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ABSTRACT OF THE DISSERTATION

Characterizing Pulmonary Nodules using Machine and Deep

Learning Methods to Improve Lung Cancer Diagnosis

by

Shiwen Shen

Doctor of Philosophy in Bioengineering

University of California, Los Angeles, 2018

Professor Alex Anh-Tuan Bui, Co-Chair

Professor William Hsu, Co-Chair

Low-dose computed tomography (CT) screening has been widely used to detect and diagnose

early stage lung cancer. Clinical trials have shown that low-dose CT reduced lung cancer

mortality by 20% relative to plain chest radiography; however, challenges exist in current

low-dose CT screening programs including high over-diagnosis rates, high cost and increased

radiation exposure. This dissertation attempts to overcome these challenges by developing

machine and deep learning models for automated lung cancer diagnosis and disease progres-

sion estimation. A novel lung segmentation approach was first developed using a bidirectional

chain code method and machine learning framework. This method is designed to include

the lung nodules attached to lung wall while minimizing over-segmentation error. Second,

a hybrid ensemble convolutional neural network has been developed to classify lung nodule

vs. non-nodule objects. The ensemble model combines the VGG, residual and densely con-

nected module designs to improve the model classification robustness for external datasets

collected with different acquisition parameters. Third, a hierarchical semantic convolutional

neural network (HSCNN) has been described to classify lung nodule malignancy. Semantic

characteristic features, predicted in parallel with the malignancy for each nodule, enable the

interpretation of the model and improvement of malignancy prediction. Finally, a Bayesian

framework combined with a continuous-time Markov model was developed to estimate the

multi-state disease progression of lung cancer. The resulting model estimates individual lung

ii



cancer state transition information, providing the basis for personalized screening recommen-

dations. Extensive experiments and results have proved the effectiveness of these methods

paving the way to optimize and improve the effectiveness of existing low-dose CT screening

programs.

iii



The dissertation of Shiwen Shen is approved.

Yingnian Wu

Ricky Kiyotaka Taira

Denise R Aberle

William Hsu, Committee Co-Chair

Alex Anh-Tuan Bui, Committee Co-Chair

University of California, Los Angeles

2018

iv



Dedicated to my beloved family and friends!

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Lung segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Lung nodule classification and diagnosis . . . . . . . . . . . . . . . . 5

1.2.3 Cancer progression estimation . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Computed tomography for lung cancer screening . . . . . . . . . . . . 11

2.2 Computer-aided Diagnosis (CAD) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Automatic lung nodule detection and diagnosis . . . . . . . . . . . . 13

2.3 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Learning a deep network . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Deep learning in medical image analysis . . . . . . . . . . . . . . . . 27

2.4 Multi-state Disease Progression . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Automated Lung Segmentation in CT images . . . . . . . . . . . . . . . . . 32

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Inflection point detection . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Border correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Evaluation dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Evaluation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Lung Nodule Classification and Diagnosis using Deep Convolutional Neu-

ral Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 A hybrid ensemble CNN model for lung nodule classification . . . . . 53

4.2.3 A HSCNN model for lung cancer diagnosis . . . . . . . . . . . . . . . 57

4.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Hybrid ensemble CNN experimental results . . . . . . . . . . . . . . . 62

4.3.3 HSCNN results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Lung Cancer Disease Progression Estimation . . . . . . . . . . . . . . . . . 73

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vii



5.2.2 National lung screening trial (NLST) data . . . . . . . . . . . . . . . 76

5.2.3 Continuous-time Markov model . . . . . . . . . . . . . . . . . . . . . 77

5.2.4 Modeling imperfect screening sensitivity . . . . . . . . . . . . . . . . 78

5.2.5 Considering covariates . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Maximum likelihood without observation error . . . . . . . . . . . . . 84

5.4.2 Bayesian Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.3 Covariate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Summary & Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



LIST OF FIGURES

1.1 Computer-aided diagnosis of lung cancer and disease progression estimation. . . 4

1.2 Illustrations of juxtapleural lung nodules. . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Three pulmonary nodule types: isolated, juxtapleural, and juxtavascular nodules:

(a) CT slice with isolated nodule A; (b) CT slice with juxtapleural nodule B; (c)

CT slice with juxtavascular nodule C; (d) magnified view of isolated nodule A; (e)

magnified view of juxtapleural nodule B; and (f) magnified view of juxtavascular

nodule C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Illustrations of lung nodules in CT images [DBS15]. . . . . . . . . . . . . . . . . 19

2.3 Illustrations of malignant and benign nodules: R1 are malignant nodules; R2 are

benign nodules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 An example of a convolution neural network architecture. . . . . . . . . . . . . . 26

3.1 Diagrams depicting the proposed method and its outputs for a representative

case. (a) Flow diagram of the proposed method; (b) original image; (c) original

image with juxtapleural nodule outlined in white; (d) lung boundaries obtained

after preprocessing; (e) lung lobe mask obtained after preprocessing; (f) detected

inflection points shown in yellow-squares/white-circles; (g) magnified view of in-

flection points; and (h) results after border correction. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Basic steps for preprocessing. (a) Original image; (b) histogram generation of

pixel value intensities; (c) adaptive thresholding to get initial segmentation result;

(d) hole filling to obtain the lung lobe mask; and (e) corresponding segmented

lung lobe region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

ix



3.3 Process of encoding the bi-directional differential chain code. (a)-(e) illustrates

the process of horizontal differential chain code generation, while (f)-(j) illustrates

the process of vertical chain code generation. (a) Horizontal encoding coordinate

system; (b) initial boundary generation; (c) arrow map generation; (d) horizon-

tal code word assignment; (e) horizontal differential chain code generation to

detect horizontal inflection points; (f) vertical encoding coordinate system; (g)

initial boundary generation; (h) arrow map generation; (i) vertical code word

assignment; and (j) vertical differential chain code generation to detect vertical

inflection points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Example of detected inflection points with and without the application of a low-

pass filter. (a) Right lung lobe mask; (b) detected inflection points without

applying low-pass filter, the white circles represent the vertical inflection points

and the yellow squares represent the horizontal inflection points; and (c) detected

inflection points after applying Gaussian low-pass filter. . . . . . . . . . . . . . . 37

3.5 Representative results of inflection point detection. (a) Original CT slice with

nodule outlines annotated by radiologists shown in yellow circle; (b) magnified

view of nodule region in outlined in (a); (c) right lung mask segmented by pre-

processing step; (d) detected horizontal inflection points; (e) detected vertical

inflection points; (f) magnified view of vertical inflection points; and (g) lung

segmentation after applying border correction. . . . . . . . . . . . . . . . . . . . 39

3.6 Illustration of feature definition for border correction. (a) Illustration of Euclidean

distance (ED) and shortest boundary segment length (SL) between points A and

B; (b) two infection points (white circles) having a large flength; and (c) border

correction result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

x



3.7 Representative case where the proposed method failed to re-include the juxta-

pleural nodule. (a) Original CT slice with a nodule attached to diaphragm and

pleura; (b) CT slice with nodule outlines annotated by a radiologist shown in yel-

low circle; (c) magnified view of nodule outline annotation; (d) lung segmentation

obtained by our method; and (e) reference standard lung segmentation. . . . . . 43

3.8 The segmentation error computed based on a comparison of lung volume: over-

segmentation rate, under-segmentation rate and overlap ratio difference from Eqs.

(3.6), (3.7) and (3.9). Mean errors are 0.3%, 2.4% and 2.7% respectively. . . . . 44

3.9 Cumulative point-wise error distance distribution of the shortest distance from

proposed lung segmentation surface to lung surface of the reference standard. . . 46

3.10 Comparison between lung segmentation obtained by our method and reference

standards in cases with atelectasis or consolidation. (a) Lung segmentation ob-

tained by our method in an atelectasis case; (b) reference standard in an atelec-

tasis case; (c) lung segmentation obtained by our method in a consolidation case;

(d) reference standard in a consolidation case. . . . . . . . . . . . . . . . . . . . 47

4.1 Framework of hybrid ensemble CNN model for lung nodule classification. . . . . 54

4.2 Model architecture of the hierarchical semantic convolutional neural network. . . 59

4.3 ROC plot on LIDC datasets for hybrid ensemble CNN model comparison. . . . 63

4.4 ROC plot on UCLA datasets for hybrid ensemble CNN model comparison. . . . 64

4.5 Framework comparison between proposed HSCNN and baseline 3D CNN. (a)

proposed HSCNN architecture; (b) baseline 3D CNN architecture. Compared

with the proposed HSCNN, baseline model has the same structure but without

the low-level semantic task component. . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Receiver operating characteristic curve comparison: HSCNN versus 3D CNN. . . 66

xi



4.7 Illustrating the HSCNN model interpretability: lung nodule central slices, inter-

pretable semantic feature prediction and malignancy prediction. R1, R2, R3 and

R4 are four different nodules. (a) Central slices of axial, coronal and sagittal

view of two benign nodule samples; true and predicted labels for interpretable

semantic features and malignancy. (b) Central slices of axial, coronal and sagittal

view of two malignant nodule samples; true and predicted labels for interpretable

semantic features and malignancy. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Represented cases where the HSCNN model predict incorrectly for semantic fea-

tures or cancer malignancy. R1 and R2 are two different nodules. R1: one

case has four incorrect semantic feature predictions, and the correct malignancy

prediction. R2: one case have all correct semantic predictions, but incorrect

malignancy prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Model state transition diagram. State 1 is the disease-free state, State 2 is the

preclinical state and State 3 is the clinical state. Parameters λ12 and λ23 are the

transition intensities for transitioning from State 1 to State 2 and State 2 to State

3, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 An illustration of possible outcomes from periodic CXR screening, where CXRj

represents the jth screening. CXR2 and following screening will have similar pos-

sible outcomes and procedure as with CXR1. If the subjects are observed in the

preclinical state in the first screening, they will enter treatment (and stop peri-

odic screening CXR). Otherwise, subjects are observed to be in the disease free

state. However, these observed disease-free subjects include both false-negatives

(missed preclinical cases) and true-negatives. Some subjects, who are found at the

clinical state (lung cancer symptoms emerge) prior to another round of screening,

are called interval cases and also will not undergo additional screening. These

interval cases may come from missed preclinical subjects or true disease-free sub-

jects. Subjects who do not progress to the clinical state repeat the process in

subsequent rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xii



5.3 Scatter plot of 1000 randomly selected posterior samples of sensitivity and corre-

sponding MST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Scatter plot of predictive and realized log likelihood ratio discrepancies for the

proposed Bayesian model using the whole CXR data set; the proportion of

points above the red 45o line represents the proportion of χ2(y
(b)
rep; θ(b)) exceed-

ing χ2(y; θ(b)) and is the posterior predictive p-value (PPPV). A PPPV away

from 0 indicates a good model fit. The PPPV is 0.381. . . . . . . . . . . . . . . 87

xiii



LIST OF TABLES

2.1 Review of current CT features used for lung nodule classification. . . . . . . . . 18

3.1 Comparison of the performance of lung segmentation methods that handling jux-

tapleural nodules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Summary of LIDC and UCLA datasets. . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Nodule characteristics labels in LIDC dataset. . . . . . . . . . . . . . . . . . . . 51

4.3 Summary of generating binary labels from LIDC rating scales for nodule charac-

teristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Label counts for nodule characteristics. . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Results comparison: HSCNN versus 3D CNN. . . . . . . . . . . . . . . . . . . . 65

4.6 Paired T-Test summarizes for AUC scores between HSCNN and 3D CNN model.

CI represents for confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Classification performance for semantic feature predictions. . . . . . . . . . . . . 68

5.1 Detailed chest x-ray participant breakdown . . . . . . . . . . . . . . . . . . . . . 76

5.2 Likelihood function for the Markov model . . . . . . . . . . . . . . . . . . . . . 79

5.3 Summaries of the posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Goodness of fit with sensitivity < 1 . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Summaries of the posterior for the two gender groups . . . . . . . . . . . . . . . 88

5.6 Summaries of the posterior for the two age groups . . . . . . . . . . . . . . . . . 88

5.7 Goodness of fit by age group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Goodness of fit by gender group . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.9 Comparison between modeling approches . . . . . . . . . . . . . . . . . . . . . . 92

xiv



ACKNOWLEDGMENTS

I would like to express my utmost gratitude and respect for my advisor, Dr. William Hsu,

for his guidance and support throughout my Ph.D career. His dedication and expertise were

the unyielding sources of inspiration and encouragement. I am thankful that he offered me

the opportunity to first join the research project of the Medical Imaging Informatics (MII)

group and the MII Ph.D program afterwards. I would also like to offer my most sincere

thanks and respect to the co-chair of my committee, Dr. Alex Bui, for his insights and

dedication to help me grow my knowledge and passion on medical informatics. He taught

me to be meticulous in everything that I do and how to improve writing in all aspects. I

would also like to thank all the other members of my thesis committee, Dr. Denise Aberle,

Dr. Ricky Taira and Dr. Yingnian Wu, for offering guidance and feedback for all stages of

this dissertation work.

To all current and past members of the MII group and center for domain specific comput-

ing (CDSC), thank you for providing me an intellectually stimulating environment for my

study and research. I am extremely thankful to professor Jason Cong, Frank Meng, Corey

Arnold, James Sayre, Suzie El-Saden, Craig Morioka, Qing Zhou, Songchun Zhu, Alan Yuille

and Luminita Vese, for providing me with mentorship in various research topics and ma-

chine learning studies. I am also very thankful like to Isabel Rippy for her help as I made my

way throughout my Ph.D study. Thank you to Shawn, Lew, Patrick, Denise, Bing, Weixia,

Carlos, Audrey and Lily for your friendship and helping with administrative issues. I would

like to thank the past the current MII graduate students, Bill, Anna, Kyle, Jean, Maurine,

Simon, Johnny, Nova, Nick, Edgar, Panayiotis, Tianran, Jiayun, Karthik and Daniel for

invaluable collaborations, enthusiasm for research and scientific debates resulting in exciting

research ideas and reminding me for a lunch break.

I would like to thank UCLA for providing me the opportunity to pursue my graduate

study and offering me the Graduate Division Fellowship and the Bioengineering Fellowship

to fund my study and research. The research was also supported by the Center for Domain-

xv



Specific Computing (CDSC) funded by the NSF Expedition in Computing Award CCF-

0926127. Computing resources were funded by the NIH Data Commons Pilot and a donation

of a Titan Xp graphics card by the NVIDIA Corporation.

As this dissertation includes contents of the following articles, I would like to thank, and

re-thank, all co-authors for their contributions.

Shen S, Bui AAT, Cong J, Hsu W. An Automated Lung Segmentation Approach using

Bidirectional Chain Codes to Improve Nodule Detection Accuracy. Computers in Biology

and Medicine. 2015 Feb 1;57:139-49.

Shen S, Han SX, Petousis P, Meng F, Hsu W, Bui AAT. A Continuous Markov Model

Approach Using Individual Patient Data to Estimate Mean Sojourn Time of Lung Cancer.

American Medical Informatics Association (AMIA) Annual Symposium. 2015; San Fran-

cisco, USA.

Shen S, Han SX, Petousis P, Weiss RE, Meng F, Bui AAT, Hsu W. A Bayesian Model

for Estimating Multi-state Disease Progression. Computers in Biology and Medicine. 2017

Feb 1;81:111-20.

Shen S, Bui AAT, Hsu W. Robust Lung Nodule Classification using 2.5D Convolutional

Neural Network. American Medical Informatics Association (AMIA) Annual Symposium.

2017; Washington, D.C, USA.

Shen S, Han SX, Aberle D, Bui AAT, Hsu W. An Interpretable Deep Hierarchical Semantic

Convolutional Neural Network for Lung Nodule Malignancy Classification. In Preparation.

xvi



VITA

2013–2018 Graduate Student Researcher, University of California, Los Angeles

2017 Data Scientist Intern (summer), PayPal

2016 Data Scientist Intern (summer), Uber

2009–2012 Graduate Student Researcher, Shanghai Jiao Tong University

M.S. Electrical Engineering

2012 Research Intern, Philips Research Aisa - Shanghai

2005–2009 B.S. Electrical Engineering, University of Electronic Science and Technol-

ogy of China

PUBLICATIONS AND PRESENTATIONS

Shen S, Bui AAT, Cong J, Hsu W. An Automated Lung Segmentation Approach using

Bidirectional Chain Codes to Improve Nodule Detection Accuracy. Computers in Biology

and Medicine. 2015 Feb 1;57:139-49.

Duggan N, Bae E, Shen S, Hsu W, Bui AAT, Jones E, Glavin M, Vese L. A Technique

for Lung Nodule Candidate Detection in CT using Global Minimization Methods. In In-

ternational Workshop on Energy Minimization Methods in Computer Vision and Pattern

Recognition 2015 Jan 13 (pp. 478-491). Springer, Cham.

Shen S, Han SX, Petousis P, Meng F, Hsu W, Bui AAT. A Continuous Markov Model

Approach Using Individual Patient Data to Estimate Mean Sojourn Time of Lung Cancer.

xvii



American Medical Informatics Association (AMIA) Annual Symposium. 2015; San Fran-

cisco, USA.

Shen S, Zhong X, Hsu W, Bui AAT, Wu H, Kuo M, Raman S, Margolis DJA, Sung

KH. Quantitative MRI-Driven Deep Learning for Detection of Clinical Significant Prostate

Cancer. 24th International Society of Magnetic Resonance in Medicine (ISMRM) Annual

Meeting. 2016; Singapore, Singapore.

Shen S, Han SX, Petousis P, Weiss RE, Meng F, Bui AAT, Hsu W. A Bayesian Model

for Estimating Multi-state Disease Progression. Computers in Biology and Medicine. 2017

Feb 1;81:111-20.

Shen S, Bui AAT, Hsu W. Robust Lung Nodule Classification using 2.5D Convolutional

Neural Network. American Medical Informatics Association (AMIA) Annual Symposium.

2017; Washington, D.C, USA.

Shen S, Han SX, Aberle D, Bui AAT, Hsu W. An Interpretable Deep Hierarchical Se-

mantic Convolutional Neural Network for Lung Nodule Malignancy Classification. expert

systems with applications. 2018; in Submission.

Li M, Shen S, Chen Z, Gao W, Hsu W, Cong J. Computed Tomography Image Enhancement

using 3D Convolutional Neural Network. 21st Conference on Medical Image Computing &

Computer Assisted Intervention (MICCAI). 2018; in submission.

xviii



CHAPTER 1

Introduction

1.1 Overview

Lung cancer is the leading cause of cancer death among both women and men [TSJ16]. The

5-year survival rate is only 17% for lung cancer [SJ15], but if detected early on, survival

increases to 54% [SJ15]. Low-dose computed tomography (CT) is now the de facto imaging

modality used to screen and identify nascent lung cancers, with the landmark National Lung

Screening Trial (NLST) demonstrating a 20% mortality reduction for individuals undergoing

low-dose CT (LDCT) relative to plain chest radiography [Tea11]. Compared to conventional

chest radiography, CT generates high resolution, volumetric datasets that are able to resolve

small and/or low-contrast nodules [LKH12]. However, several challenges exist in the use of

LDCT in this setting, hindering accurate detection and effective screening. First, screening

programs produce large volumetric datasets that are time-consuming and effort-intensive

for radiologists to carefully review [Li07]. Second, less experienced radiologists have highly

variable detection rates, particularly in subtle cases, as interpretation heavily relies on past

experience [ZTB13]. In point of fact, it is often challenging – even for experts – to accurately

differentiate malignant nodules from benign lesions, resulting in a high degree of false pos-

itives being the result [AAW03]. As found during the NLST, the positive predictive values

for LDCT (i.e., the proportion of positive screens with a subsequent confirmed lung cancer

diagnosis), were only 3.8, 2.4 and 5.2% in Screenings 1, 2 and 3, respectively [Pin14]. Lastly,

concerns regarding radiation exposure, over-diagnosis, and over-treatment underscore the

need for more individually-tailored screening that determines who should be screened and

at what frequency [SHP17]. This dissertation focuses on improving lung cancer screening
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and diagnosis through novel machine and deep learning models to overcome these challenges,

including: 1) automated lung segmentation; 2) computer-aided nodule detection and lung

cancer diagnosis in CT images; and 3) personalized periodic screening interval estimation.

1.2 Background and Motivation

Clinical trials show that existing low-dose CT screening programs have three challenges: 1)

high over-diagnosis rates; 2) high cost; and 3) increased radiation exposure. The NLST

study reported a 96.4% false positive rate for all positive screening results [Tea11]. The

findings in NLST documented costs of $52,000 and $81,000 for one additional life-year and

quality-adjusted life year (QALY) per person, respectively [BGS14]. In addition, it esti-

mated approximately 1-3 lung cancer deaths are induced by radiation per 10,000 scanned

subjects in the trial [Tea11]. Developing computer-aided detection/diagnosis (CAD/CADe)

systems [CC12, SJG15, PZL08] and determining individualized, optimal screening intervals

are perceived as keys to overcome these issues.

A variety of machine learning (e.g., support vector machines, decision trees) and sta-

tistical methods have been employed in CAD/CADe systems to improve the ability to ac-

curately and consistently detect and diagnose lung cancer. This has been an active area

of research in medical image analysis [RDF08, BKN05, CC13] over the past two decades.

CAD/CADe systems have been explored to assist radiologists in the reading process, po-

tentially increasing the positive predictive value and reduce the false positive rate in lung

cancer screening for small nodules, as compared with human reading by thoracic radiologists

[HPY17]. CAD/CADe systems have also been shown to make screening more cost-effective

[DMM06, SCL16].

The CAD/CADe diagnostic workflow typically consists of four key components, as shown

in Figure 1.1a: 1) lung segmentation [SBC15]; 2) nodule candidate generation [DBS15]; 3)

nodule classification [FCS17]; and 4) lung cancer diagnosis [HKB14]. The first stage is an

important preprocessing step to generate a region of interest (ROI) for subsequent analysis

(i.e., the lung field) for most CAD/CADe systems. One commonly-missed type of pulmonary
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nodule by the segmentation step is the juxtapleural nodule (as shown in Figure 1.2), which is

attached to the wall of the lung. Although many works study lung segmentation, only a few

explicitly handle the juxtapleural nodules; and evaluation is lacking. The second component

aims to segment a large set of suspicious nodule candidates from these ROIs with high

sensitivity, typically using thresholding and morphological operations [MHR10]. In the third

stage, lung nodules and non-nodule objects (e.g., segments of airways, vessels, or other

non-cancerous lesions) are classified using hand-crafted features and supervised classifiers

[CC12, SJG15]. Lastly, a candidate lung nodule is classified as being either malignant or

benign. Clinical information [Gur93], shape, texture, and other radiomic features [CZX12,

HKB14] are employed in these classification models. Markedly, while many current machine

learning methods are applied to the lung nodule classification/diagnosis task, most fail to

have consistent performance when given external datasets [SCL16].

The growing collection of screening data opens up the possibility of modeling the natural

history of lung cancer progression, subsequently determining optimal screening intervals per

individual to make screening programs more effective and efficient [DCT95, Duf05b, CLC08].

As shown in Figure 1.1b, the natural progression of lung cancer can typically be modeled as

transitioning through three states: a disease-free state (State 1), a preclinical state detectable

via screening but asymptomatic (State 2), and a symptomatic state (State 3) [CLC08]. The

mean sojourn time (MST) measures how fast a disease progresses from a preclinical state to a

clinical state. Various statistical and temporal methods [CDT96, WRB05, CLC08, WER11,

TCM17] have been developed to estimate MST, such as Markov models and differential-

equations-based methods. Despite many efforts, it is still challenging to accurately estimate

MST for various subject cohorts using conventional methods due to observation error and

data sparsity issues.

This research focuses on three areas to address some of the aforementioned challenges:

1) lung segmentation; 2) nodule classification and diagnosis; and 3) lung cancer progression

modeling. The ensuing three sections detail the motivation for each task.
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Figure 1.1: Computer-aided diagnosis of lung cancer and disease progression estimation.

1.2.1 Lung segmentation

Figure 1.2: Illustrations of juxtapleural lung nodules.

Lung segmentation is a critical precursor in a pulmonary nodule CAD system, where

the lung field is extracted and becomes the region of interest for detection and/or diagnostic

tasks. This step sets the detection sensitivity upper bound for the whole system, as nodules in

a “non-lung-field” region will not be found and analyzed. Juxtapleural nodules are one type
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of pulmonary nodule that is commonly missed. While many works [AS04, AEF07, AF08]

describe automatic lung segmentation of thoracic CT images, only a few explicitly handle

the presence of juxtapleural nodules. Among the existing work that focus on juxtapleural

nodules, most rely upon one (or more) predefined parameters, making algorithm performance

sensitive to the variations in lung nodule shape and size. For instance, a “rolling ball”

method has been employed to re-include the juxtapleural nodules for lung segmentation

[AS04, BKN05, RDF08], comprising a morphological close operator with a round-shape

structuring element. The effectiveness of the morphological operations is hence dependent

on the predefined size of the selected “ball.” As juxtapleural nodules vary in size and shape,

selecting an optimal size that works well in all cases is difficult [BGM00, PRC08]. For

example, a smaller sized structuring element will fail to capture larger-sized juxtapleural

nodules; conversely, a large structuring element will cause over-segmentation and distortion

of the local region. Moreover, evaluations in these works are often lacking [PRC08] or employ

small test sets (e.g., dozens of cases) not fully representative of the range of characteristics

of such nodules (e.g., variations in size, shape). Thus, it is highly desirable to have a novel

parameter-free lung segmentation method, where no hand-picked parameter is required, to

address the issues related to juxtapleural nodules.

1.2.2 Lung nodule classification and diagnosis

Dependent on the CT scanner and other real-world acquisition conditions, variability exists

in image quality (e.g., signal to noise ratio, resolution) despite using published screening

and diagnostic protocols. Although many methods have been developed for the lung nodule

classification task, challenges exist with consistent performance when dealing with external

datasets [SCL16]. One explanation for this failure is that the performance of machine learning

methods heavily depend on the choice of representation for image content. Many traditional

methods (e.g., support vector machines) rely heavily on feature engineering, which involves

data preprocessing, transformation, and hand-crafted feature designs to identify discrimi-

native features [BCV13]. Intensity, morphological, and texture features are often used to

extract representations for lung nodules [AAW03, ZFF11]. One critical question raised is
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how to define the optimal set of features that can encode the characteristics of a lung nodule

[CHR15]. Another problem is that such low-level features may not fully represent the infor-

mation of the image or capture the underlying statistical properties, given the complexity

and heterogeneity of the data [SS13]. Present applications of machine learning methods

further highlight a weakness of such approaches, as they are not able to adaptively learn the

representation and discriminative information derived from raw data. This weakness limits

their ability to be generalized to different tasks and using heterogeneous datasets. Oppor-

tunities thus exist to adapt and expand existing deep learning methods and technologies to

learn complicated hierarchical abstractions and representations for lung nodules in a more

data-driven fashion.

A barrier to adopting deep learning methods is their “black-box” approach, wherein in-

terpreting and understanding how and why a model works remains a significant challenge

[Lip16]. Being able to interpret the deep model is important for domain experts (e.g., radiol-

ogists) to understand the methods, integrate it into workflow, improve model performance,

and ultimately enable clinical adoption. The problem lies, in part, in the fact that features

generated by a deep learning method are unlike the conventional semantic features used

by experts. For instance, lobulation and spiculation are widely used to describe nodules

and diagnose lung cancer in CT images [HM16]. These semantic features represent domain

knowledge long used in imaging interpretation, and may be helpful in building more robust

prediction models. Thus, it is desirable to have a novel methods to provide interpretable

deep learning methods for lung cancer diagnosis in conjunction with the domain knowledge

captured by semantic features.

1.2.3 Cancer progression estimation

How fast lung caner progresses from a preclinical to an observable clinical state, the mean

soujourn time (MST), defines how soon a lung cancer can be practically detected through

imaging. Thus, MST is widely used [Duf05a] in the context of population screening, cal-

culating the optimal interval between screens and estimating the extent of overdiagnosis.
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MST varies given different imaging modalities and patient cohorts, and patients with higher

MSTs (i.e., at lower risk of cancer) should have longer screening intervals. Individualized

temporal models estimating MST can therefore help move screening recommendations from

a traditional “one-size-fits-all” approach to more persoanlized policies. But several chal-

lenges exist in leveraging retrospective screening data to estimate MST. First, observations

for disease states made in clinical practice are often subject to interpretation error, such as

when radiologists incorrectly miss a cancerous nodule. Failure to model such observation

error will bias any MST estimation [UHC10]. Second, missing or partial observations are

common in clinical practice. For instance, some patients may miss a scheduled screening

exam or undergo care at another facility where data is not shared. Third, the interval be-

tween screening exams is frequently irregular. Thus, the discretization of continuous time

information results in the loss of valuable information [DCT95]. Fourth, the sample size

of certain observed disease states may be very small (i.e., sparse), thus making estimation

difficult. For example, patients will usually undergo an intervention if an early stage cancer

is detected, thereby removing them from further observation. As a result, transitions to later

states have fewer individuals with which probabilities can be estimated. Disease progression

estimation models for periodic screening data are needed to overcome theses challenges.

1.3 Contributions

To address the issues described in Section 1.2, this work presents novel machine and deep

learning methods to bridge the gap between screening and early detection of lung cancer.

Three specific aims are defined:

1. To develop a parameter-free lung segmentation method. This novel bidirectional chain

code method corrects the border of lung lobes to avoid excluding lung nodules attached

to the boundary while minimizing over-segmentation error.

2. To develop robust and transferable lung nodule detection models and interpretable lung

cancer diagnosis models using deep convolutional neural networks (CNNs). A well-known

7



limitation of current work is that most approaches do not generalize, with significant

decreased performance with unseen datasets. A hybird ensemble convolutional neural

network was first developed to detect lung nodules, combining the VGG, residual and

densely connected module design. This work has been shown to achieve comparable and

consistent results in independent datasets without fine-tuning. In addition, a new deep

hierarchical semantic neural network (HSCNN) is described, the first such architecture

for lung cancer diagnosis with interpretable radiology semantic features. This HSCNN

framework predicts low-level radiologist-defined semantic features concurrent to predict-

ing nodule malignancy, all in a single framework. Notably, predictions from this semantic

neural network can be used to understand how the model works, in addition to serving

as a semantic feature generator for unlabeled imaging datasets.

3. To develop a novel statistical multi-state disease progression estimation model. This model

jointly models disease progression with observation error through the use of a continuous-

time Markov model. A Bayesian approach is used to overcome problems caused by missing

observations and data sparsity. This estimation model makes it possible to determine

suitable screening periods more accurately. It also serves as the foundation to move

towards individualized screening, where personalized screening paradigms.

Towards Aim 1, a method was developed for delineating the lung field ROI by auto-

matically segmenting the lung lobe, correcting the border to avoid excluding nodules close

to the lung boundary while minimizing possible over-segmentation. Notably, the algorithm

addresses issues related to juxtapleural nodules. The developed method comprises three

steps: 1) preprocessing to generate an initial lung lobe mask using adaptive thresholding; 2)

detecting inflection points (both horizontally and vertically) to obtain all major concave and

convex points along the lung lobe boundary using a bidirectional chain encoding method;

and 3) correcting the lung boundary border using a support vector machine (SVM) to iden-

tify relevant pairwise connections based on extracted features, including position, concavity

rate, and distance information.
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For Aim 2, a 2.5D nodule detection model was created to classify pulmonary nodules

versus non-nodule objects using a CNN. The method achieves robust and transferable re-

sults across different datasets by adapting an ensemble of state-of-the-art CNN architecture

designs, including stacked convolution layer design, residual blocks, and densely connected

modules. A hierarchical semantic deep convolution neural network was designed to differ-

entiate benign versus malignant lung cancer. This network not only predicts lung cancer

likelihood, but also outputs low-level semantic sub-tasks (e.g., spiculation and nodule diame-

ter) simultaneously, which can be used to interpret and understand how the overall network’s

predictions. The information of each sub-task is also fed into the final malignancy prediction

using a jump connection.

Lastly, for Aim 3, a 3-state progression model for lung cancer was developed (no-cancer,

preclinical, clinical states). The transition between cancer states is represented in a continuous-

time Markov model, which permits estimation of unobserved states and maintains the inter-

val between screens unique per individual. A Bayesian framework is used to jointly estimate

disease progression given observation error. The model also considers the inclusion of co-

variates for individualized disease progression rates estimation.

Collectively, the design and implementation of these Aims results in working imaging

features and disease prediction models presenting a deeper understanding of lung cancer and

improved diagnosis of disease.

1.4 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 provides background on lung cancer mod-

eling, computer-aided detection/diagnosis, existing works, and current limitations. Chapter

3 describes Aim 1’s work, a novel lung segmentation method using bidirectional chain cod-

ing and SVM focused on handling juxtapleural nodules. Chapter 4 details Aim 2, with two

deep learning models for lung nodule detection and diagnosis, highlighting transferability

and model interpretability. A novel Bayesian model is introduced in Chapter 5, addressing

Aim 3 and a model for lung cancer progression and estimating mean sojourn time. Chapter
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6 concludes by summarizing the results of this study and discussing the limitations of this

work and future directions.

10



CHAPTER 2

Background

2.1 Lung Cancer

Lung cancer is the leading cause of cancer-related mortality worldwide [SJ15]. The American

Cancer Society estimates that lung cancer accounts for 27% of all cancer-related deaths in

2015; and the 5-year survival rate is only 17% on average. One major fact related to this low

survival rate is that only 15% of lung cancers are diagnosed in an early stage [SJ15], when

no obvious cancer symptoms are evident. In contrast, survival increases upwards of 54% if

the lung cancer is detected early on. Early detection of lung cancer is a driving issue, with

research ongoing to optimize identification of nascent disease.

2.1.1 Computed tomography for lung cancer screening

Computed tomography (CT) is now the most widely used screening modality to detect early

stage lung cancer. In 2011, the landmark National Lung Screening Trial (NLST) showed

a 20% mortality reduction for individuals with lung cancer who underwent screening using

low-dose CT (LDCT) relative to plain chest radiography [Tea11]. Subsequently, based on

this evidence the United States Preventative Services Task Force (USPSTF) gave a Grade

B recommendation that annual screening for lung cancer with low-dose CT (LDCT) be

performed in adults ages 55-80 who have a 30 pack-year (number of packs of cigarettes smoked

per day multiplied by the number of years an individual has smoked) smoking history and

either currently smoke or have quit within the past 15 years [For15]. This policy has spurred

development and implementation of new lung cancer screening programs using LDCT.

Interpretation of CT scans is both labor-intensive and potentially challenging. Early
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stage lung cancer manifests itself as pulmonary nodules, which appear as small round- or

oval-shaped opacities on CT studies with diameters less than 30mm [HBM08]. With a grow-

ing number of CT scans to read, as well as the increasing resolution (e.g., typical thoracic CT

scans presently have 200-500 slices), interpreting such large sets of data may lead to visual

fatigue and/or strain, contributing to a decrease in diagnostic accuracy [KBC12]. In addi-

tion, less experienced radiologists have marked variability in detecting subtle lung cancers,

as interpretation heavily relies on past experience. Substantial variability in the performance

between radiologists has been reported for the detection of lung nodules [ARK09]. The rich

airway and vessel structure further complicates the interpretation of CT scans. Even among

experienced radiologists, CT screening yields a large number of false positives, leading to a

severe over-diagnosis. For example, in the NLST, a total of 96.4% of the positive screening

results in the low-dose CT group were found to be false positives [Tea11]. The benefits of CT

screening for detection of early lung cancer is likely to be reduced by the high false positive

rates due to benign nodules [MFF03]; reducing these false positives and identifying patients

who need intervention could reduce costs and morbidities associated with unnecessary in-

vasive interventions [MW14]. Thus, it is increasingly imperative to distinguish benign from

malignant nodules [Doi05]. However, there are substantial challenges related to differentiat-

ing benign from malignant nodules, and indolent vs. aggressive cancers [MW14]. As such,

computer-aided diagnosis (CAD) systems have been actively studied to assist physicians in

solving this problem.

2.2 Computer-aided Diagnosis (CAD)

Computer-aided diagnosis (CAD) is a major research area in medical imaging [Doi05, MW14].

The basic idea of CAD is to use the quantitative output from an algorithm (computer soft-

ware) as the “second opinion” to assist the radiologist in interpretation tasks related to

disease detection [Doi07]. CAD has two broad goals: 1) to improve the radiologists’ reading

accuracy and consistency; and 2) to shorten the image interpretation time. The general

design of CAD is to detect (locate) suspect disease regions (e.g., a lesion) in one or several
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medical imaging modalities/images; and/or to generate a likelihood score for the presence of

a certain disease. These two designs correspond to CAD for disease detection and CAD for

differential diagnosis [Doi05]. The basic technologies involved in these imaging-based CAD

schemes are [Doi05]: 1) image processing (segmentation) to extract and detect abnormalities;

2) image feature generation to quantify abnormal candidates; and 3) classification of candi-

dates through image features to differentiate normal and abnormal (benign and malignant)

tissue.

CAD has been developed in various imaging modalities such as magnetic resonance imag-

ing (MRI), CT, projectional radiography, nuclear medicine, ultrasound, and digital pathol-

ogy imaging; and is used for all parts of the body, including the head, thorax, heart, breast,

liver, prostate, and bones. Examples of CAD schemes developed in the past include patho-

logical brain disease detection in MRI [ZWW10, ZWW11, ZDJ15]; detection/diagnosis of

breast lesions on mammograms [GAG08] and MRI [NNC10]; detection of colorectal polyps

in CT [NY07] and colon capsule endoscopy [MFF14]; detection/diagnosis of lung nodules in

chest x-ray and CT [RDF08, CC13]; detection of coronary artery disease in CT [AGS10];

and identification of subjects with Alzheimer’s disease in MRI [ZWD14, ZDP15]. Typically,

each CAD system is tailored for a specific disease and imaging modality. In general, these

CADs depend on a conventional machine learning scheme, segmentation of region of interest,

feature extraction, and classification to make the final decision.

2.2.1 Automatic lung nodule detection and diagnosis

CAD [CC12, SJG15, PZL08] systems have been explored, establishing the potential to

improve lung nodule detection/diagnostic accuracy in CT images. Previous studies have

shown that CAD increases lung nodule detection rates [RLP05]; decreases false-positive

rates [DMM06]; and compensates for deficient reader performance in the detection of the

smallest lesions and of nodules without vascular attachment [ZTB13]. A computer-aided

detection system may address elements of the following tasks: lung segmentation, nodule

candidate generation, feature extraction, and classification.
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Figure 2.1: Three pulmonary nodule types: isolated, juxtapleural, and juxtavascular nodules:

(a) CT slice with isolated nodule A; (b) CT slice with juxtapleural nodule B; (c) CT slice

with juxtavascular nodule C; (d) magnified view of isolated nodule A; (e) magnified view of

juxtapleural nodule B; and (f) magnified view of juxtavascular nodule C.

Pulmonary nodules can be grouped into three categories (Figure 2.1): isolated, juxtapleu-

ral, and juxtavascular. Isolated and juxtavascular nodules lay within the center of the ROI

and are typically segmented without issue. But when lung segmentation fails to correctly

define the lung boundaries, juxtapleural (or pleura-connected) nodules can be missed, and

normal chest tissue outside of the lung can be included incorrectly as part of the ROI. In fact,

evaluation of one CAD system found that 17% of all true nodules are missed due to poor

lung segmentation [AS04]. Accurate lung segmentation is thus imperative to ensure accu-

rate CAD system performance: the ability to identify true nodules ultimately sets the upper

bound on CAD performance [RDF08]. Semi-automated segmentation methods [HAG82]

have been previously employed, but the process of having an individual review each study

is time consuming and arguably not scalable. Thresholding techniques [BGS03, KKC05]

are widely used for initial lung field segmentation. Ross et al. [RED09] used adaptive
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thresholding to generate the lung field. Active contours (snakes), level sets (LS), and other

deformable boundary models [CV01] are also used to segment the lung lobe regions. A 2D

geometric level set active contour method is employed in [SNM07]. The left and right lung

lobes are automatically segmented with lobe boundaries initialized as the contour. Annangi

et al. [ATR10] incorporated a prior shape term into a region-based active contour method

and segment lung fields with a term describing edge feature points and a term representing

region-based data statistics in x-ray images. 3D region growing and connected-component

analysis is used in [YHS05] to extract the lung region. Ge et al. [GSC05] employed a k-means

clustering method to perform pixel-wise lung filed extraction.

While many algorithms perform automatic lung segmentation of thoracic CT images, only

a few explicitly handle juxtapleural nodules; however, evaluation is often lacking [PRC08]

or a small test set not fully representative of the range of appearance of such nodules (e.g.,

variations in size, shape) is used. Hu et al. [HHR01] presented a fully automated lung

segmentation method using combinations of morphological operations to ensure the inclusion

of juxtapleural nodules. The effectiveness of the morphological operations was dependent

on the shape and the size of the selected structuring element. As juxtapleural nodules

vary in size and shape, selecting an optimal size and shape that works well in all cases is

difficult. For instance, a smaller sized structuring element will fail to capture larger-sized

juxtapleural nodules; conversely, a large structuring element will cause over-segmentation

and distortion of the local region. Similarly, a “rolling ball” method has also been used [AS04,

BKN05, RDF08], comprising a morphological close operator with a round-shape structuring

element. Likewise, the size of the ball is hard to optimize across the variation observed in

juxtapleural nodules, as noted in [BGM00, PRC08]. Pu et al. [PRC08] propose a point-wise

lung segmentation algorithm, called adaptive border marching (ABM), designed to address

juxtapleural nodules. An inclusion criterion was defined based on the ratio between the

Euclidean distance of two points on the boundary and the maximum height perpendicular

to their connecting line segment. This ratio was used to adaptively adjust the size of a

search step for choosing point pairs by comparing itself to a fixed threshold. For all point pair

candidates inside one concave region, only the outermost one (which forms the biggest convex
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hull) was connected (this process is equivalent to the gift-wrapping algorithm [NSN12]).

Selecting a threshold parameter to control over-segmentation across all cases is problematic.

Varshini et al. [VBA12] extended ABM by merging two lung segmentations obtained using

a small threshold and a large threshold separately, but provided no evaluation. Kim et al.

[KKN03] also presented a contour-marching method to avoid peripheral nodule exclusion

near the lung boundary. This method tracked the lobe boundary to detect suspicious areas

with texture features similar to a true nodule. A region growing method was applied to

each identified area to re-include it as part of the lung region. Markedly, texture features

alone are unable to detect all juxtapleural nodule regions along a boundary. Defining the

search window and threshold for region growing method are also inherent challenges to this

approach. Ye et al. [YLD09] used a Freeman chain code to correct the contour of a lung lobe.

For all pixels along the boundary, chain codes are used to detect critical points by examining

the transition between concave and convex points, determined by a predefined threshold

value. All critical point pairs were then connected to form a revised border. Using a preset

threshold to define concave/convex regions may not be effective across the natural variation

seen in imaging studies and anatomy; and connecting all detected critical point pairs may

lead to over-segmentation. Choi et al. [CC12] detailed a similar chain code method, but

rather than detecting transitions to find critical points, gradient information was extracted

from the chain code and only connecting point pairs whose change in gradient value is below

a given threshold value are considered. Both methods detect convexity changes in only

the horizontal (or vertical) direction, which is in general not sufficiently robust to correct

under-segmentation (as illustrated in Section 3.2). Ko et al. [KB01] use a curvature-based

method to correct the initial lung mask. The curvature for each point on the boundary

is calculated to detect a rapid change and a segment is inserted to correct such regions.

As can be seen from the above methods, all rely upon one (or more) predefined parameters

(which may vary between CT scans), making algorithm performance sensitive to the normally

observed distribution in lung nodule shape and size. Moreover, little validation is given on

the effectiveness of the proposed border correction methods on clinical data. This highlights

the needs for the proposed method, which will be presented in Chapter 3 and assessed over
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a large dataset. This proposed approach eliminates the need for predefined parameters in

order to operate on the full spectrum of nodule sizes/shapes.

After segmenting the lung lobes, nodule candidates were identified inside the lung fields.

Multiple gray-level thresholding techniques [MHR10, CC12] combined with morphological

opening operations were applied to segment suspicious subjects. Pixel intensities ere trans-

formed to Hounsfield units, with values for soft tissues falling into known ranges. Opening

operations were used to separate nodules with attached vessels or airways. After multiple

thresholding, Choi et al. [CC12] adopted rule-based pruning to remove obvious non-nodule

objects based on maximum and minimum volumes, radii, and areas. The rules were de-

fined corresponding to the purpose of detecting lung nodules between 3 to 30 millimeters.

McCulloch et al. [MKM04] proposed a method employing hybrid multi-stage models. A

three-level modeling architecture consisting of anatomy (top level model), shape (middle

level model), and signal (bottom level model), identified and classified different regions such

as lung nodules, blood vessels, and lung parenchyma. Domain knowledge was built into the

mathematical models to quantify different regions. A Bayesian model selection architecture

determined the most probable model for each region inside the lung lobes comparing against

existing representations. Regions were considered to be suspicious nodule candidates if the

nodule model provided the highest probability among all models. Nodule enhancement filters

were also designed to apply as a preprocessing step prior to enhancing the low-contrast nod-

ules or to separate the nodule candidates with other attached structures. Ge et al. [GSC05]

identified nodule candidates using a weighted k-means clustering segmentation with two

output clusters, nodule and background clusters. Image features were calculated pixel-wise

from both the original image and a median-filtered image, and were used as the input for the

cluster. The classification criterion for each pixel was the ratio of distances from the feature

vectors to the center of these two clusters. Paik et al. [PBR04] developed a surface normal

overlap score-based method as an enhancement filter for nodule candidate detection. This

method was based on a Hoffman transform and each voxel generated a score proportional to

the number of surface normal lines that pass through a neighborhood of the voxel. Li et al.

[LS03] proposed a selective enhancement filter to enhance lung nodules and suppress airways,
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Table 2.1: Review of current CT features used for lung nodule classification.
Type Feature Name Type Feature Name

Morphological feature Area Morphological feature Eccentricity

Morphological feature Diameter Morphological feature Perimeter

Morphological feature Circularity Morphological feature
Distance to center

of current lung

Morphological feature Compactness Morphological feature Bounding box

Morphological feature
Principle axis

length
Morphological feature

Projection

elongation

Morphological feature
Projection

compactness
Morphological feature

Principle axis

ratio

Morphological feature Mean breadth Morphological feature Euler-Poincare

Intensity features Mean inside Intensity features Mean outside

Intensity features Minimum value inside Intensity features Maximum value above

Intensity features Minimum value outside Intensity features Maximum value below

Intensity features Contrast Intensity features Standard deviation inside

Intensity features Standard deviation outside Intensity features Skew inside

Intensity features Kurtosis inside Intensity features Moment 2-7

Gradient features
Radial-deviation

mean outside
Gradient features

XY gradient magnitude

separation inside

Gradient features
Radial-deviation

mean inside
Gradient features

Radial-deviation standard

deviation inside

Gradient features
Radial-deviation standard

deviation separation
Context features

Distance to top

of the lung in Z

Context features
Distance to carina

in X, Y, and Z
Context features

Distance to

pleural wall

vessels, and other non-nodule tissues. In [PBR04, LD04], nodule candidates with a small

size were enhanced using a series of 3D cylindrical and spherical filters. Template matching

[LHF01] was also used to detect circular and semicircular nodule candidates. Bae et al.

[BKN05] used spherical-shape and morphological matching filters to enhance juxtavascular

nodules, with four different kernel sizes ranging from 3 to 30 mm.

Conventional methods [LHF01, LS03, LD04, BKN05, MHR10, CC12] employed feature

engineering to define meaningful features to characterize nodules (Figure 2.2 illustrates lung

nodules in CT images). The feature extraction step generated quantitative characteristics

(features) on the lesion candidates. The classifier took these features (of the training data)

as input to search for an optimal boundary in the feature space to separate nodule and

non-nodules (or benign and malignant). The accuracy of the boundary highly relied on the
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Figure 2.2: Illustrations of lung nodules in CT images [DBS15].

Figure 2.3: Illustrations of malignant and benign nodules: R1 are malignant nodules; R2 are

benign nodules.

quality of the extracted features. For this reason, much of the actual effort for the CAD

system has been put into the design of the preprocessing pipeline and feature extractor to

result in representations to best support the subsequent classifier. A large number of types of

features has been developed, including morphological, texture, gradient-based, and context

features. Morphological features quantify shape-based information of the candidates using

the candidate segmentation mask. Texture and gradient-based features captured the visual

patterns and intensity information of the regions inside or outside the nodule candidate from
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the voxel intensity values of the CT images. Context features measured the relative position

information of the candidates. Table 2.1 summarizes some commonly used features. Feature-

based classifiers were then used to perform the detection task. The purpose was to find the

optimal boundary in the high-dimensional (transformed) feature space to separate the desired

classes using methods such as support vector machines [YLD09], decision trees [ZFF11],

artificial neural networks [CZX12], logistic regression [YLD09], linear discriminant analysis

[MHW99], etc. Froz et al. [FCS17] employed a hybrid model to extract the texture features

of lung nodule candidates in CT scans using artificial crawlers and rose diagram methods.

The support vector machine (SVM) classifier with a radial basis kernel was adopted to

detect lung nodules. Jing et al. [JBL10] also classified lung nodules using SVM. The nodule

candidates were characterized based on shape, geometry, grey level and texture features after

applying a rule-based approach to exclude obvious blood vessels from the images. Tartar

et al. [TKA13] extracted statistical features using 2D principle component analysis and

geometric features using regional descriptors for nodule candidates. The best features were

selected with minimum redundancy maximum relevance method. Lung nodules were then

detected using artificial neural network with the best features as input. Recently, deep

learning methods have also been applied to lung nodule detection task and shown superior

performance compared to conventional methods. Ginneken et. al. [GSJ15] used a CNN

trained for a natural image recognition task off-the-shelf to extract image features, and a

support vector machine was built for lung nodule detection. Lo et. al [LCL95] applied CNNs

for the pulmonary nodule detection in 2D chest radiography images. Setio et. al. [SCL16]

employed a 2D CNN and fused multi-views on CT images for nodule detection. Although

these works have deployed convolutional neural network for nodule detection, but very few

evaluated the transferability and robustness of the developed model using external datasets.

Most studies trained and validated the models on the datasets collected from the same source,

and no external validation is provided. It is challenging for conventional model-based lung

nodule classifiers trained on one dataset to achieve comparable performance on a completely

independent dataset. There are three reasons for such difficulties: 1) image quality (signal to

noise ratio, resolution) varies significantly depending on the imaging hardware and protocol
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followed; 2) lung nodules appearance are largely heterogeneous with a wide variation in

shapes, sizes, and types; and 3) nodules from different categories are highly imbalanced

and have different distributions depending on the datasets [SCL16]. Models with better

transferability is highly desirable and needed for practical clinical usage.

After detecting the lung nodules, a lung nodule diagnosis task was usually performed

after to differentiate malignant from benign ones. Figure 2.3 presents examples of benign

and malignant nodules. A number of studies have looked at this task, which can be grouped

into three categories based on the source of characteristics employed: 1) the diagnosis of lung

nodules based on nodule features in single CT scan as shown in Table 2.1; 2) the diagnosis of

lung nodules based on growth rate across multiple longitudinal CT scans; and 3) the diagnosis

of lung nodules based on the fusion of positron emission tomography (PET) and CT images.

This dissertation focuses mainly on the first category using single CT scans. Armato et

al. [AAW03] segmented the lung nodule using multilevel thresholding techniques; extracted

morphological and gray-level features; and classified nodules as benign or malignant using

linear discriminant analysis. Gurney et al. [Gur93] developed a model based on Bayesian

analysis to predict the malignancy probability of lung nodules with semantic radiographic

features determined by radiologists and clinical findings. This study was reported to achieve

significantly better results compared to human readers. However, an automated method

to quantify the semantic features is missing. Kawata et al. [KNO98] presented a method

to classify lung nodules as benign or malignant by measuring 3D surface characteristics

using curvature and ridge lines. Kawata et al. [KNO01] developed a method employing

internal and surrounding structure features to distinguish malignant and benign nodules.

After selecting the optimal subset of features, classification scores were obtained using a

linear discriminant classifier. Dilger et al. [DUJ15] improved nodule diagnosis accuracy by

using lung parenchymal surrounding features as additional information. 32 parenchymal

features, 8 nodule features, and 5 global features were employed and an artificial neural

network (ANN) classifier used to classify the nodule. Zinovev et al. [ZFF11] employed

both texture and intensity features using belief decision trees and a multi-label approach to

perform lung nodule classification. Way et al. [WSC09] segmented lung nodules using k-
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means clustering, combined nodule surface features together with texture and morphological

features, and used linear discriminant analysis to diagnose malignant lung cancers. Notably,

the pertinent portion of these extracted features, such as volume and shape, are sensitive

to the underlying variability arising from the lung nodule segmentation results. Thus, using

segmented regions may lead to inaccurate features, with downstream erroneous outputs into

the classifier [SZY17]. Another critical question raised by this type of CADx design was how

to define the “optimal” subset of features that can best encode characteristics of the lung

nodule [CHR15]. The selected best feature set usually depends on the the training dataset,

feature selection and classification methods, and is hard to achieve comparable results on

different settings.

To overcome this issue, deep learning methods [SZY15, SZY17, CHR15, KWC15, HHH15],

particularly convolutional neural networks (CNNs), have recently been used for lung nodule

diagnosis models, with promising results. These deep learning models are capable of adap-

tively learning image representations data-driven, taking raw image data as input without

relying on a priori nodule segmentation masks or handcrafted feature designs. Kumar et

al. [KWC15] first trained an unsupervised deep autoencoder to extract latent features from

2D CT patches. These extracted deep features were combined with decision trees to predict

lung cancer. Hua et al. [HHH15] employed supervised techniques with a deep belief network

and CNN to train models to classify lung nodules as benign or malignant. Their models

outperformed two baseline methods: using scale-invariant feature transform (SIFT) features

and local binary patterns (LBP) [FAG11]; and using fractal analysis [LHL13]. Ciompi et al.

[CHR15] used pre-trained CNN models to classify candidates as peri-fissural nodules (PFNs)

or non-PFNs. Deep features were extracted from the pre-trained model for three 2D image

patches in axial, coronal, and sagittal views. An ensemble of deep features and a bag of

frequency features were then used to train supervised binary classifiers for the PFN classifi-

cation task. Shen et. al. [SZY15] designed a multi-scale CNN using 3D nodule patches at

three scales to perform the lung cancer diagnosis task. This study was further extended in

[SZY17] by adding a multi-crop pooling strategy to improve model performance. Markedly,

these cited works use deep learning as a “black-box” and are not able to explain what repre-
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sentations have been learned or why the model generates a given prediction. This low degree

of interpretability arguably hinders domain experts, such as radiologists, from understanding

how the models work and ultimately impedes model adoption for clinical usage. As discussed

in [JCO15], improved interpretability is helpful to improve the radiologist-CAD interaction

to allow radiologists to calibrate their trust in the CAD system. Moreover, human domain

knowledge regarding the differentiation of benign versus malignant nodules is able to account

for the wide scope of observed lung nodule heterogeneity. Nonetheless, domain knowledge is

presently not incorporated into deep learning frameworks.

A number of radiologist-quantified features, derived from CT scans, have been considered

diagnostically relevant to the lung nodule malignancy assessment [KPG15, ECM00]. These

features are referred to as semantic diagnostic features in this study. Examples of such

semantic features are nodule spicularity, texture, lobularity, and margin. Although the

definitions of these features are qualitative in nature, studies have shown that these semantic

features can be quantified numerically using low-level image features [KC15]. Hancock et al.

[HM16] demonstrated that machine learning models can achieve high prediction accuracy for

lung cancer malignancy using only semantic features as inputs. In addition, these semantic

features are radiologically meaningful in nature and widely accepted by radiologists. As

presented in Chapter 4, an opportunity exists to incorporate these semantic features into

the design of deep learning models, combining the advantages of both.

2.3 Deep Learning Methods

Traditional machine learning methods are limited in their ability to process natural data in

their raw form (raw image pixels), thus relying on feature engineering and domain knowledge

to identify and extract meaningful values from the raw data into learnable representations

[LBH15]. In contrast, representation learning is a class of methods able to automatically

discover the optimal representation of the raw data and derived features to facilitate tasks

related to classification/prediction/detection [BCV13]. Deep learning is one type of represen-

tation learning method that attempts to transform raw data into hierarchical representations

23



by composing multiple levels of nonlinear processing modules [BCV13, Ben09]. The key as-

pect of deep learning is that these multiple layers of features are learned from raw data

using a general-purpose learning procedure, instead of being designed in a handcrafted fash-

ion by engineers [LBH15]. Deep learning methods have been applied to various detection

and classification tasks and have significantly improved the state-of-the-art in myriad do-

mains, such as speech and signal recognition [DMH10, DSY10, SLY11], object recognition

[KSH12, KTS14] and natural language processing [MDK11]. This success also demonstrates

that the adaptive representation learning ability of deep learning is better able to capture

and extract the intricate structures in high-dimensional data relative to traditional feature

engineering. Deep learning may achieve more success in the future due to the fact that it

requires less engineering by hand [BCV13, Ben09].

Various deep learning methods have been proposed, including deep belief networks [HOT06,

BLP07], deep Boltzmann machines [SL10], recurrent neural networks [FN93, Sut13], stacked

autoencoders [Ben09, HS06] and convolutional neural networks [LBB98, KSH12]. The last

method, which is a supervised learning method, receives the most attention in this disserta-

tion, and is introduced in the subsequent sections.

2.3.1 Learning a deep network

Supervised learning refers to inferring functions from labeled training data [MRT12]. For

example, suppose we want to build a system to classify images that contain dogs or cats. We

would first collect a set of labeled images, containing dogs or cats. The system will read each

image and output two classification scores, one for each category. During training, we tune

the system so that it produces the highest classification score when it categorizes the image

correctly. This training is performed by iteratively minimizing a loss function to adjust the

weights of the deep learning system via gradient decent optimization and backpropagation.

Key concepts include the following:

• Loss function. A loss function is a function that quantifies the agreement between

the desired classes and prediction results. The training process seeks to minimize a
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loss function.

• Weights. Weights are adjustable parameters (real numbers) that define the input-

output function of nonlinear modules. In a typical deep learning system, there may be

hundreds of millions of weights, which are learned using a large set of labeled training

samples [LBH15].

• Gradient descent. To properly adjust the weights to minimize the loss function, a

gradient will first be computed for each weight, aggregated into a gradient vector. The

opposite direction of the gradient vector indicates the direction of the fastest descent

for the averaged total loss. Thus, the weight vector is adjusted in the direction of the

negative gradient. In practice, each optimization step only uses a batch of training

samples, instead of all samples, to compute the outputs and errors. This procedure

is named mini-batch (stochastic) gradient descent. The process is repeated for many

small batches of the training data until the average loss function achieves a minimum

value. Mini-batch gradient decent has been shown to have a faster convergence rate

compared to the general gradient descent method [BB08].

• Backpropagation. The backpropagation procedure is used to compute the gradients

of a loss function with respect to the weights of the multilayer stack of modules (deep

learning architecture) through recursive application of the chain rule. The intuition

is that the gradient of the objective with respect to the input of a module can be

computed by working backwards from the gradient with respect to the output of that

module [LBH15]. In a deep leaning system, the gradients from the top output layer

to bottom input layer can all be computed and propagated through backpropagation

equations.

2.3.2 Convolutional neural networks

The architecture of convolutional neural networks is specially designed for processing image

data (multiple array data). This design is able to preserve the original data structure as well

as to generate hierarchical representations. Figure 2.4 illustrates a typical CNN consisting
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Figure 2.4: An example of a convolution neural network architecture.

of multiple stages of processing layers from left to right. The CNN typically has four types

of layers: a convolutional layer, a pooling layer, a fully connected layer, and a classification

layer. The convolutional and pooling layers are central to the design, and typically occur in

the first few stages (as shown in Figure 2.4). The convolutional layer exploits the properties

of natural signals (e.g., images) by assuming local connectivity, weight sharing, and pooling.

Key concepts are as follows:

• Convolutional layer. As shown in Figure 2.4, convolutional layers are organized into

feature maps, designed based on the principle of local connectivity and weight sharing.

Local connectivity refers to the fact that each unit (neuron) within a feature map

is connected only to local patches of the feature map in the previous layer through

a set of weights, called a filter bank [LBD90, LBH15]. Within a feature map, one

filter bank is shared among all units; this represents the weight sharing paradigm.

Moreover, different filter banks are used for different feature maps. The reasoning

behind local connectivity and weight sharing is to minimize the number of parameters

while exploiting the fact that the local neighborhood of pixels is highly correlated,

and local statistics of images are location invariant [LBB98, LBH15]. The weighted

sum for each unit is then passed into a nonlinear transformation function, called an

activation function. The activation function enables the nonlinear transformation for

the information passed to subsequent processing layers.
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• Pooling layer. The pooling layer performs a down-sampling operation to merge

(semantically) similar features from the convolutional layer into one. A unit within a

pooling layer takes a local patch from a previous feature map (convolutional layer) as

input and computes the maximum or average value of the patch as its output. Thus,

it reduces the dimension of the representation by reducing the number of parameters

needed in subsequent layers and improves the robustness of the representations by

establishing invariance to small shifts and distortions.

• Fully connected layer. Units in this layer are fully connected to all units in the

previous layer, as seen in a regular neural network (i.e., multiple layer perceptron).

• Classification layer. This layer defines how to compute the prediction score using

all outputs from previous layers. Typical classification layers are implemented using a

softmax classifier or linear support vector machines [NNF13]. The training algorithm

for CNN is the same as general supervised training steps introduced in Section 2.3.2

with gradient descent and backpropagation.

2.3.3 Deep learning in medical image analysis

Deep learning techniques have achieved significant success in object detection tasks of natural

images, and more recently have been applied to a variety of medical image analysis tasks. But

a major challenge in the clinical domain is the availability of labeled datasets. For natural

image recognition tasks, much of the success comes from access to copious amounts of labeled

training data (e.g., millions of tagged images), which enable the training of complicated and

deep neural networks with millions of parameters. In the medical domain, the amount of

labeled training data is much smaller (e.g., hundreds of medical imaging scans). Another

issue in clinical imaging applications is the 3D structure of most medical images. A typical

magnetic resonance imaging (MRI) or CT scan contains multiple slices, with disease regions

inside the scan relatively small compared to the whole image stack (and of varying 3D size).

Considering that cross-sectional imaging slice thickness is always much larger than the in-

plane pixel size, efficiently capturing 3D information in a deep neural network design is
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complex.

Several studies have used deep learning techniques to detect/segment abnormal disease

regions on 2D medical images. Su et al. [SLX15] applied a CNN to segment breast can-

cer regions in histological images. Similarly, Cruz-Roa [CBG14] also employed a CNN to

detect invasive ductal carcinoma tissue regions in whole slide images of breast cancer. Er-

tosun et al. [ER15] developed an automatic grading system for gliomas using assembled

CNNs in digital pathology images. Cruz-Roa [COM13] et al. proposed a CNN-based deep

learning architecture to detect basal-cell carcinoma in digital pathology images. Ciresan et

al. [CGG12] applied similar techniques to train a CNN to segment neuronal membranes

in electron microscopy images. Large numbers of 2D training data were obtained in these

studies by randomly cropping the large digital images into small patches, and each patch is

considered a training sample. Ronneberger et al. [RFB15] proposed a U-net architecture

for segmentation of neuronal structures in electron microscopic stacks. This method was

composed of a fully-convolutional structure followed by an up-sampling structure to increase

the image size. Skip-connections were employed to directly connect opposing contracting

and expanding convolutional layers.

For 3D medical images, developing deep-learning-based systems has been more challeng-

ing. Roth et al. [RLL16] increased the number of 3D sample sizes by aggregating random

views of 2D slices to train a CNN for CAD systems, and evaluated the approach in sclerotic

metastases detection and lymph node detection tasks. Suk et al. [SS13] proposed to classify

Alzheimer’s disease and mild cognitive impairment with deep features extracted from stacked

autoencoders in MRI/PET images. To overcome the limitation of data size, low-level fea-

tures are used as the input for the autoencoders instead of raw data. Ciompi et al. [CHR15]

and Ginneken et al. [GSJ15] use pre-trained CNNs (OverFeat) for natural image detection

as deep features extractor to perform lung nodule diagnosis tasks in CT images. Yu et al.

[YYC17] proposed a volumetric convolutional neural network with mixed residual connec-

tions to automatically segment the prostate in 3D MRI studies. The combination of residual

connections is employed to improve the training efficiency and discriminative capability of

the network using both local and global information.
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Notably, these studies using deep neural networks are a “black-box” approach and few

efforts are made to make the model interpretable. Chapter 4 details further related deep

learning works for lung nodule classification and diagnosis, and motivates the proposed

novel hierarchical semantic convolutional neural network to incorporate domain knowledge

and explain deep learning outputs.

2.4 Multi-state Disease Progression

A better understanding of lung cancer’s progression and dynamics, such as the expected

time to reach a certain disease state, may lead to more appropriate prevention, management

and treatment; as well as early detection [MOH14]. Periodic screening using imaging is one

of the most common ways to detect early stage lung cancer. Longitudinal data collected as a

result of screening [ZL86] provides an opportunity to discover better approaches for charac-

terizing natural disease progression and generate predictions for individualized screening or

diagnostic policies [ZWH14]. Traditionally, a “one size fits all” approach has been used for

screening programs; however, patients at lower risk of cancer should have longer screening

intervals or not be screened at all. The MST measures how fast a disease progresses from

a preclinical state (imaging detectable but without observable symptoms) to a clinical state

(with observable symptoms), and has been widely used [Duf05b] to model disease progres-

sion and in the context of population screening, to calculate the optimal interval between

screens and estimate the extent of overdiagnosis.

Numerous techniques for modeling multi-state disease progression, especially for MST,

have been proposed. Aalen et al. modeled HIV/AIDS progression using a discrete-time

Markov model [AFA97]; Chen et al. presented a three-state discrete progressive model for

breast cancer [CP83]. Multi-state continuous-time Markov models can be adapted to solve

the loss of continuous-time information [DCT95] due to interval censoring. In particular,

they have been used to model hepatocellular carcinoma [Kay86], liver cirrhosis [AHK91],

periodontal disease [MOH14], and diabetic retinopathy [MJ95]. Duffy et al. applied a three-

state continuous Markov model to data from a breast cancer randomized controlled trial
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to estimate the MST and the sensitivity of the screening process [DCT95]. This method

assumes perfect sensitivity in estimating the transition times between states and then sub-

sequently estimates the sensitivity using fixed transition times. Chen et al. extended and

applied the continuous-time Markov model in breast screening to jointly estimate mean so-

journ time, screening sensitivity, and the positive predictive value [CDT96]. Nevertheless,

information from the control group (e.g., individuals who received usual care) was needed

to properly estimate the desired parameters. Bayesian approaches have been increasingly

applied [WRB05, CLC08, WER11, KEW12, CEW14] to infer MST and screening sensitivity.

In contrast, my model is capable of modeling the situation where no control group informa-

tion is available. This is especially relevant in clinical settings when it is unethical to deny

treatment.

A Bayesian framework applied to breast cancer screening data was used in [WRB05]

to obtain age-dependent sensitivity and estimates of transition probabilities. Chien et al.

applied a Bayesian approach to validate the effectiveness of computed tomography (CT)

for mortality reduction in lung cancer and to estimate the MST [CLC08]. In 2010, Wu

et al. used data from the Mayo Lung Project (MLP) to estimate lung cancer screening

sensitivity, age-dependent transition probability between states, and the distribution of so-

journ time using a Bayesian approach [WER11]. Bayesian methods have advantages over

classical techniques such as enabling small sample inference, providing appropriate measures

of uncertainties, allowing inference on non-linear functions of parameters, and constructing

predictive distributions to allow for additional inferences of interest [WRB05]. More recently,

Jiang et al. [JWB16] used the Day and Walter model [DW84] to estimate the MST and the

false negative rate from the Ontario breast cancer screening program in Canada. Taghipour

et al. [TCM16] modeled the natural history of breast cancer with a 4-state hidden Markov

model and analyzed the effects of covariates and over different subpopulations. Jia et al.

[JBS16] used a 5-state Markov model to detect the worsening of patient symptoms in order

to prioritize by symptom severity. Ma et al. [MCT16] used a Bayesian approach on a 5-state

continuous time Markov model to investigate a transtheoretical model.

The advent of lung cancer and in particular lung screening trials also stimulated the
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development of a number of risk models to predict lung cancer incidence from epidemiological

and clinical data. Bach et al. [BKT03] developed and combined two logistic regression models

that predict the 10-year cumulative probability of dying from lung cancer and dying without

lung cancer. Conin et al. [CGZ06] validated this model with the placebo arm of the Alpha-

Tocopherol Beta-Carotene Cancer Prevention (ATBC) study. The model underestimated the

observed lung cancer risk and the observed non-lung cancer risk individuals that smoked less

than 20 cigarettes per day. A Cox proportional hazards regression was developed from the

COSMOS trial from epidemiological and clinical data [MBB11]. Model performance was poor

on early cancers but it could identify lower risk individuals and prevent overdiagnosis. Using

the PLCO dataset, Tammemagi et al. [TPC11] developed a logistic regression model that

predicts the six year probability of cancer, and were validated using AUC, epidemiological

and clinical factors. Petousis et al. [PHA16] developed discrete time dynamic Bayesian

networks (DBNs) that predict lung cancer incidence at the different screening points of the

National Lung Screening Trial (NLST). The models achieved results comparable to expert’s

decisions. In Chapter 5, I extend previous probabilistic models and demonstrate how my

developed approach yields a more accurate picture of lung cancer progression.
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CHAPTER 3

Automated Lung Segmentation in CT images

3.1 Overview

Computer-aided detection and diagnosis systems (CADs) have been widely investigated to

improve radiologists’ interpretive accuracy in finding and characterizing lung disease. Lung

segmentation is a requisite preprocessing step for most lung CAD schemes. This chapter de-

tails a novel and parameter-free lung segmentation algorithm with the aim of improving lung

nodule detection accuracy, focusing on juxtapleural nodules. A bidirectional chain encoding

method, combined with a support vector machine (SVM) classifier, is used to selectively

smooth the lung border while minimizing the over-segmentation of adjacent regions. The

remainder of this chapter is organized as follows. Section 3.2 describes the dataset used

for this study. Section 3.3 details the developed bidirectional chain coding and automated

border correction methods. Section 3.4 describes evaluation methods and results for this

technique. Section 3.5 concludes with a discussion of the strengths and limitations of this

method. This Chapter is based on the content of [SBC15].

3.2 Dataset

The proposed method was validated using data from LIDC [AMM04, AMB11], available

through The Cancer Imaging Archive (TCIA). LIDC contains both screening and diagnos-

tic thoracic computed tomography scans collected from 7 academic centers and 8 medical

imaging companies. For CT scans, inclusion criteria were: 1) having a collimation and re-

construction interval no greater than 3 mm; and 2) each scan approximately containing no
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more than 6 lung nodules with the longest dimension ≤ 30 mm and ≥ 3 mm, as determined

by a cursory review during case selection at the originating institution [AMB11]. For the

whole dataset, the slice thicknesses were between 0.6 and 5 mm, and the in-plane pixel size

varied from 0.461 to 0.977 mm. LIDC-IDRI comprises 1,018 cases (representing 1,010 differ-

ent patients, 8 patients having 2 distinct scans), with each including images from a clinical

CT scan and an associated XML file. The XML files record the reference standard for lung

nodule locations, as manually annotated by four radiologists following a two-phase image

annotation process.

3.3 Methods

The developed method mainly consists of three steps (Figure 3.1): 1) preprocessing to gen-

erate an initial lung lobe mask using adaptive thresholding (Figure 3.1d, e); 2) detecting

inflection points (both horizontally and vertically) to obtain all major concave and convex

points along the lung lobe boundary (Figure 3.1f, g); and 3) correcting the lung bound-

ary border using a support vector machine (SVM) to identify relevant pairwise connections

(Figure 3.1h) based on extracted features. The details for each step are described as follows.

3.3.1 Preprocessing

Preprocessing uses Otsu’s adaptive thresholding [Ots79] method to automatically obtain

an initial lung mask based on the pixel intensity distribution of the input CT image. This

method uses discriminate analysis to exhaustively search for a threshold value that minimizes

the intra-class variance between two regions of an image. For a given image, let L represent

the gray level of all the pixels [1, 2, · · · , L]. By choosing a threshold at gray level k, the pixels

are divided into object class C0 and background class C1. Let w0 and w1 be the probabilities

of C0 and C1 separated by a defined threshold and let σ2
0 and σ2

1 be the variances of these

two classes. The intra-class variance is defined as the weighted sum of these two variances:

σ2
Intra(k) = w0(k)× σ2

0(k) + w1(k)× σ2
1(k) (3.1)
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Figure 3.1: Diagrams depicting the proposed method and its outputs for a representative

case. (a) Flow diagram of the proposed method; (b) original image; (c) original image with

juxtapleural nodule outlined in white; (d) lung boundaries obtained after preprocessing;

(e) lung lobe mask obtained after preprocessing; (f) detected inflection points shown in

yellow-squares/white-circles; (g) magnified view of inflection points; and (h) results after

border correction. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Figure 3.2: Basic steps for preprocessing. (a) Original image; (b) histogram generation of

pixel value intensities; (c) adaptive thresholding to get initial segmentation result; (d) hole

filling to obtain the lung lobe mask; and (e) corresponding segmented lung lobe region.

The optimal threshold T is calculated as the value minimizing σ2
Intra(k):

T = arg min
k∈[1,L]

σ2
Intra(k) (3.2)

After thresholding, a flood filling method combined with 3D labeling is adopted to pro-

duce an initial lung lobe mask (Figure 3.2b-e). During initial segmentation testing, the LIDC

CT imaging studies were found to have extremely low background pixel values (Figure 3.2a)

that formed a peak pattern (Figure 3.2b) influencing the optimal threshold calculation. The

calculated optimal threshold will not be able to differentiate the lung region from the back-

ground due to the influence of this peak pattern, leading to segmentation failure. Therefore,

background pixel values are removed before calculating the intra-class variance.

3.3.2 Inflection point detection

Preprocessing generates a binary mask of the lung lobe region. To selectively revise the initial

lung segmentation to re-include juxtapleural nodules, the boundary is first characterized
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Figure 3.3: Process of encoding the bi-directional differential chain code. (a)-(e) illustrates

the process of horizontal differential chain code generation, while (f)-(j) illustrates the process

of vertical chain code generation. (a) Horizontal encoding coordinate system; (b) initial

boundary generation; (c) arrow map generation; (d) horizontal code word assignment; (e)

horizontal differential chain code generation to detect horizontal inflection points; (f) vertical

encoding coordinate system; (g) initial boundary generation; (h) arrow map generation; (i)

vertical code word assignment; and (j) vertical differential chain code generation to detect

vertical inflection points.

using a bidirectional differential chain (BDC) encoding method to help identify inflection

points. Inflection points are defined as the points where the convexity of the boundary

changes. Concavities are then detected based on these inflection points. This step maximizes

the sensitivity in detecting areas with juxtapleural nodules. A process for selecting critical

point pairs is then followed to reduce the false positives and minimize over-segmentation.

The original application of chain codes was for lossless compression of grey-scale images

[GW07]. The basic principle is to separately encode the boundary coordinates (chains of

pixels) for each connected component in an image. The chain is a sequence of direction codes

from one pixel to the adjacent one. There are eight possible directions between two adjacent

pixels. The code word c(i) for a BDC is the number corresponding to the direction from one
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Figure 3.4: Example of detected inflection points with and without the application of a

low-pass filter. (a) Right lung lobe mask; (b) detected inflection points without applying

low-pass filter, the white circles represent the vertical inflection points and the yellow squares

represent the horizontal inflection points; and (c) detected inflection points after applying

Gaussian low-pass filter.

pixel (i) to the next (i + 1) in a chain, c(i) ∈ A{0, 1, 1}, where i represents the index value

for the pixel. The assigned code word for each direction is based on the encoding coordinate

system (Figure. 3.3). To detect both horizontal and vertical inflection points, this method

uses two different coordinate systems for horizontal and vertical encoding. The detection of

the inflection points from the BDC encoding proceeds based on the following steps:

1. Initial boundary generation. The lung lobe boundary pixels are extracted from

the binary mask for the left and right lobes, separately.

2. Boundary encoding. Per lobe, both vertical and horizontal code words are obtained

using the corresponding encoding coordinate systems. The encoder moves along the

boundary following a (counter)clockwise path, and at each step the direction of this

movement is transformed into a code word. The encoding process is illustrated in

Figure. 3.3:

(a) Horizontal code word generation. Figure 3.3b-d depicts the process of gener-

ating horizontal code words. In Figure 3.3b, the blue boxes represent pixels along
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the lung lobe boundary. If A is the starting point, the encoder moves along the

boundary in a clockwise way.

(b) Arrow map generation. An arrow map is generated to represent the direction

that the encoder moves. For instance, in Figure 3.3c the encoder moves in the

northwest direction when traversing from point A to B.

(c) Code word assignment. A code word is assigned to each arrow according to

the encoding coordinate system given in Figure 3.3a. As shown in Figure 3.3d,

the arrow that points in the northwesterly direction from A to B is assigned a

code word of ’1’ based on the encoding coordinate system.

(d) Vertical code word generation. The vertical code word is generated in a

similar manner, but using a vertical encoding coordinate system (Figure 3.3f).

Figure 3.3g-i depicts the process of generating vertical code words.

3. Inflection point calculation. A differential operation is used to generate the horizon-

tal and vertical differential chain codes, separately. Non-zero points in the differential

chain are identified as inflection points. As presented in Figure 3.3e and j, the differen-

tial code is calculated using a clockwise differential operation based on the generated

code words (i.e., from Steps 2a, 2d). For instance, the differential code at point A is

0; the differential code at D is 2. As can be seen, pixels D and E are the only points

with nonzero differential codes; therefore, D is detected as a horizontal inflection point

and E is detected as a vertical inflection point.

To overcome the influence of the small perturbations in the lobe boundary, a seven-tap

Gaussian low-pass filter [GW07] is applied to smooth code words prior to the inflection point

calculations in Step 3. An operator is then applied to round the smoothed code word to the

nearest integer (0, 1, or 1). Figure 3.4 gives an example of the detected inflection points for

a right lung lobe using the proposed method with and without the low-pass filter. Figure

3.4b shows the detected inflection points on the right lung lobe boundary without applying

a low-pass filter. The white circles on the boundary represent the vertical inflection points,

and the yellow squares represent the horizontal inflection points. Figure 3.4b has many
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more inflection points that add unnecessary noise to the inflection detection process. After

applying the Gaussian low-pass filter (Figure 3.4c), only the remaining points are deemed

inflection points.

Figure 3.5: Representative results of inflection point detection. (a) Original CT slice with

nodule outlines annotated by radiologists shown in yellow circle; (b) magnified view of nodule

region in outlined in (a); (c) right lung mask segmented by preprocessing step; (d) detected

horizontal inflection points; (e) detected vertical inflection points; (f) magnified view of

vertical inflection points; and (g) lung segmentation after applying border correction.

Figure 3.5 illustrates the effectiveness of the vertical and horizontal inflection point de-

tection process. Figure 3.5a shows an original CT slice, and the yellow contour in Figure

3.5a, b indicates the nodule in the right lung that has been manually outlined by one ra-

diologist. After preprocessing, the segmented right lung lobe ROI does not include this

nodule region; Figure 3.5c illustrates the under-segmentation problem, from which it can be

observed that the convexity changes in the nodule region along the boundary are vertical.

Using our approach, the detected critical horizontal and vertical inflection points are shown

in Figure 3.5d-f using yellow squares and white circles, respectively. By comparing Figure

3.5d-f, the nodule region is only captured by vertical inflection points, corresponding to the
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earlier observation. This observation suggests that detecting both vertical and horizontal

changes simultaneously are necessary to robustly correct for undersegmentation. The final

segmentation result (after border correction described in the next section) is shown in Figure

3.5g.

3.3.3 Border correction

Rather than connect all inflection point pairs, only critical point pairs are connected to cor-

rect the boundary, thereby minimizing over-segmentation. Three features are used to select

critical point pairs: boundary segment concave degree, relative boundary distance, and rel-

ative position information. Let EuclideanDistance(A,B) represent the Euclidean distance

between two inflection points, A and B. Let SegmentLength(A,B) represent the shortest

boundary segment length between these two points. As shown in Figure 3.6a, ED represents

EuclideanDistance(A,B) and SL the Segmentlength(A,B). Let BoundaryLength be the

total length of the lung lobe under consideration. The concave feature, fconcave, and the

length feature, flength, are defined as

fconcave =
Segmentlength(A,B)

EuclideanDistance(A,B)
(3.3)

flength =
Segmentlength(A,B)

BoundaryLength
(3.4)

From Eq.(3.3), fconcave increases as the boundary segment increases given a fixed geo-

metric distance, which indicates a larger degree of concavity (Figure 3.6a). This observation

implies that critical points will have larger values of fconcave. In Eq.(3.4), flength increases

as the boundary segment increases for a given lung lobe (with fixed total boundary length).

The ratio (i.e., flength) should be smaller to avoid over-segmentation. By way of illustration,

a large flength is shown in Figure 3.6b, where connecting the two points will cause significant

over-segmentation. A third feature, fposition, indicates the relative position information of

the point pair, and is defined as
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Figure 3.6: Illustration of feature definition for border correction. (a) Illustration of Eu-

clidean distance (ED) and shortest boundary segment length (SL) between points A and

B; (b) two infection points (white circles) having a large flength; and (c) border correction

result.

fposition =
EuclideanDistance(MidPoint(A,B), CentralPoint)

AverageDistance2CentralPoint
(3.5)

where MidPoint(A,B) is the midpoint between two inflection points, A and B; and Central-

Point is the center of two lung lobe regions. AverageDistance2CentralPoint is the average

of all distances from lung lobe boundaries to the center.

Based on these three features, an SVM classifier is used to identify critical point pairs

(instead of a threshold value or parameter). SVMs are supervised machine learning models

that perform efficient non-linear classification tasks. SVMs map their inputs into higher

dimension feature space to separate categories based on decision boundaries learned through

training data. To train the SVM, 172 point pairs were manually selected from 42 LIDC

studies, labeled as being positive examples (n = 91, point pairs that capture a concave

region of juxtapleural nodule) or negative examples (n = 81, point pairs that capture a non-

lung-tissue region). Finally, point pairs classified as critical are connected, resulting in the

lung boundary. In our experiment, a third order polynomial kernel is chosen for the SVM

classifier and a 10-fold cross validation is applied to assess the model performance using

different subsets of features. Cross validation indicates that the highest accuracy (97.7%)
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is achieved when all three features are employed in the training task. It is also shown that

fconcave and flength are more important compared to fposition. This last observation results

from the fact that fconcave provides important information that increases sensitivity as the

inflection point pairs of a juxtapleural nodule usually have larger fconcave value. flength helps

to reduce false positive rate due to the limited possible size of juxtapleural nodules. To

generalize for different datasets, training samples should be collected to retrain the classifier.

Positive training data should be collected mainly for the juxtapleural nodules and a small

portion of vessels that attach to the lung wall. Negative training data should comprise non-

lung-tissue regions with a large concave rate and a moderate flength value (as these point

pairs can easily become false positives).

3.4 Evaluation and Results

3.4.1 Evaluation dataset

275 studies with at least one juxtapleural nodule were identified from LIDC by a trained

graduate student. The entire set of 275 CT scans were divided into two subsets: 42 studies

for training of the SVM; and 233 studies for testing. A total of 406 juxtapleural nodules were

found in the test set, serving as the basis for evaluating the method’s ability to correctly

include juxtapleural nodules in the lung lobe region (i.e., re-inclusion rate [PRC08]). Addi-

tionally, 10 CT studies were randomly selected from the test set and the lung contours were

manually segmented under the guidance of a practicing thoracic radiologist. The results of

the manually segmented contours were used as references to validate overall segmentation

accuracy. To aid in the manual segmentation task, an annotation tool was developed to

enable the radiologist to automatically generate lung lobe contours first by thresholding,

and then correcting any inaccuracies in the contour by adjusting the boundary.
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Figure 3.7: Representative case where the proposed method failed to re-include the juxta-

pleural nodule. (a) Original CT slice with a nodule attached to diaphragm and pleura; (b)

CT slice with nodule outlines annotated by a radiologist shown in yellow circle; (c) magnified

view of nodule outline annotation; (d) lung segmentation obtained by our method; and (e)

reference standard lung segmentation.

3.4.2 Evaluation method

Five metrics were used to measure segmentation performance: 1) the re-inclusion ratio

of juxtapleural nodules; 2) the over-segmentation rate; 3) the under-segmentation rate;

4) the volumetric overlap error ratio; and 5) the cumulative error distance distribution

[DMM06, PRC08]. The re-inclusion ratio is used to assess per nodule sensitivity. Similar to

[PRC08], a trained graduate student was tasked with reviewing each study to determine if

a juxtapleural nodule was correctly included (or not) by identifying errors in the segmenta-

tion caused by juxtapleural nodules. For voxel-based segmentation accuracy, the volumetric

overlap ratio difference, over-segmentation, and under-segmentation rates were computed to
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Figure 3.8: The segmentation error computed based on a comparison of lung volume:

over-segmentation rate, under-segmentation rate and overlap ratio difference from Eqs. (3.6),

(3.7) and (3.9). Mean errors are 0.3%, 2.4% and 2.7% respectively.

characterize differences between boundaries generated by the proposed approach and the

reference boundary generated by the manual annotator.

Over-segmentation rate is defined as the number of voxels in a segmented image region

that are included as part of the ROI but that are not in the reference standard [PRC08]. Let

Vauto represent the volume of the binary mask generated using our approach and let Vreference

be the volume of the reference standard. The oversegmentation rate OR(Vauto, Vreference) is

OR(Vauto, Vreference) =

∣∣∣∣Vauto\VmanualVmanual

∣∣∣∣ (3.6)

where Vauto\Vmanual represents the relative complement of Vauto in Vmanual. Similarly, the

under-segmentation rate UR(Vauto, Vreference) is defined as the relative lung volume amount

that is regarded as lung tissue in the reference standard but not in our method:

UR(Vauto, Vreference) =

∣∣∣∣Vmanual\VautoVmanual

∣∣∣∣ (3.7)
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The volumetric overlap ratio measures the relative overlap between the two binary segmen-

tation masks by computing the two volumes’ intersection divided by their union [SCL16]:

R(Vauto, Vreference) =

∣∣∣∣Vmanual ∩ VautoVmanual ∪ Vauto

∣∣∣∣ (3.8)

Lastly, to make the overlap ratio measurement consistent with the over-segmentation and

under-segmentation rates, the volumetric overlap error ratio (DR(Vauto, Vmanual)) is used:

DR(Vauto, Vreference) = 1−R(Vauto, Vreference) (3.9)

To measure the spatial similarity between the lung boundaries generated by our approach

and that of the reference standard, the cumulative error distance distribution [PRC08] is

computed to provide a global statistical measurement of the fitting between the lung surfaces

generated by our method and the lung surfaces in the reference standard. The shortest

distance between a point on the lung surface obtained by our algorithm and the lung surface

of the reference standard is used to generate the error distance distribution.

3.4.3 Results

Using the 233 test studies from the LIDC dataset, our experiment shows that 373 out of

total 406 juxtapleural nodules were correctly included as part of the ROI, achieving a 92.6%

inclusion rate. After an error analysis, 83.3% of the missing juxtapleural nodules were found

sitting in between segments of lung tissues, as shown in Figure 3.7. In this situation, the

proposed method fails because each segment is processed separately.

Figure 3.8 shows the volume-based segmentation error as assessed by over-segmentation

ratio, under-segmentation ratio, and overlap ratio difference. The average over-segmentation

rate is 0.3%, while the average under-segmentation ratio is 2.4% and the average overlap ratio

difference is 2.7%. Figure 3.9 shows the cumulative error distance distribution to assess the

border positioning accuracy. The error bars in Figure 3.9 represent the standard deviation

corresponding to each distance. 93% and 96% lung surfaces obtained by the proposed method
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Figure 3.9: Cumulative point-wise error distance distribution of the shortest distance from

proposed lung segmentation surface to lung surface of the reference standard.

are within 2-3 mm of the reference standard, respectively. The largest error distance is 22.5

mm. Relatively larger under-segmentation and error distances are mainly due to the presence

of atelectasis (Figure 3.10a, b) or consolidation (Figure 3.10c, d).

Although many methods have been developed to perform automatic lung segmentation,

only a few explicitly handle juxtapleural nodules and evaluate the method on actual patient

data. Table 3.1 compares the proposed method to other lung segmentation algorithms that

handle juxtapleural nodules. Our method achieves better average overlap ratio compared to

Wei’s [WSL13] method. This difference is attributed to the fact that our approach imple-

ments a point pairs selection technique, which reduces the risk of over-segmentation. Our

method has similar average oversegmentation ratio and average under-segmentation ratio

compared to Pu’s [PRC08] method. Although both Pu [PRC08] and Wei [WSL13] report a

100% re-inclusion rate, their test sets contain a limited set of juxtapleural nodules, 67 and 32

respectively, compared to our set of 406 nodules. Similar to the limitation of our approach

in detecting missing nodules that are between lung segments, Pu’s and Wei’s methods also
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Figure 3.10: Comparison between lung segmentation obtained by our method and reference

standards in cases with atelectasis or consolidation. (a) Lung segmentation obtained by

our method in an atelectasis case; (b) reference standard in an atelectasis case; (c) lung

segmentation obtained by our method in a consolidation case; (d) reference standard in a

consolidation case.

process each isolated lung region separately and thus will likely fail in similar situations. One

should note that the performance of the oft-cited rolling ball method is highly dependent

on the specified parameters, which are not consistently included in publications [PRC08].

For example, Kim [KKN03] highlights the difficulty in selecting the appropriate fixed ball

radius because of the large variance in juxtapleural nodule sizes. Therefore, a comparison

of our method against algorithms that utilize the rolling-ball method would be inconclusive,

given that the original implementation cannot be replicated effectively. Also, Stelmo et al.

[NSN12] point out that a fair comparison between two methods would only be possible if

the works use the same images and acquisition standards (resolution, bits per pixel, etc.);

given the unavailability of others’ test data, such a formal comparison is not possible. But

in general, and as compared to these other methods, our described method can accurately

segment the lung tissues while robustly and correctly including the juxtapleural nodules.

3.5 Discussion

A seven-tap Gaussian low-pass filter is employed to smooth the chain code to overcome the

influence of the small perturbations in the lobe boundary as described in Section 3.2. This
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Table 3.1: Comparison of the performance of lung segmentation methods that handling

juxtapleural nodules.

Works Pu et al. [PRC08] Wei et al. [WSL13] Proposed Method

Test dataset

20 scans;

67 Juxtapleural

nodules

25 scans;

32 Juxtapleural

nodules

233 scans;

406 Juxtapleural

nodules

Average R - 95.24% 97.3%

Average OR 0.43% - 0.3%

Average UR 1.63% - 2.4%

Re-inclusion

Rate
100% 100% 92.6%

step is used to reduce computational complexity as fewer inflection point pairs are inputted

to the SVM classifier afterwards. Removing this step will not reduce the re-inclusion rate of

the juxtapleural nodules as the classifier would still identify the same points for re-inclusion

but would need to consider more points. In our experiment, a Gaussian kernel with variance

equal to two is employed to perform the smoothing task and a 92.6% re-inclusion rate is

achieved. By examining the failure cases in our experiment, we found that none of the

failure cases were caused due to inflection point detection problems. As such, we believe

the adoption of this Gaussian low-pass filter did not include additional errors. However, to

adapt this approach to perform on other datasets, the degree of smoothing strength may be

adjusted based on preference and dataset standards.

One limitation of the proposed method is that it sometimes fails to re-include the juxta-

pleural nodules sitting in consolidation regions (between lung tissue segments); to overcome

this problem, future work could integrate some region connection techniques as a precursor

step for detected consolidation regions before border correction. With the advancement of

deep learning methods, future work could also develop deep learning models to for better

segmentation results, and it will be discussed in Chapter 6.
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CHAPTER 4

Lung Nodule Classification and Diagnosis using Deep

Convolutional Neural Network

4.1 Overview

Researchers have actively pursued methods to assist radiologists in the interpretation process

to automatically classify lung nodules and diagnose lung cancer. Maintaining high sensitivity

while minimizing false positives remains a challenging problem. Moreover, existing methods

show a significant decrease in performance on datasets with different acquisition parameters

and/or patient cohorts (compared to training data). Thus, models with better transfer-

ability are desirable and needed for practical clinical usage. Deep learning has been shown

to be able to learn latent multi-level hierarchical representations adaptively from raw data,

and have significantly improved the state-of-the-art performance in visual object detection

[KSH12, KTS14] and a range of medical related tasks [CQY16, GPC16, EKN17]. Exist-

ing approaches do not incorporate any lung cancer domain knowledge and use the CNN

as a “black-box,” thus having little model interpretability and hindering it from being un-

derstood and ultimately adopted by radiologists. In contrast, radiologist-quantified image

(semantic) features, such as calcification and sphericity, have been widely used by radiolo-

gists to assist the lung cancer diagnose procedure [INK05, RVF09, HM16]. These semantic

features represented the domain knowledge that have been widely recognized by radiologists

for lung cancer diagnosis. Many these features are currently defined only qualitatively, and

are difficult to quantify from first principles [HM16].

In this chapter, I first present a robust model to automatically classify lung nodules vs.

non-nodules using a hybrid ensemble of multiple deep convolutional neural networks (CNNs).
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Table 4.1: Summary of LIDC and UCLA datasets.

Dataset Type Number of scans Acquisition Nodule size

LIDC Retrospective 1018
Low dose and

diagnostic dose
3 30 mm

UCLA Retrospective 158 Diagnostic dose 5 30 mm

This model was first built based on a large, publicly available dataset, and then externally

validated on an independent dataset without retraining the model. Second, I describe a

novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) for

lung cancer prediction with two levels of output: 1) low-level radiologist semantic features;

and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify

the diagnostic features used by radiologists and serve to explain how the model interprets

the images in an expert-driven manner. In the remainder of this chapter, Section 4.2 details

the developed ensemble CNN for lung nodule detection and the HSCNN model for lung

cancer diagnosis. Section 4.3 summarizes the experimental results for both works. Section

4.4 discusses the limitations and future works. The content presented in this chapter have

partly been published in [SBH17].

4.2 Methods

4.2.1 Dataset

The LIDC dataset (prior described in Section 3.4.3) was used to develop both the hybrid

ensemble CNN model for lung nodule classification and HSCNN model for lung nodule

diagnosis. A UCLA dataset was used as an external dataset to validate the ensemble nodule

classification model. Table 4.1 summarizes the information for these two datasets.

In the LIDC dataset, lung nodules were manually annotated by four radiologists following

a two-phase image annotation process. Pixel-level 3D contour segmentations, panel opinions

on the assessment of nodule likelihood for malignancy, and eight nodule characteristics were

generated for lesions categorized as nodules ≥ 3 mm. The eight nodule characteristics were
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semantic diagnostic features, including: calcification, subtlety, lobulation, sphericity, internal

structure, margin, texture, spiculation, and malignancy. Each feature was rated from 1 to

5 or 6 by radiologists. Table 4.2 lists the description and definitions for each of the labels

from [AMB11, CVS13].

Table 4.2: Nodule characteristics labels in LIDC dataset.

Semantic Feature Description Ratings

Malignancy Likelihood of malignancy

1. Highly unlikely

2. Moderately unlikely

3. Indeterminate

4. Moderately suspicious

5. Highly suspicious

Margin How well defined the margins are

1. Poorly defined

2.

3.

4.

5. Sharp

Sphericity Dimensional shape in terms of

roundness

1. Linear

2.

3. Ovoid

4.

5. Round

Subtlety Contrast between nodule and sur-

roundings

1. Extremely subtle

2. Moderately subtle

3. Fairly subtle

4. Moderately obvious

5. Obvious
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Semantic Feature Description Ratings

Spiculation Degree of exhibition of spicules

1. Marked

2.

3.

4.

5. None

Texture Internal density of nodule

1. Non-solid

2.

3. Part Solid

4.

5. Solid

Calcification Calcification appearance in the nod-

ule

1. Popcorn

2. Laminated

3. Solid

4. Non-central

5. Central

6. Absent

Internal structure Expected internal composition of

the nodule

1. Soft tissue

2. Fluid

3. Fat

4.

5. Air

Lobulation Whether lobular shape is apparent

from margin or not

1. Marked

2.

3.

4.

5. None
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4.2.2 A hybrid ensemble CNN model for lung nodule classification

4.2.2.1 Data preprocessing

In this study, only scans with slice thickness smaller than 3 mm were included, resulting

in 897 LIDC CT scans. Four radiologists annotated the nodule contour and characteristics

for each CT scan in LIDC, with no enforced agreement on the existence of the nodule.

Thus, each nodule may have been assigned 1-4 annotations, based on the level of agreement.

Each annotations was considered as a distinct nodule (e.g., one object might be marked by

all four radiologist as a nodule, resulting in four annotations), resulting in selecting 4,252

nodules from LIDC dataset. 158 lung nodules were annotated by one radiologist in UCLA

dataset, and are used in this study. Each nodule was a positive sample for lung nodule

classification. The negative (non-nodule) samples were extracted from the methods described

in [MHR10, DBS15, SBC15]. Multi-level thresholding and morphological operations were

used to detect a large set of candidates. Rule-based analysis were performed to remove

extreme small or large candidates outside the target detection size range (5 mm to 30 mm).

Any candidates overlapped with nodules were excluded from the non-nodule candidates.

This nodule and non-nodule candidates settings for classification followed the conventions

in previous work [FCS17].

The LIDC-IDRI and UCLA dataset contained a heterogeneous set of scans with various

acquisition parameters. To normalize the pixel values, all CT scans were first transformed

to Hounsfield (HU) scales using the information in DICOM header and then converted to

the range of (0, 1) from (-1000, 500 HU). A 3D cube of 40 × 40 × 40 mm were extracted

for each candidate. Each cube is centered around the candidate. 40 mm was chosen so that

all candidates will fit in this range as the largest nodules in my subset were selected to be

around 30 mm. I then rescaled each cube to a fixed size of pixels in all three dimensions,

resulting in isotropic cubes for all cases. The center slices of this cube in the axial, sagittal,

and coronal views were then aggregated as a 2.5D input for the network.
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4.2.2.2 Hybrid ensemble CNN model

Figure 4.1: Framework of hybrid ensemble CNN model for lung nodule classification.

The CNN is constructed to perform the classification task to differentiate nodule versus

non-nodule objects. I designed a hybrid ensemble CNN structure consisting of a VGG

module [SZ14], residual module [HZR16a, HZR16b], and dense module [HLW16], as depicted

in Figure 4.1.

2D convolutional layer and 2D pooling layer are the basic building blocks of the proposed

model. Convolution layer is consisted of multiple kernels, and each kernel contains unique

set of learnable parameters producing one 2D output matrix. These layers perform the

convolution operation on input feature maps along both dimensions of the input 2D matrix

to produce an output feature map defined by:

f j =
∑
i

cj ∗ f i + bj (4.1)
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where f j and f i are the jth output feature map and ith input feature map, respectively.

And cj is the jth convolution kernel and ∗ represents the 2D convolution operation between

the convolution kernel and input feature map. bj is the jth bias corresponding to the jth

convolution kernel.

The max pooling layer outputs the max value from the input window. It is used to

progressively reduce the spatial size of the feature maps to reduce the number of parameters

and computation for the purpose of control overfitting as:

f̂ ix,y = max{f ix′,y′ ;x′ ∈ [x · sx, x · sx + dx − 1],

y′ ∈ [y · sy, y · sy + dy − 1]}
(4.2)

where x (the row index) and y (the column index) start from zero. Here, s is the stride size

(downscale factor) and d is the size of the max pooling window. In this study, I employ a

pooling window size of d = (2, 2) and stride of s = (2, 2). This design determines that the

output size will be reduced by half in width and height dimension. This pooling layer has

no learnable parameters.

One convolution (conv) unit in the VGG module (Figure 4.1, VGG module) comprises

two 3 × 3 convolution layers and one 2 × 2 max pooling layer. Stacking two 3 × 3 convo-

lution layers achieved an effective receptive field of 5 × 5, significantly reducing the number

of model parameters while increasing the discriminative power of the decision function by

incorporating two activation function layers (versus one). Three convolution modules here

were used in total. The two convolution layers in the first, second and third module have

32, 64 and 128 kernels, respectively. The output from the third convolution module is then

fed into a fully connected layer with 128 neurons. These neurons were connected to the last

layer with two output units.

The residual module (Figure 4.1, residual module) enforces learning of residual functions

in relation to the layer inputs. The residual unit (RU) is the basic building block for the

residual module and consists of two paths: 1) a direct path from the input, and 2) a batch

normalization and convolution path. The output from these two paths are combined using
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Table 4.3: Summary of generating binary labels from LIDC rating scales for nodule charac-

teristics.

Nodule characteristics Label 0 Label 1

Malignancy
Scale 1 - 3

Benign

Scale 4 - 5

Malignant

Sphericity
Scale 1 - 3

Lesser roundness

Scale 4 - 5

High degree of roundness

Margin
Scale 1 - 3

Poorly defined margin

Scale 4 - 5

Sharp margin

Subtlety

Scale 1 - 3

Poor contrast between nodule

and surroundings

Scale 4 - 5

High contrast between nodule

and surroundings

Texture
Scale 1 - 3

Non-solid internal density

Scale 4 - 5

Solid internal density

Calcification
Scale 1 - 5

Present of calcification

Scale 6

Absent of calcification

an addition function. Batch normalization is applied to output feature maps to accelerate

the training process and reduce the internal covariate shift by normalizing the feature maps

[IS15]. A 49 layer residual structure is used as in [HZR16b]. The dense module (Figure

4.1, dense module) is made up of three densely connected convolution blocks as in [HLW16].

Each block is made up of 12 batch normalization + convolution layer combinations. And all

convolution layers inside a dense block are connected to every convolution layers afterward in

the same block. Rectified linear units (ReLUs) [KSH12] are used as the nonlinear activation

functions in all three modules. Softmax function is used as the loss function.
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4.2.3 A HSCNN model for lung cancer diagnosis

4.2.3.1 Data preprocessing

Similar to the lung nodule detection task, only lung nodules were considered whose largest

diameters were between 3 and 30 mm to develop lung cancer diagnosis model. As described

previously, four different radiologists annotated the nodule contour and characteristics for

each CT scan in LIDC. To determine which annotations refer to the same nodule, an an-

notation list provided in [te11] has been used. Only nodules identified by at least three

radiologists in the CT scans with slice thickness smaller than 3 mm were included. This

resulted in sub-selecting 4,252 nodule annotations, and I employed each annotation as a dis-

tinct nodule. One reason for this choice was that the physical nodule regions lack universal

agreement, and arbitrary choices have to be made to determine the nodule contour based

on the different radiologists’ delineations. Another reason was to use all of the specialist

expertise, following the conventions used by others [CVS13, HM16, FCS17]. Uniform labels

were assigned to all annotations referring to the same nodule for each feature. As indicated

in Table 4.2, LIDC employed ordinal scales from 1 to 5 to label nodule malignancy and four

other semantic diagnostic features, including margin, sphericity, subtlety, and texture. For

these five nodule characteristics, I obtained average ratings for each nodule as in [SZY15],

and obtained a binary label for each by comparing the average scores with a threshold on

4 – that is, a “0” label was assigned for average scores smaller than 4, and a “1” label was

assigned for average scores larger or equal to 4. Label 0 indicated a benign nodule, poorly

defined margin, lesser roundness, poor contrast between nodule and surroundings, and non-

solid internal density of nodule for malignancy, margin, sphericity, subtlety, and texture,

respectively. Conversely, Label 1 denoted a malignant nodule, sharp margin, high degree

of roundness, high contrast between nodule and surroundings, and solid internal density of

nodule. LIDC used categorical scales from 1 to 6 to annotate calcification features; here,

I averaged ratings for each nodule by majority vote per [CVS13]. For those with average

ratings of 6, I labeled them as absent of calcification pattern (label 1); all other ratings

represent the presence of calcification (label 0). Table 4.3 summarizes the generation of the
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Table 4.4: Label counts for nodule characteristics.

Nodule characteristics Label 0 (#) Label 1 (#) Total (#)

Malignancy 3212 1040 4252

Sphericity 2304 1948 4252

Margin 1640 2612 4252

Subtlety 1570 2682 4252

Texture 518 3734 4252

Calcification 496 3756 4252

binary labels from LIDC rating scales as described above. Table 4.4 lists the data counts for

each label of the nodule characteristics.

I note here an important labeling error in regards to the scales and guidelines used for both

the lobulation and spiculation features. It has been reported by The Cancer Imaging Archive

(TCIA) that a subset of 100 among 399 known cases in the LIDC dataset were annotated

using an inconsistent rating system for spiculation and lobulation [te17]. Unfortunately,

precisely which 100 of the 399 cases is not known. Therefore, lobulation and spiculation

are not used for this work. Hancock et al. [HM16] also deal with this mislabeling issue

in their study. However, I find a few studies used the labeled lobulation and spiculation

features in LIDC, but did not mention or handle these possible labeling error issues [CVS13,

DMA13, NRF15, RVF09, OCR11]. The internal structure semantic feature is also removed

for this study due to the fact that almost all nodule annotations are labeled on the same scale

(4,242 out of the 4,252 annotations are labeled on scale 1; and the remaining 10 annotations

were labeled on scale 4). Thus, this feature provides little information, as also suggested in

[HM16].

Similar as in Section 4.2.2.1, all CT scans were first transformed to HU and then converted

to a range of (0, 1) from (-1000, 500 HU). A 3D cube of 40 × 40 × 40 mm was extracted for

each candidate. Each cube was centered around the candidate. I then rescaled each cube to

a fixed size of pixels in all three dimensions. This 3D cube was the input for the proposed

HSCNN method, detailed below.
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4.2.3.2 HSCNN model

Figure 4.2: Model architecture of the hierarchical semantic convolutional neural network.

The proposed HSCNN takes the 3D lung nodule image cube as input and outputs two

levels of predictions, as shown in Figure 4.2. This architecture comprises three parts: 1)

a feature learning module; 2) a low-level task module; and 3) a high-level task module.

The feature learning component is able to adaptively learn the image features generalizable

across different tasks. The low-level task module learns to predict five explainable semantic

diagnositc features, including margin, texture, sphericity, subtlety, and calcification. The

high-level task component absorbs information from both the generalizable image features

and the low-level tasks, producing the final prediction for lung nodule malignancy.

The feature learning component (Figure 4.2, feature learning) is the first processing

unit of the proposed network. It consists of two convolution module blocks, where each

block shares the same structure and contains two stacked 3D convolution layers followed by

batch normalization and one 3D average pooling layer. Each convolution layer has a kernel

size of 3 × 3 × 3. These layers perform the convolution operation on input feature maps

59



along all three dimensions of the input cube. After the convolution, batch normalization

is applied to all output feature maps [IS15]. ReLUs [KSH12] are used to take the output

from batch normalization. 16 feature maps are used for both convolution layers in the first

convolution module, and 32 feature maps are adopted for both convolution layers in the

second convolution module. A 3D max pooling layer is used in the end for each convolution

module block to reduce the spatial size of the feature maps. I employ a pooling window size

of d = (2, 2, 2) and stride size of s = (2, 2, 2). This design downsamples the input feature

maps by a factor of 2 across all three cube dimensions.

After the last convolutional module, output features are fed simultaneously into the low-

and high-level task components. The low-level task components (Figure 4.2, low-level task)

consist of five branches, each with the same architecture, addressing a distinct semantic fea-

ture task (i.e., texture, margin, sphericity, subtlety, or calcification). A fully-connected layer

(densely-connected) is the major basic building block for each of these branches. One fully-

connected layer connects each input unit to each output unit, designed to capture correlations

from all input feature units to the output. Batch normalization and dropout techniques are

both used to control model overfitting. The dropout method randomly removes connections

between input and output units during network training to prevent units from co-adapting

too much [SHK14]. Two fully-connected layers are employed before the final binary predic-

tion with 256 neurons and 64 neurons for the first and second layer, respectively.

The high-level task component (Figure 4.2, high-level task) predicts the lung nodule ma-

lignancy as the final task. This module concatenates as input the output features from the

feature learning component and each of the low-level task branches. As shown in Figure 4.2,

the output feature maps from the last convolution module of the feature learning component

is used, along with the output from the last second fully-connected layer of each subtask

branch. This design makes the final prediction utilize the basic features learned from the

shared convolution modules, and forces the convolution blocks to extract representations

that are generalizable across tasks. It also makes use of the information learned from each

related explainable subtask to ultimately infer nodule malignancy. The last fully-connected

layer in each subtask branch is trained to extract representations more specific to the cor-

60



responding subtask compared to the second last fully-connected layer. Thus, the second

last layer of the subtask branch is chosen to provide less specific but salient information for

the final malignancy prediction task. The concatenated features are inputted into a fully-

connected layer with 256 neurons, followed by a batch normalization operation before the

final malignancy prediction.

To jointly optimize the the HSCNN during the network training, a novel global loss

function is proposed to maximize the probability of predicting the correct label for each task

by:

Lglobal =
1

N

N∑
i=1

(
5∑
j=1

λj · Lj,i + LM,i) (4.3)

where N is the total number of training samples and i indicates the ith training sample. j is

the jth subtask and j ∈ [1, 5]. λj is the weighting hyperparameter for the jth subtask. Lj,i

represents the loss for sample i and task j. LM,i is the loss for the malignancy prediction

task for the ith sample. Each loss component is defined as weighted cross entropy loss by:

Lj,i = − log (efyi,j/
∑
n

efyn,j) · ωyi,j (4.4)

where yi is true label for the ith sample (xi, yi). Here, yi equals 0 or 1. fyi,j is the prediction

score of the true class yi for task j and fyn,j represents a prediction score for class yn. I use ωyi,j

to represent the weight of class yi for task j. The use of ωyi,j is important because the labels

are unbalanced in all the tasks and ωyi,j is helpful in reducing the training bias introduced by

such data imbalance. Specifically, ωyi,j weights each class loss proportional to the reciprocal

of the class counts in the training data. For instance, ωyi=0,j = Nyi=1,j/(Nyi=0,j + Nyi=1,j)

and ωyi=1,j = Nyi=0,j/(Nyi=0,j + Nyi=1,j). Nyi=1,j represents the total count of samples in

the training data for task j, where the true class label equals 1. The global loss function is

minimized during the training process by iteratively computing the gradient of Lglobal over

the learnable parameters of HSCNN and updates the parameters through back-propagation.

To better control for model overfitting, 3D data augmentation was applied during the
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training process. Data augmentation artificially inflates the dataset by using label-preserving

transforms to add more invariant data examples and is considered as a model regularization

scheme [KSH12]. One or more random operations are applied on each training dataset to

generate artificial samples. The spatial affine operations used in this study include translating

the position of the nodule within 4 mm or flipping the 3D nodule cube along one of the three

axis. The translation limit is set to 4 mm to keep the boundaries of the largest nodules be

captured properly in the 3D cube (40× 40× 40 mm).

4.3 Evaluation and Results

4.3.1 Implementation details

During training, the learnable parameters of both the hybrid ensemble CNN model and

HSCNN model are initialized using the Xavier algorithm [GB10] and are updated using

the Adam stochastic optimization algorithom [KB14]. To capture a majority of nodule

morphology while reducing the input data dimensions, the input candidate cube size was set

to be 52× 52× 52 voxels. The hybrid CNN model uses 2.5D input with a size of 52× 52× 3;

and the HSCNN model uses the whole 3D cube as input. For both models, the learning rate

was set to be 0.001; and the choices of architecture design and parameters are commonly

used, as shown in [KSH12, SZ14, HLW16, HZR16a, HZR16b]. The hyperparameters were

chosen by using a randomized coarse-to-fine grid search with the validation dataset in the first

20 epochs [BB12]. Both models are implemented in Python 2.7 with TensorFlow [ABC16]

and the Keras toolkit [Cho15]. All experiments were performed on a server with 16 Intel

Xeon E5-2630 CPU processors, 32GB memory, and one NVIDIA TITAN Xp GPU (12GB

on-board memory).

4.3.2 Hybrid ensemble CNN experimental results

To train and validate the proposed model, I divided the LIDC-IDRI scans into four folds,

two folds for training the model, one fold for validation and one fold for test. This scan level
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Figure 4.3: ROC plot on LIDC datasets for hybrid ensemble CNN model comparison.

splits made sure that there would be no information overlap between training/validation and

test due to multiple annotations. The scans in the LIDC dataset were randomly divided into

five subsets of similar size. Three subsets were used for training, one for validation, and one

for testing. All five folds contain a total of 6,776 nodules. The test subset contained 207

scans with 1,262 nodules and 8,281 non-nodules. The UCLA dataset, which included 158

nodules and 3,938 non-nodules, was used as an independent dataset to validate the model

performance.

Figure 4.3 and Figure 4.4 show the receiver operating characteristic (ROC) curve plots

comparing the hybrid ensemble CNN model versus single VGG model, single residual model

and single densely connected model on LIDC dataset and UCLA dataset, respectively. These

plots represent the intuitive trade-off between sensitivity and specificity. By visual inspec-

tion of the ROC curves, the hybrid ensemble CNN model performs better than all the

other three models on both the LIDC test set and external UCLA dataset. The area under

the ROC curve (AUC) quantitatively compares the model classification overall performance
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Figure 4.4: ROC plot on UCLA datasets for hybrid ensemble CNN model comparison.

and is frequently used as the metric to access the model performance in classifying nod-

ules [SZY17, CHR15, HM16, CVS13, FCS17]. On LIDC dataset, the AUC score is 0.9944,

0.9917, 0.9884 and 0.9934 for the ensemble model, VGG model, residual model and densely

connected model, respectively. On UCLA dataset, the AUC score is 0.9714, 0.9482, 0.9643

and 0.9619 for the ensemble model, VGG model, residual model and densely connected

model, respectively.

A recent study by Froz et al. [FCS17] developed nodule classification model also using

LIDC dataset with similar data size, and have reported state-of-art performances compared

to previous works. My method obtained better results in all metrics compared to [FCS17]:

an AUC of 0.994, sensitivity of 0.970, specificity of 0.973, and accuracy of 0.974 (vs. AUC of

0.922, sensitivity of 0.919, specificity of 0.948, and accuracy of 0.943. On UCLA dataset, My

method achieved an AUC of 0.971, sensitivity of 0.886, specificity of 0.939, and accuracy of

0.942. The external validation results show that the ensemble model has robust performance.

64



Table 4.5: Results comparison: HSCNN versus 3D CNN.

Model AUC (SD) Accuracy (SD) Sensitivity (SD) Specificity (SD)

3D CNN 0.847 (0.024) 0.834 (0.022) 0.668 (0.040) 0.889 (0.022)

HSCNN 0.856 (0.026) 0.842 (0.025) 0.705 (0.045) 0.889 (0.022)

4.3.3 HSCNN results

Figure 4.5: Framework comparison between proposed HSCNN and baseline 3D CNN. (a)

proposed HSCNN architecture; (b) baseline 3D CNN architecture. Compared with the

proposed HSCNN, baseline model has the same structure but without the low-level semantic

task component.

I performed model training, validation, and testing using 897 LIDC cases, selected as

described in Section 4.2.3.1. I split these cases into four subsets, where each subset had a

similar number of nodules. A 4-fold cross validation study design was employed to obtain the

final assessment of the model performance (i.e., for each fold, 2 subsets are used for training,

1 subset for validation, and 1 subset for holdout testing). Each subset is used as the test
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Figure 4.6: Receiver operating characteristic curve comparison: HSCNN versus 3D CNN.

set once during the cross validation. This design ensures that the test set is independent

of model training and parameter optimizations, and should better reflect the true model

performance without information leakage.

To evaluate and compare the HSCNN performance on lung nodule malignancy prediction,

a 3D convolutional neural network (3D CNN) was first implemented as a baseline model,

shown in Figure 4.5b. This 3D CNN uses the same feature learning and high-level task

components architecture as the HSCNN but has the low-level task component removed. The

baseline model was trained and evaluated using the same 4-fold cross validation process and

with the same data splitting for each fold (using the same randomization seed).

Figure 4.6 shows the ROC curve plots comparing HSCNN versus 3D CNN performance.

By visual inspection of the ROC curves, HSCNN performs better than the traditional 3D

CNN model. Table 4.6 summarizes the mean AUC score, accuracy, sensitivity, and specificity

for both models. The HSCNN model achieved mean AUC 0.856, mean accuracy 0.842, mean

sensitivity 0.705 and mean specificity 0.889; while the 3D CNN model achieved mean AUC

0.847, mean accuracy 0.834, mean sensitivity 0.668 and mean specificity 0.889. Both ROC
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Table 4.6: Paired T-Test summarizes for AUC scores between HSCNN and 3D CNN model.

CI represents for confidence interval.

Test Fold
HSCNN

AUC

3D CNN

AUC

AUC Difference

(HSCNN - 3D CNN)
Paired T-Test

Fold 1 0.878 0.869 0.009
P-value=0.005,

Mean difference=0.009,

CI = [0.0051, 0.0129]

Fold 2 0.813 0.807 0.006

Fold 3 0.874 0.862 0.012

Fold 4 0.860 0.851 0.009

plots and metric assessments show that the proposed HSCNN achieved better performance

for malignancy prediction compared with the conventional 3D CNN approach.

To assess the statistical significance of model performance improvements, I conducted a

paired sample t-test to evaluate the mean differences in AUC scores between the HSCNN

and 3D CNN model. Let Group 1 be the AUC score of the HSCNN model for each holdout

test fold during the cross validation, and then paired Group 2 consists of the corresponding

AUC score for the 3D CNN for the same fold. The null hypothesis is that the mean difference

of AUC score between these two models equals 0. Table 4.6 summarizes the AUC scores

for these two paired groups and the t-test results. The test obtained a p-value of 0.005 and

confidence interval of [0.0051, 0.0129]; this rejects the null hypothesis and indicates that the

HSCNN model achieved a statistically significantly better AUC relative to the 3D CNN. The

mean improvement of the AUC score is 0.009. This finding demonstrates that adding a low-

level task component on existing CNN structure could improve the lung nodule malignancy

prediction results.

I also compared this results with current deep learning models for lung nodule malignancy

prediction, as reported in the literature to date. Kumar et al. [KWC15] developed a deep

autoencoder-based model with 4,323 nodules of the LIDC dataset, achieving model accuracy

of 0.7501. Hua et al. [HHH15] presented a CNN model and deep belief network (DBN) model.

Both models were trained and validated using 2,545 lung nodule samples from LIDC. The

CNN model had specificity of 0.787 and sensitivity 0.737; and the DBN model obtained
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Table 4.7: Classification performance for semantic feature predictions.

Semantic

Features
Accuracy (SD) AUC (SD) Specificity (SD) Sensitivity (SD)

Calcification 0.908 (0.050) 0.930 (0.034) 0.763 (0.092) 0.930 (0.067)

Margin 0.725 (0.049) 0.776 (0.033) 0.632 (0.109) 0.758 (0.091)

Subtlety 0.719 (0.019) 0.803 (0.015) 0.796 (0.045) 0.673 (0.044)

Texture 0.834 (0.086) 0.850 (0.042) 0.636 (0.199) 0.855 (0.108)

Sphericity 0.552 (0.027) 0.568 (0.015) 0.554 (0.076) 0.552 (0.095)

specificity of 0.822 and sensitivity 0.734. Shen et al. [SZY15] used a model based on multi-

scale 3D CNN. Developed with 1,375 LIDC nodule samples, the average accuracy is reported

above 0.84 with different configurations. Shen et al. [SZY17] extended this multi-scale model

using a multi-crop approach and achieved accuracy of 0.839, 0.8636, and 0.8714 with 340,

1030 and 1375 nodules of LIDC, respectively. However, unlike my method, all these methods

are evaluated with only training and validation data splits without independent holdout test

dataset. This evaluation design might lead to information leakage due to using the validation

data for optimal model parameters selection. Thus, this setting tends to over-estimate the

model performance. In general, my model achieved better or similar performances compared

with these reported methods.

Table 4.7 presents the classification performance for each of the low-level tasks (i.e.,

semantic features). Proposed model achieved mean accuracy of 0.908, 0.725, 0.719, 0.834

and 0.552; mean AUC score of 0.930, 0.776, 0.803, 0.850 and 0.568; mean sensitivity of 0.930,

0.758, 0.673, 0.855 and 0.552; and mean specificity of 0.763, 0.632, 0.796, 0.636 and 0.554

for calcification, margin, subtlety, texture, and sphericity, respectively. These results suggest

that the HSCNN model is able to extract representations that are predictable for semantic

features while achieving high nodule malignancy prediction power.

Figure 4.7 demonstrates the interpretability of the HSCNN model by visualizing the

central slices of the lung nodule samples in axial, coronal, and sagittal views while presenting

the predicted interpretable semantic labels along with the malignancy classification results.
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Figure 4.7: Illustrating the HSCNN model interpretability: lung nodule central slices, inter-

pretable semantic feature prediction and malignancy prediction. R1, R2, R3 and R4 are four

different nodules. (a) Central slices of axial, coronal and sagittal view of two benign nodule

samples; true and predicted labels for interpretable semantic features and malignancy. (b)

Central slices of axial, coronal and sagittal view of two malignant nodule samples; true and

predicted labels for interpretable semantic features and malignancy.
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Figure 4.7a-R1 shows that the HSCNN model classifies the lung nodule as benign (the true

label is also benign), with this decision correlated to predictions of this nodule as having no

calcification, sharp margins, roundness, obvious contrast between nodule and surroudings,

and solid texture. The predictions of these five semantic characteristics are the same as the

true label and corresponds to our knowledge about benign lung nodules. Compared to a 3D

CNN malignancy prediction model, the HSCNN provides more insight for interpreting its

predictions. Similarly, in Figure 4.7b-R3, the proposed model predicts the lung nodule as

malignant (true label is also malignant). Different from the benign case, the HSCNN model

predicts this nodule having poorly defined margins, non-solid texture, and non-round shape.

This partly explains why the HSCNN makes a malignancy classification, with such nodule

characteristics corresponding to our expert knowledge about typically malignant nodules.

We note that the sphericity predictions made by the model are different from the true label.

This result is explained by the fact that this nodule has a more regular round shape in axial

view, but less round shape in the two other views, as shown in Figure 4.7b-R3.

Figure 4.8 shows representative cases where the HSCNN fails on predictions of semantic

feature or cancer malignancy. Figure 4.8-R1 shows that the HSCNN model classifies the

lung nodule correctly as benign, but incorrectly for four semantic features of this nodule

(margin, texture, sphericity and subtlety). In Figure 4.8-R2, the HSCNN model incorrectly

classify the lung nodule as malignant (the true label is benign). However, all semantic

features of this nodule have been predicted correct as the true label. These two cases

present the situation where the correctness of the predictions are inconsistent between the

malignancy and semantic predictions. One possible solution to reduce this consistence and

to improve the model performance is to add more semantic features, which are predictive for

cancer malignancy, to the HSCNN model. Such semantic features could be the nodule size,

spiculation and lobulation.
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Figure 4.8: Represented cases where the HSCNN model predict incorrectly for semantic

features or cancer malignancy. R1 and R2 are two different nodules. R1: one case has four

incorrect semantic feature predictions, and the correct malignancy prediction. R2: one case

have all correct semantic predictions, but incorrect malignancy prediction.

4.4 Discussion

One limitation of the proposed hybrid CNN method is that the model depends on the nodule

candidate generation step to obtain the segmented candidate masks as the input data. Thus,

the previous candidate generation step sets the upper bound of detection sensitivity for the

following nodule detection (classification). If nodules are missed by the candidate generation

step, they cannot be detected by the proposed model. In current settings, nodule candidate

generation is a separate pre-processing component. Future work will explore build integrated

and end-to-end lung nodule detection pipeline, which the nodule candidate generation and

nodule detection steps will be combined in one joint deep learning framework. In this joint

setting, both steps could be optimized and improved by minimizing training error in one

unified framework.

There are some limitations to the HSCNN study. First, nodule characteristics of lobula-
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tion and spiculation are well-known features correlated to lung cancer malignancy, but could

not be used in this study given the labeling errors present in LIDC. Second, the original

semantic features have scales of 5 or 6; changing the label into a binary variable may lose

some label information. Still, using a binary label rather than the original labels is useful

in this case. First, it overcomes a label sparsity issue, where the number of cases labeled

for certain scales might be very small compared with the other scales (e.g., only 4 cases are

labeled as popcorn calcification pattern, while 3,018 cases are labeled as absent of calcifica-

tion pattern). Second, analysis shows that the inter-reader agreement is much lower for 5 or

6 scales compared with the proposed binary labels. Thus, binary labeling helps to reduce

labeling noise caused by inter-reader variability. One way to overcome these two limitations

is to collect a large dataset with more semantic labels. Although only five subtask modules

are presented for the HSCNN architecture in this paper, the HSCNN framework and global

loss function could be easily extended to increase or decrease the number of low-level seman-

tic features. Future work will explore model improvement by adding more labeled semantic

features and investigate model variability using different semantic labeling schema. More

details about future works will be presented in Chapter 6.
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CHAPTER 5

Lung Cancer Disease Progression Estimation

5.1 Overview

A growing number of individuals who are considered at high risk of cancer are now routinely

undergoing population-level screening. However, noted harms such as radiation exposure,

overdiagnosis, and overtreatment underscore the need for better temporal models that pre-

dict who should be screened and at what frequency. The mean sojourn time (MST), an

average duration period when a tumor can be detected by imaging but with no observable

clinical symptoms, is a critical variable for formulating screening policy. Estimation of MST

has been long studied using continuous Markov models (CMM) with Maximum likelihood

estimation (MLE). But traditional methods assume no observation error in interpreting the

imaging data, which is unlikely and can bias the estimation of the MST. In addition, the

MLE may not be stably estimated when data is sparse. Addressing these shortcomings, this

chapter presents a probabilistic modeling approach for periodic cancer screening data. I first

model the cancer state transition using a three state CMM model, while simultaneously con-

sidering observation error. Then, a novel Bayesian framework is presented to jointly estimate

the MST and observation error. This study also considers the inclusion of covariates to es-

timate individualized rates of disease progression. In the remainder of this chapter, Section

5.2 details the developed Bayesian framework and CMM modeling approach. Section 5.3

describes the evaluation metrics and Section 5.4 shows the validation results, demonstrating

that this method achieves more accurate and sensible estimates of MST in comparison to

MLE. Section 5.5 discusses the limitations and compare this study with other works. The

content of this chapter is based on my prior publication [SHP17].
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Figure 5.1: Model state transition diagram. State 1 is the disease-free state, State 2 is the

preclinical state and State 3 is the clinical state. Parameters λ12 and λ23 are the transition

intensities for transitioning from State 1 to State 2 and State 2 to State 3, respectively.

5.2 Materials and Methods

5.2.1 Overview

As with prior work, I model the natural progression of lung cancer as transitioning through

three states (see Figure 5.1): a disease-free state (State 1), a preclinical state detectable via

screening but asymptomatic (State 2), and a symptomatic state (State 3) [UHC10, DCT95,

CDT96, CLC08]. The model assumes that a patient in State 1 must go through State 2 to

reach State 3. When a patient undergoes screening, one of two states can be observed: if the

screening result is positive and confirmed by a diagnostic evaluation, such as a biopsy, the

patient is in the preclinical state; otherwise, the patient is in the disease-free state. Thus,

the second state (preclinical) is identified under two conditions: 1) a positive screening

test; and 2) a confirmed positive pathology diagnosis. However, patients in the preclinical

state include both false-negatives due to interpretation error, and true-negatives, both of

whom can progress to the clinical state. When cancer is first detected by emerging lung

cancer symptoms (not through screening), the patient is in the clinical state. In multi-round

screening settings, patients who do not progress to the clinical state and are not found to be

preclinical during screening will repeat the process in subsequent rounds. Those found to be

symptomatic of lung cancer prior to another round of screening are considered to be interval

cases. Figure 5.2 illustrates this process. There is observation error when I observe State 1

(i.e., the underlying real state could be either State 1 or State 2), but no observation error
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Figure 5.2: An illustration of possible outcomes from periodic CXR screening, where CXRj

represents the jth screening. CXR2 and following screening will have similar possible out-

comes and procedure as with CXR1. If the subjects are observed in the preclinical state in

the first screening, they will enter treatment (and stop periodic screening CXR). Otherwise,

subjects are observed to be in the disease free state. However, these observed disease-free

subjects include both false-negatives (missed preclinical cases) and true-negatives. Some sub-

jects, who are found at the clinical state (lung cancer symptoms emerge) prior to another

round of screening, are called interval cases and also will not undergo additional screening.

These interval cases may come from missed preclinical subjects or true disease-free subjects.

Subjects who do not progress to the clinical state repeat the process in subsequent rounds.

is assumed when I observe State 2 and State 3, as both are confirmed clinically.

MST is difficult to estimate because the direct transition from the disease-free state to

the preclinical state is clinically unobservable. Patients will undergo intervention/treatment

after being observed in a preclinical state (a positive cancer screening), thus obviating the

natural progression from a preclinical state to a clinical state. Therefore, interval cases

become the only source of information for estimating MST if no control group (individuals

who never undergo screening) is available. As the discovery of interval cancers is affected

by false-negative screening results, estimation of MST is affected by detection sensitivity; a

biased estimate of sensitivity can influence the estimate of MST [CLC08]. Sensitivity is the

unknown probability of screening detecting preclinical cancer.
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Table 5.1: Detailed chest x-ray participant breakdown

Screening Detection Mode Number Transition Types

First screening Participants 25244

Screening-Detected Cases 132 No disease → Preclinical

Negative Screening Cases 25112 No disease → No disease

Interval Cancers (Between 48 No disease → Clinical

1st/2nd screenings)

Second screening Participants 23506

Screening-Detected Cases 64 No disease → Preclinical

Negative Screening Cases 23442 No disease → No disease

Interval Cancers (Between 42 No disease → Clinical

2nd/3rd screenings)

Third Screening Participants 22411

Screening-Detected Cases 74 No disease → Preclinical

Negative Screening Cases 22337 No disease → No disease

Post-screening Cancers 484 No disease → Clinical

(after 3rd screening)

5.2.2 National lung screening trial (NLST) data

The National Lung Screening Trial was a large multi-center randomized controlled trial

(RCT) of over 53, 000 high-risk current or former smokers. Participants were initially between

55 and 74 years old, had smoking histories of at least 30 pack-years and were cancer-free

at the start of the trial. The study followed participants between 2002− 2007, with follow-

up through 2009. Each participant had up to three rounds of screening, with roughly one

year between screenings. The study consisted of two arms, chest x-ray (CXR) and low-

dose computed tomography (CT). If at any point in the study the participant was found

to have cancer, he/she did not receive further screenings and was removed from the trial.

In this study, I utilize data from the CXR arm. Of the 26, 730 total patients originally in

the CXR arm, 807 were removed from my analysis due to withdrawal from the study or
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loss of contact, and 100 were removed because they were discovered to have been ineligible

after enrollment (e.g., patient had a CT within 18 months of enrollment). A further 579

patients who did not receive the first round of screening were removed. Only clinically

confirmed positive screenings are considered preclinical (State 2). Here, interval cancers are

cases detected after a negative screen, but before the next screen (between first and second

screen or between second and third screen). Post-screening cancer cases are those detected

after a negative third screen during follow-up, and the follow-up time is up to 5.09 years.

Both interval and post-screening cancers are assumed to be symptomatic cancers and defined

as clinical (State 3). False-positives were considered to not be cancer (State 1). Table 5.1

presents a detailed breakdown of events.

5.2.3 Continuous-time Markov model

Let k and l denote one of the three disease states, where k, l ∈ {1, 2, 3}. Suppose the disease

is in State k at time t and let pkl(t, t + ∆t) denote the probability of transition from State

k to l during time period ∆t. Then, the instantaneous λkl(t) transition intensity, which

represents the instantaneous hazard rate of progression to State l [JST03], is

λkl(t) = lim
∆t→0

pkl(t, t+ ∆t)/∆t. (5.1)

Using a time-homogeneous model, both the transition intensity and transition probability

is independent of t, where λkl(t) = λkl. In this case, the process is stationary and the

transition probability pkl(∆t) = pkl(t, t + ∆t) = pkl(0,∆t). The three-state instantaneous

transition rate matrix Q is:

Q =


−λ12 λ12 0

0 −λ23 λ23

0 0 0

 , (5.2)

whose rows sum to 0, so that the diagonal entries are [KL85, JST03]:

λkk = −
∑
k 6=l

λkl. (5.3)

As shown in Figure 5.1, transitions could only happen from State 1 to State 2 and from

State 2 to State 3. For other undefined transitions, transition rates are 0. Transition rate
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λ12 represents the instantaneous hazard rate to the preclinical state from the disease free state

and λ23 is the instantaneous hazard rate of transitioning to clinical state from the preclinical

state. In the CMM, MST is calculated as 1/λ23. The transition probability matrix in time

∆t is the matrix exponential [KL85] P (∆t) = exp(Q∆t):

P (∆t) =


exp(−λ12∆t) λ12(exp(−λ23∆t)−exp(−λ12∆t))

λ12−λ23
1 + λ23 exp(−λ12∆t)−λ12 exp(λ23∆t)

λ12−λ23

0 exp(−λ23∆t) 1− exp(−λ23∆t)

0 0 1

 (5.4)

whose (k, l)th entry is pkl(∆t). I first assume no observation error, that is, sensitivity equals

1. I can easily write the likelihood function for each observation, and the parameters can

be estimated using maximum likelihood. Transition probabilities from baseline to the first

screening time point are conditional on no cancer at baseline. Probabilities for different

transitions can be computed and are given in Table 5.2. The Markov assumption states

that transitions only depend on the previous state. Patients are independent given the

parameters and thus the log-likelihood function for all subjects is equal to the summation

over all participants.

5.2.4 Modeling imperfect screening sensitivity

Equation (5.4) and Table (5.2) assume that sensitivity of the low-dose lung cancer screening

exam is 100%. However, in practice, false negatives reduce the test sensitivity. In this sec-

tion, I introduce a Bayesian model for inferring both sensitivity and transition probabilities

simultaneously.

I develop the model for three rounds of screening, including interval cancer and post-

screening cancer cases. Time intervals between the first and second screenings and second

and third screenings are ∆t12 and ∆t23, respectively. I assume ∆t12 and ∆t23 are the same

for all participants. Let A be the average age of all participants at first screening and A is

used as the time interval for the first screening (participants are assumed to be disease-free at

birth and the first observation time is at first screening) [UHC10, DCT95, CLC08, SCL07].
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Table 5.2: Likelihood function for the Markov model

Observation Type Probability

Disease free at 1st screening P1 = exp(−λ12∆t)

exp(−λ12∆t)+
λ12(exp(−λ23∆t)−exp(−λ12∆t))

λ12−λ23

Disease free at 2nd or 3rd screening P2 = exp(−λ12∆t)

Preclinical disease at 1st screening P3 = 1− P1

Preclinical disease at 2nd or 3rd screening P4 = λ12(exp(−λ23∆t)−exp(−λ12∆t))
λ12−λ23

Clinical disease P5 = 1− λ23 exp(−λ12∆t)−λ12 exp(λ23∆t)
λ23−λ12

(interval and post-screening cases)

The real state at time t is Yt, a random variable with three possible states {1, 2, 3} modeled

by the 3-state homogeneous Markov process (Figure 5.1) with transition hazard matrix Q

and transition probability matrix P (∆t). The observed state at time t is denoted as Zt, also

with three possible states {1, 2, 3}. At screening, the observed state Zt is subject to error due

to false-negatives, meaning a preclinical state may be incorrectly observed as disease-free.

The sensitivity S is S = Pr(Zt = 2|Yt = 2) and 1−S = Pr(Zt = 1|Yt = 2). The observation

error for the other two states are assumed to be zero because they are confirmed clinically:

Pr(Zt = 1|Yt = 1) = 1 and Pr(Zt = 3|Yt = 3) = 1. Suppose there are T rounds of screening

in total (T observations), I make two conditional independence assumptions about Yt and

Zt: 1) an observational independence assumption, such that the tth observation given the tth

real state is independent of all other observations and real states on that subject

P (Zt|YT , ZT , YT−1, ZT−1, ..., Yt+1, Zt+1, Yt, Yt−1, Zt−1, ..., Y1, Z1) = P (Zt|Yt),

; and 2) a Markov assumption, such that the tth real state given previous real states is

independent of all previous observations and real states except the most recent real state,

P (Yt|Yt−1, Zt−1, Yt−2, Zt−2, ..., Y1, Z1) = P (Yt|Yt−1).
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Given the total number of participants in the jth round of screening and the probability

that a participant will be observed as preclinical this round, the number of observed preclini-

cal cases at this screening follows a binomial distribution [CC08]. Let Nj be the total number

of attendees at screening j; let πj be the probability of being observed at the preclinical state

at the jth screening, and let nj be the number of subjects observed at the preclinical state

at the jth screening, then I have:

nj|πj ∼ B(Nj, πj). (5.5)

The probability π1 that a subject is observed in the preclinical state on the first screening

given the subject is not in the clinical state is:

π1 = Pr(ZA = 2|YA 6= 3) = Pr(ZA = 2, YA 6= 3)/Pr(YA 6= 3)

= (Pr(ZA = 2|YA = 2)Pr(YA = 2) + Pr(ZA = 1|YA = 2)Pr(YA = 2))/

(Pr(YA = 2) + Pr(YA = 1))

= (S · p12(A))/(p12(A) + p11(A)). (5.6)

Next π2 is the probability that a subject is observed in the preclinical state on the second

screening given that the patient is not observed in the clinical state after the first screen and

was disease-free on the first screening. The true preclinical case here may come from two

sources: 1) the patient is disease-free at the first screening and progresses to preclinical at

the second screening; 2) the false-negative patient whose real state is preclinical at the first

screening and stays in the preclinical state for the second screening.

π2 = Pr(ZA+∆t12 = 2|ZA = 1, YA 6= 3, YA+∆t12 6= 3)

= Pr(ZA+∆t12 = 2, YA+∆t12 6= 3|ZA = 1, YA 6= 3)/Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3)

= (Pr(ZA+∆t12 = 2, YA+∆t12 = 2|ZA = 1, YA 6= 3) + Pr(ZA+∆t12 = 2, YA+∆t12 = 1|

ZA = 1, YA 6= 3))/(Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3))

= (Pr(ZA+∆t12 = 2|YA+∆t12 = 2, ZA = 1, YA 6= 3)Pr(YA+∆t12 = 2|ZA = 1, YA 6= 3)

80



+Pr(ZA+∆t12 = 2|YA+∆t12 = 1, ZA = 1, YA 6= 3)Pr(YA+∆t12 = 1|ZA = 1, YA 6= 3))/

Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3).

= S · Pr(YA+∆t12 = 2|ZA = 1, YA 6= 3)/Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3)

= S · (β1 · p12(∆t12) + β2 · p22(∆t12))/θ1 (5.7)

where (5.7) follows from assumptions (a) and (b) and

β2 = Pr(YA = 2|ZA = 1, YA 6= 3) = Pr(ZA = 1|YA = 2, YA 6= 3)Pr(YA = 2|YA 6= 3)/

Pr(ZA = 1|YA 6= 3)

= (1− S) · π1/((1− π1) · S), (5.8)

β1 = Pr(YA = 1|ZA = 1, YA 6= 3) = 1− β2, (5.9)

θ1 = Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3)

= 1− Pr(YA+∆t12 6= 3|ZA = 1, YA 6= 3)

= 1− Pr(YA = 1|ZA = 1, YA 6= 3)Pr(YA+∆t12 = 3|YA = 1, ZA = 1, YA 6= 3)− Pr(

YA = 2|ZA = 1, YA 6= 3)Pr(YA+∆t12 = 3|YA = 2, ZA = 1, YA 6= 3)

= 1− β1 · p13(∆t12)− β2 · p23(∆t12). (5.10)

Finally, π3 is the probability that one is observed as preclinical on the third screening

given disease-free observations in the two previous screenings and not in the clinical state in

any screening. The formula for π3 is similar to that of π2:

π3 = Pr(ZA+∆t12+∆t23 = 2|ZA+∆t12 = 1, ZA = 1, YA 6= 3, YA+∆t12 6= 3, YA+∆t12+∆t23 6= 3)

= S · (γ1 · p12(∆t23) + γ2 · p22(∆t23))/θ2 (5.11)

where

γ2 = Pr(YA+∆t12 = 2|ZA+∆t12 = 1, YA+∆t12 6= 3, ZA = 1, YA 6= 3)

= Pr(YA+∆t12 = 2, ZA+∆t12 = 1|ZA = 1, YA 6= 3)/(Pr(YA+∆t12 = 2, ZA+∆t12 = 1|ZA = 1,

YA 6= 3) + Pr(YA+∆t12 = 1, ZA+∆t12 = 1|ZA = 1, YA 6= 3))

= (Pr(ZA+∆t12 = 1|YA+∆t12 = 2, ZA = 1, YA 6= 3, YA = 2)Pr(YA+∆t12 = 2|ZA = 1, YA
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6= 3, YA = 2)Pr(YA = 2|ZA = 1, YA 6= 3) + Pr(ZA+∆t12 = 1|YA+∆t12 = 2, ZA = 1, YA

6= 3, YA = 1)Pr(YA+∆t12 = 2|ZA = 1, YA 6= 3, YA = 1)Pr(YA = 1|ZA = 1, YA 6= 3))/

(Pr(YA+∆t12 = 2, ZA+∆t12 = 1|ZA = 1, YA 6= 3) + Pr(YA+∆t12 = 1, ZA+∆t12 = 1|ZA

= 1, YA 6= 3))

= (1− S) · (p22(∆t12)β2 + p12(∆t12)β1)/((1− S) · (p22(∆t12)β2 + p12(∆t12)β1) +

p1,1(∆t12)β1), (5.12)

γ1 = Pr(YA+∆t12 = 1|ZA+∆t12 = 1, YA+∆t12 6= 3, ZA = 1, YA 6= 3) = 1− γ2, (5.13)

θ2 = Pr(YA+∆t12+∆t23 6= 3|ZA+∆t12 = 1, YA+∆t12 6= 3, ZA = 1, YA 6= 3)

= 1− γ2 · p23(∆t23)− γ1 · p13(∆t23). (5.14)

Observed interval and follow-up cancers are assumed to be clinical. Let N
(3)
j∆t be the

number of subjects observed in the clinical state between the jth and (j + 1)th screening

within time interval ∆t. Then N
(3)
j∆t is a random variable that can be modeled as a Poisson

process [CC08]. LetMj(∆t) be the mean of the Poisson distribution. ThenMj(∆t) is the sum

of two parts: 1) the number of patients who progress to the clinical state from the disease-

free state within ∆t; and 2) the number of progressions from the preclinical states, which are

false-negatives of the previous screening that transit into the clinical state within ∆t [CC08].

The first part is the product of the number of disease-free patients at jth screening N
(1)
j

times p13(∆t); and the second part is the product of the number of false-negative subjects

at jth screening times p23(∆t).

Section 5.4 discusses the priors adopted for the model. I use Markov Chain Monte Carlo

(MCMC) to generate random samples from the joint posterior distribution of the parameters

with the WinBUGS software program [LTB00].

5.2.5 Considering covariates

This model can be extended to evaluate the effects of covariates, such as gender and age,

on parameter estimation. In this study, the effects of covariates are investigated with a

stratified analysis by fitting my model separately for age groups > 60 and ≤ 60 to yield
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independent estimates of parameters (λ12, λ23, S) for each age group [SCL07]. The same

analysis is also performed on different gender groups. The NLST CXR dataset used in this

work enrolled only high-risk lung cancer subjects, who are former or current smokers and have

a minimum of 30 pack-years of cigarette smoking history. To further divide the dataset into

sub-cohorts and investigate the cancer progression differences, covariates are identified from

demographics, smoking history and disease history, including age, gender, family history of

cancer, body mass index, disease history, cancer history, current or former smoker, number

of packs of cigarette per year, and smoke years. Distributions of each covariate within no-

cancer, non-symptomatic cancer, symptomatic cancer, and post-screening cancer groups are

plotted and compared to identify the significant covariates in this high-risk cohort for further

stratification. Age and gender are two significant and important factors that have also been

used by previous lung cancer studies [ZW96, WER11], and are thus used here and reported

in Section 5.4.

5.3 Evaluation

To validate the proposed model and compare with other methods, two metrics are employed.

First, I use Pearson’s chi-square to check the adequacy of the proposed model and validate

parameter estimates by checking whether there are significant differences between the ob-

served and expected counts [UHC10, CLC08, SCL07, CC08, Jac11]. A p-value larger than

0.05 suggests no significant difference indicating a good fit and accurate estimation of pa-

rameters. Then, posterior predictive p-values (PPPV) [GMS96] are employed to check the

inconsistency between model predictions and observed counts for the Bayesian approach. A

p-value away from 0 for the PPPV indicates a good fit.

In Section 5.4.1, I first present the results of a CMM model (no observation error) fit with

MLE using NLST dataset for estimation of MST. I then present the results of the model

including observation error using the proposed Bayesian approach in Section 5.4.2. Using

Pearson’s chi-square and PPPV, I show that the proposed model fits the data better than

the model without observation error.
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Table 5.3: Summaries of the posterior

Parameter Mean SD 2.5% 97.5%

λ12 0.00525 0.000185 0.00489 0.00562

λ23 0.927 0.0889 0.748 1.09

MST (year) 1.09 0.108 0.914 1.34

Sensitivity 0.899 0.0589 0.761 0.984

5.4 Results

Section 5.4.1 gives results using the simple CMM model assuming 100% sensitivity. Pearson’s

chi-square reveals a poor fit using simple CMM model. Section 5.4.2 gives results for tran-

sition intensities and sensitivity using the Bayesian approach with and without covariates.

Both Pearson’s chi-square test and the PPPV suggest a good fit for the proposed model.

Based on my covariate analysis in Section 5.4.3, the MST is longer in the older population.

5.4.1 Maximum likelihood without observation error

MLE is used to estimate the parameters of the three-state CMM when assuming sensitivity

is 1. Two parameters θ = (λ12, λ23) need to be estimated. The likelihood calculation

is implemented in R and quasi-Newton function maximization is used for the optimization

step. The initial value for λ12, the incidence rate of preclinical disease, is set to 0.00552 based

on a study done by Manser et al. [CC08, MDC05]. The initial value for λ23, the incidence

rate of clinical disease and the inverse of MST, is set to 0.52 based on the inverse of the

average reported CXR MST range (0.46 − 3.35) [CLC08, KEW12, CEW14, CC08]. With

these initial values, λ12 is estimated at 0.0154 (95% CI: 0.0143 − 0.0164), λ23 is estimated

at 3.31 (95% CI: 2.90− 3.72) and MST is estimated as 0.302 years (95% CI: 0.269− 0.345).

However, the chi-square is 610.7 with p smaller than 0.00001, indicating a poor fit for the

model.
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Table 5.4: Goodness of fit with sensitivity < 1

Observed Expected Residual

First screening negative 25112 25115.1 -3.1

First screening positive 132 128.9 3.1

Interval cancers after first screening 48 55 -7

Second screening negative 23442 23428.9 13.1

Second screening positive 64 77.1 -13.1

Interval cancers after second screening 42 47 -5

Third screening negative 22337 22339.2 2.2

Third screening positive 74 71.8 -2.2

Post-screening cancers after third screening 484 464.2 19.8

χ2 = 4.643, P = 0.590

5.4.2 Bayesian Approach

In my analysis of the CXR data using the proposed Bayesian approach, there are now three

parameters to be estimated, θ = (λ12, λ23, S). In previous studies, sensitivity of CXR in

lung cancer is reported as being in the range of 69 − 90% [WER11, CC08, TNK08] with

a mean around 80%. Thus, a beta distribution with α = 5 and β = 2 is adopted as the

prior for sensitivity with a mode at 80%. Uniform distributions are employed as priors for

λ12 and λ23. A range from 0.0005 to 0.05 is selected as the prior for λ12 to allow enough

flexibility given previously reported values in studies [CC08, MDC05] as described in section

5.4.1. Similarly, the prior of λ23 is chosen to be uniform of 0.2 to 5 based on previous studies

[CLC08, KEW12, CEW14, CC08].

I use two sub-chains and WinBUGS [LTB00] to sample from the posterior for θ = (λ12,

λ23, S). Each MCMC simulation is run for 45, 000 iterations, with a burn-in of 5, 000 itera-

tions. Convergence was essentially immediate. After the burn-in, the posteriors are sampled

and stored every 8 iterations, generating 5, 000 posterior samples per chain. The 10, 000

posterior samples, θi, i = 1, ..., 10000, are pooled for analysis. The program is running on
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Figure 5.3: Scatter plot of 1000 randomly selected posterior samples of sensitivity and cor-

responding MST.

a Windows 8.1 desktop with a Intel Xeon CPU (3.3.GHz and 3.30GHz) and 16GB RAM.

The WinBUGS program running time is 3.2 minutes.

Table 5.3 shows summaries of the posterior for the parameters. MST and sensitivity

are estimated as 1.09 years (95% CI: 0.914 − 1.34) and 0.899 (95% CI: 0.761 − 0.984),

respectively. Table 5.4 shows results of the chi-square test. There is no significant difference

between observed and expected values, indicating a good fit to the empirical data. Compared

to the model with perfect sensitivity, the expanded model fits the data better. The estimated

MST is much longer compared to the reduced model fit assuming a sensitivity of 1. This

corresponds to the expectation that lower sensitivity will lead to higher MST. This trend is

also demonstrated in Figure 5.3, which plots 1000 randomly selected posterior samples of

MST and sensitivity.

To further evaluate the expanded model, I also employ a posterior predictive p-value

[GMS96] to assess the model fit. Let y = (y1, ..., y9) denote the observed data, where ya

is the number of positive, negative and interval cases or post-screening cancer subjects for

all three screenings. Let yrep = (yrep1, ..., yrep9) be the replicated data that could have been
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observed. A χ2 discrepancy is the sum of squares of standardized residuals of the data with

respect to their expectations under a posterior model and defined as [GMS96]

χ2(y; θ) =
9∑

a=1

(ya − E(ya|θ))2

V ar(ya|θ)
. (5.15)

where V ar(ya|θ) represents the variance of ya given the parameter vector θ and E(ya|θ)

represents the expectation. For each posterior sample θ(b), b = 1, ..., 10000, draw a simu-

lated replicated data set, y
(b)
rep, from the sampling distribution p(y

(b)
rep|θ(b)). Then, calculate

χ2(y; θ(b)) and χ2(y
(b)
rep; θ(b)). Figure 5.4 plots {(χ2(y; θ(b)), χ2(y

(b)
rep; θ(b))), b = 1, ..., 10000}.

The estimated PPPV is calculated as the proportion of the 10,000 pairs for which χ2(y
(b)
rep; θ(b))

exceeds χ2(y; θ(b)) [GMS96]. The estimated PPPV is 0.381 as shown in the figure and it does

not indicate a lack fit for the model.

Figure 5.4: Scatter plot of predictive and realized log likelihood ratio discrepancies for the

proposed Bayesian model using the whole CXR data set; the proportion of points above the

red 45o line represents the proportion of χ2(y
(b)
rep; θ(b)) exceeding χ2(y; θ(b)) and is the posterior

predictive p-value (PPPV). A PPPV away from 0 indicates a good model fit. The PPPV is

0.381.
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Table 5.5: Summaries of the posterior for the two gender groups

Parameter Gender Mean SD 2.5% 97.5%

λ12 Male 0.00528 0.000241 0.00483 0.00577

Female 0.00519 0.000294 0.00463 0.00578

λ23 Male 0.908 0.112 0.694 1.13

Female 0.889 0.125 0.652 1.14

MST Male 1.12 0.143 0.884 1.44

Female 1.15 0.171 0.878 1.54

Sensitivity Male 0.871 0.0728 0.705 0.980

Female 0.866 0.0801 0.677 0.980

Table 5.6: Summaries of the posterior for the two age groups

Parameter Age Group Mean SD 2.5% 97.5%

λ12 ≤ 60 0.00322 0.000205 0.00284 0.00364

> 60 0.00732 0.000314 0.00670 0.00795

λ23 ≤ 60 0.986 0.164 0.687 1.33

> 60 0.872 0.0988 0.676 1.07

MST ≤ 60 1.04 0.181 0.753 1.46

> 60 1.16 0.137 0.937 1.48

Sensitivity ≤ 60 0.848 0.0883 0.646 0.976

> 60 0.881 0.0684 0.723 0.982

5.4.3 Covariate analysis

The explanatory variables (covariates) can be included using a stratified analysis. For gen-

der, the data is divided into male and female and the model refit for each group. At the first

screening, there are 14, 936 males and 10, 308 females. Table 5.5 shows posterior summaries

for these two groups. There is little difference between females and males in terms of MST,

sensitivity, and incidence rate of preclinical disease (λ12). For age, the sample is divided into

two groups: age ≤ 60 (12,669 participants) and those older than 60 (12,575 participants).
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Table 5.7: Goodness of fit by age group

Observed Expected Residual

age ≤ 60

First screen negative 12631 12633.5 -2.5

First screen positive 38 35.5 2.5

Interval cancers after first screen 14 19.1 -5.1

Second screen negative 11828 11830.2 2.2

Second screen positive 18 15.8 -2.2

Interval cancers after second screen 16 15.2 0.8

Third screen negative 11258 11257.2 0.8

Third screen positive 20 20.8 -0.8

Post-screening cancers after third screen 154 146.9 7.1

χ2 = 2.261, P = 0.894

age > 60

First screen negative 12481 12481.3 -0.3

First screen positive 94 93.7 0.3

Interval cancers after first screen 34 38 -4

Second screen negative 11614 11605.3 8.7

Second screen positive 46 54.7 -8.7

Interval cancers after second screen 26 31.9 -5.9

Third screen negative 11079 11082.5 -3.5

Third screen positive 54 50.5 3.5

Post-screening cancers after third screen 330 316.8 13.2

χ2 = 3.697, P = 0.718

Table 5.6 shows the posterior summaries for these two groups. The incidence rate λ12 of pre-

clinical disease is two times larger in the older age group, and the 95% confidence intervals

do not overlap. However, the MST and sensitivity are similar. This indicates that subjects

(heavy smokers) older than 60 are twice as likely to progress to the preclinical state com-
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Table 5.8: Goodness of fit by gender group

Observed Expected Residual

Male

First screen negative 14858 14859.7 -1.7

First screen positive 78 76.3 1.7

Interval cancers after first screen 30 34 -4

Second screen negative 13932 13927.8 4.2

Second screen positive 42 46.2 -4.2

Interval cancers after second screen 23 29 -6

Third screen negative 13307 13303.3 3.7

Third screen positive 39 42.7 -3.7

Post-screening cancers after third screen 293 277.9 15.1

χ2 = 3.275, P = 0.774

Female

First screen negative 10254 10255.4 -1.4

First screen positive 54 52.6 1.4

Interval cancers after first screen 18 22.8 -4.8

Second screen negative 9510 9500.8 9.2

Second screen positive 22 31.2 -9.2

Interval cancers after second screen 19 18.6 0.4

Third screen negative 9030 9036.3 -6.3

Third screen positive 35 28.7 6.3

Post-screening cancers after third screen 191 185.6 5.4

χ2 = 5.323, P = 0.503

pared to those who are younger, consistent with the observations that there are significantly

more detected preclinical cases as shown in Table 5.7. There is also a significantly higher

percentage of observed interval/post-screening cancers in the older group. This is reasonable

given that there are more subjects in the preclinical state. Table 5.7 and table 5.8 give the
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chi-square test results for the models fit separetely by age and gender. The results suggest

that the model fits well in all sub-groups. Compared to the whole population, fit is improved

in each of the age groups. The estimated PPPV for the age sub-groups ≤ 60, > 60, male

and female are 0.604, 0.507, 0.610 and 0.259, respectively. All values indicate no lack of fit.

5.5 Discussion

This chapter presents a CMM-based model that incorporates observation error to model

estimate multi-state disease progression. Applied to lung cancer screening data from the

NLST dataset, the model produces results that are plausible and consistent with published

literature [CLC08, WER11, CC08, HRK15]. The CMM is a natural approach to take for

modeling the transitions of discrete health states [SCL07]. It can model transitions over time

by incorporating longitudinal patient data and variable observation intervals. Sensitivity and

MST are two important unknown parameters in the model. However, these two parameters

are correlated and difficult to untangle as shown in figure 5.3, especially when no information

is available for the incidence rate from a control group [UHC10]. Without a control group,

MST can only be estimated from the occurrence of interval cancer cases. On the other hand,

more false-negative cases leads to more occurrences of interval cases, resulting in a shorter

MST estimate. Thus, MST and sensitivity should be modeled jointly [WVA05, WLV08] and

estimates are sensitive to small changes in interval cancer counts [UHC10]. In [CLC08] and

[SCL07], MST is estimated assuming sensitivity is 1, which is quite optimistic in reality.

Duffy and Chen et al. [DCT95] proposed a two step method: firstly, MST is estimated by

assuming sensitivity to be 1, and secondly, sensitivity is re-estimated using the obtained

MST. This method is similarly still subject to error due to not estimating both jointly. In

my study, I first investigated MST assuming sensitivity to be 1 similar to Step 1 in [DCT95].

As shown in Section 5.4.1, the model did not fit well. In [UHC10, CDT96, JST03, Jac11],

sensitivity is modeled as part of the likelihood function, and MLE is adopted to estimate

the parameters.

To compare with other methods, I implemented a three-state model from [UHC10] using
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Table 5.9: Comparison between modeling approches

Model Comment

Shih et al. [SCL07] Uses a Markov model in conjunction with the preva-

lence pool concept, but has the limitations of assuming

a steady state disease rate. Parameters are estimated

using an Expectation-Maximum likelihood algorithm.

Chien et al. [CLC08] Uses a Bayesian approach to estimate parameters of a 3-

state lung cancer Markov model. The authors assumes

imaging exams have 100% sensitivity.

Petousis et al. [PHA16] Uses a discrete time dynamic Bayesian network to pre-

dict lung cancer incidence across time points. But the

discrete time nature make it impossible to estimate

MST.

Proposed method Uses continuous-time Markov model and developed a

Bayesian framework for parameter estimation. Provides

analytical solutions to model observed occurrences for

each state and jointly estimated MST and sensitivity.

It is able to use all observed data including data from

the third screening and post- screening cancer cases.

the R programming language [R C13] to model the same NLST CXR data. A general multi-

state Markov model software package developed in [Jac11] was also used to try to fit the

data. However, no stable estimates were obtained in either case. Overall, my method uses

the probabilistic Bayesian approach to model the observed occurrences for each state and

jointly estimated MST and sensitivity and provides improved fit. An additional benefit is

that the likelihood is able to use all the data including data from the third screening and

post-screening cancer cases.

There are some limitations to this work. First, the preclinical state is defined as the

state in which the disease is detectable by screening. Therefore, depending on the screening
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modality, the probability of transition into the preclinical state will also vary. For instance,

CT has better resolution for detecting lung cancer, and a CT-screened patient might enter the

preclinical state earlier relative to a CXR-screened patient. Therefore, MST and sensitivity

are specific to each screening modality. Second, my current model models population level

information by using average transition times between states as in [UHC10, CLC08, SCL07,

CC08]. By using individual data, I can make inferences on the MST distribution across

the patient population, possibly improving accuracy of the estimates. This also opens the

path towards using patients’ electronic health record (EHR) data for individualized screening

schedules. Future work will focus on an individualized Bayesian framework that models each

patient’s information separately. In the reduced model where sensitivity is 1, both average

and individualized patient transition times were investigated and the estimates for MST were

very similar. Thus, the fit of my proposed model does not lose much generalizability using

average transition time.
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CHAPTER 6

Conclusion

6.1 Overview

This chapter summarizes the results and findings of this dissertation. It also presents the

potential avenues of research and future studies as a result of this work.

6.2 Summary & Results

This dissertation addresses the needs for methods and tools that assist physicians to opti-

mize the lung cancer screening and diagnosis workflow towards improving cancer diagnosis

accuracy and reduce cost and radiation exposure. My approach was to develop methods

for automated lung segmentation, nodule classification, cancer diagnosis and personalized

periodic screening interval estimation. The specific contributions of this dissertation are as

follows:

• A parameter-free lung segmentation method to improve juxtapleural nodule detection

accuracy. I presented a novel approach to segment the lung using a bidirectional

differential chain code combined with a machine learning framework.

• A robust hybrid ensemble convolutional neural network for lung nodule classification.

I developed a hybrid convolutional neural network to differentiate lung nodules vs.

non-nodules employing an ensemble of VGG module, residual module and densely

connected module designs to improve the model robustness.

• An interpretable hierarchical semantic convolutional neural network for lung cancer
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diagnosis. I described how to incorporate domain knowledge into the design of deep

learning framework to enable model interpretation and improve lung cancer diagnosis.

• A statistical multi-state disease estimation model. I showed how to achieve more accu-

rate and robust disease progression estimation using a novel Bayesian framework while

considering observation error.

I performed a rigorous evaluation of the novel lung segmentation approach. The results

in Section 3.4.3 have demonstrated the method was able to correctly include the juxtapleural

nodules into the lung tissue while minimizing over- and under-segmentation. In addition, this

method is generalizable to any task that involves concave/convex detection. For example, in

magnetic resonance angiography, detection of concave/convex regions may be able to identify

and accurately segment incidental aneurysms to assess their risk of rupture. The hybrid

ensemble CNN model was tested using both a developed dataset and an external dataset as in

Section 4.3.2, and has shown great robustness for dataset collected with different acquisition

parameters. This model can be used for lung nodule classification, but also could serve as

a robust feature extractor. The HSCNN model predicted semantic nodule characteristics

along with the primary task of nodule malignancy diagnosis. The results in Section 4.3.3

suggest that the HSCNN model was able to quantify these nodule characteristics in a fully

data-driven way and in one joint model for malignancy prediction. The predicted semantic

labels were useful in interpreting the model’s predictions for malignancy and correlated

with known medical domain knowledge about pulmonary nodules and their relation to lung

cancer. The produced model can be used as a semantic feature generator for unlabeled

cases. In Chapter 5, the Bayesian-based multi-state disease progression estimation model

builds the basis for providing individualized screening recommendations for a specific group

of individuals stratified by their covariates. This work provides a way to more robustly

calculate MST for specific cohorts with sparse observations, while considering the observation

error. In clinical practice, with collected screening data (may be noisy and sparse), this work

makes it possible to more accurately determine suitable screening periods. It also serves as

the foundation to move towards individualized screening, where a personalized screening
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paradigm will be provided for each subject.

In this dissertation work, the developed machine and deep learning models were trained

and evaluated by splitting the datasets into training, validation and test sets. Training sets

were used to minimize the training error and update the learnable model parameters. The

validation sets were employed to tune the model hyper-parameters. The final assessment

of the model performances were reported on the test sets as external holdouts. This design

ensures that the test set is independent of model training and parameter optimizations, and

should better reflect the true model performance without information leakage. We note that

earlier studies in [SZY15, SZY17, KWC15, HHH15] only use training and validation splits

during the cross validation process, without consideration for holdout test sets; such designs

arguably have information leakage, and thus tend to over-estimate model performance.

6.3 Future Work

While a substantial amount of work has been done to develop the methodologies presented

in Chapters 3, 4 and 5, these approaches can be refined through additional studies. As

discussed in Section 3.5, the developed lung segmentation sometimes failed to re-include the

juxtapleural nodules sitting in consolidation regions. One way to overcome this problem is to

introduce region-based post-processing after obtaining the initial lung segmentation mask.

Conditional random Markov field [CEE16] is one of the potential methods that could be used

for this purpose. On the other hand, with the advancement of deep learning methods, region-

and pixel-based convolutional neural networks could further be explored for lung segmenta-

tion to handle the juxtapleural nodules. Another limitation of the segmentation approach

is that current inflection point detection and border correction stems were performed on

each 2D image slice independently. One possible extension of this work is to perform 3D

inflection point detection and 3D border correction for both lobes. With 3D information,

the over-/under-segmentation error could be further reduced.

Deep learning models have been developed for lung nodule classification and diagnosis and

prove effective. However, current lung segmentation, lung nodule candidate segmentation,
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lung nodule classification and lung nodule diagnosis models were developed independently

(i.e., as separate components). Recent progress in multi-task learning and semantic segmen-

tation provide opportunities to solve lung segmentation, nodule detection, cancer diagnosis

and nodule segmentation within one single framework. For example, He et al. [HGD17]

developed a mask R-CNN approach to perform object detection, localization and seman-

tic segmentation within one deep learning model. Mask R-CNN could serve as the basis

to develop the multi-task model for lung segmentation, nodule detection, cancer diagnosis

and nodule segmentation. Additionally, the lung nodule detection model currently only has

binary labels: nodule and non-nodule. A future extension of this work could use additional

labels (e.g., blood vessel segments) to perform multi-class classification. This multi-class set-

ting will provide further supervision that could potentially improve the model performance

to detect lung nodules. Chapter 4 has presented the importance of building interpretable

CNN approach for lung cancer diagnosis and the developed HSCNN model has enabled this

model interpretation by predicting the nodule’s semantic features along with its malignancy.

With these semantic feature outputs, human experts can now easily read and provide feed-

back about the correctness of these semantic outputs. Opportunity now exists to extend the

model using active learning approach to incorporate the feedback from human experts to im-

prove the model accuracy for cancer diagnosis. As discussed in Chapter 4, current semantic

feature labels are binarized due to sparsity issues. With more labels and data collected in

the future, multi-labels or continuous labels could be used to provide more information. In

this case, the information of label distributions could be incorporated into the model’s design

to boost performance. Furthermore, Chapter 4 also presented that HSCNN could be easily

extended to incorporate more semantic features. Nonetheless, too many semantic features

(e.g., more than 20) could make the model convergence more challenging. Thus, improving

the model scalability to account for large number of semantic features should be studied

in future works. Notably, not all combinations of semantic labels could co-occur in reality

given known domain knowledge. Therefore, this observation could be employed to improve

model design. In the end, the inputs of current models were the 3D cubes centered at each

nodule with all background pixel intensities. The background object, such as the lung walls
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of the juxtapleural nodules, might prevent the model from learning useful information for

the classification task. A possible future work is to explore feeding the deep learning model

with nodule versus perinodular (background) regions as two distinct separated inputs for

each input data.

Finally, as discussed in Section 5.5, my disease progression estimation approach modeled

population level information by using average transition times between states. Compared

with using individualized data, this setting reduced the computation complexity, but may

lose individual information. Future work could use individual transition times for the model,

and thus could possibly improve accuracy of the estimates. Another limitation of the work is

that only two covariates were validated for the model. The influences of more factors could

be explored in future works. Lastly, current approach made a time-homogeneous assumption,

where both the states transition probability matrix and screening sensitivity were assumed

to be invariant across time. Future works could relax this assumption and investigate the

influence on the estimated parameters.

6.4 Concluding Remarks

Existing low-dose CT screening programs generate large volumes of screening data, but has

challenges of high over-diagnosis rates, high cost and increased radiation exposure. These

challenges highlight the need for assisting physicians with an automated lung cancer detection

and diagnosis system to reduce false positive findings and make the screening program more

cost-effective. It emphasizes the need to provide personalized screening recommendations for

individuals with various risk factors to reduce unnecessary cost and radiation exposure while

maintaining high cancer detection power. A first potential extension of this dissertation

study was to build an interpretable automated clinical diagnosis pipeline to assist radiolo-

gists’ reading procedure in an interactive way to improve the efficiency and accuracy of lung

cancer early detection and diagnosis. This pipeline would provide: 1) lung segmentation and

lobe volume quantification; 2) lung nodule localization and segmentation; 3) lung nodule

malignancy prediction and characterization; and 4) interactive feedback loop to incorporate
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opinions from physicians. Another potential extension of this work is to develop a personal-

ized lung cancer screening recommendation system for individual subjects with different risk

factors utilizing the multi-state disease progression estimation model. This system would

estimate individual disease states’ transition times by including various factors, such as age,

gender, smoking history, and disease history. These two potential products would be signifi-

cant steps towards optimizing the current low-dose CT screening program and improve early

lung cancer detection. The contributions of this dissertation lay the foundation towards

enabling creating such products.
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Černockỳ. “Empirical evaluation and combination of advanced language modeling
techniques.” In Twelfth Annual Conference of the International Speech Commu-
nication Association, 2011.

[MFF03] Parthiv J Mahadevia, Lee A Fleisher, Kevin D Frick, John Eng, Steven N Good-
man, and Neil R Powe. “Lung Cancer Screening with Helical Computed To-
mography in Older Adult Smokers: a Decision and Cost-effectiveness Analysis.”
Jama, 289(3):313–322, 2003.

[MFF14] Alexander V Mamonov, Isabel N Figueiredo, Pedro N Figueiredo, and Yen-
Hsi Richard Tsai. “Automated Polyp Detection in Colon Capsule Endoscopy.”
IEEE transactions on medical imaging, 33(7):1488–1502, 2014.

[MHR10] Temesguen Messay, Russell C Hardie, and Steven K Rogers. “A new computa-
tionally efficient CAD system for pulmonary nodule detection in CT imagery.”
Medical image analysis, 14(3):390–406, 2010.

[MHW99] Michael F McNitt-Gray, Eric M Hart, Nathaniel Wyckoff, James W Sayre,
Jonathan G Goldin, and Denise R Aberle. “A pattern classification approach
to characterizing solitary pulmonary nodules imaged on high resolution CT: pre-
liminary results.” Medical physics, 26(6):880–888, 1999.

[MJ95] Guillermo Marshall and Richard H Jones. “Multi-state models and diabetic
retinopathy.” Statistics in Medicine, 14(18):1975–1983, 1995.

[MKM04] Colin C McCulloch, Robert A Kaucic, Paulo RS Mendonça, Deborah J Wal-
ter, and Ricardo S Avila. “Model-based detection of lung nodules in computed
tomography exams1: Thoracic computer-aided diagnosis.” Academic radiology,
11(3):258–266, 2004.

[MOH14] Ibrahimu Mdala, Ingar Olsen, Anne D Haffajee, Sigmund S Socransky, Magne
Thoresen, and Birgitte Freiesleben Blasio. “Comparing clinical attachment level
and pocket depth for predicting periodontal disease progression in healthy sites
of patients with chronic periodontitis using multi-state Markov models.” Journal
of Clinical Periodontology, 41(9):837–845, 2014.

[MRT12] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. MIT press, 2012.

[MW14] Pierre P Massion and Ronald C Walker. “Indeterminate Pulmonary Nodules:
Risk for Having or for Developing Lung Cancer?” Cancer prevention research,
7(12):1173–1178, 2014.

[NNC10] Dustin Newell, Ke Nie, Jeon-Hor Chen, Chieh-Chih Hsu, J Yu Hon, Orhan Nal-
cioglu, and Min-Ying Su. “Selection of Diagnostic Features on Breast MRI to
Differentiate between Malignant and Benign Lesions using Computer-aided Di-
agnosis: Differences in Lesions Presenting as Mass and Non-mass-like Enhance-
ment.” European radiology, 20(4):771–781, 2010.

111



[NNF13] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, and Caroline Suen. “Un-
supervised feature learning and deep learning tutorial.” h ttp://deeplearning.
stanford. edu/tutorial, 2013.

[NRF15] Ron Niehaus, Daniela Stan Raicu, Jacob Furst, and Samuel Armato. “To-
ward understanding the size dependence of shape features for predicting spicula-
tion in lung nodules for computer-aided diagnosis.” Journal of digital imaging,
28(6):704–717, 2015.
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