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Abstract
In this perspective article, we consider the critical issue 
of data and other research object standardisation and, spe‑
cifically, how international collaboration, and organizations 
such as the International Neuroinformatics Coordinating 
Facility (INCF) can encourage that emerging neuroscience 
data be Findable, Accessible, Interoperable, and Reusable 
(FAIR). As neuroscientists engaged in the sharing and inte‑
gration of multi‑modal and multiscale data, we see the cur‑
rent insufficiency of standards as a major impediment in the 
Interoperability and Reusability of research results. We call 
for increased international collaborative standardisation of 
neuroscience data to foster integration and efficient reuse of 
research objects.

Keywords Neuroscience · Standards, ·  Interoperability · 
International Neuroinformatics Coordinating Facility

As experimental assays and analyses become increasingly 
complex and the scale of tissue and cellular profiling multi‑
plies, neuroscience faces increasing challenges. To be used 
efficiently, accessible data need to be described coherently 
and with standards. We present here the argument that stand‑
ardisation is critical, requires an international effort, and will 
lead to much improved efficiency in neuroscience research. 
We call for the neuroscience community to join this stand‑
ardisation effort.

Neuroscience is a multifactorial discipline where signifi‑
cant advances are made by combining theoretical, compu‑
tational, experimental and technological approaches. The 
challenges of understanding function and dysfunction of the 
brain are still of unknown complexity and far from being 
met. Progress in therapeutics and clinical impact lags tech‑
nical advances (Kapur et al., 2012), despite increased depth 
and scope of investigations. Results are currently published 
at an unprecedented rate, and for data and methods, stricter 
requirements are in motion toward more rigorous practices 
at funding agencies (NOT‑OD‑21–013) and most journals. 
Even so, there remain concerns about the large amount 
of poorly reproducible results (Ioannidis, 2007; Ioannidis 
et al., 2014; Baker, 2016). This represents a dire ‘lack of 
efficiency’ of neuroscience research amongst other fields 
(Chu & Evans, 2021).

To achieve the goals of basic and applied neuroscience, 
these fields require systematic, standardized and well‑
defined data organization practices and proper data descrip‑
tion for effective content discovery and reproducibility. Deep 
understanding of the field necessitates 1) leveraging and 
extending existing theoretical frameworks and models for 
making testable predictions; and 2) probing experimental 
results and their interpretation by reanalysing data from dif‑
ferent, new angles using cutting‑edge analytic techniques. 

Given the complexity, scale, and multidisciplinary nature of 
the problem of understanding brain function, we argue such 
methods and practices for developing, integrating and testing 
theories and models must become radically more efficient, 
to keep up with the dramatic (and accelerating) advances in 
data acquisition.

There are evident reasons for the present state of practices 
in data sharing and management, not the least of which is 
the complexity of the nervous system itself. It is this pro‑
found complexity that requires the neuroscience research 
enterprise to efficiently integrate a broad set of results 
across manifold subfields. While these different subfields 
have common core concepts (like ‘function’, ‘experiment’, 
‘observation’, ‘conclusion’, etc.), the data types, formats, 
experimental paradigms and appropriate metadata for these 
subfields differ, making integration of data and the develop‑
ment of a coherent theory of neural function a formidable 
challenge. Integration is also hampered by the culture of 
neuroscience (Ascoli, 2006) that still mostly values text‑
based articles over publishing dynamically usable research 
products, such as datasets with access methods, or Web 
based computational notebooks (Jupyter notebooks or Elife’s 
‘Executable Research Articles’, Elife 2020). To achieve a 
more expedient understanding of brain function will require 
us to move beyond the present code and data archiving and 
sharing practices (Gleeson et al., 2017), information archi‑
tectures, and publication models.

Is this problem resolving or compounding? Nationally 
and internationally, large investments in big data neurosci‑
ence initiatives are being undertaken (eHBP1, US BRAIN2, 
ENIGMA3, the Human Connectome Project (Elam et al., 
2021), the China Brain Project, the Japanese Brain/MINDS 
project4, among others). A myriad of smaller, investigator‑
initiated research projects are continuously adding to our 
knowledge base, and individual investigators are thinking 
more broadly through extended collaborations. With this 
avalanche of data already underway, there are in fact few 
efforts to coordinate across communities the development of 
data standards and knowledge representation resulting from 
experimental research. It is well known that research incen‑
tive and funding structures are better suited for individual 
projects and initiatives but do not always foster collabora‑
tion in addressing the data and knowledge management in 
the bigger picture. Major funding of large scale consortia 
still prioritize new data generation over data integration, 
interoperability, management, or maximizing knowledge 
across existing databases. Efforts such as the NIH Common 

1 https:// www. human brain proje ct. eu/
2 https:// www. brain initi ative. nih. gov/ index. htm
3 http:// enigma. ini. usc. edu
4 https:// en. wikip edia. org/ wiki/ Brain/ MINDS
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Fund's Stimulating Peripheral Activity to Relieve Conditions 
(SPARC) program and the BRAIN Initiative’s Cell Census 
Network (BICCN) in the US are reshaping these consortial 
practices but remain limited.

The funding bias towards new data but limited integra‑
tion or curation introduces inefficiencies due to duplicated 
efforts, resulting in missing and redundant information, dra‑
matically reducing the overall return on the research invest‑
ment in the future. It is hard to quantify, but there is certainly 
a huge waste with poor reusability (Fergusson et al., 2014).

As neuroscience is an international effort, the effort to 
develop and implement standards is necessarily interna‑
tional in scope. Local efforts based on a few laboratories are 
unlikely to gather the critical mass necessary for adoption 
of a standard and the development of its ecosystem (tool‑
ing, training, etc.). Further, standards and repositories that 
are successful in supporting the aggregation of data across 
borders need to be sustained to be useful. In this way the 
development and adoption of rigorous and open data stand‑
ards is seen as one of the key elements to promoting efficient 
collaboration and reuse. Effective data standards are tightly 
coupled with the availability of software tools which manage 
input and output data representations and transformations. 
For researchers remotely working in different subfields of 
neuroscience, improved standards and associated metadata is 
the only practical solution for efficient reuse of information 
to bridge across subfield domains (scales, species, cell type, 
resolution, brain functions, etc.). Funders and researchers are 
better at ‘developing’ than at ‘sustaining’, as there are less 
research incentives around maintenance of sustainable and 
coordinated information management infrastructure.

Is neuroscience a FAIR discipline, where data and results 
are Findable, Accessible, Interoperable and Reusable (Wilkin‑
son et al., 2016)? FAIR is a set of increasingly accepted guid‑
ing principles for organizing and communicating the results 
of science so that they are understandable to both humans 
and machines. By contrast, current communication of results 
is still largely based on text (pdf—html) format articles. The 
articles themselves are findable, and often accessible (thanks 
to open initiatives like PubMed Central), but the central ele‑
ments leading to the conclusions of the research (namely the 
data, software, detailed methods and complete results), are 
rarely FAIR. This lack of availability and transparency are at 
least partially causative of the problems that have emerged in 
terms of the reliability, reusability and reproducibility of the 
current research findings. There is a growing trend to meta‑
analyse sets of published data, but these will miss most data, 
i.e., studies for which data are not accessible or sufficiently 
reusable because of their format. Such omissions actually bias 
these important attempts at trans‑study synthesis. Enabling 
the FAIR principles across the complete research workspace 
would make information aggregation feasible, efficient, and 
un‑ or less‑ biased (Mueller et al., 2018).

Today, the Web and other communication technologies 
provide fundamental tools to resolve this information inte‑
gration issue. However, if our goal is to work efficiently and 
collaboratively and communicate research findings beyond 
exchanging papers, we need to establish a broader set of 
standards of communication. Anecdotally, the World Wide 
Web is successful because every browser “speaks” the same 
standards: http/html. Imagine how inefficient a Web search 
would be if 5 different browsers were required to execute 
separate search elements and we then had to manually inte‑
grate the results. The efficiency of Web search today is due 
to the international standardisation efforts and oversight of 
the World Wide Web Consortium (W3C). The inefficiency 
of a 5 browser manually‑integrated search is suggestive of 
the current state of the art for a neuroscience query (i.e., 
“what is the cell density in brain regions associated with 
socialization, that expresses BDNF in the second trimes‑
ter of development?”). Standards of data description and 
communication will also be necessary for machine and 
deep learning technologies to operate efficiently on large 
and diverse datasets, and reduce the huge current curation 
burden. Machines will need to extract standardized metadata 
for analyses to be efficient and unbiased.

So where do we go from here? A number of actions can 
be envisioned. One step is that national funding agencies 
should invest in international organizations and initiatives 
whose mission is focused on standardisation and educa‑
tion in neuroscience. The most established and experienced 
organization for neuroscience is the International Neuroin-
formatics Coordinating Facility (INCF)5, with its current 
network of 18 affiliated nations6. Through its new member‑
ship model, community‑driven scientific interest groups, and 
international governance by members' representatives and 
stakeholders, the INCF provides the scaffolding and net‑
working for community engagement around standards. A 
core mission of the INCF is to ensure that neuroscience is 
served by a set of well supported, non‑overlapping standards 
that are easy to access and understand. The INCF has taken 
on the important role of acting as a standards organization 
for neuroscience, where standards and best practices can 
be reviewed, vetted and promoted (Abrams et al., 2021). 
Through this process, the INCF is creating a portfolio of 
standards that serve neuroscience and is developing training 
materials on their use. As the recognition by funders (such as 
NIH, NSF, Kavli, John and Laura Arnold Foundation, etc.), 
and the broader neuroscience community that this work is 
critical grows, the experience collected by INCF is unique 
and should be leveraged. Other international efforts include 
the International Brain Initiative, a consortium of the large 
international brain projects, which has recently established 

5 https:// www. incf. org/
6 https:// www. incf. org/ about‑ us/ who‑ we‑ are
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the Standards and Data Sharing Working Group to help 
achieve coordination with the INCF across large scale pro‑
jects7. The IEEE has several standards efforts underway for 
neurotechnology8.

The successful development and adoption of standards will 
rely on the symbiotic development of current and novel tools that 
use and profit from these standards. The time frame for develop‑
ing these standards and tools through community involvement, 
especially across international lines, is typically much longer 
than the grant cycles that power individual research programs. 
Thanks to investments and the work of dedicated volunteers 
working through organizations like INCF, a set of standards 
supporting neuroscience are starting to gain traction. A remark‑
able example of a successful standard is the “Brain Imaging 
Data Structure”9, for MRI data, started at an INCF meeting at 
Stanford, along with the development of many analysis tools that 
rely on the standard to automatically extract data and metadata 
(Gorgolewski et al., 2016, 2017). A substantial community has 
grown around the BIDS standard, with community‑led exten‑
sions to domains such as magnetoencephalography (Niso et al., 
2019) and electroencephalography (Pernet et al., 2019). The 
community has developed a formal governance procedure for 
extensions to the protocol, as well as a governance structure with 
an elected steering group. A second success is the Waxholm 
Space, a 3D MRI‑based coordinate space for registering data in 
rat and mouse to a common coordinate system (Johnson et al., 
2010; Okamura‑Oho et al., 2012; Papp et al., 2014), adopted 
by the HBP and E‑Brains. The Neurodata Without Borders 
(NWB) is an emerging standard for physiological data that has 
just issued its second version and is seeing uptake in the US 
BRAIN Initiative and other collaborative projects (Rübel et al., 
2021). Finally, the US BRAIN Initiative is actively investing in 
the creation of new standards to support neuroscience10.

Programs for standardisation and promoting FAIR prac‑
tices could also be set up through INCF or through scientific 
societies. These societies themselves, such as the Society for 
Neuroscience, the Organization for Human Brain Mapping 
and the clinical neurophysiology societies, can play a cru‑
cial role in encouraging standards development (e.g. Nichols 
et al., 2017), particularly as a growing number of journals 
and funding agencies are requiring deposition of code and 
data in a form suitable for secondary analyses. However, 
these organizations would need to form alliances and put in 
place the required funding tools as well as a vetting process, 
while such a process is already provided with the INCF.

Expanded information architecture and new software tools 
also have their role to play. The Open Connectome Project has 

enhanced the FAIRness of several prominent neuroscience 
studies (Vogelstein et al., 2018). These datasets are stored in a 
precomputed format in a publicly accessible cloud repository, 
and can be read, written, and viewed with nothing more than 
an Internet connection and browser (Charles et al., 2020). The 
Jupyter project (Kluyver et al., 2016) also proposes formats 
and infrastructure for data reuse. Efforts such as the European 
Human Brain Project (www. human brain project.eu) have made 
significant progress in knowledge graph architecture for neu‑
roscience through projects such as the EBRAINS Knowledge 
Graph, a multi‑modal metadata repository and query engine sup‑
porting experimental data and neuroscience data research. The 
SPARC Project has adopted FAIR principles in its data portal 
and knowledge graph, including full support for data citation 
(Osanlouy et al., 2021).

The FAIR data community and the INCF have learned ‑and 
continue to learn‑ some lessons from the decades old open 
source software community and standard organizations. Stand‑
ard practice in open source software packages includes one line 
installation commands, and a quick‑start tutorial, along with 
thoroughly documented code (Glatard et al., 2018; Vogelstein, 
2018). These standards could translate to data stewardship prac‑
tice in the form of brief readmes describing how to download 
and access the data, accompanied by more detailed metadata 
that is tethered to the data itself.

There have been multiple efforts to move neuroscience into 
e‑Neuroscience through the development of standards and tools, 
some have been successful and some have not. However, we 
should refrain from interpreting the difficulties encountered as 
an argument against addressing the urgent requirements of a 
transformed and rapidly evolving field of neuroscience. Our 
technologies improve continuously, and empirical advantages, 
social pressures, and institutional policies have moved scien‑
tific communities towards open, data‑driven and networked 
science. Recall also that the Web evolved in several phases, and 
standardized Web browsers were not a part of its early phase. 
Neuroscience is unlikely to ever be served by a single large data‑
base, but over the years, a functioning infrastructure comprising 
multiple databases and data repositories has emerged for shar‑
ing neuroscience data (Ascoli et al., 2017). We have today an 
opportunity to develop the necessary technology and make these 
infrastructures interoperable. We also have learned from the past 
about the technological and sociological barriers and are now in 
a better position to address them. The impact of increasing the 
reusability and therefore efficiency of neuroscience would be 
widespread and world‑changing.

As the field of computational neuroscience evolves with new 
data acquisition methods, new hardware capabilities, and new 
analysis techniques, data standards will inevitably need to be 
updated or replaced. This reinforces the need for organizations 
to overlook these evolutions and the need for open governance 
as implemented by the INCF.

7 https:// www. inter natio nalbr ainin itiat ive. org/
8 https:// stand ards. ieee. org/ indus try‑ conne ctions/ neuro techn ologi es‑ 
for‑ brain‑ machi ne‑ inter facing. html
9 http:// bids. neuro imagi ng. io/
10 https:// grants. nih. gov/ grants/ guide/ rfa‑ files/ rfa‑ mh‑ 19‑ 146. html
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As scientists, we should pledge to work on the definition, 
development and implementation of standards and to foster a 
spirit of collaborative work in these developments. This work 
is not easy and will require dedication and support. We should 
ensure in our own research proposals that some effort will be set 
aside for the development of reproducible and FAIR research 
objects through international coordination. Ultimately research 
across the world is a collective and collaborative enterprise. 
Along with societies and funding agencies, individual scientists 
should take a proactive role in the evolution of this new world 
culture of FAIR neuroscience. One simple and concrete action 
is to participate in these global standardisation and coordination 
efforts with the INCF and together build a roadmap for FAIR 
neuroscience.

Open Access This article is licensed under a Creative Commons Attri‑
bution 4.0 International License, which permits use, sharing, adapta‑
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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