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ABSTRACT OF THE DISSERTATION

Domain-Specific Analysis and Search on User-Generated Content

by

Moloud Shahbazi

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2017

Dr. Vagelis Hristidis, Chairperson

User-generated content on the Internet has been explosively growing in the current

Web 2.0 era. This has been facilitated through widespread user access to the web through

mobile devices, the rapid growth of social media applications, and review-based provider

websites. The majority of this data is in the form of free text, as in social posts. Storing

and querying this massive unstructured textual data is a challenging task that has been

studied extensively recently.

Current search solutions, such as Google, Bing and Amazons internal search, are

effective in allowing users to find relevant documents in large collections. Those solutions

rely on several content and reputation-based factors including document relevance to the

user query. However, capturing and exploiting user intent particularly, in a domain-specific

setting, remains an open problem with a variety of research challenges. In this thesis, we

study several such settings where existing search techniques are inadequate.

In particular, we studied the following subproblems where we are showcasing the

benefit of leveraging domain-specific knowledge and user-generated content: 1) We argue
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for more effective item ranking for crowd-sourced review platforms and provide efficient

algorithms to support it. 2) We provide a practical high-quality solution to build domain-

specific ontologies from unstructured text documents. We describe our approach and pro-

vide fast and simple algorithms to use the generated ontology in extracting domain-specific

features from the textual data. In particular, we describe our approach using a real-estate

agency case study where domain agents are interested in evaluating the textual property

descriptions. 3) We study how to search for similar documents, given a set of input docu-

ments, when the data source can only be accessed through a query interface (such as Google

search). We propose a ranking model to extract effective query keywords from the input

documents to retrieve similar documents through keyword-based search APIs. 4) We use

data mining techniques to classify user-generated content on on-line forums in terms of its

characteristics, such as bullying behavior. In particular, we crawl Yik Yak, an anonymous

social media, to detect potentially harmful behaviors.
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Chapter 1

Introduction

In the recent years of Web 2.0, user-generated content significantly contributed to

the rapid growth of the Web content. Textual content mostly in form of web pages are a

major part of this data. Users are easily able to spread their opinions through blogs, social

media, crowd-source based websites, etc.

Web search tools such as Google.com and Bing.com are effective for general pur-

pose document search. These search engines, provide web pages of interest to the users

based on the query keywords that users input to specify their needs. They apply advanced

scoring methods for the documents that match the query keywords in order to provide the

users with a list of relevant documents that are ordered with a decreasing search quality

order. For an effective web search tool, it is crucial to return the most relevant document

first given the limited time that users can spend to find their documents of interest. The

ranking score implemented by search engines is a complex combination of several factors

including content relevance, quality and other factors. The challenge is to retrieve the high
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quality search results in a timely manner given the user search keywords. Even though this

problem has been well studied for a long time, improving search quality is still an ongoing

research problem as of today.

In this thesis, we argue that existing Web search engines are inadequate to solve

several important specialized content search problems as discussed next. Specifically, this

thesis is concerned with improving user experience in sifting through massive user-generated

content on the web by taking into account the specific user demands. We provide effective

and efficient solutions for the task.

In my research, I focused on four major sub-problems on improving user experience

by modeling and leveraging user-generated content. In particular, we studied the following

four problems:

1) Query-Specific Ranking of Reviewed Items One of the most popular types of user-

generated content in Web 2.0 are the crowd-sourced reviews of online items (e.g. Amazon

products). A review typically consists of a text description and a star rating score. A key

challenge is how to leverage reviews to help users find the best items. Existing work has

mainly focused on two directions. First, collaborative filtering studies how the reviews of

similar users may be leveraged to recommend products to users [107]. Second, reviews –

typically their average rating and number – are being used to rank products, along with

other features like price, combined by learning to rank algorithms [24]. However, little work

has studied how reviews can be used to perform query-specific ranking of items.

In this chapter we argue for a more effective use of reviews in item ranking, by

introducing a ranking scheme which takes into account the user’s interest in particular
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aspect of the search result. For example if one is looking for cameras with strong “battery”,

reviews related to “hours per charge” or “charging time” should receive higher weight than

reviews on other camera features.

We define the problem as follows: given (a) a set of reviews for each item, where

each review consists of a set of concepts and a rating score, (b) a query that consists of a

set of concepts, and (c) a concept ontology on which we can define the semantic distances

of the concepts, compute the top ranked items for the query. In our solution, each review’s

rating is weighed by the similarity (relevance) of the review to the query. We study two

variants of the relevance measurement: the simpler one views terms as concepts and checks

for exact match between query and review terms, while the second extracts concepts from

the query and the reviews and measures their semantic similarity based on a concept graph.

A key challenge is that we cannot precompute a rating score for an item as it

depends on the user query. Existing early termination algorithms that process list prefixes

to compute the top-k results [43, 61] cannot be applied, because for an unseen review, we

do not know its rating nor its similarity to the query. These two quantities have an intimate

dependency to each other and the overall item score.

Further, due to the interplay between similarity (which may be partially known

during the execution of the algorithm) and rating of unseen or partially seen reviews, we

are faced with a combinatorial number of cases for computing the terminating condition

threshold. Instead, we propose a linear cost method to compute this threshold.

Moreover, in contrast to the setting of top-k algorithms [43, 61] where multi-

attribute objects are ranked, we rank items that are collections of objects (reviews). We
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show that this cannot be handled by simply adding another level of top-k lists aggregation.

Neither can it be handled by creating a list of items for each concept c, where each item

I has a score equal to the aggregate score of this item for query c. This would work for

queries with a single concept, but if a query has multiple concepts this approach misses the

overlap of concepts inside reviews. That is, the score of a review that contains two query

concepts would be counted twice using this approach.

In this work, we define the novel problem of ranking of query results by taking into

account the relevance of the items reviews to the query, which constitutes a fresh approach

to leveraging reviews for item discovery. We continue by proposing efficient solutions for

two popular concept-based similarity measures between a query and a review – the Jaccard

similarity that measures the ratio of common concepts and the Path-Length similarity that

exploits the ontological relationships between concepts. Finally, we present random and

non-random access variants of our solution to compute top-k items ranked by the query-

based score of the review. The result of our experimental study shows the effectiveness of

our solutions as well as efficiency of algorithms comparing to baseline methods.

The details of this study are presented in Chapter 2.

2) Define and extract Domain-Specific Ontology: User-generated texual content is

used for text relevance matching with user’s query keywords. Full text indexing methods are

the way to accommodate searching for the documents. However, in this work we focus on

leveraging textual information to extract domain-specific conceptual features with goodness

score to assign a score to the unstructured textual information. For this purpose, we
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provide an effective and efficient framework that includes solutions to build domain-specific

ontologies from unstructured text documents.

In this work, we use a real estate agency as the running domain-specific case

study. Real estate agents and other real estate professionals have to sift through hundreds

or thousands of listings per day to locate the ones that they should focus on to satisfy their

clients, for rent, sale or investment purposes. In order to select profitable property listings

to invest, agents need to carefully asses the remarks made by listing agency because they

often include crucial information. This includes things like remodeling information (new

granite counter-top), financial conditions (short sale, foreclosure), etc. Conversely, for one

reason or another, an agent will disclose that the home has ”foundational issue”, clearly a

negative home attribute. To our best knowledge, current property valuation methods do

not utilize this kind of information for ranking properties.

Manual exploration of numerous textual descriptions in order to select This is

clearly time consuming, translating into significant labor costs. Needless to say that an

automated ordering of the items by their investability inferred from agency’s remarks is a

key factor to lower the costs in finding most profitable properties.

In this work, we propose a novel methodology to assign a “goodness” score based on

the textual description of a listing. This score can then be combined with other structured

attributes if available to generate an overall goodness score for an item whereby enabling

the users to find more pertinent item characteristics.

Specifically, we first build a collection of real-estate-specific concepts that are

phrases that describes a real-world entity, such as “granite counter top,” to use for an-
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notation. Each concept in this collection is manually labeled with a numeric goodness value

by experts. For example, “sell as-is” is a negative concept for ’turn-key’ investors not wish-

ing to further invest to enhancing the condition of a property (like replacing old carpets.)

To that end we’ve created a continuous vector representations for vocabulary words by

analyzing a corpus of real estate descriptions in order to annotate the property’s textual

information with scored concepts.

The details of this study are presented in Chapter 3.

3) Finding Similar Documents using Keyword-Based Search Interfaces A common

problem in Information Retrieval is that a user wants to retrieve documents similar to a

given set of relevant documents. For example, a patent attorney may have a few documents

provided by a client describing an invention, and would like to search for patents similar to

these input documents. Similarly, a scientist may search for related work in an area, and

may have access to a few documents related to this area. A Web user may also have found

a set of documents related to a topic, e.g., related to the topic of academic scandals, and

may be looking for more similar documents on the Web.

Although there are powerful keyword search interfaces on top of various collections

– LexixNexis for patent search [3], Google Search API for the Web [1], etc. – a common

limitation they have is that they do not allow the user to input a set of documents (one

or thousands), but expect a relatively small number of terms as a query. Further, these

interfaces typically charge a fee for every page of query results. For example, the LexisNexis

Statistical Gateway charges $0.30-$0.40 per query, and Google Enterprise charges $100

for 20,000 queries, where each query returns one page of results. Note that a common

6



property in all these collections is that the user may not have access to the underlying

collection through any way other than through the provided search APIs. Hence, to use

these interfaces, one has to extract sets of important terms from the input documents, to

formulate queries. These queries should ideally return many similar documents in high rank

positions of the results.

Given a collection is accessible only through a search interface, we propose effective

techniques to generate queries from a set of input documents, which return similar docu-

ments to the input documents in high positions. We refer to this problem as Docs2Queries.

The Docs2Queries problem has received limited attention by the community [106,

124]. The state-of-art works focus on extracting good terms from the input documents, given

a basic understanding of the ranking formula, which is generally tf-idf (term frequency and

inverse document frequency) based. Specifically, they select terms with high tf-idf score.

This is a reasonable heuristic, but its drawback is that it ignores the language model of the

collection and limits the heuristics to use only information from the input documents.

We propose a more principled approach to select the best queries, which also

considers the language model of the collection (specifically, an estimation of it, as the full

collection is not available to us).

The details of this study are presented in Chapter 4.

4) Content Analysis on Anonymous Social Networks

College attendance marks an important period of psychosocial development with

significant implications for a healthy and productive adulthood. The academic and social

demands of college life are often strenuous and pose a risk to students health and well-being.

7



One problem among college freshman, for example, is poor sleep [113] which has been linked

to a number of adverse consequences in this population, including higher rates of depres-

sive symptoms and stress [120, 50], weight gain [98], and poor academic performance [35].

Another relatively recent problem among college students, due to technologies like social

media, is cyberbullying, which can lead to depression and suicide.

In this study, we use data mining techniques to classify user-generated content on

anonymous online forums in terms of its characteristics, such as bullying. In particular, we

crawl Yik Yak website to collect users discussions. We use the discussions to identify topics

discussed and user behaviors to study the behavior trends in different locations and develop

a tool to detect potentially harmful behaviors.

Yik Yak is a relatively recent addition to the social media world that quickly grew

in popularity among U.S. college students after its inception in 2013. It functions as an

online bulletin board on which users within the same geographic area (e.g., a college cam-

pus) can post and read messages anonymously. Critics of the social network argueaided by

anecdotal evidence relayed through media reportsthat anonymous posting encourages ha-

rassment and bullying [63, 7, 8, 117]. In a recent content analysis of Yik Yak conversations,

Black, Mezzina, and Thompson did not find evidence for a pervasive culture of harassment

and abuse, but they did observe derogatory and incendiary comments, arguably racist and

sexist messages, and several likely instance of bullying [19].

Based on these findings, we carried out an exploratory study of posts on the Yik

Yak social network. Our goal is to help provide insights for school administrators and

public health researchers on the prevalence and popularity of messaging behaviors such as
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bullying and social support, and of topics discussed on the network. Knowledge of these

activities on Yik Yak can then be used to improve student well-being, for example, by

guiding interventions that promote healthy and prosocial behaviors.

The details of this study are presented in Chapter 5.
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Chapter 2

Query-Specific Ranking of

Reviewed Items

Item (e.g., product) reviews are one of the most popular types of user-generated

content in Web 2.0. Reviews have been effectively used in collaborative filtering to recom-

mend products to users based on similar users, and also to compute a product’s star rating.

However, little work has studied how reviews can be used to perform query-specific ranking

of items. In this chapter, we present efficient top-k algorithms to rank items, by weighing

each review’s rating by its relevance to the user query. Further, we show how our algorithms

can efficiently handle ontological relationships between query and review concepts to im-

prove the search quality. We consider various query-review similarity distance semantics,

and propose both random and non-random access algorithm variants. We perform a com-

prehensive evaluation of our methods on multiple datasets and show that they significantly
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outperform baseline approaches in terms of query response time. In addition, a user study

shows that the accuracy of the results is superior compared to the baseline methods.

2.1 Introduction

In the current era of Web 2.0, users generate huge numbers of reviews for products

and services in variant domains such as movies and physicians. A review typically consists

of a text description and a star rating score. There has been much work on several aspects

of Internet reviews such as extracting features from reviews [93], summarizing them [59],

and detecting fake reviews [88].

A key challenge is how to leverage reviews to help users find the best items.

Existing work has mainly focused on two directions. First, collaborative filtering studies how

the reviews of similar users may be leveraged to recommend products to users [107]. Second,

reviews – typically their average rating and number – are being used to rank products, along

with other features like price, combined by learning to rank algorithms [24].

In this chapter we argue for a more effective use of reviews in item ranking, by

introducing a ranking scheme which takes into account the user’s interest in particular

aspect of the search result. Figure 2.1 shows an example of a user of an on-line footwear

store who searches for “durable” shoes that are also suitable for “back-pain”. If the search

results are sorted by the commonly used average rating score, the left shoe is ranked higher,

even though the right shoe has better ratings for the user’s properties of interest. IRanker

improves the results’ quality by considering the relevance of each review to the user query,

where a query can be expressed by a list of keywords or concepts. Similarly, if one is looking
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Figure 2.1: Two possible top search result for a query.

for cameras with strong “battery”, reviews related to “hours per charge” or “charging time”

should receive higher weight than reviews on other camera features.

As another application, consider a physician who has neutral reviews on managing

“heart disease” but positive reviews on “anemia” treatment. This physician should be

ranked relatively high if one is looking for a physician for treating “erythrocytosis”, given

that “erythrocytosis” is semantically very related to “anemia” but not to “heart disease”, as

shown in the concept graph of Figure 2.2. This figure shows a subset of the SNOMED-CT

ontology, which contains more than 310,000 health-related concepts including symptoms

and disorders [118]. Clearly, the semantic relationships between the concepts (referred as

features in other review papers) of a review and the query must be taken into account when

computing the relevance of a review.
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Problem Statement: Our core problem is defined as follows: given (a) a set of reviews

for each item, where each review consists of a set of concepts and a rating score, (b) a

query that consists of a set of concepts, and (c) a concept ontology on which we can define

the semantic distances of the concepts, compute the top ranked items for the query. In

our solution, overviewed in Figure 2.3, each review’s rating is weighed by the similarity

(relevance) of the review to the query. We study two variants: the simpler one views terms

as concepts and checks for exact match between query and review terms, while the second

extracts concepts from the query and the reviews (see Sections 3.2 and 2.3 for details) and

measures their semantic similarity based on a concept graph.

Figure 2.2: A subset of SNOMED-CT medical ontology. In this directed acyclic graph, the
medical concepts are connected via directed “is-a” links.

Challenges and Algorithms Overview: A key challenge is that we cannot precompute

a rating score for an item as it depends on the user query. Existing early termination

algorithms that process list prefixes to compute the top-k results [43, 61] cannot be applied,

because for an unseen review, we do not know its rating nor its similarity to the query.

These two quantities have an intimate dependency to each other and the overall item score.
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In particular, to compute the minimum or maximum score of an item, which are quantities

necessary for early termination, we must decide what the extreme rating and similarity

values of the unseen reviews may be. For the maximum score estimation, one may think

that this can be achieved by considering the maximum possible rating and the maximum

possible similarity for the unseen reviews. However, we prove that this is not correct.

In particular, we show that for some of the partially seen reviews the maximum possible

similarity must be considered, whereas for other reviews the minimum similarity must be

considered.

Figure 2.3: Overview of the steps involved in computing the top-k search results. First,
necessary data indexes are built. Then, IRanker computes the top-k items by accessing the
data stored in these indexes.

Further, due to the interplay between similarity (which may be partially known

during the execution of the algorithm) and rating of unseen or partially seen reviews, we

are faced with a combinatorial number of cases for computing the terminating condition

threshold. Instead, we propose a linear cost method to compute this threshold (see The-

orems 2.4.1 and 2.4.2 for unseen reviews, and Theorems 2.4.3 and 2.4.4 for partially seen

reviews).

14



Moreover, in contrast to the setting of top-k algorithms [43, 61] where multi-

attribute objects are ranked, we rank items that are collections of objects (reviews). We

show that this cannot be handled by simply adding another level of top-k lists aggregation.

Neither can it be handled by creating a list of items for each concept c, where each item

I has a score equal to the aggregate score of this item for query c. This would work for

queries with a single concept, but if a query has multiple concepts this approach misses the

overlap of concepts inside reviews. That is, the score of a review that contains two query

concepts would be counted twice using this approach.

Another challenge in that due to the relationships of the concepts on the ontology

graph (Figure 2.2), we must traverse several concept lists for a single query concept c,

starting from the list of c and then later move to the lists of the neighbors of c in the

concept graph G. The fact that several lists are traversed complicates the estimation of the

upper and lower bounds of the similarity of unseen reviews, which are quantities necessary

for a top-k algorithm.

In this chapter, we make the following contributions:

• We define the novel problem of ranking of query results by taking into account the

relevance of the items reviews to the query, which constitutes a fresh approach to

leveraging reviews for item discovery (Section 2.3).

• We propose efficient solutions for two popular concept-based similarity measures be-

tween a query and a review – the Jaccard similarity that measures the ratio of common

concepts and the Path-Length similarity that exploits the ontological relationships be-

tween concepts. We present random and non-random access variants (Section 2.4).
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• We perform a user study and show that the ranking semantics used in this chapter

have better quality than baseline ranking methods (Section 2.5.2).

• We show that our algorithms outperform baseline methods on both real and synthetic

datasets. In particular, we experiment on Amazon products [82] using Jaccard sim-

ilarity and physician reviews using both Jaccard and the SNOMED-CT biomedical

ontology [118] (Section 2.5.1).

Related work is presented in Section 3.2 and we conclude in Section 3.5.

2.2 Related Work

Reviews summarization: There is much work on extracting concepts (features) from re-

views and using these concepts to summarize the reviews for a user. Typically, the features

and their corresponding sentiment are extracted from each review [93], and then the senti-

ment for each feature is aggregated across all the reviews of a product [59]. However, this

precomputed summarization does not work in our setting because it ignores the ontological

relationships between features (concepts). For instance, suppose that for an item we have

aggregated the rating for each concept and it has score 0.6 for “Arterial Finding” and 0.2 for

“Disorder of Blood Vessel” (see Figure 2.2). Then, if a query specified their parent concept

“Blood Vessel Finding”, we cannot simply consider the average score. Because the score of

a review that contains both “Arterial Finding” and “Disorder of Blood Vessel” would be

double counted. Even if similarity measures that are based on exact concept matching is

used, given that a query contains an arbitrary number of concepts, precomputing the item

score for every possible query is not a practical solution.
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Concepts extraction, ontologies and concept similarity: In order to compute se-

mantic similarity of concepts, we rely on domain specific ontologies. In our experiments,

we use doctors and their online reviews collected from www.vitals.com, a doctor reviews

website. For the doctor reviews data, we use existing SNOMED-CT ontology [118], which

is one of the largest and more widely used ontologies for general health text. There are

multiple NLP-based tools such as cTAKES [101] and MetaMap [9] to extract general health

concepts from free text. Note that our solutions are not limited to the health domain, as

domain specific information extraction tools may be applied to extract concepts [25], along

with domain specific ontologies, or to define distances between terms [86]. Alternatively,

existing ontologies may be used, such as ConceptNet, which is a general purpose ontology

[77]. Further, previous work has studied how a feature ontology can be built for product

reviews [110].

There are several works that study the semantic distances of concepts in ontologies.

XOntoRank [44] proposes several alternative measures that generally include the number of

edges between two concepts and possibly the fan-out of a concept. They exploits ontologi-

cal relationships to answer keyword queries on XML documents. There are several studies

that review semantic similarity measures applied to semantic ontologies and classify them

according to their strategies [91, 84, 45]. According to these studies, complex strategies cre-

ate performance limitations while they do not significantly improve the quality of semantic

similarity.

Ranking database query results: There has been work on ranking database tuples [26]

that satisfy a conjunctive query. In that work, all results satisfy all query conditions and
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are ranked based on their unspecified attributes. A key difference is that in our problem

we rank “complex” items that consist of reviews and also the reviews contain interrelated

concepts.

Top-k algorithms: Document-at-a-time and term-at-a-time (DAAT) strategies [12, 112]

have been commonly used for computing the top-k query results in IR systems. These

strategies compute complete document scores by accessing the whole lists of documents

indexed by query terms. Thus, they are inefficient when applied to large corpus with large

lists of documents. There are several optimization techniques for both approaches that

reduce the time to generate the document scores. One optimization for DAAT is proposed

by Broder et al. [23], where the term lists are sorted by document id, and chunks of the

lists are skipped if they have no chance of making it to the top-k result. They use a branch-

and-bound approach to compute efficient moves for the cursors associated to the postings

lists. However, this optimization still requires to process the lists until the end, and also

cannot handle ontological distances. Another line of work is the Threshold Algorithm (TA),

with the most well-studied example being [43]. Fagin’s TA algorithm computes the optimal

top-k items with different features and score per feature based on a monotonic aggregation

function, where there is a ranked list of items per feature.

Our work with respect to prior work: Our work follows the general paradigm of

parallel accessing ordered lists of elements and terminating when a threshold condition is

satisfied [61]. As described in Section 4.1 there is no top-k algorithm that handles the unique

requirements of our problem which include: (a) ranked items are complex, i.e., they consist

of reviews, and (b) each review not only has a score but a similarity to the query concepts.
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Table 2.1: Examples of doctor reviews.

Doctor
Original Text of
the Review

Review
Concepts

Rating

D1

“He remembered
that I have trouble
with my heart
valve and
prescribed
medicine
accordingly.”

{heart valve,
medicine} 1

D1

“An excellent
doctor who has
guided me through
my diabetic
struggles.”

{Diabetic} 0.5

Specifically, each document (review) has a rating and the item’s aggregate score is the

weighted average of the ratings of the item’s reviews, where reviews are weighted by their

relevance to the query. Hence, if we rank reviews in the index lists by the score, it may

be the case that the highest ranked reviews have very low similarity to the query Q and

hence low effect on the overall score of an item. Requirement (a) requires new list traversal

techniques whereas requirement (b) requires novel threshold estimation techniques.

2.3 Definitions

We begin by defining the key terms that are necessary to state the problem. A

concept is a semantic entity, which is related to other concepts through a concept graph. A

concept graph is a graph consisting of concepts as nodes and the semantic relation between

the concepts as the links. In our experiments, we use the SNOMED-CT ontology [84] as

our concept graph, where we consider directed links of type “is-a” as the semantic relations
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(Figure 2.2). Note that the concept graph is utilized in only one of our two similarity

variants discussed below.

An item I, which may be a doctor or an Amazon product, contains a set {r1, r2, ...,

rn} of user reviews. A review r = {c1, c2, ..., cn; rating} consists of a set of concepts

ci and a numeric rating score between 0 and 1. For instance, a review may be r =

{“cancer”, “cardiac”, “EKG”; 0.6}, which expresses that the concepts “cancer”, “cardiac”

and “EKG” are mentioned in the review, and the user rated the item with a score of 0.6.

It is possible that a reviewer may have a more positive opinion about some of the

concepts in a review, and hence using the review’s overall score for all concepts may be

misleading. Unfortunately, we found that assigning individual sentiments to each concept

is challenging and inaccurate using existing methods, so we have left it as future work. If

such fine-grained scoring were available, our algorithms could be easily adapted such that

each (concept, rating) pair is viewed as a separate single-concept review.

The concepts associated with a review are extracted from the text of the review

using a domain-specific information extraction method. In our experiments we use MetaMap

[9], an NLP tool developed by the NIH to extract UMLS (SNOMED-CT is a subset of

UMLS) medical concepts. Several other such tools are available for the medical and other

domains. Table 2.1 shows doctor reviews from the Web and the concepts extracted by

MetaMap. If the user expresses the query in free text, the concepts are extracted in a

similar way.
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Item Ranking Problem: Given a collection I of items, a query Q = {q1, q2, ..., qm}, which

is a set of concepts, and k requested top results, return the top-k items in I with highest

score score(Q, I).

Table 2.2: Key notation.

Symbol Definition Section
score(Q, I) Item I’s ranking score given query Q 2.3
QRSimJ(Q, r) Jaccard-based query-review similarity 2.3
QRSimP (Q, r) Path-Length based query-review similarity 2.3
ymax Maximum possible score of an unseen item 2.4.1
Y Vector of last accessed reviews from concept list 2.4.1
XPScore(Q, I) Maximum possible score of the partially seen item I given query Q 2.4.2
MPScore(Q, I) Minimum possible score of the partially seen item I given query Q 2.4.2
U Set of possible [Rating, Similarity] pairs of unseen reviews 2.4.2
MPQRSim(Q, r) Minimum possible query-review similarity 2.4.2
XPQRSim(Q, r) Maximum possible query-review similarity 2.4.2

The scoring function in Equation 2.1 is partly inspired by Zhang et al. [128], where

they weigh product ratings based on the usefulness of each review. The main distinction of

our method is that we average reviews’ rating weighted by their relevance to the query. If

review usefulness is available, it can also be multiplied. Note that usefulness is fixed for a

review, in contrast to relevance which is query-dependent.

score(Q, I) =

∑
r∈I QRSim(Q, r.concepts)× r.rating∑

r∈I QRSim(Q, r.concepts)
, (2.1)

where QRSim(Q, r) is the similarity of Q to the concepts r.conce-pts in r. Table 2.1

demonstrates two example reviews of a doctor. If a user searches for doctors by submitting

query “aortic valve”, the first review is relevant because “aortic valve” is a child of “heart

valve” in Figure 2.2, but the second review is not.
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We can extend this ranking function to include other item and review features

such as number of item reviews, price or popularity or review helpfulness and freshness.

Our main focus is on how to compute the top results efficiently.

The problem of computing the semantic similarity between two sets of concepts

(of the item and the query) has been extensively studied in the past [96, 13, 84]. In this

work, we consider two popular and representative similarity measures.The first and simpler

is the Jaccard similarity, which does not consider the possible relationships between the

concepts. Such a measure would be appropriate for applications where no concept graph is

available, or only exact concept matches are appropriate.

QRSimJ(Q, r) =
|Q ∩ r.concepts|
|Q ∪ r.concepts|

(2.2)

The second similarity measure considers the semantic distances between concepts

in the concept graph G. For each concept in the query, we find the closest concept in the

review.

QRSimP (Q, r) =
∑
ci∈Q

max
cj∈r.concepts

{1− distance(ci, cj)} (2.3)

Similarly to previous work [96] and [13], we define the semantic distance distance(ci,

cj) between two concepts ci and cj as the shortest path distance between them in the concept

graph. As in previous work [10], in practice we set a maximum threshold T on the shortest-

path distance between two concepts for them to be meaningfully similar (e.g., T = 3 edges).

Then, to normalize distance(ci, cj) in [0, 1], we divide by T . If the shortest path distance
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is greater than T then we set distance(ci, cj) to 1. Table 2.2 summarizes the key notation

of this chapter.

2.4 Ranking Algorithms

In this section, we present our solutions to compute the top-k items for the item

ranking problem.

Background on TA and NRA algorithms: Early termination algorithms form the basis

for our algorithms. Fagin et al. [43] proposed two algorithms with different access modes

– TA has random access and NRA does not – for finding the top-k multi-attribute objects,

based on a monotonic aggregation function, when there is ranked list for each attribute.

These algorithms perform sorted access to the attribute lists in parallel, and terminate

when k objects are found whose scores are greater than the maximum possible score of

other objects.

Proposed Algorithms: As discussed in Section 4.1, existing algorithms like TA and

NRA cannot solve our problem. Here we propose the IRanker algorithms that address

these challenges. We first present RA-IRanker, an algorithm which solves our problem by

computing exact top-k results of the search query using random access to data indexes.

Because random accesses are costly, we then propose NRA-IRanker, a non-random access

top-k items ranking algorithm that also computes the exact results. NRA-IRanker also

reduces the required index disk space. We show how each algorithm can be adapted for

Jaccard and Path-Length similarity measures. For the proposed algorithms to work, the

aggregate function in Equation 2.1 must be monotonic on the review ratings. That is, if

23



the rating of any review of an item is increased, the score of that item is also increases, or

stays the same. It is fairly easy to see that Equation 2.1 satisfies this condition.

Indexes: In order to store the data for the algorithms, we use two indexes for RA-IRanker

and one index for NRA-IRanker. Table 2.3 shows different indexes with the information

stored in each one.

Concepts index is an inverted index that has a list for each concept. This list

contains reviews that include the key concept sorted by decreasing review rating. Figure 2.5

shows an example of a Concepts index.

Items index is a map used by RA-IRanker. It has a list for each item, which stores

the reviews of that item along with their concepts.

In our random access method, RA-IRanker, the exact score of an item I is com-

puted when it is seen for the first time while processing a review in a query concept list.

For every new item, a random access to Items index with item-id retrieves all the reviews

in order to compute the exact score of an item. Note that for the Path-Length similarity,

we also access the neighboring concepts lists as needed. In NRA-IRanker, since we do not

perform random access at all, we must estimate the minimum and the maximum possible

similarities of every seen review, in addition to the minimum and the maximum possible

scores of every item. Next we explain each algorithm in detail.

2.4.1 RA-IRanker

Note that as we mentioned previously, every concept in Concepts index, points

to a sorted list of reviews which contains the key concept. Each review entry in the list
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Table 2.3: Indexes used by each IRanker variant. content of index entries for each algorithm
are listed.

IRanker
Algorithms

Concepts Index
(Sequential Access)

Items Index
(Random Access)

RA-IRanker
concept→ List of
(review-id,item-id,rating)
tuples sorted by rating

item-id→ List of
(review-id,
review concepts,
rating) tuples

NRA-IRanker

concept→List of
(review-id, item-id, rating,
#item-reviews, #review-concepts)
tuples sorted by rating

is a (review-id, item-id, review rating) tuple. The lists of review entries are sorted in a

descending order by the review rating. Figure 2.5 shows a simple example of a Concepts

index.

Jaccard Similarity

When a query Q is issued, RA-IRanker works as following:

While top-k items are not found, repeat:

1. Do a sequential sorted access to the query concepts lists in parallel. Every time select

next review from the list with the maximum current review score. Then, update the

maximum possible score of the unseen review which we denote by ymax.

2. For each item that has been seen in the concept list, do a random access to Items

index. Then, compute the item’s exact score using all its reviews that are fetched

from Items index.

3. Check termination condition by examining if there are k items with score greater than

or equal to the ymax. Note that both maximum possible rating of the unseen review
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and the maximum possible score of the unseen items are equal to ymax (see text below

for details).

To compute ymax, we need to estimate the reviews of the unseen item that maxi-

mizes the score; note that we do not know which item that is yet. According to Equation

2.1, if an unseen item has one or more reviews, and all of them contain only the query

concept (a condition which maximizes the Jaccard similarity shown in Equation 2.2) with

maximum rating (which we assume to be equal to the last seen review’s rating), then ymax

is equal to that rating. As a result, ymax is equal to the maximum rating of the last seen

review across all query concepts lists. Formally, if Y = {y1, · · · , ym}, where yi is the current

rating of the ith concept list, then ymax = max Y .

Path-Length Similarity

If Path-Length similarity is used, in addition to the query concepts, we also need

to consider semantically close concepts to each query concept which are obtained from the

concept graph. For each query concept, we find concepts in the graph that are no farther

than a threshold T steps from them in a breadth-first search way.

Similarly to Jaccard-based approach, we iterate over the lists of query concepts

and their neighbors, where the similarity of a review is adjusted based on the concept’s

distance from the query concept as described in Equation 2.3. Figure 2.4 shows an example

graph with two query concepts and their neighbor concepts with distance threshold T = 2.

For each concept node, a chunk of reviews from concept index, as well as the rating of the

last seen review from this list, is stored in the memory.
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Figure 2.4: A labeled DAG representing sub-graph of SNOMED-CT ontology in Figure 2.2.
Node ’C5’ and node ’C11’ are two query concepts and their neighborhood graph is extended
with T = 2.

Figure 2.5: An example of Concepts index in RA-IRanker. For each concept, a list of the
reviews that contain that concept is stored in the index. Each review entry in the concepts’
lists is a (Review-Id, Item-Id, Rating) tuple.

2.4.2 NRA-IRanker

Similarly to the previous method, NRA-IRanker processes the reviews by accessing

the lists of query concepts in parallel but unlike that, it does not make any random access

to Items index. Concepts index for NRA-IRanker is slightly different than RA-IRanker. In

NRA-IRanker, every review in a concept list includes two extra values for the total number

of item’s reviews and the total number of the concepts of the review. Since there is no

random access made for reviews, NRA-IRanker needs to keep track of partially seen items

as well as the partially seen reviews.

As a result of NRA-IRanker access pattern, there are three types of reviews: (1)

Seen reviews, (2) Partially seen reviews and (3) Unseen reviews. A seen review is a re-
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view that has been seen in all possible query concept lists, except the lists that have been

completely read or have a current rating smaller than the review’s rating. Thus, the exact

similarity of the seen reviews to the query can be computed. A partially seen review is the

one currently seen in at least one query concept list and could be seen in more lists in the

future. For every partially seen review, we maintain a minimum and a maximum possible

similarity to the query.

As we mentioned earlier, the total number of reviews of an item is stored in the

review entries. Therefore, the number of unseen reviews of a partially seen item is available

for computing the minimum and the maximum possible score of a partially seen item. We

define three types of items using number of unseen reviews: (1) Seen items, (2) Partially

seen items and (3) Unseen items. A seen item is an item for which all reviews have been

seen in the concepts lists and their similarities are computed. Thus, the item’s exact score

is already computed. Partially seen items are the items that have at least one seen or

partially seen review but not all of their reviews are seen. The minimum and the maximum

possible score needs to be maintained for these items in order to be used when checking the

termination condition. Figure 2.6 illustrates various types of reviews and items according

to the access patterns defined above.

Jaccard Similarity

Computing Review Similarity Bounds: Before we describe the process of

computing the bounds, it is necessary to define the concept of an “unsure” list. If a partially

seen review is not yet seen in a concept list and the current rating of this list is greater than
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Figure 2.6: Example of various types of reviews and items based on the access pattern
taxonomy we define in Section 2.4.2. The unseen entities are shown in dark gray. Star signs
denote review ratings and circles represent the concepts.

or equal to the rating of the review, the presence of the review in this list is “unsure” (since

concept lists are sorted by review rating). If a review r is “unsure” in z lists out of the |Q|

lists of the query concepts, the maximum possible similarity of this review to the query is

achieved when this review is in all “unsure” lists. On the other hand, the minimum possible

similarity is achieved when the review does not exist in any “unsure” list. Equations 2.4

and 2.5 define the maximum and the minimum possible similarities of the partially seen

reviews to the query Q respectively.

XPQRsimJ(Q, r) =
z + f

|r|+ |Q| − z − f
, z + f ≤ |Q| (2.4)

MPQRsimJ(Q, r) =
f

|r|+ |Q| − f
, z + f ≤ |Q| (2.5)
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Where f is the number of concepts lists that review is “seen” in them and z, the number

of concepts lists that review r has a chance to be found there is defined as follows:

z = |{yi|yi ≥ r.rating, yi ∈ Y, yi 6= null}|

where Y is the set of current ratings of query concept lists as defined in section 2.4.1. A

null value as a current rating means that the list has been read completely. Based on

Equations 2.4 and 2.5, since z = 0 for the seen reviews, the minimum and the maximum

possible similarities are equal to the exact similarity of the review. For unseen reviews,

where f = 0, the minimum possible similarity of u, an unseen review, and Q is 0.

The maximum possible similarity of an unseen review depends on its rating, as

explained by the example in Figure 2.7. The leftmost point (1/4, 7/9) denotes that if the

rating of an unseen review is equal to 1/4, then its maximum similarity would be 7/9,

because at best it may contain seven of the nine query concepts, as the first two lists

have been completely read (null) and the last six lists have current ratings greater than

1/4. Similarly, the other points denote possible rating and maximum possible similarity

combinations, [rating, similarity].

Formally, we define U , the set of possible [rating, similarity] pairs for QRSimJ

as follows:

U = {[yl,
|l|yo ≥ yl, yo ∈ Y |

|Q|
]|yl ∈ Y }
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Figure 2.7: An example of possible [rating, similarity] pairs of an unseen review shown by
black points on the diagram for a query consisting of nine query concepts. The lists that
are completely read have “null” value for their current rating (i.e rating of last seen review
in the list).

Note that if an unseen review does not include any query concept then its similarity is equal

to 0 and it does not affect the item’s score.

Computing Item Score Bounds: Now that we have defined the space of possible

[rating, simila-rity] values for unseen reviews, we need to decide which combination of

them would maximize the score of a partially seen item. For that, we use Theorem 2.4.1,

while Theorem 2.4.2 is used to compute the minimum score of a partially seen item.

Theorem 2.4.1 Let I be an item with h unseen reviews and a set R of seen reviews. If

there is a set U of candidate [s, w] (s stands for the rating and w stands for similarity)

pairs, in order to maximize the score of I, we can reuse a single pair in U for all h unseen

reviews.

Proof. We define:

V =
∑
i∈R

wi × si and W =
∑
i∈R

wi
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Let’s define XPScore(Q, I) as the maximum possible score of item I with h unseen reviews:

XPScore(Q, I) =

V +
∑
i=1:h

wi × si

W +
∑
i=1:h

wi

=

∑
i=1:h

(wisi + V/h)∑
i=1:h

(wi +W/h)

Let’s define:

Ai = hwisi + V

Bi = hwi +W

XPScore(Q, I) =

∑
i=1:h

Ai∑
i=1:h

Bi

There is only a single pair for all h reviews that maximizes

∑
i=1:h

Ai∑
i=1:h

Bi
and is the pair with the

maximum Ai
Bi

. As a result, the maximum possible score of the item is equal to:

XPScore(Q, I) = max
u
{V + h · wu · su

W + h · wu
}

Hence, only one pair in Figure 2.7 must be considered when computing the max-

imum score of a partially seen item. Similarly, we have a theorem for the minimum score

below.
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Theorem 2.4.2 Let I be an item with h unseen reviews and a set of R seen reviews. To

minimize the score of I, we use pair [0,maxwj ] for all h unseen reviews.

Proof. The fact that all unseen reviews should have the same [rating, similarity] assign-

ment to minimize an item’s score is proved similar to Theorem 2.4.1. Therefore, the pair

that minimizes Au
Bu

also minimize the item’s score. The pair that minimizes the item’s

score has minimum possible rating equal to 0 and maximum possible similarity equal to the

maximum of the maximum possible similarities of possible [rating, similarity] pairs in U .

Note that if an unseen review does not include any query concept then its similarity

is equal to 0 and it does not affect the item’s score.

Next, we describe how we compute the minimum and the maximum possible scores

of partially seen items based on the weighted mean of review ratings for items as defined

in Equation 2.1 using the minimum and the maximum possible similarities of the partially

seen and unseen reviews.

It is not practical to check all combinations of reviews similarities in order to

compute the maximum score. Instead, we invoke Theorem 2.4.3 to compute the maximum

possible score of a partially seen item with an optimal greedy solution, which has complexity

linear on the number of item reviews.

Theorem 2.4.3 Given an item I with a set R of n partially seen reviews, where each review

r has a known r.rating, minimum similarity MPQRSim(Q, r), and maximum similarity

XPQRSim(Q, r), there is a review ri ∈ R such that the score of I is maximized if we assign
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Figure 2.8: An example case of Theorem 2.4.3. Here we show a list of an item’s reviews
sorted by review rating in descending order. The maximum possible score of the item is
achieved when the first two reviews are weighted by the maximum possible similarity, and
the last three reviews are weighted by the minimum possible similarity.

similarity XPQRSim(Q, r) to all reviews with rating greater than or equal to ri.rating and

MPQRSim(Q, r) to the rest.

Proof. For presentation simplicity, we view seen reviews as partially seen reviews for which

the minimum and the maximum possible similarities to the query are equal to the exact

similarity.

We show an example scenario for Theorem 2.4.3 in Figure 2.8. This theorem states

that in computing the maximum possible score of the item: (1) Only the minimum and the

maximum possible similarities should be considered and not intermediate similarity values.

(2) The choice of maximum vs. minimum similarity for each review is not independent of

the other reviews, but if a review r1 has a higher rating than review r2, then if the minimum

similarity is used for r2, the minimum similarity should be used for r1 as well. This is proved

by contradiction.

Figure 2.8 shows a list of five reviews sorted by rating, and r2 is the divider

review (review ri as stated in Theorem 2.4.3). As stated before, Theorem 2.4.3 helps in

finding the maximum possible score of a partially seen item with complexity O(n) instead of

considering all combinations of minimum and maximum possible similarities of the reviews.

Note that Theorem 2.4.3 assumes that all the reviews of the item are partially seen and their
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rating is known. In the presence of unseen reviews with unknown ratings, we compute a

locally maximum item score for every possible pair of [rating, similarity] of unseen reviews.

Therefore, the maximum possible score of the item is the maximum of all local maximum

scores (for a [rating, similarity] pair).

Algorithm 1 shows the computation of maximum possible score of a partially seen

item with R, a set of partially seen reviews, and u, a candidate pair of [rating, similarity]

for h unseen reviews. Every review in R has a rating, a minimum, and a maximum possible

similarity to Q. In this algorithm, PR(rating,minSim,maxSim) generates a new candi-

date unseen review representing h unseen reviews. Since all unseen reviews have identical

[rating, similarity] pairs, the unseen reviews are trivially equivalent to a single review with

candidate similarity multiplied by h. Algorithm 2 computes the maximum possible score

of the item for different possible pairs of rating and similarity in set U , and return the

maximum of these locally maximum possible scores.

In order to calculate the minimum possible score of a partially seen item, we use

Theorem 2.4.4. This theorem is proved similar to Theorem 2.4.3. As a result we avoid to

include it in the chapter.

Theorem 2.4.4 Given an item I with R, a set of n partially seen reviews and each review

r, with a known r.rating, MPQRSim(Q, r), and XPQRSim(Q, r), there is a review ri ∈ R

such that the score of item is minimized if we assign MPQRSim(Q, r) to all reviews with

rating greater than or equal to ri.rating, and XPQRSim(Q, r) to the rest.
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Algorithm 1 NRA-IRanker, Maximum possible score of partially seen item without unseen
reviews.

1: procedure XPScore(R,u,h)
R: partially seen reviews of the item,
u: candidate [rating, similarity] pair,
h: number of unseen reviews

2: R.add(PR(u.rating, 0, u.similarity × h))
3: SumWeights =

∑
r∈R

r.minSim

4: WeightedSum =
∑
r∈R

r.rating × r.minSim

5: Score = WeightedSum/SumWeights
6: R = sort by rating(R)
7: FOR (i = 1; i <= R.size(); i+ +) DO
8: SumWeights+ = (r.maxSim− r.minSim)
9: WeightedSum+ = r.rating × (r.maxSim− r.minSim)

10: IF Score < (WeightedSum/SumWeights) THEN
11: Score = (WeightedSum/SumWeights)
12: else
13: return Score
14: end IF
15: end FOR
16: end procedure

While processing the reviews in query concept lists, the minimum and the maximum possible

similarities of the partially seen reviews as well as the minimum and the maximum possible

scores of the partially seen items keeps getting updated. The algorithm terminates when

there are k seen or partially seen items with a minimum possible score that is greater than

or equal to 1) the maximum possible score of the rest of seen or partially seen items, and

2) ymax, the maximum possible score of the unseen items.

Path-Length Similarity

If similarity of the query and review is based on the Path-Length measure, as with

the Path-Length based RA-IRanker, we need to process the lists of query concepts and their

neighbors in the concept graph. Here, we compute the set of possible [ratings, similarity]
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Algorithm 2 NRA-IRanker, Maximum possible score of partially seen item with unseen
reviews.

1: procedure XPScoreAll(R,U ,h)
R: partially seen reviews of the item,
U: Set of possible [rating, similarity] pairs,
h: number of unseen reviews

2: MaxScore = 0
3: FOR u ∈ U DO
4: score = XPScore(R, u, h)
5: IF MaxScore < score THEN
6: MaxScore = score
7: end IF
8: end FOR
9: return MaxScore

10: end procedure

pairs for unseen reviews in a different way than Jaccard similarity. Since every query

concept is extended to a list of neighbor concepts, we have to process all concepts and their

neighbors that are reached via a shortest path from the query concepts that is less than the

distance threshold T , as seen in Figure 2.4.

To compute set U , possible [rating, similarity] pairs for unseen reviews, we first

select a possible rating from the set of current ratings yi of both the query concepts and

their neighboring concepts (with distance less than threshold T ). Then, in order to compute

the maximum possible similarity for the selected rating, we find the concepts that have

shortest distance from every query concept whose current rating is greater than or equal

to the selected rating. By summing up the similarities of these concepts, we compute the

maximum possible similarity for the selected rating.

In addition, the computation of minimum and the maximum possible similarities

of partially seen reviews is different than the Jaccard-based version of the algorithm. The

rating of a review becomes known when it is accessed for the first time in one of the concept
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lists. Therefore, to calculate the maximum possible similarity of a partially seen review,

for each query concept, we find the concept with the shortest distance (maximum concept

similarity) to the query concept; the concept we find either has the review already processed

in its list, or its current rating is greater than or equal to the rating of the review. The

maximum possible similarity is the sum of the concept similarities as defined in Equation 2.3.

For the minimum similarity of a partially seen review, we only consider query concepts for

which the review has been seen in their lists, or in one of their neighboring concept lists.

If the review is seen in multiple lists of neighboring concepts of a query concept, then the

concept similarity of the nearest concept is used. On the other hand, for the query concepts

for which the review is not seen in neither their list nor the list of their neighboring concepts,

we assume the concept similarity is 0. As defined in Equation 2.3, the minimum possible

similarity of the partially seen review is the sum of minimum possible similarities per query

concept.

2.4.3 Incorporating Additional Item and Review Features

As we briefly mentioned in Section 2.3, one may want to also incorporate other

features into the ranking function of Equation 2.1. In this section we show how the top-k

algorithms are modified to accommodate such features; specifically, we consider two types

of features: item features, such as number of reviews or price, and review features, such as

review helpfulness or date.

Equation 2.6 is a generalization of Equation 2.1:

score(Q, I) = g(scoreF (Q, I), G1, G2, · · · ) (2.6)
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Figure 2.9: The scheme to combine multiple ranking features of the items.

where scoreF(Q,I) incorporates all review weighing features such as review help-

fulness, and Gi are the item features such as price and popularity. Specifically,

scoreF (Q, I) =

∑
r∈I QRSimF (Q, r)× r.rating∑

r∈I QRSimF (Q, r)
(2.7)

Note that QRSimF (Q, r) is a generalization of QRSim(Q, r), which includes all

review weighing features, in addition to the review similarity QRSim(Q, r), as follows:

QRSimF (Q, r) = f(QRSim(Q, r.concepts), F1, F2, · · · ), (2.8)

where Fis are review weighing features. For our top-k algorithms to work, function

f should be monotonic on QRSim and Fi’s, in order to be able to compute lower and upper

bounds for QRSimF , given the bounds on QRSim and Fi’s. Note that QRSim is simply

replaced by QRSimF in the top-k algorithms.

Further, to be able to execute a top-k algorithm to compute the final item scores

from Equation 2.6, aggregation function g must be monotonic on its arguments. Then,

we can apply an algorithm like NRA on top of the ranked item features lists, as shown in
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Figure 2.9. Note that this is a two-level top-k algorithm, as the arguments of g may be

computed in a pipelined manner as well.

In particular, the first argument of g, scoreF (Q, I) is executed by the RA-IRanker

or NRA-IRanker algorithms described above. A GetNext() method is implemented for each

argument of g so that the two levels are connected in a pipelined manner.

2.5 Evaluation Results

In this section we evaluate the run-time performance and the quality of the search

result of our proposed method.

2.5.1 Quantitative Analysis

We start by describing experimental settings followed by the experimental results.

Then, we compare the run-time performance of our proposed algorithms against two base-

lines and discuss the results in detail.

Experimental Settings

Baseline algorithms: We use two algorithms as baselines for the two different

similarity functions. The baselines for Jaccard similarity and Path-Length similarity are

called Base-J and Base-P respectively.

Base-J, uses the same Concepts index as used in NRA-IRanker algorithms to get

all reviews that contain at least one of the query concepts. We need the number of concepts

for each review in concept index, in order to avoid making an extra access to the review
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index for each review. Then, we group the reviews of each item and compute the weighted

average based on Equation 2.2.

In Base-P, for each query concept, we get all the query concepts and their seman-

tically related concepts within a distance up to a threshold T . For each query concept, we

read all the reviews in the lists of its related concepts and add them to a new list which

is kept in memory. For each review in this list, we maintain its distance to the query con-

cept. If a review is added to a query concept list several times with different distances, we

only consider the one with the minimum distance. Then, we group query concepts for each

review and reviews for each item. Next, for each review, we compute the review similarity

based on equation 2.3. Finally, for each item, we compute the IRanker item score using

review rating and similarities. Base-P requires the same concept index as in RA-IRanker

where each review in the review list of a concept contains review-id, item-id and a rating.

Figure 2.10: Distribution of reviews for real and synthetic doctor reviews datasets.

Datasets: In order to evaluate our algorithms, we use healthcare provider reviews

that are collected by crawling vitals.com and ucomparehealthcare.com websites. We merge

items and reviews of these two websites into a single dataset and in the following we will
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Figure 2.11: (a),(b),(c). Run-time performance using Jaccard similarity function with
queries of size |Q| = 3 for real doctors, synthetic doctors and Amazon datasets respec-
tively. (d),(e),(f). Number of random read accesses to indexes used by each algorithm for
the experiments in (a), (b) and (c)

refer to the combined dataset as the “Real doctors” dataset. We extract medical concepts

from the textual content of the reviews using the MetaMap tool [9]. Furthermore, we

built a synthetic dataset to increase the number of reviews of each item (medical provider)

from “Real doctors” dataset in a principled way. The number of additional reviews is

generated by a Zipf random number generator between 0 and 103. Figure 2.10 shows the

distribution of the number of reviews across real and synthetic doctors datasets. For each

additional synthetic review of an item, we calculate the number of concepts based on a

mixture distribution of the number of concepts across the real dataset and the distribution
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of the number of concepts for that item. The mixture distribution of global and local

distributions is as follows.

P (x) = α× PG(x) + (1− α)× PL(x)

Where PG is the probability according to the global distribution and PL is the probability

according to the local distribution of an item. In other words, the probability of selecting

a concept for a synthetic review of a doctor is a mixture of probability of its existence

across the whole database and within the reviews of that doctor. In our experimental

configuration, we set α to be equal to 0.5.

We follow a similar approach to compute a rating for each synthetic review by

combining the global rating distribution in the real dataset and the rating distribution in

the reviews of the item. The rating in the real dataset is a number from a set of 12 discrete

numbers between 0 and 1. In the synthetic dataset, the ratings are more granular and they

are in a set of 101 discrete numbers between 0 and 1.

In addition to doctor reviews, we use Amazon product reviews dataset [82]. This

dataset is collected from Amazon.com and is a fairly comprehensive collection of English

language product data in a wide variety of categories such as books, clothing and movies.

Each product is provided with its reviews including textual reviews and star ratings. Ta-

ble 4.1 summarizes the characteristics of the datasets used in this study. In our experiments,

we treat textual Amazon product reviews as a bag of keywords and only perform the ex-
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Table 2.4: Datasets’ characteristics.

Dataset #Items #Reviews
Reviews
per Item

Concepts
per Review

Real doctors 248580 726996

Min: 1
Max: 249
Mean: 2.9
Median: 5

Min: 0
Max: 121
Mean: 3.29
Median: 7

Synth doctors 248580 38802836

Min: 1
Max: 10000
Mean: 156
Median: 3209

Min: 0
Max:121
Mean: 3.59
Median: 4

Amazon 9743974 82037337

Min: 1
Max: 25260
Mean: 8.4
Median: 2

Min: 1
Max:1719
Mean: 26.65
Median: 15

Table 2.5: Total disk space consumed by Cassandra indexes.

Real doctors Synth doctors Amazon
Baseline Jaccard 44M 1.4G 33.17
Baseline Path-Length 30M 0.97G –
RA-IRanker 59M 1.75G 37.46
NRA-IRanker 44M 1.4G 33.17

periments using Jaccard similarity of the query and reviews. One can simply use general

ontologies in order to use the Path-Length similarity in such general domains.

Database setup: The indexes are stored in a Cassandra data store [74] on a

single node. We chose a NoSQL store, because we only need an efficient mechanism to

look up index lists and no SQL capabilities. Other key-value stores can also be used.

Table 2.5 summarizes the amount of disk space that each algorithm consumes for storing

necessary indexes in Cassandra. We partition all the index lists into 8 KB chunks to allow

for incremental reading of the lists. That is, each index list is a row in Cassandra, and each

chunk in the list is a column in this row.

Query workload generation: For the doctor reviews datasets, we generate queries

by choosing a set of query concepts, where each concept is selected with probability pro-

portional to its frequency in the reviews. For every experiment, we present results averaged

over 100 queries. The queries for the Amazon dataset are selected from the queries sug-
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gested by the website in different categories. For example, ”spray face child sun screen” is

a search query suggested by amazon.com.

Parameters: We evaluate the performance of our algorithms by varying the number

of top-k items, the query size and the distance threshold T for the Path-Length similarity

measure.

Experimental Results

In this section, we compare the run-time performance of our algorithms against

the baselines for both Jaccard and Path-Length similarity measures using several experi-

ments on multiple real and synthetic datasets.

Jaccard Similarity: Figure 2.11 shows the experimental run-time for real and

synthetic doctor reviews and Amazon datasets for different values of k, the number of top

items, given queries of size 3. Figures 2.11.(a), 2.11.(b) and 2.11.(c) show the average

retrieval time of different algorithms for different datasets. In Figures 2.11.(d), 2.11.(e) and

2.11.(f) we demonstrate the total number of read operations made to necessary indexes

stored in Cassandra by various algorithms.

The results of our experiment show that NRA-IRanker returns top-k items faster

than other algorithms; on an average NRA-IRanker is 5.5x faster than the RA-IRanker

for the real doctors dataset, 11.5x faster for the synthetic doctors dataset and 43x faster

for Amazon dataset. Base-J has the worst performance amongst other method, specially in

Amazon dataset.
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Figure 2.12: Cassandra read access time and processing time for Jaccard-based RA-IRanker
and NRA-IRanker algorithms using synthetic dataset.
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Figure 2.13: Query time using Jaccard similarity measure to find top-20 items.

We demonstrate the IO and processing times separately for RA-IRanker and NRA-

IRanker in Figure 2.12. Due to the space limitations, we only report the results for the

synthetic dataset since the same pattern is observed in experiments with other datasets.

As it is shown in Figure 2.12, processing takes more time than IO in NRA-IRanker because

of computing and maintaining the minimum and maximum possible score of partially seen

items as well as the rating of partially seen reviews. In RA-IRanker, the increase in the

number of reviews per item leads to increase in processing time while computing the score

of each item. As a result, with the increase in the number of top items, the processing time

increases with a faster pace than IO time.
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We also show the query response time by changing the query size in Figure 2.13

for real and synthetic doctors datasets as well as Amazon dataset. As shown in this figure,

Query time of the baseline increases with increase in query size because it reads more review

lists per query concept and process more data. Amazon product queries that we use have 5

terms at most. That explains the different range of query size for Amazon dataset. In the

case of very small query size, more reviews had to be read from one list to terminate. That

costs more processing time for NRA-IRanker. As a result, the run-time for small query size

is higher.

Path-Length Similarity: Similarly as for Jaccard similarity measure, we com-

pare the query response time for Path-Length similarity measure for real and synthetic

doctor reviews datasets as shown in Figure 2.14. In this experiment IRanker algorithms

are compared to Base-P for two different Path-Length thresholds of 2 and 3. In both cases,

NRA-IRanker outperforms other algorithms significantly. Figure 2.15 shows the experiment

result for different query sizes for real and synthetic doctors reviews datasets using Path-

Length measure with the threshold equal to 2. Query response time increases for all the

algorithms with the increase of the number of the query concepts.
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Figure 2.14: Query time using Path-Length Similarity measure for a query of size 3. (a)
and (b) are based on Path-Length with threshold 2. (c) and (d) are based on Path-Length
with threshold 3.

Table 2.6: An example of doctors returned by each algorithm for query ”skin cancer“. NRA-
IRanker makes a better choice by weighing the non-relevant review lower while Baseline
simply select the item with higher average ratings.

doctor-id Selected by review-id Review Rating Text

D1 Baselines
R1 1 0.3

Misdiagnosed skin cancer as dermatitis. despite
multiple visits regarding spots for 15 months.

R1 2 1
his practice, including the nurses, assistants, and
Dr. X herself, are all wonderful

D2 NRA-IRanker
R2 1 0.2

Worse clinic I have ever been to in my entire life!
Very rude and unprofessional staff!!!!!

R2 2 1
He is extremely knowledgeable. He identified start
of skin cancer very quickly and help me to stop
progress and curing it.
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Figure 2.15: Query time using Path-Length similarity with T = 2 measure to get top-20
items.

2.5.2 Qualitative User Study

To measure the accuracy of our proposed methods, we conducted a user case study

as follows.

We set up a user study to evaluate the quality of the search results using our pro-

posed Jaccard and Path-Length based algorithms and two baseline methods. In particular,

we want to evaluate if the relevance-based weighted average ranking formula (Equation 2.1)

is effective, and if considering neighboring concepts (Path-Length distance semantics) is

improving the search quality.

Baseline1: baseline1 selects all items (doctors) that include all query concepts in

their reviews (e.g., the first query concept may be contained in one review and the second

in another). Then, the items are ranked by the average rating of all their reviews (not only

the ones matching the query).
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Baseline2: baseline2 considers, in addition to the items that Baseline1 considers,

items that include the direct neighbors of the query concepts in the SNOMED-CT ontology.

The ranking is as in Baseline1.

Data selection and setup: We selected 50 queries, each including one or two

popular medical concepts such as “acne scar”, “Rheumatoid arthritis” and “weight loss

and wrinkled skin”. We randomly select 60 doctors that have at least one of the query

concepts or a concept with distance one from query concepts in their reviews. For each

doctor, we select three reviews, using the following method to ensure diversity in terms of

rating score. The first review is randomly selected from the set of relevant reviews of the

doctor. The second review is a random positive review (rating > 0.5) if at least 10% of

doctor’s reviews are positive, and similarly, for the third review if at least 10% of doctor’s

reviews are negative (rating ≤ 0.5) we randomly select a negative review. Note that if

needed, additional random reviews are selected to have three reviews.

For each query, we show the union of the top-3 items returned by NRA-IRanker

with Jaccard similarity, NRA-IRanker with Path-Length similarity (distance threshold =

1), Baseline1 and Baseline2 to the users. For each query, we show three reviews for every

doctor to the raters and ask them to mark the doctors that they think are good matches.

We recruited 15 students as the raters, and each student was asked to complete all 50

queries. We use the users’ majority vote to decide on the relevance of each item.

Table 2.6 shows an example of two doctors returned for ”skin cancer“ in this case

study (only two reviews are shown here). Doctor D1 is ranked higher by the baseline

algorithms (scored by average rating of R1 1 and R1 2) while Doctor D2 is selected by our
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Table 2.7: Search result quality for IRanker Jaccard, NRA-IRanker Path-Length, Baseline1
and Baseline2.

AP@1 AP@2 AP@3

Baseline1 0.29 0.3 0.31

IRanker (Jaccard) 0.33 0.41 0.42

Baseline2 0.5 0.58 0.69

IRanker (PathLength) 0.81 0.89 0.94

proposed methods (scored only based on R2 2). The second column is not shown to the

study users.

Results: The mean average precision (MAP) at various positions – @1, @2 and

@3 – for the four ranking methods is reported in Table 2.7. Based on the raters judgement,

MAP for NRA-IRanker using Path-Length measure is significantly higher than the other

methods, as it leverages both the ontological relationships (as does Baseline2) and the

relevance-based weighing (as does the Jaccard variant of NRA-IRanker).

2.5.3 Discussion

Based on our experiments, we observe that the performance of NRA-IRanker in

all cases except very small query size is significantly better than the other algorithms. In

general, the query response time using Jaccard similarity measure is much less than the

Path-Length similarity measure due to the simpler similarity computation as well as the

smaller number of concepts to consider while looking for top-k items relevant to a query.

In terms of disk space, as shown in Table 2.5, for Jaccard similarity, Base-J and

NRA-IRanker have the same requirements, which makes NRA-IRanker even more desirable

given its far superior execution time. For Path-Length, Base-P needs 33% less space than

NRA-IRanker. All in all, NRA-IRanker has the next smaller space requirement.
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In addition, we showed through the user study that (a) a relevance-based weighing

of reviews and (b) ontological query expansion both improve the quality of ranking results.

2.6 Conclusion

In this chapter, we proposed a solution to efficiently compute the top-k reviewed

items based on a query-specific scoring function. We used semantic ontologies to improve the

quality of search results. Using experiments on a real world dataset and a large augmented

synthetic dataset, we showed that the performance of our algorithm is significantly better

than baseline methods. Amongst the three proposed solutions, NRA-IRanker has the best

performance in most settings and also needs the least disk space to store necessary indexes.

A possible future direction is to study to take into account the item’s review

rating distribution in computing the item score while weighting the review ratings. Another

improvement may result from considering a finer rating granularity of concepts within a

review. That is, instead of having the same rating score for all concepts of a review, one

could employ NLP methods to compute a rating for each concept. This requires detecting

context bounds in the text, analyzing the sentiment, handling negations, and more.
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Chapter 3

Define and Extract

Domain-Specific Ontological

Concepts

The Multiple Listing Service, commonly known as the MLS, is the singularly most

important database where real estate agents and brokers list real estate properties for sale.

It is common that agents include textual comments pertinent to the property. Although the

information content of comments varies, it is usually expressed in good faith and in many

cases is helpful in shedding light on the overall condition and the value of the property.

Therefore, it seems reasonable that semantic text analysis would be useful to evaluate

properties, or aspects thereof. As far as we’re aware of, no methodology to effectively

extract insight from the MLS textual portion exists. In this chapter we demonstrate how

textual descriptions may be exploited for property ranking. The proposed methodology,
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which combines supervised and unsupervised methods, identifies domain-specific concepts

and combines their contributions to assign a score to a listing. We evaluate the proposed

methods using both human evaluators and data-driven evaluation metrics on real datasets

(complied from actual listings), and compare them to baseline approaches.

3.1 Introduction

Real estate agents and other real estate professionals have to sift through hundreds

or thousands of listings per day to locate the ones that they should focus on to satisfy their

clients, for rent, sale or investment purposes. For example, at HomeUnion [2], expert real

estate investment consultants have to carefully read through hundreds of listings per day

to pick the most investment-worthy ones. In addition to structured attributes like year-

built and number of bedrooms, agents have to read through listing’s description, typically

a few paragraphs-long as well as related comments from other agents. This is clearly time

consuming, translating into significant labor costs.

Evidently, the ranking the listings solely based on the structured attributes is sub-

optimal as many significant pieces of information are only reflected in the text description;

this includes things like remodeling information (new granite counter-top), financial con-

ditions (short sale, foreclosure), etc. Conversely, for one reason or another, an agent will

disclose that the home has ”foundational issue”, clearly a negative home attribute. To our

best knowledge, current property valuation methods do not utilize this kind of information

for ranking properties.
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In this chapter, we propose a novel methodology to assign a “goodness” score

based on the textual description of a listing. This score can then be combined with other

structured attributes to generate an overall goodness score for a property whereby enabling

the agent to focus on other, perhaps more pertinent home characteristics.

Specifically, we first build a collection of real-estate-specific concept, a phrase that

describes a real-world entity, such as “granite counter top,” to use for annotation. Each

concept in this collection is manually labeled with a numeric goodness value by experts.

For example, “sell as-is” is a negative concept for ’turn-key’ investors not wishing to further

invest to enhancing the condition of a property (like replacing old carpets.) To that end

we’ve created a continuous vector representations for vocabulary words by analyzing a

corpus of real estate descriptions in order to annotate the property’s textual information

with scored concepts.

Existing real estate lexicons include a limited real estate vocabulary, i.e., concepts,

as they are mainly designed for structured data aggregation rather than text analysis [5].

Additionally, these lexicons aren’t up-to-date with the current real estate market trends.

For example “keyless entry” concept is a newer trend in housing market. As a result it’s

important to have a method to build a comprehensive concept collection while keeping it

up-to-date.

Considering all vocabulary words and n-grams (a phrase of n consecutive words)

extracted from a corpus of domain-specific data is an expensive manual labeling task, in-

volves assigning goodness scores to all of them. Instead, we’ve identified the most useful

n-grams by using a measure based on their frequency, their ’chances’ to appear together.
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We then filter the n-grams by removing the non frequent words and phrases with low mutual

information. We group similar words and phrases together so that domain experts label

similar groups of phrases together as a concept and assign a goodness score to it.

Even if a comprehensive scored lexicon of concepts were available, it will still

remain a challenge to identify approximate matches for these concepts, e.g., “kitchen coun-

tertop” should match “kitchen counter.” In this chapter we introduce an unsupervised

method for text annotation using word2vec, a neural network modeling framework.

This chapter has the following contributions:

• We (intelligently) select a relatively small set of candidate phrases out of a large

corpus of real estate text descriptions for domain experts to label as domain concepts,

in Section 3.3.1.

• We extract exact and approximate scored real estate concepts from real estate de-

scription text and assign a score to the text using word2vec generated word vectors

and matching techniques, in Section 3.3.2.

• We evaluate our description scores computed by our algorithms with both human

annotators’ judgements, in Section 3.4.1, and a data-driven approach, in Section 3.4.3.

Related work is presented in Section 3.2 and we conclude in Section 3.5.

3.2 Related Work

Real Estate Appraisal: There has been research on estimating real estate appraisal,

the process of valuing the propertys market value. These studies focus on feature design
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Figure 3.1: Text annotation architecture. Example texts in the diagram are colored blue.

and price tracking by comparing similar properties or change of price over time. [47] [49]

use a learn-to-rank model to predict the ranking (in terms of its potential investment value)

of a residential real estate based on features extracted from disparate datasets, such as

taxi trajectories, road networks, and online social media ratings. Other studies work on

price-rate ratio and price-income ratio for evaluating property values [70]. Some studies

rely on financial time series analysis by analysing the trend, periodicity and volatility of

house prices [89]. More traditional works are based on repeat sales methods that construct

a predefined price index based on properties sold more than once during the given period

[105]. The characteristic based methods assume the price of a property merely depends on

its characteristics and location [108]. Downie et al. [40] studied the automated valuation

models which aggregate and analyze physical characteristics and sales prices of comparable

properties to provide property valuations.

More recent works [69], [28] apply general additive mode, support vector machine

regression, multilayer perceptron, ranking and clustering ensemble method to computational

house valuation. Another study focus on exploiting the mutual enhancement between rank-
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ing and clustering to model geographic utility, popularity and influence of latent business

area for estimating estate value [49]. They identify and jointly capture the geographical in-

dividual, peer, and zone dependencies as an estate-specific ranking objective for enhancing

prediction of estate value.

Multiple Listings Service, MLS, is a real estate listing database that provides

real estate listings located all across the USA through advertised real estate by real estate

agents. It contains real estate MLS listings for rent or sale by Realtors and other realty

professionals that are members of local MLS Multiple Listing Service [4]. Currently there

are 51 local MLS databases for different USA states. The data for each listing includes a

set of structured attributes such as number of bedrooms and square feet that are used as

features in real estate valuation techniques. In addition to these attributes, there are two

main textual fields that contain property description and real estate agent’s remarks about

the listed property. These textual data often includes key points regarding the property

that affects an agent’s judgement while pricing the property. To our knowledge, there

has not been any research done regarding extracting these features and analysing them

along with other property features. In this project, we employ natural processing and text

mining methods to extract key concepts from textual property descriptions and compute

an additional numerical feature value describing the property value based on the textual

data.

Concept Extraction Methods: Although automatic annotation of online textual

resources has been studied extensively in research communities, it still remains a challeng-

ing task [28]. Several research studies focus on incorporating natural language processing
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techniques to do annotation tasks. Most of these studies rely on pre-annotated training

examples where they tag sub-strings of the document with pre-defined annotations by iden-

tifying the distribution of vocabulary words for different annotation topics [38]. Other

studies and tools rely on extra knowledge bases such as regular expression based rules [68]

[80] [94] [95] [81] [15]. Another category of studies on text annotation are using machine

learning methods to automatically learn the patterns for a text annotations [73]. MnM

[115] is a system that retrieves patterns and rules for semantic annotation from a corpus of

pre-annotated text. [54] [51] [42] are other examples of automatic rule finding approaches.

two main challenges of the existing methods is their dependence on predefined rules or

pre-annotated training data as well as assumption of existing concept repository.

Domain specific concepts collection (ontology): Building a collection of labels to

use for text annotation has been a challenging task. Constructing ontology is a domain

specific task and varies in different domain and contexts. Popescu et al. [93] introduce

OPINE, a review-mining system that uses relaxation labeling to find the semantic polarity

of words in the context of given product features in online reviews. It first finds features

and their attribute and then uses relaxation labeling to extract their polarity in a textual

review. Further research is done towards enhancing the ontology quality by refinement to

better suit the target domain [100] [102] [18].

3.3 Concepts Extraction and Description Scoring

In this section we describe the steps we take towards assigning a goodness score to

each description text (retrieved from MLS property listings). Our approach consists of two

59



main steps. Figure 3.1 shows the flow of our approach towards extracting concepts from

real estate description text.

First, in Section 3.3.1, we build a collection of real estate-related concepts along

with their goodness score. Specifically, after cleaning a corpus of text descriptions of MLS

listings and identifying key phrases, the vocabulary is further pruned based on mutual in-

formation and frequency. Then, to facilitate the definition of concepts (several phrases may

map to the same concept), we cluster the phrases using word2vec vector representations.

This allows human labelers to view similar phrases next to each other and mark the ones

that should be part of the same concept. In addition, human experts assign a goodness

score to each concept.

Next, in Section 3.3.2, given a description text, we extract the scored concepts and

compute an aggregate goodness score for the input text. In this phase, a scored concept

collection (product of training phase) as well as numerical vector representations are used

to annotate a given text with exact or approximate matching of the scored concepts. The

aggregation of the concept goodness scores that are extracted from the text generates a

single score for the given description.

3.3.1 Building Scored Concepts Collection

In this section we show how, given a collection of descriptions, we generate a set

of phrases that represent concepts that the real estate experts will score. The goal is to

minimize the human effort, while at the same time capturing a large percentage of the

concepts mention in property listings.
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We use a corpus of 800K property listing descriptions and remarks retrieved from

MLS database. we clean the text in corpus by lemmatization, lower-casing, tokenizing and

removing the stop words (a set of 30 words that we collected) for each property. Next,

we identify the phrases by merging the words that have a frequently happen together and

infrequently happen in other context with a simple data-driven approach [85]. To be precise,

for each consecutive pair of words (bigram) we compute a score using Equation 3.1 defined

as follows:

score(a b) =
(pab −min count)

pa × pb
(3.1)

where pa, pb are frequency of terms “a”, and “b” respectively, and pab is the frequency

of phrase “a b” in the corpus. min count is a parameter to account for minimum term

frequency. If a pair has a score that is greater than a threshold score (a parameter for

phrase generation) then words will be attached using a hyphen and a phrase in the corpus

is created. Algorithm 3 shows how word2phrase works. We run word2phrase three times

in order to with decreasing min count threshold to allow longer phrases consisting multiple

words. The outputs of fist and second runs are the inputs for second and third runs respec-

tively. Figure 3.2 shows an example of running word2phrase twice. In first round “steel”

and “appliances” meet phrase score threshold and get attached as a phrase. In second

round, “stainless” and “steel-appliances” are the two words that are grouped together cre-

ate a phrase. After identifying phrases and merging them into one unit using word2phrase

method, we use word2vec [86] tool to learn the space of continuous word and phrase rep-

resentations from the preprocessed corpus. word2vec provides an efficient implementation
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Algorithm 3 word2phrase algorithm. T is the score threshold for generating a phrase by
attaching two words.

1: procedure word2phrase(text)
2: text = clean(text)
3: List tokens = tokenize(text)
4: FOR (i = 1; i <= tokens.size(); i+ +) DO
5: IF Score(tokens[i− 1], tokens[i]) > T THEN
6: new-phrase = tokens[i− 1] + “ ” + tokens[i]
7: end IF
8: end FOR
9: end procedure

Figure 3.2: Example of word to phrase transformation. Round 1 identifies ”steel” and
”appliances” to be connected as phrase. In Round 2, ”steel appliances” is considered as one
word and it is identified as a phrase in combination with ”stainless”.

of the continuous bag-of-words and skip-gram architectures for computing vector represen-

tations of words. Word2vec allows us to train models on a large data sets (up to hundreds

of billions of words). Word2vec computes a vector representation for each word using a

recurrent neural network. Figure 3.3 shows two main approaches that word2vec uses for

training the model to learn word representations. The training objective of the Skip-gram

model is to find word representations that are useful for predicting the surrounding words

in a text window. While in CBOW (continuous bag of words), the model is trained such

that it predicts a word given its context (surrounding words).

The input of the skip-gram model is a single word wI and the output is the words

in wI ’s context {wO,1, ..., wO,C} defined by a word window of size C. For example, consider

the sentence ”I drove my car to the store”. A potential training instance could be the word

”walking-distance” as an input and the words “curb-appeal”,“propery”,“located”,“school”,
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Figure 3.3: Two word2vec learning approaches. a) skip-gram model learns a model that
given a word, guesses the context. b) CBOW (continuous bag of words) model learns to
guess the word given a context. In these diagrams, V is the number of vocabulary words
and N is the size of word vectors.

“church”,“shopping-mall” as outputs. All of these words are one-hot encoded, meaning

they are vectors of length V (the size of the vocabulary) with a value of 1 at the index

corresponding to the word and zeros in all other indexes. As we can see, Word2vec is

essentially creating training examples from plain text which means that we can have a

virtually unlimited number of training examples at our disposal. In CBOW version, the

input layer consists of the one-hot encoded input context words {x1, ..., xC} for a word

window of size C and vocabulary of size V . the output layer is output word y in the

training example which is also one-hot encoded. The word vector representations are the

weights of the neural network and they are learned after the training cycle is complete.

After training high dimensional word vectors on a large amount of data, the re-

sulting vectors can be used to answer very subtle semantic relationships between words [86].

More specifically, the words that are semantically related such as synonyms or the words
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of the same category tend to have very similar vectors because they appear in the same

context. Cosine similarity measure is used to quantify the similarity of the words based on

their vectors.

We use Skip-gram model in training phase to compute word vector representations.

Using cosine similarity measure, we compute word clusters with KNN method to group the

relevant words together. The goal of clustering is to identify groups of relevant concepts and

make the labeling task easier for the domain experts by putting all the relevant concepts

together. We further prune these clusters by removing non frequent words and phrases

with low phrase scores (ex. mutual information or Equation 3.1) to make a smaller set

for the domain experts to label the goodness score.In this project, after processing 800K

property descriptions, we come up with approximately 3000 candidate concepts grouped in

500 clusters to be scored by domain experts.

Labeling the goodness of concepts: We asked two real estate experts to merge together

phrases with the same meaning, in the context of homes evaluation, to form concepts, that

is, “kitchen counter” and “kitchen countertop.” Further, we asked them assign a goodness

score between -10 and 10 to each of the 3000 concepts. For example, since “foundation issue”

is costly for the property, it get a -8 while “mior cosmetics” get -1 as their goodness score.

The average score of multiple expert’s opinion was recorded for each concept.

3.3.2 Scoring the Property Listings

Now that we have the scored collection of concepts, in order to score a property’s

textual description, we need to detect the real estate concepts in the text and compute

the overall score based on their aggregated goodness scores. In the previous section, we
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explained how we build a collection of concepts that we use to annotate the text. An

exact concept may not be exactly present in the text but a semantically similar term may

be present (e.g., synonyms, acronyms, etc.). In this case, the word2vec word vectors can

be used to capture the relevance of the words to the real estate concepts in our concepts

collection. In this section, we describe three methods to extract the concepts from a given

text.

The goal is to extract labeled concepts and assign a score to the property descrip-

tion based on the aggregation of the concepts’ goodness scores. We propose three variations

of our solution with different trade-off’s between computation time and precision.

Exact concept matching (ECM)

Given a property description, we find all the scored concepts that exactly appear

in the cleaned text. In this variation, we define the property score as the summation of the

goodness score of the found concepts:

score(text) =
∑

concept∈text
goodness(concept)

Nearest Concepts Matching (NCM)

In this variation, we find all the vocabulary words/phrases that exist in the input

text string. Then, for each word/phrase, we find the nearest concept with the maximum

cosine similarity amongst the scored concepts. If the cosine similarity is greater than a

threshold parameter, then the concept will be considered as found with a weight equal to

its similarity to the existing word/phrase. Similarity threshold is a parameter in our system.
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The textual score of the property is computed by summing up the goodness scores of the

found concepts weighted by their similarity to the vocabulary word/phrase exist in the text

(in terms of cosine similarity). Formally, we define the score of textual property description

as follows:

score(text) =
∑
p∈text

goodness(nearest concept(p))× weight(p)

where p is a vocabulary word/phrase that is in the text and weight of the word/phrase is

defined as follows:

weight(p) = cosine similarity(nearest concept(p), p)

Non Redundant Nearest Concepts Matching (NRNCM)

In NRNCM, we first extract the concepts using nearest concept matching. Then,

in a greedy way, we iterate over the set of matched concepts and compare each concept with

the rest of concepts. If two concepts of the matched set have a similarity greater than the

similarity threshold then we remove the concept with the smaller similarity weight from the

set of concepts and continue. The purpose of this pruning is to avoid scoring the property

multiple time for the same concept.
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3.4 Evaluation Results

3.4.1 Experimental Setup and Measures

Data Set: Our corpus includes 800K property descriptions and agent remarks that are

inserted by real estate agents for property listings (fetched from MLS database). These

descriptions are retrieved from the property listings fetched from the MLS database. After

pre-processing the corpus to clean the text we get a vocabulary of size 45K and 34485K

words in total.

Experimental Setup: We set min count from Equation 3.1 to be equal to 100. For the

phrase score threshold, we chose different values during our experiments and show how

the results changes. Finally, We evaluate our scoring algorithms using both CBOW and

skip-gram models to train word vectors.

3.4.2 Evaluation Using Human Labeled Text

We randomly selected a set of 100 property listings. The real estate experts assign

a score of -1, 0 or +1 to each description if it is a negative, neutral or positive description.

We then sort the descriptions with scores that are computed using three variations of our

proposed solution.

We measure the correlation of the rankings using normalized Kendall-Tau [65]

measure. Kendal Tau measures the ranking agreement of two different ranking schemes by

comparing each pair of rankings for a set of ranked objects. Assume that o1 and o2 are two

objects and their ranks by ranking method R1 has R1
o1 < R1

o2 relation meaning that o2 is

ranked higher than o1. If the ranks by R2 agrees with R1, such that R2
o1 < R2

o2 , then o1

67



Table 3.1: Example of ranking of 5 property listing text with human annotator (ground
truth) and automatic machine annotator. Optimal ranking in last column is based on
assumption that all ranks are distinct and they are in perfect correlation with human
ranking. In case of tie in scores, an equal ranking is assigned to all of them.

Human
Score

Human
Ranking

Machine
Score

Machine
Ranking

Machine
Optimal Ranking

+1 2 23.0 3 1

+1 2 45.3 2 2

+1 3 51.0 1 3

0 3 3.0 4 4

-1 4 -10.0 5 5

and o2 are concordant pairs. On the other hand, if R2
o1 > R2

o2 , o1 and o2 are a discordant

pair. based on this definition, Kendall Tau is defined as following.

Kendall Tau =
nc − nd√

(n0 − n1)(n0 − n2)

where nc and nd are the number of concordant and discordant pairs respectively. n0 is the

number of possible pairs. n1 and n2 are number of pairs with a tie using ranking methods

R1 and R2 respectively.

We normalize rank correlation measures by their value for perfect ranking and we

call it optimal machine ranking. We assume in optimal machine ranking all the objects

have distinct rank and are ordered such that the ranking completely agrees with human

ranking. Table 3.1 shows an example of ranking using human judgement and our machine

score based ranking. Based on these definitions, figures 3.5 and 3.4 show the Kendall-tau

rank correlation of three proposed algorithms based on CBOW and Skip-gram strategies

for training word vectors respectively. We compare our algorithms score based rankings to

domain expert judgements. We evaluate the rank correlation for different cosine similarity
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thresholds between 0.5 and 0.9 inclusive. As shown in figures 3.5 and 3.4, the ECM algorithm

has a constant correlation for different similarity thresholds since it is independent of this

parameter. The correlation of NCM is similar or better than NRCM for all similarity

thresholds. This observation implies that redundant mentioning of similar concepts should

not be ignored. Another observation is that maximum correlation for NCM and NRNCM

is happening in lower threshold while using CBOW based word2vec learning comparing to

Skip-gram based learning. The peak correlation also is slighty lower using CBOW. The

reason is that using CBOW, similar words’ vectors have higher distance than Skip-gram

which causes more concepts to be filtered using higher thresholds.

Figure 3.4: Kendall Tau evaluation of ranking algorithms for different cosine similarity
thresholds. Word vectors are trained using CBOW model.

3.4.3 Evaluation Using Price Variation

We did a more extensive evaluation by counting the properties that are expected

to have similar listing price but they don’t. We assume the reason should be explained

in the description text and agent remarks. If two properties are similar in terms of key

features including location, year built, lot-size and square feet, we expect them to have the
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Figure 3.5: Kendall Tau evaluation of ranking algorithms for different cosine similarity
thresholds. Word vectors are trained using Skip-gram model.

same listing price. For location similarity, we consider properties with similar zipcode and

community subdivision. In terms of the square feet and lot size, we consider them similar

if their difference is less than 10% of their average.

We use 5000 property listings and find the pairs that are similar for all the property

features that we mentioned. for each property we compute a score based on the property

description and agent remarks. We found 310 similar pairs out of our sample set.

For each pair, if one of the properties’ price is greater than the other property’s

price with a difference greater than 10% of their price average and its text score is also

greater, we say that scoring function and listing price have agreement.

Table 3.2 shows the results of the evaluation for different proposed algorithms. For

NCM and NRCM, Skip-gram based word vectors are used to match approximate concepts

with a similarity threshold equal to 0.8. For each algorithm the number of pairs with

agreement is listed in the table. This evaluation also shows that performance of NCM is

slightly better than NRCM as shown in human judgement base evaluation.
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Table 3.2: Data-driven ranking evaluation.

# of properties # of similar pairs # price/score agreement

ECM 5000 310 42

NCM 5000 310 73

NRNCM 5000 310 70

3.5 Conclusion

In this chapter we propose a semi-supervised method for building a comprehensive

real estate concept collection using a corpus of property descriptions from MLS. We pro-

pose an effective unsupervised method to annotate property descriptions and extract real

estate concepts. We use the extracted exact and approximate concepts goodness scores to

compute a score for property description. The calculated score is used to rank the property

descriptions. We use both human judgements and a data-driven approach to evaluate our

algorithms. Our results indicate that the ranking by NCM algorithm (weighted aggregation

of exact and approximate concepts) is the most effective method, which has the highest

rank correlation of 0.76 with human judgements.

71



Chapter 4

Finding Similar Documents using

Keyword-Based Search Interfaces

Web search tools commonly provide keyword-based query interfaces to allow user

search for documents in enormous Web collections. However, they are limited by design to

expect a limited number of keyword query and do not let the user input a set of documents

to look for more similar documents. Selecting effective keyword queries that mostly find

documents that are similar to input documents is crucial because users don’t have direct

access to the underlying collection and issuing search queries through interfaces is costly

and rate-limited. Here, we propose a solution to detect query keywords that are effective in

finding documents similar to the set of input documents by taking into account the collection

statistics. Our experiments show that our proposed solution outperforms the state of the

art and baseline methods in finding effective keyword queries.
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4.1 Introduction

A common problem in Information Retrieval is that a user wants to retrieve doc-

uments similar to a given set of relevant documents. For example, a patent attorney may

have a few documents provided by a client describing an invention and would like to search

for patents similar to these input documents. Similarly, a scientist may search for related

work in an area and may have access to a few documents related to this area. A Web user

may also have found a set of documents related to a topic, e.g., related to the topic of

academic scandals, and may be looking for more similar documents on the Web.

Although there are powerful keyword search interfaces on top of various collections

– LexixNexis for patent search [3], Google Search API for the Web [1], etc. – a common

limitation they have is that they do not allow the user to input a set of documents (one

or thousands), but expect a relatively small number of terms as a query. Further, these

interfaces typically charge a fee for every page of query results. For example, the LexisNexis

Statistical Gateway charges $0.30-$0.40 per query, and Google Enterprise charges $100

for 20,000 queries, where each query returns one page of results. Note that a common

property in all these collections is that the user may not have access to the underlying

collection through any way other than through the provided search APIs. Hence, to use

these interfaces, one has to extract sets of important terms from the input documents, to

formulate queries. These queries should ideally return many similar documents in high-rank

positions of the results.

Given that a collection is only accessible through a search interface, this work

proposes effective techniques to generate queries from a set of input documents, which return
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similar documents to the input documents in high positions. We refer to this problem as

Docs2Queries.

The Docs2Queries problem has received limited attention by the community [106,

124]. The state-of-art works focus on extracting good terms from the input documents, given

a basic understanding of the ranking formula, which is generally tf-idf (term frequency and

inverse document frequency) based. Specifically, they select terms with high tf-idf score.

This is a reasonable heuristic, but its drawback is that it ignores the language model of the

collection and limits the heuristics to use only information from the input documents.

We propose a more principled approach to select the best queries, which also

considers the language model of the collection (specifically, an estimation of it, as the full

collection is not available to us). Our key hypothesis is that the best queries to return

the input documents in high-rank positions will also return other similar documents in

high-rank positions. That is, we focus on how to compute queries that will return our

given input documents in high positions. Our experimental results confirm the validity of

our hypothesis, and also the superiority of our method compared to the state-of-the-art

methods. Specifically, our approach outperforms the state-of-the-art by up to 40%.

More specifically, we follow a probabilistic approach, where for each candidate

query, we compute the probabilistic distribution of positions of the input documents and

pick the queries where the expected average position of the input documents is minimized.

Our approach does not require exact knowledge of the ranking formula used by the search

API, but assumes that tf-idf is a key factor, as does previous work [124]. Note that most
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popular IR ranking formulas – vector space cosine similarity, language model, probabilistic

model – include a significant tf-idf factor [34].

A key challenge is the huge search space of candidate queries. Another challenge

is that the collection is not available to us (except via the search API), and hence we do

not have accurate statistics to allow us to compute the positions’ probability distributions.

For that, we employ various sampling techniques. Another challenge is to account for the

overlap between selected queries, so they do not return many common documents, given

that each page of results has an access cost.

Figure 4.1: System architecture: Docs2Queries module finds queries that return documents
similar to the input documents in top positions.

Our contribution in this study are as follows:

• Propose a principled solution to the Docs2Queries problem of extracting the best

queries given a set of input documents (Section 4.3 and Section 4.4).

• Use two different collection sampling methods to estimate the collection statistics

(Section 4.5).

• Confirming our hypothesis by comparing our proposed algorithms with baseline and

state of the art approaches (Section 4.5).
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4.2 Related Work

In this project, the goal is to detect queries that are effective in finding similar

documents to an input set of example documents using a keyword-based search interface.

Here, we describe the related work on query refinement and finding similar documents.

Relevance feedback (RF): RF is a commonly used feature in information retrieval sys-

tems that uses user’s interaction with the system to refine the query for improving the

search results [99]. RF methods are mostly based on Rocchio’s algorithm [99, 27]. In Roc-

chio’s approach, documents and query are represented in a vector space. Every time user

feedback is available, the query is refined by adding the relevant documents with a positive

weight and the non-relevant documents with a negative weight.

RF is the closest line of work to our problem; however, the assumption of having the

iterative improvement does not apply here because, in our case, there is only a predefined

set of documents as relevant examples and users are not generating further feedback on

returned results.

Key-phrase extraction: Extracting key phrases from a document is a well-studied prob-

lem. These key-phrases could be suited to tasks like relevance filtering or browsing in

retrieval [76]. Supervised approaches find key-phrases by training machine learning mod-

els for identifying key-phrases, using training documents where the key-phrases are known

[121, 111, 64]. In [46], authors use dynamic query modeling to find related content based

on a textual stream.

On the other hand, unsupervised methods rely on statistical information to select

key-phrases [87]. A basic approach that comes to mind is to rank terms or n-grams in
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the input document by frequency or tf-idf score [127, 76]. Another unsupervised approach

suggested in [79] involves clustering the candidate key-phrases in a document into topics,

such that each topic is composed of all and only those candidate key-phrases that are related

to that topic. In [124], authors select key-phrases by identifying noun-phrases using part of

speech tagging. Most of the key-phrase generation methods, order the key-phrases based

on a form of tf-idf score.

Search by document: Search for similar documents given an input document is a directly

relevant research area to our work [106, 124]. Yang et al. in [124] proposed Query by

Document (QBD) addressing the problem of cross-referencing on-line information in the

context of blogs. They select noun phrases from an input document to use as keyword

queries to search for pages similar to that document. In [36], Dasdan et al. propose an

approach to the covering test problem where the goal is to find out if there is a near-duplicate

of a certain document in a corpus of documents that is accessible using a rate-limited

keyword query interface.

In both cases, the generated queries are merely based on the input document and

not taking into account much of the collection statistics that matter in ranking function

while computing the score of the candidate queries. Further, they rely on query generation

methods to select the candidate queries.

Vidhya et al. proposed a personalized query formulation method based on identi-

fying key phrases from an input document [53]. The key-phrases are used to query a search

engine and the results are evaluated for similarity to the original document. They find the
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key-phrases by taking the co-occurrences within the input document. They use Jaccard

similarity to measure the similarity of the retrieved document to the input document.

Document similarity functions In Document Filtering, several methods to define the

similarly of a document to a user’s profile (defined as a set of documents) have been pro-

posed. One of them, which we also use in our experiments, is the KL divergence [33, 32].

4.3 Definitions

We begin by defining the key data types in our problem definition and proposed

algorithms.

Let C be the collection of documents that are indexed by a search engine. We

consider search engines that provide a keyword-based query interface to the users for ac-

cessing the documents in the indexed collection. The keyword-based query interface is the

user interface to the Web collection that inputs a set of keywords and outputs a ranked list

of documents. .

A keyword query Q = {q1, q2, .., qn} is a set of n uni-grams. As we mentioned

earlier, we study the problem of finding keyword queries from a set of input documents

provided by the users. Let define R = {d1, d2, ..., dk} as a set of k example input documents

to extract keyword queries that will result in retrieving similar documents.

Search engine providers do not reveal the exact ranking function of their system as

it is an asset of the business; however, it is fair to assume the text-based relevance ranking

is a function of commonly used ”term frequency inverse document frequency” (tf-idf) score.
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As a result, we explain our proposed solution by assuming the score of document d given

keyword query Q is computed as follows:

score(d,Q) =
∑
q∈Q

tf(d, q)× idf(q) (4.1)

where tf(d, q) is the term frequency of keyword q in document d and idf(q) is the

inverse document frequency of q.

Similar documents problem: Given a set of input documents, a search interface,

number T of search results per query, number m of queries and maximum query length n,

find as many similar documents to input documents as possible.

Note that T and m represent the budget of our problem. For example, one need

to $100 for 20,000 queries in Google enterprise search [1].

Our hypothesis is that queries that will return the input documents in high-rank

positions, also return similar documents. Next, we define the problem of Docs2Queries with

regard to our hypothesis.

Minimum position problem: Given R, the set of example input documents find Q, a

query with up to n keywords such that the average rank position of input documents given

Q is minimized. Formally, we define this objective function as follows:

Q = arg min
Q

1

|R|
∑
d∈R

position(d,Q) (4.2)
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We extend the definition to consider finding O = {Q1, Q2, · · · , Qm}, a set of m

queries, for which the average minimum position of the input documents across all queries

is minimized. Formally, we define:

O = arg min
O

1

|R|
∑
d∈R

min
Q∈O

(position(d,Q)) (4.3)

There are different ways to find document similarity. In our experiments, we use

KL divergence that has been used for document filtering [32]. Our approach is not limited

to this distance metric and we expect that it still work with other document similarity

metrics.

Our theoretical model solves the minimum position problem and our experiments

support our hypothesis that it also works for similar document problem.

4.4 Algorithms

In this section, we explain our approach to solve the problem of finding search

queries to retrieve similar documents. First, we show how to solve the problem for finding

the best single query with a single keyword based on Equation 4.2. Then, we extend

our solution to finding the best single query with multiple keywords. Finally, we explain

our approach for the solution case with multiple queries including multiple keywords with

respect to Equation 4.3. As mentioned earlier, we assume that search engine’s score function

for document d with respect to Query Q is computed using Equation 4.1. Thus, the rank
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position of d within the collection given Q is defined as follows:

position(d,Q) = probability(XQ > score(d,Q))× |C| (4.4)

Where XQ is the score of a random document in the collection with respect to Q. Next, we

will explain how to solve the problem starting by the easiest case paving the road to solving

the general form of the problem definition in Equation 4.3.

4.4.1 Single-keyword query

We start by describing our solution for the simplest case where the goal is to find

the best query Q = {q} with a single keyword. Given this condition, the following stands:

probability(XQ > score(d,Q))

= probability(Yq > tf(d, q))

= 1−
∑

k<score(d,q)

probability(Yq = k)

(4.5)

Where Yq is the term frequency of keyword q for a random document in collection. This

equation reduces the computation of document score probability to term frequency proba-

bility. Thus, the position of document is defined as follows:

position(d, q) =
∑

k>score(d,q)

pq(X = k)× |C| (4.6)

If the access to corpus or a representative sample of the corpus is possible, term

frequency probabilities can be obtained from the data. However, in absence of complete
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data-driven term probability distribution, according to Theobald et al. [109], Poisson prob-

ability distribution is an appropriate estimator of the term frequency distribution within

the corpus. As a result, the only parameter necessary to compute the term frequency prob-

ability is the average term frequency. According to this assumption, the term frequency

distribution is defined as follows:

probability(Xq = k) = e−λq
λkq
k!

(4.7)

Where λq is Poisson parameter and represents the average term frequency of key-

word q in the collection.

We can now define the objective function to find a single-keyword query based on

term frequency distribution as follows:

q = arg min
q

∑
d∈R

∑
k>score(d,q)

probability(Yq = k) (4.8)

where the term frequency probability can be computed using data distribution

information or based on Poisson distribution in Equation 4.7. In practice, only up to top T

documents are return for every query. By incorporating a threshold T that is defined as the

maximum returned documents for a query, we alter the objective function in Equation 4.8

as follows:
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q = arg min
q

∑
d∈R

Minimum{T + 1

|C|
,

∑
k>score(d,q)

probability(Xq = k)} (4.9)

In other words, we treat all the documents that are ranked lower than position T equally

and place them in T + 1th position in the ranking.

In practice, to avoid having to evaluate Equation 4.9 for all terms in the input

documents R, we only consider the l terms with the highest tfi-df score for concatenated

input documents, where tf is computed in R and idf in the whole collection C. In the

experiments, we set l = 100, and found that the same query is selected as when all terms

are considered.

4.4.2 Multi-Keyword Query

In order to compute the position of a document given a query with multiple key-

words, we assume that term occurrences are independent within a document. By making

independence assumption, we define the objective function to find the best query as follows:

Q = arg min
Q

∑
d∈R

probability(XQ > score(d,Q))

Where we assume,

probability(XQ > score(d,Q)) ≈
∑

k1,...,kn|
n∑

i=1
ki×idf(qi)>score(d,Q)

n∏
i=1

probability(Yqi = ki)

(4.10)
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The exact solution to this equation is computed by considering all keyword com-

binations to form queries of size n from the keywords that are within vocabulary of input

documents. However, for practical purposes, we relax the problem in Equation 4.10 by

limiting the query space only consider keywords with top tf-idf score in input documents.

In addition, we only consider frequencies up to a constant z in frequency combination space.

As a result, Equation 4.10 with regard to constant z changes as follows:

probability(XQ > score(d,Q)) ≈
∑

k1,...,kn|
n∑

i=1
ki×idf(qi)>score(d,Q),ki<z

n∏
i=1

probability(Yqi = ki)

(4.11)

The time complexity is affected by the time to search in the query space with

O(ln), and to compute score probabilities with O(zm). In our experiments, we set z = 5 and

l = 100, and found that the outcome is not that affected given the significant computational

cost decrease comparing to using larger values for the parameters. Note that, so far we

explained how to find a query with n keywords. We will repeat the computation for queries

with one keyword up to n and select the best query among them.

4.4.3 Multiple Multi-Keyword Queries

Finally, to find m queries with up to n keywords, to be practical, we propose the

following heuristic that finds m queries by partitioning the input documents into m clusters

by K-Nearest-Neighbor (KNN) algorithm. Because the objective is to find queries that best

position input documents in high-rank positions, we call our algorithm Best Position (BP).
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In the next section, we define variants of our algorithms based on the way we compute the

term frequency distribution.

Best Position (BP) Algorithm:

Repeat the following steps m times:

1. Select a random document from input set.

2. Find the (|R|/m)− 1 closest documents to the selected document.

3. Find a query with up to n keywords for the selected (|R|/m) documents.

4. Remove the selected documents from the input set.

Note that we use the cosine similarity of the document vectors as the similarity

measure. Also, in our experiments, we use the tf-idf vector of the vocabulary words as

the continuous distributed document representation. We experimented the effectiveness of

several heuristics and found that the above method works best.

4.5 Evaluation Results

4.5.1 Experimental Settings

We use Lucene search engine with a tf-idf based scoring function as the search

engine with keyword query interface in our experiments. In this section, we describe the

experimental results comparing our solution that is based on best position (BP), with the

state of the art (QBD) and a baseline method.

Dataset: In our experiments, we use “TREC-9 Filtering Track” test collection that is

a set of 348,566 abstracts of references from MEDLINE, the on-line medical information
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database, consisting of titles and/or abstracts from 270 medical journals over a five-year

period (1987-1991). The available fields include title, abstract and few other fields [57]. As

the set of input documents, we use the filtering topics that are a subset of 63 of the original

query set developed by Hersh et al.xi for their IR experiments [57]. As a second dataset, we

use TREC-8, “Ad hoc Test Collections”. These collections include 1.6M English articles

from news media such as Wall Street Journal and Financial Times Limited. Table 4.1 shows

the details on dataset characteristics after filtering documents based on minimum length of

10 and terms with minimum document frequency of 10.

Table 4.1: Datasets characteristics.

TREC-9 TREC-8

#Documents 233444 1634243

Average Document Length 84 200

Vocabulary Size 38849 254102

#Query Sets 63 50

Average Size of Query Sets 30 237

Average Document Frequency 505 1287

Baseline techniques:

State of the art (QBD): QBD is the technique that is proposed by Yang et al. to

to automate the process of cross referencing on-line information content [124]. They first

extract noun-phrases (i.e. sequences of nouns and adjectives) from the input document as

the candidate queries using part of speech tagging tools. Then, they sort candidates based

on the following scoring function for phrase P given input document d as follows:

score(P, d) =
∑
t∈P

tf(d, t)× idf(t) + α ∗ coherence(P ) (4.12)
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Where coherence(P ) is defined as follows:

coherence(P ) =
tf(d, P )× (1 + logtf(d, P ))

1
|P | ×

∑
t∈P tf(d, t)

(4.13)

Authors propose another scoring function based on co-occurrence information of

the terms in a phrase; but we omit that method because it results in worse performance

than the one in Equation 4.12.

Baseline: In addition to QBD, the state of the art solution, we define the following

baseline to compare against our proposed solution for finding m queries with up to n

keywords:

1. Select top n ∗ m keywords with the highest sum of tf-idf in concatenated relevant

documents

2. Order the keywords by the tf-idf score defined in step 1 and partition to m cluster of

keywords where each cluster is considered as one query.

BP-QBD: We also apply our Best Position (BP) score to noun phrases identified

by the part of speech tagging to compare against QBD. In experiments results, we refer to

this method as BP-QBD.

Estimating corpus statistics: All proposed algorithms and baselines require some statis-

tics from the collection for computing probability(Xq). We propose to estimate the term

frequency distribution either based on Poisson distribution (BP-P) or based on the distri-

bution that is driven from sample set (BP-D). Table 4.2 shows different statistics required

by each algorithm.
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Table 4.2: My caption

Inverse
Document Frequency
(idf)

Average
Term Frequency
(λq)

Term Frequency
Distribution
(probability(Xq))

TF-IDF x

QBD x

BP-QBD x x

BP-P x x

BP-D x x
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Figure 4.2: Query effectiveness wiith different number of queries for QBD vs. different
values of coherence parameter α based on (a) Average position, (b) Recall, and (c) KL-
based precision. idf is estimated with query-based sampling technique (S2).

We evaluate the effectiveness of different algorithms using two different ways of

estimating the corpus statistics.

Random sample of the collection (S1): The first approach is to assume that a

representative subset of the underlying collection is available. For instance, Wikipedia

dataset could be used as a sample of web collection indexed by general-purpose search

engines such as Google. In our experiments, we generate this subset, by randomly selecting

a set of samples documents from datasets that are used in our experiments.

Sampling by submitting keyword queries (S2): We follow the proposed approach

by Ipeirotis et al. to compute document frequencies corpus statistics using et al. work on
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estimating document frequency [62]. The sampling for collecting a set of documents is an

iterative process with the following steps:

Start by choosing a seed query keyword. While the number of sampled documents

is less than required (sample size is a parameter), do:

1. Select a random keyword from sampled documents vocabulary.

2. Issue a query using selected keyword to search interface and add the top 3 (system

parameter) documents to the sample set.

Figure 4.3 shows the correlation of document frequencies estimated by this method

with actual document frequency of the terms as well as the Relative error of estimations to

the actual values. As the size of sample set increases, we cover more words from the vocab-

ulary of the collection but at the same time, the error increases because of increase in the

number of terms with low document frequency. However, as it is shown in Figure 4.3(a),

the rank correlation of terms ordered by document frequency increases. In other words,

the accuracy of the relative order of document frequency estimation increases. We further

extend this method and compute term frequency distributions by considering sample dis-

tribution scaled by estimated collection size divided by sample size. We assume the corpus

size is equal to the largest estimated document frequency.

Note that S2 is a more practical way to sample the collection because it does not

need to have access to the underlying collection.

Evaluation metrics: For each input set, we use half of the documents for finding queries

and the other half for testing the effectiveness of the queries. We measure the effectiveness
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Figure 4.3: Evaluating document frequency estimation for sampling TREC-9 dataset by
querying search interface (S2) [62]

Table 4.3: Parameters

Parameter Value

Maximum number of keywords (n) 2

Number of top retrieved document threshold (T ) 1000

Maximum term frequency threshold (z) 5

Number of pruned vocabulary terms (l) 100

Hybrid method threshold (d) 3

of the queries selected by different solutions based on three different metrics:1) Average

position of test input documents, 2) Recall of the test input documents, and 3) Precision of

the returned top documents based on KL distance of the documents with the concatenated

test input documents. More precisely, we consider a retrieved document as similar to

input documents, if the KL distance is less than a threshold, kl ths. Where kl ths is

the average KL divergence of every input document from the aggregation of the rest of

relevant documents and computed as shown in Equation 4.14. KL function computes the

KL divergence of the two input documents.

kl ths = mean(KL(r, concat(R− r))) , for r ∈ R (4.14)
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4.5.2 Experimental Results:

In this section, We compare the effectiveness of the queries selected by each

method. First, we evaluate the effectiveness versus the number of queries. The constant

factors for this experiment are set as shown in Table 4.3.
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Figure 4.4: TREC-9 dataset; Query effectiveness vs. number of queries based on (a) Average
position, (b) Recall, and (c) KL-based precision. Collection statistics of this experiment are
based on random sampling of the documents in collection (S1).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1  2  3  4

A
v
e

ra
g

e
 p

o
s
it
io

n

#queries

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4

In
p

u
t 

re
c
a

ll

#queries

(b) 

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3  4

K
L

−
b

a
s
e

d
 p

re
c
is

s
io

n

#queries

(c)

TF−IDF QBD BP−QBD BP−P BP−D

Figure 4.5: TREC-9 dataset; Query effectiveness vs. number of queries based on (a) Average
position, (b) Recall, and (c) KL-based precision. Collection statistics of this experiment are
based on sampling the collection by submitting queries through search interface (S2).
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Figure 4.6: TREC-8 dataset; Query effectiveness vs. number of queries based on (a) Average
position, (b) Recall, and (c) KL-based precision. Collection statistics of this experiment are
based on random sampling of the documents in collection (S1).
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Figure 4.7: TREC-8 dataset; Query effectiveness vs. number of queries based on (a) Average
position, (b) Recall, and (c) KL-based precision. Collection statistics of this experiment are
based on sampling the collection by submitting queries through search interface (S2).

We first evaluate different values of parameter α in Equation 4.12 to obtain the

best value to use as the coherence factor in QBD method. Figure 4.2 shows that the best

result is achieved by setting α to less than or equal 1. Based on this observation, for the

rest of the experiments in this section, we use α = 1.

Figures 4.4 and 4.5 show the effectiveness results on TREC-9 dataset. Figure 4.4

shows that our method, BP-D, that finds best queries with respect to minimizing rank
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positions has the best performance among different methods. More precisely, we observe

that average rank positions decreases by 49% using QBD relative to the tf-idf baseline and

decreases by 68% using BP-D. Our experiments show that with random sampling technique,

the effectiveness of QBD and BP-QBD are comparable as well as the effectiveness of BP-D

and BP-P. The methods with lower average precision have a higher recall for test input

documents. In terms of KL-based recall, we observe that BP-D has the highest recall. BP-

P is the second best and unlike the recall, it has a lower recall than BP-D. Also, although

BP-QBD has a higher recall of input test documents than QBD, it has a lower kl-based

recall.

In Figure 4.5, we repeat the same experiments with S2 sampling technique. The

experiment’s outcome for almost all methods does not show a noticeable change except for

BP-P. The effectiveness of BP-P becomes worse due to a much less accurate estimation of

the average term frequency. In S2, sampling by submitting queries to search interface, the

main goal is to have accurate estimations of document frequency and it is not necessarily a

good estimator for average term frequencies. All in all, in TREC-9 that is a domain-specific

collection, S2 sampling leads to overall more accurate results for BP-D than S1.

In Figures 4.6 and 4.7 we show our evaluation results using TREC-8 dataset.

TREC-8 is a more general dataset comparing to TREC-9 and includes articles in a veriety

of domains. Our experiments in Figure 4.6 show that BP-D is still the most effective

method; However, on average, the effectiveness comparing to the state of the art is 6%

higher using S1 and 12% higher using S2. In addition, the recall of similar test documents

as well as kl-based recall of similar documents is higher using S2 in TREC-8.
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4.6 Conclusion

We explored the problem of Docs2Queries and proposed a principled way to extract

best queries for the input documents. Our proposed solution is based on the collection’s

language model. In our experiments, we considered two different simple ways of sampling

the collection to estimate the language model. Our experimental results based on TREC-

9 and TREC-8 datasets show that our BP-D solution comparing to the state of the art

excels in effectiveness by being on average 40% and 10% more successful in positioning

similar documents, respectively. We showed that the best results are achieved with BP-D

using sampling by submitting queries to search interface that is a more practical sampling

approach.
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Chapter 5

Content analysis on Anonymous

Social Networks

Yik Yak is a location-based social media platform that lets users post and read

messages anonymously. In view of recurring reports of harassment and abuse among college

undergraduates, we conducted an exploratory study of Yik Yak messages from 19 univer-

sities across four U.S. states. We found that prosocial messages were about five times as

frequent as bullying messages. Significant geographic variation in the relative frequency of

messages offering support and bullying messages included a potentially problematic pat-

tern of increased bullying paired with low levels of social support at Texas universities.

Relationships/sex was the most frequently discussed topic and school/classes was the least

popular topic among college students. A correlation analysis revealed that at schools where

students sought help more often in their Yik Yak messages, messages offering support were

also more frequent. Two findings illuminate the social-contextual conditions of cyberbul-
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lying. First, the frequency of bullying messages was positively related to the popularity of

messages seeking help. Second, more bullying occurred on campuses where students were

more likely to discuss politics.

5.1 Introduction

College attendance marks an important period of psychosocial development with

significant implications for a healthy and productive adulthood. The academic and social

demands of college life are often strenuous and pose a risk to students health and well-being.

One problem among college freshman, for example, is poor sleep [113] which has been linked

to a number of adverse consequences in this population, including higher rates of depres-

sive symptoms and stress [120, 50], weight gain [98], and poor academic performance [35].

Another relatively recent problem among college students, due to technologies like social

media, is cyberbullying, which can lead to depression and suicide.

In light of the various health-related risks associated with college attendance, it

is important to monitor student health in order to provide adequate services and support.

Traditionally, methods for monitoring students health have focused on case reports and

surveys.While these methods can offer detailed insights into health-related attitudes and

behaviors, their application tends to be time and cost intensive. Ideally, one would have the

capacity to collect and analyze health-relevant data continuously and in real time so as to

address student health needs in a flexible and timely manner. Researchers have therefore

explored the feasibility of using social media platforms to identify and predict health-related

events. In one study, for example, Young, Rivers, and Lewis screened geolocated Twitter
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messages for keywords that suggest HIV-risk related behaviors and found a significant re-

lationship between the frequency of use of these keywords and HIV prevalence at the level

of U.S. counties [125]. De Choudhury, Gamon, Counts, and Horvitz were able to predict

the onset of major depressive disorder with 70% accuracy on the basis of peoples Twitter

messages, relying on indicators such as linguistic style, use of depression terms, and social-

network characteristics [37]. Because of the prevalent use of social media among college

students, these technologies might be used to monitor student health and well-being.

Yik Yak is a relatively recent addition to the social media world that quickly grew

in popularity among U.S. college students after its inception in 2013. It functions as an

online bulletin board on which users within the same geographic area (e.g., a college cam-

pus) can post and read messages anonymously. Critics of the social network argueaided by

anecdotal evidence relayed through media reportsthat anonymous posting encourages ha-

rassment and bullying [63, 7, 8, 117]. In a recent content analysis of Yik Yak conversations,

Black, Mezzina, and Thompson did not find evidence for a pervasive culture of harassment

and abuse, but they did observe derogatory and incendiary comments, arguably racist and

sexist messages, and several likely instance of bullying [19].

Based on these findings, we carried out an exploratory study of posts on the Yik

Yak social network. Our goal was to help provide insights for school administrators and

public health researchers on the prevalence and popularity of messaging behaviors such as

bullying and social support, and of topics discussed on the network. Knowledge of these

activities on Yik Yak can then be used to improve student well-being, for example, by

guiding interventions that promote healthy and prosocial behaviors.
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Table 5.1: Characteristics of Universities Included in the Study

State University Public/Private Enrollment Ranking

CA

California Polytechnic State University
CSU Chico
CSU Los Angeles
CSU San Bernardino
University of California Irvine

Public
Public
Public
Public
Public

19,226
16,535
20,353
17,167
25,001

221
467
700
700
153

FL

Florida International University
Florida State University
University of Central Florida
University of Florida
University of South Florida

Public
Public
Public
Public
Public

53,525
36,575
59,894
36,731
35,035

550
226
445
56
396

NY

Cornell University
CUNY Hunter College
CUNY John Jay College of Criminal Justice
SUNY Buffalo State
SUNY New Paltz

Private
Public
Public
Public
Public

14,706
20,582
15,845
10,665
7,756

9
350
700
700
423

TX

Tarleton State University
Texas Tech University
University of Houston
University of Texas Rio Grande Valley

Public
Public
Public
Public

11,008
29,342
36,128
27,5601

800
550
388

Note. Source of enrollment and ranking data: Wall Street Journal/Times Higher Education College

Rankings 2017. CA = California; FL = Florida; NY = New York; TX = Texas; CSU = California
State University; SUNY = State University of New York; CUNY = City University of New York.

5.2 Methods

From April 6th, 2016 to May 7th, 2016, we collected anonymous conversations

posted on the Yik Yak social network at 19 universities located in California, Florida, New

York, and Texas (Table 5.1). We randomly selected 100 conversation threads from each

of the 19 universities, for a total of of 16,966 messages, with a mean of 893 messages per

university (SD = 128). We analyzed the messages with respect to the type of messaging

behavior, message content, and popularity of message type and content.
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5.2.1 Messaging Behaviors

For each Yik Yak message we determined whether it displayed, if any, one of four

predefined behaviorsseeking help, offering support, being funny, and bullying. These pre-

defined behaviors were decided based on the literature on bullying on Yik Yak, as well as

topics that were decided to be relevant to undergraduates from a team of 3 undergradu-

ate students. Initially, 90 randomly selected messages were coded independently by two

undergraduate raters.

5.2.2 Message Topics

For the analysis of message content, we applied latent Dirichlet allocation (LDA)

to the message corpus in order to identify themes that were discussed on Yik Yak [20].

LDA is a topic modeling algorithm that models the messages as a mixture of underlying

topics. Each topic, in turn, is probabilistically associated with various words. Since a topic

is defined purely in statistical terms, its semantic interpretationthat is, its labelis chosen by

the user on the basis of the word probabilities for the topic.

Next, we sought to identify those topics for which the LDA message classifications

aligned most closely with human judgment. This was done on the basis of a subset of 1200

randomly selected messages to which the LDA assigned a topic with a probability greater

than 7. For each of these messages, a team of three raters decided whether or not the LDA

topic assignment was correct (i.e., does the message discuss Topic X?). Based on these re-

sults, we selected the four topics with the highest classification accuraciesrelationships/sex,

college living, politics, and school/classes.
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In the final step, two undergraduate raters independently applied the four-topic

classification scheme to 90 randomly selected messages. We found that their inter-rater

agreement was high (Cohens kappa = .78), so all remaining messages were coded by either

one of the two raters.

5.2.3 Message Popularity

The popularity of a message was determined by the aggregate score of +1 votes

(upvotes) and -1 votes (downvotes) the message had received from Yik Yak users up to the

time of data collection. Of note, if a message on Yik Yak reaches a sum score of -5, it is

automatically deleted from the social network. Thus, the lowest possible popularity score

for a message in our data set was -4.

5.3 Results

In all statistical analyses the significance criterion was α = .05.

5.3.1 Frequency of Messaging Behaviors

Our first set of analyses concerns the relative frequency of four messaging behav-

iors seeking help, offering support, bullying, and humor. We included messages that were

uniquely classified as one of the four messaging behaviors and messages that did not fall

into any of the categories. 51 messages (0.3%) did not meet these criteria and were not

analyzed further.
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Overall, 12% of messages were assigned to one of the four message categories.

Specifically, the percentages of messages with which Yik Yak users sought help, offered

support, intended to be funny, or bullied were 1.8, 5.2, 3.1, and 1.9, respectively. We then

asked whether this pattern of usage varied across the U.S. Table 5.2 (top) breaks down

the relative frequency of message types by state. Separate Fishers exact tests for each

messaging behavior showed that there were significant differences between states in the

relative frequency of messages offering support, p < .001, and of bullying messages, p<

.001, but we found no geographic differences for messages seeking help, p = .2, or for funny

messages, p = .4.

The relative frequency of supporting messages ranged from 2.5% in Texas to 8.1%

in Florida. Multiple pairwise comparisons between states using Bonferroni-corrected Fishers

exact test showed significant differences for every possible combination of states, all ps < .05.

In a comparable analysis of bullying messages, we found that the two states with the lowest

rates of bullying, California and Florida, differed significantly from the states with the

highest rates, New York and Texas, all ps < .05, but there was no difference between

California and Florida, p = 1.0, or between New York and Texas, p = 1.0.

5.3.2 Frequency of Topics

To assess the relative frequency of topics discussed on Yik Yak, we used messages

that raters uniquely assigned to one or to none of four LDA-derived topics (relationships/sex,

college living, politics, school/classes). This led to the exclusion of 117 messages (0.7%)

from the frequency analysis. 26% of the remaining messages dealt with either relationships
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and sex (14.9%), college living (3.8%), politics (3.6%), or school and classes (4.0%). In

Table 5.2 (bottom), these numbers are broken down further by state.

By conducting separate Fishers exact tests, we found significant regional differ-

ences for each topic. We followed up on these significant effects with Bonferroni-corrected

Fishers exact tests for all pairwise comparison between states for each topic. Relationship

messages were less frequent in New York, the state with the lowest rate, than in California,

p < .001, and Texas, p = .048. For messages about college living, significant differences

emerged between all states (all ps < .05), except for California and Texas, the two states

with the highest prevalence of this topic (p = 1.0). Yik Yak users in the four states also

messaged about politics more or less frequently, all ps < .001, with the exception of Cali-

fornia and Florida, the two states with intermediate levels of political messaging (p = 1.0).

Finally, school and classes were talked about with different frequencies in the four states

(all ps < .05), save for California and Texas, where this topic garnered the most interest.

5.3.3 Popularity of Messaging Behaviors

In this and the following section we report findings on the popularity of the differ-

ent messaging behaviors and topics, based on the aggregate of +1 votes (upvotes) and -1

votes (downvotes) each message elicited from Yik Yak users. We refer to this total as the

popularity score of a message. In order to protect our analyses from an undue influence of a

few massively popular messages, we flagged messages with a score greater than three stan-

dard deviations above the grand mean. 305 messages (1.8%) were identified as popularity

outliers and excluded from further analysis.
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Table 5.3 (top) displays the mean popularity scores for the four messaging behav-

iors at the state level. We submitted the individual message scores to a State (CA, FL,

NY, TX) x Behavior (seeking help, offering support, bullying, humor) analysis of variance

(ANOVA). Both main effects were significant, F (3, 1940) = 5.11, MSE = 4.1, p = .002,

for State, and F (3, 1940) = 25.19, MSE = 4.1, p < .001, for Behavior. The interaction

between the two factors was not significant, F (9, 1940) = 1.16, MSE = 4.1, p = .319.

In order to determine which states exhibit significantly different mean popularity

scores, we used Tukeys range test as a single-step multiple comparison procedure. This

analysis revealed that, on average, Yik Yak messages received lower popularity scores in

Texas than in Florida and New York, both ps < .05. Following up on the significant

main effect of Behavior, Tukeys test showed that bullying messages were the least popular,

differing significantly from messages seeking help, offering support, and funny messages, all

ps < .01. By contrast, funny messages were liked the most. Their popularity score was

significantly greater than the scores for messages seeking help, offering support, and for

bullying messages, all ps < .001.

5.3.4 Popularity of Topics

Table 5.3 (bottom) summarizes the mean popularity scores of messages that dis-

cussed one of the four topics identified through LDArelationships and sex, college living,

politics, and school and classes. A State (CA, FL, NY, TX) x Topic ANOVA revealed main

effects of State, F (3, 4293) = 11.23, MSE = 4.9, p < .001, and of Topic, F (3, 4293) = 6.03,
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Table 5.2: Frequency of messaging behaviors and topics by State

MSE = 4.9, p < .001, and a significant State-by-Topic interaction, F (9, 4293) = 2.95,

MSE = 4.9, p = .002. We carried out Tukeys test to further investigate the significant main

effects. For the effect of State, we found that Texas, the state with the lowest popularity

scores overall, differed significantly from California, Florida, and New York, all ps < .05.

Regarding the popularity of topics, school and classes was a significantly less popular topic

than relationships and sex, college living, and politics, all ps < .01.

The significant State-by-Topic interaction indicates that states differ with respect

to the relative popularity of topics. In order to identify patterns of topic popularity within

each state, we carried ANOVAs with Topic as the single factor, separately for each state.

These ANOVAs yielded a significant effect of Topic for California, F (3, 1231) = 5.36,
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Table 5.3: Popularity of messaging behaviors and topics by State based on aggregation of
up/down votes.

Table 5.4: Inter-correlations at the school level for messaging behavior frequencies, popu-
larity of messaging behaviors, topic frequencies and school characteristics.
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MSE = 5.39, p = .001, and Texas, F (3, 928) = 5.84, MSE = 3.17, p < .001, but not

for Florida, F (3, 985) = 2.41, MSE = 4.91, p = .066, or for New York, F (3, 1149) = 2.34,

MSE = 5.7, p = .072. We followed up on the significant effects for California and Texas

with Tukeys test. In California, school and classes were a less popular topic than relation-

ships and sex, p < .001. In Texas, users liked messages about school and classes less than

messages about relationships and politics, both ps < .01.

5.3.5 Interplay between Messaging Behaviors, Popularity of Behaviors,

Topics, and School Variables

In this section we examine the relationship between the frequency of prosocial

messages in which users seek help or offer support, the frequency of bullying messages, the

popularity of these messaging behaviors, and the frequency of topics. The analysis was

carried out at the school level. For each university we calculated mean messaging behavior

frequencies, the corresponding mean popularity scores, and mean topic frequencies. The

intercorrelations of these variables, together with two additional school variablesnumber

of students enrolled and ranking (”Wall Street Journal/Times Higher Education College

Rankings 2017,” 2016) are summarized in Table 5.4.

We found that schools with a greater frequency of help-seeking messages also

exhibit a greater frequency of messages offering support. Messages offering support were

also sent more often on campuses where students post less about relationships and sex.

Moreover, messages offering support were more popular at higher-ranking schools and at

schools where students post more about classes. Two results concern the frequency of

bullying messages. First, the frequency of bullying messages on Yik Yak was positively
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related to the popularity of messages seeking help. Second, bullying occurred more often

on campuses where users post more about politics. Finally, we found that the frequency of

posts about classes was positively related to the popularity of messages that offered support

and to the frequency of posts about college living.

5.4 Discussion

Thanks to the growing popularity of social media across all segments of society,

researchers now have a plethora of data sources at their disposal from which they can derive

new insights about peoples attitudes, behaviors, and beliefs. The ability to observe social

media users in near real-time holds particular promise in the domain of public health where

rapid detection of health-relevant events and timely intervention are of essence. The aim of

the present study was to explore whether information pertaining to college students health

and well-being can be gleaned from their conversations on the anonymous Yik Yak social

network. To this end, we analyzed the frequency and popularity of prosocial messages

(seeking help, offering support, being funny) and bullying messages as well as the frequency

and popularity of topics discussed online.

In our data set, prosocial messages were more frequent than bullying messages

(10.1% vs. 1.9%). We observed significant regional differences in the frequency of messages

offering support and of bullying messages. Most notable, Yik Yak users at Texas colleges

sent the fewest supporting messages and the most bullying messages. This finding needs

to be interpreted with caution in light of the relatively small number of messages and

universities in our study. Nevertheless, it highlights a potentially problematic pattern of
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social media use among college students that future research may link to adverse health

outcomes. Unsurprisingly, bullying messages were the least popular and funny messages

the most popular among Yik Yak users, independently of what state they lived in.

In order to identify topics of Yik Yak messages, we relied on statistical model-

ing as an alternative to the subjective classification scheme recently used by Black and

colleagues [19]. A subsequent analysis of topic prevalence revealed that relationships/sex

was the most frequently discussed topic among college students. School and classes turned

out to be the least popular topic, as measured by the number of up- and downvotes mes-

sages of this kind received. From an intervention point of view, regional differences in topic

frequency and popularity matter because they offer campus representatives and health pro-

fessionals clues on how to best engage a student population both online and offline. While

the relative popularity of topics was similar across states, we found greater regional varia-

tion in the relative frequency of topics. For example, 7.5% of Yik Yak messages in the state

of New York dealt with politics, but only 1% in Texas, and college living was addressed in

5% of messages in California, but in only 1.8% of messages in Florida.

With our final correlational analysis we wanted to learn more about factors that

promote prosocial online behaviors and prevent cyberbullying at U.S. colleges. Several find-

ings are noteworthy. At schools where students sought help more often in Yik Yak messages,

messages offering support were also more frequent. Students may offer support in response

to requests for help, but the reverse relationship is also conceivable: At schools where sup-

port is offered frequently, students may feel encouraged to ask for help. A higher prevalence

of supporting messages also appears to be a characteristic of higher-ranking universities.
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Why messages of support were sent more often at schools where relationships and sex were

discussed less frequently is difficult to interpret and requires further investigation. It is

also not clear why the popularity of messages offering support was positively related to the

frequency of the school/classes topic.

Two results speak directly to the frequency of cyberbullying on college campuses.

First, bullying was positively related to the popularity of messages seeking help. One inter-

pretation for this finding is that students react prosocially to a higher prevalence of bullying

by encouraging help-seeking behavior, although they did not appear to actually offer more

support (the correlation between the frequency of supporting and bullying messages was

negative and not significant). An alternative hypothesis is that certain prosocial messaging

behaviors can trigger cyberbullying. Second, there was a higher incidence of bullying at

schools where students discussed politics more frequently.

The major limitations of this study are to be seen in the small number of colleges

and universities and the modest number of Yik Yak messages per school. We therefore

caution against generalizing our findings until they can be replicated with larger samples.

Our main intentions with this study were to learn about students online behaviors and

interests from their posts on the Yik Yak social network, and, more specifically, to garner

initial insights into conditions affecting prosocial and antisocial uses of social media. We

believe that the findings reported here can be a stepping stone for further research.
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[72] Markus Krötzsch, Denny Vrandečić, and Max Völkel. Semantic mediawiki. In The
Semantic Web-ISWC 2006, pages 935–942. Springer, 2006.

[73] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, 118(1):15–68, 2000.

[74] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-
age system. ACM SIGOPS Operating Systems Review, 2010.

[75] Claudia Leacock and Martin Chodorow. Combining local context and wordnet simi-
larity for word sense identification. WordNet: An electronic lexical database, 1998.

[76] Jae-Woo Lee and Doo-Kwon Baik. A model for extracting keywords of document
using term frequency and distribution. In International Conference on Intelligent
Text Processing and Computational Linguistics, pages 437–440. Springer, 2004.

[77] Hugo Liu and Push Singh. Conceptneta practical commonsense reasoning tool-kit.
BT technology journal, 22(4):211–226, 2004.

[78] Xiaoyong Liu and W Bruce Croft. Cluster-based retrieval using language models. In
ACM SIGIR, 2004.

[79] Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun. Clustering to find exemplar
terms for keyphrase extraction. In Proceedings of the 2009 Conference on Empir-
ical Methods in Natural Language Processing: Volume 1-Volume 1, pages 257–266.
Association for Computational Linguistics, 2009.

[80] Sanjay Kumar Malik, Nupur Prakash, and SAM Rizvi. Semantic annotation frame-
work for intelligent information retrieval using kim architecture. International Journal
of Web & Semantic Technology (IJWest), 1(4):12–26, 2010.

[81] Diana Maynard. Multi-source and multilingual information extraction. Expert Update,
6(3):11–16, 2003.

[82] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable
and complementary products. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2015.

115



[83] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-
based recommendations on styles and substitutes. In Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 43–52. ACM, 2015.

[84] Genevieve B Melton, Simon Parsons, Frances P Morrison, Adam S Rothschild, Mari-
anthi Markatou, and George Hripcsak. Inter-patient distance metrics using snomed
ct defining relationships. Journal of biomedical informatics, 2006.

[85] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[86] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in contin-
uous space word representations. In HLT-NAACL, pages 746–751, 2013.

[87] Amit Kumar Mondal and Dipak Kumar Maji. Improved algorithms for keyword
extraction and headline generation from unstructured text. First Journal publication
from SIMPLE groups, CLEAR Journal, 2013.

[88] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake reviewer groups in
consumer reviews. In ACM WWW, 2012.

[89] Chaitra H Nagaraja, Lawrence D Brown, and Linda H Zhao. An autoregressive
approach to house price modeling. The Annals of Applied Statistics, pages 124–149,
2011.

[90] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and
trends in information retrieval, 2008.

[91] Catia Pesquita, Daniel Faria, Andre O Falcao, Phillip Lord, and Francisco M Couto.
Semantic similarity in biomedical ontologies. PLoS computational biology, 2009.

[92] W Pirie. Spearman rank correlation coefficient. Encyclopedia of statistical sciences,
1988.

[93] Ana-Maria Popescu and Orena Etzioni. Extracting product features and opinions
from reviews. In Natural language processing and text mining. Springer, 2007.

[94] Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan Ognyanoff,
and Miroslav Goranov. Kim–semantic annotation platform. In The Semantic Web-
ISWC 2003, pages 834–849. Springer, 2003.

[95] Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, and Angel
Kirilov. Kim-a semantic platform for information extraction and retrieval. Natural
language engineering, 10(3-4):375–392, 2004.

[96] Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and applica-
tion of a metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions
on, 1989.

116



[97] Philip Resnik. Using information content to evaluate semantic similarity in a taxon-
omy. arXiv preprint cmp-lg/9511007, 1995.

[98] Sharkey KM Reen E Bond TL Raffray T Carskadon MA. Roane BM, Seifer R. What
role does sleep play in weight gain in the first semester of university? In Behavioral
Sleep Medicine, 2014.

[99] Joseph John Rocchio. Relevance feedback in information retrieval. 1971.

[100] Sebastian Rudolph, Johanna Völker, and Pascal Hitzler. Supporting lexical ontology
learning by relational exploration. In Conceptual Structures: Knowledge Architectures
for Smart Applications, pages 488–491. Springer, 2007.

[101] Guergana K Savova, James J Masanz, Philip V Ogren, Jiaping Zheng, Sunghwan
Sohn, Karin C Kipper-Schuler, and Christopher G Chute. Mayo clinical text analysis
and knowledge extraction system (ctakes): architecture, component evaluation and
applications. Journal of the American Medical Informatics Association, 2010.
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