reflect the 

location of DMRs from the top track. Bottom, Depiction of RefSeq gene annotation. E, 2D density 

plots of CpG methylation difference (patient minus control) in fibroblasts from Family C (y-axis) or 

Family A (x-axis) at Shared, Family A-specific, and Family C-specific DMRs. 
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Figure 2.2: Quantification of captured CpGs and corresponding DNA methylation by family. 

A, Venn diagrams of the number of overlapping CpGs, captured in RRBS and filtered for ³ 5x 

depth across grouped samples for fibroblast (top) and induced pluripotent stem cell (iPSC) 

(bottom). B, Top, Classification of CpGs based on methylation percentage of input control 

samples (high – left, intermediate – center, or low – right). Middle, Percentage stacked bar plot of 

CpGs based on the degree of methylation difference (patient-control), as indicated by heatmap 

legend. Bottom, Group of samples used for percentage calculation. 
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Figure 2.3: Computational workflow of DNA methylation analyses.  Flowchart showing the 



 41 

computational workflow for producing methylation call and DMR BED files from raw fastq files, 

and their subsequent analyses. 

 

2.2.2 Family-specific epigenetic signatures dominate DMR landscape in 

fibroblasts 

To characterize family-specific and shared DNA methylation differences between patient 

and control samples, we first focused on data from patient-biopsied fibroblasts only. Despite no 

differences in global methylation levels between families (Figure 2.1C), hierarchical clustering of 

samples based on all DNA methylation data showed that samples tended to group according to 

family (Figure 2.4A). Clustering was also performed on samples following removal of sex 

chromosomes X and Y, in order to identify possible sex biases. Despite clusters no longer 

segregating by family (Figure 2.5A), the average Pearson correlation coefficient of genome-wide 

methylation data between samples was higher when compared between samples of the same 

family than when compared across families (Figure 2.5B), indicating that genome-wide 

methylation signatures were more dependent on family than sex. Furthermore, DMRs in sex 

chromosomes made up only 0.76-2.63% of total DMRs generated for each category (Figure 2.4B, 

2.5C). 

By performing methylation comparisons between patient and control samples within the 

same family, we posited that disease-specific patterns of differential methylation would more 

strongly emerge from our analyses, while normalizing for family-specific methylation pattern 

biases. We therefore focused the rest of our analyses on “shared” (Figure 2.4B, orange shaded 

region), “Family A-specific” (green shaded region), or “Family C-specific” (purple shaded region) 

DMRs. These three groupings were replicated through hierarchical clustering based on 

methylation at DMR locations (Figure 2.6). While clustering based on shared DMR methylation 

showed a clear separation between patient and control samples, family-specific clusters still 

emerged from within each patient and control sub-cluster (Figure 2.4C). This evidence, together 
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with the identification of a relatively low number of shared DMRs overall (Figure 2.4B), show that 

family-specific changes dominated our DMR analysis. Furthermore, we noted that the absolute 

median methylation difference across DMR tiles was significantly higher across family-specific 

comparisons (41.60 for Family A, and 52.63 for Family C) relative to DMRs obtained from our 

shared comparison (34.10) (Figure 2.4D, Kruskal-Wallis test: p-value <2.2x10-16). These findings 

indicated that epimutations that arise in DCM patients occur largely in a family-specific manner. 
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Figure 2.4: Hypermethylated and hypomethylated DMRs localize at distal regulatory 



 44 

features and transcriptionally repressed chromatin in fibroblasts. A, Hierarchical clustering 

of all fibroblast samples by genome-wide DNA methylation. Colors represent family groupings. B, 

Venn diagrams showing the number of DMRs captured by group for both hypermethylated and 

hypomethylated DMRs. Orange regions denote “Shared DMRs”, green regions denote “Family A-

specific DMRs”, and purple regions denote “Family C-specific DMRs”. C, Top, Hierarchical 

clustering of all samples by shared DMR methylation. Bottom, Heatmap of average CpG (³ 5x 

depth) methylation percentage across shared DMRs for each individual sample. Genes 

associated to heart and skeletal system development are shown next to the associated DMR. D, 

Density plot of mean methylation difference (patient minus control) within DMRs by group. Overall 

Kruskal-Wallis test p-value is displayed. E, Line plot of log odds ratio of the likelihood of CpGs to 

fall within a hypermethylated (“Hyper”) or hypomethylated (“Hypo”) DMR and a given range of 

genomic distance away from a gene’s TSS. Open circles designate log odd ratios that were non-

significant (p-value > 0.05) by Fisher’s exact test. F, Heatmap showing the log odds ratio of a 

CpG falling within both a DMR group and a given histone modification. G, Heatmap showing the 

log odds ratio of a CpG falling within both a DMR group and one of 25 ChromHMM annotated 

genomic regions. H, Table highlighting TFBS motifs enriched in shared, Family A, and Family C 

DMRs, grouped by TF-related categories. Heatmap reports the degree of statistical significance 

for TFBS motif enrichment. Results were categorized as hypomethylated (red) or 

hypermethylated (blue) according to the type of DMR associated to a particular TFBS motif. 
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Figure 2.5: Sex chromosomes had minimal impact on genome-wide and DMR results. A, 

Hierarchical clustering of all fibroblast samples by genome-wide DNA methylation of autosomal 

chromosomes. Colors represent family groupings. B, Bar plot of the average Pearson correlation 
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coefficient of genome-wide DNA methylation between fibroblast samples belonging either to the 

same family (“Intrafamily”) or to the other family (“Interfamily”) in Family A (left) or Family C (right). 

C, Stacked barplot showing the percentage of fibroblast DMRs present either in autosomal or sex 

chromosomes for hypermethylated (“Hyper”) or hypomethylated (“Hypo”) differentially methylated 

regions (DMRs) in Family A-specific (left), Family C-specific (center), or Shared (right) groupings. 

D, Heatmap showing the log odds ratio of a CpG falling within both a given histone modification 

and a fibroblast DMR generated with only autosomal chromosomes. E, Heatmap showing the log 

odds ratio of a CpG falling within both one of 25 ChromHMM annotated genomic regions and a 

fibroblast DMR generated with only autosomal chromosomes. F, Hierarchical clustering of all 

induced pluripotent stem cell samples by genome-wide DNA methylation of autosomal 

chromosomes. Colors represent family groupings. 

 

 

Figure 2.6: Clustering of differentially methylated regions (DMRs) by DNA methylation 

level. Top, Hierarchical clustering by methylation level in fibroblast samples. Bottom, Heatmap of 
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average CpG (³ 5x depth) methylation percentage across Family C, Family A, and shared DMRs. 

Sample IDs are colored based on family of origin: Family C – purple, Family A – green, Unrelated 

Donor – orange. 

 

2.2.3 Fibroblast DMRs associate with distal regulatory features and 

transcriptionally repressed chromatin  

 To investigate the potential regulatory impact of the DMRs identified, we used the 

Genomic Regions Enrichment of Annotations Tool (GREAT) [75] to identify genes that our DMRs 

may be regulating, both proximally and distally. Shared DMRs, despite their low frequency, 

revealed an association to 62 genes included in heart (eg. GATA5, FOXL1, TBX3, MYO18B, 

CACNA1C, BMP7) and skeletal system (eg. HOXD10, HOXD12, RUNX3) development GO terms 

(Figure 2.4C, full list shown in Appendix 2.3). To examine the potential regulatory impact of 

methylation on these DMR-associated genes, we performed an odds ratio (OR) analysis to 

determine the likelihood of CpGs falling within each of the three DMR groups and within a given 

genomic distance of a gene’s transcriptional start site (TSS). This analysis revealed that CpGs 

within DMRs were generally more significantly likely to fall within genomic locations 1 to 10Kb 

upstream of a given gene’s TSS and, more proximally, between 1 to 5kb downstream of the TSS 

(Figure 2.4E, Fisher’s exact test: p-value £0.05, unless specified as non-significant).  

The tendency of DMR-overlapping CpGs to fall distally to TSSs, beyond ±1kb, suggested 

that disease-associated changes in methylation could exist within diverse chromatin context that 

lie largely outside of promoters (which generally showed an odds ratio close to 1) and potentially 

within distal gene regulatory elements. To explore this, we performed a similar odds ratio analysis 

across a broader chromatin context (Figure 2.4F,G, Fisher’s exact test: p-value £0.05, unless 

specified as non-significant in Appendix 2.4 & 2.5), to infer any potential role that aberrant 

methylation patterns might have on gene regulation in patient cells. Interestingly, an analysis 
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based on CpG overlap within fibroblast-specific histone modification landscapes (rather than 

distance from TSS) revealed that CpGs within hypermethylated DMRs obtained from our shared 

category showed a strong association (logOR = 0.24; p-value = 2.08x10-20) with regions marked 

by histone 3 lysine 4 mono-methylation (H3K4me1), a histone mark traditionally enriched at 

enhancers [76,77] (Figure 2.4F). This was in stark contrast to CpGs within hypermethylated 

Family C DMRs, which displayed a protective effect with respect to H3K4me1 marks (logOR = -

0.05; p-value = 3.2x10-5). Conversely, Family A hypermethylated (logOR = 0.04; p-value = 

2.71x10-5) and hypomethylated DMRs (logOR = 0.12; p-value = 4.61x10-24) both showed a slightly 

stronger association with this histone modification. A similar analysis which included the removal 

of sex chromosomes showed similar histone modification enrichment (Figure 2.5D) to those 

previously mentioned. 

We next took a more focused approach towards understanding the relationship between 

the occurrence of CpGs in DMRs and functionally annotated genomic regions, as assigned 

(computationally) by ChromHMM [78,79]. These results revealed that all of our DMR categories 

showed a significant increased association with at least one subtype of enhancer annotation, 

including those functionally characterized as weak (annotation 16-18), strong (annotation 13-15) 

or transcribed (annotation 10-12). (Figure 2.4G, Fisher’s exact test: p-value £0.05, unless 

specified as non-significant in Appendix 2.5). Additionally, we saw a general negative association 

with promoter annotations (annotation 2-3, Fisher’s exact test: p-value £0.02), however we did 

observe strong associations with “downstream promoter elements” (annotation 4, Fisher’s exact 

test: p-value £0.04), which likely coincide with the increased association of DMRs at genomic 

distances 1-5kb downstream of gene TSSs that we observed previously (Figure 2.4E).  Removal 

of sex chromosomes did not affect the results above for our ChromHMM analysis (Figure 2.5E). 

We also observed that DMRs showed a strong likelihood to fall within histone 

modifications – H3K27me3 and H3K9me3 (Figure 2.4F, Fisher’s exact test: p-value £2.2x10-5) – 
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and functional genomic annotations – heterochromatin (annotation 21) and polycomb repression 

(annotation 24) ChromHMM annotations (Figure 2.4G, Fisher’s exact test: p-value £0.03) – 

associated with gene repression.  This was particularly interesting given that LADs, which are 

disrupted due to numerous LMNA mutations [6,80,81], typically co-localize to the nuclear 

periphery along with heterochromatic regions of DNA and also marked by H3K9m3 and 

H3K27me3 [65]. 

 We next wanted to investigate whether DMR locations co-localized with certain classes of 

regulatory factor binding sites (TFBS). This could reveal important molecular targets within key 

signaling pathways that might be impacted by family-specific epimutations. We performed TFBS 

motif enrichment analysis in our DMRs using HOMER [58], focusing on TFBS motifs enriched 

only in either hypo- or hypermethylated DMRs. Few TFBS motifs were enriched within shared 

DMRs, however, these motifs were involved in mesoderm differentiation (e.g., TCF3, FOXA1) 

and stem cell pluripotency (e.g. Foxf1 and CEBPB) (Figure 2.4H, full list shown in Appendix 2.6). 

Conversely, family-specific DMRs enriched for TFBS motifs of transcription factors (TFs) 

previously shown to be implicated in multiple categories relevant to laminopathies (cardiac 

function, limb morphology, lipid metabolism, mesoderm differentiation). The tendency of Family 

C DMRs to enrich for several TFBS motifs associated with limb morphology was particularly 

interesting given this family’s presentation of a brachydactyly phenotype. In general, DMRs 

related to the enriched motifs were largely hypermethylated, though this could be due to the larger 

amount of hypermethylated DMRs present in fibroblasts. 

2.2.4 Fibroblast DMR-associated genes enrich for family-specific disease ontologies 

Due to the enrichment of TFBS motifs associated with pathways critical for tissue functions 

commonly disrupted in laminopathy diseases, we decided to investigate if shared and/or family-

specific DMRs enriched for certain disease ontologies (Appendix 2.7). We performed disease 

ontology enrichment on genes associated with either hypo- or hypermethylated DMR contexts. 

The large presence of disease ontology terms represented by genes associated to 
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hypermethylated DMRs (Figure 2.7A) further demonstrated the bias towards this type of DMR. 

We also found that Family A and C DMRs showed enriched association with several laminopathy 

disease categories, while shared DMRs showed no enrichment within these categories (Figure 

2.7A). This observation corroborated the low number of TFBS motifs that were associated with 

categories related to laminopathy-impacted tissues (“cardiac development”, “limb development”, 

“lipid metabolism”) that we noted previously (Figure 2.4H). Both families equally enriched for a 

variety of cardiovascular diseases, including both cardiac remodeling and hypertensive diseases, 

which supported the DCM phenotype observed in both families. Despite patients not exhibiting 

hypertensive disease, both sets of family-specific DMRs enriched for this phenotype, which has 

been shown to lead to excessive remodeling of the myocardium, resulting in the development of 

DCM [82]. Similar to our motif enrichment, we also observed a strong enrichment for diseases 

associated with skeletal malformations in Family C DMRs. Indeed, brachydactyly, which Family 

C patients exhibit, was the most enriched laminopathy-related ontology associated with our 

Family C DMR dataset. Family A DMRs instead favored diseases related to neuro-muscular 

phenotypes. Surprisingly, we also observed the presence of kidney-related disease terms in 

genes associated to Family A DMRs. Although not widely recognized as a form of laminopathy, 

several studies have documented the occurrence of kidney-related diseases in patients with 

LMNA mutation-induced lipodystrophy or DCM [83,84]. A large majority of the remaining disease 

ontologies (Appendix 2.7) were found to be involved in either cancer (21%) or nervous system 

disorders/abnormalities (50%). The documented low levels of lamins in several types of cancers 

[85] and the known involvement of neurodegeneration [86] and neuropathies [87] in laminopathies 

could account for some of these observations. 
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Figure 2.7: DMRs associate to dysregulated and disease-relevant genes near redistributed 
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LADs. A, Disease ontology terms enriched in DMRs, grouped by disease type. Heatmap reports 

the degree of statistical significance for enrichment. Results were categorized as hypomethylated 

(red) or hypermethylated (blue) by type of DMR associated to a particular disease. B, Number of 

genes in cardiovascular and skeletal disease associated to Family A-specific and Family C-

specific DMRs. C, Top, Fraction of DMR-associated fibroblast DEGs present in one of four 

combinatorial groups of differential methylation (D Methylation) and differential gene expression 

(D Expression). Middle, (+) indicate patient > control, while (-) indicate patient < control for both 

differential methylation and gene expression. Bottom, Category of fibroblast DEGs and number 

of DEGs by family (Family A / Family C). D, Number and percentage of DEGs shared between 

fibroblast and cardiac tissue associated with DMRs in Family A only, Family C only, or both. E, 

Circos map of the genome (Top) and zoomed in chromosome 5 (Bottom). Outer to inner rings 

represent the following: Track I - genomic distance (log 10) between DMRs within Family A or 

Family C. Track II - fold change (log 2) of fibroblast DEGs, highlighting two genes found within 

the top 10 most differentially expressed. Track III - location of LADs in cardiomyocytes from either 

LMNA-related DCM or control samples from prior study [6]. F, Density of genomic distance to the 

nearest inter-family CpG for differentially methylated CpGs and a random sample of CpGs. 

Wilcoxon rank sum test p-value is displayed. G, Number of DEGs shared between fibroblast and 

cardiac tissue associated to DMRs in Family A or Family C falling within or distal to redistributed 

LADs (Gain of LAD (GoL), Loss of LAD (LoL), or Maintenance of LAD (MoL)). H, Stacked 

histogram of the distance between DMR-associated DEGs, shared between fibroblast and cardiac 

tissue, and the nearest redistributed LAD. 

 

2.2.5 Genes dysregulated in both fibroblast and DCM cardiac tissues associate with 

DMRs from both families and LADs 
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The lack of enrichment for diseases related to tissues affect by laminopathies in genes 

associated with shared DMRs led us to focus on family-specific DMRs only. Given that both 

family-specific DMR sets were enriched for cardiovascular and skeletal disease ontology 

categories, we evaluated for inter-family gene overlap within each of the corresponding disease-

associated gene sets. Unexpectedly, we found no overlap for the majority of these genes 

including those in the cardiovascular category despite both families exhibiting DCM (Figure 2.7B).  

To examine this more thoroughly, we first compared our DMR data with the list of differentially 

expressed genes (DEGs) between patient and their unaffected controls previously obtained from 

transcriptome-wide expression data from Family A fibroblasts [88] (Figure 2.7C). To ascertain the 

potential role of aberrant DNA methylation on differential expression, we compared the direction 

of methylation change within DMRs to the direction of expression change for associated DEGs. 

Genome-wide DMRs associated to both families were weakly inversely correlated (54.5%, 

Quadrant Count Ratio (QCR) = -0.09 for Family A and 51.2%, QCR = -0.03 for Family C), with 

expression changes (i.e. higher methylation level in patients compared to controls (+) was 

associated with lower gene expression (-)) (Figure 2.7C). Notably, analysis of DEGs present 

within our previously identified cardiovascular disease-related gene list (Figure 2.7B), also 

showed an inverse correlation between methylation and gene expression though more 

pronounced in both families (65.2%, QCR = -0.30 for Family A and 56.5%, QCR = -0.13 for Family 

C). Most of these correlations were the result of hypermethylation association to decreased 

expression. This observation corroborates our previous observations of hypermethylation also 

being associated with disease-related genes (Figure 2.7A).  

When broken down into DEGs associated to DMRs located within gene enhancers, we noted 

that this bias was also present. However, we did observe more DEGs were inversely correlated 

with DMR methylation changes in Family A (QCR = -0.09), unlike in Family C (QCR = 0.13). In 

the promoter context, however, DMRs associated to DEGs did not show any negative trends with 

expression changes (QCR = 0.07 for Family A and QCR = 0.06 for Family C). These findings are 
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consistent with a more important regulatory function for enhancer-located DMRs in Family A 

compared to Family C, and a lack of association in both families for DMRs in upstream promoters 

(Figure 2.4G), also observed in a prior study on LMNA-related DCM cardiac tissues [6]. 

To relate our DMR data to DEGs observed within a more physiologically relevant context, we 

identified DEGs found in both our patient fibroblasts and within DCM patient cardiac tissues from 

a prior study [6]. Interestingly, 61% of the 197 conserved DEGs were associated to a DMR from 

at least one of the families (Figure 2.7D). Remarkably, despite the lack of inter-family overlap 

seen for disease-related genes (Figure 2.7B), 41% of DEGs in this category were found to 

associate with at least one DMR from both families. Given this overlap, we wondered if inter-

family DMRs occurred in close genomic proximity more broadly. To explore this, we compared 

the density distributions of CpG proximity in DMRs for each family and random background 

(Figure 2.7F, Wilcoxon rank sum test: p-value £4.02x10-11 for both families). We found that 

differentially methylated CpGs (DMCpGs) indeed showed a greater density bias towards smaller 

inter-family distances (median for Family A: 2192.5bp, Family C: 2036.5bp) compared to the 

random background (median for Family A: 3640bp, Family C: 3645bp), up until about 1450bp. 

This proximity between Family A and C DMRs was also observed in our circos and rainfall plot 

analysis (Figures 2.7E, 2.8).  

Given these results along with our previous observations that DMRs, in general, tended to 

associate with epigenomic features that co-localize to the nuclear periphery (Figure 2.4F,G), we 

next analyzed the proximity of DMRs associated with conserved DEGs (between fibroblasts and 

cardiac tissues) to LADs known to be dynamic (or redistributed) in LMNA-related DCM [6] (Figure 

2.7E). In addition to two previously defined domain redistribution categories [6], Gain of LAD 

(GoL) and Loss of LAD (LoL), genomic regions were also assigned to Maintenance of LAD (MoL). 

Of the DMR-associated DEGs found in both fibroblasts and cardiac tissues, we found that only a 

small fraction fell directly within a redistributed LAD (0 to 6.2% for GoLs, and 0% for LoLs) or 

MoLs (0 to 2.1%), comparable to those previously observed in DCM tissues [6]. The remainder 
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of the DMR-associated DEGs were mostly distal to GoLs (73.5 to 78.9%) (Figure 2.7G). Moreover, 

identified DMR-associated DEGs were found be significantly more likely to fall within 2Mbp of 

their closest redistributed LAD (Figure 2.7H) than outside of that range (logOR = 0.50, p=1.31x10-

7). Interestingly, chromosome 19 did not contain any conserved DEGs distal to redistributed LADs 

(Figure 2.9). 
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Figure 2.8: Inter-DMR distances overlap across both families in all chromosomes. Top, 

Trellis rainfall plot showing genomic distance (log10 bp) between DMRs within Family A (green) 
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or Family C (purple) for chromosomes 1 through 22 and X. 

 

 

Figure 2.9: Chromosomal distribution of conserved DMR-associated differentially 

expressed genes (DEGs) near redistributed LADs. Bar plot showing the number of DMR-

associated DEGs conserved between fibroblast and cardiomyocyte samples that fall near a 

redistributed LAD at a particular chromosome. The value is normalized to the number of genes 

present within the specified chromosome. 

 

2.2.6 Reprogramming reveals epigenetic hotspots for aberrant methylation during early 

development 

 Given that patients in Family C presented with developmental abnormalities in bone 

formation (brachydactyly), we wanted to see if our in vitro cell system could be used to better 

understand the influence of DNA methylation epimutations in the early stages of development. 

We therefore performed similar studies in iPSC, as an early developmental model of LMNA 

mutations. Unlike in fibroblasts, hierarchical clustering of iPSC samples based on DNA 

methylation from all chromosomes (Figure 2.10A) or autosomal chromosomes only (Figure 2.5F) 
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did not cluster according to family. This confirmed our expectation that  reprograming would lead 

to massive epigenetic remodeling and resetting (at least partially) of somatic methylation patterns 

that might have arose due to family-specific conditions [89–91]. Despite this global change in DNA 

methylation levels (Figure 2.1D), we still identified DMRs in patient iPSCs across each category 

(Figure 2.10B). However, the number of DMRs found in iPSCs (2674 DMRs) were still only ~¼ of 

the number found in fibroblast (10578 DMRs). Direct overlap between fibroblast and iPSC DMRs 

was greatest in Family C by almost 3-fold (19.6% compared to 6.7% for Family A and 1.9% for 

our shared category) (Figure 2.10C). In addition to the greatest amount of intercell-type DMR 

overlap, Family C had the largest fraction (0.97 versus 0.52 for Family A) of overlapped DMRs 

with conserved directionality (hyper or hypomethylated). 

We also found that iPSC DMRs varied in their association to histone modifications 

compared to their fibroblast counterparts (Figure 2.10D, Fisher’s exact test: p-value £0.05 unless 

specified as non-significant in Appendix 2.8). Particularly, we saw an increased presence of iPSC 

DMRs in H3K9me3 and H3K27me3, further highlighting the presence of aberrant methylation in 

the compacted and silenced regions of chromatin. We also observed an overall increase in odds 

ratio at H3K4me3, a histone mark enriched at active promoters[77].  

Although direct overlap of DMRs across cell types was low (Figure 2.10C), we observed 

genomic regions where iPSC DMRs were in close proximity to fibroblast DMRs (Figure 2.10E), 

which made us wonder if regions highly susceptible to epimutations were conserved between 

fibroblast and iPSC states. We therefore compared the distance between CpGs in iPSCs and 

their closest neighboring CpG in fibroblast for both a randomized set of CpGs and our DMCpGs 

(Figure 2.10F, 1-tailed Fisher’s exact test: p-values £0.05). Interestingly, compared to our 

randomized background, 3.3 and 6.5 times more CpGs fell within 1kb of each other between the 

two cell types in Family A and Family C, respectively. This fold difference decreased in both 

families for bins of larger inter-CpG distances. Moreover, when we focused on genes associated 
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to DMRs in iPSCs and fibroblasts, we found a large amount of overlap between the two gene sets 

(Figure 2.10G). Specifically, 59.8% and 61.6% of genes that were associated with an iPSC DMR 

were also associated to a fibroblast DMR in Family A and Family C, respectively (Figure 2.11). 

We also saw a comparable number of DMR-associated genes that switched in the methylation 

change direction between fibroblasts and iPSCs (e.g, hyper à hypo, or hypo à hyper) for both 

families. 

Analysis of these DMR-associated genes showed enrichment for laminopathy-related 

disease ontologies (Figure 2.10H, full list shown in Appendix 2.9). Family A showed enrichment 

only in genes associated with DMRs hypermethylated in fibroblast and hypomethylated in iPSCs. 

In contrast, Family C enrichment in all categories of DMRs except those that were uniquely found 

in iPSCs. Most notably, genes associated with Family C DMRs hypermethylated in fibroblast but 

hypomethylated in iPSCs showed specific enrichment for brachydactyly, abnormality of the 

skeletal system, and congenital abnormality. Genes associated to Family C DMRs 

hypomethylated in fibroblast but hypermethylated in iPSCs enriched for LMNA-related DCM. All 

four diseases were ranked in the top 10 diseases, and, interestingly, both the skeletal disease-

associated DMRs and brachydactyly phenotype were unique to Family C [92]. 

To gain further insight into disease mechanism in our early development model, we 

performed protein-protein interaction network analysis, using STRING. The list of 519 genes for 

Family C DMRs hypermethylated in fibroblast but hypomethylated in iPSC (Figure 2.10G) was 

filtered for association to LMNA-related DCM (Concept ID: C1449563) and Congenital 

Abnormality (Concept ID: C0000768), both of which are phenotypes that Family C patients 

exhibited. The resulting STRING output included a large interaction network that included 28 

genes with high confidence interactions (Figure 2.10I). Of the genes associated to congenital 

abnormality, four genes (HDAC4, PTCH1, EHMT1, SYK) were associated to brachydactyly, 

according to the DisGeNET [93] database. Interestingly, LMNB1, which codes for one of the two 

types of B-type lamins and is associated to DCM [94], was present within this network. Within this 
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network, CCND1, the most connected node (8 associations), was involved in three pathways (Wnt 

signaling, Hedgehog (Hh) signaling, and the cell cycle) found to be enriched in this gene set 

(Appendix 2.10). Another 60.7% of the genes in this network were previously identified as DEGs 

in hearts from LMNA-related DCM patients [6], substantiating that our analysis was able to reveal 

a highly-networked set of disease-associated genes that may be dysregulated due to methylation 

changes linked to LMNA mutations. 
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Figure 2.10: DMRs in iPSCs reveal tissue-persistent epimutation hotspots at 



 62 

developmentally and laminopathy relevant genes. A, Hierarchical clustering of iPSC samples 

by genome-wide DNA methylation. Colors represent family groups. B, Venn diagram showing the 

number of DMRs captured by group for both hypermethylated and hypomethylated DMRs. 

Orange regions denote “Shared DMRs”, green regions denote “Family A-specific DMRs”, and 

purple regions denote “Family C-specific DMRs”. C, Number of DMRs captured within fibroblast 

and iPSC samples for each grouping for hypermethylated and hypomethylated DMRs. D, Log 

odds ratio of a CpG falling within both a DMR group and a given histone modification in iPSC and 

fibroblast. E, Example of Family C DMR proximity in both cell types. Top, Genome browser track 

displaying DMRs based on mean methylation differences (patient minus control) in fibroblasts 

and iPSCs. Middle, Methylation levels for patient and control samples for each cell type. Bottom, 

Depiction of RefSeq gene annotation. F, Number of either differentially methylated CpGs or 

randomly sampled CpGs in iPSC that fell within a range of genomic distances from their closest 

neighboring fibroblast CpG in the same family; Fisher’s exact test: * P £ 0.05, *** P £ 0.001, **** 

P £ 0.0001 G, Diagram depicting the number of genes associated with DMRs falling within one of 

eight categories of DMR methylation patterns in fibroblast and iPSCs. H, Table highlighting 

laminopathy-related disease ontologies enriched in DMRs grouped by fibroblast and iPSC DMR 

state (hyper- or hypomethylated). Heatmap reports the degree of statistical significance for 

disease enrichment. I, Protein-protein interaction (PPI) network of 28 genes associated to Family 

C-specific DMRs (hypermethylated in fibroblasts and hypomethylated in iPSCs) and either LMNA-

related dilated cardiomyopathy (DCM), congenital abnormality, or both. Pathway enrichment and 

disease association are denoted by color and shape, respectively. Orange node borders indicate 

that the gene is differentially expressed in cardiac tissue (cardiac DEG). 
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Figure 2.11: DMRs in iPSCs reveal tissue-persistent epimutation hotspots at 

developmentally and laminopathy relevant genes. Venn diagrams showing the number of 

genes associated to hyper methylated (blue) and hypomethylated (red) DMRs groups overlapped 

between both fibroblasts and iPSCs for Family A (left) and Family C (right). 

 

 

We performed a comprehensive analysis of differential DNA methylation for ten matched 

pairs of fibroblasts and iPSC from DCM patients in two families with distinct LMNA mutations and 

their unaffected sibling controls. Our results provide new insight into mutation-specific 

mechanisms that influence both common and unique aspects of phenotypic expression of 

laminopathies. 

First, our observations suggest that aberrant DNA methylation in LMNA-mutated cells 

affect not only normally silenced regions of the genome but also previously unappreciated 

regulatory features such as enhancers and downstream promoters. Although large differences in 

methylation level were not observed from genome-wide averages in either cell type, closer 

inspection of the RRBS data at a regional level, revealed DMRs in LMNA-mutant samples 

compared to controls. In fibroblasts, we observed an increased likelihood of finding CpGs in 

DMRs falling 1-5Kb downstream of TSS and distally upstream of the gene promoter. Along with 
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DMR association to relevant histone marks such as H3K4me1 [76,77], this suggests that Family 

A DMRs serve a more important regulatory function as enhancers relative to Family C DMRs, and 

that neither Family DMRs had much association to upstream promoters as previously shown [6]. 

In contrast, the association of iPSC DMRs to H3K4me3 suggested that the regulatory mechanism 

most impacted by differential methylation in this cell type is at promoters. In addition, the 

association of fibroblast and iPSC DMRs to histone modifications related to both heterochromatin 

and LADs suggests that, despite each of our families showing largely unique DMR landscapes, 

both families experience epimutations within these normally silenced regions of the genome, 

which could contribute to (or be associated with) the dysregulated of genes. This concept adds to 

the previous observation that altered CpG methylation was associated to redistributed LADs and 

gene dysregulation in DCM hearts [6]. 

Second, our results for DMRs identified multiple epimutation hotspots in the genome 

across all samples that may play an important role in the expression of DCM, a common 

laminopathy phenotype. Several shared DMRs were notably associated to genes in close 

genomic proximity to one another (ex. HOXD10 and HOXD12), and fibroblast DEGs associated 

to family-specific DMRs showed a substantial amount of inter-family overlap. These inter-family 

epimutation hotspots were supported with observations in fibroblasts that the distance between 

inter-family DMCpGs had a higher density bias at short genomic distances than a random 

background. Furthermore, despite shared DMRs having little to no association to TFBS motif 

pathways and disease ontologies related to laminopathies, a relatively larger number of DMR-

associated genes related to cardiovascular disease were present in both Family A and C. Thus, 

the identification of these epimutation hotspots across samples from families with distinct LMNA 

mutation suggests that family-specific aberrances in DNA methylation might lead to common 

functional consequences in DCM. 

Our findings for a common subset of laminopathy epimutations in family-specific DMRs, 

in conjunction with LAD redistribution, also suggest a significant role of Lamin A/C in epigenetic 
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regulating mechanisms of laminopathy-related pathways in multiple affected tissues but 

insufficient to express disease phenotype. The close proximity of family-specific DMRs at 

epimutation hotspots and silenced chromatin could explain our observation that both sets of 

family-specific DMRs had overlapping DEGs, shared between fibroblast and cardiac tissue DCM 

samples. This commonality between the two families further extended to DMR-associated DEG 

localization outside of redistributed LADs. Interestingly, family-specific DMRs also both showed 

enrichment for disease in laminopathy-related tissues outside of those affected in patients (e.g., 

neuromuscular, adipose, and kidney). Family A DMRs, for example, enriched for “Charcot-Marie-

Tooth disease”, known to be caused by a LMNA mutation [87], despite neither family having  

muscular dystrophy. Furthermore, a previous study of patients with DCM revealed a GO term 

enrichment for “lipid metabolism” in genes with transcript level correlated to their associated 

methylation status and LAD localization [6]. Another study on Emery-Dreifuss muscular dystrophy 

(EDMD) similarly suggested that nuclear envelope disorders could account for a unifying 

molecular model responsible for the wide range of laminopathy phenotypes [72]. 

In addition to a possible common laminopathic mechanism, our study identified family-

specific epimutations with unique regulatory functions in chromatin remodeling, disease 

mechanism, and phenotypic expression. Until now, DNA methylation studies using samples from 

DCM patients did not consider the role for specific LMNA mutation in affected families [6,95]. The 

individual impact of specific mutations is further highlighted by the previous observation that 

expression of the LMNA mutation responsible for familial partial lipodystrophy did not induce 

epigenetic alterations of myogenic loci  in a human myogenic cell line unlike the LMNA mutation 

involved in EDMD [72]. In our study, the presence of divergent mutation-specific epimutations is 

apparent in the limited overlap of disease-related genes associated to Family A and C DMRs. 

Family C DMRs were particularly interesting due to the strikingly significant enrichment for 

disease ontology of brachydactyly, a unique phenotype in patients from Family C [92]. De novo 

enhancer-promoter interactions from the disruption of topology associated domains (TADs) 
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previously was demonstrated to result in ectopic gene expression and subsequently 

brachydactyly [96]. The significant presence of many redistributed LADs, mostly GoLs, within 

2Mb, the maximum distance for enhancer-promoter interacting pairs [97], of DEGs associated to 

DMRs in Family C further supports the involvement of TAD restructuring. It is therefore 

conceivable that the aberrant methylation observed at enhancers is a signature remnant of 

disease-induced chromatin remodeling. 

In iPSC samples, the presence of mutation-specific epimutations also supports a disease 

mechanism during early development. Despite little direct overlap between iPSC and fibroblast 

DMRs, Family C hypermethylated and hypomethylated DMRs were more conserved from 

fibroblast to iPSC than DMRs in Family A. The presence of retained epimutations further 

supported Family C’s involvement in the iPSC’s primed pluripotent state. Paradoxically, the 

subset of Family C DMRs, which reversed methylation directionality from being hypermethylated 

in fibroblasts to hypomethylated in iPSCs, was associated to developmental genes implicated in 

skeletal malformations, echoing the family’s unique brachydactyly phenotype. This suggests 

aberrant increases and decreases in DNA methylation in regions more susceptible to 

epimutations is important in disease pathogenesis.  

Finally, the set of genes associated to these reversed Family C DMRs, when filtered, 

provided us with a particularly interesting network of protein-protein interaction that provides 

further involvement of the Wnt signaling pathway and cell cycle regulation in the disease 

mechanism of laminopathies for DCM. Despite Family C patients having skeletal involvement, our 

network showed a specific association also to cardiac disease in several ways. Foremost, over 

half of the genes identified within our network was previously identified as DEGs in hearts from 

DCM patients [6]. Additionally, the Wnt signaling pathway, enriched in our network, is known to 

be involved in heart development and disease [98,99] and dysregulated in LMNA-mutated mouse 

models of DCM [100]. In parallel, Wnt proteins regulate the cell cycle, itself involved in cardiac 

development and disease [101]. Specifically, cell cycle-related GO terms previously were 
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observed in genes associated to redistributed LADs with altered CpG methylation and differential 

expression in cardiac tissue from LMNA-related DCM patients [6,102]. Furthermore, cell cycle 

progression is tightly regulated during cardiac development, with the exit of G1 phase mediated 

through E2F transcription of its target genes [101]. Despite not being associated to cell cycle, the 

expression of LMNB1, encoding for Lamin B1, previously was shown to be regulated by E2F as 

part of cell cycle progression [103]. The presence of Lamin B1 is especially significant in the 

context of iPSCs since this isoform is expressed in early embryo and differentiating cells, unlike 

Lamin A/C which is expressed primarily in differentiated somatic cells [69]. E2F TF target genes 

previously were shown to be dysregulated in LMNA-mutated cardiomyocytes with DCM [102]. Of 

the dysregulated E2F target genes [102], three (CCND1, CDKN1C, MKI67) were identified in our 

network. CCND1’s involvement in cardiac disease is supported by its presence in both the cell 

cycle and Wnt [104] signaling and previous observations of upregulation in DCM [102,105]. 

Interestingly, a previous study of EDMD also implicated E2F and cell cycle dysregulation as a key 

feature of the disease mechanism [72]. 

In addition to DCM, our protein-protein interaction network provides further involvement of 

the Hedgehog (Hh) signaling pathway and cell cycle regulation in the disease mechanism for 

brachydactyly. CCND1, as mentioned above, encodes for Cyclin D1 that also is involved in Hh 

[106] signaling, an important regulating pathway in limb development [107]. SHH, one of the three 

Hh proteins, has specifically been shown to be tightly regulated by a long-range enhancer region, 

whose disruption can lead to SHH dysregulation and subsequent finger malformation [107]. The 

relevance of our network in finger malformation was further highlighted by the presence of genes 

involved in brachydactyly (HDAC4, PTCH1, EHMT1, SYK). Of particular note, HDAC4 is 

considered highly associated to brachydactyly (2nd highest gene-disease association according 

to the disease database DisGeNET [93]), due in part because of its direct involvement in inducing 

brachydactyly mental retardation syndrome (BDMR) [108,109]. Additionally, PTCH1 has also 

been previously involved in brachydactyly as part of Hh signaling [110]. Together, these results 
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suggest that epimutations at important cell cycle genes such as CCND1 could provide a molecular 

link for how both cardiovascular disease and limb malformation may be present in patients. 

 
2.3 Materials and Methods 
 
2.3.1 Fibroblast and iPSC lines 

Ten matched pairs of PATIENT and CONTROL fibroblasts and iPSC lines were used in 

this study (Figure 2.1A and Table 2.1). For the PATIENT group, dermal fibroblasts were cultured 

from skin biopsies obtained from five affected individuals of two LMNA study families (A & C) as 

previously reported [92,111]. Family A includes three patients (P1, P2, and P3) heterozygous for 

LMNA splice-site (c.357-2A>G) that exhibit sick sinus syndrome and DCM leading to heart failure 

[111]. Family C includes two patients (P4 and P5) heterozygous for LMNA missense 

(p.Arg335Trp) mutation displaying conduction disease, DCM, and brachydactyly, similar to HHS 

IV [92]. For the CONTROL group, dermal fibroblasts were cultured from skin biopsies obtained 

from four unaffected siblings (C1, C3, C4, and C5) and from a purchased sample obtained from 

one healthy, unrelated “Donor” individual (C2) (CC-2511, Lonza, Basel, Switzerland). Fibroblast 

culture and genomic DNA (gDNA) extraction were performed as described previously [92,111].  

By Sanger sequencing of all 12 LMNA exons in fibroblast DNA, presence or absence of the LMNA 

mutation was confirmed in all PATIENT and CONTROL lines, respectively. 

Table 2.1 

Fibroblast and iPSC line pairs with corresponding genotype, sex, and age when skin 

biopsies were performed (N = 10) 

Cell ID Family Genotype* Sex Age at Skin Biopsy (years)† 
P1 A +/- F 38 
P2 A +/- M 62 
P3 A +/- F 70 
P4 C +/- M 51 
P5 C +/- M 29 
C1 A +/+ F 49 
C2 Donor +/+ M 51 
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C3 A +/+ F 68 
C4 C +/+ F 60 
C5 C +/+ M 26 

 

(*) Genotype: +/+ homozygous normal, +/- heterozygous LMNA mutation. (†) Age: average age 

± SD of Control (50.8 ± 16) vs. Patient (50 ± 17) is not significantly different p> 0.05, (t-test). 

 

To generate matched iPSC lines, the PATIENT and CONTROL fibroblasts were 

reprogrammed using the CytoTune-iPS 2.0 Sendai Reprogramming Kit (Life Technologies, 

Carlsbad, CA) that uses a replication-defective Sendai virus as vectors to introduce 

reprogramming factors (OCT3/4, SOX2, KLF4, c-MYC) into the host cell [112,113]. 

Cryopreserved fibroblasts at passage 5 were revived for culture in 20% FBS (Sigma-Aldrich, St. 

Louis, MO) and DMEM (Life Technologies) at 37C and 5% CO2. At passage 7, fibroblasts were 

confirmed free of mycoplasma infection using MycoAlert Mycoplasma Detection Kit and Assay 

Control (Lonza) and plated at the appropriate density on 6-well plates two days prior to Sendai 

viral transduction to achieve 50-80% confluency. The cells were transduced (Day 0) using the 

calculated volumes of each virus to reach the target MOI. Twenty-four hours after transduction 

(Day 1), media was changed, and cells were cultured for six days with fibroblast media changes 

every other day. Seven days after transduction (Day 7), transduced fibroblasts were replated onto 

60-mm tissue culture dishes pre-coated with recombinant Vitronectin (Life Technologies) in 

fibroblast medium. After twenty-four hours, medium was replaced with Essential 8 Media (Life 

Technologies), and cells were cultured with iPSC media changes every day. Eight days after 

transduction (Day 8), the cells were checked under the microscope for the emergence of cell 

clumps indicative of transformed cells. Three to four weeks post-transduction after sufficient 

growth, individual undifferentiated colonies were selected by iPSC morphology, manually picked 

(passage 0), and transferred to plates pre-coated with Corning Matrigel Matrix (Thermo Fisher 

Scientific, Waltham, MA) in TeSR-E8 media (STEMCELL Technologies) for culture at 37C and 
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5% CO2 with daily media changes. The iPSC clones first were passaged manually (passage 1-

5) and thereafter passaged using ReLeSR (STEMCELL Technologies). For each iPSC line, 

independent clones were created, serially passaged, expanded, and cryopreserved in 

Bambanker media (Thermo Fisher Scientific) for long-term storage in liquid nitrogen. 

For each iPSC line at passage 10 or above, independent clones were validated for normal 

pluripotency (Figure 2.12). iPSC clones were tested for positive staining by immunocytochemistry 

(ICC) of established pluripotency makers. For ICC, iPSCs clones for each line were grown, 

processed, and analyzed directly on Matrigel-coated, Nunc Lab-Tek 4-well Chamber Slides 

(Thermo Fisher Scientific) for pluripotent stem cell markers (OCT4, SOX2, SSEA4, and TRA-1-

60) using the Pluripotent Stem Cell 4-Marker Immunocytochemistry Kit (A24881, Life 

Technologies). Cells were fixed, permeabilized, and incubated with blocking solution and 

antibodies (Table 2.2). Cells were nuclear counterstained using Fluoroshield with DAPI (Sigma-

Aldrich) and visualized using a Nikon Ti-E Inverted Fluorescent Microscope. 

Table 2.2 

Table of antibodies used for pluripotency characterization of iPSCs 

Primary antibodies Secondary antibodies 

Antigen (host) 
Company, Catalog 
no. 

 
Dilution Antigen (host) 

Company, Catalog 
no. Dilution 

OCT4 (rabbit) TFS, A24867* 1:100 
Anti-rabbit (donkey) 
AF-594 TFS, A24870* 1:250 

OCT4 (rabbit)  Abcam, ab181557 
 
1:500 

Anti-rabbit (donkey) 
AF-594  TFS, A24870* 1:250 

SSEA4 (mouse) TFS, A24866* 1:100 
Anti-mouse (goat) 
AF-488 TFS, A24877* 1:250 

SSEA4 (mouse) TFS, 414000  
 
1:500 

Anti-mouse (goat) 
AF-488 

 
TFS, A24877* 1:250 

SOX2 (rat) TFS, A24759* 1:100 
Anti-rat (donkey) AF-
488 TFS, A24876* 1:250 

TRA-1-60 (mouse) TFS, A24868* 1:100 
Anti-mouse (goat) 
AF-594 TFS, A24872* 1:250 

TRA-1-60 (mouse) TFS, MAB4360 
 
1:500 

Anti-mouse (goat) 
AF-594 

 
TFS, A24872* 1:250 

 

(*) Pluripotent Stem Cell 4-Marker Immunocytochemistry Kit (A24881, Life Technologies). 
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For each iPSC line at passage 9 or above, independent clones were validated for normal 

chromosome constitution by karyotype (Figure 2.13). iPSC cultures in Matrigel-coated T25 flasks 

with TeSR-E8 media were sent to WiCell Genetics (Madison, WI) for routine study of G-banded 

chromosomes by counting 20 cells and analyzing eight cells. Karyotype results were classified as 

either normal (46,XX or 46,XY) or abnormal with clonal or nonclonal findings. Clonal findings were 

defined as chromosome gain or structural rearrangement in at least two cells or chromosome loss 

in at least three cells. Nonclonal findings were defined as chromosome gain and structural 

rearrangements in a single cell consistent with technical artifact, developing clonal abnormality, 

or low-level mosaicism. If the result of the first clone was abnormal (clonal or nonclonal), a second 

independent clone isolated from the iPSC line was analyzed by ICC and then karyotyped. This 

process was repeated until at least one chromosomally normal clone was identified with validation 

of pluripotency. 

After fibroblast reprogramming and characterization for normal pluripotency and 

karyotype, iPSCs were cultured from cryopreserved vials and maintained on Matrigel-coated 6-

well plates with mTESR1 for gDNA extraction. At 90-100% confluency, iPSCs were harvested 

using ReLeSR, and gDNA was isolated using MasterPure Complete DNA Purification Kit 

(Lucigen, Middleton, WI). Total gDNA was then quantified using Nanodrop Spectrophotometer 

(Thermo Fisher Scientific). 
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Figure 2.12: Validation of induced pluripotent stem cell (iPSC) pluripotency. 

Immunocytochemistry staining of all 10 iPSC lines for pluripotent stem cell markers: top, SSEA4 

(green) and OCT4 (red) and bottom, SOX2 (green) and TRA 1-60 (red). Nuclei were visualized 
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with DAPI (blue). All images were taken at 10x magnification. 

 

 

Figure 2.13: Validation of normal chromosome constitution in each induced pluripotent 

stem cell clone. G-banding metaphase karyotype of all 10 iPSC lines derived from dermal 

fibroblasts. 

 

2.3.2 RNA-sequencing (RNA-seq) and differentially expressed gene (DEG) analysis 

Bulk RNA-seq was previously performed on Family A fibroblasts (3 unaffected mutation-

negative family members and 3 patients heterozygous for LMNA splice-site (c.357-2A>G)) and 3 

healthy, unrelated individuals (Donors 2, 3, and 4). A list of DEGs between patients, control 

siblings, and the unrelated controls was attained from GSE125990 [88]. DEGs were filtered for 

FDR-adjusted p-value £ 0.05. RNA-seq data for control and DCM heart tissue was accessed from 

GSE120836 [6]. Provided log2 fold change values of DCM over Control, filtered for genes with p-

values £ 0.05, were then intersected with fibroblast DEGs for analyses. 

 

2.3.3 Reduced representation bisulfite sequencing (RRBS) and Differentially 

methylation region (DMR) analysis 
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Extracted gDNA from fibroblasts and iPSCs were subjected to RRBS for DNA methylation 

analysis. For all twenty samples, 4.5µg of DNA was first mixed with 4µL MspI (20,000 U/mL, New 

England BioLabs) and 1x CutSmart, and incubated at 37˚C for 24 hrs. 0.5x Agencourt Ampure 

XP beads (Beckman Coulter) were then used to keep fragments £300bp, which were then 

concentrated using Zymo Clean and Concentrator kit’s protocol. Zymo DNA Methylation-Gold Kit 

was used according to manufacturer’s protocol to perform bisulfite conversion on all samples, 

with a final volume of 15µL in elution buffer. The eluted DNA was then processed through the 

Accel-NGS Methyl-seq DNA library kit (Swift Biosciences), following the manufacturer’s protocol, 

for adapter ligation. Post-ligation DNA was subjected to 10 PCR cycles for indexing. PCR 

products were then eluted in 21µL of low EDTA elution buffer, of which 1µL was run in a 2200 

TapeStation (Agilent) to ensure correct band sizes of approximately 300bp. Pooled multiplex 

RRBS libraries were sent to the UCI Genomics High-Throughput Facility and sequenced on an 

Illumina HiSeq4000 sequencer. We performed paired-end sequencing runs for a total of 100 

cycles. 

Raw fastq files were trimmed by 11bp on both 5’ and 3’ ends of both reads 1 and 2 using 

Trim Galore (Version 0.4.4) [47]. Trimmed reads were then aligned to hg19/GRCh37 using 

Bowtie2 [48] as part of Bismark (Version 0.20.1) [49]. Paired-end read mapping efficiency varied 

between 68.0-82.3%, with an average of 77.4% across all twenty samples (Appendix 2.1). 

Bismark was used to make methylation calls, which were then merged for neighboring CpGs on 

opposite sides of the strand. Finally, the methylation ratios generated were filtered to keep only 

CpGs with a minimum read coverage of ³ 5x, thus ensuring fair comparisons across samples. 

DNA methylation data and DMRs were visualized across the hg19 genome using the 

Broad Institute’s Integrative Genome Viewer (IGV) [114], Circos and Trellis plots generated with 

R packages circlize (Version 0.4.5) [115] and gtrellis (Version 1.16.1) [116]. Hierarchical 

clustering of samples based on genome-wide DNA methylation was performed using the ward 
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method as part of methylKit. Additional heatmaps of DNA methylation levels in DMRs was 

generated through heatmap.2 from R package gplots (Version 2.11.0) [117] was used to 

generate heatmap and corresponding dendrograms for DMRs. 

To obtain DMCpGs, methylation call BAM files were inputted into the R package methylKit 

(Version 1.16.0) [118], with a specified minimum read coverage of 5 (≥5x) per sample and 

assembly hg19. The unite() function was then applied to compare methylation calls of ≥5x CpGs, 

overlapped across all input samples, generated after destranding to merge methylation calls on 

both sides of DNA strand at CpG dinucleotides. A filter of minimum q-value of £0.01 and a ±30% 

CpG methylation difference cutoff between CONTROL and PATIENT samples were used to 

ensure reliable differential methylation results. This generated a set of DMCpGs, where negative 

DNA methylation differences indicated scenarios where patient samples were hypomethylated 

relative to controls and positive differences indicated where patient samples were 

hypermethylated. DMRs were generated by merging neighboring DMCpGs within ±500bp of one 

another into a single tile. Tiles with a size <100bp were extended equally on each side until a size 

of 100bp was attained, similar to previously described methods [119]. Tiles containing DMCpGs 

with methylation differences with opposite directionality (hyper- or hypomethylation) were 

considered ambiguous and were removed from further analyses (0.13-0.8% of total DMRs 

generated) (Appendix 2.11). Methylation difference of DMCpGs falling within the same tile was 

averaged in the remaining DMRs. This methodology was applied with three different inputs (1) all 

samples, (2) Family A samples (C1, C3, P1, P2, P3), (3) Family C samples (C4, C5, P4, P5), thus 

yielding three categories of DMR tiles. To compare across all three categories, DMRs were filtered 

to keep only those with CpG methylation data overlapped in both Family A and Family C. DMR 

tiles from the three groups were reclassified as follows: “Family-Specific” tiles were defined as 

DMRs only found in one of two family DMR categories (2) or (3), described above, or found in 

one of the two family DMR categories (2) or (3) and in the all samples category (1). “Shared” tiles 
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were defined as DMRs found in both categories (2) and (3), or found only in all samples (1) and 

not in family categories (2) or (3), or found in all three categories (1), (2), and (3). This DMR 

methodology and grouping was applied to both fibroblast and iPSC samples separately. When 

comparing iPSC DMRs to their fibroblast counterparts, tiles were filtered to keep only those that 

had CpG methylation in both cell types. A detailed workflow of the computational methods used 

for DNA methylation analyses in this study is available at Figure 2.3. 

 

2.3.4 Genomic feature annotation 

To determine DMR association to inferred and experimentally derived genomic features, 

DMR files were annotated against ChromHMM’s 25-state chromatin model [120] for normal 

human dermal fibroblasts (NHDFs), acquired from NIH Epigenome Roadmap, and RefSeq 

genomic features and histone modifications for NHDFs and a human embryonic stem cell line 

(HUES64), acquired from UCSC genome table browser, using BEDTools’ intersection function 

[50]. Genomic promoter features were defined as 2Kb upstream of gene transcription start sites 

(TSS) acquired from UCSC genome table browser. Intergenic features were acquired by finding 

regions outside of gene bodies, against acquired from UCSC genome table browser, using 

BEDTools’ subtract function. A list of double elite enhancer locations, including their associated 

genes, used for annotation were acquired from the GeneHancer database [121] available on the 

UCSC genome table browser. 

 

2.3.5 Identification of gene network and ontologies from DMR-associated gene lists 

Stanford’s Genomic Regions Enrichment of Annotations Tool (GREAT) software [75] 

(Version 4.0.4) was used with default parameters (basal plus extension/proximal 5Kb upstream, 

1Kb downstream, plus distal up to 1000Kb) to find hg19 UCSC genes associated to input DMR 

files. From there, (1) disease ontology, (2) gene ontology, (3) protein-protein interaction networks, 

and (4) pathway enrichment analysis were performed as follows: (1) Disease ontology was 
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performed on acquired gene lists using ToppFun, a part of the ToppGene suite [122], using default 

correction and p-value cutoff parameters (FDR correction with p-value £ 0.05) and “Gene Limits” 

increased to include the number of genes inputted. Additionally, gene lists related to diseases of 

interest were acquired from DisGeNET database [93] (Version 7.0). (2) Gene lists for GO terms 

heart development (GO:0007507) and skeletal system development (GO:0001501) were 

acquired from the AmiGO database [123,124]. (3) Gene lists were submitted to STRING [125] 

(Version 11.0b) to identify protein-protein interaction (PPI) networks. The minimum required 

interaction score for all PPI was set at 0.700 (considered “high confidence”) for the network. (4) 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [126] database was used, as part of 

STRING [125], to identify enriched of pathways within a PPI network. Strength scores are 

calculated as log10(observed/expected) by STRING. Enriched pathways are filtered for a false 

discovery rate (calculated according to the Benjamini & Hochberg method [127]) £ 0.05 by 

STRING. PPI enrichment p-value for the generated network was provided by STRING. 

 

2.3.6 Determining differentially methylated transcription factor binding sites (TFBS) 

DMR files, in BED format, were inputted into Hypergeometric Optimization of Motif 

EnRichment (HOMER) software [58] (Version 4.7) to identify enrichment of known TFBS motifs, 

reposited within the software’s vertebrae database. Analyses were performed with hg19 genome 

as background, along with a specified motif size parameter based on average DMR tile size. 

TFBS motif results were finally filtered for p-value £ 0.01. Known related categories for each 

transcription factor (TF) were determined using GeneCards’ Human Phenotype Ontology (HPO) 

and SuperPathways databases[128]. 

 

2.3.7 Lamina-associated Domain (LAD) redistribution analyses 
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LMNA peaks, generated by anti-Lamin A/C ChIP-seq, from cardiomyocytes derived from 

DCM patients and control individuals were acquired from GSE120837 [6]. In order to determine 

the location of redistributed LAD, BEDtools’ subtract function [50] was used to compare DCM and 

control LAD locations. Gain of LAD (GoL) regions demarcated LAD locations that were present in 

diseased tissues but absent in unaffected donors. Loss of LAD (LoL) regions demarcated LAD 

locations that were present in unaffected donors but absent in diseased tissues. Regions where 

LADs were present in both control and diseased tissues were termed MoL (maintenance of LAD) 

regions. 

LADs from normal human primary dermal fibroblast (AD04) were acquired from 

GSM1313399 [129] and compared to the aforementioned cardiomyocyte redistributed LADs to 

identify LADs conserved across both cell types. Fibroblast LADs locations were compared to 

those of the three LAD categories (GoL, LoL, and MoL) generated in the cardiomyocyte samples. 

Genomic regions identified as cardiomyocyte GoLs that did not overlap with a fibroblast LAD were 

kept for downstream analyses. Similarly, genomic regions annotated as LoLs and MoLs in 

cardiomyocytes that overlapped with a fibroblast LAD were retained for further analyses. Distance 

between DEGs and closest redistributed LADs were determined using BEDtools’ closest function 

[50].  

 

2.3.8 Statistical Analyses 

All statistical tests were performed through R (Version 2.15.2) [63]. Data distributions were 

first tested for normality using the Shapiro-Wilks test. The Kruskal-Wallis and Wilcoxon rank sum 

tests were performed for datasets with non-normal distribution. 

Quadrant count ratio (QCR) was calculated as 

3(A;2-1234	B)'3(A;2-1234	BBB)C3(A;2-1234	BB)C3(A;2-1234	BD)
&"#"$%

, where n(Quadrant) is the number of 

observations present within a given quadrant, and Ntotal is the total number of observations across 
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all four quadrants. 

 Odds ratio (OR) analyses were performed to determine the significance of DMR 

association to particular chromatin contexts (for example, distance from a gene’s transcriptional 

start site (TSS), histone modifications, and ChromHMM annotations). CpGs (filtered for ³5x 

depth) captured in our RRBS study for each sample were merged according to the three 

categories previously described (all samples, Family A samples, Family C samples), thus creating 

three categories of background CpGs. The resulting background CpG files were then intersected 

with one of the six DMR files previously generated (Hyper and hypomethylated DMRs for shared, 

Family A, and Family C). Subsequently, the number of DMR-filtered CpGs and background CpGs 

that intersected with a particular context of interest, were compared. For distance from a gene’s 

TSS, CpGs were intersected with bins of distance (from 0-1Kb up to 10-50Kb) in both up and 

downstream directions relative to each gene’s genomic orientation. For histone modifications and 

ChromHMM annotations, CpGs were simply intersected with the Chip-seq peak tiles or annotated 

tiles. OR was then calculated as follows: 2 0	⁄
@ -⁄ , where a = the number of CpGs that fall within a 

DMR and within the context of interest, b = the number of CpGs that fall within DMRs and outside 

of the context of interest, c = the number of CpGs that fall outside of DMRs and within the context 

of interest, d = the number of CpGs that fall outside of DMRs and outside of the context of interest. 

The logarithmic OR value (logOR) was then reported for each context of interest. Fisher’s exact 

test was used to determine significance of odds ratios. 

To determine the significance of proximity between DMRs in different contexts of interest 

(across families or cell types), we randomly sampled our set of captured CpGs to match the 

number of differentially methylated CpGs found within each DMR category. We then calculated 

the distance between CpGs from one category to the nearest sampled CpG from the category of 

comparison (e.g. Family A CpGs vs. Family C CpGs, or iPSC CpGs vs. fibroblast CpGs). This 

comparison served as our background distribution for CpG distance in the context of interest. The 
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same analysis was performed for differentially methylated CpGs. These distributions were plotted 

as a density distribution for interfamily CpG distance or using histogram bins for inter-cell type 

CpG distance. Significance was determine using Wilcoxon rank sum test and 1-tailed Fisher’s 

exact test for interfamily and inter-cell type analyses, respectively. 
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SECTION 3 

Conclusion 

 

3.1 Summary and Conclusion: 

Genome replication programs both cell fate and aging 

 

 This study demonstrated the temporal dynamics of post-replication DNA remethylation 

and nucleosomal occupancy using replication-associated sequencing techniques. We showed 

that these kinetics vary widely across the genome, leading to a prolonged window of time during 

which epigenetic entropy is present across the cell population. Moreover, the regions with the 

largest temporal delay, termed Repli-DMRs, were found to be at important regulatory features of 

the genome, associated with high gene expression variability and other elements highly linked 

to cell fate. Finally, our data suggest that these same Repli-DMRs are made up of CpGs with 

the most susceptibility to age-related epigenetic drift. More precisely, we confirmed previous 

observations that CpG context and CpG density are important factors that impact drift 

susceptibility, both of which were directly shown to be significantly associated with Repli-DMRs.  

Ultimately, we provide the first evidence that the temporal dynamics of post-replication 

re-establishment of the epigenome may be the link between cell fate, aging, and disease. More 

precisely, we theorize that the same window of epigenetic heterogeneity that brings about 

multicellular life may also be its downfall, as a deterioration of the molecular epigenetic 

maintenance machinery, brought on by age and mutations, could lead to previously observed 

age- and disease-related epigenetic drift. This hypothesis adds sustenance to previous theories 

that multicellular life, age, and disease have all arisen in conjunction with evolutionary needs.
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DNA methylation analysis reveals epimutation hotspots in patients with dilated 

cardiomyopathy-associated laminopathies 

 

The laminopathy research presented in this dissertation[130] describes a framework for 

how DMR analysis of in vitro systems can be utilized to understand how regulatory elements 

become misregulated in laminopathy-associated diseases. Our results add to the previous studies 

substantiating that DNA methylation and chromatin remodeling of LADs/TADs have a 

combinatorial impact on the dysregulation of genes responsible for the development of DCM. 

Additionally, the family-specific DMR gene associations suggest the presence of both a 

laminopathy-shared and a mutation-unique set of epimutations. This type of analysis may prove 

to be highly beneficial for identifying networks of disease-relevant genes for rare diseases such 

as Family C’s HHS IV, which have a limited disease-gene association database.  

Still, certain limitations of this study must be considered. First, our study only had a limited 

number of patients and sibling controls per mutation and were not sex-diverse. This limits our 

ability to attain high statistical power and entirely rule out any sex bias, respectively. Additionally, 

our observations were made in patient skin fibroblasts and their iPSCs derivatives, neither of 

which are directly involved in the observed disease phenotypes. The study was performed, 

however, under the assumption that these more easily obtainable cell types could maintain a 

disease-specific epigenetic signature, and thus provide us with a powerful model to use as a 

foundation for future works. 

Ultimately, our study highlights the potential for DNA methylation to provide new 

perspective on the etiology of mutation-specific laminopathies, as well as an alternative 

therapeutic substrate. 
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3.2  Future works: 

The studies in this dissertation both deliver initial findings in their respective topics, 

without providing concrete mechanistic pathways. Future research on the first project will 

therefore focus on trying to validate the relationship between epigenetic heterogeneity and gene 

expression variability through single cell sequencing studies. The recent technological advances 

in replication-associated single cell sequencing[131] suggest that questions regarding temporal 

cell-to-cell heterogeneity will be able to be answered in the near future. Furthermore, studies 

related to epigenetic drift in long-term cell cultures[132] may provide more controllable ways to 

investigate how DNA methylation is lost over time. In addition, long-term cultures provide a way 

to understand if and how replication stress, previously suggested to be involved in age- and 

disease-related epigenetic alterations[42], is linked to the temporal component of the 

epigenome. Future studies in the second work will focus on validating the misregulation of 

identified genes and performing similar analyses on iPSCs-derived cardiomyocytes and 

osteoblasts from the two LMNA-mutated families to confirm our findings and to identify further 

gene networks associated to epimutations.  

It is this author’s hope that the research presented in this dissertation demonstrates two 

important, and sometimes unappreciated, notions with regards to the epigenome. The first is 

that the epigenome is a dynamic entity, shifting constantly over multiple timescales, from a cell’s 

lifetime to hours, in response to its environment. Furthermore, it is also imperative to consider 

that the epigenome is regulated by numerous proteins working in conjunction and operating on 

different layers of the same DNA architecture. Moving forward, I hope to make use of these two 

principles to provide a further understanding of the epigenome’s role and impact in disease, and 

in doing inform the development of new therapeutics better suited for pathologies with known 

epigenetic alterations, like laminopathies. 
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Appendix Section 1 

 

Appendix 1.1 

List of transcription factor binding site motifs enriched in Repli-DMRs from HOMER 

Rank Motif Name Log P-value q-value (Benjamini) 
1 Oct6 -3.73E+01 0 
2 Oct4 -3.51E+01 0 
3 Brn1 -2.79E+01 0 
4 CDX4 -2.75E+01 0 
5 Cux2 -2.58E+01 0 
6 HNF6 -2.55E+01 0 
7 Oct11 -2.40E+01 0 
8 HOXB13 -2.35E+01 0 
9 Hoxd10 -1.79E+01 0 

10 Gata6 -1.60E+01 0 
11 Hnf6b -1.50E+01 0 
12 LEF1 -1.47E+01 0 
13 Gata4 -1.46E+01 0 
14 Hoxc9 -1.44E+01 0 
15 Hoxa10 -1.39E+01 0 
16 FoxD3 -1.36E+01 0 
17 Tbr1 -1.36E+01 0 
18 Foxa3 -1.33E+01 0 
19 NFATC2 -1.32E+01 0 
20 Foxa2 -1.32E+01 0 
21 Prop1 -1.29E+01 0 
22 BMYB -1.28E+01 0 
23 Oct2 -1.27E+01 0 
24 DLX5 -1.24E+01 0.0001 
25 Zic1/2 -1.23E+01 0.0001 
26 Bcl6 -1.22E+01 0.0001 
27 Foxh1 -1.21E+01 0.0001 
28 STAT6 -1.14E+01 0.0001 
29 FOXP1 -1.14E+01 0.0001 
30 Foxa2 -1.13E+01 0.0002 
31 Atoh1 -1.07E+01 0.0003 
32 Phox2a -1.06E+01 0.0003 
33 Pdx1 -1.05E+01 0.0003 
34 Rbpjl -1.04E+01 0.0003 
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35 CUX1 -1.03E+01 0.0004 
36 Dlx3 -1.03E+01 0.0004 
37 Cdx2 -9.92E+00 0.0005 
38 Lhx1 -9.63E+00 0.0006 
39 Otx2 -9.62E+00 0.0006 
40 Zic3 -9.54E+00 0.0007 
41 GATA3 -9.53E+00 0.0007 
42 Six2 -9.42E+00 0.0007 
43 Eomes -9.14E+00 0.0009 
44 STAT6 -9.13E+00 0.0009 
45 PBX2 -9.11E+00 0.0009 
46 Six4 -9.08E+00 0.0009 
47 Pax7 -8.99E+00 0.001 
48 Brn2 -8.76E+00 0.0012 
49 Mef2d -8.72E+00 0.0013 
50 MafA -8.70E+00 0.0013 
51 HOXA2 -8.46E+00 0.0016 
52 Atf3 -8.39E+00 0.0017 
53 NFY -8.33E+00 0.0018 
54 CEBP -8.14E+00 0.0021 
55 STAT1 -8.14E+00 0.0021 
56 STAT4 -8.07E+00 0.0022 
57 Sox21 -7.89E+00 0.0026 
58 Sox9 -7.75E+00 0.0029 
59 Sox10 -7.72E+00 0.003 
60 Olig2 -7.61E+00 0.0033 
61 HOXA1 -7.56E+00 0.0034 
62 HRE -7.49E+00 0.0036 
63 Fra1 -7.43E+00 0.0037 
64 Bach1 -7.40E+00 0.0038 
65 Fos -7.32E+00 0.0041 
66 EWS -7.24E+00 0.0043 
67 GATA3 -7.23E+00 0.0043 
68 NFE2L2 -7.23E+00 0.0043 
69 PAX3 -7.14E+00 0.0046 
70 HNF1b -6.97E+00 0.0054 
71 Oct7 -6.95E+00 0.0054 
72 Gata2 -6.90E+00 0.0056 
73 Sox7 -6.89E+00 0.0056 
74 MYNN -6.84E+00 0.0058 
75 NR1H2  -6.71E+00 0.0065 
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76 Pit1 -6.68E+00 0.0067 
77 STAT5 -6.66E+00 0.0067 
78 TRPS1 -6.60E+00 0.007 
79 IRF4 -6.58E+00 0.0071 
80 Pit1 -6.40E+00 0.0084 
81 NeuroD1 -6.40E+00 0.0084 
82 MafB -6.39E+00 0.0084 
83 En1 -6.38E+00 0.0084 
84 Zic2 -6.36E+00 0.0084 
85 Hoxb4 -6.20E+00 0.0097 
86 Duxbl -6.19E+00 0.0097 
87 FOXK1 -6.08E+00 0.0107 
88 ZNF7 -6.05E+00 0.0109 
89 LHX9 -6.01E+00 0.0113 
90 RFX -5.95E+00 0.0119 
91 DLX2 -5.92E+00 0.0121 
92 Lhx2 -5.89E+00 0.0123 
93 Hoxd13 -5.88E+00 0.0123 
94 PRDM15 -5.78E+00 0.0134 
95 CEBP -5.75E+00 0.0137 
96 Gata1 -5.54E+00 0.0168 
97 Stat3 -5.49E+00 0.0175 
98 THRa -5.38E+00 0.0193 
99 Lhx3 -5.32E+00 0.0202 

100 NeuroG2 -5.23E+00 0.022 
101 SPI1 -5.13E+00 0.0241 
102 GRHL2 -5.12E+00 0.0241 
103 Fosl2 -5.07E+00 0.0251 
104 JunB -5.02E+00 0.0261 
105 IRF3 -4.98E+00 0.027 
106 DUX4 -4.94E+00 0.0279 
107 Sox17 -4.88E+00 0.0293 
108 Pitx1 -4.88E+00 0.0293 
109 Six1 -4.87E+00 0.0293 
110 Phox2b -4.87E+00 0.0293 
111 BATF -4.87E+00 0.0293 
112 Fra2 -4.87E+00 0.0293 
113 FOXM1 -4.83E+00 0.0294 
114 Foxo3 -4.78E+00 0.0305 
115 NRSF -4.75E+00 0.0313 
116 Bcl11a -4.72E+00 0.032 
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117 RBPJ -4.71E+00 0.032 
118 Rfx1 -4.68E+00 0.0326 
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Appendix 1.2 

List of gene ontology terms enriched from top 20 transcription factor binding sites in Repli-DMRs 

 

GO biological process complete 
fold 
Enrichment p-value FDR 

endocrine pancreas development (GO:0031018)  > 100 8.53E-08 2.81E-05 
positive regulation of cardioblast differentiation (GO:0051891)  > 100 2.50E-05 4.87E-03 
atrioventricular node development (GO:0003162)  > 100 3.21E-05 6.11E-03 
regulation of cardioblast differentiation (GO:0051890)  > 100 4.01E-05 7.19E-03 
peripheral nervous system neuron differentiation (GO:0048934)  > 100 8.08E-05 1.36E-02 
peripheral nervous system neuron development (GO:0048935)  > 100 8.08E-05 1.37E-02 
endodermal cell fate commitment (GO:0001711)  > 100 8.08E-05 1.39E-02 
atrioventricular canal development (GO:0036302)  > 100 9.32E-05 1.52E-02 
positive regulation of cardiocyte differentiation (GO:1905209)  > 100 1.51E-04 2.30E-02 
positive regulation of stem cell differentiation (GO:2000738)  > 100 1.86E-04 2.72E-02 
proximal/distal pattern formation (GO:0009954) 93.61 5.46E-06 1.22E-03 
intestinal epithelial cell differentiation (GO:0060575) 93.61 2.44E-04 3.44E-02 
cell fate commitment involved in formation of primary germ layer (GO:0060795) 79.21 3.33E-04 4.58E-02 
regulation of cardiocyte differentiation (GO:1905207) 73.55 3.83E-04 5.00E-02 
pancreas development (GO:0031016) 59.7 6.72E-07 1.83E-04 
endoderm development (GO:0007492) 54.92 9.24E-07 2.39E-04 
cell fate specification (GO:0001708) 50.85 1.24E-06 3.02E-04 
peripheral nervous system development (GO:0007422) 39.1 6.59E-05 1.16E-02 
anterior/posterior pattern specification (GO:0009952) 35.51 7.13E-10 2.97E-07 
cell fate commitment (GO:0045165) 34.61 4.08E-11 2.08E-08 
endocrine system development (GO:0035270) 33.22 6.36E-06 1.40E-03 
response to BMP (GO:0071772) 32.86 1.09E-04 1.72E-02 
cellular response to BMP stimulus (GO:0071773) 32.86 1.09E-04 1.73E-02 
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cardiocyte differentiation (GO:0035051) 28.87 1.58E-04 2.37E-02 
formation of primary germ layer (GO:0001704) 27.58 1.80E-04 2.66E-02 
gastrulation (GO:0007369) 26.24 1.58E-05 3.23E-03 
regionalization (GO:0003002) 25.99 3.74E-10 1.64E-07 
embryonic appendage morphogenesis (GO:0035113) 25.96 2.14E-04 3.08E-02 
embryonic limb morphogenesis (GO:0030326) 25.96 2.14E-04 3.11E-02 
male gonad development (GO:0008584) 22.39 3.28E-04 4.55E-02 
liver development (GO:0001889) 22.39 3.28E-04 4.59E-02 
development of primary male sexual characteristics (GO:0046546) 22.22 3.35E-04 4.56E-02 
hepaticobiliary system development (GO:0061008) 21.91 3.49E-04 4.59E-02 
appendage morphogenesis (GO:0035107) 21.91 3.49E-04 4.63E-02 
limb morphogenesis (GO:0035108) 21.91 3.49E-04 4.67E-02 
pattern specification process (GO:0007389) 19.34 3.65E-09 1.41E-06 
regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 
(GO:0090092) 16.28 9.77E-05 1.58E-02 
embryonic morphogenesis (GO:0048598) 16.26 1.30E-09 5.15E-07 
reproductive structure development (GO:0048608) 14.85 2.16E-06 5.09E-04 
reproductive system development (GO:0061458) 14.75 2.25E-06 5.23E-04 
embryonic organ development (GO:0048568) 14.2 2.78E-06 6.38E-04 
in utero embryonic development (GO:0001701) 14.07 2.28E-05 4.56E-03 
embryonic organ morphogenesis (GO:0048562) 13.96 1.75E-04 2.61E-02 
positive regulation of transcription by RNA polymerase II (GO:0045944) 13.59 8.84E-17 6.99E-13 
gland development (GO:0048732) 12.44 4.08E-05 7.25E-03 
chordate embryonic development (GO:0043009) 11.76 1.19E-06 2.93E-04 
embryo development (GO:0009790) 11.43 3.80E-10 1.62E-07 
embryo development ending in birth or egg hatching (GO:0009792) 11.39 1.47E-06 3.51E-04 
positive regulation of RNA biosynthetic process (GO:1902680) 10.75 1.82E-16 5.76E-13 
positive regulation of transcription, DNA-templated (GO:0045893) 10.75 1.80E-16 7.13E-13 
positive regulation of nucleic acid-templated transcription (GO:1903508) 10.75 1.80E-16 9.51E-13 
positive regulation of RNA metabolic process (GO:0051254) 9.87 7.48E-16 1.31E-12 
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animal organ morphogenesis (GO:0009887) 9.69 1.10E-07 3.33E-05 
positive regulation of macromolecule biosynthetic process (GO:0010557) 9.4 1.70E-15 2.69E-12 
negative regulation of transcription by RNA polymerase II (GO:0000122) 9.09 1.13E-06 2.84E-04 
positive regulation of nucleobase-containing compound metabolic process (GO:0045935) 9.02 3.37E-15 4.44E-12 
epithelial cell differentiation (GO:0030855) 9.01 3.63E-05 6.74E-03 
positive regulation of cellular biosynthetic process (GO:0031328) 8.89 4.28E-15 5.20E-12 
positive regulation of biosynthetic process (GO:0009891) 8.74 5.73E-15 6.04E-12 
epithelium development (GO:0060429) 8.33 3.95E-07 1.16E-04 
circulatory system development (GO:0072359) 8.22 1.24E-05 2.60E-03 
anatomical structure formation involved in morphogenesis (GO:0048646) 8.16 1.29E-05 2.69E-03 
regulation of transcription by RNA polymerase II (GO:0006357) 7.94 1.09E-18 1.73E-14 
negative regulation of transcription, DNA-templated (GO:0045892) 7.94 1.04E-07 3.36E-05 
negative regulation of nucleic acid-templated transcription (GO:1903507) 7.93 1.06E-07 3.34E-05 
negative regulation of RNA biosynthetic process (GO:1902679) 7.92 1.07E-07 3.33E-05 
tube morphogenesis (GO:0035239) 7.87 3.42E-04 4.62E-02 
developmental process involved in reproduction (GO:0003006) 7.4 2.43E-05 4.80E-03 
negative regulation of RNA metabolic process (GO:0051253) 7.31 2.24E-07 6.69E-05 
tube development (GO:0035295) 7.22 1.23E-04 1.92E-02 
anatomical structure morphogenesis (GO:0009653) 7.16 1.95E-11 1.10E-08 
tissue development (GO:0009888) 7.15 8.41E-09 3.09E-06 
positive regulation of gene expression (GO:0010628) 7.05 7.49E-06 1.62E-03 
negative regulation of nucleobase-containing compound metabolic process (GO:0045934) 6.74 4.79E-07 1.38E-04 
negative regulation of cellular macromolecule biosynthetic process (GO:2000113) 6.69 5.15E-07 1.45E-04 
negative regulation of macromolecule biosynthetic process (GO:0010558) 6.64 5.50E-07 1.52E-04 
negative regulation of cellular biosynthetic process (GO:0031327) 6.4 7.76E-07 2.08E-04 
negative regulation of biosynthetic process (GO:0009890) 6.27 9.35E-07 2.38E-04 
regulation of nucleic acid-templated transcription (GO:1903506) 5.93 3.68E-16 8.31E-13 
regulation of transcription, DNA-templated (GO:0006355) 5.93 3.66E-16 9.63E-13 
regulation of RNA biosynthetic process (GO:2001141) 5.92 3.79E-16 7.48E-13 
positive regulation of developmental process (GO:0051094) 5.67 1.31E-04 2.03E-02 
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reproductive process (GO:0022414) 5.65 3.74E-05 6.88E-03 
reproduction (GO:0000003) 5.63 3.80E-05 6.90E-03 
positive regulation of nitrogen compound metabolic process (GO:0051173) 5.61 8.84E-12 5.82E-09 
regulation of RNA metabolic process (GO:0051252) 5.45 1.99E-15 2.86E-12 
positive regulation of cellular metabolic process (GO:0031325) 5.28 2.34E-11 1.28E-08 
positive regulation of macromolecule metabolic process (GO:0010604) 5.26 2.17E-12 1.56E-09 
regulation of cellular macromolecule biosynthetic process (GO:2000112) 5.19 5.18E-15 5.85E-12 
neurogenesis (GO:0022008) 5.18 2.30E-04 3.27E-02 
regulation of macromolecule biosynthetic process (GO:0010556) 5.15 6.06E-15 5.98E-12 
regulation of nucleobase-containing compound metabolic process (GO:0019219) 5.09 7.76E-15 7.21E-12 
cell development (GO:0048468) 5 8.84E-05 1.46E-02 
regulation of cellular biosynthetic process (GO:0031326) 4.95 1.35E-14 1.19E-11 
cell differentiation (GO:0030154) 4.9 8.12E-11 3.89E-08 
regulation of biosynthetic process (GO:0009889) 4.87 1.82E-14 1.52E-11 
positive regulation of metabolic process (GO:0009893) 4.85 9.02E-12 5.71E-09 
cellular developmental process (GO:0048869) 4.82 1.06E-10 4.94E-08 
animal organ development (GO:0048513) 4.8 5.89E-09 2.22E-06 
negative regulation of cellular metabolic process (GO:0031324) 4.73 8.29E-07 2.18E-04 
negative regulation of nitrogen compound metabolic process (GO:0051172) 4.2 3.45E-05 6.49E-03 
regulation of gene expression (GO:0010468) 4.18 3.82E-13 3.02E-10 
negative regulation of metabolic process (GO:0009892) 3.99 5.17E-06 1.17E-03 
anatomical structure development (GO:0048856) 3.86 1.87E-12 1.41E-09 
system development (GO:0048731) 3.81 2.99E-08 1.03E-05 
multicellular organism development (GO:0007275) 3.75 8.06E-10 3.27E-07 
regulation of nitrogen compound metabolic process (GO:0051171) 3.59 8.21E-12 5.64E-09 
negative regulation of macromolecule metabolic process (GO:0010605) 3.58 1.38E-04 2.12E-02 
developmental process (GO:0032502) 3.55 1.00E-11 6.08E-09 
regulation of primary metabolic process (GO:0080090) 3.48 1.55E-11 9.06E-09 
regulation of cellular metabolic process (GO:0031323) 3.36 3.13E-11 1.65E-08 
regulation of macromolecule metabolic process (GO:0060255) 3.25 5.98E-11 2.95E-08 
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positive regulation of cellular process (GO:0048522) 3.23 1.08E-08 3.90E-06 
regulation of metabolic process (GO:0019222) 3 3.00E-10 1.36E-07 
negative regulation of cellular process (GO:0048523) 2.94 1.64E-05 3.32E-03 
positive regulation of biological process (GO:0048518) 2.93 5.84E-08 1.96E-05 
multicellular organismal process (GO:0032501) 2.82 1.41E-08 4.95E-06 
negative regulation of biological process (GO:0048519) 2.62 6.65E-05 1.15E-02 
regulation of cellular process (GO:0050794) 1.81 9.49E-06 2.03E-03 
regulation of biological process (GO:0050789) 1.73 2.95E-05 5.68E-03 
biological regulation (GO:0065007) 1.64 8.28E-05 1.38E-02 



 108 

 

Appendix 1.3 

SRA codes and Bismark mapping efficiencies for downloaded Repli-BS samples 

 

Sample SRA Efficiency 
S1 - 0hr SRR3609267 80.80% 
S1 - 0hr SRR3609268 80.70% 
S1 - 0hr SRR3609269 81.30% 
S1 - 0hr SRR3609270 81.30% 
S2 - 0hr SRR3609271 85.30% 
S2 - 0hr SRR3609272 85.10% 
S2 - 0hr SRR3609273 83.70% 
S2 - 0hr SRR3609274 83.50% 
S2 - 0hr SRR3609275 86.00% 
S2 - 0hr SRR3609276 86.00% 
S3 - 0hr SRR3609277 86.70% 
S3 - 0hr SRR3609278 86.60% 
S3 - 0hr SRR3609279 77.10% 
S3 - 0hr SRR3609280 77.00% 
S3 - 0hr SRR3609281 87.30% 
S3 - 0hr SRR3609282 87.30% 
S4 - 0hr SRR3609283 86.00% 
S4 - 0hr SRR3609285 85.90% 
S4 - 0hr SRR3609286 84.00% 
S4 - 0hr SRR3609287 83.80% 
S4 - 0hr SRR3609288 86.50% 
S4 - 0hr SRR3609289 86.50% 
S5 - 0hr SRR3609290 76.50% 
S5 - 0hr SRR3609291 76.40% 
S5 - 0hr SRR3609292 83.70% 
S5 - 0hr SRR3609293 83.50% 
S5 - 0hr SRR3609294 76.80% 
S5 - 0hr SRR3609295 76.80% 
S6 - 0hr SRR3609296 70.80% 
S6 - 0hr SRR3609297 70.70% 
S6 - 0hr SRR3609298 79.30% 
S6 - 0hr SRR3609299 79.10% 
S6 - 0hr SRR3609300 71.10% 
S6 - 0hr SRR3609301 71.00% 
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16hr Nasc SRR3609323 73.70% 
16hr Nasc SRR3609324 73.60% 
16hr Nasc SRR3609325 70.60% 
16hr Nasc SRR3609326 70.40% 
16hr Nasc SRR5621968 86.40% 
Arrested SRR3609311 87.10% 
Arrested SRR3609312 87.20% 
Arrested SRR3609313 87.80% 
Arrested SRR3609314 87.90% 
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Appendix Section 2 

Appendix 2.1 

A. RRBS read and methylation call data before and after depth filtering for fibroblast lines 

Cell ID Family 

Mapping 
efficiency 
(%) 

# of 
mapped 
reads 

Mean 
read 
depth # of CpGs 

# of CpGs 
with ≥5x 
depth 

% of total 
CpGs with 
≥5x depth 

Mean 
methylation 
level (%) ≥5x 

C2 Donor 80.10 11167514 5.93 5765443 2453192 42.55 62.27 
C1 A 78.90 12955944 7.62 5732669 2478080 43.23 59.15 

C3 A 76.40 9405102 5.07 5566829 2082358 37.41 59.21 

P1  A 79.70 11919395 4.96 6687065 2418012 36.16 64.54 
P2 A 74.70 11726435 5.55 6434663 2574977 40.02 60.37 

P3 A 68.00 8205263 4.06 5658271 1617429 28.59 61.75 
C4 C 71.60 9253758 4.79 5722213 1988035 34.74 61.66 

C5  C 74.70 8597498 4.77 5368763 1897892 35.35 60.61 
P4 C 71.30 9723382 5.27 5842361 2240017 38.34 58.93 

P5 C 79.20 9976610 4.96 6087224 2273148 37.34 61.52 

Control Avg 76.34 10275963.2 5.63 5631183.4 2179911.4 38.66 60.58 
Patient Avg 74.58 10310217 4.96 6141916.8 2224716.6 36.09 61.42 

All Avg 75.46 10293090.1 5.30 5886550.1 2202314 37.37 61.00 
 

B.  RRBS read and methylation call data before and after depth filtering for iPSC lines 

Cell ID Family 

Mapping 
efficency 
(%) 

# of 
mapped 
reads 

Mean 
read 
depth # of CpGs 

# of CpGs 
with ≥5x 
depth 

% of total 
CpGs with 
≥5x depth 

Mean 
methylation 
level (%) ≥5x 

C2  Donor 81.8 15412513 3.76 9679992 2253977 23.28 68.94 
C1 A 82.3 14005546 3.37 9272820 1863154 20.09 69.89 

C3 A 79.9 12818488 5.22 7269552 2524314 34.72 68.85 
P1  A 80 13239664 5.01 7303946 2456742 33.64 70.97 

P2  A 74.4 13889429 4.16 8538282 2369711 27.75 71.06 
P3  A 77.3 11897293 4.01 7459790 1994609 26.74 70.85 

C4 C 74.7 12541395 4.16 8285819 2304838 27.82 70.27 

C5  C 80.9 11418775 4.74 6786321 2245024 33.08 70.43 
P4  C 81.1 12307525 3.33 8391565 1729506 20.61 69.99 

P5 C 81.2 11057593 4.44 6912886 2201672 31.85 71.62 
Control Avg 79.92 13239343.4 4.25 8258900.8 2238261.4 27.80 69.68 

Patient Avg 78.8 12478300.8 4.19 7721293.8 2150448 28.12 70.90 

All Avg 79.36 12858822.1 4.22 7990097.3 2194354.7 27.96 70.29 
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Appendix 2.2 

A. Number of genomic features captured in RRBS by each sample in fibroblast 

Featu
re C1 C2 C3 C4 C5 P1 P2 P3 P4 P5 

*All 
sample
s 

total # of 
features 

% of features in 
all samples 

promo
ters 

161
00 

163
89 

157
99 

156
52 

154
46 

164
91 

167
69 

149
01 

162
30 

163
84 18686 28180 66.30 

exons 
438

66 
452

65 
407

95 
397

04 
388

93 
443

46 
472

58 
341

30 
438

81 
441

57 62713 242221 25.89 
intron
s 

713
87 

741
97 

702
71 

697
60 

683
89 

750
80 

759
97 

647
38 

712
61 

733
33 90438 188793 47.90 

interg
enic 

174
47 

175
76 

172
49 

171
24 

171
10 

175
74 

177
30 

168
17 

174
31 

175
22 18700 21508 86.94 

 

B. Number of genomic features captured in RRBS by each sample in iPSC 

Featu
re C1 C2 C3 C4 C5 P1 P2 P3 P4 P5 

*All 
sample
s 

total # of 
features 

% of features in 
all samples 

promo
ters 

154
67 

164
01 

164
11 

165
24 

160
25 

164
94 

165
77 

158
69 

152
48 

160
91 19458 28180 69.05 

exons 
387

11 
440

89 
462

31 
456

44 
433

24 
456

03 
452

12 
401

39 
369

13 
433

56 65888 242221 27.20 
intron
s 

701
86 

751
64 

742
71 

742
33 

723
94 

750
95 

755
28 

712
55 

680
08 

732
73 98064 188793 51.94 

interg
enic 

172
10 

176
04 

175
54 

175
91 

174
14 

175
64 

176
26 

172
91 

170
26 

174
25 19061 21508 88.62 

 

(*) Features found in all samples were merged together, without any duplicates 

 

Appendix 2.3 

A. Full list of genes associated to Shared DMRs included in GO term heart development 

(GO:0007507) (n=34) 

TBX3 SOX11 ZFPM2 MYO18B 

CACNA1C RPS6KA2 RBM20 GLI2 

COL5A1 FOXL1 MSX1 ZMIZ1 

ERBB4 DLL1 SMYD2 FOXN4 

JMJD6 DNAH5 BMP7   

PKD1 SMG9 MIXL1   

FOLR1 PDLIM3 SORBS2   

FOXF1 RXRA GATA5   

EYA1 ZFPM1 SIX1   

ZFP36L1 TAB1 ZBTB14   
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B. Full list of genes associated to Shared DMRs included in GO term skeletal system 

development (GO: 0001501) (n=37) 

ALPL FAM20C MSX1 SULF2 

ALX3 FOXP1 PBX1 TBX3 

BMP7 GLI2 PKD1 TPO 

CHSY1 GNAS RASSF2 TRPV4 

CYTL1 HMGA2 RPL13 WDR5 

DLX1 HOXD10 RUNX3 XYLT1 

DLX2 HOXD12 SIX1 ZFPM1 

DSCAML1 LHX1 SNX19   

EYA1 LRRK1 SOX11   

FAM101A MMP2 SP5   
 

Appendix 2.4 

OR statistics for fibroblast DMR and histone modifications 

DMR Group DMR Type Histone Mark a* b* c* d* OR† log(OR) p-value‡ 

Shared Hyper H3K27Ac 326 1015793 1126 3408263 0.97 -0.01 6.62E-01 

Shared Hyper H3K27me3 532 1238261 920 3185589 1.49 0.17 1.02E-12 

Shared Hyper H3K36me3 366 1355818 1086 3068198 0.76 -0.12 5.12E-06 

Shared Hyper H3K4me1 445 899637 1007 3524300 1.73 0.24 2.08E-20 

Shared Hyper H3K4me3 328 951104 1124 3472950 1.07 0.03 3.07E-01 

Shared Hyper H3K9me3 308 747719 1144 3676355 1.32 0.12 2.19E-05 

Shared Hypo H3K27Ac 116 1016003 890 3408709 0.44 -0.36 1.95E-20 

Shared Hypo H3K27me3 361 1238432 645 3186035 1.44 0.16 5.85E-08 

Shared Hypo H3K36me3 235 1355949 771 3068644 0.69 -0.16 3.27E-07 

Shared Hypo H3K4me1 169 899913 837 3524746 0.79 -0.10 4.78E-03 

Shared Hypo H3K4me3 160 951272 846 3473396 0.69 -0.16 9.73E-06 

Shared Hypo H3K9me3 249 747778 757 3676801 1.62 0.21 2.96E-10 

Family A Hyper H3K27Ac 1946 912786 9406 3009559 0.68 -0.17 2.13E-57 

Family A Hyper H3K27me3 3613 1099621 7739 2821057 1.20 0.08 1.01E-18 

Family A Hyper H3K36me3 2645 1211411 8707 2710235 0.68 -0.17 6.64E-72 

Family A Hyper H3K4me1 2502 801355 8850 3120434 1.10 0.04 2.71E-05 

Family A Hyper H3K4me3 1931 860760 9421 3061600 0.73 -0.14 5.58E-39 

Family A Hyper H3K9me3 2626 661875 8726 3259790 1.48 0.17 6.65E-65 

Family A Hypo H3K27Ac 1540 913192 5963 3013408 0.85 -0.07 1.47E-08 

Family A Hypo H3K27me3 2781 1100453 4722 2824906 1.51 0.18 3.08E-64 
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Family A Hypo H3K36me3 1871 1212185 5632 2714084 0.74 -0.13 8.57E-30 

Family A Hypo H3K4me1 1896 801961 5607 3124283 1.32 0.12 4.61E-24 

Family A Hypo H3K4me3 1654 861037 5849 3065449 1.01 0.00 8.12E-01 

Family A Hypo H3K9me3 1475 663026 6028 3263639 1.20 0.08 3.37E-10 

Family C Hyper H3K27Ac 1405 805630 7602 2623702 0.60 -0.22 4.48E-76 

Family C Hyper H3K27me3 3151 963853 5856 2463733 1.38 0.14 1.75E-45 

Family C Hyper H3K36me3 2013 1058107 6994 2370617 0.64 -0.19 2.21E-72 

Family C Hyper H3K4me1 1701 707970 7306 2721066 0.89 -0.05 3.20E-05 

Family C Hyper H3K4me3 1362 763549 7645 2665826 0.62 -0.21 7.55E-65 

Family C Hyper H3K9me3 1696 574902 7311 2854139 1.15 0.06 2.53E-07 

Family C Hypo H3K27Ac 1231 805804 5425 2626053 0.74 -0.13 8.45E-23 

Family C Hypo H3K27me3 2421 964583 4235 2466084 1.46 0.16 3.34E-48 

Family C Hypo H3K36me3 1586 1058534 5070 2372968 0.70 -0.15 8.19E-37 

Family C Hypo H3K4me1 1391 708280 5265 2723417 1.02 0.01 6.06E-01 

Family C Hypo H3K4me3 1352 763559 5304 2668177 0.89 -0.05 1.33E-04 

Family C Hypo H3K9me3 1249 575349 5407 2856490 1.15 0.06 1.68E-05 

 

(*) a, b, c, and d values are the contingency parameters used to calculate OR. (†) OR was 

calculated as described in the Methods section. (‡) P-values were calculated by Fisher’s exact 

test  
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Appendix 2.5 

Odds ratio statistics for fibroblast DMRs and ChromHMM annotations 

DMR Group DMR Type Annotation a* b* c* d* OR† log(OR) p-value‡ 

Shared Hyper 1_TssA 11 187497 1441 4236874 0.17 -0.76 2.75E-15 

Shared Hyper 2_PromU 41 176466 1411 4247875 0.70 -0.16 2.23E-02 

Shared Hyper 3_PromD1 33 186423 1419 4237926 0.53 -0.28 8.33E-05 

Shared Hyper 4_PromD2 33 34490 1419 4389859 2.96 0.47 1.07E-07 

Shared Hyper 5_Tx5' 51 126216 1401 4298115 1.24 0.09 1.34E-01 

Shared Hyper 6_Tx 8 58069 1444 4366305 0.42 -0.38 7.50E-03 

Shared Hyper 7_Tx3' 39 313455 1413 4110888 0.36 -0.44 2.24E-13 

Shared Hyper 8_TxWk 76 357266 1376 4067040 0.63 -0.20 3.26E-05 

Shared Hyper 9_TxReg 28 32655 1424 4391699 2.64 0.42 7.20E-06 

Shared Hyper 10_TxEnh5' 7 20788 1445 4403587 1.03 0.01 8.47E-01 

Shared Hyper 11_TxEnh3' 9 17011 1443 4407362 1.62 0.21 1.37E-01 

Shared Hyper 12_TxEnhW 29 22785 1423 4401568 3.94 0.60 1.60E-09 

Shared Hyper 13_EnhA1 4 22488 1448 4401890 0.54 -0.27 2.67E-01 

Shared Hyper 14_EnhA2 20 17341 1432 4407021 3.55 0.55 2.26E-06 

Shared Hyper 15_EnhAF 23 37791 1429 4386568 1.87 0.27 5.94E-03 

Shared Hyper 16_EnhW1 26 39436 1426 4384920 2.03 0.31 1.08E-03 

Shared Hyper 17_EnhW2 30 56505 1422 4367847 1.63 0.21 1.32E-02 

Shared Hyper 18_EnhAc 15 12699 1437 4411668 3.63 0.56 3.06E-05 

Shared Hyper 19_DNase 33 31149 1419 4393200 3.28 0.52 1.04E-08 

Shared Hyper 20_ZNF/Rpts 4 4576 1448 4419802 2.67 0.43 6.58E-02 

Shared Hyper 21_Het 27 24691 1425 4399664 3.38 0.53 1.19E-07 

Shared Hyper 22_PromP 24 61721 1428 4362637 1.19 0.07 3.70E-01 

Shared Hyper 23_PromBiv 52 130099 1400 4294231 1.23 0.09 1.61E-01 

Shared Hyper 24_ReprPC 197 367844 1255 4056341 1.73 0.24 2.06E-11 

Shared Hyper 25_Quies 635 2080494 817 2343253 0.88 -0.06 1.25E-02 

Shared Hypo 1_TssA 14 187494 992 4237320 0.32 -0.50 4.20E-07 

Shared Hypo 2_PromU 10 176497 996 4248321 0.24 -0.62 1.75E-08 

Shared Hypo 3_PromD1 6 186450 1000 4238372 0.14 -0.87 3.28E-12 

Shared Hypo 4_PromD2 14 34509 992 4390305 1.80 0.25 4.45E-02 

Shared Hypo 5_Tx5' 14 126253 992 4298561 0.48 -0.32 3.19E-03 

Shared Hypo 6_Tx 14 58063 992 4366751 1.06 0.03 7.81E-01 

Shared Hypo 7_Tx3' 29 313465 977 4111334 0.39 -0.41 8.33E-09 

Shared Hypo 8_TxWk 40 357302 966 4067486 0.47 -0.33 2.24E-07 

Shared Hypo 9_TxReg 12 32671 994 4392145 1.62 0.21 9.54E-02 

Shared Hypo 10_TxEnh5' 11 20784 995 4404033 2.34 0.37 9.20E-03 

Shared Hypo 11_TxEnh3' 2 17018 1004 4407808 0.52 -0.29 6.03E-01 
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Shared Hypo 12_TxEnhW 1 22813 1005 4402014 0.19 -0.72 7.29E-02 

Shared Hypo 13_EnhA1 0 22492 1006 4402336 0.00 -Inf 1.22E-02 

Shared Hypo 14_EnhA2 6 17355 1000 4407467 1.52 0.18 3.01E-01 

Shared Hypo 15_EnhAF 3 37811 1003 4387014 0.35 -0.46 5.69E-02 

Shared Hypo 16_EnhW1 7 39455 999 4385366 0.78 -0.11 6.16E-01 

Shared Hypo 17_EnhW2 3 56532 1003 4368293 0.23 -0.64 2.72E-03 

Shared Hypo 18_EnhAc 0 12714 1006 4412114 0.00 -Inf 1.28E-01 

Shared Hypo 19_DNase 19 31163 987 4393646 2.71 0.43 1.41E-04 

Shared Hypo 20_ZNF/Rpts 1 4579 1005 4420248 0.96 -0.02 1.00E+00 

Shared Hypo 21_Het 11 24707 995 4400110 1.97 0.29 3.20E-02 

Shared Hypo 22_PromP 36 61709 970 4363083 2.62 0.42 5.38E-07 

Shared Hypo 23_PromBiv 26 130125 980 4294677 0.88 -0.06 5.75E-01 

Shared Hypo 24_ReprPC 253 367788 753 4056787 3.71 0.57 2.11E-57 

Shared Hypo 25_Quies 475 2080654 531 2343699 1.01 0.00 9.25E-01 

Family A Hyper 1_TssA 58 171117 11294 3753116 0.11 -0.95 6.38E-141 

Family A Hyper 2_PromU 336 160571 11016 3763384 0.71 -0.15 2.21E-10 

Family A Hyper 3_PromD1 93 170717 11259 3753481 0.18 -0.74 2.19E-111 

Family A Hyper 4_PromD2 204 30961 11148 3893126 2.30 0.36 2.57E-25 

Family A Hyper 5_Tx5' 196 112115 11156 3811980 0.60 -0.22 1.08E-14 

Family A Hyper 6_Tx 126 51250 11226 3872915 0.85 -0.07 6.83E-02 

Family A Hyper 7_Tx3' 446 278242 10906 3645603 0.54 -0.27 8.39E-46 

Family A Hyper 8_TxWk 511 317826 10841 3605954 0.53 -0.27 3.50E-52 

Family A Hyper 9_TxReg 203 28851 11149 3895237 2.46 0.39 1.26E-28 

Family A Hyper 10_TxEnh5' 46 18226 11306 3906019 0.87 -0.06 4.06E-01 

Family A Hyper 11_TxEnh3' 56 14927 11296 3909308 1.30 0.11 5.60E-02 

Family A Hyper 12_TxEnhW 82 20017 11270 3904192 1.42 0.15 2.91E-03 

Family A Hyper 13_EnhA1 73 19476 11279 3904742 1.30 0.11 3.20E-02 

Family A Hyper 14_EnhA2 75 15074 11277 3909142 1.72 0.24 1.33E-05 

Family A Hyper 15_EnhAF 132 32884 11220 3891275 1.39 0.14 3.01E-04 

Family A Hyper 16_EnhW1 167 35231 11185 3888893 1.65 0.22 2.63E-09 

Family A Hyper 17_EnhW2 189 49086 11163 3875016 1.34 0.13 1.64E-04 

Family A Hyper 18_EnhAc 28 11248 11324 3913015 0.86 -0.07 4.82E-01 

Family A Hyper 19_DNase 125 27672 11227 3896494 1.57 0.20 2.89E-06 

Family A Hyper 20_ZNF/Rpts 13 4079 11339 3920199 1.10 0.04 6.61E-01 

Family A Hyper 21_Het 183 22073 11169 3902035 2.90 0.46 3.88E-34 

Family A Hyper 22_PromP 201 54673 11151 3869417 1.28 0.11 9.97E-04 

Family A Hyper 23_PromBiv 380 119007 10972 3804904 1.11 0.04 5.50E-02 

Family A Hyper 24_ReprPC 1460 325138 9892 3597693 1.63 0.21 1.03E-60 

Family A Hyper 25_Quies 5955 1831369 5397 2086967 1.26 0.10 4.32E-34 

Family A Hypo 1_TssA 59 171116 7444 3756965 0.17 -0.76 3.71E-76 



 116 

Family A Hypo 2_PromU 345 160562 7158 3767233 1.13 0.05 2.86E-02 

Family A Hypo 3_PromD1 178 170632 7325 3757330 0.54 -0.27 1.05E-19 

Family A Hypo 4_PromD2 165 31000 7338 3896975 2.83 0.45 8.79E-30 

Family A Hypo 5_Tx5' 105 112206 7398 3815829 0.48 -0.32 7.70E-17 

Family A Hypo 6_Tx 30 51346 7473 3876764 0.30 -0.52 1.06E-15 

Family A Hypo 7_Tx3' 324 278364 7179 3649452 0.59 -0.23 1.72E-23 

Family A Hypo 8_TxWk 382 317955 7121 3609803 0.61 -0.22 3.72E-24 

Family A Hypo 9_TxReg 109 28945 7394 3899086 1.99 0.30 1.33E-10 

Family A Hypo 10_TxEnh5' 44 18228 7459 3909868 1.27 0.10 1.25E-01 

Family A Hypo 11_TxEnh3' 27 14956 7476 3913157 0.94 -0.02 8.51E-01 

Family A Hypo 12_TxEnhW 42 20057 7461 3908041 1.10 0.04 5.17E-01 

Family A Hypo 13_EnhA1 48 19501 7455 3908591 1.29 0.11 8.36E-02 

Family A Hypo 14_EnhA2 55 15094 7448 3912991 1.91 0.28 1.37E-05 

Family A Hypo 15_EnhAF 106 32910 7397 3895124 1.70 0.23 6.46E-07 

Family A Hypo 16_EnhW1 133 35265 7370 3892742 1.99 0.30 1.08E-12 

Family A Hypo 17_EnhW2 150 49125 7353 3878865 1.61 0.21 7.42E-08 

Family A Hypo 18_EnhAc 31 11245 7472 3916864 1.45 0.16 5.03E-02 

Family A Hypo 19_DNase 86 27711 7417 3900343 1.63 0.21 2.36E-05 

Family A Hypo 20_ZNF/Rpts 8 4084 7495 3924048 1.03 0.01 8.57E-01 

Family A Hypo 21_Het 65 22191 7438 3905884 1.54 0.19 1.14E-03 

Family A Hypo 22_PromP 154 54720 7349 3873266 1.48 0.17 5.36E-06 

Family A Hypo 23_PromBiv 376 119011 7127 3808753 1.69 0.23 4.23E-20 

Family A Hypo 24_ReprPC 1147 325451 6356 3601542 2.00 0.30 9.69E-88 

Family A Hypo 25_Quies 3335 1833989 4168 2090816 0.91 -0.04 7.83E-05 

Family C Hyper 1_TssA 28 150782 8979 3279927 0.07 -1.17 2.61E-132 

Family C Hyper 2_PromU 177 144059 8830 3286501 0.46 -0.34 1.23E-31 

Family C Hyper 3_PromD1 69 153340 8938 3277328 0.16 -0.78 2.94E-96 

Family C Hyper 4_PromD2 141 27367 8866 3403229 1.98 0.30 4.09E-13 

Family C Hyper 5_Tx5' 126 97654 8881 3332957 0.48 -0.31 9.69E-20 

Family C Hyper 6_Tx 79 45364 8928 3385294 0.66 -0.18 1.21E-04 

Family C Hyper 7_Tx3' 476 244075 8531 3186186 0.73 -0.14 2.08E-12 

Family C Hyper 8_TxWk 550 273945 8457 3156242 0.75 -0.13 1.03E-11 

Family C Hyper 9_TxReg 69 26335 8938 3404333 1.00 0.00 1.00E+00 

Family C Hyper 10_TxEnh5' 32 15901 8975 3414804 0.77 -0.12 1.40E-01 

Family C Hyper 11_TxEnh3' 44 13370 8963 3417323 1.25 0.10 1.49E-01 

Family C Hyper 12_TxEnhW 41 17594 8966 3413102 0.89 -0.05 5.06E-01 

Family C Hyper 13_EnhA1 38 17315 8969 3413384 0.84 -0.08 2.97E-01 

Family C Hyper 14_EnhA2 52 13301 8955 3417384 1.49 0.17 6.37E-03 

Family C Hyper 15_EnhAF 99 29015 8908 3401623 1.30 0.11 1.12E-02 

Family C Hyper 16_EnhW1 110 31534 8897 3399093 1.33 0.12 3.99E-03 
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Family C Hyper 17_EnhW2 115 43366 8892 3387256 1.01 0.00 8.87E-01 

Family C Hyper 18_EnhAc 23 9793 8984 3420921 0.89 -0.05 6.92E-01 

Family C Hyper 19_DNase 82 24391 8925 3406264 1.28 0.11 2.79E-02 

Family C Hyper 20_ZNF/Rpts 12 3572 8995 3427153 1.28 0.11 4.09E-01 

Family C Hyper 21_Het 114 19776 8893 3410847 2.21 0.34 9.60E-14 

Family C Hyper 22_PromP 89 47610 8918 3383038 0.71 -0.15 8.27E-04 

Family C Hyper 23_PromBiv 361 107137 8646 3323239 1.30 0.11 3.42E-06 

Family C Hyper 24_ReprPC 1172 290148 7835 3139417 1.62 0.21 1.89E-47 

Family C Hyper 25_Quies 4896 1580512 4111 1845329 1.39 0.14 7.21E-55 

Family C Hypo 1_TssA 65 150745 6591 3282278 0.21 -0.67 1.31E-59 

Family C Hypo 2_PromU 232 144004 6424 3288852 0.82 -0.08 3.62E-03 

Family C Hypo 3_PromD1 123 153286 6533 3279679 0.40 -0.39 3.41E-31 

Family C Hypo 4_PromD2 88 27420 6568 3405580 1.66 0.22 9.46E-06 

Family C Hypo 5_Tx5' 94 97686 6562 3335308 0.49 -0.31 1.20E-14 

Family C Hypo 6_Tx 50 45393 6606 3387645 0.56 -0.25 1.27E-05 

Family C Hypo 7_Tx3' 311 244240 6345 3188537 0.64 -0.19 2.73E-16 

Family C Hypo 8_TxWk 311 274184 6345 3158593 0.56 -0.25 9.77E-27 

Family C Hypo 9_TxReg 78 26326 6578 3406684 1.53 0.19 4.13E-04 

Family C Hypo 10_TxEnh5' 57 15876 6599 3417155 1.86 0.27 1.83E-05 

Family C Hypo 11_TxEnh3' 22 13392 6634 3419674 0.85 -0.07 4.91E-01 

Family C Hypo 12_TxEnhW 28 17607 6628 3415453 0.82 -0.09 3.44E-01 

Family C Hypo 13_EnhA1 78 17275 6578 3415735 2.34 0.37 5.14E-11 

Family C Hypo 14_EnhA2 40 13313 6616 3419735 1.55 0.19 9.80E-03 

Family C Hypo 15_EnhAF 47 29067 6609 3403974 0.83 -0.08 2.28E-01 

Family C Hypo 16_EnhW1 96 31548 6560 3401444 1.58 0.20 3.55E-05 

Family C Hypo 17_EnhW2 83 43398 6573 3389607 0.99 -0.01 9.56E-01 

Family C Hypo 18_EnhAc 21 9795 6635 3423272 1.11 0.04 6.44E-01 

Family C Hypo 19_DNase 78 24395 6578 3408615 1.66 0.22 3.87E-05 

Family C Hypo 20_ZNF/Rpts 3 3581 6653 3429504 0.43 -0.36 1.79E-01 

Family C Hypo 21_Het 92 19798 6564 3413198 2.42 0.38 1.53E-13 

Family C Hypo 22_PromP 177 47522 6479 3385389 1.95 0.29 2.64E-15 

Family C Hypo 23_PromBiv 231 107267 6425 3325590 1.11 0.05 1.05E-01 

Family C Hypo 24_ReprPC 1062 290258 5594 3141768 2.05 0.31 4.78E-87 

Family C Hypo 25_Quies 3189 1582219 3467 1847680 1.07 0.03 3.68E-03 

 

(*) a, b, c, and d values are the contingency parameters used to calculate OR. (†) OR was 

calculated as described in the Methods section. (‡) P-values were calculated by Fisher’s exact 

test. 



 118 

Appendix 2.6 

Complete list of TFBS motif enrichment for fibroblast DMRs acquired from HOMER 

DMR 
group 

DMR 
type Rank Motif 

Related 
Gene 
Name HOMER TF Name -Log(p-value)* 

Family A Hypo 1 
TCAGACGTAGTCTCGAAGTCTCAGGC
ATCTAGCTAGAGCT USF2 

Usf2(bHLH)/C2C12-Usf2-
ChIP-Seq(GSE36030)/Homer 19.61 

Family A Hypo 2 
TCGATCAGTCGAACTGCATGACGTAG
TCCTGA NR2F2 

COUP-TFII(NR)/Artia-Nr2f2-
ChIP-Seq(GSE46497)/Homer 12.41 

Family A Hypo 3 
AGTCTGCATCGACTGAACTGCATGAC
GTATGCGTCATACG ESRRA 

Erra(NR)/HepG2-Erra-ChIP-
Seq(GSE31477)/Homer 9.41 

Family A Hypo 4 
TACGTCAGGATCGTACTCGAGACTGC
TAGCTAGCTACGTAGATCGTCA CDX4 

CDX4(Homeobox)/ZebrafishE
mbryos-Cdx4.Myc-ChIP-
Seq(GSE48254)/Homer 9.19 

Family A Hypo 5 
ATGCGACTACTGCAGTGATCACGTTA
CGTACG SMAD2 

Smad2(MAD)/ES-SMAD2-
ChIP-Seq(GSE29422)/Homer 8.00 

Family A Hypo 6 
AGTCGACTCAGTGTACAGTCATCGTC
AGACTGGTCACGTA STAT3 

Stat3(Stat)/mES-Stat3-ChIP-
Seq(GSE11431)/Homer 6.48 

Family A Hypo 7 
AGCTGACTCTAGCGTACATGCGATCT
AGATCGGACTCAGT NKX3-2 

Bapx1(Homeobox)/VertebralC
ol-Bapx1-ChIP-
Seq(GSE36672)/Homer 6.37 

Family A Hypo 8 
CGATTAGCGACTGTCACGTAACGTCG
TACGTACGTAGCTA HOXD13 

HOXD13(Homeobox)/Chicken-
Hoxd13-ChIP-
Seq(GSE38910)/Homer 6.22 

Family A Hypo 9 
TACGATCGTAGCGATCACTGACGTAG
TCACGTCTAGATCG SMAD4 

Smad4(MAD)/ESC-SMAD4-
ChIP-Seq(GSE29422)/Homer 5.91 

Family A Hypo 10 
CATGGTACGACTGCTACGTACGTACG
TAGCTAGACTCTGATCAGGTAC MEF2C 

Mef2c(MADS)/GM12878-
Mef2c-ChIP-
Seq(GSE32465)/Homer 5.86 

Family A Hypo 11 
GTACGACTCGTACTGATCGACGTAGC
TACAGTCTGATACG MEF2A 

Mef2a(MADS)/HL1-
Mef2a.biotin-ChIP-
Seq(GSE21529)/Homer 5.62 

Family A Hypo 12 
CATGAGTCGACTCGTACGATGCATGA
CTGCATCGATCTAGCATGTGAC MEF2B 

Mef2b(MADS)/HEK293-
Mef2b.V5-ChIP-
Seq(GSE67450)/Homer 5.49 

Family A Hypo 13 
CGATACGTACGTACGTCGTAAGCTCA
GTCTAGATCGACTG HOXB13 

HOXB13(Homeobox)/Prostate
Tumor-HOXB13-ChIP-
Seq(GSE56288)/Homer 5.37 

Family A Hypo 14 
CTGATCGACGTAATGCCGTACGTACG
ATCTAGTCAGGATC SOX15 

Sox15(HMG)/CPA-Sox15-
ChIP-Seq(GSE62909)/Homer 5.17 

Family A Hypo 15 
CGTATGACTCGAAGTCCGTAATCGAT
GCACGTACTGAGTC TCF3 

E2A(bHLH)/proBcell-E2A-
ChIP-Seq(GSE21978)/Homer 4.69 

Family A Hypo 16 

ATCGAGCTCTGACTAGACTGACGTGT
ACGCTAATGCACGTCTAGCATGTACG
CGATATGCCGTA NR1D1 

Reverb(NR),DR2/RAW-
Reverba.biotin-ChIP-
Seq(GSE45914)/Homer 4.67 

Family A Hyper 1 
CATGGTACGACTGCTACGTACGTACG
TAGCTAGACTCTGATCAGGTAC MEF2C 

Mef2c(MADS)/GM12878-
Mef2c-ChIP-
Seq(GSE32465)/Homer 26.42 

Family A Hyper 2 
GTACGACTCGTACTGATCGACGTAGC
TACAGTCTGATACG MEF2A 

Mef2a(MADS)/HL1-
Mef2a.biotin-ChIP-
Seq(GSE21529)/Homer 25.80 

Family A Hyper 3 
CATGAGTCGACTCGTACGATGCATGA
CTGCATCGATCTAGCATGTGAC MEF2B 

Mef2b(MADS)/HEK293-
Mef2b.V5-ChIP-
Seq(GSE67450)/Homer 21.14 

Family A Hyper 4 
AGCTGACTCTAGCGTACATGCGATCT
AGATCGGACTCAGT NKX3-2 

Bapx1(Homeobox)/VertebralC
ol-Bapx1-ChIP-
Seq(GSE36672)/Homer 18.29 

Family A Hyper 5 
TCAGACGTAGTCTCGAAGTCTCAGGC
ATCTAGCTAGAGCT USF2 

Usf2(bHLH)/C2C12-Usf2-
ChIP-Seq(GSE36030)/Homer 14.54 

Family A Hyper 6 
ATGCGACTAGCTCTAGCGTACTAGCG
ATCTAGATCGGATC NKX2-2 

Nkx2.2(Homeobox)/NPC-
Nkx2.2-ChIP-
Seq(GSE61673)/Homer 9.68 
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Family A Hyper 7 
CTAGTACGAGTCCGTAAGTCACGTAG
TCTCGACGTATACG NKX2-1 

Nkx2.1(Homeobox)/LungAC-
Nkx2.1-ChIP-
Seq(GSE43252)/Homer 8.58 

Family A Hyper 8 
CATGAGCTTACGGTCAGTACTAGCAG
CTGACTATCGTCGA ESRRB 

Esrrb(NR)/mES-Esrrb-ChIP-
Seq(GSE11431)/Homer 8.33 

Family A Hyper 9 
CTGACTGATAGCGATCGCTAGTACAC
GTGATCTGCACGTA NKX2-5 

Nkx2.5(Homeobox)/HL1-
Nkx2.5.biotin-ChIP-
Seq(GSE21529)/Homer 8.19 

Family A Hyper 10 
GATCCTGAAGTCCGATCGATGATCAG
TCACTGATCGAGCT ELK4 

Elk4(ETS)/Hela-Elk4-ChIP-
Seq(GSE31477)/Homer 7.10 

Family A Hyper 11 
TCAGTCAGTAGCAGTCCTGAAGTCCT
AGACGTACTGATCG MYC 

c-Myc(bHLH)/mES-cMyc-
ChIP-Seq(GSE11431)/Homer 7.02 

Family A Hyper 12 
ACGTCTAGAGCTACGTACGTCTGAAG
TCGACTAGCTCGTA FOXM1 

FOXM1(Forkhead)/MCF7-
FOXM1-ChIP-
Seq(GSE72977)/Homer 6.88 

Family A Hyper 13 
TACGGACTACTGACTGCTAGATGCAG
TCAGTCAGTCCTGA ZNF692 

ZNF692(Zf)/HEK293-
ZNF692.GFP-ChIP-
Seq(GSE58341)/Homer 6.84 

Family A Hyper 14 
TCGATCAGTCGAACTGCATGACGTAG
TCCTGA NR2F2 

COUP-TFII(NR)/Artia-Nr2f2-
ChIP-Seq(GSE46497)/Homer 6.46 

Family A Hyper 15 

ATCGAGCTCTGACTAGACTGACGTGT
ACGCTAATGCACGTCTAGCATGTACG
CGATATGCCGTA NR1D1 

Reverb(NR),DR2/RAW-
Reverba.biotin-ChIP-
Seq(GSE45914)/Homer 6.35 

Family A Hyper 16 
GTACCTAGTCAGAGCTTAGCCGTAAT
GCTACGAGTCGTACGTCAAGTC SREBF2 

Srebp2(bHLH)/HepG2-Srebp2-
ChIP-Seq(GSE31477)/Homer 6.14 

Family A Hyper 17 
TCGATGACAGTCCGTAAGTCCTAGAC
GTACTGACTGAGCTAGTCGCAT MAX 

Max(bHLH)/K562-Max-ChIP-
Seq(GSE31477)/Homer 5.96 

Family A Hyper 18 
TGACCGTACTGAACTGACTGGACTGA
TCTGCAGTACTACG SF1 

SF1(NR)/H295R-Nr5a1-ChIP-
Seq(GSE44220)/Homer 5.54 

Family A Hyper 19 
ACGTGACTTAGCCGTACTGACATGCT
AGGACTGATCCGTA NR5A2 

Nr5a2(NR)/Pancreas-LRH1-
ChIP-Seq(GSE34295)/Homer 5.41 

Family A Hyper 20 

ATGCTAGCAGCTAGCTTGACGACTTC
AGTACGGTCACTGAATCGTAGCGACT
CAGTAGTCAGCTTCGAATCGTGCATG
CA HSF1 

HRE(HSF)/HepG2-HSF1-
ChIP-Seq(GSE31477)/Homer 5.40 

Family A Hyper 21 
CTGATCGACGTAATGCCGTACGTACG
ATCTAGTCAGGATC SOX15 

Sox15(HMG)/CPA-Sox15-
ChIP-Seq(GSE62909)/Homer 4.97 

Family A Hyper 22 
GCATGCATCTGAACGTCTGAACGTCG
TACGTACGTAAGTCGTCAGTCA FOXF1 

Foxf1(Forkhead)/Lung-Foxf1-
ChIP-Seq(GSE77951)/Homer 4.68 

Family A Hyper 23 
GCATTCAGCTGAATCGACTGCGATGA
TCCTGA THRB 

THRb(NR)/Liver-NR1A2-ChIP-
Seq(GSE52613)/Homer 4.66 

Family C Hypo 1 
GCATGCATCTGAACGTCTGAACGTCG
TACGTACGTAAGTCGTCAGTCA FOXF1 

Foxf1(Forkhead)/Lung-Foxf1-
ChIP-Seq(GSE77951)/Homer 12.57 

Family C Hypo 2 
CGTAGCTACGATCTAGACGTGTCACG
TACGTAAGTCCGTATGCATACG FOXL2 

FoxL2(Forkhead)/Ovary-
FoxL2-ChIP-
Seq(GSE60858)/Homer 11.90 

Family C Hypo 3 
ACGTCTAGAGCTACGTACGTCTGAAG
TCGACTAGCTCGTA FOXM1 

FOXM1(Forkhead)/MCF7-
FOXM1-ChIP-
Seq(GSE72977)/Homer 10.01 

Family C Hypo 4 
CATGGTACGACTGCTACGTACGTACG
TAGCTAGACTCTGATCAGGTAC MEF2C 

Mef2c(MADS)/GM12878-
Mef2c-ChIP-
Seq(GSE32465)/Homer 9.77 

Family C Hypo 5 
AGCTGACTCTAGCGTACATGCGATCT
AGATCGGACTCAGT NKX3-2 

Bapx1(Homeobox)/VertebralC
ol-Bapx1-ChIP-
Seq(GSE36672)/Homer 9.62 

Family C Hypo 6 
TCAGACGTAGTCTCGAAGTCTCAGGC
ATCTAGCTAGAGCT USF2 

Usf2(bHLH)/C2C12-Usf2-
ChIP-Seq(GSE36030)/Homer 9.57 

Family C Hypo 7 
GCTATCGACGTACTAGAGCTGTCAGT
CACGTAAGTCCGTA FOXA1 

FOXA1(Forkhead)/MCF7-
FOXA1-ChIP-
Seq(GSE26831)/Homer 8.61 

Family C Hypo 8 
GCTATCGACGTACTAGAGCTGTCAGT
CACGTAAGTCCGTA FOXA1 

FOXA1(Forkhead)/LNCAP-
FOXA1-ChIP-
Seq(GSE27824)/Homer 7.53 

Family C Hypo 9 
GCATATCGCATGGTACGCTAAGTCTC
AGTGACGTCATGCA 

ARNT, 
AHR 

Arnt:Ahr(bHLH)/MCF7-Arnt-
ChIP-Seq(Lo_et_al.)/Homer 7.51 

Family C Hypo 10 
TCAGAGCTGTACCGTAACGTCGTACG
TACGTAGCTAGACT CDX2 

Cdx2(Homeobox)/mES-Cdx2-
ChIP-Seq(GSE14586)/Homer 7.35 
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Family C Hypo 11 
ATGCGACTAGCTCTAGCGTACTAGCG
ATCTAGATCGGATC NKX2-2 

Nkx2.2(Homeobox)/NPC-
Nkx2.2-ChIP-
Seq(GSE61673)/Homer 6.83 

Family C Hypo 12 
CGATTAGCGACTGTCACGTAACGTCG
TACGTACGTAGCTA HOXD13 

HOXD13(Homeobox)/Chicken-
Hoxd13-ChIP-
Seq(GSE38910)/Homer 6.53 

Family C Hypo 13 
GTACGACTCGTACTGATCGACGTAGC
TACAGTCTGATACG MEF2A 

Mef2a(MADS)/HL1-
Mef2a.biotin-ChIP-
Seq(GSE21529)/Homer 6.29 

Family C Hypo 14 
CTAGTACGAGTCCGTAAGTCACGTAG
TCTCGACGTATACG NKX2-1 

Nkx2.1(Homeobox)/LungAC-
Nkx2.1-ChIP-
Seq(GSE43252)/Homer 6.02 

Family C Hypo 15 
CGATACGTACGTACGTCGTAAGCTCA
GTCTAGATCGACTG HOXB13 

HOXB13(Homeobox)/Prostate
Tumor-HOXB13-ChIP-
Seq(GSE56288)/Homer 5.55 

Family C Hypo 16 
GCTAACGTCTAGGTACGCTAGACTCT
GAGCATCATGGATC POU1F1 

Pit1(Homeobox)/GCrat-Pit1-
ChIP-Seq(GSE58009)/Homer 4.99 

Family C Hypo 17 
CATGAGTCGACTCGTACGATGCATGA
CTGCATCGATCTAGCATGTGAC MEF2B 

Mef2b(MADS)/HEK293-
Mef2b.V5-ChIP-
Seq(GSE67450)/Homer 4.72 

Family C Hypo 18 
TGCACGTAGTCAAGCTAGTCGCTATA
GCCGATCTAGGATC GFI1B 

Gfi1b(Zf)/HPC7-Gfi1b-ChIP-
Seq(GSE22178)/Homer 4.70 

Family C Hyper 1 
CATGGTACGACTGCTACGTACGTACG
TAGCTAGACTCTGATCAGGTAC MEF2C 

Mef2c(MADS)/GM12878-
Mef2c-ChIP-
Seq(GSE32465)/Homer 22.11 

Family C Hyper 2 
AGCTGACTCTAGCGTACATGCGATCT
AGATCGGACTCAGT NKX3-2 

Bapx1(Homeobox)/VertebralC
ol-Bapx1-ChIP-
Seq(GSE36672)/Homer 19.74 

Family C Hyper 3 
TCAGACGTAGTCTCGAAGTCTCAGGC
ATCTAGCTAGAGCT USF2 

Usf2(bHLH)/C2C12-Usf2-
ChIP-Seq(GSE36030)/Homer 16.78 

Family C Hyper 4 
GTACGACTCGTACTGATCGACGTAGC
TACAGTCTGATACG MEF2A 

Mef2a(MADS)/HL1-
Mef2a.biotin-ChIP-
Seq(GSE21529)/Homer 16.38 

Family C Hyper 5 
CATGAGTCGACTCGTACGATGCATGA
CTGCATCGATCTAGCATGTGAC MEF2B 

Mef2b(MADS)/HEK293-
Mef2b.V5-ChIP-
Seq(GSE67450)/Homer 13.09 

Family C Hyper 6 
GATCTCGAAGTCCGATCGATAGTCAT
GCACTGATCGGACT ELK1 

Elk1(ETS)/Hela-Elk1-ChIP-
Seq(GSE31477)/Homer 11.99 

Family C Hyper 7 
GATCCTGAAGTCCGATCGATGATCAG
TCACTGATCGAGCT ELK4 

Elk4(ETS)/Hela-Elk4-ChIP-
Seq(GSE31477)/Homer 11.53 

Family C Hyper 8 
ATGCGACTAGCTCTAGCGTACTAGCG
ATCTAGATCGGATC NKX2-2 

Nkx2.2(Homeobox)/NPC-
Nkx2.2-ChIP-
Seq(GSE61673)/Homer 8.19 

Family C Hyper 9 
CTGACAGTCTGAAGTCCTAGGACTAT
CGGTAC ARNT 

HIF-1b(HLH)/T47D-HIF1b-
ChIP-Seq(GSE59937)/Homer 7.79 

Family C Hyper 10 
TCGATCAGTCGAACTGCATGACGTAG
TCCTGA NR2F2 

COUP-TFII(NR)/Artia-Nr2f2-
ChIP-Seq(GSE46497)/Homer 7.47 

Family C Hyper 11 
GTACCTAGTCAGAGCTTAGCCGTAAT
GCTACGAGTCGTACGTCAAGTC SREBF2 

Srebp2(bHLH)/HepG2-Srebp2-
ChIP-Seq(GSE31477)/Homer 7.24 

Family C Hyper 12 
TCGAGCATATGCCTGAATGCTAGCAG
TCGTACTCGAAGCT SREBF1 

Srebp1a(bHLH)/HepG2-
Srebp1a-ChIP-
Seq(GSE31477)/Homer 6.65 

Family C Hyper 13 
TCAGTCAGTAGCAGTCCTGAAGTCCT
AGACGTACTGATCG MYC 

c-Myc(bHLH)/mES-cMyc-
ChIP-Seq(GSE11431)/Homer 6.46 

Family C Hyper 14 

CGTACTAGGACTGTCAGTCACGTAAG
TCCGTATCGATCGATCGACGTACTGA
CTAGGCTACGTATAGCCGTACGATCG
TA FOXA1 

FOXA1:AR(Forkhead,NR)/LN
CAP-AR-ChIP-
Seq(GSE27824)/Homer 6.26 

Family C Hyper 15 
TACGTCGATAGCAGTCCGTAAGTCCT
AGGCATACTGATCG MYCN 

n-Myc(bHLH)/mES-nMyc-
ChIP-Seq(GSE11431)/Homer 6.25 

Family C Hyper 16 
AGTCCTGAAGTCCGATCAGTGATCAT
GCACTGATCGGACT FLI1 

Fli1(ETS)/CD8-FLI-ChIP-
Seq(GSE20898)/Homer 5.95 

Family C Hyper 17 
CTGACTGATAGCGATCGCTAGTACAC
GTGATCTGCACGTA NKX2-5 

Nkx2.5(Homeobox)/HL1-
Nkx2.5.biotin-ChIP-
Seq(GSE21529)/Homer 5.92 

Family C Hyper 18 

CGTAACTGGTCAACGTATCGCAGTCT
AGTCAGCGTAACTGCGTAACGTCGTA
CTGATACG GATA3 

GATA3(Zf),DR4/iTreg-Gata3-
ChIP-Seq(GSE20898)/Homer 5.62 



 121 

Family C Hyper 19 

CTAGCATGACGTAGTCGCTAAGCTAG
TCAGCTTCAGCTGAACTGCATGGCAT
ATGCCGTA THRA 

THRa(NR)/C17.2-THRa-ChIP-
Seq(GSE38347)/Homer 5.48 

Family C Hyper 20 
TCGATGACAGTCCGTAAGTCCTAGAC
GTACTGACTGAGCTAGTCGCAT MAX 

Max(bHLH)/K562-Max-ChIP-
Seq(GSE31477)/Homer 5.30 

Family C Hyper 21 
ACGTCTAGAGCTACGTACGTCTGAAG
TCGACTAGCTCGTA FOXM1 

FOXM1(Forkhead)/MCF7-
FOXM1-ChIP-
Seq(GSE72977)/Homer 5.25 

Family C Hyper 22 
CTAGTACGAGTCCGTAAGTCACGTAG
TCTCGACGTATACG NKX2-1 

Nkx2.1(Homeobox)/LungAC-
Nkx2.1-ChIP-
Seq(GSE43252)/Homer 4.91 

Family C Hyper 23 

ATCGAGCTCTGACTAGACTGACGTGT
ACGCTAATGCACGTCTAGCATGTACG
CGATATGCCGTA NR1D1 

Reverb(NR),DR2/RAW-
Reverba.biotin-ChIP-
Seq(GSE45914)/Homer 4.91 

Family C Hyper 24 
CTGATCGACGTAATGCCGTACGTACG
ATCTAGTCAGGATC SOX15 

Sox15(HMG)/CPA-Sox15-
ChIP-Seq(GSE62909)/Homer 4.79 

Family C Hyper 25 
AGTCATCGGCATCTAGACTGTACGCG
ATTCAGCATGAGCTTAGCGATC GLI3 

GLI3(Zf)/Limb-GLI3-ChIP-
Chip(GSE11077)/Homer 4.62 

Family C Hyper 26 
CATGGTACCGTAAGTCCTAGACGTAC
TGGTACAGTCAGCT BHLH40E 

bHLHE40(bHLH)/HepG2-
BHLHE40-ChIP-
Seq(GSE31477)/Homer 4.61 

Shared Hypo 1 
TGCAAGCTACGTCTAGGATCCTAGGA
TCGTCACTGAAGTC CEBPB 

CEBP(bZIP)/ThioMac-CEBPb-
ChIP-Seq(GSE21512)/Homer 5.68 

Shared Hypo 2 
TGCAACTGTACGATGCAGTCGACTTC
GAATCG ZNF711 

ZNF711(Zf)/SHSY5Y-ZNF711-
ChIP-Seq(GSE20673)/Homer 5.41 

Shared Hypo 3 
CGTATGACTCGAAGTCCGTAATCGAT
GCACGTACTGAGTC TCF3 

E2A(bHLH)/proBcell-E2A-
ChIP-Seq(GSE21978)/Homer 5.19 

Shared Hyper 1 
GCTATCGACGTACTAGAGCTGTCAGT
CACGTAAGTCCGTA FOXA1 

FOXA1(Forkhead)/LNCAP-
FOXA1-ChIP-
Seq(GSE27824)/Homer 5.85 

Shared Hyper 2 
GCTATCGACGTACTAGAGCTGTCAGT
CACGTAAGTCCGTA FOXA1 

FOXA1(Forkhead)/MCF7-
FOXA1-ChIP-
Seq(GSE26831)/Homer 4.93 

Shared Hyper 3 
GCATGCATCTGAACGTCTGAACGTCG
TACGTACGTAAGTCGTCAGTCA FOXF1 

Foxf1(Forkhead)/Lung-Foxf1-
ChIP-Seq(GSE77951)/Homer 4.87 

 

(*) Significance of the motif is displayed in the last column as -log(p-value), calculated using the 

hypergeometric test through HOMER[58].  
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Appendinx 2.7 

Complete list of disease ontology terms from ToppGene for gene lists associated with 

either hypo or hypermethylated fibroblast DMR contexts 

DMR 
group 

DMR 
type Rank ID* Name Source p-value† FDR B&H‡ 

Shared Hyper 1 C0014544 Epilepsy 
DisGeNET 
BeFree 1.43E-06 1.04E-02 

Shared Hyper 2 C1535926 Neurodevelopmental Disorders 
DisGeNET 
Curated 3.30E-06 1.20E-02 

Shared Hyper 3 
20090507:
Lasky-Su Hyperactive-impulsive symptoms GWAS 8.74E-06 2.12E-02 

Shared Hyper 4 C0086743 Osteoarthrosis Deformans 
DisGeNET 
Curated 1.81E-05 2.25E-02 

Shared Hyper 5 C0029408 Degenerative polyarthritis 
DisGeNET 
Curated 1.81E-05 2.25E-02 

Shared Hyper 6 C3714756 Intellectual Disability 
DisGeNET 
BeFree 1.86E-05 2.25E-02 

Shared Hypo - - None - - - 

Family A Hyper 1 C0028754 Obesity 
DisGeNET 
BeFree 1.50E-09 1.65E-05 

Family A Hyper 2 C0014544 Epilepsy 
DisGeNET 
BeFree 3.12E-09 1.65E-05 

Family A Hyper 3 C0036341 Schizophrenia 
DisGeNET 
BeFree 3.86E-09 1.65E-05 

Family A Hyper 4 C0001418 Adenocarcinoma 
DisGeNET 
BeFree 6.22E-09 1.65E-05 

Family A Hyper 5 C0278878 Adult Glioblastoma 
DisGeNET 
BeFree 6.57E-09 1.65E-05 

Family A Hyper 6 C0280474 Childhood Glioblastoma 
DisGeNET 
BeFree 6.57E-09 1.65E-05 

Family A Hyper 7 C0027765 nervous system disorder 
DisGeNET 
BeFree 6.76E-09 1.65E-05 

Family A Hyper 8 C0338656 Impaired cognition 
DisGeNET 
BeFree 1.69E-08 3.62E-05 

Family A Hyper 9 C0007758 Cerebellar Ataxia 
DisGeNET 
BeFree 3.57E-08 6.78E-05 

Family A Hyper 10 C0699790 Colon Carcinoma 
DisGeNET 
BeFree 4.71E-08 8.05E-05 

Family A Hyper 11 C3714756 Intellectual Disability 
DisGeNET 
BeFree 5.29E-08 8.21E-05 

Family A Hyper 12 C1535926 Neurodevelopmental Disorders 
DisGeNET 
BeFree 8.99E-08 1.28E-04 

Family A Hyper 13 C0001973 Alcoholic Intoxication, Chronic 
DisGeNET 
Curated 9.80E-08 1.29E-04 

Family A Hyper 14 C0007102 Malignant tumor of colon 
DisGeNET 
BeFree 2.44E-07 2.98E-04 

Family A Hyper 15 C1510586 Autism Spectrum Disorders 
DisGeNET 
BeFree 3.50E-07 3.98E-04 

Family A Hyper 16 C0344315 Depressed mood 
DisGeNET 
BeFree 4.49E-07 4.80E-04 

Family A Hyper 17 C0009319 Colitis 
DisGeNET 
BeFree 5.35E-07 5.38E-04 

Family A Hyper 18 C0011570 Mental Depression 
DisGeNET 
BeFree 7.66E-07 7.27E-04 

Family A Hyper 19 C0007097 Carcinoma 
DisGeNET 
BeFree 9.95E-07 8.95E-04 

Family A Hyper 20 C0025286 Meningioma 
DisGeNET 
BeFree 1.09E-06 9.32E-04 
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Family A Hyper 21 C0011581 Depressive disorder 
DisGeNET 
BeFree 1.17E-06 9.48E-04 

Family A Hyper 22 C0013384 Dyskinetic syndrome 
DisGeNET 
BeFree 1.22E-06 9.48E-04 

Family A Hyper 23 C0011849 Diabetes Mellitus 
DisGeNET 
BeFree 1.95E-06 1.45E-03 

Family A Hyper 24 C0085281 Addictive Behavior 
DisGeNET 
BeFree 2.33E-06 1.66E-03 

Family A Hyper 25 C0002736 Amyotrophic Lateral Sclerosis 
DisGeNET 
BeFree 2.92E-06 2.00E-03 

Family A Hyper 26 C0557874 Global developmental delay 
DisGeNET 
BeFree 4.01E-06 2.61E-03 

Family A Hyper 27 C0007785 Cerebral Infarction 
DisGeNET 
BeFree 4.12E-06 2.61E-03 

Family A Hyper 28 C0011847 Diabetes 
DisGeNET 
BeFree 4.39E-06 2.68E-03 

Family A Hyper 29 C0042769 Virus Diseases 
DisGeNET 
BeFree 4.78E-06 2.82E-03 

Family A Hyper 30 C0524851 Neurodegenerative Disorders 
DisGeNET 
BeFree 6.01E-06 3.42E-03 

Family A Hyper 31 C0005586 Bipolar Disorder 
DisGeNET 
Curated 8.40E-06 4.47E-03 

Family A Hyper 32 C0006142 Malignant neoplasm of breast 
DisGeNET 
Curated 8.73E-06 4.47E-03 

Family A Hyper 33 C0026764 Multiple Myeloma 
DisGeNET 
BeFree 8.76E-06 4.47E-03 

Family A Hyper 34 C1458155 Mammary Neoplasms 
DisGeNET 
BeFree 8.89E-06 4.47E-03 

Family A Hyper 35 C0424605 Developmental delay (disorder) 
DisGeNET 
BeFree 9.50E-06 4.64E-03 

Family A Hyper 36 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 1.11E-05 5.25E-03 

Family A Hyper 37 C0010054 Coronary Arteriosclerosis 
DisGeNET 
BeFree 1.18E-05 5.45E-03 

Family A Hyper 38 C1389018 Atrioventricular Septal Defect 
DisGeNET 
BeFree 1.27E-05 5.69E-03 

Family A Hyper 39 C0271650 Impaired glucose tolerance 
DisGeNET 
BeFree 1.31E-05 5.75E-03 

Family A Hyper 40 C0278877 Adult Meningioma 
DisGeNET 
BeFree 1.43E-05 5.99E-03 

Family A Hyper 41 C0036341 Schizophrenia 
DisGeNET 
Curated 1.48E-05 5.99E-03 

Family A Hyper 42 C0026838 Muscle Spasticity 
DisGeNET 
BeFree 1.52E-05 5.99E-03 

Family A Hyper 43 C0006118 Brain Neoplasms 
DisGeNET 
BeFree 1.54E-05 5.99E-03 

Family A Hyper 44 C0025202 melanoma 
DisGeNET 
BeFree 1.54E-05 5.99E-03 

Family A Hyper 45 C0030193 Pain 
DisGeNET 
BeFree 1.64E-05 6.21E-03 

Family A Hyper 46 C1328504 Hormone refractory prostate cancer 
DisGeNET 
BeFree 1.78E-05 6.63E-03 

Family A Hyper 47 C0007959 Charcot-Marie-Tooth Disease 
DisGeNET 
BeFree 1.96E-05 7.12E-03 

Family A Hyper 48 C0010068 Coronary heart disease 
DisGeNET 
BeFree 2.11E-05 7.53E-03 

Family A Hyper 49 C1762616 Meningioma, benign, no ICD-O subtype 
DisGeNET 
BeFree 2.30E-05 8.01E-03 

Family A Hyper 50 C0004936 Mental disorders 
DisGeNET 
BeFree 2.41E-05 8.11E-03 

Family A Hyper 51 C0234958 Muscle degeneration 
DisGeNET 
BeFree 2.42E-05 8.11E-03 

Family A Hyper 52 C0025958 Microcephaly 
DisGeNET 
BeFree 2.65E-05 8.57E-03 
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Family A Hyper 53 C0019569 Hirschsprung Disease 
DisGeNET 
BeFree 2.77E-05 8.57E-03 

Family A Hyper 54 C1611743 Familial (FPAH) 
DisGeNET 
BeFree 2.85E-05 8.57E-03 

Family A Hyper 55 C3539878 Triple Negative Breast Neoplasms 
DisGeNET 
BeFree 2.89E-05 8.57E-03 

Family A Hyper 56 C0153690 Secondary malignant neoplasm of bone 
DisGeNET 
BeFree 3.15E-05 8.57E-03 

Family A Hyper 57 C0700095 Central neuroblastoma 
DisGeNET 
BeFree 3.24E-05 8.57E-03 

Family A Hyper 58 C4316881 Prescription Drug Abuse 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 59 C0013170 Drug habituation 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 60 C0013146 Drug abuse 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 61 C0013222 Drug Use Disorders 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 62 C0038580 Substance Dependence 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 63 C0038586 Substance Use Disorders 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 64 C0236969 Substance-Related Disorders 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 65 C1510472 Drug Dependence 
DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 66 C0029231 
Organic Mental Disorders, Substance-
Induced 

DisGeNET 
Curated 3.34E-05 8.57E-03 

Family A Hyper 67 C4086165 Childhood Neuroblastoma 
DisGeNET 
BeFree 3.36E-05 8.57E-03 

Family A Hyper 68 C0027819 Neuroblastoma 
DisGeNET 
BeFree 3.45E-05 8.67E-03 

Family A Hyper 69 C0019348 Herpes Simplex Infections 
DisGeNET 
BeFree 3.66E-05 9.06E-03 

Family A Hyper 70 C0023418 leukemia 
DisGeNET 
BeFree 3.75E-05 9.15E-03 

Family A Hyper 71 C0740858 Substance abuse problem 
DisGeNET 
Curated 4.02E-05 9.67E-03 

Family A Hyper 72 C0030567 Parkinson Disease 
DisGeNET 
BeFree 4.08E-05 9.67E-03 

Family A Hyper 73 C1561643 Chronic Kidney Diseases 
DisGeNET 
BeFree 4.79E-05 1.12E-02 

Family A Hyper 74 C0004352 Autistic Disorder 
DisGeNET 
BeFree 4.99E-05 1.15E-02 

Family A Hyper 75 C0153676 Secondary malignant neoplasm of lung 
DisGeNET 
BeFree 5.04E-05 1.15E-02 

Family A Hyper 76 C0020429 Hyperalgesia 
DisGeNET 
BeFree 5.15E-05 1.16E-02 

Family A Hyper 77 C0020538 Hypertensive disease 
DisGeNET 
BeFree 5.49E-05 1.22E-02 

Family A Hyper 78 C0598766 Leukemogenesis 
DisGeNET 
BeFree 5.68E-05 1.24E-02 

Family A Hyper 79 C0017638 Glioma 
DisGeNET 
BeFree 5.77E-05 1.25E-02 

Family A Hyper 80 C0008073 Developmental Disabilities 
DisGeNET 
BeFree 6.13E-05 1.30E-02 

Family A Hyper 81 C0003873 Rheumatoid Arthritis 
DisGeNET 
BeFree 6.14E-05 1.30E-02 

Family A Hyper 82 C0011860 
Diabetes Mellitus, Non-Insulin-
Dependent 

DisGeNET 
BeFree 6.35E-05 1.32E-02 

Family A Hyper 83 C0036572 Seizures 
DisGeNET 
BeFree 6.93E-05 1.42E-02 

Family A Hyper 84 C0376634 Craniofacial Abnormalities 
DisGeNET 
Curated 7.00E-05 1.42E-02 
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Family A Hyper 85 C0019340 Herpes NOS 
DisGeNET 
BeFree 7.09E-05 1.43E-02 

Family A Hyper 86 C0020179 Huntington Disease 
DisGeNET 
BeFree 8.73E-05 1.73E-02 

Family A Hyper 87 C1332977 Childhood Leukemia 
DisGeNET 
BeFree 8.99E-05 1.77E-02 

Family A Hyper 88 C4722518 Triple-Negative Breast Carcinoma 
DisGeNET 
BeFree 9.11E-05 1.77E-02 

Family A Hyper 89 C0040822 Tremor 
DisGeNET 
BeFree 9.26E-05 1.78E-02 

Family A Hyper 90 C0004134 Ataxia 
DisGeNET 
BeFree 1.10E-04 2.09E-02 

Family A Hyper 91 C0233514 Abnormal behavior 
DisGeNET 
BeFree 1.16E-04 2.16E-02 

Family A Hyper 92 C0598589 Inherited neuropathies 
DisGeNET 
BeFree 1.17E-04 2.16E-02 

Family A Hyper 93 C0009241 Cognition Disorders 
DisGeNET 
BeFree 1.19E-04 2.19E-02 

Family A Hyper 94 C0037763 Spasm 
DisGeNET 
BeFree 1.27E-04 2.28E-02 

Family A Hyper 95 C0235974 Pancreatic carcinoma 
DisGeNET 
BeFree 1.27E-04 2.28E-02 

Family A Hyper 96 C0014175 Endometriosis 
DisGeNET 
BeFree 1.30E-04 2.28E-02 

Family A Hyper 97 C0278595 Adult Fibrosarcoma 
DisGeNET 
BeFree 1.30E-04 2.28E-02 

Family A Hyper 98 C0025149 Medulloblastoma 
DisGeNET 
BeFree 1.38E-04 2.41E-02 

Family A Hyper 99 C3266262 Multiple Chronic Conditions 
DisGeNET 
BeFree 1.52E-04 2.62E-02 

Family A Hyper 100 C0023467 Leukemia, Myelocytic, Acute 
DisGeNET 
BeFree 1.53E-04 2.62E-02 

Family A Hyper 101 C2677180 Congenital microcephaly 
DisGeNET 
BeFree 1.59E-04 2.68E-02 

Family A Hyper 102 C0858600 Taste sweet 
DisGeNET 
BeFree 1.60E-04 2.68E-02 

Family A Hyper 103 C0026650 Movement Disorders 
DisGeNET 
BeFree 1.65E-04 2.69E-02 

Family A Hyper 104 C0027868 Neuromuscular Diseases 
DisGeNET 
BeFree 1.66E-04 2.69E-02 

Family A Hyper 105 C0029408 Degenerative polyarthritis 
DisGeNET 
BeFree 1.67E-04 2.69E-02 

Family A Hyper 106 C1956346 Coronary Artery Disease 
DisGeNET 
BeFree 1.67E-04 2.69E-02 

Family A Hyper 107 C0023449 Acute lymphocytic leukemia 
DisGeNET 
BeFree 1.69E-04 2.70E-02 

Family A Hyper 108 C0346647 Malignant neoplasm of pancreas 
DisGeNET 
BeFree 1.71E-04 2.70E-02 

Family A Hyper 109 C0042063 Urogenital Abnormalities 
DisGeNET 
BeFree 1.80E-04 2.82E-02 

Family A Hyper 110 C0014544 Epilepsy 
DisGeNET 
Curated 1.81E-04 2.82E-02 

Family A Hyper 111 C0023434 Chronic Lymphocytic Leukemia 
DisGeNET 
BeFree 1.84E-04 2.84E-02 

Family A Hyper 112 C0016057 Fibrosarcoma 
DisGeNET 
BeFree 1.95E-04 2.97E-02 

Family A Hyper 113 C0085220 Cerebral Amyloid Angiopathy 
DisGeNET 
BeFree 2.09E-04 3.16E-02 

Family A Hyper 114 C0280222 stage, pancreatic cancer 
DisGeNET 
BeFree 2.15E-04 3.17E-02 

Family A Hyper 115 C1842937 AURAL ATRESIA, CONGENITAL 
DisGeNET 
BeFree 2.15E-04 3.17E-02 

Family A Hyper 116 C0004352 Autistic Disorder 
DisGeNET 
Curated 2.15E-04 3.17E-02 
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Family A Hyper 117 C0086438 Hypogammaglobulinemia 
DisGeNET 
BeFree 2.22E-04 3.25E-02 

Family A Hyper 118 C0027794 Neural Tube Defects 
DisGeNET 
BeFree 2.27E-04 3.28E-02 

Family A Hyper 119 C0162809 Kallmann Syndrome 
DisGeNET 
BeFree 2.32E-04 3.30E-02 

Family A Hyper 120 cv: Progressive myoclonus epilepsy 
Clinical 
Variations 2.32E-04 3.30E-02 

Family A Hyper 121 C0027819 Neuroblastoma 
DisGeNET 
Curated 2.57E-04 3.63E-02 

Family A Hyper 122 C0917981 Progressive Muscular Atrophy 
DisGeNET 
BeFree 2.77E-04 3.88E-02 

Family A Hyper 123 C0001973 Alcoholic Intoxication, Chronic 
DisGeNET 
BeFree 2.90E-04 4.03E-02 

Family A Hyper 124 C0021841 Intestinal Neoplasms 
DisGeNET 
BeFree 3.00E-04 4.13E-02 

Family A Hyper 125 C0021390 Inflammatory Bowel Diseases 
DisGeNET 
BeFree 3.02E-04 4.13E-02 

Family A Hyper 126 C0021141 Inappropriate ADH Syndrome 
DisGeNET 
BeFree 3.31E-04 4.35E-02 

Family A Hyper 127 C0017178 Gastrointestinal Diseases 
DisGeNET 
Curated 3.31E-04 4.35E-02 

Family A Hyper 128 C0559031 Functional Gastrointestinal Disorders 
DisGeNET 
Curated 3.31E-04 4.35E-02 

Family A Hyper 129 C1565321 Cholera Infantum 
DisGeNET 
Curated 3.31E-04 4.35E-02 

Family A Hyper 130 C0023440 Acute Erythroblastic Leukemia 
DisGeNET 
BeFree 3.31E-04 4.35E-02 

Family A Hyper 131 C0023467 Leukemia, Myelocytic, Acute 
DisGeNET 
Curated 3.40E-04 4.44E-02 

Family A Hypo 1 C0004352 Autistic Disorder 
DisGeNET 
BeFree 6.27E-06 3.62E-02 

Family A Hypo 2 C3854173 Pre-renal acute kidney injury 
DisGeNET 
BeFree 1.30E-05 3.62E-02 

Family A Hypo 3 C0011581 Depressive disorder 
DisGeNET 
BeFree 1.31E-05 3.62E-02 

Family A Hypo 4 C1510586 Autism Spectrum Disorders 
DisGeNET 
BeFree 1.57E-05 3.62E-02 

Family A Hypo 5 C0344315 Depressed mood 
DisGeNET 
BeFree 1.72E-05 3.62E-02 

Family A Hypo 6 C0011570 Mental Depression 
DisGeNET 
BeFree 1.75E-05 3.62E-02 

Family C Hyper 1 C0036341 Schizophrenia 
DisGeNET 
BeFree 1.16E-11 1.89E-07 

Family C Hyper 2 C1510586 Autism Spectrum Disorders 
DisGeNET 
BeFree 3.05E-09 1.86E-05 

Family C Hyper 3 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 3.42E-09 1.86E-05 

Family C Hyper 4 C0011581 Depressive disorder 
DisGeNET 
BeFree 1.39E-08 5.67E-05 

Family C Hyper 5 C0557874 Global developmental delay 
DisGeNET 
BeFree 2.01E-08 6.54E-05 

Family C Hyper 6 C0036341 Schizophrenia 
DisGeNET 
Curated 2.62E-08 7.12E-05 

Family C Hyper 7 C0424295 Hyperactive behavior 
DisGeNET 
BeFree 5.03E-08 1.14E-04 

Family C Hyper 8 C0344315 Depressed mood 
DisGeNET 
BeFree 5.59E-08 1.14E-04 

Family C Hyper 9 C0011570 Mental Depression 
DisGeNET 
BeFree 1.12E-07 1.83E-04 

Family C Hyper 10 C0424605 Developmental delay (disorder) 
DisGeNET 
BeFree 1.12E-07 1.83E-04 

Family C Hyper 11 C0338656 Impaired cognition 
DisGeNET 
BeFree 1.65E-07 2.45E-04 
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Family C Hyper 12 C0004352 Autistic Disorder 
DisGeNET 
BeFree 2.08E-07 2.80E-04 

Family C Hyper 13 C0221357 Brachydactyly 
DisGeNET 
BeFree 2.23E-07 2.80E-04 

Family C Hyper 14 C0020456 Hyperglycemia 
DisGeNET 
BeFree 2.64E-07 3.08E-04 

Family C Hyper 15 C0376634 Craniofacial Abnormalities 
DisGeNET 
Curated 4.63E-07 5.03E-04 

Family C Hyper 16 C0028754 Obesity 
DisGeNET 
BeFree 1.14E-06 1.16E-03 

Family C Hyper 17 C0524528 Pervasive Development Disorder 
DisGeNET 
BeFree 1.77E-06 1.70E-03 

Family C Hyper 18 C0030193 Pain 
DisGeNET 
BeFree 2.74E-06 2.47E-03 

Family C Hyper 19 C1269683 Major Depressive Disorder 
DisGeNET 
BeFree 2.88E-06 2.47E-03 

Family C Hyper 20 C0030567 Parkinson Disease 
DisGeNET 
BeFree 3.99E-06 3.25E-03 

Family C Hyper 21 C0018798 Congenital Heart Defects 
DisGeNET 
BeFree 4.93E-06 3.83E-03 

Family C Hyper 22 C0036572 Seizures 
DisGeNET 
BeFree 7.94E-06 5.84E-03 

Family C Hyper 23 C0041696 Unipolar Depression 
DisGeNET 
BeFree 8.24E-06 5.84E-03 

Family C Hyper 24 C0003467 Anxiety 
DisGeNET 
BeFree 9.23E-06 6.27E-03 

Family C Hyper 25 C0302142 Deformity 
DisGeNET 
BeFree 1.03E-05 6.72E-03 

Family C Hyper 26 C0020676 Hypothyroidism 
DisGeNET 
BeFree 1.08E-05 6.75E-03 

Family C Hyper 27 C0011269 Dementia, Vascular 
DisGeNET 
BeFree 1.12E-05 6.75E-03 

Family C Hyper 28 C0033975 Psychotic Disorders 
DisGeNET 
BeFree 1.16E-05 6.75E-03 

Family C Hyper 29 C0025286 Meningioma 
DisGeNET 
BeFree 1.23E-05 6.90E-03 

Family C Hyper 30 C1535926 Neurodevelopmental Disorders 
DisGeNET 
BeFree 1.47E-05 8.01E-03 

Family C Hyper 31 C0349204 Nonorganic psychosis 
DisGeNET 
BeFree 1.53E-05 8.03E-03 

Family C Hyper 32 C0027765 nervous system disorder 
DisGeNET 
BeFree 1.64E-05 8.37E-03 

Family C Hyper 33 C0008073 Developmental Disabilities 
DisGeNET 
BeFree 1.81E-05 8.96E-03 

Family C Hyper 34 C0233514 Abnormal behavior 
DisGeNET 
BeFree 2.42E-05 1.16E-02 

Family C Hyper 35 C0003469 Anxiety Disorders 
DisGeNET 
BeFree 2.48E-05 1.16E-02 

Family C Hyper 36 C0001973 Alcoholic Intoxication, Chronic 
DisGeNET 
Curated 2.67E-05 1.17E-02 

Family C Hyper 37 C3714756 Intellectual Disability 
DisGeNET 
BeFree 2.72E-05 1.17E-02 

Family C Hyper 38 C0011860 
Diabetes Mellitus, Non-Insulin-
Dependent 

DisGeNET 
BeFree 2.73E-05 1.17E-02 

Family C Hyper 39 C1321551 Shprintzen-Goldberg syndrome 
DisGeNET 
BeFree 2.82E-05 1.18E-02 

Family C Hyper 40 C0236733 Amphetamine-Related Disorders 
DisGeNET 
Curated 3.35E-05 1.30E-02 

Family C Hyper 41 C0236807 Amphetamine Abuse 
DisGeNET 
Curated 3.35E-05 1.30E-02 

Family C Hyper 42 C0236804 Amphetamine Addiction 
DisGeNET 
Curated 3.35E-05 1.30E-02 

Family C Hyper 43 C0278878 Adult Glioblastoma 
DisGeNET 
BeFree 3.66E-05 1.36E-02 
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Family C Hyper 44 C0280474 Childhood Glioblastoma 
DisGeNET 
BeFree 3.66E-05 1.36E-02 

Family C Hyper 45 C0877015 Pelvic Organ Prolapse 
DisGeNET 
BeFree 3.78E-05 1.37E-02 

Family C Hyper 46 C3714796 Isolated somatotropin deficiency 
DisGeNET 
BeFree 4.08E-05 1.45E-02 

Family C Hyper 47 C0751265 Learning Disabilities 
DisGeNET 
BeFree 4.23E-05 1.47E-02 

Family C Hyper 48 C1535926 Neurodevelopmental Disorders 
DisGeNET 
Curated 6.28E-05 2.13E-02 

Family C Hyper 49 C0014544 Epilepsy 
DisGeNET 
Curated 6.60E-05 2.15E-02 

Family C Hyper 50 C0345967 Malignant mesothelioma 
DisGeNET 
Curated 6.60E-05 2.15E-02 

Family C Hyper 51 C0004936 Mental disorders 
DisGeNET 
BeFree 6.96E-05 2.22E-02 

Family C Hyper 52 C0026837 Muscle Rigidity 
DisGeNET 
BeFree 7.47E-05 2.34E-02 

Family C Hyper 53 C0007222 Cardiovascular Diseases 
DisGeNET 
BeFree 7.74E-05 2.38E-02 

Family C Hyper 54 C0027819 Neuroblastoma 
DisGeNET 
BeFree 7.96E-05 2.40E-02 

Family C Hyper 55 C1611743 Familial (FPAH) 
DisGeNET 
BeFree 8.56E-05 2.51E-02 

Family C Hyper 56 C0020429 Hyperalgesia 
DisGeNET 
BeFree 8.64E-05 2.51E-02 

Family C Hyper 57 C0600520 Left Ventricle Remodeling 
DisGeNET 
Curated 9.81E-05 2.76E-02 

Family C Hyper 58 C0600519 Ventricular Remodeling 
DisGeNET 
Curated 9.81E-05 2.76E-02 

Family C Hyper 59 C0424296 Social disinhibition 
DisGeNET 
BeFree 1.03E-04 2.81E-02 

Family C Hyper 60 C0005586 Bipolar Disorder 
DisGeNET 
Curated 1.04E-04 2.81E-02 

Family C Hyper 61 C0700095 Central neuroblastoma 
DisGeNET 
BeFree 1.06E-04 2.84E-02 

Family C Hyper 62 C4086165 Childhood Neuroblastoma 
DisGeNET 
BeFree 1.10E-04 2.89E-02 

Family C Hyper 63 C0009241 Cognition Disorders 
DisGeNET 
BeFree 1.19E-04 3.08E-02 

Family C Hyper 64 C0014544 Epilepsy 
DisGeNET 
BeFree 1.23E-04 3.12E-02 

Family C Hyper 65 C0524620 Metabolic Syndrome X 
DisGeNET 
BeFree 1.28E-04 3.13E-02 

Family C Hyper 66 C0020538 Hypertensive disease 
DisGeNET 
BeFree 1.28E-04 3.13E-02 

Family C Hyper 67 C0221271 Elastosis perforans serpiginosa 
DisGeNET 
BeFree 1.29E-04 3.13E-02 

Family C Hyper 68 C1565489 Renal Insufficiency 
DisGeNET 
BeFree 1.46E-04 3.49E-02 

Family C Hyper 69 C0233794 Memory impairment 
DisGeNET 
BeFree 1.54E-04 3.60E-02 

Family C Hyper 70 C0027051 Myocardial Infarction 
DisGeNET 
BeFree 1.55E-04 3.60E-02 

Family C Hyper 71 C0001973 Alcoholic Intoxication, Chronic 
DisGeNET 
BeFree 1.76E-04 4.03E-02 

Family C Hyper 72 C0006012 Borderline Personality Disorder 
DisGeNET 
BeFree 2.04E-04 4.61E-02 

Family C Hyper 73 C0026650 Movement Disorders 
DisGeNET 
BeFree 2.17E-04 4.85E-02 

Family C Hypo 1 C2711227 Steatohepatitis 
DisGeNET 
BeFree 3.96E-06 2.84E-02 

Family C Hypo 2 C0334583 Pilocytic Astrocytoma 
DisGeNET 
BeFree 4.68E-06 2.84E-02 
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Family C Hypo 3 C0027765 nervous system disorder 
DisGeNET 
BeFree 8.90E-06 2.84E-02 

Family C Hypo 4 C0023448 Lymphoid leukemia 
DisGeNET 
BeFree 1.82E-05 2.84E-02 

Family C Hypo 5 C0149931 Migraine Disorders 
DisGeNET 
BeFree 1.98E-05 2.84E-02 

Family C Hypo 6 C0013384 Dyskinetic syndrome 
DisGeNET 
BeFree 2.03E-05 2.84E-02 

Family C Hypo 7 C1332977 Childhood Leukemia 
DisGeNET 
BeFree 2.15E-05 2.84E-02 

Family C Hypo 8 C0740858 Substance abuse problem 
DisGeNET 
BeFree 2.30E-05 2.84E-02 

Family C Hypo 9 C0023418 leukemia 
DisGeNET 
BeFree 3.37E-05 2.84E-02 

Family C Hypo 10 C0271650 Impaired glucose tolerance 
DisGeNET 
BeFree 4.57E-05 2.84E-02 

Family C Hypo 11 C0338656 Impaired cognition 
DisGeNET 
BeFree 4.91E-05 2.84E-02 

Family C Hypo 12 C2267227 Bulimia Nervosa 
DisGeNET 
BeFree 5.14E-05 2.84E-02 

Family C Hypo 13 C3642347 Basal-Like Breast Carcinoma 
DisGeNET 
BeFree 5.59E-05 2.84E-02 

Family C Hypo 14 C0270824 Visual seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 15 C0270846 Epileptic drop attack 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 16 C0234533 Generalized seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 17 C0234535 Clonic Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 18 C0751056 Non-epileptic convulsion 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 19 C0751123 Atonic Absence Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 20 C0751110 Single Seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 21 C0751494 Convulsive Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 22 C0751496 Seizures, Sensory 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 23 C0149958 Complex partial seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 24 C3495874 Nonepileptic Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 25 C4505436 Generalized Absence Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 26 C0422855 Vertiginous seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 27 C0422854 Gustatory seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 28 C0422850 Seizures, Somatosensory 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 29 C0422853 Olfactory seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 30 C0422852 Seizures, Auditory 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 31 C0022333 Jacksonian Seizure 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 32 C4317109 Epileptic Seizures 
DisGeNET 
Curated 7.13E-05 2.84E-02 

Family C Hypo 33 C0018801 Heart failure 
DisGeNET 
BeFree 7.39E-05 2.85E-02 

Family C Hypo 34 C4316903 Absence Seizures 
DisGeNET 
Curated 8.24E-05 2.92E-02 
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Family C Hypo 35 C4048158 Convulsions 
DisGeNET 
Curated 8.24E-05 2.92E-02 

Family C Hypo 36 C0270844 Tonic Seizures 
DisGeNET 
Curated 8.24E-05 2.92E-02 

Family C Hypo 37 C0085207 Gestational Diabetes 
DisGeNET 
BeFree 8.62E-05 2.97E-02 

Family C Hypo 38 C0015695 Fatty Liver 
DisGeNET 
BeFree 9.11E-05 3.06E-02 

Family C Hypo 39 C0279583 
Childhood T Acute Lymphoblastic 
Leukemia 

DisGeNET 
BeFree 9.37E-05 3.06E-02 

Family C Hypo 40 C0005586 Bipolar Disorder 
DisGeNET 
Curated 1.01E-04 3.16E-02 

Family C Hypo 41 C0279565 Invasive Lobular Breast Carcinoma 
DisGeNET 
BeFree 1.04E-04 3.16E-02 

Family C Hypo 42 C0751495 Seizures, Focal 
DisGeNET 
Curated 1.09E-04 3.16E-02 

Family C Hypo 43 C0494475 Tonic - clonic seizures 
DisGeNET 
Curated 1.09E-04 3.16E-02 

Family C Hypo 44 C4317123 Myoclonic Seizures 
DisGeNET 
Curated 1.09E-04 3.16E-02 

Family C Hypo 45 C0265509 Congenital anomaly of skeletal bone 
DisGeNET 
BeFree 1.21E-04 3.20E-02 

Family C Hypo 46 C0853892 Catabolic state 
DisGeNET 
BeFree 1.21E-04 3.20E-02 

Family C Hypo 47 C0677886 Epithelial ovarian cancer 
DisGeNET 
BeFree 1.22E-04 3.20E-02 

Family C Hypo 48 C0038443 Stress, Psychological 
DisGeNET 
BeFree 1.22E-04 3.20E-02 

Family C Hypo 49 C0206658 Smooth Muscle Tumor 
DisGeNET 
BeFree 1.23E-04 3.20E-02 

Family C Hypo 50 C4288891 Infant T Acute Lymphoblastic Leukemia 
DisGeNET 
BeFree 1.48E-04 3.78E-02 

Family C Hypo 51 C0005699 Blast Phase 
DisGeNET 
BeFree 1.53E-04 3.81E-02 

Family C Hypo 52 C0019569 Hirschsprung Disease 
DisGeNET 
BeFree 1.66E-04 4.00E-02 

Family C Hypo 53 C0007134 Renal Cell Carcinoma 
DisGeNET 
BeFree 1.67E-04 4.00E-02 

Family C Hypo 54 C0011581 Depressive disorder 
DisGeNET 
BeFree 1.84E-04 4.35E-02 

Family C Hypo 55 C0030567 Parkinson Disease 
DisGeNET 
BeFree 1.95E-04 4.51E-02 

Family C Hypo 56 C0024301 Lymphoma, Follicular 
DisGeNET 
BeFree 2.09E-04 4.71E-02 

Family C Hypo 57 C0035344 Retinopathy of Prematurity 
DisGeNET 
BeFree 2.14E-04 4.71E-02 

Family C Hypo 58 C2062441 Influenza A 
DisGeNET 
BeFree 2.14E-04 4.71E-02 

Family C Hypo 59 C0001973 Alcoholic Intoxication, Chronic 
DisGeNET 
BeFree 2.31E-04 4.92E-02 

Family C Hypo 60 C0018802 Congestive heart failure 
DisGeNET 
BeFree 2.32E-04 4.92E-02 

 

(*) IDs are unique to the associated database. (†) P-values were calculated using the 

hypergeometric test. (‡) FDR B&H: False discovery rates were calculated by the Benjamini and 

Hochberg method[127]. 
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Appendix 2.8 

OR statistics for iPSC DMR and histone modifications 

DMR Group DMR Type Histone Mark a* b* c* d* OR† log(OR) p-value‡ 

Shared Hyper H3K27Ac 326 1015793 1126 3408263 9.71E-01 -1.26E-02 6.62E-01 

Shared Hyper H3K27me3 532 1238261 920 3185589 1.49E+00 1.73E-01 1.02E-12 

Shared Hyper H3K36me3 366 1355818 1086 3068198 7.63E-01 -1.18E-01 5.12E-06 

Shared Hyper H3K4me1 445 899637 1007 3524300 1.73E+00 2.38E-01 2.08E-20 

Shared Hyper H3K4me3 328 951104 1124 3472950 1.07E+00 2.76E-02 3.07E-01 

Shared Hyper H3K9me3 308 747719 1144 3676355 1.32E+00 1.22E-01 2.19E-05 

Shared Hypo H3K27Ac 116 1016003 890 3408709 4.37E-01 -3.59E-01 1.95E-20 

Shared Hypo H3K27me3 361 1238432 645 3186035 1.44E+00 1.58E-01 5.85E-08 

Shared Hypo H3K36me3 235 1355949 771 3068644 6.90E-01 -1.61E-01 3.27E-07 

Shared Hypo H3K4me1 169 899913 837 3524746 7.91E-01 -1.02E-01 4.78E-03 

Shared Hypo H3K4me3 160 951272 846 3473396 6.91E-01 -1.61E-01 9.73E-06 

Shared Hypo H3K9me3 249 747778 757 3676801 1.62E+00 2.09E-01 2.96E-10 

Family A Hyper H3K27Ac 1946 912786 9406 3009559 6.82E-01 -1.66E-01 2.13E-57 

Family A Hyper H3K27me3 3613 1099621 7739 2821057 1.20E+00 7.84E-02 1.01E-18 

Family A Hyper H3K36me3 2645 1211411 8707 2710235 6.80E-01 -1.68E-01 6.64E-72 

Family A Hyper H3K4me1 2502 801355 8850 3120434 1.10E+00 4.17E-02 2.71E-05 

Family A Hyper H3K4me3 1931 860760 9421 3061600 7.29E-01 -1.37E-01 5.58E-39 

Family A Hyper H3K9me3 2626 661875 8726 3259790 1.48E+00 1.71E-01 6.65E-65 

Family A Hypo H3K27Ac 1540 913192 5963 3013408 8.52E-01 -6.94E-02 1.47E-08 

Family A Hypo H3K27me3 2781 1100453 4722 2824906 1.51E+00 1.80E-01 3.08E-64 

Family A Hypo H3K36me3 1871 1212185 5632 2714084 7.44E-01 -1.29E-01 8.57E-30 

Family A Hypo H3K4me1 1896 801961 5607 3124283 1.32E+00 1.20E-01 4.61E-24 

Family A Hypo H3K4me3 1654 861037 5849 3065449 1.01E+00 2.93E-03 8.12E-01 

Family A Hypo H3K9me3 1475 663026 6028 3263639 1.20E+00 8.08E-02 3.37E-10 

Family C Hyper H3K27Ac 1405 805630 7602 2623702 6.02E-01 -2.20E-01 4.48E-76 

Family C Hyper H3K27me3 3151 963853 5856 2463733 1.38E+00 1.38E-01 1.75E-45 

Family C Hyper H3K36me3 2013 1058107 6994 2370617 6.45E-01 -1.91E-01 2.21E-72 

Family C Hyper H3K4me1 1701 707970 7306 2721066 8.95E-01 -4.83E-02 3.20E-05 

Family C Hyper H3K4me3 1362 763549 7645 2665826 6.22E-01 -2.06E-01 7.55E-65 

Family C Hyper H3K9me3 1696 574902 7311 2854139 1.15E+00 6.13E-02 2.53E-07 

Family C Hypo H3K27Ac 1231 805804 5425 2626053 7.39E-01 -1.31E-01 8.45E-23 

Family C Hypo H3K27me3 2421 964583 4235 2466084 1.46E+00 1.65E-01 3.34E-48 

Family C Hypo H3K36me3 1586 1058534 5070 2372968 7.01E-01 -1.54E-01 8.19E-37 

Family C Hypo H3K4me1 1391 708280 5265 2723417 1.02E+00 6.84E-03 6.06E-01 

Family C Hypo H3K4me3 1352 763559 5304 2668177 8.91E-01 -5.03E-02 1.33E-04 

Family C Hypo H3K9me3 1249 575349 5407 2856490 1.15E+00 5.95E-02 1.68E-05 
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(*) a, b, c, and d values are the contingency parameters used to calculate OR. (†) OR was 

calculated as described in the Methods section. (‡) P-values were calculated by Fisher’s exact 

test. 

Appendix 2.9 

Complete list of disease ontology terms from ToppGene for gene lists associated with 

fibroblast and iPSC DMRs 

DMR 
group 

DMR type 
(Fibroblast to 
iPSC) Rank ID* Name Source p-value† 

FDR 
B&H‡ 

Family C Hyper to Hypo 1 C0014544 Epilepsy 
DisGeNET 
BeFree 2.22E-07 9.66E-04 

Family C Hyper to Hypo 2 C0424605 Developmental delay (disorder) 
DisGeNET 
BeFree 2.75E-07 9.66E-04 

Family C Hyper to Hypo 3 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 4.71E-07 1.10E-03 

Family C Hyper to Hypo 4 C0008073 Developmental Disabilities 
DisGeNET 
BeFree 1.23E-06 2.17E-03 

Family C Hyper to Hypo 5 C0557874 Global developmental delay 
DisGeNET 
BeFree 3.22E-06 4.53E-03 

Family C Hyper to Hypo 6 C0221357 Brachydactyly 
DisGeNET 
BeFree 4.3E-06 5.04E-03 

Family C Hyper to Hypo 7 C0023418 leukemia 
DisGeNET 
BeFree 7.58E-06 7.61E-03 

Family C Hyper to Hypo 8 C0598766 Leukemogenesis 
DisGeNET 
BeFree 2.29E-05 1.89E-02 

Family C Hyper to Hypo 9 C3714756 Intellectual Disability 
DisGeNET 
BeFree 2.47E-05 1.89E-02 

Family C Hyper to Hypo 10 C4021790 
Abnormality of the skeletal 
system 

DisGeNET 
BeFree 2.69E-05 1.89E-02 

Family C Hyper to Hypo 11 C0524528 
Pervasive Development 
Disorder 

DisGeNET 
BeFree 3.7E-05 2.25E-02 

Family C Hyper to Hypo 12 C0036572 Seizures 
DisGeNET 
BeFree 4.13E-05 2.25E-02 

Family C Hyper to Hypo 13 C1332977 Childhood Leukemia 
DisGeNET 
BeFree 4.15E-05 2.25E-02 

Family C Hyper to Hypo 14 C0221356 Brachycephaly 
DisGeNET 
BeFree 5.11E-05 2.25E-02 

Family C Hyper to Hypo 15 C0410179 
Ullrich congenital muscular 
dystrophy 1 

DisGeNET 
Curated 5.11E-05 2.25E-02 

Family C Hyper to Hypo 16 C1834674 BETHLEM MYOPATHY 1 
DisGeNET 
Curated 5.11E-05 2.25E-02 

Family C Hyper to Hypo 17 C0240340 Microdontia (disorder) 
DisGeNET 
BeFree 8.81E-05 3.65E-02 

Family C Hyper to Hypo 18 C0079218 Fibromatosis, Aggressive 
DisGeNET 
BeFree 9.9E-05 3.87E-02 

Family C Hyper to Hypo 19 C0008029 Cherubism 
DisGeNET 
BeFree 0.000106 3.92E-02 

Family C Hyper to Hypo 20 C0025958 Microcephaly 
DisGeNET 
BeFree 0.000129 4.53E-02 

Family C Hyper to Hypo 21 C0265354 CHARGE Syndrome 
DisGeNET 
BeFree 0.000141 4.72E-02 

Family C Hyper to Hyper 1 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 8.69E-09 5.12E-05 

Family C Hyper to Hyper 2 C0000846 Agenesis 
DisGeNET 
BeFree 2.94E-06 8.68E-03 
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Family C Hypo to Hyper 1 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 1.02E-05 3.06E-02 

Family C Hypo to Hyper 2 C0424605 Developmental delay (disorder) 
DisGeNET 
BeFree 1.28E-05 3.06E-02 

Family C Hypo to Hyper 3 C0013080 Down Syndrome 
DisGeNET 
BeFree 2.67E-05 4.26E-02 

Family C Hypo to Hyper 4 C1449563 
Cardiomyopathy, Familial 
Idiopathic 

DisGeNET 
BeFree 4.51E-05 4.77E-02 

Family C Hypo to Hyper 5 C0003873 Rheumatoid Arthritis 
DisGeNET 
Curated 5.67E-05 4.77E-02 

Family C Hypo to Hyper 6 C0557874 Global developmental delay 
DisGeNET 
BeFree 5.98E-05 4.77E-02 

Family C 
Non-DMR to 
Hyper none none none none none none 

Family C Hypo to Hypo 1 C0014544 Epilepsy 
DisGeNET 
BeFree 3.66E-07 2.71E-03 

Family C Hypo to Hypo 2 C0008925 Cleft Palate 
DisGeNET 
BeFree 1.69E-05 1.68E-02 

Family C Hypo to Hypo 3 C1535926 Neurodevelopmental Disorders 
DisGeNET 
BeFree 2.64E-05 1.68E-02 

Family C Hypo to Hypo 4 C0000768 Congenital Abnormality 
DisGeNET 
BeFree 2.97E-05 1.68E-02 

Family C Hypo to Hypo 5 C0270824 Visual seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 6 C0270846 Epileptic drop attack 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 7 C0234533 Generalized seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 8 C0234535 Clonic Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 9 C0751056 Non-epileptic convulsion 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 10 C0751123 Atonic Absence Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 11 C0751110 Single Seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 12 C0422855 Vertiginous seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 13 C0422854 Gustatory seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 14 C0422850 Seizures, Somatosensory 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 15 C0422853 Olfactory seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 16 C0422852 Seizures, Auditory 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 17 C0751494 Convulsive Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 18 C0751496 Seizures, Sensory 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 19 C0149958 Complex partial seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 20 C3495874 Nonepileptic Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 21 C4505436 Generalized Absence Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 22 C0022333 Jacksonian Seizure 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 23 C4317109 Epileptic Seizures 
DisGeNET 
Curated 5.9E-05 1.68E-02 

Family C Hypo to Hypo 24 C4707243 
Familial thoracic aortic 
aneurysm and aortic dissection 

DisGeNET 
Curated 5.91E-05 1.68E-02 

Family C Hypo to Hypo 25 C4316903 Absence Seizures 
DisGeNET 
Curated 6.46E-05 1.68E-02 
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Family C 
Non-DMR to 
Hypo none none none none none none 

Family A Hyper to Hypo 1 C0270764 Motor Neuron Disease, Lower 
DisGeNET 
BeFree 2.29E-06 4.70E-03 

Family A Hyper to Hypo 2 C0524730 Odontome 
DisGeNET 
Curated 3.07E-06 4.70E-03 

Family A Hyper to Hypo 3 C0040427 Tooth Abnormalities 
DisGeNET 
Curated 3.07E-06 4.70E-03 

Family A Hyper to Hypo 4 C0206762 Limb Deformities, Congenital 
DisGeNET 
BeFree 1.05E-05 1.21E-02 

Family A Hyper to Hypo 5 C1839839 
MAJOR AFFECTIVE 
DISORDER 2 

DisGeNET 
Curated 3.27E-05 3.00E-02 

Family A Hyper to Hypo 6 C0850639 premalignant lesion 
DisGeNET 
BeFree 6.48E-05 4.96E-02 

Family A Hyper to Hyper none none none none none none 

Family A Hypo to Hyper none none none none none none 

Family A 
Non-DMR to 
Hyper 1 C0917796 Optic Atrophy, Hereditary, Leber 

DisGeNET 
Curated 5.01E-06 2.36E-02 

Family A 
Non-DMR to 
Hyper 2 535000 LEBER OPTIC ATROPHY 

OMIM 
MedGen 1.26E-05 2.36E-02 

Family A 
Non-DMR to 
Hyper 3 

cv:C09177
96 Leber's optic atrophy 

Clinical 
Variations 1.26E-05 2.36E-02 

Family A Hypo to Hypo 1 C0266544 Microcornea 
DisGeNET 
BeFree 4.34E-06 1.76E-02 

Family A Hypo to Hypo 2 C1839839 
MAJOR AFFECTIVE 
DISORDER 2 

DisGeNET 
Curated 1.4E-05 2.85E-02 

Family A Hypo to Hypo 3 C0007124 
Noninfiltrating Intraductal 
Carcinoma 

DisGeNET 
BeFree 2.53E-05 3.43E-02 

Family A 
Non-DMR to 
Hypo none none none none none none 

 

(*) IDs are unique to the associated database. (†) P-values were calculated using the 

hypergeometric test. (‡) FDR B&H: False discovery rates were calculated by the Benjamini and 

Hochberg method[127]. 
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Appendix 2.10 

KEGG pathway enrichment for the set of 28 genes associated to DMRs whose 

methylation change is hypermethylated in fibroblast and hypomethylated in iPSC, 

acquired from STRING 

#term ID term description Strength* FDR† matching proteins in the network (labels)‡ 
hsa04340 Hedgehog signaling pathway 1.66 4.10E-04 CCND1,SHH,PTCH1 

hsa04933 
AGE-RAGE signaling pathway in 
diabetic complications 1.63 1.01E-06 CCND1,RAC1,CDC42,IL6,NFATC1,PRKCA 

hsa05143 African trypanosomiasis 1.61 4.90E-03 IL6,PRKCA 

hsa05130 
Pathogenic Escherichia coli 
infection 1.6 5.50E-04 ROCK1,CDC42,PRKCA 

hsa04370 VEGF signaling pathway 1.55 7.10E-04 RAC1,CDC42,PRKCA 

hsa05132 Salmonella infection 1.52 1.10E-04 RAC1,ROCK1,CDC42,IL6 

hsa05131 Shigellosis 1.52 7.80E-04 RAC1,ROCK1,CDC42 

hsa04666 
Fc gamma R-mediated 
phagocytosis 1.5 1.20E-04 RAC1,SYK,CDC42,PRKCA 

hsa04664 Fc epsilon RI signaling pathway 1.5 8.50E-04 RAC1,SYK,PRKCA 
hsa05211 Renal cell carcinoma 1.49 8.50E-04 CREBBP,RAC1,CDC42 

hsa04520 Adherens junction 1.47 9.30E-04 CREBBP,RAC1,CDC42 

hsa04662 B cell receptor signaling pathway 1.47 9.30E-04 RAC1,SYK,NFATC1 

hsa05212 Pancreatic cancer 1.45 9.70E-04 CCND1,RAC1,CDC42 

hsa05205 Proteoglycans in cancer 1.4 1.01E-06 
CCND1,SHH,PTCH1,RAC1, 
ROCK1,CDC42,PRKCA 

hsa04670 
Leukocyte transendothelial 
migration 1.4 2.30E-04 RAC1,ROCK1,CDC42,PRKCA 

hsa05416 Viral myocarditis 1.4 1.02E-02 CCND1,RAC1 

hsa04310 Wnt signaling pathway 1.39 4.12E-05 CCND1,CREBBP,RAC1,NFATC1,PRKCA 
hsa05161 Hepatitis B 1.39 4.12E-05 CCND1,CREBBP,IL6,NFATC1,PRKCA 

hsa04360 Axon guidance 1.38 6.48E-06 SHH,PTCH1,RAC1,ROCK1,CDC42,PRKCA 

hsa05206 MicroRNAs in cancer 1.37 4.12E-05 CCND1,CREBBP,HDAC4,ROCK1,PRKCA 

hsa00310 Lysine degradation 1.37 1.06E-02 KMT2C,EHMT1 

hsa05167 
Kaposi's sarcoma-associated 
herpesvirus infection 1.36 7.14E-06 CCND1,CREBBP,RAC1,SYK,IL6,NFATC1 

hsa05203 Viral carcinogenesis 1.36 7.14E-06 CCND1,CREBBP,HDAC4,RAC1,SYK,CDC42 

hsa04650 
Natural killer cell mediated 
cytotoxicity 1.35 3.00E-04 RAC1,SYK,NFATC1,PRKCA 

hsa05321 Inflammatory bowel disease (IBD) 1.35 1.14E-02 IL6,NFATC1 
hsa05217 Basal cell carcinoma 1.35 1.15E-02 SHH,PTCH1 

hsa04720 Long-term potentiation 1.34 1.17E-02 CREBBP,PRKCA 

hsa04066 HIF-1 signaling pathway 1.33 2.10E-03 CREBBP,IL6,PRKCA 

hsa05120 
Epithelial cell signaling in 
Helicobacter pylori infection 1.33 1.21E-02 RAC1,CDC42 

hsa05223 Non-small cell lung cancer 1.33 1.21E-02 CCND1,PRKCA 

hsa05214 Glioma 1.31 1.22E-02 CCND1,PRKCA 
hsa05100 Bacterial invasion of epithelial cells 1.29 1.33E-02 RAC1,CDC42 

hsa04921 Oxytocin signaling pathway 1.27 5.30E-04 CCND1,ROCK1,NFATC1,PRKCA 

hsa04071 Sphingolipid signaling pathway 1.26 3.20E-03 RAC1,ROCK1,PRKCA 
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hsa04919 Thyroid hormone signaling pathway 1.26 3.20E-03 CCND1,CREBBP,PRKCA 
hsa04024 cAMP signaling pathway 1.25 1.20E-04 CREBBP,PTCH1,RAC1,ROCK1,NFATC1 

hsa04510 Focal adhesion 1.25 1.20E-04 CCND1,RAC1,ROCK1,CDC42,PRKCA 

hsa01521 
EGFR tyrosine kinase inhibitor 
resistance 1.25 1.52E-02 IL6,PRKCA 

hsa04110 Cell cycle 1.23 3.60E-03 CCND1,CREBBP,CDKN1C 

hsa04380 Osteoclast differentiation 1.23 3.60E-03 RAC1,SYK,NFATC1 

hsa04350 TGF-beta signaling pathway 1.23 1.68E-02 CREBBP,ROCK1 

hsa04530 Tight junction 1.22 7.10E-04 CCND1,RAC1,ROCK1,CDC42 
hsa05210 Colorectal cancer 1.22 1.73E-02 CCND1,RAC1 

hsa04068 FoxO signaling pathway 1.21 3.80E-03 CCND1,CREBBP,IL6 

hsa04912 GnRH signaling pathway 1.2 1.82E-02 CDC42,PRKCA 

hsa04972 Pancreatic secretion 1.17 2.03E-02 RAC1,PRKCA 

hsa05146 Amoebiasis 1.17 2.03E-02 IL6,PRKCA 
hsa05215 Prostate cancer 1.16 2.08E-02 CCND1,CREBBP 

hsa05166 HTLV-I infection 1.15 2.80E-04 CCND1,CREBBP,ATF3,IL6,NFATC1 

hsa04932 
Non-alcoholic fatty liver disease 
(NAFLD) 1.15 5.20E-03 RAC1,CDC42,IL6 

hsa04660 T cell receptor signaling pathway 1.15 2.09E-02 CDC42,NFATC1 

hsa04916 Melanogenesis 1.15 2.09E-02 CREBBP,PRKCA 

hsa05231 Choline metabolism in cancer 1.15 2.09E-02 RAC1,PRKCA 
hsa04620 Toll-like receptor signaling pathway 1.14 2.15E-02 RAC1,IL6 

hsa04659 Th17 cell differentiation 1.14 2.15E-02 IL6,NFATC1 

hsa04218 Cellular senescence 1.13 5.80E-03 CCND1,IL6,NFATC1 

hsa04630 Jak-STAT signaling pathway 1.12 6.00E-03 CCND1,CREBBP,IL6 

hsa05225 Hepatocellular carcinoma 1.11 6.20E-03 CCND1,ARID1B,PRKCA 
hsa05164 Influenza A 1.1 6.60E-03 CREBBP,IL6,PRKCA 

hsa05200 Pathways in cancer 1.09 1.45E-06 
CCND1,CREBBP,SHH,PTCH1,RAC1, 
ROCK1,CDC42,IL6,PRKCA 

hsa05152 Tuberculosis 1.09 6.90E-03 CREBBP,SYK,IL6 

hsa04722 Neurotrophin signaling pathway 1.08 2.66E-02 RAC1,CDC42 

hsa04270 Vascular smooth muscle contraction 1.07 2.76E-02 ROCK1,PRKCA 

hsa04062 Chemokine signaling pathway 1.06 7.80E-03 RAC1,ROCK1,CDC42 
hsa04611 Platelet activation 1.06 2.89E-02 SYK,ROCK1 

hsa05169 Epstein-Barr virus infection 1.03 9.20E-03 CREBBP,HDAC4,SYK 

hsa04210 Apoptosis 1.02 3.30E-02 LMNB1,SPTAN1 

hsa04371 Apelin signaling pathway 1.02 3.30E-02 CCND1,HDAC4 

hsa05162 Measles 1.02 3.30E-02 CCND1,IL6 
hsa04015 Rap1 signaling pathway 1.01 1.02E-02 RAC1,CDC42,PRKCA 

hsa04810 Regulation of actin cytoskeleton 1.01 1.02E-02 RAC1,ROCK1,CDC42 

hsa04151 PI3K-Akt signaling pathway 1 8.50E-04 CCND1,RAC1,SYK,IL6,PRKCA 

hsa04010 MAPK signaling pathway 0.98 3.60E-03 RAC1,CDC42,NFATC1,PRKCA 

hsa04072 Phospholipase D signaling pathway 0.98 3.72E-02 SYK,PRKCA 
hsa05226 Gastric cancer 0.98 3.77E-02 CCND1,SHH 

hsa04014 Ras signaling pathway 0.96 1.21E-02 RAC1,CDC42,PRKCA 

hsa05165 Human papillomavirus infection 0.95 4.50E-03 CCND1,CREBBP,HDAC4,CDC42 

hsa04022 cGMP-PKG signaling pathway 0.94 4.35E-02 ROCK1,NFATC1 
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hsa05202 
Transcriptional misregulation in 
cancer 0.92 4.75E-02 MEIS1,IL6 

 

(*) Strength is calculated by STRING as log10(observed/expected). (†) False discovery rates 

(FDR) were calculated by the Benjamini and Hochberg method[127] as part of STRING. (‡) 

Specific genes related to each pathway. 

 

Appendix 2.11 

A. Hyper and hypomethylated DMR statistics in fibroblasts for all samples and by family 

 All Samples Family A Family C 
Total DMR 1485 5713 4924 

Ambiguous* 5 46 25 

Unambiguous† 1480 5667 4899 

Overlap filter‡ 1479 5378 4725 

Hyper DMR 885 3339 2872 

Hypo DMR 594 2039 1853 
 

B. Hyper and hypomethylated DMR statistics in iPSCs for all samples and by family 

 All Samples Family A Family C 
Total DMR 511 1083 1547 

Ambiguous* 1 8 2 

Unambiguous† 510 1075 1545 

Overlap filter‡ 506 1004 1496 

Hyper DMR 238 646 559 

Hypo DMR 268 358 937 
 

(*) Tiles containing differentially methylated CpGs with methylation differences with opposite 

directionality (hyper- or hypomethylation) were considered ambiguous. (†) Tiles containing 

differentially methylated CpGs with methylation differences with the same directionality. (‡) DMRs 

were filtered to keep only those with CpG methylation data found in both Family A and Family C. 

 




