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Abstract

A Game Theoretical Approach to Communication Security

by

Assane Gueye

Doctor of Philosophy in Engineering–Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jean C. Walrand, Chair

The increased reliance on the Internet has made information and communication systems more
vulnerable to security attacks. Many recent incidents demonstrate this vulnerability, such as the
rapid propagation of sophisticated malwares, the fast growth of botnets, denial-of-service (DoS)
attacks against business and government websites, and attacks against the power grid system.

Experts must design and implement security solutions to defend against well organized and very
sophisticated adversaries such as malicious insiders, cybercriminals, cyberterrorists, industrial spies,
and, in some cases, nation-state intelligence agents.

Instead of designing a defense against a specific attack, Game Theory attempts to design a defense
against a sophisticated attacker who plans in anticipation of a complex defense. By including
this ‘second-guessing’ element into the design process, Game Theory has the potential of crafting
improved security mechanisms. In addition, Game Theory can model issues of trust, incentives,
and externalities that arise in security systems.

This thesis illustrates the potential usefulness of Game Theory in security. By modeling the
interactions between defenders and attackers as games in three types of common communication
scenarios, we predict the adversaries’ attacks, determine the set of assets that are most likely to be
attacked, and suggest defense strategies for the defenders.

The first example is a communication scenario where some components might be compromised.
Specifically, we consider Bob who is receiving information that might be corrupted by an attacker,
Trudy. We model the interaction between Trudy and Bob as a zero-sum game where Trudy chooses
whether and how to corrupt the data and Bob decides how much he should trust the received
information. By analyzing the Nash equilibrium of the game, we have determined when Bob should
trust the received information, and how Trudy should corrupt the data. We have also shown how
a challenge-response option for Bob can deter Trudy from corrupting the information.
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The second example is a scenario where an intelligent virus is attempting to infect a network
protected by an Intrusion Detection System (IDS). The IDS detects intrusions by analyzing the
volume of traffic going inside the network. We model the interaction of the intelligent virus and the
IDS as a zero-sum game where the IDS chooses the detection threshold, while the virus is trying
to choose its infection rate to maximize its ultimate spreading. Using a Markov chain model, we
compute the Nash equilibria of the game and analyze them. In general, a more aggressive virus is
more damaging but is also faster to detect. Hence, in its best attack, the intelligent virus chooses
an infection rate that balances between an aggressive attack that can be easily detected and a slow
attack that causes less damage. The best defense strategy against such a sophisticated virus is to
quarantine the traffic and analyze it prior to letting it go inside the network (in addition to setting
the optimal threshold).

The third example is a blocking security game. For this game, given a finite set of resources
E = {e1, . . . , em}, a defender needs to choose a feasible subset T ⊆ E of resources to perform a
mission critical task. The attacker, at the same time, tries to disrupt the task by choosing one
resource e ∈ E to attack. Each resource e ∈ E has a cost of attack µe. The defender loses some
value λT,e whenever the task is disrupted (i.e. the attacked resource e belongs to his subset T ).
This loss goes to the attacker. We analyze the game by using the combinatorial tools of blocking
pairs of matrices (hence the name blocking security game). We introduce the notion of critical
subset of resources and use this notion to define a vulnerability metric for the task. We find that,
in Nash equilibrium, the attacker always targets a critical set of resources and the defender chooses
a feasible subset that minimally intersects that critical subset. We illustrate the model with two
examples of communication scenarios that consider design of network topology in the presence of
a strategic adversary. The first example studies a scenario where a network manager is choosing
a spanning tree of a graph while an attacker is trying to cut the tree by attacking one link of
the graph. One of our findings in this scenario is that, the usual edge-connectivity metric for a
graph is not the appropriate vulnerability measure in a network where strategic adversaries are
present. The second example deals with a supply-demand network where a network manager is
choosing a feasible flow to transport the maximum amount of goods from a set of sources to a set
of destinations, and an attacker is trying to minimize this by attacking an arc of the network. In
this case, we find that critical subsets of links are cutsets that maximize the minimum fraction of
goods carried per link of the cutset. In most cases, these correspond to minimum cutsets of the
graph.

Although computing Nash equilibria of a two-player game is generally complex, we have shown
how, for a class of blocking games, one can compute a critical set of resources (hence a Nash
equilibrium) in polynomial time.
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To my parents, my family, my wife, my son, my friends...

To my late mother...who did not live long enough to witness this moment...

Black woman, African woman,
O mother, I think of you...

O Dâman, O mother,
Who carried me on your back, who nursed me,

Who governed my first steps,
Who was the first to open my eyes to the beauties of the world,

I think of you...

Woman of the fields, woman of the rivers, woman of the great river,
O mother, I think of you...

O Dâman, O mother, who wiped my tears,
Who cheered up my heart, who patiently dealt with my caprices,
How I would love to still be near you, be a child next to you.

Simple woman, woman of resignation,
O mother, my thoughts are always of you.

O Dâman, Dâman of the great family of true believers,
My thoughts are always of you,

They accompany me with every step, O Dâman, my mother,
How I would love to still feel your warmth,

Be a child next to you.

Black woman, African woman,
O mother, thank you; thank you for all that you have done for me, your son,

So far away yet so close to you!

Translated from the original French text of Camara LAYE
by Deborah Weagel, University of New Mexico
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Chapter 1

Introduction

“The art of war teaches us to rely not on the likelihood of the enemy’s not coming, but on our
own readiness to receive him; not on the chance of his not attacking, but rather on the fact that
we have made our position unassailable.”

-The Art of War, Sun Tzu[1]

Over the last three decades, Information and Communication Technologies (ICT) have revolu-
tionized our access to information and how we communicate (see [2],[3], [4]). The Internet, the
prime symbol of this digital revolution, is being used across all industries to conduct all kind of
transactions. Unfortunately, these progresses in technology also created an increasing number of
security concerns that are well illustrated by recent incidents.

1.1 Some security incidents

Very sophisticated Internet viruses∗ such as Nimda [5], Slammer [6] and Conficker [7] propagated
rapidly and infected thousands of machines around the globe and cost millions of dollars in defense,
clean up, and rebuilding good reputation [8]. According to the Conficker Working Group [9],
between 6 and 13 millions hosts have been infected by different variants of the virus. In a recent
blog post, the Cyber Secure Institute [10] claims that the economic loss due Conficker could be as
high as $9 billion. More recently, the Stuxnet virus has gained a lot of attention from researchers
and media. A Symantec white paper [11] has presented Stuxnet as “a threat targeting a specific
industrial control system such as a gas pipeline or power plant, likely in Iran. The ultimate goal
of Stuxnet is to sabotage that facility...” Stuxnet is one of the first malwares known to specifically
target industrial control systems.

∗Throughout this thesis, we casually use the term “virus” to designate a generic malware. For instance, we do not
make the usual distinction that is made between a worm and a virus. This distinction is not particularly relevant for
our analysis.
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Botnets have recently been identified as being among the most important threats to the security
of the Internet. A botnet is a network of compromised machines (bots) under the control of an
attacker (the botnet herder). In a ten days infiltration into the Torpig botnet network, the study in
[12] has gathered information from more than 180000 infected machines around the globe. Botnet
herders typically get the bots to act on their behalf to send spams, spread viruses, or carry out
phishing attacks. Botnets have also served to launch distributed denial of service attacks (DDoS).

In recent years, DDoS attacks have been launched against business and government websites
in incidents that are attributed to organized and terrorist groups, and sometimes to nation-state
intelligence agents. The Russia-Estonia conflict [13], the Google-China saga [14], the recent Wik-
ileak “Operation Payback” incident [15], and the many attacks on the White House and other US
government agencies’ websites [16] are just a few examples. In the Stuxnet case, many bloggers and
security specialists have speculated that the virus was designed in Israel to target nuclear power
plants in Iran.

This list of security incidents is certainly not exhaustive; [17] gives a broad overview of cyber
security incidents in the last three decades.

1.2 Information and communication systems’ security challenges

Being able to defend against and survive cyber attacks is vital. However, despite the important
efforts spent by the many security companies, researchers, and government institutes, information
systems’ security is still a great concern. Many security challenges still need to be addressed. Some
of the most important ones are discussed next.

1.2.1 Strategic and sophisticated adversaries

As information and communication technologies have now become an integral and indispensable
part of our daily life, there has been a significant shift in the global threat landscape. Today, the
greatest security threats are no longer coming from those script-kiddies and fame-driven hackers
[18] who attack communication systems just to impress their peers. In this information age, secu-
rity systems have to be designed and implemented to defend against very sophisticated adversaries.
These sophisticated adversaries include malicious insiders, cybercriminals, hacktivists, cyberter-
rorists, industrial spies, and in some cases, nation-state intelligence agents. Such adversaries are
very knowledgeable about the communication technologies and protocols. They are highly orga-
nized, well-resourced, and capable of operating across the full spectrum of online attacks. Their
goals, most of the time, go beyond minor security failures like crashing a computer or defacing a
webpage. Their motivations are for example to make big monetary gain, cause mass destruction
to countries’ infrastructure and economy, steal highly classified document and information, and
establish long-term intelligence-gathering presence.

In addition of being very knowledgeable about the communication technologies and protocols,
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these adversaries strategically and dynamically choose their targets and attack methods in order
to achieve their goals. They skillfully plan their attack after deep investigations of the available
technologies and defense techniques. According to this Symantec report [11], Stuxnet was highly
targeted, took more than six months of implementation, and was looking for systems using a specific
type of network adapter card. Today’s hackers also tune their strategies by balancing the effort
spent and the chances of success† [20]. An insider will try to be off the radar as long as possible
while a terrorist is looking for making the maximum damage in one attack. A botnet herder would
like to maintain a zombie machine under his control as long as possible. Similarly, an industrial spy
will try to dissimulate his presence while stealing valuable information from the victim’s information
databases.

Defending against such sophisticated attackers is a challenging task. An effective defense solution
requires not only high technical skills, but also a good understanding of these attackers motivations,
strategies, and capabilities. The war against today’s hackers is an strategic war and viable cyber
security solutions should be implemented with built-in intelligence.

1.2.2 Complexity and interconnectedness

Another fundamental source of difficulty in developing secure information systems is their com-
plexity and interconnected nature. Because of this complexity and interconnectedness, networked
information systems are difficult to fully observe and control [21]. On every machine, many au-
tomated processes are running without the knowledge of the users. Furthermore, many of these
processes involve communications with other computers across networks. As a consequence, full
control and observability is impossible, leading to systems that are vulnerable to local as well as
remote attacks.

Information and communication systems are interconnected and distributed, and they are wanted
to be. Metcalfe’s law [22] states that the value of a communication network is proportional to the
square of the number of connected users or systems. Interconnected however means interdepen-
dence; and interdependence implies that the security of any given network system depends on that
of the others. Hence, once a computer is infected by a virus or is under the control of an attacker,
additional devices in the same network can become more susceptible.

Related to interconnectedness and distributiveness, is the inherent anonymity offered by net-
worked systems, especially the Internet. The easiness to spoof an email or an IP address and to
disguise once identity and location has made it difficult to go after attackers and impossible to
prevent attacks; this, despite the advances in forensics [23] and other tracing technologies [24].

Defending today’s information systems is to be done in this complex, interconnected and dis-
tributed environment. Any successful security solution needs to be designed and implemented by
considering those factors.

†E.g. according to reports about the recent Wikileak “Operation Payback” incident, hackers abandon attacking
Amazon’s website because they did not have the “forces” to bring it down.[19]
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1.2.3 Presence of compromised and/or malicious agents and components

Trustworthiness and full cooperation have been traditionally assumed among the different elements
responsible of storing, sending, and processing information of communication systems. This was
certainly realistic in the days of the ARPANET [25] when all parties involved were friendly and
trustful, and when information was stored in and communicated through devices that were under
full control of a few administrators. Many reasons explain why such assumption can no longer be
made with today’s information systems.

As we mentioned earlier, inside attackers are one of the most important threats today. Insiders
have privileged access rights and detailed knowledge about the information system, services, and
processes. They participate in the communication protocols as trusted parties and maliciously take
advantage of this trust to send bogus messages and corrupt information. They dissimulate their
presence while slowly damaging the system and stealing critical information.

Also, with the loss of controllability and observability due to the complexity and interconnect-
edness of networked information systems, the trustworthiness assumption between the network
devices becomes very questionable. In many occasions we have witnessed the network infrastruc-
tures (routers, servers) being compromised by malicious adversaries [26].

The potential presence of compromised components explains why the “U.S. government’s main
code-making and code-cracking agency now works on the assumption that foes may have pierced
even the most sensitive national security computer networks under its guard” [27]. Debora Plunkett,
head of the NSA’s Information Assurance Directorate has put it in these terms: “We have to build
our systems on the assumption that adversaries will get in”. Thus, security mechanisms should
be able to ensure the survivability‡ of information systems despite the presence of compromised
components.

1.2.4 Human factors!

Security administrators have spent a lot of effort to guarantee and maintain security of information
systems. In this, they set security policies to prevent attacks, perform tests to foresee future
vulnerabilities, dictate responses to be taken in case of attacks, and lead recovery after security
incidents. This has lead to some relatively “good” level of security of networked systems. However,
relying on human expertise has some shortcomings. One of such is time scale. Human action is
timed in minutes and hours while attacks such as virus infection are carried at a microsecond level.
Furthermore, relying on human expertise is also not a scalable solution [21]. In fact, given the
distributed nature of communication systems, it is simply not possible to have a “security guard”
at each checkpoint. Thus, intelligent automated solutions are needed.

Security administrators also sometimes fail to apply appropriate security measures because of
‡Survivability is now considered as a separate field of study. However, in practice, security and survivability have

to be implemented together.
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incentive misalignment. They set policies and implement security measures according to the risk
they have evaluated [28] both for the organization and for their own job position. In some cases the
decision involves some conflict of interest. For example, managers often buy products and services
which they know to be suboptimal or even defective, but which are from big name suppliers, to
deflect blame when things go wrong [28].

In sum, attackers and defenders choose their course of action based on some cost-benefit analysis.
Attackers choose their targets and tune their attack strategies by balancing the effort spent and
the chances of success [20]. System administrators set security policies and implement security
measures according to the risk they have evaluated [28] (both for the organization and for their
own job position). Users choose their passwords by balancing between the constraints set by the
security policies and the ease to remember a password. All those tradeoffs are set in accordance to
the incentives of the decision makers (simple users, attackers, and defenders), and this is needed to
be taken into account by security solutions.

1.2.5 Risk assessment and Management

The different challenges mentioned above have made the security risk assessment problem a difficult
one.

With the presence of sophisticated attackers, one cannot just defend against the most likely
event; which is a solution to the related but different problem of reliability. Such a solution is
probably efficient against random “bad” events (faults) such as human errors and/or machine
failures (reliability problem), but it is ineffective against strategic attackers. Intelligent adversaries
will very likely launch attacks that are exceptions to the general rules. As attributed to John
Doyle, ‘reliability deals with events of small probability; security is about events of probability zero.’
Evaluating the risk of such zero likelihood events is quasi-impossible with traditional probability
models.

As was mentioned earlier, networked systems are interconnected and distributed, and as a con-
sequence, the security of the different subsystems as well as the network’s global security depend
on the individual organizations’ security. These external factors (or externalities) are difficult to
measure and potentially result in under-investment as each organization relies on the investment
of the others. This phenomenon is known as free riding. Its consequence is poor global network
security.

Several other factors have to be considered when evaluating the security risk of information
systems. The behavior and incentives of users, the imperfect nature of software and hardware
developers, and the potential presence of insiders are determinant factors that are not easy to
understand and model.

As a consequence, information systems need to be able to perform well against unanticipated
attacks: the “when” and the “how” of the very next attack are always unknown. This makes
it difficult to determine how much money and hours of work one should allocate to defending a
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system. Yet, when an attack hits an organization, it can cost millions of dollars of defense, cleaning,
and eventually rebuilding a good reputation. Viewed from this angle, under-investment, be it in
labor time or in money spent, is very undesirable for any information system.

1.3 Security solutions

As can be inferred from the above, the challenges to information and communication security
range from the complexity of the underlying hardware and software and the interdependence of
the systems, to human, social, and economic factors [21]. Addressing those challenges is vital as
networked information systems have become an integral part of our daily life. Very aware of that,
security researchers and practitioners have developed a variety of defense mechanisms.

1.3.1 Practical security solutions

Physical security and tamperproof techniques have long been used to ensure protection of infor-
mation and network components. Biometric solutions are being proposed for user (human) au-
thentication [29], and steganography and digital watermarking [30] are used to conceal information
within usual mediums.

Cryptography has been used for a long time to provide authentication for both user and data,
encryption to protect the confidentiality of information, and signature schemes to guarantee the
integrity of information. Cryptographic solutions usually are a combination of symmetric schemes,
asymmetric schemes, and hashing methods.

Detection and prevention techniques include Antivirus software, Firewalls, and Intrusion Detec-
tion/Prevention Systems (IDS-IPS). They also include solutions such as penetration testing, sand-
boxing, and honeynets which, in addition to preventing attacks from reaching the system, try to
identify the vulnerabilities that attackers are exploiting.

Antivirus softwares perform regular scanning of the storage devices and communication medi-
ums to detect signs of malware presence and subsequently remove them. Firewalls protect the
organization’s perimeters by inspecting the incoming and/or outgoing traffic operating between an
organization network and the outside world, and filtering suspicious packets. Intrusion Detection
Systems (IDS) carry out live monitoring of traffic both at network and at host levels in order to
detect, in realtime, attacks that are directed against a networked system.

Firewalls, Antiviruses, and IDS are constantly making security decisions. For instance, An-
tiviruses regularly classify programs as malicious or good, Firewalls decide whether to drop a
suspicious packet or not, and IDSs have to determine if a given login attempt is an intrusion. Se-
curity administrators also have to make strategic decisions when they set security policies, dictate
response actions, or establish security budget. Similarly, attackers have to choose their targets,
their attack strategies, and the right moment to launch an attack. Consequently, there is a fun-
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damental relationship between network security problems and the decision making of the different
agents involved in the security process.

1.3.2 Analytical approaches

Security decisions have recently been investigated analytically in a methodical way. Analytical
approaches present a number of advantages compared to heuristic and ad hoc approaches [21]. First,
decisions made in an analytical way are well grounded and persistent. A threshold set optimally
according to a mathematical model remains optimal as long as the model and parameters do not
change. Second, the decision can be generalized and made at large scale, as opposed to heuristic
methods that are problem specific. Third, the decision can be numerically implemented which
enables them to be run at machine speed. Fourth, decisions made analytically can be checked
experimentally and improved upon, enabling the possibility of a feedback loop between the high
quality theoretical studies and the real-life problems experienced by security practitioners in a daily
basis.

Many mathematical models have been used to model and analyze the decision making problems in
security. Decision Theory is the classical mathematical tool to study decision problems. Machine
Learning [31], Control Theory [32], and Pattern Recognition [33], are other mathematical models
that have been utilized to solve the security decision problem. More recently, Game Theory has
been considered to study network security problems.

Among all these methods, Game Theory seems very appealing because, in addition to providing
a principled way to understand security problems, game theoretic models capture the adversarial
nature of the security problem. Instead of designing a defense against a specific attack, Game
Theory attempts to design a defense against a sophisticated attacker who plans in anticipation of a
complex defense. As of such, both the defender and attacker’s actions can be in principle computed
and analyzed. Furthermore, Game Theory can model issues of trust, incentives, and externalities
that arise in security systems. Section 1.6 present a review of the basics of Game Theory. In the
next section, we discuss some potential usefulness of Game Theory in communication security.

1.4 Game Theory Potentials

Recently, there have been an increased interest to applying game theoretic models to address
network security issues, (see the surveys [34],[35]) and some of these approaches look promising.

Game Theory shares many common concerns with the information security problem [36]. In
Game Theory, one player’s outcome depends not only on his decisions, but also on those of his
opponents. Similarly, the success of a security scheme depends not only on the actual defense
strategies that have been implemented, but also on the strategic actions taken by the attackers to
launch their attacks. It also depends on the actions of the users that are sharing the systems, and
on the actions of their peers situated in other networks. All these agents act rationally according
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to their various incentives. Game Theory provides means to represent these complex, competitive,
and multi-agent interactions into mathematical models that allow a rigorous analysis of the problem
[36]. Game Theory also helps the agents predict each other’s behavior and suggests a course of
action to be taken in any given situation.

Humans intervene (e.g., security administrators) into in the security process, and as it has been
discussed earlier this can be slow, it is not scalable, and it is mostly ad-hoc-based. The mathemati-
cal abstraction of Game Theory provides a quantitative framework that can generalize and combine
heuristic solutions under a single umbrella [21]. Furthermore, Game Theory provides the capability
of examining hundreds of scenarios and offers methods for suggesting several potential courses of
action with accompanying predicted outcomes [34]. Computer implementations of those methods
can result in intelligent and automated decision engines that are fast and scalable. Indeed, com-
puters can efficiently analyze complex combinations and permutations of actions to derive player’s
strategies. In contrast with computers, humans can handle only a limited level of complexity and
tend to overlook possibilities.

As was stated earlier, attackers intelligently choose their targets and alter their attack strategies
based on the defensive schemes that are put in place. Traditional security approaches such as
Decision Theory fail to capture this fact because they assume that the defender views the opponent’s
action as exogenous [37]. For instance, in a decision theoretic model, the strategy of the attacker
(e.g., the probability of attack) is given as an input to the model. In a game theoretic model, both
the defense strategies and the hacker’s actions are endogenously determined. Accordingly, game
theoretic models are well suited to model the interaction with dynamic, pro-active, and cognitive
adversaries.

Uncertainty is also another challenge that security has to deal with. No one knows when the
next vulnerability exploit will arise. Game theory allows to model situations where only partial
knowledge about the game is accessible to some players. It helps predict opponent’s behavior in
such scenarios and dictates actions to be taken. Additionally, dynamic game models account for
the learning ability of all players. Using such learning one can build a strong and useful feedback
loop between the high quality theoretical studies and the real-life problems experienced by security
practitioners in a daily basis.

Trust is yet another important aspect in the design and analysis of secure solutions. Without
some level of trust, any security scheme will be very difficult to implement. Building trust relation-
ships and deciding whether to trust received information is particularly relevant in the presence of
(potentially) compromised network agents. Moreover, the trust problem can be view as a game.
Indeed, an intelligent liar would not tell a lie if he risks to be never believed again. As was said by
Samuel Butler “Any fool can tell the truth, but it requires a man of some sense to know how to lie
well.”§ Now, when such sophisticated liars are potentially part of an information exchange, how
much should one trust received information? By using a game theoretical approach for the trust
problem, one can define appropriate trust rules that network agents will follow when exchanging
information in adversarial environments [38].

§Samuel Butler was an English composer, novelist, and satiric author (1835 - 1902).
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1.5 Thesis summary

These many potentials of Game Theory explain the recent surge in applying game theoretical
models to the security problem. Books [21]-[39], and many journal, conference (e.g., GameSec,
GameNets) and workshop (e.g., the Workshop on the Economics of Information Security (WEIS))
papers are being devoted to this subject.

Going in this same direction, this thesis illustrates the important role that Game Theory can play
for information security problems. By modeling the interactions between defenders and attackers as
games in communication scenarios, we predict the adversaries’ attacks, determine the set of assets
that are most likely to be attacked, and suggest defense strategies for the defenders. We study
three illustrative examples. We start by a brief discussion of the abstracted models considered in
the thesis.

1.5.1 Communication security games

We considered abstracted communication scenarios where an abstract defender (which can be
thought of as a network agent e.g. human, process, or a group of agents) is interacting with
an abstract attacker, which also can model a human, a process, or a group of those. The interac-
tion happens over the network where the attacker is trying to attack the network assets that the
defender aims to protect. We assume that both actors are strategic and choose their actions in an-
ticipation of the opponent’s reactions. In all game models, we assume that all the game parameters
are known (payoff, cost, network structure).

We put ourself in a world where some known security solutions such as cryptography are inap-
plicable. For instance in the intruder game model studied in chapter 2, the intruder has full access
of the communication channel and can observe and modify all messages. There is no encryption or
message authentication process involved. This is not totally unrealistic because an intruder could
have access to all encryption and authentication schemes. Today’s Wifi is a good example where
an intruder can completely take over the security protocol.

In the intelligent virus game model considered in Chapter 3, we study a simplified scenario where
the intrusion detection system’s only capability is to analyze network traffic and set a detection
threshold. The attacker’s unique strategy is to choose an infection rate.

In the blocking game model (Chapter 4) we discuss an abstract attack where the adversary
“disturbs” the communication by attacking one network asset. This can be seen as jamming a
communication link, compromising a server or router, or inserting bogus messages into a protocol.

We do not aim to analyze fully realistic and detailed scenarios. Rather, our goal in this thesis is
to illustrate the potential usefulness of Game Theory for the security problem. Section 5.1.1 of the
conclusion discusses the issues of applying Game Theory to security. Later in the chapters we argue
that, far from being trivial, the simplified models considered here permit us to draw conclusions
that would be difficult to draw in a non-game theoretic setting.
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1.5.2 Chapter 2: The intruder game

The first game considers a communication scenario where not all network components are trustwor-
thy –because some of them might be compromised. More concretely, we consider the case where a
given network agent (node) is receiving some information via another agent (or relay) which might
be compromised by an attacker. If the relay is compromised, the goal of the attacker is to corrupt
the information in order to deceive the receiver. The receiver (defender) cannot distinguish between
a compromised relay and a normal one. Upon receiving the information, the receiver then has to
decide how much to trust it.

We model the interaction between the attacker and the defender as a zero-sum game where the
attacker chooses whether and how to corrupt the data and the receiver decides how he should trust
the received information. By analyzing the Nash equilibrium of the game, we have found that when
the chances that the relay is compromised are not small, the receiver should never trust the received
message. If those chances are relatively small, the receiver should always trust the received message,
despite the fact that the best attacker always corrupts the message. The equilibrium strategies also
suggest that, in general, the most aggressive attackers are not always the most dangerous ones.

By introducing a challenge-response mechanism, we have shown how the receiver can completely
deter the attacker from attacking. The challenge-response is a process under which the receiver
has the option to pay a certain cost and use a secure channel to verify the message (and detect the
presence of the attacker if there is any). When detected, the attacker incurs some penalty.

1.5.3 Chapter 3: The intelligent virus game

The second game models a scenario where an intelligent virus is attempting to infect a network
protected by a simple Intrusion Detection System (IDS). The IDS detects intrusions by analyzing
the volume of traffic going inside the network. We model the interaction between the intelligent
virus and the IDS as a zero-sum game where the IDS chooses the detection threshold, while the
virus selects its infection rate.

Using a Markov chain model, we compute the Nash equilibrium of the game and analyze it. We
have found that, not surprisingly, a more aggressive virus is generally potentially more damaging
but is also faster to detect. Hence, in its best attack, the intelligent virus always chooses the
infection rate by balancing between an aggressive attack that can be easily detected and a slow
attack that causes less damage. The best defense strategy against such a sophisticated virus is
to quarantine the traffic for analysis purposes prior to letting it go into the network (in addition
to setting the optimal threshold). If the defender does not quarantine but let the traffic in while
making decision, the best attack is for the virus to be as aggressive as possible. In fact in this
case, while the IDS is analyzing, the virus can cause as much damage as possible. The damage can
be enormous if the IDS needs human intervention, which operates at a very slow rate compared
intelligent automated intervention.



CHAPTER 1. INTRODUCTION 11

1.5.4 Chapter 4: Blocking games

In our blocking security game models, we solve a class of security problems where a defender selects
a set of resources and the attacker attacks one resource. Specifically, we consider that there is a
finite set S and two collections T and E of subsets of S. The defender selects a subset T ∈ T to
perform a mission critical task. Each subset T ∈ T needs some set of resources eT1 , eT2 , . . . , eTp ∈ E
in order to fulfill the task. The attacker, at the same time, tries to disrupt the task by choosing
one resource e ∈ E to attack. The attacker spends a cost µe to attack e ∈ E . The net reward of
the attacker is λT,e−µe and the loss of the defender is λT,e, where λT,e ≥ 0 is given and, typically,
λT,e = 0 if e /∈ T . This framework applies directly to some communication security problems as
discussed below.

We consider mixed strategy Nash equilibria where the defender chooses T with a distribution α
on T and the attacker chooses e with a distribution β on E . The defender wants to minimize the
expected loss E(λT,e). The attacker, on the other hand, is trying to maximize the expected net
attack reward E(λT,e − µe).

We analyze the game by using the combinatorial tools of blocking pair of matrices (hence the
name blocking security game). We introduce the notion of critical subset of resources and use this
notion to define a vulnerability metric for the defender’s task. For the non-zero sum game where
the attack costs (µe) are positive, we show the existence of a set of Nash equilibria under which the
attacker will always target critical subsets of resources. When the attack costs are all equal to zero,
we characterize all Nash equilibria of the game. In each NE, the attacker will target a particular
critical subset of resources. The defender chooses feasible subsets that minimally intersect the
critical subsets.

We provide two illustrative examples for this model. The first example studies a scenario where
a network manager is choosing a spanning tree of a graph while an attacker is trying to cut the
tree by attacking one link of the graph. One of our findings in this scenario is that, the usual edge-
connectivity metric for a graph is not the appropriate vulnerability measure in a network where
strategic adversaries are present. The second example deals with a supply-demand network where
a network manager is choosing a feasible flow to transport the maximum amount of goods from a
set of sources to a set of destinations, and an attacker is trying to minimize this by attacking an
arc of the network. In this case, we find that critical subsets of links are cutsets that maximize
the minimum fraction of goods carried per link of the cutset. In most cases, these correspond to
minimum cutsets of the graph.

Computing Nash equilibria of a two-player game is known to be in general complex. In this
thesis, we have shown how, for a class of security games, one can compute a critical set of resources
(hence a Nash equilibrium) using algorithms that run in polynomial time.
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1.5.5 Challenges to applying Game Theory to security

Although Game Theory presents a lot of potentials for security, there are a certain challenges that
need to be addressed to make a viable approach to security. The challenges include the complexity
of computing an equilibrium strategy and the difficulty to quantify security parameters such as
risk, privacy, and trust. Choosing the appropriate game model for a given security problem is
another challenge to Game Theory for security. So far, choosing a game is solely based on intuition
and there is a lack of data to substantiate those choices. Also, many game models assume full
unbounded rationality for the players. This assumption contrasts with experimental studies, which
have shown that players do not always act rationality. Another challenge that game theorists for
security need to address is the interpretation of notions like mixed strategy Nash equilibrium. In
fact, even within the Game Theory community, these is no consensus on how to interpret a mixed
strategy. These challenges, discussed in more details in the conclusion section 5.1.1, need to be
addressed in order to convert game theoretic results into practical security solutions.

1.6 Game Theory basics

This section gives a brief review of the basics of Game Theory. For a more complete presentation,
the book by Osborne and Rubinstein [40] and that of Fudenberg and Tirole [41] are classical
references. A tutorial on Game Theory is presented in [39, Appx. B] in the context of wireless
networks. Section 2 of [34] also gives a brief and very concise overview of Game Theory.

Game Theory models the interaction(s) of decision makers who have to choose actions that might
be (but not necessarily) conflicting. The first game theoretic studies appeared in the economics
literature and are attributed to Cournot (1838) and Bertrand (1883). John Von Neumann and
Oskar Morgenstern ([42], 1928-1944) introduced the general theory of games in their book: “The
Theory of Games and Economic Behavior”. In particular, they showed the existence of mixed
strategy equilibrium for a two-player zero-sum game. John Nash (1950) extended their analysis
and proposed the concept of “Nash Equilibrium”. The following decade has seen the game theoretic
research broadened by the works of Selten (1965) who introduced the notion of “subgame perfect
equilibria” and Harsanyi (1967-68) who developed the concepts of “incomplete information” and
“Bayesian games”. Many studies have followed since then, and most of them focus on the subject
of Economics (see [41, Chap. Introduction]). In the late 80’s (at the end of the cold war), Game
Theory was used for the analysis of nuclear disarmament negotiations [43]. The first application
of game theoretic approaches to security was by Burke [36] in the domain of information warfare.
Recently, applications of Game Theory to networked information security have driven a lot of
interest (see section 1.7).

The basic assumption of a game theoretic model is that decisions makers are rational and take
into account the rationality of other decision makers. In a game, there are typically two or more
decision makers called players. Players constitute the basic entities of a game. A player can
represent a person, a machine or a group of persons. Within a game, players perform actions that
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they draw from their respective action sets. The plan of actions that a given player takes during a
game play is called the strategy of that player. When all players play their strategies, it leads to
an outcome, which is the vector of the actions taken by the players in that game play. An outcome
gives a payoff (i.e. positive or negative reward) to each player. Being rational, each player is trying
to choose the strategy that maximizes the received payoff. The payoff of a given player is derived
from the preference that the player has of some outcome compared to others. A player’s preference,
in the Von Neumann-Morgenstern sense, is given by a utility function that assigns to each outcome
a real number. The more the player prefers an outcome, the higher the assigned number is.
In summary, a game is described by:

• Players (P1, . . . , PN ): finite number (N ≥ 2) of decision makers.

• Action sets (A1, . . . , AN ): player Pi has a nonempty set Ai of actions.

• Payoff functions ui : (A1, . . . , AN ) → R, i = 1, . . . , N : materialize each player’s preference,
take a possible action profile and assign to it a real number.

If the action sets Ai are finite for all players i = 1, . . . , N , then the game is finite. The game is said
to be zero-sum if the payoff functions are such that u1 + u2 + · · · + uN = 0. It is a constant-sum
game if the sum is equal to a fixed constant. If the sum can take arbitrary values, the game is
variable-sum.

Different models of games have been considered, depending on what kind of interaction the
players have, how much they know about each other, and how long a game play is. If, within a
game, each player is maximizing his own payoff regardless of the results of the others, the game is
said to be non-cooperative. A cooperative game is one in which players can form coalitions in order
to coordinate their strategies. Each coalition has a given value for the players who form it. The
game is then between coalitions rather than between individual players.

When a game is played once and for all, and that all actions are taken simultaneously, then the
game is called static or strategic. If, on the other hand, the game has more than one stage where
players can take action, it is an extensive game. Extensive games can be finite or infinite.

The games considered in this thesis are all non-cooperative and static. Also, they are such that
each player knows his action set and payoff as well as other players’ action sets and payoffs. Such
games are defined as complete information games. Incomplete information games are those in
which at least one player is unaware of the possible actions and/or payoffs for at least one other
player.

Knowing the action sets does not mean knowing the actual actions taken by the players. When,
in a game, each player is aware of the “previous” actions taken by all other players, then the game
is of perfect information. Otherwise, it is an imperfect information game. In this sense, a static
game is of imperfect information. Indeed, any static game can be written as an extensive form
game where the the players do not observe the actions taken by other players.
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A static game can also be of incomplete information when some players are not certain about the
action sets and the payoffs of others. Harsanyi [44] has proposed a way to model and understand
such games by introducing an initial move by “nature” that determines the“types” (action set and
payoff) for the players. This initial move is done according some prior probability. Such games are
called Bayesian because of their inherent probabilistic nature.

Probabilistic moves also characterize models of stochastic games. Such games progress as a
sequence of states. In each state, players take actions and receive payoffs that depend on the
current state of the game, and then the game transitions into a new state with a probability based
upon the players’ actions and the current state.

Each game model considers a solution concept that determines the outcome of the game and its
corresponding strategies. Nash equilibrium (NE) is the most famous concept of game solution. In
this thesis, we are only concerned with NE. For details about other solution concepts, we refer the
interested reader to [40] and [41].

A NE is a set of strategies of the game under which no single player is willing to unilaterally
change his strategy if the strategies of the other players are kept fix. Formally, the action profile
a∗ = (a∗1, a

∗
2, . . . , a

∗
N ) is a Nash equilibrium if

ui(a∗) ≥ ui(ai, a
∗
−i), for all i = 1, . . . , N, and all ai ∈ Ai; (1.1)

where a∗−i denotes the profile of actions of all players except Pi.
Whenever, for a fixed profile a−i, an action ã ∈ Ai for player Pi verifies ui(ã, a−i) ≥ ui(a, a∗−i) for all
other a ∈ Ai, then ã is said to be a best response to profile a−i for player Pi

¶. From this, we derive
the following equivalent definition for a Nash equilibrium: an action profile a∗ = (a∗1, a

∗
2, . . . , a

∗
N ) is

a Nash equilibrium if and only if for each player Pi, the action a∗i is a best response to the action
profile a∗−i.

If the equilibrium strategy designates a particular action for each player, then we refer to it as pure
strategy equilibrium. Pure strategy equilibria do not always exist. However, for a finite, 2-player
game an equilibrium can always be achieved by randomizing the choice of actions on the action sets
(John Nash [45]-1951). Such equilibrium is called a mixed strategy equilibrium. Formally, a pure
strategy is defined as a deterministic choice of action, while a mixed strategy chooses a probability
distribution on the set of actions.

In this thesis, because of the competitive aspects of the games we consider, pure strategy equi-
librium will, most of the time, not exist. As a consequence, we are particularly interested in mixed
strategy Nash equilibria. We typically have two players: a defender and an attacker. The defender
is trying to choose an action to minimize the potential damage that an attacker could cause by
taking some attack action. The attack’s goal is to maximize the damage. In this sense, we will
most of the time be using zero-sum games. For zero-sum games, the Nash equilibrium strategies
are known to correspond to the max-min equilibria (Von Neumann-Morgenstern 1928, John Nash

¶Notice that in this definition, we do not not make the difference between action and strategy. However, the
correct definition considers strategies (action plans) and not actions.
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1951). A max-min strategy for player P is a strategy that maximizes the worst outcome that other
players could impose to P by their strategy choices. We use this result to compute NE, mostly in
the first two game models considered in this thesis.

Another way to find NE is by analyzing best responses. We use this tool to analyze NE in the
third game model studied in this thesis. The main result about best response is that in equilibrium,
every action that is assigned a strictly positive probability by a mixed strategy for some player is a
best response to the other player’s strategy.

Computing Nash equilibria is in general a difficult problem. For 2-player, finite, zero-sum games,
we know that the NE strategies correspond to the max-min equilibrium strategies. Max-min strate-
gies can be solved by casting the problem as a linear program [46, Chap. 11]. Linear program can
be solved by algorithms that run in polynomial time [46, Chap. 4] in the size of the problem. As a
consequence, finite, 2-player, zero-sum games can be solved in polynomial time. For general finite,
2-player games, Papadimitriou [47] has shown that the problem of computing a Nash equilibrium
is PPDA-complete (“Polynomial Parity Arguments on Directed graphs”). In this thesis, we will
show how to find polynomial-time algorithms for a class of quasi-zero-sum games.

1.7 Related work

As was stated earlier, there are currently many activities into applying game theoretic tools to
the security problem. The approaches used to study the communication security problem through
Game Theory can be classified in two groups (although a lot of papers combine the two). Socio-
Economic approaches consider the social and economic aspects of security and have studied (among
others), the incentives ([48],[20]) of agents involved in the security process (attackers, network
administrators, and simple users), their behaviors ([49],[50]), and the economics of information
security ([37], [51],[52]). The second approach uses Game Theory to understand the theoretical
foundation of the security problem and to derive technical solutions ([53],[54],[55],[56],[57]).
This thesis focuses on this second line of thoughts.

The book by Buttyán and Hubaux [39] considers the application of Game Theory to Wireless
Network security problems. That of Alpcan and Basar [21] covers a wide range of security as-
pects through the lenses of Game Theory. [58] is a compilation of the GameSec2010 conference
proceedings. The surveys [34]-[35] give a broad overview of the current status of this “new” field
of research. [34] classifies the research activities according to the game models used, while in [35],
current research efforts are grouped based on the network security problems that are considered.
Some of the research efforts mentioned in those surveys are discussed next.

Intrusion Detection Systems are among the subjects of network security to which Game Theory
has been applied the most. This logically follows from the fact that traditional IDSs are based on
Decision Theory and, as we have discussed earlier, for the security problem, Game Theory seems to
be more appropriate than Decision Theory. In [21], game theoretic approaches to IDS are discussed
for various game models and two chapters (9 and 10) are solely devoted to this subject. [35, Sec.
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5] devoted an entire section to game theoretic approaches to IDS. Cavusoglu and Raghunathan
[57] compare the use of Game Theory and Decision Theory to the detection software configuration
problem when the attackers are strategic. Their study has confirmed the conjecture that in general,
the game theoretic approach is more appropriate than the decision theoretic approach.

The many game theoretic applications to IDS mentioned in [34] and [35] are mostly different
by the type of games considered in the models. In [59], Alpan and Basar study the interaction
between a distributed IDS and an attacker and model it as a two-player, non-zero sum, one-shot
game. The model is refined in [60] in an extensive form game where a network sensor playing
the role of “nature” moves first by choosing a probability of attack (and no-attack), then the
IDS and the attacker move simultaneously. In [61], a multi-stage dynamic game model is used to
study the intrusion detection problem in a mobile ad hoc network. Zhu and Baser [62] model the
configuration problem of policy-based IDS as a stochastic dynamic game. A stochastic game model
is also considered by Liu et al. [56] for the insider attack problem. Zonouz et al. [63] model the
interaction between a response engine and an attacker as a Stackelberg game where the engine is
the leader and the attacker the follower. A Bayesian game approach is proposed in [64] to study
the intrusion detection problem in wireless ad hoc networks.

As proofs of concept (application of Game Theory to security), we believe that all these works
are complementary to our intelligent virus game model. The intruder game treated in chapter 2
of this thesis departs a bit from those models. In our model, we are not interested in detecting
the presence of an intruder; rather, we focus our attention on how much trust a receiver should
have in a received message that has transited via a potentially compromised relay. In that sense,
our intruder game is closer to [65], where the author treats the problem of false dissemination
of information in a vehicular network. Our work is also closely related to the attacks on ad hoc
network routing protocols discussed in [39, Chap. 7].

Trust and Deception is an important subject that has received a lot of attention in the years.
Kevin Mitnick‖, the infamous hacker and “social engineer” explains in his book, the Art of De-
ception, how to bypass the most efficient firewalls and encryption protocols by fooling users in a
network to gather confidential information. The book by Castelfranchi [66] treats the subject of
trust and deception in virtual societies.

Availability is one of the security requirements that requires that network resources and assets
are available to legitimate users when needed. In an availability (or denial-of-service) attack,
the hacker targets a resource that the defender (might) need to perform a certain task. In that
sense, our blocking security game model can be interpreted as an availability game. The jamming
games presented in ([67]-[68]) are other examples of availability games. In [67], Zander considers
the problem of multihop packet radio networks (PRNs) in the presence of an active jammer. The
situation is modeled as a two-player constant-sum game where both the jammer and the attacker are
subject to an average power constraint. The optimum jamming strategies as well as the best medium

‖David Kevin Mitnick was one of the most notorious cyber thieves. Over a 13 year period, he broke into the
computer systems of more that 35 international organizations. He was on the FBI’s list of most wanted criminals
and was arrested in 1995 and sentenced to 5 years prison. Mitnick now runs “Mitnick Security Consulting”.
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access policies are derived. Kashyap et al. [69] consider the jamming problem in a MIMO Gaussian
Rayleigh fading channel scenario. The interaction between the jammer and the transmitter-receiver
pair is modeled as a zero-sum game where the attacker is trying to minimize the mutual information
between the transmitted and received signal, while the defenders are trying to maximize it. Altman
et al. consider a similar problem where the value of the game is the signal to interference-plus-noise
ratio (SINR).

The work in [55] is another denial-of-service attack game where an attacker on the Internet is
trying to deface the homepage on a given server. A stochastic game approach is proposed between
the network administrator and the attacker where at each time step, both players choose their
actions and the game moves to a new state according to some probability that depends on the
chosen actions. Through simulations, the authors have shown that the game admits multiple Nash
equilibria. Since a NE gives to the defender an idea about the attacker’s best strategies, finding
more NE means having more information about the attack.

All these games (and others cited in [34] and [35]) head to the same direction as our blocking
security game models in the sense that resources that might be (or are) needed by the network are
the target of attacks. They consider a variety of game models and different techniques to compute
Nash equilibria. In that, we consider them complementary to our work. Our model is however
more general, permitting us to cover a broad range of problem. Furthermore, we have analytically
characterized the set of Nash equilibria in our models.

Although not dealing with an availability issue, the work presented in [70] is particularly close to
the examples of network design we have presented in this thesis. In that paper, the authors consider
a non-cooperative, multi-player game on a graph, with two kinds of players, a set of attackers and
a protector player, representing the viruses and the system security software, respectively. Each
attacker chooses a node of the graph to infect and the protector chooses a simple path (or edge)
to protect. As in our case, the authors relate the mixed Nash equilibria of the game to graph-
theoretic notions (edge cover and vertex cover) and suggest polynomial time algorithm to compute
Nash equilibria. Our work however departs from their paper in two ways. First, the graph examples
presented in this thesis are just applications of a general model to particular cases. Our model covers
a broad range of security problems which include the one considered in their paper. Second, in
our example the network is interested in choosing links, while in their paper, the network protects
nodes.

The Nash equilibria characterization provided in this thesis can be considered as an application
of the result in [71] to the particular case of quasi zero-sum game. Although Avis et al. were not
interested in characterizing Nash equilibria (which would be very laborious for an arbitrary two-
player matrix game) and did not explicitly consider the notion of blockers, all the ingredients we
have used in our NE characterization can be derived from their results. Our use of the combinatorial
notion of blocker was the key to our success in characterizing the mixed strategy Nash equilibria of
the game. To our knowledge, such a notion was not used before in the context of computing Nash
equilibria.

We derive polynomial time algorithms by relating the Nash equilibria computation problem to
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the minimization of submodular functions ([72, Chap. 9],[73]). Polynomial time algorithms are
known to exist for zero-sum bimatrix games via Convex Optimization methods [74, Chap. 11].
However, computing Nash equilibria for a general two-player matrix game is known to be PPAD-
complete∗ [47]. In that sense, our work extends (although very modestly) the class of games that
are known to be solvable in polynomial time.

∗Polynomial Parity Arguments on Directed graphs
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Chapter 2

Intruder Game

This chapter presents a communication scenario where not all network components are trustworthy–
because some of them might be compromised. More concretely, we consider the situation where a
given network agent (node) is receiving some information via another agent (or relay) which might
be compromised by an attacker. If the relay is compromised, the goal of the attacker is to corrupt
the information in order to deceive the receiver. The receiver (defender) cannot distinguish between
a compromised relay and a normal one. Upon receiving the information, the receiver then has to
decide how much to trust it.

In section 2.1, we model the interaction between the attacker and the defender as a zero-sum
game. We study a simple model where the message expected by the receiver is a binary random
variable drawn from {0, 1} according to a known probability distribution. In this case, the attacker
is just trying to figure out whether to flip a received bit of not. When the receiver gets some
data, he will decide whether to trust it or not. Indeed, the model holds for non-binary messages.
However, characterizing the NE in those cases can easily become overwhelming. Software programs
like GAMBIT [75] can help compute Nash equilibria in certain cases.

By analyzing the Nash equilibrium of the game, we have found that, unless the chances that the
relay gets compromised are small, the receiver should never trust the received message. If those
chances are relatively small, the receiver should always trust the received message, despite the fact
that the best attacker will always corrupt the message. The equilibrium strategies also suggest
that, in general, the most aggressive attackers are not always the most dangerous ones.

In section 2.3, we introduce a challenge-response mechanism. The challenge-response is a process
under which the receiver has the option to pay a certain cost and use a secure channel to verify
the message (and detect the presence of the attacker if there is any). When detected, the attacker
incurs some penalty. The analysis of the NE in this case shows that, by using a challenge, the
receiver can completely deter the attacker from attacking.
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2.1 Simple Intruder Game

We consider the communication model depicted in figure 2.1.
We use names in the security jargon (Alice, Trudy, Bob), to designate the agents involved in
our security games. These agents can, however, be any network component capable of storing,
transferring, or processing information.

p

1-p

Alice
Trudy

Bob
X Y Z

Figure 2.1: Intruder game model. Alice sends a message to Bob. The message might transit via an
attacker: Trudy. The game is between Bob who wants to correctly detect the message and Trudy
who wants to corrupt it.

Alice sends a message X to Bob through a channel. The channel is insecure in the sense that
an intruder, Trudy, might be present and is able to corrupt the message. This captures the cases
where a malicious user is present in a communication system or that communication components
can be compromised by malicious users.

The message X is considered to be a binary random variable (X ∈ {0, 1}) drawn from the set
{0, 1} according to a probability distribution Pr[X = x] = π(x), x ∈ {0, 1} that is assumed to be
known to Bob and Trudy∗. We let Y designate the message that Bob receives.

Trudy is present with a probability p known to both Trudy and Bob. This can be interpreted
as if Trudy has only p chance of getting the message or that a fraction equal to p of the network
components is corrupted (either by a malicious user, or by being themselves malicious).

When Trudy is not present, Bob correctly receives the message sent by Alice Y = X. When Trudy
is present, we model her possibly randomized strategy that modifies X into Y by the probabilities
P (x, y) = Pr[Y = y | X = x] for x, y ∈ {0, 1}. P is hence a 2× 2 stochastic matrix.

Upon receiving a message Y from the channel, Bob guesses that Alice sent the message Z. We
model Bob’s decision by the probabilities Q(y, z) = Pr[Z = z | Y = y] for y, z ∈ {0, 1}. Let C(x, z)
be the cost that Bob faces when he decides Z = z when X = x, for x, z ∈ {0, 1}. For given choices
of the probabilities P and Q, the expected cost J(P,Q) = E(C(X, Z)) can be calculated as follows:

J(P, Q) =
∑
x,y,z

π(x)R(x, y, z)C(x, z) (2.1)

where R is the matrix given by

R(x, y, z) = [(1− p)I + pP (x, y)]Q(y, z), (2.2)
∗Alice is not part of the game
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where I is the 2 × 2 identity matrix. The term (1 − p)I + pP (x, y) in this expression means that
with probability 1 − p the message is faithfully received, and with probability p, it gets modified
by the intruder (according to the stochastic matrix P (x, y)).

Trudy’s goal is to choose P to maximize J(P, Q) whereas Bob’s goal is to choose Q to minimize
J(P, Q). This scenario is modeled by a Bayesian zero-sum game ([40],[41]).

2.2 Nash Equilibrium

Recall that in a two-player zero-sum game, the Nash equilibrium corresponds to the max-min
equilibrium ([40, Chap.2]) and is a pair (PNE , QNE) such that

J(PNE , QNE) = max
P

min
Q

J(P,Q) = min
Q

max
P

J(P, Q). (2.3)

That is, neither Alice nor Bob can gain by deviating from those choices.

To analyze the Nash equilibria of the game, we assume that C(0, 0) = C(1, 1) = 0, which means
that Bob does not incur any cost when he correctly guesses Alice’s message. Also, we assume,
without loss of generality, that π(0)C(0, 1) ≤ π(1)C(1, 0). (We could interchange the roles of 0 and
1 if the inequality does not hold.)

Theorem 1 The Nash equilibria, as a function of the parameter p, are shown in figure 2.2, where
P1 is a set of stochastic matrices P such that

p (π(0)P (0, 1)C(0, 1) + π(1)P (1, 0)C(1, 0)) ≥ π(0)C(0, 1). (2.4)

P2 is a set of stochastic matrices P such that the previous inequality holds and, moreover,

p (π(0)P (0, 1)C(0, 1) + π(1)P (1, 0)C(1, 0)) ≤ π(1)C(1, 0). (2.5)

The values r1 and r2 are defined by

r1 = 1− r2 =
π(0)C(0, 1)

π(0)C(0, 1) + π(1)C(1, 0)
. (2.6)

2.2.1 Understanding the NE

The meaning of this result is as follows.
When the probability p that Trudy is present is smaller than r1, Bob should always trust the
received message (and choose Z = Y ). The corresponding strategy for Trudy is to always corrupt
the message as Y = 1 − X whenever she is present. This might seem counter-intuitive (for Bob)
but it is not. In fact, Bob does not know when Trudy is present or not, but he knows that Trudy
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Figure 2.2: The Nash Equilibria of the Intruder Game. The figures in the right show the regions
P1 and P2.

is absent most of the time (p small). Thus, although Trudy is always corrupting the message, the
risk of trusting the channel is small for Bob (think of p ≈ 0).

When p is larger than r1, Bob should always ignore the message Y because it is “too” untrust-
worthy. For this strategy to hold as NE strategy for Bob, Trudy should corrupt the message with
appropriate probabilities, which corresponds to the conditions (2.4)-(2.5) on P . These conditions
are represented by the regions P1 and P2 of figure 2.2, respectively.

To understand (2.4), note that the left-hand side is Bob’s expected cost if he trusts the received
message and chooses Z = Y . The right-hand side is his cost if he (ignores the message and) chooses
Z = 1. Also, we will show later that for r1 ≤ p ≤ r2, choosing Z = 0 will always be suboptimal for
Bob, independently of Y . Thus, the condition means that Bob should chooses Z = 1.

Similarly, the right-hand side of (2.5) is Bob’s expected cost if he chooses Z = 0. That condition
implies that Bob should not choose Z = 0 and the first condition implies that he should not choose
Z = Y . Hence, Bob’s best strategy is Z = 1 independently of the received message Y . The upper
bound π(1)C(1, 0) imposes some maximum values for P (0, 1) and P (1, 0). This implies that Trudy
cannot be too aggressive. To see this, assume that Trudy is so aggressive that condition (2.5) is
violated. Then, consider a strategy where Bob always chooses Z = 1− Y . The corresponding cost
is equal to Pr[X = 0, Y = 0]C(0, 1) + Pr[X = 1, Y = 1]C(1, 0), which, by extending the terms,
gives

π(0)C(0, 1) + π(1)C(1, 0)− p (π(0)P (0, 1)C(0, 1) + π(1)P (1, 0)C(1, 0)) . (2.7)

This is less than π(0)C(0, 1) if condition (2.5) is violated. Thus, Bob can obtain a better payoff
by changing his strategy from Z = 1 to Z = 1 − Y . As a consequence, for Trudy to achieve the
highest possible payoff, she must limit her aggressiveness to satisfy (2.5).

2.2.2 Proof of theorem 1

To simplify notation, we let C(0, 1) = A, C(1, 0) = B, P (i, j) = 1 − P (i, i) = pi, and Q(i, j) =
1−Q(i, i) = qi for i 6= j ∈ {0, 1} (which are the probabilities of flipping).
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With these new notations, the expected cost can be written as:

J(P, Q) = π(0) ((1− pp0)q0 + (1− q1)pp0) A + π(1) ((1− pp1)q1 + (1− q0)pp1) B (2.8)
= q0 (π(0)A− T ) + q1 (π(1)B − T ) + T (2.9)

where identity (2.9) is obtained by rearranging the terms in the RHS of (2.8) and T is defined as
T = p [π(0)p0A + π(1)p1B].

First, notice that Bob can always achieve a cost of π(0)A ≤ π(1)B by completely ignoring the
message and choosing Z = 1 (this is equivalent to q0 = 1 and q1 = 0–always flip a 0 and always
accept a 1).

Now, minimizing the expression (2.9) over Q, we see that Bob’s best response to any strategy P
is to choose (q0, q1) such that q0 = q1 = 0 if T < π(0)A; q0 = 1 − q1 = 1 if π(0)A < T < π(1)B;
and q0 = q1 = 1 if T > π(1)B. The corresponding costs are T , π(0)A, and π(0)A + π(1)B − T
respectively for T < π(0)A, π(0)A < T < π(1)B, and T > π(1)B. If Q is such that T = π(0)A
(resp. T = π(1)B), Bob is indifferent and can choose any 0 ≤ q0 ≤ 1 (resp. 0 ≤ q1 ≤ 1). Thus, we
find that

min
Q

J(P,Q) =





T, if T < π(0)A
π(0)A, if π(0)A ≤ T ≤ π(1)B
π(0)A + π(1)B − T, if T > π(1)B.

(2.10)

Trudy’s best strategy is obtained by maximizing minQ J(P, Q) with respect to P . For that, we
let p vary between 0 and 1, and examine how the best responses are changing.

• If 0 ≤ p < r1, then for all values of (p0, p1), T < π(0)A. We have already shown that Bob’s
best response in this case is Z = Y (i.e. q0 = q1 = 0). Trudy’s best strategy is obtained by
maximizing the corresponding cost (T ). The optimal value is achieved at p0 = p1 = 1, so
that Y = 1−X. Thus, for 0 ≤ p < r1, the strategies given in the theorem are best responses
to each other. As a consequence, they form a NE.

• If r1 ≤ p ≤ r2, then for some values of (p0, p1), T is less then π(0)A and for others, T ≥
π(0)A. Notice that the maximum value of T is π(1)B. If (p0, p1) is such that T ≤ π(0)A,
then the corresponding cost is T ≤ π(0)A (see (2.10) second row). If, on the other hand
π(0)A < T ≤ π(1)B, then the cost is π(0)A. This second strategy dominates the first, thus,
the best strategy for Trudy is to choose (p0, p1) such that π(0)A < T ≤ π(1)B. Bob’s best bet
in this case is to choose Z = 1. Consequently, any P ∈ P1 and Z = 1 is a Nash equilibrium.

• If r2 < p ≤ 1, then, depending on the choice of (p0, p1), one can have T ≤ π(0)A, π(0)A <
T ≤ π(1)B, or π(1)B < T . A similar reasoning as in the previous case shows that if (p0, p1)
are chosen such that π(0)A ≤ T ≤ π(1)B, then Bob’s best response is q0 = 1 − q1 = 1.
This leads to a payoff of π(0)A. If Trudy chooses (p0, p1) such that π(1)B < T , we have
seen in our discussion above (2.7), that Bob can choose a strategy (Z = 1 − Y ) to achieve
a payoff that is less than π(0)A. Thus, the best bet for Trudy is to make her choice satisfy
π(0)A ≤ T ≤ π(1)B. This implies that any P ∈ P2 and Z = 1 is a Nash equilibrium.
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Notice that at the boundary T = π(0)A, Bob can choose any value for q0, but q1 = 0.
Similarly, when T = π(0)A, Bob can choose any value for q1, but q0 = 1. All these choices
yield to the same cost of π(0)A for Bob.

2.3 Challenging the Message

In this section we introduce a challenge-response mechanism for the receiver (Bob). The challenge-
response is a process under which Bob has the additional choice of challenging the received message
by paying a fixed cost of V and getting an acknowledgement from Alice (see figure 2.3). We assume
that Trudy cannot corrupt the challenge communication. For example, in the case of a phishing

p

1-p
Alice

Trudy

Bob
X Y Z

Pay: V

Figure 2.3: The Intruder Game with Challenge.

email that pretends to come from a bank, this challenge can be interpreted as the recipient of the
email making the additional effort of taking the phone and calling the bank to verify the authenticity
of the email. In general, the challenge can be thought of as Bob being able to use a secure side
channel to verify the message with the source (Alice) and detect the presence of the attacker if
there is any. When detected, the attacker incurs some penalty.

As in the previous sections, we model the problem as a Bayesian game and study the set of Nash
equilibria. We consider the same setting as in the previous section with the following additional
features:

1. Whenever Bob receives a message, he decides whether to challenge it or not. Challenging
requires the payment of a fixed cost of V . We let α(y) be probability that Bob challenges a
message Y = y, for y = 0, 1.

2. If he decides not to challenge the message, then Bob is back to the decision problem considered
in the previous section: should he trust the message or not? In that case, we model his strategy
with the matrix Q.

3. If the challenged message turns out to be corrupted, then the intruder (Trudy) is punished
by having to pay a fine V †.

†Typically the punishment is larger than the challenge cost. We have considered these costs to be equal for
simplicity.
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4. If Bob challenges a received message and finds out that it was correct (i.e. was not changed),
then he looses the challenge cost of V .

5. As before the strategies for Trudy is to decide whether to corrupt the message before relaying
it. We model her strategy with the matrix P , as before.

For this game, Bob pays C(X, Z)1{no challenge}+V 1{X = Y and challenge}. Accordingly, the
expected value J(P,Q, α) of Bob’s cost is given by the following expression:

J(P,Q, α) =
∑
x,y,z

π(x)C(x, z)R(x, y, z)(1− α(y))

+ V
∑
x,y

π(x) ((1− p)I(x, y) + pP (x, y))α(y)Pr{X = y|Y = y}. (2.11)

Bob is trying to minimize this value by his choice of αi and qi for i = 0, 1. Trudy’s objective is to
choose pi, i = 0, 1 to maximize the expected value of her reward C(X,Z)1{no challenge}−V 1{X 6=
Y and challenge}. This expected reward K(P, Q, α) is as follows:

K(P, Q, α) =
∑
x,y,z

π(x)C(x, z)R(x, y, z)(1− α(y))

− V
∑
x,y

π(x) ((1− p)I(x, y) + pP (x, y))α(y)Pr{X 6= y|Y = y}. (2.12)

To analyze the Nash equilibria, we assume, as before, that π(0)C(0, 1) ≤ π(1)C(1, 0). Fur-
thermore, in this section we assume that A = C(0, 1) < B = C(1, 0). We also assume that
π(1)B
π(0) ≥ π(0)A

π(1) . These assumptions have a slight effect in the result presented below. More pre-
cisely, changing these assumptions will slightly change the decision regions. However, the same
approach can be carried to compute the Nash equilibrium for the other cases.

Theorem 2 Figure 2.4 shows the different decision regions for the Nash equilibrium, and Table 2
shows the corresponding strategies for Bob and Trudy.

In the table , β(0) = V (π(1)B−π(0)V )
pπ(0)(AB−V 2)

, β(1) = V (π(0)A−π(1)V )
pπ(1)(AB−V 2)

, and γ = (1−p)π(0)V
pπ(1)B .

A proof of the theorem is provided in section 2.3.2

2.3.1 Understanding the NE

The meaning of this result is as follows.
The region R0 corresponds to the case when V > max(A,B) = B. In this case the challenge cost
is too high, and the receiver is better off to never use it. Instead, Bob will optimally decode as if
there were no challenge possibility. This gives the same result as in section 2.2.
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Figure 2.4: The Nash equilibria decision regions of the Intruder Game with challenge.

Region Bob Trudy

R0 As in previous section

R1
α(0) = α(1) = 0 P = I

Z = Y

R2
α(0) = α(1) = 0 P ∈ P3

Z = 1

R3
α(0) = B/(V + B)

α(1) = 0 P (0, 1) = 1, P (1, 0) = γ
Z = Y

R4
α(0) = B/(V + B)
α(1) = A/(V + A) P (0, 1) = β(0), P (1, 0) = β(1)

Z = Y

Table 2.1: Nash equilibria strategies for the Intruder Game with challenge.

In R2 the challenge cost is high but not high enough to be totally ignored as in region R0.
Here, the challenge plays the role of a threat and obliges the attacker to reduce her aggressiveness
compared to R0. Hence, the intruder has less degrees of freedom compared to the previous section:
the optimal strategy set is now P3 which is P1 (resp. P2 depending on the value of p) of the
previous section with the additional requirement that π(0)V ≥ p(P (0, 1)π(0)V + P (1, 0)π(1)B).
The optimal strategy for Bob is then to not use the challenge and ignore the message.

Region R1 is the set of V that satisfies V > p
1−p

π(1)B
π(0) (or (1 − p)π(0)V > pπ(1)B). Notice

that such V also satisfies V > p
1−p

π(0)A
π(1) (or (1 − p)π(1)V > pπ(0)A) because of the assumption

π(0)A ≤ π(1)B. The term (1 − p)π(0)V (resp. (1 − p)π(1)V ) is the cost of challenging when a
0 (resp. 1) is sent and there is no intruder, while the term pπ(1)B (resp. pπ(0)A) represents the
average cost of accepting a 1 while a 0 (resp. 1) was sent and the intruder is present. The inequalities
above tell that, for Bob, in either case, the expected cost of challenging a message is higher than
the that of accepting it. Thus, Bob is better off to not use the challenge (α(0) = α(1) = 0) and
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to optimally decode as if there were no challenge. Since in this region p ≤ r1, the best decoding
strategy is Z = Y (always accepting the message as in the previous section) and Trudy will always
change the message. As was discussed in the previous case, Bob can trust the message because
most of the time Trudy is absent and the challenge is too high to be used. The average cost for Bob
is equal to p(π(0)A + π(1)B) ≤ π(0)A, which is equal to the expected reward that Trudy receives.

R3 can be described as (1− p)π(0)V < pπ(1)B and π(1)V > pπ(0)A. In this region, the risk of
challenging a 0 ((1−p)π(0)V ) if Trudy is not present, is less than the cost of wrongly accepting a 1
(pπ(1)B) if she is present and happens to flip the bit. Thus, Bob is better off challenging a received
Y = 0. However, since the intruder is present only a fraction of time, challenge should also occur
a fraction of time (α(0) = B

B+V ). When Bob does not challenge a received Y = 0, he will trust
it (Z = Y ). With the assumption π(0)A ≤ π(1)B, the expected cost of accepting a 1 is always
less than the cost of not accepting it. And, since the challenge cost is relatively high compared to
pπ(0)A, Bob is better off to never challenge 1 and to always accept it (α(1) = 0 and Z = Y when
Y = 1). The corresponding best strategy for the intruder is to always flip a 0, and to flip a 1 only
a fraction of time γ. The average cost for Bob is π(0)(pA + (1− p)V ) < π(0)A, while the expected
net attack reward received by Trudy is pπ(0)A.

In region R4 the challenge risk is small enough for Bob to challenge both messages. As a
consequence, Trudy will flip only a fraction of time (β(0), β(1)). Interestingly, in this region, the
average cost for Bob is AB−(π(0)A+π(1)B)

AB−V 2 V < V ‡ while the average reward for Truder is equal to
zero; i.e the intruder has no incentive to attack. Thus, by using the challenge (as a credible threat),
Bob can deter Trudy from attacking the communication.

Compared to the previous case, we have seen that the challenge gives to the receiver the possibility
to always trust the channel (Y = Z) when V ≤ min{C(0, 1), C(1, 0)} without having to pay the
worst case cost of π(0)A. Furthermore, with relatively cheap challenge, the receiver can deter
the intruder from attacking. This tells that with a simple challenge-response scheme, one can
implement a perfect§ communication over an insecure channel.

2.3.2 Proof of theorem 2

As in the proof of the theorem in the previous case, we simplify the notation by letting C(0, 1) =
A, C(1, 0) = B, P (i, j) = 1− P (i, i) = pi, and Q(i, j) = 1−Q(i, i) = qi for i 6= j ∈ {0, 1}.

By extending and arranging the terms in equation (2.11) (resp. (2.12)), we can rewrite the
expected cost (resp. reward) of the receiver (resp. attacker) as

J(P, Q, α) = T + α(0) (π(0) (1− pp0) V − π(1)pp1B) + (1− α(0))q0 (π(0)A− T )
+ α(1) (π(1) (1− pp1) V − π(0)pp0A) + (1− α(1))q1 (π(1)B − T ) , (2.13)

‡Note that as p goes to zero, V also goes to zero and so does the attack cost for Bob.
§This requires the channel used for the challenge to be secure itself. Also, the meaning given to perfect is that the

attacker does not have an incentive to attack.
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and

K(P,Q, α) = p0 (((1− α(1))(1− q1)− (1− α(0))q0) A− α(1)V ) pπ(0)
+p1 (((1− α(0))(1− q0)− (1− α(1))q1)B − α(0)V ) pπ(1)
+(1− α(0))q0π(0)A + (1− α(1))q1π(1)B. (2.14)

In the equations above, T is defined as T = p(π(0)p0A + π(1)p1B).

Now, we show that for the different regions shown in Figure 2.4, the strategies given in Table 2
are best responses to each other.

• If V ≤ pπ(0)
π(1)A, then we want to show that α(0) = B

B+V , α(1) = A
A+V , and q0 = q1 = 0 are in

Nash equilibrium with p0 = V (π(1)B−π(0)V )
pπ(0)(AB−V 2)

and p1 = V (π(0)A−π(1)V )
pπ(1)(AB−V 2)

. To see this, we replace
α(0), α(1), q0, and q1 by their values in (2.14). We observe that

((1− α(1))(1− q1)− (1− α(0))q0) A− α(1)V =
(

1− A

A + V

)
A− A

A + V
V

=
V

A + V
A− A

A + V
V

= 0.

This implies that Trudy cannot improve her payoff by unilaterally changing p0. Similarly, we
have that

((1− α(0))(1− q0)− (1− α(1))q1) B − α(0)V = 0,

and hence changing p1 does also not improve Trudy’s payoff. Thus, the pair (p0, p1) given
above is a best response to Bob’s strategy.

On the other hand, if we replace p0 and p1 by their values in (2.13), we observe that

π(0) (1− pp0) V − π(1)pp1B = π(0)
(

1− p
V (π(1)B − π(0)V )
pπ(0)(AB − V 2)

)
V

−π(1)p
V (π(0)A− π(1)V )
pπ(1)(AB − V 2)

B

=
1

AB − V 2

(
π(0)(AB − V 2)V − (

V 2 (π(1)B − π(0)V )
)

− (BV (π(0)A− π(1)V )))

=
1

AB − V 2

(
π(0)ABV − π(0)V 3 − π(1)BV 2

+ π(0)V 3 − π(0)ABV + π(1)BV 2
)

= 0.

Similarly, one can show that

π(1) (1− pp1) V − π(0)pp0A = 0.
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Thus, Bob does not gain more by changing α(0) or α(1). To complete the proof of this case,
we need to show that the choices q0 = q1 = 0 are also optimal for the the receiver. For that,
it suffices to show that the term π(0)A − T is nonnegative. Indeed, since Bob is trying to
minimize the expected cost (2.13), the best value for q0 is 0 whenever π(0)A− T ≥ 0. Since
π(1)B ≥ π(0)A, this will also mean that π(1)B − T ≥ 0. By expending the term π(0)A− T ,
we get that

π(0)A− T = = π(0)A− p (π(0)p0A + π(1)p1B)

= π(0)A− p

(
π(0)

V (π(1)B − π(0)V )
pπ(0)(AB − V 2)

A + π(1)
V (π(0)A− π(1)V )
pπ(1)(AB − V 2)

B

)

=
1

AB − V 2

(
π(0)A(AB − V 2)−A (V (π(1)B − π(0)V ))

−B (V (π(0)A− π(1)V )))

=
1

AB − V 2

(
π(0)A2B − (π(0) + π(1))ABV + π(1)BV 2

−π(0)AV 2 + π(0)AV 2
)

=
1

AB − V 2

(
π(0)A2B − (π(0) + π(1))ABV + π(1)BV 2

)

=
B

AB − V 2
(π(0)A(A− V )− π(1)V (A− V ))

=
B(A− V )
AB − V 2

(π(0)A− π(1)V ) .

Since V ≤ pπ(0)
π(1)A for all p, we have that (π(0)A− π(1)V ) ≥ 0 (by considering the particular

case of p = 1). Thus, the RHS in the last equality above is greater than 0 if A−V ≥ 0, which
is what we needed.

The last step to finalize the proof in this case is to show that the value p0 and p1 given above
are probability distributions. It is readily verifiable that they are both greater than zero. To
verify that p0 is less than one, we write

pπ(0)(AB − V 2)− V (π(1)B − π(0)V ) = B (pπ(0)A− π(1)V ) + (1− p)π(0)V 2,

which is greater than zero if V ≤ pπ(0)
π(1)A. Thus, pπ(0)(AB − V 2) ≥ V (π(1)B − π(0)V ), and

as a consequence p0 ≤ 1. Similarly,

pπ(1)(AB − V 2)− V (π(0)A− π(1)V ) = A (pπ(1)B − π(0)V ) + (1− p)π(1)V 2,

which is greater than zero because of the assumption π(1)B
π(0) ≥ π(0)A

π(1) . Thus p1 ≤ 1.

• If pπ(0)
π(1)A ≤ V ≤ p

1−p
π(1)
π(0)B, we need to show that α(0) = B

B+V , α(1) = 0, and q0 = q1 = 0 are

in Nash equilibrium with p0 = 1 and p1 = π(0)(1−p)V
pπ(1)B . As in the previous case, we verify that

they are best strategies to each other by showing that none of the players will gain from a
unilateral deviation. Fixing (α(0), α(1)) and (q0, q1), we verify that the term that multiplies
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p0 in (2.14) is equal to pπ(0)A. Thus, p0 = 1 is a best response of the intruder. The term
multiplying p1 is equal to zero, so that the intruder does not make any gain by changing p1.
On the other hand, by fixing p0 and p1, we verify that the term multiplying α(0) in (2.13) is
equal to zero, implying that a change in α(0) does not improve Bob’s payoff. By using the
values of pi, i = 0, 1, we can write

π(0)A− T = π(0)(1− p)(A− V ),

which is nonnegative for A ≥ V , justifying the choice q0 = 0 for Bob. As a consequence of
this, we also have that π(1)B − T ≥ 0, implying that q1 = 0 is also a best response. Finally
we need to show that the term that multiply α1 in (2.13) is nonnegative (so as α(1) = 0 is
optimal). For that, we write

π(1) (1− pp1) V − π(0)pp0A =
1
B

(
π(1)BV − π(0)

(
(1− p)V 2 + pAB

))

≥ 1
B

(π(1)BV − π(0)AB) (2.15)

= π(1)V − π(0)A
≥ 0,

where (2.15) is obtained by observing that (1− p)V 2 + pAB is at most AB. The final step of
the proof of this case is to show that p1 ≤ 1. This follows from the assumption V ≤ p

1−p
π(1)
π(0)B.

• If V ≥ p
1−p

π(1)
π(0)B, we first observe that α(0) = α(1) = 0 is always optimal for Bob. Indeed, in

this case, the minimum value of π(0) (1− pp0) V (i.e. π(0) (1− p) V ) is always larger that the
maximum value of π(1)pp1B (i.e. π(1)pB). Thus, α(0) = 0 is optimal for Bob. Similarly, the
minimum value of π(1) (1− pp1) V (i.e. π(1) (1− p) V ) is always larger that the maximum
value of π(0)pp0A (i.e. π(1)pA), thus, the best α(1), is α(1) = 0. This means that Bob will
ignore the challenge, leading to the case studied in the previous section. Now since in region
R1, p is always less that r1, we have that T ≤ π(0)A ≤ π(1)B. As a consequence, the best
choices for q0 and q1 are q0 = q1 = 0. This means that Bob will never challenge a message and
will always trust it. The best response to such strategy for Trudy is to choose p0 = p1 = 1.

• If B ≥ V ≥ A, all we need to show in that in region R2 there is a choice of p0 and p1

that satisfies T ≥ π(0)A and p(π(0)p0V + π(1)p1B) ≤ π(0)V . But, this is always the case
because since p ≥ r1, we have that p(π(0)A + π(1)B) ≥ π(0)A. This implies that there
exist p0 and p1 such that p(π(0)p0A + π(1)p1B) ≥ π(0)A. The choices p0 = p1 = 1 is
always possible. The second condition (p(π(0)p0V + π(1)p1B)− π(0)V ≤ 0) can also always
be satisfied. In fact, letting p0 and p1 such that p(π(0)p0A + π(1)p1B) = π(0)A, we get
pπ(1)p1B = π(0)A−pπ(0)p0A. Replacing this value of pπ(1)p1B in the second condition and
rearranging the terms,, we get −π(0)(1− pp0)(V −A) which is less than zero.

• If V ≥ B the challenge is not helpful anymore to Bob. If p ≤ r1, then V is always larger
than p

1−p
π(1)
π(0)B, and we have seen that Bob should always trust and never use the challenge.
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If p > r1, then any choice of p0 and p1 possible in the case without challenge is still possible
for Trudy (from the analysis of the case B ≥ V ≥ A), and for any such choice, Bob is better
of ignoring and not challenge the message. But, this is the strategy he already adopted in
the case without challenge.
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Chapter 3

Intelligent Virus Game

In this chapter, we use a game theoretic approach to study the interaction between an intelligent
virus and an intrusion detection system (IDS). We consider a scenario where the virus is attempting
to infect as many machines as possible in a network protected by a simple IDS. Figure 3.1 is a sketch
of the model. The normal traffic going through the network is assumed to have a known rate α.
When present, the virus, while trying to infect other parts of the network, generates some additional
traffic with a rate β that the virus designer needs to set. The IDS is trying to detect the virus as
early as possible while limiting false alarms. To detect intrusions, the IDS checks the amount of
traffic going through the network against a chosen threshold. We use a zero-sum, Bayesian game
model to analyze the situation.

The IDS buffers and counts the volume Xn of traffic in the interval [(n−1)T, nT ] for n = 1, 2, 3, . . .
and decides that a virus is present the first time that Xn > x. T is a design parameter and is
assumed to be known and x is a threshold to be chosen by the IDS. If the IDS decides that there is
an infection, it then flushes the buffer to prevent the virus from infecting more machines. Buffering
introduces some delay (T ) in the traffic. We use a Markov chain model to compute the Nash
equilibrium of the game and analyze it.

We compare the average attack cost of this IDS to the one studied in [76]. The main difference
is that the one considered in this thesis quarantines the traffic while making its decision while the
second lets the traffic through and decides later. For example, at time T , with the first IDS no
traffic has not yet reached the other parts of the network, while with the second one, all the traffic

Network
Virus

IDS

Normal Traffic

Figure 3.1: Intelligent virus game model.
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Figure 3.2: Markov chain model for computing the NE of the intelligent virus game with buffering
IDS.

has already gone through. Because of the different mathematical tools used to analyze the games,
a quantitative comparison of the two modes of operation is not possible. As of such, we will only
qualitatively contrast them.

3.1 The Intelligent Virus Game

In this problem, we suppose that for detection purposes, the IDS delays the traffic by buffering
it, and counts the volume Xn of traffic in the interval [(n − 1)T, nT ] for n = 1, 2, 3, . . . . T is a
design parameter that is set in advance. The IDS decides that the network is infected the first time
that Xn > x and it then flushes the buffer to prevent the virus from infecting other machines. If
the IDS finds that Xn < x, it transmits the Xn buffered bits of traffic. We are interested in the
equilibrium of the game where the virus designer chooses β to maximize the damage that the virus
causes and the IDS chooses the threshold x to minimize it. This damage is the expected sum of
the inspection and infection costs. In practice, such IDS requires inserting a short delay into the
system, say 40ms, which not all network designers might like.

We consider a SIS (Susceptible-Infected-Susceptible) virus spreading model ([77],[78]). In such
model, a computer is first susceptible once a new virus appears. Then, eventually, the machine will
get infected, and after cleaning it becomes again susceptible. A discrete version of such model is
shown is figure 3.1. SIS models have been widely used in viral epidemiology [79], and computer virus
propagation [78]. Although it is not always realistic (a more realistic model would be Susceptible-
Infected-Recovered SIR), SIS models offer a nice analytical framework. Interested readers are
referred to [77].

We evaluate the infection and the inspection costs of the model using a discrete time Markov
chain model with time step T . The states are 0 and 1, where 0 means that the computer is not
infected and 1 that it is. Let p0 = Pr[Xn > x| No Virus] designate the probability that the IDS
declares that the computer is infected when it is not (false alarm) and p1 = Pr[Xn > x| Virus]
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x p0 p1 C(x, β)

0 ≤ x ≤ β α−x
α 1 1−α

x
q+1

β < x ≤ α α−x
α

α+β−x
α C3(x, β)

α < x ≤ α + β 0 α+β−x
α γβq x−β

α(q+1)+β−x

Table 3.1: Values of the false alarm p0 and detection p1 probabilities.

the probability that the IDS declares that the computer is infected when it actually is (correct
detection). Finally, let q be the probability that the computer gets infected in one time step.

Figure 3.1 shows a diagram of the Markov chain. The transition probabilities of the Markov
chain are then P (0, 1) = q and P (1, 0) = p1. Also, when the system is in state 0, it generates a false
alarm with probability p0 and this false alarm is assumed to have a unit cost. When the system is
in state 1, it generates an average number of viruses equal to β(1 − p1) and we assume that each
released virus has an average cost equal to γ. Thus, γ measures the likelihood that a released virus
is successful in infecting another computer. (More complex models are certainly plausible.)

With this model, the average cost per unit of time is

C(x, β) = p0π0 + γβ(1− p1)π1. (3.1)

where π0 (resp. π1) is the stationary probability that the system is in state 0 (resp. 1).
The stationary distribution can be computed by solving the balance equations:

qπ0 = p1π1, and π0 + π1 = 1. (3.2)

Consequently,

C(x, β) =
p0p1 + γβ(1− p1)q

p1 + q
. (3.3)

The virus designer chooses the infection rate β to maximize this cost while the IDS computes the
best threshold to minimize it.

3.1.1 Deriving the NE

We analyze this model by assuming that the traffic Xn is uniform in [0, α] when the computer is
not infected and uniform in [β, α + β] when the computer is infected (i.e., the virus is introducing
additional traffic of constant rate β).

With this uniform assumptions, the probabilities p0 and p1 as functions of x and β are given in
Table 3.1. Since an infection rate β > α will always result to 100% detection, we assume that β is
less than α. The table also shows the corresponding values of the average cost C(x, β).

The value C3(x, β) in the table is equal to

C3(x, β) =
α + β

(
1− γβq +

(
x2 + (αγβq − 2α− β)

))

α(q + 1) + β − x
. (3.4)
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q γ β x

0.01 0.02 150 980
0.01 0.05 220 900
0.01 0.10 250 750
0.10 0.02 250 580
0.10 0.05 150 310
0.10 0.10 90 180

Table 3.2: Nash equilibrium (β, x) as a function of the parameters (q, γ).

Since the game is zero-sum, the Nash equilibrium strategies correspond to the max-min strategies.
Hence, to find the NE, we first minimize C(x, β) over x in each of the intervals given above; for
each region this gives a function that only depends on β. We then maximize over β in each region,
and take the maximum value across the regions. Since the calculation is very involved, we use a
small matlab script to compute the NE. The Nash equilibrium depends on the values of q, α, and
γ. Table 3.2 shows some representative values when α = 1000.

3.1.2 Qualitative Comparison

In this section, we analyze how the attack cost depends on the strategy (propagation rate) of the
virus. In Figure 3.3(a) the attack cost of the IDS is shown as a function of the rate of propagation
chosen by the virus. For each value of the infection rate (shown in the horizontal axis), we have
computed the best response of the IDS which correspond to the optimal threshold for that rate.
Then, we compute the cost as in (3.3) where x corresponds to the best response to β.

As can be seen in the figure, the cost of attack is small when the infection rate is small. This
tells that a less aggressive virus will cause less damage to the system. The figure also shows a small
cost of attack for high values of the infection rate. This means that a very aggressive virus will
also cause small damage to the system. In fact, since the IDS buffers the traffic while making a
decision, and flushes the buffer if it detects a virus, an aggressive attack will very likely be detected
at the IDS level and will not make it into the system.

These two observations show that an intelligent virus will neither be too slow, nor too aggressive.
Instead, it will choose an infection rate that balances between the potential reward of an aggressive
attack and the risk of being quickly detected. This tradeoff is given by the Nash equilibrium attack
rate. It is equal to the rate that maximizes the minimum attack cost that the IDS can impose.

For comparison purposes, we have plotted in 3.3(b), the average cost of an IDS based on the
model in [76] as a function of the propagation rate of the virus. The model uses a sequential
probability ratio test to compute the best threshold for a given infection cost and cost of false
alarm (which in [76] are the false alarm and missed detection probabilities). In our simulation, we
have assumed that the false alarm cost is fixed and the infection cost is a linear function of the
infection rate and of the time to detection. Notice that in the model, the virus is assumed to be
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(b) Monte Carlo simulation of the cost of attack as a
function of the virus propagation rate for the IDS model
in [76]. The false alarm cost is normalized to 1. The
infection cost is of the form γβt, where γ = 0.02.

Figure 3.3: Cost of security as a function of the virus propagation rate. Different plots are shown
for different values of the rate of normal traffic α.

present or not present at time 0 with known probabilities.

As can be seen in the figure, the attack cost is an increasing function of the infection rate. This
tells that the more aggressive a virus is, the more damage it will cause to the system; the extreme
case being a virus that can send at a rate equal to the maximum capacity the channel. Of course,
there are some natural limitations to the rate of propagation that viruses cannot get around (e.g.
finite channel bandwidth) . However, the figure suggests that as far as there is some room for
increasing the infection rate, an intelligent virus will do so.

The phenomenon that we observe in Figure 3.3(b) is common to most IDS models because
they essentially have an observation window, which delays the detection time. It is during this
observation window when aggressive viruses can cause large damage by sending at arbitrary rate.
The model we have considered, overcomes this by delaying the communication of (eventually)
normal users. This might not be desirable for certain applications and is certainly a limitation of
the model. However, using this model, one can guarantee a certain level of security independently
to how aggressive the attackers are. By setting the threshold x equal to the Nash Equilibrium value
xNE , the infection cost Cost(β, xNE) is always less than the NE cost Cost(βNE , xNE).

An interesting follow up question is how to balance between the delay introduced by the IDS
(which might not be desirable for certain applications) and the reduction in cost compared to
traditional IDS. In our study, we have assumed that the delay T is fixed and known. A more
realistic game is one where both the delay T and the threshold x are chosen by the IDS. Such study
will be the subject of future work.
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Chapter 4

Blocking Games

In this chapter, we consider availability (or denial of service) attacks where resources that are (or
might be) needed by a defender are the target of a cognitive attacker. More precisely, we consider
that there is a finite set S and two collections T and E of subsets of S. The defender selects a
subset T ∈ T to perform a mission critical task. Each subset T ∈ T needs some set of resources
eT1 , eT2 , . . . , eTp ∈ E in order to fulfill the task. To disrupt the mission, an attacker targets one
resource e ∈ E to attack. For example, T could be the collection of spanning trees of a graph
and the collection of resources E could be the edges of the graph (as we will see in our application
examples).

When attacked, the cost (loss) to the defender is λT,e, which models the damage caused by the
attacker whenever subset T ∈ T and resource e ∈ E are selected.
The reward to the attacker is λT,e − µ(e), where µ(e) is the cost of attacking the resource e ∈ E .
The attacker also has the option to not launch an attack. The goal of the defender is to minimize
his loss, and the attacker is trying to maximize her net gain.

We model this situation as a “quasi” zero-sum game and consider mixed strategy Nash equilib-
ria, where the defender chooses a distribution on the collection of subsets T ; and the attacker a
distribution on the collection of resources E . The details of the model are discussed in section 4.2.
The results of the game are discussed as a theorem in section 4.3. A proof of the theorem is pre-
sented in section 4.5. Examples of applications of the model and results are discussed in section
4.4.

A certain number of observations are made from the analysis of the Nash equilibria.
First, there exists at least one set E ⊆ E of resources that is more vulnerable than the others – in
the sense that it gives a higher expected net reward to the attacker. Such subsets of resources are
called critical. We use the maximum achievable reward as the vulnerability metric for the defender’s
task. If the vulnerability is negative, the attacker will not launch an attack; and if it is positive,
the attacker will always target critical subsets of resources. The defender will select subsets that
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“minimally”∗ intersect the targeted critical subsets.

Second, if the defender’s loss function can be written as a submodular function, then there exists a
polynomial time algorithm to compute a critical subset of resources (and hence a Nash equilibrium)
for the game. We derive this algorithm by relating the computation of the vulnerability of the task
to the minimization of a submodular function. We then use the existing polynomial algorithms
for submodular function minimization. The derivation of the algorithm is shown in section 4.6.
It requires the notions of Matroid, Polymatroid, and submodular function minimization which we
will briefly discuss in the same section.

The model is applied to two examples that are discussed in section 4.4.
Our first example considers a scenario where a network manager is choosing a spanning tree on the
graph of a network to connect all nodes. An attacker is trying to cut the tree by attacking one link
of the graph. One of our findings is that, in this scenario the minimum cutsets of the graph are
not the most critical subsets of links.

The second example deals with a supply-demand network where a network manager is choosing a
feasible flow to transport the maximum amount of goods from a set of sources to a set of destinations,
and an attacker is trying to minimize this by attacking an arc of the network. In this case, we find
that critical subsets are cutsets that maximize the minimum fraction of goods carried per link of
the cutset. In most cases, these correspond to minimum cutsets of the graph.

Although in this thesis we focus our attention to examples on network topology, there is a broad
range of applications that fit into the framework of this model.

For general games of this model, we determine the structure of a particular set of Nash equilibria.
When the game is zero-sum, we characterize the set of all Nash equilibria. Section 4.5 shows the
details of the proof. To compute the Nash equilibria, we make use of the combinatorial tools of
blocking pair of matrices. Since these notions are central to our analysis, we start by reviewing
them in section 4.1.

Notational Conventions:
In this chapter, we make the following notational conventions.
We use the prime sign (’) for transpose of matrices and vectors. The column vector of ones of length
|T | = N will be denoted by 1T , and 1E denotes the column vector of ones of length |E| = m. All
vectors are denoted by bold lowercase letters and are assumed to be column vectors. Matrices will
be denoted (mostly and not exclusively) by uppercase Greek letters Λ, Ω. The indicator function
will be denoted 1cond. It is equal to 1 if “cond” is satisfied and is equal to 0 otherwise. We will
use α to designate the mixed strategy of the defender, and for the attacker, we use β. Ay other
probability distribution will be denoted by γ.

∗This notion of minimality depends on the cost functions of the games and will become more clear once we define
those cost functions.
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Figure 4.1: Example of polyhedron PΛ defined by a nonnegative proper matrix Λ and its corre-
sponding blocker bl(PΛ). The extreme points of the blocker define the nonnegative proper matrix
Ω.

4.1 Blocking Pair of Matrices

The discussion in this section is mostly based on [80, pp. 99-101] and [81].
Let Λ be a N ×m nonnegative matrix with non-zero rows. The polyhedron PΛ associated with Λ is
defined as the vector sum of the convex hull of its rows (λ1, . . . ,λN ) and the nonnegative orthant:

PΛ = conv.hull (λ1, . . . , λN ) + Rm
+ . (4.1)

A row λi of Λ is said to be inessential if it dominates a convex combination of other rows of Λ,
otherwise we say that λi is essential. If all the rows of Λ are essential, we say that Λ is proper.
The set of essential rows corresponds to the set of extreme points of the polyhedron PΛ. Since
inessential rows are not relevant for the definition of PΛ we will drop them and assume that Λ is
proper.

The example in Figure 4.1 shows the associated polyhedron PΛ to the nonnegative matrix Λ
given below:

Λ =




1/3 3
2/3 2
2 1
4 1/2


 , Ω =




0 2
1/6 2/3
3/10 2/5
2/3 10/36
4 0




(4.2)

Given Λ and its associated polyhedron, we define the blocker of the polyhedron PΛ as follow.

Definition 1 The blocker bl(PΛ) of PΛ is the polyhedron given as:

bl(PΛ) =
{
y ∈ Rm

+ : y′x ≥ 1, ∀ x ∈ PΛ

}
, (4.3)
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where y′x is the inner product of y and x. Recall that in this thesis we use the prime sign (’) for
vector and matrix transpose.

We are interested in characterizing the polyhedron PΛ and its blocker bl(PΛ). For that, we use the
following theorem by Fulkerson [81]. It is based on the fact that there is a one-to-one correspondence
between the essential rows of Λ and the extreme points of PΛ.

Theorem 3 (Fulkerson, 1971) Let the N -by-m matrix Λ be proper with rows λ1, . . . , λN , and
let the polyhedron PΛ be defined as in (4.1). Let ω1, . . . , ωK be the extreme points of bl(PΛ), and
let Ω be the matrix having those points as rows. Then,

1. The blocker bl(PΛ) of PΛ is given by bl(PΛ) =
{
x ∈ Rm

+ : Λx ≥ 1T
}
.

2. Ω is proper, and the polyhedron PΛ can be described as PΛ =
{
x ∈ Rm

+ : Ωx ≥ 1K

}
.

3. The blocker of the blocker bl(PΛ) verifies bl(bl(PΛ)) = PΛ.

Λ and Ω are said to form a blocking pair of matrices.

Equations (4.2) show a blocking pair of matrices Λ and Ω, and the corresponding polyhedra are
shown in Figure 4.1.

Blocking pairs of matrices play an important role in the combinatorial problem of maximum
packing (see Fulkerson[81]). In this thesis, we use the theory of blocking pairs to provide an easy
argument for the existence of a probability distribution that satisfies a certain number of constraints.
For instance, consider the following linear program:

Maximize 1′T x

subject to Λ′x ≤ w, and x ≥ 0, (4.4)

where the constraints Λ form a nonnegative matrix, and w is a given nonnegative vector.
We are interested to knowing whether the value of the program is greater than 1 or not. If this
is the case, one can easily derive a probability distribution by normalizing a feasible solution of
the program. Indeed, since the normalizing factor is greater than 1, the constraints will still be
satisfied. The following lemma gives an answer to our question.

Lemma 1 The value of the LP in (4.4) is greater than 1 if and only if w belongs to the polyhedron
PΛ defined by Λ.

Proof: The proof of the lemma is as follow.
First, notice that strong duality holds for this LP. In fact, Slater’s condition [82] is satisfied for any
nonnegative and nonzero w. The dual of the LP is given as:

Minimize w′y
subject to Λy ≥ 1T , and y ≥ 0. (4.5)
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The constraints of the dual program (4.5) define the blocker bl(PΛ) =
{
y ∈ Rm

+ : Λy ≥ 1T
}

of the
polyhedron PΛ. Now, if w belongs to PΛ, then for all y ∈ bl(PΛ), we have that w′y ≥ 1.

Conversely, if w′y ≥ 1 for all y ∈ bl(PΛ), then w must be in the blocker of bl(PΛ), which by
Fulkerson’s theorem 3, is PΛ. This implies that the value of the dual program is greater than 1.
Combined with the strong duality property, we get that the value of the primal program is at least
1.

4.2 Game Model

This section presents the blocking game model and introduces some notations that we will need to
characterize the Nash equilibria of the game.

We consider that there is a nonempty, finite set S and two nonempty collections T = {T1, . . . , TN}
and E = {e1, . . . , em} of nonempty subsets of S. We call E the collection of resources. The defender
selects a subset T ∈ T to perform a mission critical task. Each subset T ∈ T needs some set
of resources eT1 , eT2 , . . . , eTp ∈ E in order to fulfill the task. To disrupt the mission, an attacker
targets one resource e ∈ E to attack. Each resource e ∈ E has a cost of attack µ(e) that is the
amount of effort that the attacker needs to spend to successfully launch the attack. The attacker
also has the option of not attacking (“No Attack”); which we materialize by the choice of e∅. This
choice results to zero loss for the defender and zero reward for the attacker.

Whenever the defender chooses subset T and resource e is attacked, he loses some value λT,e.
This loss goes to the attacker. It is conceivable that λT,e = 0 if subset T does not need resource e.
Hence, when the pair (T, e) is selected, the defender’s loss is λT,e and the attacker’s net reward is
equal to λT,e − µ(e).

This scenario can be modeled as a two-player matrix game where the players (the defender and
the attacker) choose their pure strategies in the nonempty and finite sets T and E∪{e∅}, respectively
(with |E| = m and |T | = N).
The defender and attacker’s respective payoff matrices are given by

Λ̃ = [Λ|0], and Π̃ = [Π|0], (4.6)

where Λ and Π are N -by-m matrices; (Λ, [Λ]T,e = λT,e) is a nonnegative matrix with no zero rows†,

†A row with all zeros would lead to a trivial game because it means that there exists a subset T ∈ T that will
always result to zero loss. The defender would then always select such strategy and the game ends.
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and such that there is no column of Λ that dominates all other columns‡. Π is given by,

Π = Λ−




µ(1) µ(2) . . . µ(m)
µ(1) µ(2) . . . µ(m)

...
...

. . .
...

µ(1) µ(2) . . . µ(m)


 , (4.7)

The “last” all-zero column in the definition of Λ̃ and Γ̃ captures the zero-loss for the defender
(λT (e∅) = 0) and zero-reward for the attacker (µ(e∅) = 0) when this latter chooses the “No
Attack” strategy (e∅). For notational simplicity, we will only mention Λ and Γ.

We consider mixed strategies of this game where the defender chooses a distribution (αT , T ∈ T )
on T and the attacker chooses a distribution (β(e), e ∈ E ∪ {e∅}) on E ∪ {e∅}. The goal of the
defender is to minimize the expected loss

L(α,β) = α′Λ̃[β; β(e∅)] =
∑

T∈T
αT

(∑

e∈E
β(e)λT,e

)
, (4.8)

while the attacker is trying to maximize the expected reward

R(α, β) = α′Π̃[β; β(e∅)] =
∑

e∈E
β(e)

(∑

T∈T
αT λT,e − µ(e)

)
. (4.9)

In our notation, [β;β(e∅)] is the column vector obtained by appending the additional row (entry)
β(e∅) to the column vector β.

Let PΛ be the polyhedron associated with Λ given in (4.6), and let bl(PΛ) denote its blocker.
From the discussion in the previous section and from Fulkerson’s theorem, the blocker bl(PΛ) ⊆ Rm

+

is the polyhedron associated with the nonnegative matrix Ω whose rows are the vertices of bl(PΛ).
It is also known that bl(PΛ) is the vector sum of the convex hull of rows of Ω with the positive
orthant Rm

+ , and that its blocking polyhedron is PΛ (see [81] and [80, pp. 99-101]). Also, Theorem
3 gives that

PΛ =
{
x ∈ Rm

+ , s.t. Ωx ≥ 1T
}

(4.10)

Now, for ω row of Ω§, which we denote as ω ∈ Ω, we write ω = (ω(e), e ∈ E), and let ω(E) :=∑
e∈E ω(e). Note that ω(e) ≥ 0 for all e ∈ E and ω(E) > 0¶; so that (ω(e)

ω(E) , e ∈ E) is a probability
distribution on E . We call it the probability distribution induced by ω.

‡This would also lead to a trivial game if the attack cost is not too high. In fact, it means that there is a resource
that will always give higher attack gain, independently of the subset chosen by the defender. The attacker would
always target such a resource.

§Notice that this is an abuse of language because ω is a column vector.
¶This is because the blocker bl(PΛ) is not empty (Λ is not a one-rowed zero matrix), and does not contain the

all-zero vector (the origin) (this could not give an inner product with rows of Λ that is greater than 1).
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Also define, for each ω ∈ Ω, the quantities

λ(ω) := min
T∈T

(∑

e∈E

ω(e)
ω(E)

λT (e)

)
; (4.11)

and
θ(ω) := λ(ω)−

∑

e∈E

ω(e)
ω(E)

µ(e). (4.12)

λ(ω) is the minimum loss seen by the defender if the attacker were to choose a target according to
the distribution (ω(e)

ω(E) , e ∈ E) induced by ω.
The expression of θ(ω) is composed with two terms. If the attacker were to choose a resource to
attack according to the distribution ω = (ω(e)

ω(E) , e ∈ E), then the first term would have been the
loss seen by the defender, which, as we have assumed, goes to the attacker. The second term is the
average cost of attack corresponding to the distribution induced by ω. Hence, θ(ω) can be seen as
the expected attack reward associated ω.

We call the vertex ω of the blocking polyhedron a critical vertex if

θ(ω) = max
ω̃∈Ω

θ(ω̃) . (4.13)

A critical vertex is one whose induced probability distribution gives a maximum rewards to the
attacker (considering the defender’s response).
We define θ := maxω̃∈Ω θ(ω̃) to be the maximum achievable value in the preceding expression, and
we let Ωmax denote the matrix having as rows the critical vertices of bl(PΛ).
We use θ as the vulnerability for the defender’s task.

4.3 Nash Equilibrium Theorem

This section presents the main results of the two-player matrix game defined in section 4.2. We
claim that:

Theorem 4 For the game defined above, the following always hold.

1. If θ ≤ 0, then “No Attack” (i.e. β(e∅) = 1) is always an optimal strategy for the attacker. In
this case, the equilibrium strategy (αT , T ∈ T ) for the defender is such that

λ̄α(e) :=
∑

T∈T
αT λT (e) ≤ µ(e), ∀e ∈ E . (4.14)

The corresponding payoff is 0 for both players.
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2. If θ ≥ 0, then for every probability distribution (γω, ω ∈ Ωmax), the attacker’s strategy
(β(e), e ∈ E) defined by

β(e) =
∑

ω∈Ωmax

γω
ω(e)
ω(E)

(4.15)

is in Nash equilibrium with any strategy (αT , T ∈ T ) of the defender that satisfies the following
properties: {

λ̄α(e)− µ(e) = θ for all e ∈ E such that β(e) > 0.
λ̄α(e)− µ(e) ≤ θ for all e ∈ E .

(4.16)

Further, there exists at least one such strategy α.

The corresponding payoffs are θ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

ω∈Ωmax

γωλ(ω). (4.17)

3. If µ = 0, then every Nash equilibrium pair of strategies for the game is of this type.

Note: θ = 0 is a particular case where both cases (1) and (2) can occur. In all cases, the
maximum achievable attack reward is equal to 0. There exist equilibria where the attacker decides
to not attack. In those cases, the defender has to choose α according to (4.14). There might
also exist equilibria where the attack launches an attack but gets a expected reward of 0. In such
equilibrium, α has to satisfy (4.16).
In our experiments we did not find any equilibrium where the attacker would mix between e∅ and
some resources in E .

4.4 Examples

In this section, we illustrate the game model and the NE theorem using two examples.
The first example considers a network given as a connected undirected graph. The aim is to study
the strategic interaction between a network manager whose goal is to choose a spanning tree of the
network as communication infrastructure, and an attacker who tries to disrupt the communication
tree by attacking one link in the network. In the second example, we analyze games on a supply-
demand network where a defender selects a feasible flow to carry a maximum amount of goods
from a set of sources to a set of destinations. An attacker is trying to disrupt the transport by
attacking one arc of the network. We will focus our study on networks with infinite capacity on
arcs. Capacitated networks can also be studied by using the same tools as un-capacitated networks.
We leave this study for future work.

4.4.1 The spanning tree – link game

The network topology is given by a connected undirected graph G = (V, E) with |E| = m links and
|V| = n nodes. The collection of subsets T is the set of spanning trees; we let N = |T |.
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To get all nodes connected in a cycle-free way, the network manager chooses a spanning tree
T ∈ T of the graph. The attacker simultaneously selects an edge e ∈ E to attack. Each edge e ∈ E
is associated with some cost µ(e) that an attacker needs to spend to launch a successful attack on
e. All trees T have the same cost for the network manager that we assume to be equal to 1. The
attacker wins if the attacked link belongs to the chosen spanning tree, otherwise the network wins.
More precisely, for a choice pair (T, e) of tree and edge, the attack loss is 1e∈T for the network,
while the net attack reward is equal to 1e∈T − µ(e) for the attacker. 1e∈T is the indicator variable
that is equal to 1 of e ∈ T , and 0 otherwise. It is also assumed that the attacker has the option of
not attacking.

This scenario fits well to the model discussed in the previous section. The payoff matrix Λ in this
case, corresponds to the tree-link incidence matrix of the graph, and the associated polyhedron PΛ

is called the spanning tree polyhedron. Next, we characterize PΛ and its blocker bl(PΛ).

The spanning tree polyhedron PΛ and its blocker bl(PΛ)

Recall (4.1) that the polyhedron PΛ is defined as the vector sum of the convex hull of its rows
(λ1, . . . ,λN ) and the nonnegative orthant:

PΛ = conv.hull (λ1, . . . , λN ) + Rm
+ . (4.18)

We are interested in characterizing PΛ as well as its blocker polyhedron bl(PΛ). For that, Chopra
[83] proposed the following idea that is based on partitioning the nodes of the graph.

For a connected graph G = (V, E), a minimum cut partitions the node set V into two subsets V1

and V2, and includes all the edges having one end point in V1 and the other one in V2. Furthermore,
each of the subgraphs, Gi = (Vi, E(Vi)), i = 1, 2 is connected. This notion can be generalized to
a partition P = (V1, . . . ,V|P |) of the nodes of G such that each subgraph Gi = (Vi, E(Vi)), i =
1, . . . , |P | is connected. Such a partition is said to be feasible. |P | is the size of the partition
(number of partition elements).

Now, consider a feasible partition P = (V1, . . . ,V|P |) and any spanning tree T . Since the graph is
connected, the links used by T must connect all elements Vi of P . This is done by using only links
that go from one element Vi of the partition to another Vj , j 6= i. We let E(P ) be the set of edges
that go across the elements of the partition. At least |P | − 1 of those links are needed to connect
the Vi, i = 1, . . . , |P |. Thus, the spanning tree T contains at least |P | − 1 links in E(P ). The rows
of Λ (denoted by λT ) are the incidence vector corresponding to the spanning trees T . From this
we deduce that the λT ’s must verify

∑

e∈E(P )

λT,e ≥ |P | − 1 for all feasible partitions, P and all T ∈ T . (4.19)

Recall that in this example, λT,e = 1e∈T .

If a vector x belongs to the spanning tree polyhedron PΛ, then it is the sum of a convex com-
bination of the vertices of Λ plus some positive vector. As a consequence, x must also satisfy
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∑
e∈E(P ) x(e) ≥ |P | − 1. Using this idea, we give the following characterization (by Chopra [83]) of

the spanning tree polyhedron.

Proposition 1 The spanning tree polyhedron of the graph G corresponds to the set

PΛ =



x ∈ Rm

+ |
∑

e∈E(P )

x(e) ≥ |P | − 1, ∀ P feasible partitions



 , (4.20)

where E(P ) denotes the set of edges that go between vertices in distinct elements of the partition P .

We have already argued that any vector in the spanning tree polyhedron belongs to the set defined
in the RHS of the equation above. To see the inverse, assume that x verifies the characterization
in the RHS of (4.20) and assume that x /∈ PΛ. This latter assumption implies that x is dominated
by any linear combination of the λT ’s, i.e.

x <
∑

T∈T
γT λT , (4.21)

for any (γT , T ∈ T ) such that
∑

T∈T γT = 1.
For any feasible partition P , there exists a spanning tree TP that contains no more than |P | − 1
edges of E(P ). For such TP ,

∑
e∈E(P ) λT,e = |P | − 1. Now, let (γT , T ∈ T ) be such that γTP

= 1,
then (4.21) implies that

∑

e∈E(P )

x(e) <
∑

e∈E(P )

∑

T∈T
γT λT,e =

∑

e∈E(P )

λT,e =
∑

e∈E(P )

1e∈T = |P | − 1. (4.22)

This contradicts the hypothesis that x satisfies the characterization in the RHS of (4.20). As a
consequence, x ∈ PΛ, which completes the argument.

Next, we need to characterize the blocker bl(PΛ) of the spanning tree polyhedron. Recall that
bl(PΛ) is defined as:

bl(PΛ) =
{
y ∈ Rm

+ : y′x ≥ 1, ∀ x ∈ PΛ

}
. (4.23)

This is the set of nonnegative vectors y that have an inner product greater to 1 with any x ∈ PΛ.
Since any x ∈ PΛ dominates a convex combination of the vertices of PΛ, we can focus on inner
products y′x, for x vertex of the spanning tree polyhedron. We know that those vertices correspond
to the rows of Λ which are the incidence vector of the spanning trees (λT ). Hence, we are looking
for nonnegative vectors y that have an inner product equal to at least 1 with any incidence vector
λT .

We start by constructing, for any given feasible partition P = (V1, . . . ,V|P |), the vector ωP that
satisfies (ωP )′ λT ≥ 1 for all λT . The construction goes as follows. For any feasible partition P ,
form ωP whose entries correspond to the edges of the graph. Set entry ωP (e) equal to 1

|P |−1 if edge
e ∈ E goes from one element Vi of the partition to another Vj (i.e. if e ∈ E(P )). Otherwise, set
ωP (e) = 0.
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The claim is that the inner product (ωP )′ λT ≥ 1, for any λT . This is the case because any
spanning tree contains at least |P | − 1 edges in E(P ). The inner product is equal to 1 if the
spanning tree contains exactly |P | − 1 edges in E(P ).

From this and Fulkerson’s theorem (Theorem 3), we deduce that the vectors ωP belongs to the
blocker bl(PΛ) of the spanning tree polyhedron. Indeed, they have an inner product equal to at
least 1 with any x ∈ PΛ because of the fact that such x dominates a convex combination of the
λT ’s.

Also, for a feasible partition P , the essential‖ vectors of the construction above are minimal
in the sense that any vector y that is strictly dominated by ωP (essential) will have an inner
product y′λT strictly less than 1 with some λT (for instance the spanning tree that crosses E(P )
in exactly |P | − 1 edges). Thus, the (essential) vectors ωP must be vertices of the blocker bl(PΛ)
of the spanning tree polyhedron. To show that they completely characterize bl(PΛ), we define the
following polyhedron (corresponding to the sum of the convex hall of those vectors plus any positive
vector),

PΩ = conv.hull (ω1, . . . ,ωK) + Rm
+ . (4.24)

K here is the number of feasible partitions.

Since any vector ωP has an inner product equal to at least 1 with any x ∈ PΛ, any vector y ∈ PΩ

verifies y′x ≥ 1 for any x ∈ PΛ. Thus, PΩ ⊆ bl(PΛ). Now we need to show that bl(PΛ) ⊆ PΩ. For
that, assume that y ∈ bl(PΛ). If y /∈ PΩ, then y is dominated by any linear combination of the
essential vectors ωP , i.e.:

y <
∑

P

γP ωP , (4.25)

for any probability distribution γP on the set of feasible partitions P for which ωP is essential.
We also know that for any feasible partition Po, there exists a spanning tree To such that

∑
e∈E(Po) λTo =

|Po| − 1.

Now, let the distribution γ be such that γPo = 1 Then, (4.25) implies that

y′λTo <
(
ω′Po

λTo

)
=

∑

e∈E
ωPo(e)λTo,e (4.26)

=
∑

e∈E(Po)

1
|Po| − 1

1e∈To (4.27)

=
1

|Po| − 1

∑

e∈E(Po)

1e∈To (4.28)

=
1

|Po| − 1
(|Po| − 1) (4.29)

= 1 (4.30)

‖We need the vectors to be essential because a priori, a feasible partition P can yield to a ωP that is a convex
combination of the others.
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Not feasible Not feasible Feasible Feasible

Figure 4.2: Examples of feasible and not feasible subsets of links. The chosen subset is shown in
dashed line. The two subsets in the left are not feasible, the two subsets in the right are feasible.

This contradicts the hypothesis that y ∈ bl(PΛ). Thus, y ∈ PΩ and as a consequence bl(PΛ) ⊆ PΩ
∗∗.

This gives a characterization of bl(PΛ) by its set of vertices which are the essential vectors of
the family defined as follow: for any feasible partition P = (V1, . . . ,V|P |), form ωP whose entries
correspond to the edges of the graph. Set entry ωP (e) equal to 1

|P |−1 if edge e ∈ E goes from one
element Vi of the partition to another Vj (i.e. if e ∈ E(P )). Otherwise, set ωP (e) = 0. More
precisely, for feasible partition P and e ∈ E ,

ωP (e) =
1e∈E(P )

|P | − 1
. (4.31)

From feasible partitions to feasible subsets of edges

Before applying the theory and results of the previous section to the spanning tree-link game
example, let’s give one more result that will enable us to switch the discussion about partition to
a discussion on edges of the graph.

First, observe that every feasible partition P uniquely defines the set E(P ) of edges that go across
the elements of P . Also, each such edge has its two ends in two different connected components
of the graph GĒ(P ) obtained by removing from G, the edges in E(P ). This means that adding any
edge e ∈ E(P ) to GĒ(P ) will decrease the number of its connected components by 1. Let’s call a
subset of edges E ⊆ E feasible if E is such that, for every edge e ∈ E, adding e to GĒ (the graph
obtained by removing from G, the edges in E) decreases its number of connected components by 1.
Figure 4.2 shows examples of feasible and not feasible subsets of a graph. The following lemma
establishes the correspondence between feasible partitions and feasible subsets.

Lemma 2 1. For every feasible partition P , the set E(P ) of edges that go between vertices in
distinct elements of P is a feasible subset.

2. Every feasible subset is the set of edges going across the elements of some feasible partition.

Proof: The first part of the lemma follows from the discussion in the previous paragraph.
To show the second part, let E be a feasible subset and let PĒ be the partition induced by E defined
∗∗In fact, from Fulkerson’s Theorem, we know that Ω is the matrix having as rows the essential vectors ωP .
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as follow: two vertices of the graph are in the same partition if they are connected by a path that
involves only edges that are not in E. This partition is also the one obtained by removing edges in
E from the graph, and considering vertices in the same connected component as being in the same
partition element. We would like to show that E(PĒ) = E.

First, notice that if e = (u, v) is an edge having its two ends u and v in distinct elements of the
partition, then it must be that e ∈ E. Otherwise, by definition, u and v would be in the same
partition. Thus, we have that E(PĒ) ⊆ E.

Now, assume that e = (u, v) ∈ E. Since E is feasible, u and v must be in distinct elements of the
partition. Otherwise, adding e to GĒ would not decrease its number of connected components. As
a consequence, e ∈ E(PĒ). Since e is arbitrary, this implies that E ⊆ E(PĒ). Thus, E(PĒ) = E.

One consequence of the theorem is that the number of connected components of GĒ is equal to
the size of the partition PĒ . We will denote it Q(GĒ) = |PĒ |.

In the remaining parts of this subsection, we will use feasible subsets (E) in place of feasible
partitions (P ). For instance, the vertices of the blocker bl(PΛ) are now denoted ωE , for E feasible
subset. Later, since our goal will be to compute critical subsets of links, we will see that we can
even drop the feasibility requirement and consider arbitrary subset of links E.

Applying the model

We are now ready to define λ(ωE) in (4.11), θ(ωE) in (4.12), and θ. For ease of notation, we write
λ(E) := λ(ωE), and θ(E) := θ(ωE).

First, from the characterization of the vertices of the blocker of PΛ (4.31), we have that, for
feasible subset E††

ωE(e) =
1e∈E

Q(GĒ)− 1
, and

∑

e∈E
ωE(e) =

|E|
Q(GĒ)− 1

, (4.32)

so that
ωE(e)∑

e∈E ωE(e)
=

1e∈E

|E| . (4.33)

††Again ωE needs to be essential to be a vertex of bl(PΛ).
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Next, we have for a given feasible subset E that,

λ(E) = min
T∈T

(∑

e∈E

1e∈E

|E| 1e∈T

)
(4.34)

=
minT∈T

(∑
e∈E 1e∈E1e∈T

)

|E| (4.35)

=
minT∈T

(∑
e∈E 1e∈E∩T

)

|E| (4.36)

=
minT∈T (|E ∩ T |)

|E| (4.37)

=
M(E)
|E| , (4.38)

where in the last equality we have defined M(E) as

M(E) = min
T∈T

(|E ∩ T |) . (4.39)

θ(E) is given by

θ(E) = λ(E)−
∑

e∈E

1e∈E

|E| µ(e) (4.40)

=
M(E)
|E| − µ(E)

|E| (4.41)

Finally, from (4.32), the distribution induced by a feasible subset E is given by

βE(e) =
1e∈E

|E| , ∀e ∈ E . (4.42)

This distribution is uniform in E.

A feasible subset E of links is said to be critical if

θ(E) = max
Ẽ:feasible

(
M(Ẽ)− µ(Ẽ)

|Ẽ|

)
. (4.43)

We let θ denote the LHS of the above equation and use it as the vulnerability metric of the graph.
We also define C to be the family of critical subsets of links.

Remark:
As was hinted earlier, in the definition of critical subset we do not need the feasibility requirement
of E. In fact, we can show that (see appendix A.2) a non-feasible subset can never be critical. As
of such, in the sequel, we will drop the term “feasible” and consider any arbitrary subset of edges
E ⊆ E .
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Figure 4.3: Illustrative network examples where the attack cost µ = 0. Example 4.3(a) is a network
that contains a bridge. A bridge is always a critical set. The network in 4.3(b) is an example of
graph where the minimum cutset (links 6,8) corresponds to a critical subset. Example 4.3(c) shows
a graph where the minimum cutset is not critical.

Some examples of graph

The examples shown in Figure 4.3 illustrate the definitions discussed above. In these figures, we
have assumed that µ = 0 so that a subset of edges is critical if the ratio M(E)

|E| is maximal.

For the network in Figure 4.3(a), all spanning trees must go through the middle link, so that
θ(E) = 1 if E is the set with only that link. That set is critical. In general, an edge that must be
part of every spanning tree is called a bridge. Also, it is not difficult to verify that if µ = 0 the
vulnerability of a subset E is equal to the maximum value of 1 if and only if E is only composed
of bridges.

The graph in Figure 4.3(b) contains 8 nodes and 14 links. It has one minimum cutset composed
of the links 6 and 8. If E = {6, 8}, then any spanning tree contains at least one link in E. Thus,
|T ∩ E| ≥ 1 for any tree T. Furthermore, there exists T such that T ∩ E = {6}. Thus, M(E) = 1,
giving a vulnerability of θ(E) = 1/2. This is the maximum vulnerability of this graph, which
implies that E = {6, 8} is a critical subset.

The set {6, 8} is not the only critical subset. For instance, if we consider the set of all links
E = E , then |T ∩E| = n−1 = 7 for any tree T because any spanning tree contains n−1 links. This
set is also critical because θ(E) = 7

14 = 1/2. Another critical subset is E = {1, 2, 3, 4, 5, 6, 7, 8}.
If E = {1, 2, 4}, choosing T = {3, 6, 7, 8, 9, 13, 14} gives T ∩ E = ∅. Hence, M(E) = 0.

The minimum cutset of a graph is not always critical. In Figure 4.3(c) if E = {6, 8} then
θ(E) = 1/2. However, choosing E = {6, 8, 9, 10, 11, 12, 13} gives θ(E) = 4/7 > 1/2. One can verify
that 4/7 is the maximum achievable ratio M(E)

|E| implying that E = {6, 8, 9, 10, 11, 12, 13} is critical
and E = {6, 8} is not.

Figure 4.4 shows examples where the attack costs are positive. The network in Figure 4.4(a) has
a vector of attack cost µ = [0.5, 0.5, 0.5, 2, 0.5, 0.5, 0.5]. It contains a bridge that has a relatively
high cost of attack (µ(4) = 2). As a consequence it is not critical. There are two critical subsets
E1 = {1, 2, 3} and E2 = {5, 6, 7}. This example illustrates the impact of the attack cost. When a
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Figure 4.4: Illustrative network examples for µ > 0. Example 4.4(a) is a network that contains
a bridge. The vector of attack costs is µ = [0.5, 0.5, 0.5, 2, 0.5, 0.5, 0.5]. There are 2 critical sets:
E1 = {1, 2, 3} and E2 = {5, 6, 7}. The bridge is neither critical nor it does belong to a critical subset.
In the network in 4.4(b) the vector attack costs is µ = [5, 3, 3, 5, 5, 4, 3, 3, 5, 5, 4, 5, 5, 3]/14. In this
case the minimum cutset (links 6,8) corresponds to a critical subset. Example 4.4(c) shows a graph
where the minimum cutset is not critical. In this case µ = [2, 5, 1, 2, 1, 1, 6, 5, 3, 7, 1, 4, 3, 6]/21.

link is too costly to attack, it becomes less critical.

Figures 4.4(b) and 4.4(c) show the same network topology with different costs of attack. In the
first one, the attack costs are µ = [5, 3, 3, 5, 5, 4, 3, 3, 5, 5, 4, 5, 5, 3]/14. For these values of the costs
of attack, the minimum cutset of the graph (links 6 and 8) is critical. When the attack costs are
equal to µ = [2, 5, 1, 2, 1, 1, 6, 5, 3, 7, 1, 4, 3, 6]/21, then the minimum cutset is no longer critical. It
has vulnerability θ(6, 8) = 1−(4+3)/14

2 = 1/4. One critical subset of the graph is given by the set
E = {1, 2, 3, 4, 5, 6, 7, 8, }. Its vulnerability is θ(E) = 0.3631.

Nash equilibrium theorem applied to the spanning tree game

For this example, the Nash equilibrium theorem 4 can be written as follow.

1. If θ = maxE⊆E
(M(E)−µ(E)

|E|
)
≤ 0, then the attacker will opt to not launch an attack. The

equilibrium strategy (αT , T ∈ T ) for the defender is such that
∑

T3e

αT ≤ µ(e), ∀e ∈ E . (4.44)

The corresponding payoff is 0 for both players.

2. If θ ≥ 0, then for every probability distribution (γE , E ∈ C) on the set C of critical subsets,
the attacker’s strategy (β(e), e ∈ E) defined by

β(e) =
∑

E∈C
γE

1e∈E

|E| (4.45)
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is in Nash equilibrium with any strategy (αT , T ∈ T ) of the defender that satisfies the
following properties:

{ ∑
T3e αT − µ(e) = θ for all e ∈ E such that β(e) > 0.∑
T3e αT − µ(e) ≤ θ for all e ∈ E .

(4.46)

Furthermore, there exists at least one such strategy α.

The corresponding payoffs are θ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

E∈C
γE
M(E)
|E| . (4.47)

3. If µ = 0, then every Nash equilibrium pair of strategies for the game is of this type.

Next, we analyze the NE theorem. We will separately discuss the case µ = 0 and the case µ > 0.

Analyzing the NE: case µ = 0

Notice that if µ = 0, we have θ > 0 and as a consequence the attacker will always launch an attack.
In this case, one can refine the defender’s payoff.

{ ∑
T3e αT = θ for all e ∈ E such that β(e) > 0.∑
T3e αT ≤ θ for all e ∈ E .

(4.48)

where, θ = maxE⊆E
(M(E)

|E|
)
.

• The attack only focuses on critical subsets by taking convex combination of uniform strategies
on critical subsets. All edges in a given critical subsets are attacked with the same probability.
This uniformity of attack comes from the geometry of the spanning tree polyhedron and its
blocker as we have seen earlier.

• If γEc = 1 for a some critical subset Ec, we have that the corresponding attack is to target
uniformly links in Ec. The defense strategy should verify

∑
T3e αT ≤ M(Ec)

|Ec| for all e ∈ E ,
and equality holds for each e ∈ Ec. Also, by the Nash equilibria conditions it must be that
for any spanning tree T

∑

e∈T

β(e) =
∑

e∈T

1e∈Ec

|Ec| =
|Ec ∩ T |
|Ec| ≥ M(Ec)

|Ec| . (4.49)

The minimum value in the equation above is achieved for each T for which αT > 0.
Since the value of the game is equal to M(Ec)

|Ec| , we have that M(Ec) = minT (|E ∩ T |) =
|Ec ∩ T |. In other words, the defender will select only spanning trees that cross the critical
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a) b) c)

Figure 4.5: Critical subset and topology design. Graphs (b) and (c) are two different ways of adding
a link to graph (a) which have a vulnerability of 3/4. If it is added as in (b), then the vulnerability
is 3

5 . If it is done as in (c), the vulnerability is 2
3 > 3

5 , which is leads to a less robust network.

subset in the minimum number of links. Furthermore, the sum (
∑

T3e αT ) of the probability
assigned to the trees crossing each link e ∈ Ec is the same for all links in the critical subset.
This sum is equal to θ, the vulnerability of the subset Ec. For any other link, this sum should
be less than θ.

• From the second part of the theorem we see that every critical subset supports some Nash
equilibrium (for instance the critical subset attack equilibrium). Conversely, from the third
part of the theorem, if µ = 0 each support of NE for the attacker is a union of some critical
subsets.

• Knowing the critical subsets (the weakest points of the network) is important for the network
manager. The example in Figure 4.5 is an illustration. Consider the network in Figure 4.5.(a)
whose vulnerability is equal to 3

4 . In all these figures, the critical subset is represented by the
dashed edges. Suppose that the network manager has an extra link to add to this network
and would like to know the optimal way to add this link. If the additional link is put in the
position as in Figure 4.5.(b), then the vulnerability of the graph becomes 3

5 < 3
4 (the graph

is always less vulnerable with an additional link). If instead the link is added as in Figure
4.5.(c), the vulnerability of the graph is 2

3 > 3
5 leading to a less robust network.

• The notion of graph vulnerability introduced in this study has been previously (with some
differences) defined in a related but slightly different context. In [84], Gusfield discussed the
consequences of Tutte [85] and Nash-Williams’ [86] theorem and was particularly interested
in the maximum number (M) of edge-disjoint spanning trees of a graph G. Two spanning
trees of G are called disjoint if they have no edge in common.

Gusfield showed that
M = min

E⊆E
b |E|
Q(GĒ)− 1

c , (4.50)

where GĒ is the graph resulting from deleting the edges in E from G, and Q(GĒ) is the
number of connected components in GĒ . Ē denotes the complement of E in E .

The quantity σ(G) = minE⊆E
( |E|

Q(GĒ)−1

)
was then used as a measure of the invulnerability of

the graph, i.e. the smaller this is the more vulnerable the graph is, in the sense of Gusfield.
In that paper, any minimizing set for this quantity was interpreted as a set of edges whose
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removal from G maximizes the number of additional components created, per edge removed.
The main question that was asked then was whether there exists a polynomial time algorithm
to compute σ(G).

Cunningham provided such an algorithm in [87]. Considering σ(G) as the strength of G, he
defined (in a non-game theoretic setting) an optimal attack problem as well as a network
reinforcement problem. The optimal attack problem consists of computing the strength of G
and determining a minimizing set. Cunningham considered edge-weighted graphs, with edge j

having strength sj ; the strength of the graph is defined as σ(G) = minE⊆E
( ∑

j∈E sj

Q(GĒ)−1

)
, which

corresponds to the invulnerability defined by Gusfield when sj = 1 for all j ∈ E . The network
reinforcement problem of [87] is related to minimizing the cost of increasing the strengths of
individual edges in order to achieve a target strength for the graph. For details, see [87].

Using polymatroid theory and network flow analysis, Cunningham provided polynomial time
algorithmic solutions to both problems. In section 4.6, we discuss this algorithm in the context
of the spanning tree game.

Recently, a paper by Catlin et al. [88] generalizes Gusfield’s notion of invulnerability by
imposing bounds on the number of connected components, Q(GĒ).

In our study, the critical subsets have been found to correspond to (basis of) Nash equilibria
of a quasi zero-sum game. It is to be noticed that our definition of vulnerability verifies
θ = σ(G)−1. To see that, one needs to show that,

Lemma 3 For any E ⊆ E,
M(E) = Q(GĒ)− 1. (4.51)

Proof Sketch: The ideas in the proof are as follows. Consider the different connected
components of the graph when the edges in E are removed. Any spanning tree of the original
graph has to connected those components, and this connection is done by only using edges
in E. Since there are Q(GĒ) connected components, one needs exactly Q(GĒ)-1 to connect
them in a cycle-free way.

It is interesting to note that, despite the fact that this metric (θ = maxE

(M(E)
|E|

)
) is more

refined than the edge connectivity (i.e. size of minimum cutset), it has largely not been used
in the graph theory community. One reason suggested by Gusfield is the complexity of its
computation. As was stated earlier, Cunningham [87] has subsequently provided a polynomial
time algorithm to compute θ as well as a minimizing subset.

Our result shows that, in a environment where the adversary is cognitive, θ is indeed the
appropriate metric of graph vulnerability.

Analyzing the NE: case µ > 0

We discuss the NE theorem for µ > 0 by considering a game on the graph shown in Figure 4.6.
Table 4.1 shows the parameters and results of the game. The first column shows different values
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Figure 4.6: Example of graph and its spanning trees. The left figure is the original graph with the
5 edges labeled with their number. The right figures are the 8 spanning trees of the graph also
labeled with their numbers. In the payoff column, L is the defender’s loss while R is the attacker’s
reward.

Table 4.1: Game with positive attack cost played for different values of the cost of attack µ.
Attack Cost Critical Set Vulnerability Nash Equilibria Payoffs

µ Ec θ α β (L,R)

[3 3 5 3 4]/5 (1,4) -0.1
[0 0 2 0 0 1 0 2]/5 No Attack (0, 0)
[0 0 2 1 0 0 0 2]/5 No Attack (0, 0)

[5 2 3 2 3]/5 (1-5)&(2-4) 0
[0 2 1 2 0 0 0 0]/5 [1 1 1 1 1]/5 (0.6, 0)
[0 2 1 2 0 0 0 0]/5 [0 1 1 1 1]/4 (0.5, 0)
[0 2 1 2 0 0 0 0]/5 No Attack (0, 0)

[5 4 2 4 2]/8 (3,5) 0.25
[0 1 0 0 1 2 0 0]/4 [0 0 1 0 1]/2 (0.5, 0.25)
[0 1 0 1 0 1 1 0]/4 [0 0 1 0 1]/2 (0.5, 0.25)

[4 3 2 4 3]/8 (1-5) 0.2
[0 11 1 5 11 12 0 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)
[0 11 1 16 0 1 11 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)
[1 10 1 16 0 0 12 0]/40 [1 1 1 1 1]/5 (0.6, 0.2)
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of the attack costs µ and the second column shows the corresponding critical subset(s). The
third column displays the vulnerability of the graph. For each vector of attack costs, we compute
the Nash equilibria of the game. The next two columns of the table show the Nash equilibrium
strategies, respectively α for the network manager, and β for the attacker. The equilibrium payoffs
are displayed in the last column. In all equilibria, we have chosen the distribution γEc to only focus
on a particular critical subset (the ones shown on the table). Note that we have not shown all Nash
equilibria.

• The first game considers a case where µ = [3 3 5 3 4]/5. Here, edge 3 has a particularly high
cost (equal to the cost of a tree). In this case, the vulnerability of the graph (θ = −0.1) is
negative and the attacker does not make any gain by attacking. Her best strategy is to “not
attack” and the network manager chooses a tree according to a distribution α that satisfies
(4.44). There exist many such distributions α; two of which are shown in the table. Since
there is no attack, each player gets a payoff of zero.

This game models scenarios where attacking requires so much investment from the attacker
that it is not worth doing it. The network manager needs to randomize his choice of trees to
deter the attacker from attacking. In fact, if the network were to pick a fixed tree, then the
attacker could get a positive reward by attacking the cheapest link (of cost 3/5) of that tree.
In other word, the randomization is necessary for the NE to hold.

• In the next game (second row of the table), the cost of attack is µ = [5 2 3 2 3]/5. In this
case, the maximum attack reward is exactly equal to zero, and it can be achieved by several
attack strategies as can be seen in the table (column 5). Although the attacker cannot gain
by launching an attack, the damage she can cause to the network varies depending on the
attack she launches.

This game illustrates the importance of knowing the type/nature of an opponent. For example,
if the attacker is a competitor who also wants to maximize the loss to the network, then, she
will likely attack a link at random with the same probability (which gives a loss of 0.6).
However, if the attacker is just interested in her own payoff, then she will probably not
launch an attack.

• From these two examples and the first part of the theorem, one can infer that if the network
manager is able to influence the attack costs µ, for example making the links harder to attack
by investing on security (physical protection, Firewalls, Intrusion Prevention Systems (IPS)
to avoid Denial of Service (DoS), etc...), then he can deter the attacker from attacking. This
can be done by investing on the links to the point that M(E) ≤ µ(E) for all subsets of
edges E ⊆ E . One can compute the optimal investment by solving an optimal reinforcement
like problem. The network reinforcement problem of [87] is related to minimizing the price
of increasing the cost of attack of individual edges in order to achieve a target vulnerability
(here 0) for the graph. For details, see [87]. If the cost of attack can be estimated by some
means, this can be a very good candidate for preventive security.

• The last two games are examples where the maximum attack reward is strictly positive. In
the first one, the attacker only targets the links that are less costly which turn out to be the
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Figure 4.7: A demand-supply network. Sources S = {S1, S2} produces 5 units of goods. Destina-
tions T = {T1, T2} needs 5 units of good. The amount of goods produced by the sources (S1, S2)
is (2, 3). The destination nodes (T1, T2) need (4, 1). An example of feasible flow is shown in the
figure with the amount of goods carried by each arc is the value marked on the arcs.

minimum cutset of the graph (seen by the attacker). In the second example, the minimum cut
seen by the attacker corresponds to links 3 and 5. However, the attack’s reward is maximized
by targeting all the links with the same probability as it is shown in the table.

• The algorithm mentioned in the case µ = 0 can also be used to compute the vulnerability as
well as a critical subset for the case of positive cost of attack. We will discuss this in section
4.6.

4.4.2 Examples 2: Un-capacitated supply demand networks

Most of the results discussed in these example are based on Fulkerson [89].
Let (V,A) be an arbitrary network with node-set V and arc-setA. Arcs are considered to be directed
edges and able to carry infinite amount of goods (un-capacitated network). Let some nonempty
subset S of V be considered “source” nodes, and some nonempty subset T of V be considered
“destinations” nodes, where S ∩ T = ∅. With each node x ∈ S we associate a nonnegative number
s(x), the “supply” at x, and with each node x ∈ T we associate a nonnegative number d(x), the
“demand” at x. Throughout this examples, we assume that the demand is exactly equal to the
supply, i.e. ∑

x∈S

s(x) =
∑

x∈T

d(x). (4.52)

Figure 4.7 shows an example of demand supply network.

Definition 2 A feasible flow for this system is a function f : A → R+ such that

f(x,V)− f(V, x) = s(x) for all x ∈ S (4.53)
f(V, x)− f(x,V) = d(x) for all x ∈ T (4.54)

f(x,V)− f(V, x) = 0 for all x /∈ S ∪ T (4.55)



CHAPTER 4. BLOCKING GAMES 59

We let F denotes the set of feasible flows.

In other terms, a feasible flow is an assignment of values to the arcs that satisfies the conservation
of flow. In Figure 4.7, a feasible flow is shown on the arcs of the graph.
In the equations above, f(x,V) denotes

f(x,V) =
∑

{y∈V|(x,y)∈A}
f(x, y) (4.56)

We will also use the following notations for arbitrary X ⊆ V, Y ⊆ V.

(X, Y ) = {(x, y) ∈ A | x ∈ X, y ∈ Y }, (4.57)

and if g is any real-valued function defined on the arcs,

g(X, Y ) =
∑

(x,y)∈(X,Y )

g(x, y). (4.58)

All data (i.e. supplies and demands) are assumed to be integers and we only consider integral
feasible flows.

To put this example in the context of the blocking game, we assume that a network manager
(defender) is choosing a set of arcs on which to carry positive amount of goods. To determine the
amount of goods on each selected arc, we add the constraints of conservation of flows so that the
defender’s choice is restricted to the set of feasible flows. The defender would like to select a set of
arcs (feasible flow) to maximize the amount of goods transferred from a set of sources to a set of
destinations. We let f(a) be the quantity of goods that flow f carries on arc a.

An attacker is selecting an arc to attack in order to minimize the amount of goods transferred.
The attacker pays a cost µ(a) to successfully disrupt the transport on arc a. She also has the
option of not attacking. If flow f is selected and arc a is targeted, the defender loses f(a) and the
attacker gets f(a)− µ(a).

We model this interaction as a game and consider mixed strategy Nash equilibria where the
attacker chooses a distribution (αf , f ∈ F) on the set F of feasible flows, and the attacker, a
distribution (βa, a ∈ A) on the A of arcs. The model and results in sections 4.2 and 4.3 can be
used to analyze the game.

Remark:
Since flows are mostly seen as functions (rather than vectors), we have adopted the ‘function
notation’ in these examples. We will also keep the usual network flow notation: f to designate a
flow and a for an arc. For instance, instead of the math-bold (λT,e) to designate the payoff of the
choice pair (T, e), we will use f(a) to refer to the payoff of the game when the defender chooses the
feasible flow f and the attacker the arc a. We have also preferred F and A to T and E to designate
the sets of flows and arcs. Also, we use F to denote the payoff matrix (which used to be Λ).
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The Flow polyhedron PF and its blocker bl(PF )

Let F be the matrix whose columns are indexed by the arcs of the network and whose rows are
indexed by the integral feasible flows, with entry f(a) representing the amount that flow f assigned
to arc a‡‡. Let PF be the polyhedron associated with F . We are interested in characterizing PF

and its blocker bl(PF ).

The following theorem by Fulkerson and Weinberger [89] describes the polyhedron PF and gives
the generator matrix of its blocker bl(PF ).

Theorem 5 Let F be the matrix of integral feasible flows in an un-capacitated supply-demand
network (V,A) with integral-valued supply and demand functions, s(·) and d(·), respectively. Then
the polyhedron PF is described by

PF =



x ∈ R|A|+ |

∑

a∈(X,X̄)

xa ≥ d(X̄)− s(X̄), ∀X ⊆ V s.t. d(X̄)− s(X̄) ≥ 1



 . (4.59)

Here, d(X̄) is the total demand of the nodes in X̄, and s(X̄) is the corresponding total supply;
d(X̄)− s(X̄) is the excess demand in X̄.

This description tells that PF is the set of nonnegative vector x such that the sum of the entries
of x corresponding to links going from X ⊆ V to its complement X̄ is greater than the excess of
demand in X̄, for any X for which the excess demand in X̄ is greater than 1 unit. In other words,
a feasible flow should be able to compensate any excess of demand.

From the characterization above, Fulkerson and Weinberger [89] describe the blocker bl(PF ) as
follow. Let H be the matrix whose columns represent the arcs of the network, having a row ωX

for each X ⊆ V such that d(X̄)− s(X̄) ≥ 1. Set ωX(a) = 1/(d(X̄)− s(X̄)) for each arc a ∈ (X, X̄)
and zero for other entries. Then, the essential rows of F and H form a blocking pair of matrices.
Hence, the vertices of the blocking polyhedron are given by

ωX(a) =
1

d(X̄)− s(X̄)
1a∈(X,X̄), ∀a ∈ A, (4.60)

for all X ⊆ V verifying d(X̄)− s(X̄) ≥ 1. This implies that

ωX(A) =
∑

a∈A
ωX(a) =

|(X, X̄)|
d(X̄)− s(X̄)

, (4.61)

where |(X, X̄)| is the number of arcs going from X to X̄. Hence, we have that,

ωX(a)
ωX(A)

=
1a∈(X,X̄)

|(X, X̄)| ∀a ∈ A. (4.62)

‡‡Note that F may not be proper; also note that F may have no rows (if a feasible flow does not exist).
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Applying the model

We can now write the expressions of λ(ωX) in (4.11), θ(ωX) in (4.12), and θ for this example. We
simplify the notation and write λ(X) := λ(ωX), and θ(X) := θ(ωX).

The quantity λ(X) can be written as

λ(X) = min
f


 ∑

a∈(X,X̄)

f(a)
|(X, X̄)|


 (4.63)

=
minf

(∑
a∈(X,X̄) f(a)

)

|(X, X̄)| (4.64)

=
minf

(
f(X, X̄)

)

|(X, X̄)| (4.65)

=
M(X)
|(X, X̄)| , (4.66)

where in the last equation, we have defined M(X) = minf

(
f(X, X̄)

)
. It is the minimum amount

of goods that any feasible flow will carry on the arcs going from X to its complement X̄. From
this, we see that λ(X) is the minimum average flow per link going from X to X̄.

The vulnerability θ(X) of X ⊆ V is given by

θ(X) =
M(X)
|(X, X̄)| −

∑

a∈(X,X̄)

µa

|(X, X̄)| (4.67)

=
M(X)
|(X, X̄)| −

∑
a∈(X,X̄) µa

|(X, X̄)| (4.68)

=
M(X)
|(X, X̄)| −

µ(X, X̄)
|(X, X̄)| (4.69)

It is is the minimum average flow per link going from X to X̄ minus the average cost of attacking
links in (X, X̄).

A subset of nodes Xc is critical if

θ(Xc) = max
X⊆V:d(X̄)−s(X̄)≥1

(θ(X)) . (4.70)

We let θ (the vulnerability of the network) be the maximum value in the above equation, and we
define Xc to be the set of all critical subsets of nodes.

Finally, the distribution βX(a) induced by (X, X̄) is given by

βX(a) =
1a∈(X,X̄)

|(X, X̄)| , ∀a ∈ A (4.71)
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Next, we illustrate the model and the results by some examples of demand-supply networks. We
will separately consider the case where there is no cost of attack, and the case where the attacker
“spends” a positive amount of effort to disrupt the network.

Nash equilibrium theorem for the supply-demand network game

Recall that

θ = max
X⊆V:d(X̄)−s(X̄)≥1

(M(X)− µ(X, X̄)
|(X, X̄)|

)
. (4.72)

Applying Theorem 4 to the un-capacitated demand-supply game, we get the following.

1. If θ ≤ 0, then the attacker will opt to not launch an attack. The equilibrium strategy
(αf , f ∈ F) for the defender is such that

∑

f∈F
αff(a) ≤ µ(a), ∀a ∈ A. (4.73)

The corresponding payoff is 0 for both players.

2. If θ ≥ 0, then for every probability distribution (γX , X ∈ Xc) on the set Xc of critical subsets
of nodes, the attacker’s strategy (β(a), a ∈ A) defined by

β(a) =
∑

X∈Xc

γX

1a∈(X,X̄)

|(X, X̄)| (4.74)

is in Nash equilibrium with any strategy (αf , f ∈ F) of the defender that satisfies the following
properties:

{ ∑
f∈F αff(a)− µ(a) = θ for all a ∈ A such that β(a) > 0.∑
f∈F αff(a)− µ(a) ≤ θ for all a ∈ A.

(4.75)

Furthermore, there exists at least one such strategy α.

The corresponding payoffs are θ for the attacker, and r(γ) for the defender, where

r(γ) :=
∑

X∈C
γX

M(X)
|(X, X̄)| . (4.76)

3. If µ = 0, then every Nash equilibrium pair of strategies for the game is of this type.
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(a) A demand-supply network with one source and one
destination. The total demand (supply) is 3. There are
two critical subsets X = {S} and X = {S, n1, n2, n3, n4}
which correspond to the 2 minimal cutsets of the network.
The vulnerability of the network is 2.
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(b) A demand-supply network with 2 bridges. Total
demand (supply) is equal to 4. The critical subset is
X = (S, n1, n2, n3, n4, T2) which corresponds to the bridge
(n1, T1). The vulnerability of the network is equal to 3.
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(c) Demand-Supply network with one additional route
from T1 to T2. Total demand (supply) is equal to 4.
There is only one bridge (n2, T1), whose corresponding set
X = {S, n1, n2, n3, n4, T2} is critical. The vulnerability is
equal to 3.
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(d) Demand-Supply chain with one additional route from
T2 to T1. Total demand (supply) is equal to 4. There
is only one bridge (n4, T1), corresponding to subset X =
{S, n1, n2, n3, n4, T1}. This set is not critical. There are
two critical subsets: X = S and X = {S, n1, n2, n3, n4}.
The vulnerability of the network is 2.

Figure 4.8: Illustrative demand-supply network examples. For each graph, a feasible flow is given
by the values on the arcs. The arcs (X, X̄) corresponding to critical subset X, are the dashed
(dash-dotted) lines.
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Examples and discussions: case case µ = 0

In these subsection, we assume that the attack cost µ is equal to zero so that a subset of vertices
X ⊆ V is critical if it maximizes the ratio M(X)

|(X,X̄)| , where again M(X) = minf

(
f(X, X̄)

)
.

• Let’s first consider a network flow problem with one source (S) and one destination (T ), and
where the supply and demand functions are equal to 1: s(S) = d(T ) = 1. An example is the
graph in 4.8(a) with unit demand and supply.

In this case, any X ⊆ V that verifies d(X̄) − s(X̄) ≥ 1 must be an S-T cut. Indeed, if the
source is in X, then the destination cannot be in X (otherwise the difference d(X̄) − s(X̄)
would have been zero), and vice-versa. Inversely, any S-T cut groups the nodes into two
disjoint sets; one containing S (say X) and the other containing T (X̄ ). Also, since only one
unit of good is transferred from S to T , any feasible flow has to satisfy f(X, X̄) = 1 (only
one unit is going across X and X̄). This implies that a subset Xc is critical if and only if

θ(Xc) = max
X⊆V:d(X̄)−s(X̄)≥1

(
1

|(X, X̄)|
)

= min
X⊆V:d(X̄)−s(X̄)≥1

(|(X, X̄)|) . (4.77)

Thus, in this case, the critical subsets of nodes correspond to the S-T cuts of minimum size
i.e. the minimum cutsets.

In the NE of this game, the attacker’s mixed strategy equilibria are the convex combinations
of uniform attacks on the edges of the minimum cutsets. The defender’s strategy should
satisfy

∑
f αf1f(a)>0 ≤ maxX

{
1

|(X,X̄)| , d(X̄)− s(X̄) ≥ 1
}

, for all arcs a ∈ A; and equality
holds for each arc a that is targeted with positive probability.

• Figure 4.8(a) shows a demand-supply network with one source and one destination. The
total demand is equal to the total supply and is equal to 3. The critical subsets of the graph
X1 = {S} and X2 = {S, n1, n2, n3, n4} correspond to its 2 minimum cutsets (shown in dashed
and dash-dotted lines). The vulnerability of the graph is equal to θ = M(X)

|(X,X̄)| = 3/2.

The attacker’s mixed strategy Nash equilibria have the form γ 1
2(X1, X̄1)+(1−γ)1

2(X2, X̄2)∗.
For example, γ = 1 gives a NE where the attacker targets each arc of the first minimum cutset
with probability 1/2. The defender chooses a feasible flow with probability α such that the
sum

∑
f αff(a) is equal to 3

2 for each arc a that is attacked with positive probability; and
for any other arc, the sum is less than 3

2 .

• Consider the graphs shown in Figures 4.8(b), 4.8(c), and 4.8(d). In all these networks, the
source S produces 4 units of goods and destination T1 needs 3 units while T2 needs 1 unit.

The network in Figure 4.8(b) contains two bridges: destination T1 is reachable only via the
arc (n2, T1), while access to T2 is only via arc (n4, T2). Since a bridge belongs to each path

∗In this compact notation, γ 1
2
(X1, X̄1) means that each of the two links in (X1, X̄1) is attacked with probability

γ 1
2
.
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that reaches its corresponding destination, all bridges are a priori vulnerable links of the
graph. For instance (n2, T1) must carry any traffic going from X = {S, n1, n2, n3, n4, T2} to
X̄ = {T1}. Since node T1 needs 3 units of goods, any flow will assign 3 units to arc (n2, T1).
This implyies that M(X) = 3 and θ(X) = 3. This is the maximum vulnerability of this
network implying that X = {S, n1, n2, n3, n4, T2} is the critical subset of the network.

In all NE, the attacker attack arc (n2, T1) with probability 1, and the defender chooses tree
according to a distribution α that satisfies:

∑
f αff(a) ≤ 3 for all arcs a ∈ A. Equality is

satisfied on arc (n2, T1).

Figure 4.8(c) shows the same network as in the previous with one additional link from T1

to T2. The network now contains only one bridge (n2, T1). The same arguments used in
the previous example give that subset X = {S, n1, n2, n3, n4, T2}, corresponding to the only
bridge of the network, is the critical subset of the network. Its vulnerability is 3.

Compared to the previous case, we see that having an additional link (added in the way
given here) does not yield to a stronger network. This suggests that if the defender wants to
benefit from adding a new link to the network, he has to determine a proper way to do it.
An arbitrary addition of link might not provide any benefit.

In the graph shown in Figure 4.8(d) the additional links goes from T2 to T1. The network
still contains a bridge because the only way to reach T2 is via (n4, T2). However, that bridge
is not a critical link. The most vulnerable arcs are the ones going from the critical subset
X = S to X̄, and those going from the critical subset X = {S, n1, n2, n3, n4} to X̄.

In fact, since bridge (n4, T2) (corresponding to X1 = {S, n1, n2, n3, n4, T1}) is the only way to
reach T2, any feasible flow will assign positive load to that arc. The minimum amount of traffic
carried over (n4, T2) on any feasible flow is equal to 1. Thus, M(X1) = 1 and θ(X1) = 1.
On the other hand, if X = S, any feasible flow will carry the total amount of goods on the
arcs (X, X̄). As a consequence, M(X) = 4 and the vulnerability θ(X) = 4/2 = 2. The is the
maximum vulnerability implying that X is critical. Similarly, subset X = {S, n1, n2, n3, n4}
is critical.

Adding the extra link in the way described here, strictly decreases the vulnerability of the
network (as opposed to the previous case where the additional link was not optimally added).
This phenomenon was already observe in the spanning tree game. It illustrates the importance
of knowing the critical sets when designing a network topology.

• As was mentioned earlier, M(X) is the minimum amount of goods that any feasible flow
will carry from X to its complement. For any target subset of nodes X, the defender is
trying to find a feasible flow that achieves this minimum. The attacker is choosing a subset
X that maximizes the fraction M(X)

|(X,X̄)| . In other words, the attacker chooses a subset X

that maximizes the minimum average traffic per link from X to X̄. This maximum can be
achieved by targeting set of edges that separate all sources to all destinations. This is the
case in Figures 4.8(a) and 4.8(d) where for example the edges going from S to the rest of the
network are critical. The maximum can also be achieved by attacking edges that separate a
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given set of destination nodes to the rest of the network as is the case in examples 4.8(b) and
4.8(c).

Examples and discussions: case case µ > 0

Now we assume that the attack cost µ is a positive vector. The networks in Figures 4.9 illustrate
this case. In all networks, the values of the attack costs are placed close to the corresponding arcs.

In Figure 4.9(a) the costs of attack are relatively high. The vulnerability θ of the network is
equal to −1/2 and is achieved by subsets X = {S} (dash-dotted lines) and X = {S, n1, n2, n3, n4}
(dashed lines). Since θ < 0, the attacker will not launch an attack. The defender needs to choose
feasible flows according to a distribution α that satisfies

∑

f

αff(a) ≤ µ(a), ∀ a ∈ A. (4.78)

We know from the theorem that such distribution exists.

It is worth noting that although the network contains a bridge (link (n4, T2)), the attacker will
not attack (even not the bridge). In fact, in this example, the cost of successfully attacking the
bridge (which is 2) is greater than the reward that the attacker expects from such attack (which is
equal to 1).

Figure 4.9(b) is an example of network with vulnerability zero. This maximum vulnerability is
achieved at X = {S} (dash-dotted lines) and X = {S, n1, n2, n3, n4, T2} (dashed lines). A certain
number of interesting phenomenon happen in this example.

First, the bridge (n4, T2) is so costly that it is not part of the edges induced by any critical subset
of nodes. The are two critical subsets and each will lead to an zero average attack reward for the
attacker. An attack that focuses on the links going from X = {S} to X̄ is preventing the traffic to
reach the destinations, without any distinction of the destinations. It results to an average attack
loss of M(X)

|(X,X̄)| = 4
2 = 2 for the defender, and in average 2 units of goods will reach the destinations.

An attack that focuses on the edges entering T1 (dashed lines) is preventing traffic to reach T1. The
average loss of such attack is M(X)

|(X,X̄)| = 3
2 , and an average of 2.5 units of goods will always reach

the destinations; 1 unit of it will always go to node T2.

This phenomenon was already seen in the spanning tree game. Although the attacks give the
same payoff to the attacker, their impacts on the defender are different. One interesting related
question is which equilibrium will be played, or how can the defender force the second equilibrium
which is clearly better for him. Our model does not permit the study of equilibrium selection.
Other inputs and parameters need to be considered to answer to those questions.

Figure 4.9(c) is an example of network with positive vulnerability. The network also contains a
single critical subset X = {S, n1, n2, n3, n4} and its vulnerability is equal to 1. The attacker will
attack the two links in (X, X̄) each with probability 1/2. Her average net reward is 1. The defender
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will choose feasible flows according to a distribution α that satisfies
∑

f

αff(a)− µ(a) = θ, ∀ a ∈ (X, X̄) (4.79)

∑

f

αff(a)− µ(a) ≤ θ, ∀ a ∈ A. (4.80)

The average attack loss is equal to 2 and in average 2 units of goods will reach the destinations.

4.5 Proof of the NE Theorem

In this section we provide a proof of the Nash equilibrium theorem presented in section 4.3.

4.5.1 “No Attack” Option

We start by showing that if θ ≤ 0 “No Attack” and α verifying (4.14) are best responses to each
other.

Best Responses

First, notice that if the attacker chooses “No Attack”, then any α will result to the minimum loss
of zero for the defender (in particular the one given in the theorem). Now, assume that α satisfies
(4.14). Then, “No Attack” is a dominant strategy for the attacker. In fact, the expected attack
reward is

R(α, β) =
∑

e∈E

β(e)
(
λ̄α(e)− µ(e)

)
, (4.81)

which is less than zero if λ̄α(e) − µ(e) ≤ 0, ∀ e ∈ E , and for any β. On the other hand, zero
reward can always be achieved by playing e∅. As a consequence, not attacking is a best response
to α satisfying (4.14).

Existence of the Equilibrium Distribution α

Now, we need to prove the existence of a distribution α that satisfies (4.14) whenever θ ≤ 0. To
summarize, we are looking for α verifying:

α :





α ≥ 0
1′T α = 1
Λ′α ≤ µ,

(4.82)

We first show the following lemma.
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(a) Example of demand/supply network with high attack
costs. The vulnerability of the network is −1/2 and the
attacker does not launch an attack. Two subsets achieve
the maximum vulnerability of −1/2. The corresponding
edges are shown in dashed and dash-dotted.
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(b) Example of demand/supply network with attack costs
that give zero payoff to the attacker. Vulnerability is 0, and
corresponding critical set are shown in dashed and dash-
dotted.
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(c) Example of demand/supply with positive cost of attack
and positive vulnerability. There is only one critical subset
shown by the dashed line. The vulnerability of the network
is 4−2

2
= 1.

Figure 4.9: Illustrative demand-supply network examples for µ > 0. For each graph, the value of
the attack cost is marked close to the arc. The arcs (X, X̄) corresponding to critical subset X, are
the dashed (dash-dotted) lines.
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Lemma 4
θ ≤ 0 ⇒ µ ∈ PΛ. (4.83)

Proof: For this we show that if θ ≤ 0, then µ′ω ≥ 1, for any vertex ω of bl(PΛ). As a result of
this, µ belongs to the blocker of bl(PΛ) which is PΛ.

If θ ≤ 0, then we have that, for all ω ∈ Ω,

∑

e∈E

ω(e)
ω(E)

µ(e) ≥ min
T∈T

(∑

e∈E

ω(e)
ω(E)

λT,e

)
. (4.84)

Or, equivalently

µ′ω ≥ min
T∈T

(∑

e∈E
ω(e)λT,e

)
, for all ω ∈ Ω. (4.85)

Now, since ω ∈ bl(PΛ) we have that
∑

e∈E
ω(e)λT,e ≥ 1, (4.86)

which implies that µ · ω ≥ 1, ∀ ω ∈ Ω, or equivalently µ ∈ PΛ.
Using Lemmas 1 and 4, we conclude that the value of the following LP is greater than 1.

Maximize 1T x

subject to Λ′x ≤ µ, and x ≥ 0 (4.87)

Construct α satisfying (4.14) by normalizing any solution of this LP.

4.5.2 The “Always Attack” option

As in the previous section, we will first argue that the strategies given in the theorem are best
responses to each other, then we show the existence of a distribution (αT , T ∈ T ) that satisfies
(4.16). We start by the following lemma.

Lemma 5 If θ > 0, then “No Attack” is a strictly dominated strategy for the attacker.

Note that if θ ≥ 0, all the steps of the proof still hold. However, “No Attack” will only be weakly
dominated, and as seen in the previous case, there will exist equilibrium for which the attacker will
opt to not launch an attack. In other words, if θ = 0 there exist equilibria for which βe∅ = 1, as
well as equilibria for which βe∅ = 0.

Proof: Suppose that ω ∈ Ωmax is a critical vertex of bl(PΛ) and let β = (ω(e)
ω(E) , e ∈ E). We will

show that the attacker can achieve positive reward by playing β (independently of α). To see this,
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first notice that since θ(ω) = θ > 0 for all ω ∈ Ωmax, we have that

λ(ω) = min
T∈T

(∑

e∈E

ω(e)
ω(E)

λT,e

)
>

∑

e∈E

ω(e)
ω(E)

µ(e) =
µ′ω
ω(E)

(4.88)

Playing the strategy β, the attacker’s expected reward against any defense strategy α is given by

R(α, β) =
∑

e∈E

ω(e)
ω(E)

(∑

T∈T
αT λT,e − µ(e)

)

=
∑

T∈T
αT

(∑

e∈E

ω(e)
ω(E)

λT,e −
∑

e∈E

ω(e)
ω(E)

µ(e)

)
(4.89)

≥
∑

T∈T
αT

(
λ(ω)−

∑

e∈E

ω(e)
ω(E)

µ(e)

)
(4.90)

=
∑

T∈T
αT

(
λ(ω)− µ′ω

ω(E)

)
(4.91)

= λ(ω)− µ′ω
ω(E)

(4.92)

> 0, (4.93)

where in (4.90) we use the definition of λ(ω); (4.93) is implied by (4.88).

As a consequence of this lemma, we conclude that if θ > 0, then the attacker will never play the
“No Attack” (i.e. e∅) strategy.

Best Responses

Given the set of critical vertices Ωmax and α satisfying (4.16), any distribution β of the form
β(e) =

∑
ω∈Ωmax

γω
ω(e)
ω(E) for some distribution γ = (γω, ω ∈ Ωmax), achieves a reward of θ. This

is the maximum possible reward that the attacker can get. To see this, observe that for any β,

R(α, β) =
∑

e∈E
β(e)

(
λ̄α(e)− µ(e)

) ≤
∑

e∈E
β(e)θ ≤ θ. (4.94)
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The upper bound of θ is achieved by any β̃ = (ω(e)
ω(E) , e ∈ E) and ω ∈ Ωmax, because for any such β̃,

R(α, β̃) =
∑

e∈E

ω(e)
ω(E)

(∑

T∈T
αT λT,e − µ(e)

)
(4.95)

=
∑

T∈T
αT

(∑

e∈E

ω(e)
ω(E)

λT,e −
∑

e∈E

ω(e)
ω(E)

µ(e)

)
(4.96)

≥
∑

T∈T
αT

(
λ(ω)−

∑

e∈E

ω(e)
ω(E)

µ(e)

)
(4.97)

=
∑

T∈T
αT θ (4.98)

= θ, (4.99)

where (4.97) uses the definition of λ(ω), and in (4.98) we use the fact that ω ∈ Ωmax.
As a consequence, any distribution of the form (ω(e)

ω(E) , e ∈ E) for ω ∈ Ωmax is a best response and
any convex combination of those distributions is also a best response.

Now assume that β is given as in (4.15) for some distribution (γω, ω ∈ Ωmax). Then, the
distribution (αT , T ∈ T ) in (4.16) achieves a loss of r(γ) =

∑
ω∈Ωmax

γωλ(ω). This is the
minimum possible loss. To see this, note that, for any α, the expected loss seen by the defender is
given by

L(α,β) =
∑

T∈T
αT

(∑

e∈E
β(e)λT,e

)
(4.100)

=
∑

T∈T
αT

(∑

e∈E

( ∑

ω∈Ωmax

γω
ω(e)
ω(E)

)
λT,e

)
(4.101)

=
∑

T∈T
αT

( ∑

ω∈Ωmax

γω

(∑

e∈E

ω(e)
ω(E)

λT,e

))
(4.102)

≥
∑

T∈T
αT

( ∑

ω∈Ωmax

γωλ(ω)

)
(4.103)

=
∑

T∈T
αT r(γ) (4.104)

= r(γ). (4.105)

The lower bound r(γ) can be achieved by choosing α such that
∑

T∈T αT λT,e = θ + µ(e) for each
e ∈ E such that β(e) > 0 (the existence of such α is shown in the second part of the theorem).
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This can be seen by rewriting L(α, β) as

L(α,β) =
∑

e∈E
β(e)

(∑

T∈T
αT λT,e

)
(4.106)

=
∑

e∈E
β(e) (θ + µ(e)) (4.107)

= θ + β′µ = r(γ). (4.108)

The last equality above is justified by

θ + β′µ = θ +
∑

ω∈Ωmax

γω

(
1

ω(E)
ω′µ

)
− r(γ) + r(γ) (4.109)

= θ +
∑

ω∈Ωmax

γω

(
1

ω(E)
ω′µ− λ(ω)

)
+ r(γ) (4.110)

= θ +
∑

ω∈Ωmax

γω (−θ) + r(γ) (4.111)

= θ − θ + r(γ) (4.112)
= r(γ), (4.113)

where in (4.109) and (4.110) we use the definitions of β and r(γ) respectively and write the sum-
mation over E as a product of a row vector and a column vector. In 4.110 we have also used the
definition of θ(ω) for a critical vertex ω ∈ Ωmax.

From this analysis, we see that for the set Ωmax of critical vertices, the distributions given in the
theorem are best responses to each other, as a consequence, they form a Nash equilibria under the
assumption that α exists. Such existence is shown in the next section.

Existence of the Equilibrium Distribution α

We claim that for any (β(e), e ∈ E) of the form in the statement (4.15) of Theorem 4, we can find
an associated (αT , T ∈ T ) of the form (4.16).

Theorem 6 Assume that θ ≥ 0 and let Ωmax be the set of critical vertices. Let x∗ be the solution
of the following LP:

Maximize 1′T x

subject to A′x ≤ b, x ≥ 0. (4.114)

where b = θ(E)1E + µ. Then,

a) 1′T x∗ ≤ 1;
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b) 1′T x∗ ≥ 1;

c) A′x∗(e) = b(e), ∀e ∈ E for which β(e) > 0.

As a consequence, x∗ satisfies (4.16) and implies the existence of α.

Proof: a) To prove that 1′T x∗ ≤ 1, we first observe that

β′Λ′x =
∑

T∈T
xT

(∑

e∈E
β(e)λT,e

)
(4.115)

=
∑

T∈T
xT

(∑

e∈E

( ∑

ω∈Ωmax

γω
ω(e)
ω(E)

)
λT,e

)
(4.116)

=
∑

T∈T
xT

( ∑

ω∈Ωmax

γω

(∑

e∈E

ω(e)
ω(E)

λT,e

))
(4.117)

≥
∑

T∈T
xT

( ∑

ω∈Ωmax

γωλ(ω)

)
(4.118)

=
∑

T∈T
xT r(γ) (4.119)

= r(γ)1′T x (4.120)

On the other hand, from the constraints Λ′x ≤ b = θ1E + µ and from (4.113), we have that

β′Λ′x ≤ β′ (θ1E + µ) = θ + β′µ = r(γ) (4.121)

Combining (4.120) and (4.113) it follows that,

r(γ)1′T x ≤ β′Λ′x ≤ r(γ) (4.122)

Thus 1′T x ≤ 1 for all feasible x, i.e. the value of the program is at most 1.
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b) To prove that 1T
T x∗ ≥ 1, we use Lemma 1 above to claim that it suffices to verify that the

vector b belongs to the polyhedron PΛ. For that, we will show that b′ω ≥ 1 for all ω ∈ Ω. In fact∗,

ω′b = θω′1E + ω′µ (4.123)

= ω(E)
(

θ +
1

ω(E)
ω′µ

)
(4.124)

≥ ω(E)
(

λ(ω)− 1
ω(E)

ω′µ +
1

ω(E)
ω′µ

)
(4.125)

= ω(E)λ(ω) (4.126)

= ω(E) min
T∈T

(∑

e∈E

ω(e)
ω(E)

λT,e

)
(4.127)

= min
T∈T

(∑

e∈E
ω(e)λT,e

)
(4.128)

≥ 1 (4.129)

where (4.129) follows from the fact that ω ∈ bl(PΛ). Indeed, if ω ∈ bl(PΛ), then by definition
of the blocker polyhedron,

∑
e∈E ω(e)λT,e ≥ 1 for all T ∈ T . Thus, we have that Ωb ≥ 1, which

implies that b belongs to the blocker of bl(PΛ) which is equal to PΛ.

Now, using Lemma 1, we conclude that the value of the LP is greater than 1.
This, together with the previous part a) imply that the value of the LP is equal to 1; hence, any
solution x∗ is a probability distribution on T .

c) We first observe from (4.120) and (4.113) that

β′Λ′x∗ = r(γ)1T x∗ = r(γ). (4.130)

Also, Λ′x∗ ≤ θ1E + µ by the constraints of the primal LP above.
Now, assume that Λ′x∗(e) < θ + µ(e) for some e ∈ E with β(e) > 0. Then,

β′Λ′x∗ =
∑

e∈E
β(e)Λ′x∗(e) (4.131)

<
∑

e∈E
β(e)(θ + µ(e)) (4.132)

= θ +
∑

e∈E
β(e)µ(e) (4.133)

= r(γ), (4.134)

where the last equality is obtained by using the same arguments as in (4.109)-(4.113). This con-
tradicts observation (4.130). As a consequence, Λ′x∗(e) = θ + µ(e) for all e ∈ E with β(e) > 0.

This ends the proof of the theorem and establishes the existence of an α satisfying (4.16) for any
β defined as in (4.15).

∗Again we use vector product for summation.
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4.5.3 Enumerating all Nash Equilibria

In this section, we consider the zero-sum game where µ = 0. In this case, since there is no cost of
attack θ > 0. We will show that for any strategy pair (αT , T ∈ T ) and (β(e), e ∈ E) that are in
Nash equilibrium, it must be the case that (β(e), e ∈ E) is given by

β(e) =
∑

ω∈Ωmax

γω
ω(e)
ω(E)

, (4.135)

for some probability distribution (γω,ω ∈ Ωmax).
As a consequence of this, we will conclude that α must be in the form given in the Nash equilibrium
theorem.

First, notice that since µ = 0, we have that λ(ω) = θ(ω) (see the definitions in (4.12) and (4.11)).
Next, we use the zero-sum structure of the game to observe that it has a well-defined value, which,
by the second part of Theorem 4, is equal to,

θ = max
ω∈Ω

(λ(ω)) = max
ω∈Ω

(
min
T∈T

(∑

e∈E

ω(e)
ω(E)

λT,e

))
. (4.136)

Thus, we must have that, for any Nash equilibrium pair (α, β),

θ =
∑

T∈T

∑

e∈E
αT β(e)λT,e =

∑

T∈T
αT

(∑

e∈E
β(e)λT,e

)
> 0. (4.137)

From the above equation we can argue that there exists a scaling factor κ̃ > 0 such that (κ̃β(e), e ∈
E) belongs to the blocker bl(PΛ), or equivalently,

∑

e∈E
κ̃β(e)λT,e ≥ 1, for all T ∈ T . (4.138)

In fact, by letting αmax be the maximum αT , and defining κ̃ = Nαmax
θ , then (κ̃β(e), e ∈ E) verifies

(4.138). We let κ denote the smallest such scaling that works among all scalings κ̃ > 0.

Also, observe that since κ is the smallest nonnegative scaling of (β(e), e ∈ E) such that (κβ(e), e ∈
E) belongs to bl(PΛ), there must exist some To ∈ T for which

∑
e∈E κβ(e)λTo,e = 1.

Indeed this is the case because since κβ ∈ bl(PΛ), we have that
∑

e∈E κβ(e)λT,e ≥ 1 for all T ∈ T .
If this inequality were strict for all T ∈ T , then considering the strategy Tmin that minimizes the
sum

∑
e∈E κβ(e)λT,e over all T , we can construct

κ̃ =
κ∑

e∈E β(e)λTmin,e
. (4.139)

κ̃ verifies κ̃ < κ and κ̃β ∈ bl(PΛ). This contradicts the assumption that κ was the smallest such κ̃.

Now, we claim that:
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Lemma 6 If (αT , T ∈ T ) and (β(e), e ∈ E) form a NE of the game, then we can write

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
, (4.140)

for some probability distribution (γω, ω ∈ Ω).

We delay the proof of this lemma for later.

Using this expression of κβ, we can write the value of the game θ as:

θ =
1
κ

∑

T∈T
αT

(∑

e∈E
κβ(e)λT,e

)
(4.141)

=
1
κ

∑

T∈T
αT

(∑

e∈E

( ∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)

)
λT,e

)
(4.142)

=
1
κ

∑

T∈T
αT

( ∑

ω∈Ω

γω

(
1

λ(ω)

∑

e∈E

ω(e)
ω(E)

λT,e

))
(4.143)

≥ 1
κ

∑

T∈T
αT

( ∑

ω∈Ω

γω

)
(4.144)

=
1
κ

, (4.145)

where in (4.144) we use the fact that λ(ω) ≤ ∑
e∈E

ω(e)
ω(E)λT,e for all T ∈ T .

Now, since (α, β) is a Nash equilibrium pair, the expression
∑

e∈E β(e)λT,e is minimal for each
T ∈ T for which αT > 0. Furthermore, this minimum value is equal to θ. From this, we get that,

θ = min
T∈T

(∑

e∈E
β(e)λT,e

)
(4.146)

=
1
κ

min
T∈T

(∑

e∈E
κβ(e)λT,e

)
(4.147)

≤ 1
κ

, (4.148)

where in (4.148) we use the fact that the minimum in (4.147) is less than
∑

e∈E κβ(e)λTo,e, which,
by definition, is equal to 1. Thus, θ = 1

κ .
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This, combined with (4.140) that we sum over e ∈ E , imply:

1
θ

= κ =
∑

e∈E
κβ(e) (4.149)

=
∑

e∈E

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
(4.150)

=
∑

ω∈Ω

γω
1

ω(E)λ(ω)

∑

e∈E
ω(e) (4.151)

=
∑

ω∈Ω

γω
1

λ(ω)
. (4.152)

Now, recalling (4.136) that θ = maxω∈Ω (λ(ω)), we conclude that γω can be nonzero only for
ω ∈ Ω that satisfies λ(ω) = maxω̃∈Ω (λ(ω̃)). In other terms, γω > 0 only for ω ∈ Ωmax.
Hence, we can write

β(e) =
∑

ω∈Ωmax

γω
ω(e)
ω(E)

. (4.153)

The last thing that remains to be shown to complete the proof of the theorem is that if (αT , T ∈
T ) and (β(e), e ∈ E) are in Nash equilibrium and (β(e), e ∈ E) is of the form (4.15) in the statement
Theorem 4, then (αT , T ∈ T ) must also be of the form in the statement (4.16) of the theorem.
We have already shown that for (β(e), e ∈ E) of the form (4.15), we must have for every strategy
(α̃T , T ∈ T )

∑

T∈T
α̃T

∑

e∈E
β(e)λT,e =

∑

T∈T
α̃T

(∑

e∈E

( ∑

ω∈Ωmax

γω
ω(e)
ω(E)

λT,e

))
(4.154)

=
∑

T∈T
α̃T

( ∑

ω∈Ωmax

γω

(∑

e∈E

ω(e)
ω(E)

λT,e

))
(4.155)

≥
∑

T∈T
α̃T

( ∑

ω∈Ωmax

γωθ

)
(4.156)

= θ, (4.157)

where (4.156) follows from (4.136). The minimum value of θ can be achieved by choosing α such
that

∑
T∈T αT λT,e = θ whenever β(e) > 0. To see that, rewrite the summation as

∑

T∈T
α̃T

∑

e∈E
β(e)λT,e =

∑

e∈E
β(e)

(∑

T∈T
α̃T λT,e

)
, (4.158)

and observe the claim.
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The existence of such α has been shown in the previous section. It also has been shown that
such α is a best response to (β(e), e ∈ E). For β to be a best response to α (hence, the (α,β) pair
to be in Nash equilibrium), α must also satisfy

∑

T∈T
αT λT,e ≤ θ for all e ∈ E . (4.159)

Suppose, on the contrary, that this is not the case (i.e. there is some e ∈ E for which
∑

T∈T αT λT,e >
θ). Then the attacker will prefer to switch to playing strategy e with probability 1 and receive higher
reward. This violates the assumption that (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium.
Thus, α satisfies (4.159). This completes the proof of the theorem, provided that the claim in
Lemma 6 can be justified. We give a proof of the lemma in the next section.

Proof of Lemma 6

The claim is that if (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium, and if κ > 0 denotes
the smallest κ̃ > 0 for which (κ̃β(e), e ∈ E) ∈ bl(PΛ), then we must have

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
, (4.160)

for some probability distribution (γω,ω ∈ Ω).

Indeed, this needs a proof, because a priori we only know that we can write

κβ(e) =
∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
+ v(e), (4.161)

for some probability distribution (γω, ω ∈ Ω) and some (v(e), e ∈ E) such that v(e) ≥ 0 for all
e ∈ E .

We now provide the proof that works as follow. We consider the expression of this form for
(κβ(e), e ∈ E) for which v(E) :=

∑
e∈E v(e) is as small as possible. We will assume that v(E) > 0

for this expression, and arrive at a contradiction.
Note that we must have v(E) < κ for this expression, i.e. there has to be a nontrivial “convex hull
part”.
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First observe that for all T ∈ T , we have
∑

e∈E
β(e)λT,e =

1
κ

∑

e∈E
κβ(e)λT,e (4.162)

=
1
κ

∑

e∈E

( ∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
+ v(e)

)
λT,e (4.163)

=
1
κ

∑

ω∈Ω

γω

(
1

λ(ω)

∑

e∈E

ω(e)
ω(E)

λT,e

)
+

1
κ

∑

e∈E
v(e)λT,e (4.164)

≥ 1
κ

∑

ω∈Ω

γω +
1
κ

vλ(T ) (4.165)

=
1
κ

+
vλ(T )

κ
, (4.166)

where in (4.165) we use the definition of λ(ω), and define vλ(T ) :=
∑

e∈E v(e)λT,e. As a consequence,
we have that

min
T∈T

(∑

e∈E
β(e)λT,e

)
≥ 1

κ
+ min

T∈T

(
vλ(T )

κ

)
(4.167)

Next, observe that since (αT , T ∈ T ) and (β(e), e ∈ E) are in Nash equilibrium, it must be the
case that

∑
e∈E β(e)λT,e is the same for every T ∈ T such that αT > 0. Also, by the same reasoning

as in (4.148), we have that for all such T

∑

e∈E
β(e)λT,e = min

T̃∈T

(∑

e∈E
β(e)λT̃ ,e

)
≤ 1

κ
. (4.168)

This, combined with (4.159), implies that minT∈T
(∑

e∈E β(e)λT,e

)
= 1

κ and that vλ(T ) = 0 for all
T ∈ T such that αT > 0.

Now, let

β̃(e) :=
1

κ− v(E)

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)
. (4.169)

This quantity satisfies
∑

(e)β̃(e) = 1 and β̃(e) ≥ 0 for all e ∈ E . Thus, (β̃(e), e ∈ E) is a probability
distribution on E , and can be used as a strategy by the attacker. This can be verified by summing
both sides of (4.161) over e ∈ E to get,

κ =
∑

e∈E
κβ(e) =

∑

e∈E

( ∑

ω∈B

γω
ω(e)

ω(E)λ(ω)
+ v(e)

)
(4.170)

=
∑

e∈E

( ∑

ω∈B

γω
ω(e)

ω(E)λ(ω)

)
+ v(E) (4.171)

= (κ− v(E))
∑

e∈E
β̃(e) + v(E). (4.172)
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This last equation implies that ∑

e∈E
β̃(e) =

κ− v(E)
κ− v(E)

= 1. (4.173)

For this strategy (β̃), in response to (αT , T ∈ T ), the attack reward is at least 1
κ−v(E) . In fact,

∑

T∈T
αT

∑

e∈E
β̃(e)λT,e =

∑

T∈T
αT

(∑

e∈E

(
1

κ− v(E)

∑

ω∈Ω

γω
ω(e)

ω(E)λ(ω)

)
λT,e

)
(4.174)

=
1

κ− v(E)

∑

T∈T
αT

( ∑

ω∈Ω

γω
1

λ(ω)

(∑

e∈E

ω(e)
ω(E)

λT,e

))
(4.175)

≥ 1
κ− v(E)

∑

T∈T
αT

∑

ω∈Ω

γω (4.176)

=
1

κ− v(E)
. (4.177)

However, because of the fact that v(T ) = 0 for all T ∈ T for which αT > 0, the benefit obtained
by the attacker by playing the NE strategy (β(e), e ∈ E) is only 1

κ , which is strictly smaller than
1

κ−v(E) under the standing assumption that v(E) > 0. As a consequence, if v(E) > 0, the attacker

can be better off by changing her strategy to β̃. But this contradicts the assumption that (α,β)
form a NE. Thus, v(E) = 0 implying that v(e) = 0 for all e ∈ E as we wanted to show.

4.6 Algorithm to Compute θ and a Critical Vertex

In this section, we show how one can derive an algorithm to compute the vulnerability θ of the
game, as well as a maximizing (hence critical) vertex.We will consider that the cost µ is equal to
0. The case of non-zero µ can be analyzed using the same techniques.

Recall that if µ = 0,

θ = max
ω∈Ω

(M(ω)
ω(E)

)
, (4.178)

where Ω is the matrix having as rows the vertices ω of blocking polyhedron bl(PΛ) . The function
M(·) is defined as

M(ω) = min
T∈T

∑

e∈E
ωeλT,e. (4.179)

The algorithm is inspired by Cunningham [87] who used it in a none-game theoretic context. For
the sake of completeness, we discuss the algorithm here, and adapt it to the context of the games
considered in the chapter. To derive the algorithm, we need the the notions of polymatroid, and
which we present in section 4.6.2.
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Table 4.2: Pseudocode: algorithm computing the value θ of the game and a critical vertex. The
algorithm CunninghamMin is used to perform the minimization in 4.180. It returns θ and a
minimizing subset ωo

.
IterativeApprox
Input: set E , vertices Ω = {ω1,ω2, . . . , ωK}
Output: θ, ωc: critical

1 begin

2 σ =
M(ω1)
ω1(E)

3 while (1)

4 (ρ, ω) = CunninghamMin(E, Ω, σ)
5 if ρ ≤ 0
6 return (ρ, ω)
7 else

8 σ := ρ
9 endif

10 endwhile

11 end

4.6.1 Deriving an algorithm

We start by noticing that:

Lemma 7 For a fixed real number σ,

θ ≤ σ ⇔ 0 ≤ min
ω∈Ω

(σω(E)−M(ω)) . (4.180)

Proof: This can be easily verified by the following:

θ ≤ σ ⇔ max
ω∈Ω

(M(ω)
ω(E)

)
≤ σ ⇔ M(ω)

ω(E)
≤ σ, ∀ ω ∈ Ω (4.181)

⇔ 0 ≤ σω(E)−M(ω), ∀ ω ∈ Ω (4.182)
⇔ 0 ≤ min

ω∈Ω
(σω(E)−M(ω)) . (4.183)

Now, we make the following observation made by Cunningham [87]. Suppose that σ is such that
θ ≥ σ. Then, if 0 ≤ minω∈Ω (σω(E)−M(ω)) then θ ≤ σ, implying θ = σ. Also, the minimizing
ω is a critical vertex. If 0 > minω∈Ω (σω(E)−M(ω)), let ωo be a minimizing vertex and define
a new σo = M(ωo)

ωo(E) . Then, since the minimum is strictly negative, we have σo > σ. Now, one can
replace σ by σo and repeat the same procedure. This gives an algorithm to compute θ as long as
the minimization in 4.180 can be computed. The algorithm is shown in Table 4.2.

The following lemma shows how the algorithm converges.
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Lemma 8 Suppose that σ ≤ θ, and let ωo minimizes σω(E) −M(ω). Let σo = M(ωo)
ωo(E) > σ and

let ω1 such that σoω1(E)−M(ω1) < 0. Then M(ωo) < M(ω1).

To understand how the algorithm converges, first, notice that the updates of σ are driven by the
minimizers of σω(E)−M(ω). The lemma tells that at each iteration either the algorithm has found
θ and a critical vertex ωo, or the value of M(ω1) corresponding to the new σ is strictly larger than
M(ωo). But, we know that, for a fixed game, M(ω) can only take a finite set of values (given by
the vertices of the blocker polyhedron). Thus, we have only a finite number of iterations.

The worst case happens when there is a different value of M(ω) for each ω. In practice, we
have much better than that. For instance, in the case of the spanning tree game studied above,
we have established an equivalence between the vertices ω and the subsets E ⊆ E of edges of the
graph. We have also seen that M(E) = minT (|E ∩ T |) which is at most |V| − 1; |V| is the number
of nodes in the graph. Thus in this case, the algorithm has at most |V| − 1 iterations. For the
demand-supply network game, the vertices ω are given by the subsets of nodes X ⊆ N verifying
d(X)− s(X) ≥ 1. In this case, M(X) = minf

∑
f f(X, X̄). This is the minimum amount of goods

that any feasible flow will carry along the edges in (X, X̄). It is at most equal to the total demand
d(T ) of the network, which hence is an upper bound to the number of iterations.

Proof:[of Lemma 8] We have that,

0 > σoω1(E)−M(ω1) (4.184)

= σo

(
ω1(E)− M(ω1)

σo
− M(ω1)

σ
+
M(ω1)

σ

)
(4.185)

= σo

(
ω1(E)− M(ω1)

σ
− M(ω1)

σo
+
M(ω1)

σ

)
(4.186)

≥ σo

(
ωo(E)− M(ωo)

σ
− M(ω1)

σo
+
M(ω1)

σ

)
(4.187)

= σo

(M(ωo)
σo

− M(ωo)
σ

− M(ω1)
σo

+
M(ω1)

σ

)
(4.188)

= σo

(
1
σ
− 1

σo

)
(M(ω1)−M(ωo)) . (4.189)

The inequality in (4.187) follows from the fact that ωo minimizes σω(E) −M(ω), and (4.188) is
obtained from σo = M(ωo)

ωo(E) . Since σo > σ, it must be the case that M(ω1) > M(ωo).

In general computing the minimization in (4.180) is difficult. However, if the function M(ω) can
be related to a submodular function on the subsets E ⊆ E of resources, one can use the techniques
of submodular function minimization to derive a polynomial-time algorithm. We illustrate this in
the next section for the spanning tree game.
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4.6.2 Computing critical subset of edges of a graph

Recall that in the case of the spanning tree-link game, , if µ is assumed to be zero, then

θ = max
e∈E

(M(E)
|E|

)
, (4.190)

where M(E) = minT∈T (|E ∩ T |).
Also, by Lemma 7, we have that for fixed values of p and q (σ := p

q ),

θ ≤ σ ⇔ 0 ≤ min
E⊆E

(σ|E| −M(E)) . (4.191)

We have seen in the previous section that if an oracle exists that can efficiently compute the
minimization above, the algorithm in Table 4.2 finds θ and a critical subset by making at most
|V|−1 calls to the oracle. Since in this example θ is always a ratio of the form p

q for 0 ≤ p ≤ |V −1|
and 1 ≤ q ≤ |E|, one can also implement a binary search algorithm, provided that the minimization
above is easy to compute. We present the binary search algorithm in appendix A.1.

As stated earlier, computing the minimization in (4.191) can be very challenging. However, we
will show that M(E) can be written in term of a submodular function f(E) on the subset of
resources E . This will allow us to use a theorem of polymatroid theory that says that the minimum
value of σω(E)−M(ω) is achieved at a Pf -basis of σω(E) where Pf is the polymatroid associated to
f(·) (we discuss those notions next). Finding a Pf -basis of a polymatroid can be done in polynomial
time by using (in general) a matroid partition algorithm [72]. In the case of the spanning tree game
discussed in this chapter, Cunningham [87] has proposed a more efficient algorithm that is based
on network flow methods.
Next, we define the notions of polymatroid and discuss Cunningham’s algorithm.

Polymatroids

Definition 3 A real-valued function f(·), defined on subsets of E, is called a polymatroid function
if it verifies

P.0: f(∅) = 0,

P.1: If E ⊆ F ⊆ E, then f(E) ≤ f(F ) (i.e. f(·) is non-decreasing),

P.2: f(E ∪ {e2, e1})− f(E ∪ {e2}) ≤ f(E ∪ {e1})− f(E) for all E ⊆ E, e1, e2 ∈ E, e1, e2 /∈ E∗.
∗Actually, the most common definition of submodularity is as follow:

P.2(bis): If E, F ⊆ E , then f(E ∪ F ) + f(E ∩ F ) ≤ f(E) + f(F ) .
For convenience, we have used the equivalent definition given above.
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Given a polymatroid function f(·), the following polytope is called the polymatroid associated to f .

Pf =

{
x ∈ R

|E|
+ ,

∑

e∈E

x(e) ≤ f(E), ∀ E ⊆ E
}

. (4.192)

For any y ∈ R
|E|
+ , x ∈ Pf is called a Pf -basis of y if x is a componentwise maximal vector

of the set {x, x ∈ Pf and x ≤ y}.

We have earlier seen that, to compute a critical subset a graph and its vulnerability θ, one needs
an oracle that solves

min
E⊆E

(y0(E)−M(E)) , (4.193)

where y0 = p
q1E for p and q given by the search algorithm, so that y0(E) = p

q |E| for any subset of
edges E ⊆ E of the graph.

Now, define the function f(E) := |V| − 1−M(Ē), where Ē is the complement of E in E . Then,

Lemma 9 f(·) is a polymatroid function.

Proof: To see this, we show that f(·) satisfies the conditions of definition 3.

First, notice that, by Lemma 3, M(Ē) = Q(GE) − 1 where Q(GE) is the number of connected
component of the graph GE = G(V, E) (G with only the edges in E). Thus, f(E) = |V| −Q(GE).
Also, notice that Q(G∅) = |V|. Indeed, the graph G without edges is the set of nodes without any
connection between them. Thus, the number of connected components is equal to the number of
nodes. Hence, f(∅) = 0.

Now, suppose that E ⊆ E . Then adding a link to E can only decrease (or not change) the number
of connected components in the graph. Hence, if E ⊆ F , we have that Q(GE) ≥ Q(GF ), implying
that f(E) ≤ f(F ).

To verify the last condition of the definition, we just need to show that Q(GE∪{e2})−Q(GE∪{e2,e1}) ≤
Q(GE)−Q(GE∪{e1}). But observe that,

0 ≤ Q(GE∪{e2})−Q(GE∪{e2,e1}) ≤ 1, and 0 ≤ Q(GE)−Q(GE∪{e1}) ≤ 1. (4.194)

Thus, to verify P.2, it is enough to show that if Q(GE∪{e2})−Q(GE∪{e2,e1}) = 1, then it must be
the case that Q(GE)−Q(GE∪{e1}) = 1. But, if Q(GE∪{e2})−Q(GE∪{e2,e1}) = 1, then e1 must have
connected two different connected components of the graph G with only the edges in E ∪ {e2}. If
this is the case, then e1 must also connect two different connected components of GE , implying
that Q(GE)−Q(GE∪{e1}) = 1. This ends the proof.

Using the definition of f(·), we can rewrite 4.191 as

θ ≤ σ ⇔ |V| − 1 ≤ min
E⊆E

(
σ|E|+ f(Ē)

)
. (4.195)

The following (max-min) theorem relates the minimization above to finding Pf -basis of y0. The
proof of the theorem can be found in [87].
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Theorem 7 Let f(·) be a polymatroid function on subsets of E. Then, for any y ∈ R
|E|
+ and any

Pf -basis x of y, we have
x(E) = min

(
y(E) + f(Ē), E ⊆ E)

. (4.196)

From this theorem, we see that an oracle that computes a Pf -basis of y0 = σ1E suffices for the
minimization in (4.195). Let’s see how such an oracle can be built.

The definition of Pf -basis implies a very simple method for finding a Pf -basis of any y ∈ R
|E|
+ .

Namely,
start with x = 0 and successively increase each component of x as much as possible while still
satisfying x ≤ y, and x ∈ Pf .

Implementing this simple and greedy algorithm might, however, not be so simple. In fact, it
requires one to be able to compute, for a given x ∈ Pf and any e ∈ E , the quantity

εmax(e) = max(ε : x + ε1e ∈ Pf ) , (4.197)

where 1e is the incidence vector of subset {e}. εmax(e) is the maximum amount by which component
e of x can be increased while keeping x in Pf .

Verifying that a vector x belongs to the polymatroid can be done using the following idea: if
x /∈ Pf , then one can find a subset E for which x(E) ≤ f(E) is violated. If x ∈ Pf and E ∈ E ,
then any ε such that ε > minE⊆E (f(E)− x(E), e ∈ E) will send x + ε1e out of Pf .
Also, if x is a Pf -basis of y, then for any e ∈ E , either x(e) = y(e) or x(E) = f(E) for some subset
E containing e. In fact, for all e ∈ E

εmax(e) = min
{
y(e)− x(e),min

E
(f(e)− x(E), e ∈ E ⊆ E)

}
. (4.198)

If the minimum is achieved at y(e) − x(e), then x ← x + εmax(e)1e will satisfy x(e) = y(e).
Otherwise, there exists some Ee 3 e, such that x(Ee) = f(Ee) (Ee is said to be tight). Letting
ĒU =

⋃
e Ee, and x being the Pf -basis obtained after running the greedy algorithm, it can be shown

(see [87]) that f(ĒU ) = x(ĒU ) (union of tight set is tight). For such ĒU , we have that

x(E) = x(EU ) + x(ĒU ) = y(EU ) + f(ĒU ) . (4.199)

This is because x(ĒU ) = f(ĒU ) and if e /∈ ĒU , x(e) = y(e).

Cunningham’s algorithm

Based on these observations, Cunningham [87] proposed a modified version of the greedy algorithm
to compute a Pf -basis, as well as a minimizing subset for the minimization in (4.196). The algorithm
is presented in Table 4.3.

It starts with x = 0 and ĒU = ∅. For each e ∈ E , the component x(e) is increased as much as
possible: x ← x+ εmax(e)1e. If the minimum in (4.198) is achieved at minE (f(E)− x(E), e ∈ E),
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Table 4.3: Pseudocode of the oracle CunninghamMin that solves the minimization (4.200).
Cunningham
Input: Polymatroid function f , y ∈ R

|E|
+

Output: minimum ε, minimizer EU

1 begin

2 x = 0

3 EU := {}
4 for e ∈ E
5 ε := min(f(E)− x(E) : e ∈ E)
6 Ee := a minimizer

7 if ε <= y(e)− x(e) then EU := EU ∪ Ee

8 else ε := y(e)− x(e)
9 end //if

10 x = x + ε ∗ 1e

11 end //for

12 end //begin

then update ĒU ← ĒU ∪E where E is a minimizer. At the end of the algorithm, ĒU is a tight set
and x is maximal. Also, it satisfies x ∈ Pf and x ≤ y, with x(E) = y(EU ) + f(ĒU ).

To find a Pf -basis, Cunningham’s algorithm performs |E| computations of the the minimization
below:

min
E

(f(E)− x(E), e ∈ E ⊆ E) . (4.200)

Now, all that remains is to find an algorithm that computes the minimization in polynomial time.
This is the subject of the next section.

Network Flow

Let G = (V, E) be a connected graph and let f(·) be defined as f(E) = |V| −Q(GE) (f(·) the rank
function of the graphic matroid that is associated to G [90]). Let Pf be the polymatroid associated
with f(·). An equivalent description of Pf is given as follows (see [87]):

Pf =
{
x ∈ R

|E|
+ , x(γ(B)) ≤ |B| − 1 for all B, ∅ 6= B ⊆ V

}
, (4.201)

where γ(B) denotes the set of edges with both ends in B.

Recall that our goal is, for a given e, to find a subset E, e ∈ E ⊆ E that minimizes f(E)−x(E).
This is equivalent to finding B that minimizes |B| − 1− x(γ(B)), with e ∈ γ(B).

To find the minimizing subset of nodes, B, we define the following graph G′ for a given poly-
matroid function f(·), x ∈ Pf , and edge e ∈ E . The vertices of G′ are V ∪ (r, s) for new vertices
r and s. Each e ∈ E is an edge of G′, having the same ends and having capacity 1

2xe. There
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is an edge joining v to s for each v ∈ V, it has capacity 1. There is an edge joining r to v for
each v ∈ V. It has capacity ∞ if v is an end of j, and otherwise it has capacity 1

2x(δ(v)). (Here
δ(B) = {e ∈ E , e has exactly one end in B ⊆ V}, δ(v) is shorthand for δ({v}). This construction
is illustrated in Figure 4.10(a). Its motivation is to ensure that e ∈ γ(B) as can be seen next.

Consider a cut in G′ induced by the set B ∪ {r}, where e ∈ B ⊆ V. It is the set of links that
have one end in B ∪{r} and the other end in the complement of B ∪{r}. The capacity of such cut
is (see an illustration in Figures 4.10(b))

|B|+ 1
2
x (δ(B)) + x

(
γ(B̄)

)
+

1
2
x (δ(B)) = |B|+ x(E)− x(γ(B)) (4.202)

= |B| − 1− x(γ(B)) + (x(E) + 1). (4.203)

The first term in the LHS of equation (4.202) corresponds to edges going from nodes in B to the
sink s. There are |B| of them, each having capacity 1. The next term corresponds to edges going
from a node in B to a node in B̄. The last two terms correspond to edges going from the root r to
nodes in B̄. For each such edge (r, u), the capacity is defined as 1

2δ({u}). Let e = (u, v) ∈ δ({u}).
Then, if v ∈ B (i.e. e ∈ δ(B)), then x(e) appears only in the capacity of (r, u); implying the term
1
2x (δ(B)). If, on the other hand, v /∈ B (i.e. e ∈ γ(B̄)), then x(e) appears both in the capacity of
(r, u), and in that of (r, v), thus the term x

(
γ(B̄)

)
.

Now, since a cut induced by a subset of edges B will have infinite capacity if e /∈ γ(B), a minimum
cut in G′ will indeed have the form B ∪ {r} with e ∈ γ(B), hence, minimizing |B| − 1− x(γ(B)).
As a consequence, any network flow algorithm can serve as an oracle for Cunningham’s algorithm.
Many polynomial implementations of network flow algorithms ([91], [92]) have been proposed since
the proof of the Max-Flow Min-Cut theorem by Ford and Fulkerson [93] in 1962.
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(a) Constructing the graph G′ from G for the network flow algorithm.
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(b) Illustrating the cut induced by B ∪ {r}

Figure 4.10: Constructing the graph G′ for the network flow algorithm. Figure 4.10(a) shows the
construction of G′ from G. The edge under consideration in this example is e = 5. Examples in
Figures 4.10(b) show the cut induced by B ∪ {r} for B ⊆ V. In the left figure, B = {a, b} does not
contain j = 5. The capacity of this cut is equal to infinity. In the right figure, B = {a, c} which
contains edge e = 5 (the only edge). As can be seen in the figure, the capacity of the cut induced
by this choice of B is 2 + x(1) + x(2) + x(3) + x(4) which is finite.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we make two main contributions to the literature. First, we illustrate the poten-
tial usefulness of Game Theory in security by modeling the interactions between attackers and
defenders as games in three types of communication scenarios. By computing and analyzing the
Nash equilibria of the games, we predict the adversaries’ attacks, determine the set of assets that
are most likely to be attacked, and suggest defense strategies for the defenders. Second, we have
determined the structure of a particular Nash equilibrium for a class of bimatrix games and we
completely characterize the structure of all Nash equilibria for a subset of those games. Also, we
have proposed a polynomial-time algorithm to compute Nash equilibria for certain games.

The first game that we have studied models the communication scenario where not all network
components taking part in a communication process are trustworthy. We study the strategic
interaction of a receiver and an intruder as a game and analyze the set of Nash equilibria. We have
found that when the chances that the intruder is present are not small, the receiver should never
trust a received message. If those chances are relatively small, the receiver should always trust a
received message, despite the fact that the best attacker always attacks. The equilibrium strategies
also suggest that, in general, the most aggressive attackers are not always the most dangerous
ones. Finally, we have seen that by introducing a challenge-response mechanism, the defender can
completely deter the attacker from attacking.

The second game scenario is one where an intelligent virus is trying to infect a network protected
by an Intrusion Detection System (IDS). We study the game where the virus is choosing its infection
rate while the IDS is deciding how to set the best threshold for intrusion decision. By analyzing
the Nash equilibrium strategies, we have found that aggressive viruses are not always the most
dangerous ones. A virus that can intelligently tune its infection rate could stay longer in the
system and cause more damage. We have also seen that an IDS that delays traffic while making
security decision performs better than an IDS that does not. Of course, the challenge here is to
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determine the optimal amount of delay. We did not address this challenge in this thesis.

The third example considers the scenario where a defender needs a subset of a set of resources
to perform some critical task. To disrupt the task, an attacker is at the same time targeting one
resource to attack from the set. We introduce the notion of critical subset of resources and use
this notion to propose a vulnerability metric for the task. We find that, in Nash equilibrium, the
attacker always targets a critical subset of resources and the defender should only use a minimal
amount of resources in the critical subset.

We have illustrated this model with two examples of communication scenarios: a topology design
game where a defender is trying to choose a spanning tree of a graph as communication structure;
and a demand-supply game where a network manager is selecting a feasible flow to carry goods
from a set of sources to a set of destinations.

In the spanning tree game, we have found that the usual edge-connectivity metric is not the right
one for graphs when an adversary might be targeting the links. In the demand-supply game, we
have found that the attacker always targets subsets of links that maximize the minimum fraction
of goods that any flow carries per link. In both games, if the adversary launches an attack, she will
do so by uniformly targeting the links in a critical subset of links.

Computing a Nash equilibrium of arbitrary 2-player game is known to be in general complex. In
the third scenario considered above, we have determined the structure of a particular Nash equilib-
rium for all games. For the games with zero (or constant) costs of attack, we have characterized all
Nash equilibria. In all equilibria, the attacker targets (a set of) critical subsets of resources. Also,
we have proposed polynomial-time algorithms that can be used to compute critical subsets (hence
Nash equilibria) for a certain class of 2-player games.

5.1.1 Discussion: Challenges for Game Theoretic Approaches to Security

As has been illustrated in this thesis and in the many cited prior works, the application of Game
Theory to security is a young but promising research field. However, there are lots of challenges
that need to be addressed in order to make Game Theory a viable approach for reasoning about
security problems.

The first challenge is the need to quantify security parameters such as risk, privacy, trust, and
reputation. This is in general needed for the purpose of security risk evaluation and management;
but it is necessary for the game theoretic approach because of the need to define payoff (cost)
functions for both attackers and defenders. One cannot define a cost function for the security
players without a good quantification of those parameters. Computing an exact quantification is
likely impossible. However, estimated values can be obtained by using data from past attacks.
For that to happen, there is a need to develop a trust relationship with corporations and network
services and operators, who currently share with researchers only a small fraction of the information
about the attacks they are facing. Estimating attackers’ payoffs is more challenging. Many efforts
is being spent to understanding the economics of the cyber security black market. However, much
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is unknown.

Another challenge that game theorists for security need to address is the interpretation of (Nash)
equilibrium. Equilibrium concepts such as mixed strategy Nash equilibrium need to be converted
into real-world security strategies. How should an IDS understand a mixed strategy between action
A (e.g. intensive monitoring) and action B (e.g. normal or light monitoring)? Even in the Game
Theory community, the debate is not yet closed on the interpretation of mixed strategy NE. Osborne
and Rubinstein have an elaborate discussion about this in their book [40]. In [34] “frequentist” and
a “probabilistic” interpretations are suggested. In general, a meaningful interpretation is needed
prior to the practical implementation of any game theoretic solution.

The complexity of computing an equilibrium of a game is yet another challenge to Game Theory
for security. Computing an equilibrium of a game is in general a difficult task. For instance,
in [47] the authors have shown that the NE computation problem for a general bimatrix game
is PPAD-complete (polynomial parity argument for directed graphs). There is some belief that
this class of problems are intractable. For the particular case of a zero-sum game, we can, via
linear programming, derive polynomial algorithm to compute Nash equilibria. In this thesis, we
have shown how for a class of quasi-zero-sum games, one can derive a polynomial algorithm by
using Polymatroid Theory. Numerical solutions have also been widely used. Although numerical
solutions fail to show a global picture of the solutions of a problem, they can help get some degree
of understanding of the outcome of a game.

As a consequence of this complexity, game theoretic studies often adopt simplified models which
leads to (less,un)-realistic scenarios. Like in this thesis, many authors assume common knowledge of
payoffs and actions, zero-sum or quasi-zero-sum games, one-shot or small horizon dynamic games.
The choice of such model is generally guided by intuition and usually lacks solid justifications. These
shortcomings certainly need to be fixed. However, one should notice that those simplifications do
not lead to trivial games; and in most of the cases, these models help derive conclusions that would
not have been possible in a non-game theoretic setting.

One general criticism to Game Theory is its rationality assumption. Players in game theoretic
models are often considered to be unboundedly rational. This contrasts with general observation. In
fact, many experimental results of behavioral economics have shown that people do not always play
the Nash equilibrium strategies predicted by the theory [94], [95]. In the context of communication
security, even though one can assume some degree of rationality for sophisticated players such as
cybercriminal, inside attackers, and nation-state intelligence agents, infinite rationality does not
hold. Models using bounded rationality can be used to study such situations; however of research
efforts are still needed to understand these models.

There is a diversity of games models (non-cooperative/cooperative, static/dynamic, Bayesian,
Stochastic, complete/incomplete information) to study different communication security scenarios.
However, for a given problem, the choice of the appropriate game model is still left at the intuition
of the modeler. So far, there is no systematic way to choose (and justify) a model. Although a
clear dichotomy and one-to-one correspondence between security problems and game models are
not possible, a good selection methodology is needed. This will require a widespread understanding
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of Game Theory by security specialists.

The game theoretic approach to security is still in its infancy. The potentials it presents for
a better understanding of the security problem are enormous, as we have shown in the models
considered in this thesis and in the many cited related works. However, there is still a lot to do in
order to convert game theoretic results into practical security solutions. The bridge between the
theory and the practice is still under construction.

5.1.2 Experimental Design

As we have mentioned in the previous section, one general criticism to Game Theory is the ratio-
nality assumption of the players. In fact, experimental studies have shown that agents are rarely
fully rational. In chapters 2-4 of this thesis we have predicted the actions of both rational attackers
and a rational defenders by analyzing the Nash equilibria for three communication scenarios. One
interesting follow up of this study is to test the theoretical conclusions against real-life (laboratory)
data. A design of such experimental study is discussed in the appendix section B.



93

Bibliography

[1] S. TZU. (-6 BC) The Art of War. Translated from the Chinese By Lionel Giles, M.A. (1910).
[Online]. Available: http://www.chinapage.com/sunzi-e.html

[2] SocyBerty. (2008, April) How the Internet Has Changed the World. [Online]. Available:
http://socyberty.com/society/how-the-internet-has-changed-the-world/

[3] B. Meadowcroft. (2001, june) The Impact of Information Technology on Work and Society.
[Online]. Available: http://www.benmeadowcroft.com/reports/impact/

[4] M. Jones and I. Alony, “The Cultural Impact of Information Systems - Through the Eyes of
Hofstede A Critical Journey,” Issues in Informing Science and Information Technology, vol. 4,
pp. 265 – 283, 2007.

[5] CERT/CC. (2001, Sept) CERT Advisory CA-2001-26 Nimda Worm. [Online]. Available:
http://www.cert.org/advisories/CA-2001-26.html

[6] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside the Slammer
Worm,” Security Privacy, IEEE, vol. 1, no. 4, pp. 33 – 39, july 2003.

[7] Conficker-Working-Group. (2009, March) Press Releases. [Online]. Available:
http://www.confickerworkinggroup.org/wiki/pmwiki.php/PR/PressReleases

[8] ——. (2009, Oct) Infection Tracking. [Online]. Available:
http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/InfectionTracking

[9] ——, “Conficker Working Group: Lessons Learned,” White paper, Conficker
Working Group, Jan 2011, available online (59 pages). [Online]. Available:
http://www.confickerworkinggroup.org/wiki/#toc3

[10] Cyber-Secure-Institute. (2009, Apr) Cyber Secure Institute on the Conficker Controversy.
[Online]. Available: http://cybersecureinstitute.org/blog/?p=12

[11] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” White paper,
Symantec Security Response, Feb 2011, available online (69 pages). [Online]. Available:
http://www.symantec.com/.../w32 stuxnet dossier.pdf



BIBLIOGRAPHY 94

[12] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
C. Kruegel, and G. Vigna, “Your Botnet is my Botnet: Analysis of a Botnet Takeover,”
in Proceedings of the 16th ACM conference on Computer and communications security,
ser. CCS ’09. New York, NY, USA: ACM, 2009, pp. 635–647. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653738

[13] CNET-News. (2007, May) Cyberattack in Estonia–What it Really Means. [Online].
Available: http://news.cnet.com/Cyberattack-in-Estonia-what-it-really-means/2008-7349 3-
6186751.html

[14] BBC-News. Security Experts Say GGoogle Cyber-Attack Was Routine, month = Jan, year =
2010, url = http://news.bbc.co.uk/2/hi/8458150.stm.

[15] TechWorld. (2010, Dec) Anonymous Knocks Swiss Bank Offline Over Wikileaks Attack.
[Online]. Available: http://news.techworld.com/security/3252222/anonymous-knocks-swiss-
bank-offline-over-wikileaks-attack/

[16] The-Washington-Post. (2001, May) Washington Post, White House,
FAA, DoD, Others, Targeted in Online Attack. [Online]. Available:
http://voices.washingtonpost.com/securityfix/2009/07/washington post white house fa.html

[17] US-CERT. (2010, Dec) Technical Cyber Security Alerts. [Online]. Available: http://www.us-
cert.gov/cas/techalerts/index.html

[18] P. T. Leeson and C. J. Coyne, “The Economics of Computer Hacking,” Journal of Law,
Economics and Policy, 2006.

[19] BBC-News. (2010, Dec) Pro-Wikileaks Activists Abandon Amazon Cyber Attack. [Online].
Available: http://www.bbc.co.uk/news/technology-11957367

[20] M. Cremonini and D. Nizovtsev, “Understanding and Influencing Attackers Decisions: Impli-
cations for Security Investment Strategies,” June 2006.

[21] T. Alpcan and T. Baser, Network Security: A Decision and Game-Theoretic Approach, 1st ed.
Cambridge University Pres, November 2010.

[22] G. Gilder. (1995, Nov) Metcale’s Law And Legacy. [Online]. Available:
http://www.seas.upenn.edu/ gaj1/metgg.html

[23] V. Sekar, Y. Xie, D. A. Maltz, M. K. Reiter, and H. Zhang, “Toward a Framework for Internet
Forensic Analysis,” in In Third Workshop on Hot Topics in Networking (HotNets-III), 2004.

[24] H. Burch and B. Cheswick, “Tracing Anonymous Packets to Their Approximate Source,” in
in Usenix LISA, 2000.

[25] L. Kleinrock. (1996, Aug) The Birth of the Internet. [Online]. Available:
http://www.cs.ucla.edu/ lk/LK/Inet/birth.html



BIBLIOGRAPHY 95

[26] X. Ao, “Report on DIMACS Workshop on Large-scale Internet Attacks,” Sept 2003.

[27] WASHINGTON-(Reuters). (2010, December) U.S. Code-Cracking
Agency Works as if Compromised. [Online]. Available:
http://ca.reuters.com/article/technologyNews/idCATRE6BF6BZ20101216

[28] R. Anderson, “Why Information Security is Hard-An Economic Perspective,” in Proceedings of
the 17th Annual Computer Security Applications Conference. Washington, DC, USA: IEEE
Computer Society, 2001, pp. 358–.
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Appendix A

Computing Critical Subsets

A.1 A binary search algorithm for computing a critical subset and
θ

In this appendix section, we present an algorithm to compute a critical subset of a graph. A first
algorithm was discussed in section 4.6.2.
Recall that for the spanning tree game, the vulnerability θ = max

(M(E)
|E|

)
of the graph takes the

form of a ratio p
q , where 0 ≤ p ≤ |V − 1| and 1 ≤ q ≤ |E|. Letting σ := p

q , we have also shown in
section 4.6.2 that,

θ ≤ σ ⇔ 0 ≤ min
E⊆E

(σ|E| −M(E)) . (A.1)

Now, assuming that the minimization above can be efficiently computed, we propose 2-dimensional
binary search algorithm. Figure A.1 illustrate the algorithm that we present in Table A.1.

The algorithm works as follow.
We keep a set of candidate values Pr for p, and for each p ∈ Pr, a range {qmin(p), . . . , |E|} of values
of q for which the test in (4.193) will be carried out.

At each iteration, for some p ∈ Pr and q ∈ {qmin(p), . . . , |E|}, a call is made to the minimization
oracle; then Pr and qmin are updated. Pr is defined as Pr = {1, . . . , |V| − 1} at initial time, and
maintained as follows.
Since θ is always less than or equal to 1, the values of p and q for which p/q > 1 can be ignored from
the test. These values correspond to the “dark” (blue) region above the first diagonal of Figure
A.1 (if the graph does not contain a bridge, one can eliminate the values in the first diagonal as
well). This implies that for each p, there is a minimum value for q, call it qmin(p); i.e. when p is
considered in a given iteration, only values of q in the range {qmin(p), . . . , |E|} need to be used for
testing.

Also, if θ ≤ p0

q0
for some fixed (p0, q0), then θ ≤ p

q for all p
q > p0

q0
. As of such, those values can
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Figure A.1: An illustration of the 2-dimensional search algorithm to find the vulnerability of a
graph. The dark (blue) region consists of p and q verifying p/q > 1. Since θ ≤ 1, those values do
not need to be tested. The light (blue) consist of values of p and q such that p

q > p0

q0
(here p0

q0
= 4

7).
If θ < p0

q0
, then, those values can be discarded from the test. The remaining (uncolored) values are

the only ones that need to be tested.

be safely discarded from the set of values to be tested. In Figure A.1, that set is represented by
the “light” (blue) region for p0 = 4 and q0 = 7. It is the set of numbers that are located in the 135
degrees range, from the first diagonal to the horizontal axis (traveling counterclockwise).
After removing this set, the values of qmin(p) need to be updated for all p ≥ p0. If q0 is the first value
of q (starting from |E| going down) for which the test succeeds (i.e. θ ≤ p0

q0
), then qmin(p0) = q0 +1,

and for p ∈ {p0 + 1, . . . ,V − 1}, qmin(p) is obtained by adding 1 to qmin(p − 1). If qmin(p) > |E|,
then p can be removed from the set Pr of candidate values for p. If for some p, the test fails for all
q ∈ {qmin, . . . , |E|}, then p can also be discarded from Pr.
The algorithm stops when the test succeeds and |Pr| = 1.

For each value of p, the algorithm makes less than |E| calls to the oracle, and there are at most
|V| possible values for p (this is the worst case). Thus, computing a critical subset will take a
polynomial time provided that the minimization in (4.191) can be done in polynomial time.

A.2 Argument for Remark in Section 4.4.1

In section 4.4.1, we have claimed that in the definition of critical subset we do not need the feasibility
requirement of E. The following lemma justifies our claim. Recall that a subset E ⊆ E of edges
is called feasible if E is such that, for every edge e ∈ E, adding e to GĒ (the graph obtained by
removing from G, the edges in E) decreases its number of connected components by 1.. A critical
subset is one that achieves the maximum below

θ(E) = max
Ẽ

(
M(Ẽ)− µ(Ẽ)

|Ẽ|

)
. (A.2)

Lemma 10 Let E ⊆ E. If E is critical, then it is feasible.
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Table A.1: BinarySearch2D algorithm to compute θ and a critical subset. Algorithm Cunningham-
Min is discussed in section 4.6.2. Method update method is presented in Table A.2.

BinarySearch2D
Input: connected graph G = (V, E), V = n, E = m

Output:θ, E ⊆ E critical

1 begin
2 Pr = {1,2,...,n-1}
3 qmin = {1,2,...,n-1}
4 while |Pr|>0
5 p <-- random(Pr)
6 for q=m downto qmin(p)
7 (E,minpq) = CunninghamMin((p/q)*1,G)
8 if n-1 <= minpq then
9 (Pr,qmin) = update(Pr,p,q)
10 goto 4
11 end //if
12 end //for
13 Pr = Pr-p
14 end //while
15 return E, minpq
16 end // begin

Table A.2: Pseudocode of the Update method used in the BinarySearch2D algorithm.
Update
Input: Pr, p ∈ Pr, q ∈ {qmin, |E|}
Output: new Pr, qmin

1 begin
2 qmin(p) = q+1
3 for j=p+1 to |n|-1
4 qmin(j) = qmin(j-1)+1
5 if qmin(j)>m
6 Pr = Pr - j
7 end //if
8 end //for
9 return Pr, qmin
10 end //begin
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Proof: Let E be critical and not feasible. From Lemma 3, we have that M(E) = minT (|E ∩ T |) =
Q(GĒ) − 1, where Q(GĒ) is the number of connected components of the graph GĒ obtained by
removing from G the edges in E. Now since E is not feasible, there exists an edge e ∈ E such
that adding e to GĒ does not decrease its number of connected components. In other words,
Q(GĒ) = Q(G

E\{e}), and as a consequence M(E) = M(E\{e}). This implies that

M(E\{e})− µ(E\{e})
|E\{e}| − 1

=
M(E)− (µ(E)− µ(e))

|E| − 1
=
M(E)− µ(E) + µ(e)

|E| − 1
. (A.3)

This is strictly larger than M(E)
|E| (the denominator has strictly decreased and the numerator has

increased), which means that E\{e} is strictly more critical than E. This contradicts the hypothesis
that E is critical.
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Appendix B

Experimental Study

In chapters 2-4 of this thesis we have predicted the actions of both a rational attacker and
a rational defender by analyzing the Nash equilibria for three communication scenarios. In this
section, our goal is to design an experimental study in order to generate real-life (laboratory) data
against which our theoretical predictions will be tested. In our experiments, we will only consider
the spanning tree game described in section 4.4.1. In that game, a defender is choosing a spanning
tree of a graph to connect all nodes, while an attacker is targeting one link of the graph in order
to break the tree.

B.1 Motivations

Edges-connectivity has been widely considered as the vulnerability metric for graphs. The edge-
connectivity of a connected graph is the minimum number of edges that need to be removed in
order to disconnect the graph; the corresponding set of edges is called a minimum cutset. In figure
B.1, the minimum cutset of the graph corresponds to edges 1 and 4, giving a vulnerability (or
edge-connectivity) of 2. The bold lines show an example of spanning tree of the network. Given
this vulnerability metric, common sense might suggest that in the spanning tree game the attacker

1

2

7

5

3 4
6

Figure B.1: Example of network graph. The bold lines show one way to connect all nodes in the
graph without loop.
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will target edges of the minimum cutset to increase her chances of cutting the chosen spanning
tree. This is so because the minimum cutset contains at least one link of each tree and it is the
minimum set of links with this property.

In section 4.4.1, we have defined a critical subset of edges of a graph to be a subset that maximizes
the minimum fraction of edges it has in common with any tree (minT (|T∩E|)

|E| ). We have proposed
this maximum value as the vulnerability metric of the graph. We have also shown that a minimum
cutset of a graph is not necessarily critical and that a rational attacker will target edges on a
critical subset (not a minimal cutset) and attack them with the same probability. Furthermore,
we have shown that if the attacker incurs a cost of attacking the links, she will target a subset
that maximizes (minT (|T∩E|)

|E| − µ(E)
|E| ) which is the minimum fraction of edges it has n common with

any tree minus the average cost of attack of the subset. The attacker does not launch an attack
if this difference is negative. Otherwise, she attack links in a maximizing subset with the same
probability.

The goal of this experimental study is to test those predictions with subjects in a laboratory
setting. More precisely, we would like to assess the minimum cutset assumption (game 1), the
critical subset attack (game 2), the uniformity of attack (all games), and the dependency on the
attack cost (games 3,4,5).

The games considered in our experiments, are played by a user (the subject) and a machine (the
defender). The role of the user is to attack one link of the network in order to break the spanning tree
selected by the machine. The machine chooses a spanning according to the distribution predicted
by the Nash equilibria analysis.

In each game, the subject will be asked to choose one link to attack and win up to 70 tokens.
The number 70 is just chosen for convenience reasons. To simulate mixed strategies, the subject
is given the choice to bet all tokens on one link, or to distribute the tokens on a selected subset of
links and indicate how many tokens to bet on each link. When there is no cost of attack, the total
number of tokens bet on links belonging to the selected spanning tree is won by the attacker. If
the cost of attacking any link is positive, the reward of the users is given by the total number of
tokens bet on links belonging to the selected spanning tree minus the cost of attacking such links.

The questions that we would like to answer with these experiments are the following:

• Which set of links will be attacked and how many tokens are bet by the subjects? By dividing
the number of tokens bet on each link by the total number of tokens, we get a probability
distribution that can be interpreted as the mixed strategy of the player.

• Do subject follow the “common sense” attack that targets a minimum cutset of the graph?

• Do subjects target links uniformly?

• How do subjects behave when the cost of attack is larger/equal/smaller than the maximum
expected gain?
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(a) Topology of the network used in experi-
ment 1. The network contains one minimum
cutset ({6, 8}) which also is a critical subset.
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(b) Topology of the network used in experi-
ment 1. The network contains one minimum
cutset ({6, 8}). This minimum cutset is how-
ever not a critical subset.

Figure B.2: Networks considered in experiments 1 (B.2(a)) and 2 (B.2(b)).

To answer these questions, we collect data by letting the subjects play the following 5 games. In
the first two game, there is no cost of attack. In the last three, the attacker (subject) incurs a
positive cost when attacking a link.

B.2 Game 1

The graph considered in this game is depicted in figure B.2(a). It contains one minimum cutset
({6, 8}, the only one) which also is a critical subset. There are three other critical subsets: the set
of all links, the set {1, 2, 3, 4, 5, 6, 7, 8}, and the set {6, 8, 9, 10, 11, 12, 13, 14}. In this experiment,
we would like to test the minimum cut attack prediction, which is the optimal strategy in this case
because the minimum cutset is critical. Also, because of the symmetry of the graph, we expect
subjects to uniformly target edges in the minimum cutset. The predicted (average) attack reward
is 35 tokens which can be achieved by betting 35 tokens for each links in the minimum cutset.

B.3 Game 2

Game 2 is played on the graph shown in figure B.2(b). As before, it contains one minimum cutset
({6, 8}). However, unlike this previous case, the minimum cutset in this figure is not critical.
The graph contains one critical subset that corresponds to edges {6, 8, 9, 10, 11, 12, 13}. The NE
analysis predicts that a rational attacker will only target edges in the critical subset and will attack
them with the same probability. The predicted (average) attack reward is 40 tokens which can
be achieved by betting 10 tokens on each link of the critical subset. In this experiment, we test
whether users plays according to the NE prediction.
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B.4 Games 3,4,5

The next games are played on the graph in B.2(b). In game 3, we assume that the attacker
incurs a cost of µ = [22 39 27 5 17 3 22 19 42 35 21 38 6 17] tokens on the links. With
this cost, the predicted average attack reward is equal to 24 token and the maximizing sub-
set corresponds to the minimum cutset {6, 8}. With this reward, a rational attacker should
always attack uniformly the edges 6 and 8. Game 4 is played with an attack cost equal to
µ = [5 63 5 31 58 28 43 58 63 66 14 19 63 42]. The corresponding maximum average attack
reward is equal to −1 and is achieved at subset {1, 2, 3}. In this case, the NE analysis suggests
that a rational player will opt to not attack the network. In the last game (game 5), the cost
incurred by the attacker is equal to µ = [10 61 30 29 68 53 69 17 7 27 36 40 69 35]. It gives a
maximum average reward of zero. Two subsets achieve this reward: the minimum cutset {6, 8} and
the subset {6, 8, 9, 10, 11}. This is a case where attacking and not attacking give the same reward
to the attacker.

In these three experiments, we are interesting in determining how the introduction of the cost
of attack will influence the subjects’ attack strategies. In the first experiment, the attack costs are
not too high and there is an strategy that gives positive reward. In the second one, no strategy
can give positive reward and subjects are expected to not play. In the last game, playing and not
playing give the same payoff to the subjects.




