
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Learning Single-view 3D Reconstruction of Objects and Scenes

Permalink
https://escholarship.org/uc/item/3dc5m39p

Author
Tulsiani, Shubham

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3dc5m39p
https://escholarship.org
http://www.cdlib.org/

Learning Single-view 3D Reconstruction of Objects and Scenes

By

Shubham Tulsiani

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jitendra Malik, Chair
Professor Alexei A. Efros
Professor Bruno Olshausen

Summer 2018

Learning Single-view 3D Reconstruction of Objects and Scenes

Copyright 2018
by

Shubham Tulsiani

1

Abstract

Learning Single-view 3D Reconstruction of Objects and Scenes

by

Shubham Tulsiani

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jitendra Malik, Chair

We address the task of inferring the 3D structure underlying an image, in
particular focusing on two questions – how we can plausibly obtain supervisory signal
for this task, and what forms of representation should we pursue. We first show
that we can leverage image-based supervision to learn single-view 3D prediction, by
using geometry as a bridge between the learning systems and the available indirect
supervision. We demonstrate that this approach enables learning 3D structure across
diverse setups e.g. learning deformable models, predictive models for volumetric 3D,
or inferring textured meshes. We then advocate the case for inferring interpretable and
compositional 3D representations. We present a method that discovers the coherent
compositional structure across objects in a unsupervised manner by attempting to
assemble shapes using volumetric primitives, and then demonstrate the advantages
of predicting similar factored 3D representations for complex scenes.

i

To my parents, for their boundless love and support

ii

Contents

List of Figures v

List of Tables vii

Acknowledgments viii

1 Introduction 1

I Learning via Geometric Consistency 4

2 Category-Specific Deformable 3D Models 5
2.1 Learning Deformable 3D Models . 8

2.1.1 Camera Estimation . 9
2.1.2 3D Basis Shape Model Learning 10

2.2 Reconstruction in the Wild . 14
2.2.1 Category Specific Shape Inference 14
2.2.2 Bottom-up Shape Refinement 16

2.3 Experiments . 17
2.3.1 Quality of Learned 3D Models 18
2.3.2 Sensitivity Analysis for Recognition based Reconstruction . . 21
2.3.3 Fully Automatic Reconstruction 22

2.4 Discussion . 22

3 Multi-view Supervised Single-view Reconstruction 23
3.1 Background . 25
3.2 Formulation . 27

3.2.1 View Consistency as Ray Consistency 28
3.2.2 Ray-tracing in a Probabilistic Occupancy Grid 29
3.2.3 Event Cost Functions . 29

Contents iii

3.2.4 Ray-Consistency Loss . 30
3.2.5 Incorporating Additional Labels 31
3.2.6 Pose-Differentiable Ray Consistency 32

3.3 Learning Single-view Reconstruction 33
3.3.1 Learning with Pose Supervision 34
3.3.2 Learning without Pose Supervision 34

3.4 Experiments . 35
3.4.1 Empirical Analysis on ShapeNet 35
3.4.2 Object Reconstruction on PASCAL VOC 38
3.4.3 3D Scene Reconstruction from Ego-motion 40
3.4.4 Object Reconstruction from RGB Supervision 41
3.4.5 ShapeNet Reconstruction without Pose Supervision 41
3.4.6 Learning from Online Product Images 45

3.5 Discussion . 46

4 Learning Mesh Reconstruction from Image Collections 47
4.1 Approach . 50

4.1.1 Inferred 3D Representation . 50
4.1.2 Learning from an Image Collection 52
4.1.3 Incorporating Texture Prediction 54

4.2 Experiments . 56
4.2.1 Experimental Setup . 57
4.2.2 Qualitative Results . 57
4.2.3 Quantitative Evaluation . 60
4.2.4 Evaluation on Other Object Classes 61

4.3 Discussion . 62

II Inferring Compositional 3D Representations 64

5 Unsupervised Learning of Shape Abstractions 65
5.1 Background . 67
5.2 Learning Object Assembly . 68

5.2.1 Primitive based Representation 69
5.2.2 Loss Function for Assembled Shape 69
5.2.3 Allowing Variable Number of Primitives 72

5.3 Experiments . 73
5.4 Applications . 76

5.4.1 Unsupervised Parsing and Correspondence 76

Contents iv

5.4.2 Interpretable Shape Similarity 77
5.4.3 Image based Abstraction . 79
5.4.4 Shape Manipulation . 79

5.5 Discussion . 79

6 Factoring Shape, Pose and Layout 81
6.1 Background . 83
6.2 Approach . 83

6.2.1 Layout . 84
6.2.2 Object Predictions . 85
6.2.3 Training to Predict A Full Scene 86

6.3 Experiments . 87
6.3.1 Datasets . 87
6.3.2 Metrics . 88
6.3.3 Analyzing 3D Object Prediction 90
6.3.4 Placing Objects in Scenes . 91
6.3.5 Comparing Scene Representations 92
6.3.6 Results on NYU . 94

6.4 Discussion . 95

7 Conclusion 96

Bibliography 98

v

List of Figures

2.1 Example outputs of our system . 6
2.2 Overview of our full reconstruction method 7
2.3 Training pipeline overview . 8
2.4 NRSfM camera estimation . 11
2.5 Mean shapes learnt for rigid classes in PASCAL VOC 15
2.6 Fully automatic reconstructions . 20

3.1 Single-view Reconstruction using Multi-view Supervision 24
3.2 Visualization of various aspects of our Differentiable Ray Consistency

formulation . 25
3.3 Reconstructions on the ShapeNet dataset 36
3.4 Analysis of the per-category reconstruction performance 36
3.5 PASCAL VOC reconstructions . 37
3.6 Sample results on Cityscapes . 40
3.7 ShapeNet results using multiple RGB images as supervision 41
3.8 Shape predictions on the validation set using a single RGB input image . 43
3.9 Rotation predictions on a random subset of the validation images 43
3.10 Visualization of predictions using the Stanford Online Product Dataset . 45

4.1 Learning mesh reconstruction from an image collection 48
4.2 Overview of the mesh prediction framework 51
4.3 Illustration of the UV mapping . 54
4.4 Illustration of texture flow . 55
4.5 Sample Results . 58
4.6 Learned deformation modes . 59
4.7 Texture Transfer Results . 60
4.8 Mask reprojection accuracy evaluation on CUB 61
4.9 Pascal 3D+ results . 62

5.1 Examples of assembled shapes . 66

List of Figures vi

5.2 Leaning Shape Assembly . 68
5.3 Final predictions on chairs, animals and aeroplanes 73
5.4 Visualization of the training progression. 74
5.5 Coverage and Consistency losses over training iterations 75
5.6 Projection of the predicted primitives onto the original shape 76
5.7 Embeddings computed using various distance measuress 77
5.8 Inferred abstractions using real image inputs 78
5.9 Sample shape manipulation . 78

6.1 Our 3D scene representation . 82
6.2 Overview of prediction framework . 84
6.3 Predicted 3D representation using ground-truth boxes 87
6.4 Analysis of the prediction performance 88
6.5 Predicted 3D representation from an unannotated RGB image 89
6.6 Comparison of scene representations . 91
6.7 Detection Performance on SUNCG Test Set 92
6.8 Analysis of various scene representations 93
6.9 Results on NYU dataset . 94

vii

List of Tables

2.1 Analysis of quality of our learnt 3D models 17
2.2 Ablation study . 19

3.1 Analysis of our method using mean IoU on ShapeNet. 37
3.2 Mean IoU on PASCAL VOC. 39
3.3 Analysis of single-view shape prediction 42
3.4 Analysis of single-view pose prediction 42

4.1 Reconstruction evaluation using PASCAL 3D+ 61

6.1 Performance of predictions on with ground-truth boxes 88

viii

Acknowledgments

Although the title page of this thesis may identify me as the author, I cannot
help but consider it a blatant misrepresentation of where the credit is actually due.
I am fortunate to have been around some wonderful people throughout this journey,
and none of this work would have been even a remote possibility if not for their
continual support and guidance. I would like to take this opportunity to thank them
for making this possible.

First, I am deeply indebted to my advisor Jitendra Malik for helping me find my
feet, and supporting me through all the stumbles in between. Jitendra has taught me
how to do research, how to choose a problem, the importance of being well-read, and
considering the big picture (as well as Figure 1). Instead of making people around
him work on his ideas, Jitendra enables them to pursue their own, and for this I feel
extremely lucky to have been a part of his group.

While I’m recounting my good fortune, I am glad that Alexei (Alyosha) Efros
decided to come back to Berkeley. Alyosha is an extraordinarily selfless person,
and has generously spent long hours helping me over the course of various projects.
He has inculcated in me the value of looking at the pixels, the courage to pursue
different ideas, and introduced me to the joys of hiking. I am grateful to him for
having positively impacted my research, education, and general life.

The environment in Berkeley is possibly unique in that it allows interacting and
collaborating with faculty across areas and institutions. I have greatly benefited from
this opportunity, and would like to thank Trevor Darrell and Bruno Olshausen for
sharing their insights and valuable feedback over the years, Leo Guibas for taking the
time to collaborate across the bay and ignite my interest in graphics and geometry,
and Pieter Abbeel for an invaluable learning experience on how to organize a course.
I spent a formative summer in Cambridge, learning about building systems that
really work and the benefits of good optimization techniques, and would like to thank
Jonathan Taylor, Jamie Shotton, Andrew Fitzgibbon, and Daniel Tarlow for the
opportunity. I am also indebted to Noah Snavely and Richard Tucker for allowing me
to spend three wonderful months in New York working with them, and helping me
learn how to code better, make (arguably) good coffee, and make progress towards

Acknowledgments ix

larger goals by choosing smaller steps. While acknowledging people who’ve helped
shape my research direction, I’d be remiss not to thank the anonymous reviewers
for various submissions, in particular the ones who helped reject submissions that
admittedly should have been, and helping me become a better researcher through
their honest feedback.

The faculty and mentors helped me throughout in choosing research directions
and ideas to pursue, but it has been my collaborators across these projects who
really helped bring these ideas to life. Abhishek Kar has simultaneously been a great
mentor, friend and co-author, and I am grateful for him helping me find my place in
research (figuratively), and in Berkeley (literally). I am glad to have been able to
collaborate with Tinghui Zhou, who made me more culturally literate by dragging
me to Broadway shows in New York, and hope that some of his ability to have deep
and simple insights into well-chosen problems rubs off on me. Saurabh Gupta has
taught me the importance of considering the details, and often questioning the basic
assumptions.

The vision group at Berkeley has also been home to numerous brilliant postdocs,
some of whom I had the chance to work with, and while the departmental mailing
lists may not acknowledge their existence, I certainly will. Joao Carreira instructed
me on how to make good figures, and made working fun through his creativity
and cheerfulness. Hao Su taught me about the insights to be gained via simple
experiments, and I am glad that he bore the pains of a long commute across the
bay for weekly meetings. I learned from Christian Häne about how to do sensible
things, and patiently persist until things work, and am grateful for his endless supply
of swiss chocolates. I’m thankful to David Fouhey for pushing me towards fruitful
directions, and sharing his love of Pittsburgh and the keys to life over plenty of
conversations. I am glad for the chance to have worked with Angjoo Kanazawa,
whose boundless enthusiasm, an amazing ability to get things done and a knack
for producing pretty results would make her the perfect collaborator (if not for her
misguided love of emacs).

Everyone at Berkeley, though their comments, discussion, and willingness to be
inclusive, has contributed to my stay being a great experience. I’d particularly like
to thank people in Jitendra and Alyosha’s groups over the years: Andrew, Ashish,
Bharath, Deepak, Georgia, Judy, Jun-Yan, Katerina, Ke, Pablo, Panna, Philipp,
Phillip, Pulkit, Richard, Ross, Shiry, Weicheng, Yong Jae and Zhe, for being there,
and shaping my opinions and actions through various discussions. I am also thankful
for the role Angie has played in making my stay comfortable, and acting as a shield
against any logistical and bureaucratic issues.

Pursuing a PhD can sometimes become a lonely enterprise, and I have been
fortunate to have an amazing group of friends around who have helped me in testing

Acknowledgments x

times, celebrated with me in good ones, and most importantly, have tolerated me in
normal times. I am thankful to Niharika for always being there over these years to
support me, and giving me something to hold on to when the going was tough. Thank
you Abhishek, Anurag, Bharath, Neeraja, Nikunj, Radhika, Saurabh, Shromona,
Sreeta, Somil, Sunanda, Tejas and Vivek for making these years enjoyable. I am
really grateful to my brother for his constant support, wisdom and help throughout
these years, and for paving for himself a new path so that following it became much
easier. Finally, I cannot adequately express in words my gratitude towards my
parents who raised me to be inquisitive, supported me in all endeavors, gave me the
freedom to pursue my dreams in a far-away country, and taught me all the good
things I know.

1

Chapter 1

Introduction

We live in a complex world, relying on the 2D retinal projections of the 3D
physical reality to understand and act in it. We can determine while driving whether
one car is farther away than the other. When searching for a spot to sit, we can
imagine the 3D shape of a chair, even though we may have had only a single glance
at it. We understand the the floor, though hidden from view by a couch, continues
beneath it. These are merely some of the endless list of judgments we can easily
make from our visual inputs, all of which serve to highlight one aspect – that we
humans have the remarkable capability to perceive 3D from 2D.

A long-standing goal in computer vision, dating back to the very first at-
tempts [112], has been to build computational systems that have similar capabilities
– that of being able to infer, from a single input image, the underlying 3D structure.
Unfortunately, this task is mathematically ill-posed. As depicted in several excellent
illustrations e.g. the workshop metaphor by Adelson and Pentland [2], or Sinha and
Adelson’s polyhedral line drawings [128], there are infinite possible 3D geometries
than can explain a given 2D image. However, our world is structured, and not all of
these are equally likely. We humans infer (the likely) 3D by relying on our knowl-
edge about these regularities in the world, and our attempts at making computers
understand 3D have similarly relied on incorporating prior knowledge for inference.

Initial attempts towards the goal of single-view 3D inference leveraged hand-
designed priors, either in form of explicit constraints regarding what entities comprised
the scene [54,97,112], or as statistical assumptions regarding the process of image
formation [10, 67, 100]. An alternate approach has been to rely on training data,
and implicitly learn these priors in a data-driven manner [65, 122]. With the recent
advent of deep learning, the trend of increasingly relying on direct supervision for
the end-task has further continued, yielding impressive results for various other tasks
such as image recognition [84], object detection [47], segmentation [124] etc. by

2

relying on large amounts of annotations [114]. However, this paradigm of supervised
learning is not easily applicable for learning 3D inference – it is costly and painstaking,
if not impossible, to obtain such 3D supervision at a large scale. An important
challenge towards learning single-view 3D reconstruction, therefore, is to enable
learning without requiring such tedious explicit 3D supervision.

In addition to the forms of priors leveraged, another aspect that varies across
3D reconstruction approaches is the 3D representation pursued. A common practice
is to directly infer, as a whole, the representation of the entire object or scene in
the form of a volumetric or pixelwise representation. While easier to incorporate
in prediction frameworks, this ignores an important aspect of the underlying world.
The very complex and varied structures we see are actually comprised of simpler
entities – a living room contains chairs, tables, walls, floor etc., a chair, in turn, has
legs and a seat. We humans leverage this aspect, reasoning about the world as being
composed of separate objects, surfaces etc., and we argue that our computational 3D
inference systems should also strive for representations that reflect this compositional
structure.

In this thesis, we address these two challenges regarding the forms of supervision
required to learn 3D reconstruction, and the desired representations to be pursued.
In Part I, we demonstrate that we can learn to predict 3D using only image based
training data, and without requiring direct 3D supervision. In Part II, we show that
we can discover and predict compositional 3D representations.

Part I: Learning 3D via Geometric Consistency. While acquiring direct
supervision for the 3D structure underlying images is difficult, it pragmatically and
ecologically more plausible to obtain indirect supervision in the form of (multiple
of single) 2D views of various instances. In this part, we show that we can learn
to predict 3D using such supervision, by allowing geometry to act as a bridge
between the inferred 3D representations and the available 2D supervision. We can
do so because we know precisely, in the form of concise geometric equations, the
relationship between a 3D representation and the corresponding 2D projections.
We can therefore learn to infer 3D structure by enforcing that our inferences are
geometrically consistent with the available 2D training data.

We examine various scenarios where this idea of learning via geometric consistency
is applicable. We first propose in Chapter 2 an approach to learn category-specific
deformable 3D models by relying on an annotated image collection. This enables us
to represent the space of possible shapes of categories using learned linear models,
and using estimates from recognition systems, robustly fit these deformable models
to obtain the shape for a new instance.

In Chapter 3, we pursue a more expressive, convolutional neural network (CNN)

3

based prediction model. Towards this, we study the notion of consistency between a
volumetric 3D shape and a 2D observation and propose a differentiable formulation
which allows computing gradients of the 3D shape given an observation from an
arbitrary view. We show that this formulation can be incorporated in a learning
framework to leverage different types of multi-view observations e.g. foreground
masks, depth, color images, semantics etc. as supervision for learning single-view 3D
prediction, and demonstrate its applicability across various setups.

In Chapter 4, we then aim to infer a textured 3D mesh representation using a
CNN based prediction model, while only relying on an image collection as supervision.
To enable this, we leverage the representations and objectives analogous to those
used by deformable model learning methods, but incorporate these in a CNN based
prediction framework. We demonstrate that this allows us to recover the 3D shape,
camera, and texture of an object from a single image.

Part II: Inferring Compositional 3D Representation. While in Part I our
aim is to enable learning 3D using plausible forms of supervision, in Part II we focus
on the ability to predict compositional representations. Our goal is to represent and
understand complex objects and scenes in terms of the underlying simpler entities.
Towards this, we first address the question of how we can learn what these entities are,
and then demonstrate the benefits of inferring these compositional representations.

In Chapter 5, we consider a collection of 3D shapes, and present an unsupervised
learning framework for abstracting complex shapes by learning to assemble objects
using 3D volumetric primitives. In addition to generating simple and geometrically
interpretable explanations of 3D objects, our framework also allows us to automati-
cally discover and exploit consistent structure in the data. We demonstrate that this
discovered consistent compositional structure can be leveraged for obtaining a consis-
tent parsing across the instances of a shape collection, constructing an interpretable
shape similarity measure, or for shape manipulation. We also demonstrate that we
can learn to infer similar primitive based representation from input RGB images.

In Chapter 6, we then focus on representing the 3D structure of scenes in terms
of a small set of factors: a layout representing the enclosing surfaces as well as a
set of objects represented in terms of shape and pose. We present a CNN based
learning approach to predict this representation, and quantitatively and qualitatively
demonstrate its merits compared to pursuing alternate representations.

We finally conclude in Chapter 7, and discuss possible directions for future
research.

4

Part I

Learning via Geometric Consistency

5

Chapter 2

Category-Specific Deformable 3D
Models

Consider the chairs in Figure 2.1. As humans, not only can we infer at a glance
that the image contains three chairs, we also construct a rich internal representation
of each of them such as their locations and 3D poses. Moreover, we have a guess of
their 3D shapes, even though we might never have seen these particular chairs. We
can do this because we do not experience this image tabula rasa, but in the context
of our "remembrance of things past". Previously seen chairs enable us to develop
a notion of the 3D shape of chairs, which we can project to the instances in this
particular image. We also specialize our representation to these particular instances
(e.g. any custom decorations they might have), signalling that both top-down and
bottom-up cues influence our percept [104]. In this chapter, we incorporate these
principles in a computational approach for reconstructing objects given a single
image. Towards this, we propose a method to learn category-specific deformable
models directly from 2D annotations available in object detection datasets, and
demonstrate that these models can be robustly fitted to images based on noisy pose
and silhouette estimates.

The task of reconstructing objects from a single image is a challenging one – a
typical image depicts many objects, each possibly belonging to a different object
category; an object category, in turn, comprises instances of varying shapes, textures,
size etc. and any particular instance may be viewed from a different viewpoint.
Previous approaches to this problem can be broadly grouped into two paradigms.
The paradigm of model-based object reconstruction has reflected varying preferences
on model representations. Generalized cylinders [105] resulted in very compact de-

This chapter is based on joint work with Abhishek Kar, João Carreira, and Jitendra Malik. An
initial version of this work appeared in CVPR, 2015 [78], and subsequently in TPAMI, 2017 [141].

6

Figure 2.1: Example outputs of our system, given a single image of a scene having
chairs, a class that the system was exposed to during training. The coloring on the
right image signals object-centric depth (we do not aim for globally consistent depths
across multiple objects). Blue means close to the camera, red means far from the
camera.

scriptions for certain classes of shapes, and can be used for category level descriptions,
but the fitting problem for general shapes is challenging. Polyhedral models [51,159],
which trace back to the early work of Roberts [112], and CAD models [94, 107,119],
cannot perfectly deform into shapes even slightly different from those in training
data, but given a set of point correspondences can be quite effective for determining
approximate instance viewpoints. Some recent methods have proposed using similar
instances from a collection of CAD models [70,132] for non-parametric reconstruction
but their applications have been restricted to pre-segmented online product images
or recovering 3D from 2.5D object scans [134]. Here we pursue more expressive basis
shape models [3,14,172] which establish a balance between the two extremes as they
can deform but only along class-specific modes of variation.

The alternate paradigm comprises of approaches that target the problem of object
reconstruction in a class or object agnostic manner, either implicitly or explicitly
using generic learned 3D shape cues [65, 122], or bottom-up cues and the physics
of image formation [9,79] building upon the long tradition of shape-from-X, which
traces back to seminal work by Horn [67]. These methods, while quite general, have
not yet been demonstrated for 3D reconstruction – as opposed to 2.5D – and typically
assume known object segmentation [9]. Some recent approaches have demonstrated
the use of supervised learning techniques to implcitly learn generic cues to predict
depth maps [31] and surface normals [30,151] but these have primarily focused on
inferring scene-level information which differs from our goal of perceiving the shape
of objects.

In this chapter, we combine both these reconstruction paradigms - we obtain

7

Figure 2.2: Overview of our full reconstruction method. We leverage estimated
instance segmentations and predicted viewpoints to generate a full 3D mesh and a
high frequency 2.5D depth map for each object in the image.

top-down shape information from our model-based reconstruction approach and
complement it with bottom-up shape information obtained via an intrinsic image
decomposition method. Crucially, in contrast to previous work (e.g. [9, 19, 148]), we
do not require perfect knowledge of object localization and pose as our reconstruction
is driven by automatic figure-ground object segmentations and viewpoint estimations.

The framework we propose to reconstruct the objects present in an image is
outlined in Figure 2.2. As a first step, we leverage the recent progress made by the
computer vision community in object detection [47], instance segmentation [58, 59]
and viewpoint estimation [142] to identify, localize and estimate pose for the objects in
the image. We then use our learned deformable 3D shape models in conjunction with
the viewpoint and localization information to produce a “top-down” 3D reconstruction
for the object guided primarily by category level cues. Finally, we infuse our 3D
shape with high frequency local shape cues to obtain our end result - a rich 3D
reconstruction of the object. We briefly outline each of the components required for
the above proposed framework.

Learning Deformable 3D Models. As noted earlier, previously seen objects allow
us to develop a notion of 3D shape which informs inference for new instances. We
present an algorithm that can build category-specific deformable shape models from
just images with 2D annotations (segmentation masks and a small set of keypoints)
present in modern computer vision datasets (e.g. PASCAL VOC [34]). These learnt

2.1. LEARNING DEFORMABLE 3D MODELS 8

shape models and deformations allow us to robustly infer shape while capturing
intra-class shape variation.

Object Shape Recovery. Given an object’s category, approximate localization
and viewpoint, we obtain a 3D reconstruction for the corresponding object using the
learned category-specific deformable shape model. We complement the top-down
shape inferred via this inference with a bottom-up module that further refines our
shape estimate for a particular instance. This framework allows us to capture the
coarse as well as fine level shape details for objects from a single image.

This chapter is organized as follows: in Section 2.1 we describe our model
learning pipeline where we estimate camera parameters for all training objects
(Section 2.1.1) followed by our shape model formulation (Section 2.1.2) to learn 3D
models. Section 2.2 describes our testing pipeline where we leverage our learnt models
to reconstruct novel instances without assuming any annotations. We evaluate the
various components of our approach in Section 2.3 and provide sample reconstructions
in the wild.

2.1 Learning Deformable 3D Models

Figure 2.3: Overview of our training pipeline. We use an annotated image collection
to estimate camera projection parameters which we then use along with object
silhouettes to learn 3D shape models. Our learnt shape models, as illustrated in the
rightmost figure are capable of deforming to capture intra-class shape variation.

We are interested in learning 3D shape models that can be robustly aligned to
noisy object segmentations by incorporating top-down class-specific knowledge of
how shapes from the class typically project onto the image. We want to learn such
models from just 2D training images, aided by ground truth segmentations and a few
keypoints, similar to [148]. Our approach operates by first estimating the projection
parameters (camera) for all objects in a class using a structure-from-motion approach,
followed by optimizing over a deformation basis of representative 3D shapes that

2.1. LEARNING DEFORMABLE 3D MODELS 9

best explain all silhouettes, conditioned on the estimated cameras. We describe these
two stages of model learning in the following subsections. Figure 2.3 illustrates this
training pipeline of ours.

2.1.1 Camera Estimation

We use the framework of NRSfM [17] to jointly estimate the projection parameters
(rotation, translation and scale) for all training instances in each class. Originally
proposed for recovering shape and deformations from video [11,17, 42,138], NRSfM
is a natural choice for camera estimation from sparse correspondences as intra-class
variation may become a confounding factor if not modeled explicitly. However, the
performance of such algorithms has only been explored on simple categories, such as
SUV’s [171] or flower petal and clown fish [109]. Closer to our work, Hejrati and
Ramanan [63] used NRSfMon a larger class (cars) but need a predictive detector to
fill-in missing data (occluded keypoints) which we do not assume to have here.

We closely follow the EM-PPCA formulation of Torresani et al. [138] and propose
a simple extension to the algorithm that incorporates silhouette information in
addition to keypoint correspondences to robustly recover cameras and shape bases.
Energies similar to ours have been proposed in the shape-from-silhouette [149] and
rigid structure-from-motion [148] literature but, to the best of our knowledge, not in
conjunction with NRSfM.

NRSfM Model Formulation. We are provided with an annotated training set
T : {(On, Pn)}Nn=1, where On is the instance silhouette and Pn ∈ R2×K denotes the
annotated keypoint coordinates, possibly with missing entries (occluded/truncated
keypoints). The annotated keypoints Pn are projections of the underlying 3D points
Wn ∈ R3×K via the projection function πn. In the NRSfMmodel, the space of
3D keypoint locations Wn is parametrized linearly and the projection function is
assumed to be weakly orthographic i.e. πn ≡ (cn, Rn, Tn), where cn represents scale,
Rn ∈ R2×3 denotes rotation and Tn ∈ R1×2 corresponds to 2D translation. Our goal
is to infer the camera parameters (cn, Rn, Tn) as well as 3D keypoint locations Wn

for all instances in the annotated training set.
Formally, our adaptation of the NRSfMalgorithm in [138] corresponds to maxi-

2.1. LEARNING DEFORMABLE 3D MODELS 10

mizing the likelihood of the following model:

Pn = cnRnWn + 1TTn +Nn

Wn = W̄ +
B∑

k=1

Ubznb

zn ∼ N (0, I), Nk
n ∼ N (0, σ2I)

(2.1)

subject to: RnR
T
n = I2

K∑

k=1

Cmask
n (pk,n) = 0, ∀n ∈ {1, · · · , N} (2.2)

Here, the (partially) observed keypoint locations Pn are assumed to be the
projection under πn ≡ (cn, Rn, Tn) of the 3D shape Wn with white noise Nn. The
shape is parameterized as a factored Gaussian with a mean shape W̄ , B basis vectors
[U1, U2, · · · , UB] = U and latent deformation parameters zn. Our key modification
is constraint in Eq. 2.2 where Cmask

n denotes the Chamfer distance field of the nth
instance’s binary mask and says that all keypoints pk,n of instance n should lie inside
its binary mask. We observed that this results in more accurate cameras as well as
more meaningful shape bases learnt from the data.

Learning. The likelihood of the above model is maximized using the EM algorithm.
Missing data (occluded keypoints) is dealt with by “filling-in" the values using the
forward equations after the E-step. The algorithm computes shape parameters
{W̄ , U}, rigid body transformations {cn, Rn, Tn} as well as the deformation param-
eters {zn} for each training instance n. In practice, we augment the data using
horizontally mirrored images to exploit bilateral symmetry in the object classes
considered. We also precompute the Chamfer distance fields for the whole set to
speed up computation. As shown in Figure 2.4, NRSfMallows us to reliably predict
cameras while being robust to intraclass variations.

2.1.2 3D Basis Shape Model Learning

Equipped with camera projection parameters and keypoint correspondences (lifted
to 3D by NRSfM) on the whole training set, we proceed to build deformable 3D
shape models from object silhouettes within the same class. 3D shape reconstruction
from multiple silhouettes projected from a single object in calibrated settings has
been widely studied. Two prominent approaches are visual hulls [90] and variational
methods derived from snakes e.g [33,117] which deform a surface mesh iteratively until

2.1. LEARNING DEFORMABLE 3D MODELS 11

Figure 2.4: NRSfM camera estimation: Estimated cameras visualized using a 3D car
wireframe.

convergence. Some interesting recent papers have extended variational approaches
to handle categories [19, 22] but typically require some form of 3D annotations to
bootstrap models. A recently proposed visual-hull based approach [148] requires
only 2D annotations as we do for class-based reconstruction and it was successfully
demonstrated on PASCAL VOC but does not serve our purpose as it makes strong
assumptions about the accuracy of the segmentation and will in fact fill entirely any
segmentation with a voxel layer. In contrast, we build parametric shape models for
categories that compactly capture intra class shape variations. The benefits of having
a model of 3D shape are manifold: 1) we are more robust to noisy inputs (silhouettes
and pose) allowing us to pursue reconstruction in a fully automatic setting and 2)
we can potentially sample novel shapes from an object category.

Shape Model Formulation. We model our category shapes as a deformable point
cloud. As in the NRSfMmodel, we use a linear combination of basis vectors to model
these deformations. Note that we learn such models from silhouettes and this is what
enables us to learn deformable models without relying on point correspondences
between scanned 3D exemplars [15].

The annotated training set T : {(On, Pn)}Nn=1, where On is the instance silhouette
and Pn ∈ R2×K denotes the annotated keypoint coordinates, is augmented after
NRSfMto contain πn (the projection function from world to image coordinates) and
Wn (3D coordinates for a small set of keypoints). Our shape model M = (S, V)
comprises of a mean shape S and deformation bases V = {V1, ., VK} learnt from

2.1. LEARNING DEFORMABLE 3D MODELS 12

the augmented training set T : {(On, πn,Wn)}Nn=1. Note that the πi we obtain using
NRSfM corresponds to orthographic projection but our algorithm could handle
perspective projection as well.

In addition to the above, we use the following notations – π(S) corresponds to the
2D projection of shape S, Cmask refers to the Chamfer distance field of the binary
mask of silhouette O and ∆k(p;Q) is defined as the squared average distance of point
p to its k nearest neighbors in set Q.

Energy Formulation. We formulate our objective function primarily based on
image silhouettes. For example, the shape for an instance should always project
within its silhouette and should agree with the keypoints (lifted to 3D by NRSfM).
We capture these by defining corresponding energy terms as follows:

Silhouette Consistency. Silhouette consistency simply enforces the predicted
shape for an instance to project inside its silhouette. This can be achieved by
penalizing the points projected outside the instance mask by their distance from the
silhouette (i.e. squared distance to the closest silhouette point). In our ∆ notation
it can be written as follows:

Es(S,O, π) =
∑

Cmask(p)>0

∆1(p;O) (2.3)

Silhouette Coverage. Using silhouette consistency alone would just drive points
projected outside in towards the silhouette. This wouldn’t ensure though that the
object silhouette is “filled” - i.e. there might be overcarving. We deal with it by having
an energy term that encourages points on the silhouette to pull nearby projected
points towards them. Formally, this can be expressed as:

Ec(S,O, π) =
∑

p∈O

∆m(p; π(S)) (2.4)

Keypoint Consistency. Our NRSfMalgorithm provides us with sparse 3D key-
points along with camera projection parameters. We use these sparse correspondences
on the training set to deform the shape to explain these 3D points. The corresponding
energy term penalizes deviation of the shape from the 3D keypoints W for each
instance. Specifically, this can be written as:

Ekp(S,W) =
∑

κ∈W

∆m(κ;S) (2.5)

2.1. LEARNING DEFORMABLE 3D MODELS 13

Local Consistency. In addition to the above data terms, we use a simple shape
regularizer to restrict arbitrary deformations by imposing a quadratic deformation
penalty between every point and its neighbors. We also impose a similar penalty
on deformations to ensure local smoothness. The δ parameter represents the mean
squared displacement between neighboring points and it encourages all faces to have
similar size. Here Vki is the ith point in the kth basis.

El(S̄, V) =
∑

i

∑

j∈N(i)

((‖S̄i − S̄j‖ − δ)2 +
∑

k

‖Vki − Vkj‖2) (2.6)

Normal Smoothness. Shapes occurring in the natural world tend to be locally
smooth. We capture this prior on shapes by placing a cost on the variation of normal
directions in a local neighborhood in the shape. Our normal smoothness energy is
formulated as

En(S) =
∑

i

∑

j∈N(i)

(1− ~Ni · ~Nj) (2.7)

Here, ~Ni represents the normal for the ith point in shape S which is computed by
fitting planes to local point neighborhoods. Our prior essentially states that local
point neighborhoods should be flat. Note that this, in conjunction with our previous
energies automatically enforces the commonly used prior that normals should be
perpendicular to the viewing direction at the occluding contour [8].

Our total energy is given in equation Eq. 2.8. In addition to the above smoothness
priors we also penalize the L2 norm of the deformation parameters αi to prevent
unnaturally large deformations.

Etot(S̄, V, α) = El(S̄, V) +
∑

i

(Ei
s + Ei

kp + Ei
c + Ei

n +
∑

k

(‖αikVk‖2
F)) (2.8)

Learning. We solve the optimization problem in equation Eq. 2.9 to obtain our
shape model M = (S̄, V). The mean shape and deformation basis are inferred via
block-coordinate descent on (S̄, V) and α using sub-gradient computations over the
training set. We restrict ‖Vk‖F to be a constant to address the scale ambiguity
between V and α in our formulation. In order to deal with imperfect segmentations
and wrongly estimated keypoints, we use truncated versions of the above energies
that reduce the impact of outliers. The mean shapes learnt using our algorithm for
9 rigid categories in PASCAL VOC are shown in Figure 2.5. Note that in addition
to representing the coarse shape details of a category, the model also learns finer

2.2. RECONSTRUCTION IN THE WILD 14

structures like chair legs and bicycle handles, which become more prominent with
deformations.

min
S̄,V,α

Etot(S̄, V, α)

subject to: Si = S̄ +
∑

k

αikVk
(2.9)

Our training objective is highly non-convex and non-smooth and is susceptible
to initialization. We follow the suggestion of [33] and initialize our mean shape with
a soft visual hull computed using all training instances. The deformation bases and
deformation weights are initialized randomly.

Implementation Details. The gradients involved in our optimization for shape
and projection parameters are extremely efficient to compute. We use approximate
nearest neighbors computed using k-d tree to implement the ‘Silhouette Coverage’,
‘Keypoint Consistency’ gradients and leverage Chamfer distance fields for obtaining
‘Silhouette Consistency’ gradients. Our overall computation takes only about 15 min
to learn a deformable shape model for an object category with about 500 annotated
examples.

2.2 Reconstruction in the Wild
Given an image, our goal is to reconstruct the depicted objects. As the initial

step, we use existing state-of-the-art systems [58] to detect and segment the objects
present in the image. We then proceed to individually reconstruct each of the
detected objects. We approach the problem of reconstructing these objects from the
big picture downward - like a sculptor first hammering out the big chunks and then
chiseling out the details. We infer their coarse 3D poses and use these along with
the predicted instance segmentations to fit our top-down shape models to obtain
a coarse top-down shape (Section 2.2.1). Finally, we recover high frequency shape
details from shading cues present in the image (Section 2.2.2).

2.2.1 Category Specific Shape Inference

We have at our disposal category-level deformable shape models which can
be driven by data-specific and shape-prior based energy terms to infer an object’s
shape. Recall that the proposed energy terms (Section 2.1.2), in particular ‘Silhouette
Consistency’ (Es(S,O, π)) and ‘Silhouette Coverage’ (Ec(S,O, π)) depend on a known

2.2. RECONSTRUCTION IN THE WILD 15

Figure 2.5: Mean shapes learnt for rigid classes in PASCAL VOC obtained using
our basis shape formulation. Color encodes depth when viewed frontally.

object silhouette O and camera projection π. We first describe how we estimate O, π
and then formulate an optimization problem to infer object shape S.

Initialization. Given an object detection along with its predicted instance seg-
mentation, we use the largest connected component in the predicted segmentation
to obtain the object silhouette O. We use an off-the shelf viewpoint prediction
system [142] to predict the viewpoint for the detected object, thereby obtaining the
camera rotation R. Our learnt models are at a canonical bounding box scale - all
objects are first resized to a particular width during training. Given the predicted
bounding box, we scale the learnt mean shape accordingly and obtain camera scale
c. The translation T is initialized to be the center of the predicted bounding box.
These provide us an initial estimate of the camera parameters π0 ≡ (c, R, T).

Formulation. We want to infer a shape that best explains the observed object
silhouette, respects generic shape priors (smoothness, continuity) and lies on the
linear manifold of category-level shapes. Note that, unlike model learning phase,
we do not have access to annotated keypoint locations and thus do not enforce the
reconstruction to explain any keypoint locations. These observations are incorporated

2.2. RECONSTRUCTION IN THE WILD 16

by the reconstruction energy defined in (using Es, Ec, En defined in Section 2.1.2).

Er = Es + Ec + En (2.10)

In addition to inferring the instance shape, we also observe that the initial camera
estimate π0 is only approximate as the R is predicted upto a dicretization and
c, T are initialized coarsely. To alleviate this, we treat the camera parameters π
as optimization variables. We further add regularizers to enforce the prior that
shape deformation should be small and the the estimated camera should not deviate
significantly from the initial camera estimate π0 . Our final optimization for inferring
the object reconstruction is given in Eq. 2.11.

min
α,π

Er(S, π) + δ(π, π0) +
∑

k

(‖αkVk‖2
F))

subject to: S = S̄ +
∑

k

αkVk
(2.11)

Inference. In the above optimization, we first set the optimization variables α, π to
0, π0 respectively. We then solve the above minimization for the deformation weights
α as well as all the camera projection parameters π (scale, translation and rotation)
by optimizing Eq. 2.9 using block-coordinate descent (alternately optimizing π
and α). The resulting output from the minimization provides us the projection
parameters π as well as the inferred 3D shape S = S̄ +

∑
k

αkVk. We use the efficient

implementations of energy gradients described earlier and consequently, our overall
computation takes only about 2 sec to reconstruct a novel instance using a single
CPU core.

2.2.2 Bottom-up Shape Refinement

The above optimization results in a top-down 3D reconstruction based on the
category-level models, inferred object silhouette, viewpoint and our shape priors. We
propose an additional processing step to recover high frequency shape information
by adapting the intrinsic images algorithm of Barron and Malik [8, 9], SIRFS, which
exploits statistical regularities between shapes, reflectance and illumination

Formally, SIRFS is formulated as the following optimization problem:

minimize
Z,L

g(I − S(Z,L)) + f(Z) + h(L)

2.3. EXPERIMENTS 17

aero bike boat bus car chair mbike sofa train tv mean

Mesh

Ours 1.72 1.78 3.01 1.90 1.77 2.18 1.88 2.13 2.39 3.28 2.20

Carvi [148] 1.87 1.87 2.51 2.36 1.41 2.42 1.82 2.31 3.10 3.39 2.31

Puff [145] 3.30 2.52 2.90 3.32 2.82 3.09 2.58 2.53 3.92 3.31 3.03

Depth

Ours 9.51 9.27 17.20 12.71 9.94 7.78 9.61 13.70 31.58 8.78 13.01

Carvi [148] 10.05 9.28 15.06 18.51 8.14 7.98 9.38 13.71 31.25 8.33 13.17

SIRFS [9] 13.52 13.79 20.78 29.93 22.48 18.59 16.80 18.28 40.56 20.18 21.49

Table 2.1: Studying the quality of our learnt 3D models: comparison between our
method and [145,148] using ground truth keypoints and masks on PASCAL VOC.

where R = I − S(Z,L) is a log-reflectance image, Z is a depth map and L is
a spherical-harmonic model of illumination. S(Z,L) is a rendering engine which
produces a log shading image with the illumination L. g, f and h are the loss
functions corresponding to reflectance, shape and illumination respectively.

We incorporate our current coarse estimate of shape into SIRFS through an
additional loss term:

fo(Z,Z
′) =

∑

i

((Zi − Z ′i)2 + ε2)γo

where Z ′ is the initial coarse shape and ε a parameter added to make the loss
differentiable everywhere. We obtain Z ′ for an object by rendering a depth map of
our fitted 3D shape model which guides the optimization of this highly non-convex
cost function. The outputs from this bottom-up refinement are reflectance, shape
and illumination maps of which we retain the shape.

2.3 Experiments
We first examine the quality and expressiveness of our learned 3D models by

evaluating how well they matched the underlying 3D shapes of the training data
(Section 2.3.1). We then study their sensitivity of obtained reconstructions when fit
to images using noisy automatic segmentations and pose predictions (Section 2.3.2)
and finally present qualitative results for reconstructions from a single image (Sec-
tion 2.3.3).

2.3. EXPERIMENTS 18

2.3.1 Quality of Learned 3D Models

The first question we address is whether the category-specific shape models we
learn for each object class (Section 2.1) using an annotated image collection correctly
explain the underlying 3D object shape for these annotated instances. Note that
while it is not our final goal, this is itself a very challenging task - we have to obtain
a dense 3D reconstruction for annotated images using just silhouettes and sparse
keypoint correspondences. Recent work by Vicente et al. [148] addressed this task of
‘lifting’ an annotated image collection to 3D and we compare the performance of our
model learning stage against their approach. We also incorporate category-agnostic
shape inflation [145] and intrinsic image [8] methods as baselines. The evaluation
metrics, dataset and results are described below.

Dataset. We consider images from the challenging PASCAL VOC 2012 dataset [34]
which contain objects from the 10 rigid object categories (as listed in Table 2.1).
We use the publicly available ground truth class-specific keypoints [16] and object
segmentations [57] to learn category-specific shape models for each class. We learn
and fit our 3D models on the whole dataset (no train/test split), following the setup
of Vicente et al. [148].

Since ground truth 3D shapes are unavailable for PASCAL VOC and most other
detection datasets, we evaluated the quality of our learned 3D models on the next
best thing we managed to obtain: the PASCAL3D+ dataset [158] which has up to
10 3D CAD models for the rigid categories in PASCAL VOC. PASCAL3D+ provides
between 4 different models for “tvmonitor” and “train” and 10 for “car” and “chair”.
The subset of PASCAL we considered after filtering occluded instances, which we do
not tackle in this paper, had between 70 images for “sofa” and 500 images for classes
“aeroplanes” and “cars”.

Metrics. We quantify the quality of our 3D models by comparing against the
PASCAL 3D+ models using two metrics - 1) a mesh error metric computed as the
Hausdorff distance between the ground truth and predicted mesh after translating
both to the origin and normalizing by the diagonal of the tighest 3D bounding box
of the ground truth mesh [5] and 2) a depth map error to evaluate the quality of
the reconstructed visible object surface, measured as the mean absolute distance
between reconstructed and ground truth depth:

Z-MAE(Ẑ, Z∗) =
1

n · γmin
β

∑

x,y

|Ẑx,y − Z∗x,y − β| (2.12)

where Ẑ and Z∗ represent predicted and ground truth depth maps respectively.
Analytically, β can be computed as the median of Ẑ − Z∗ and γ is a normalization

2.3. EXPERIMENTS 19

aero bike boat bus car chair mbike sofa train tv mean

Mesh

KP+Mask 1.77 1.85 3.68 1.90 1.80 2.26 1.83 6.86 2.69 3.40 2.80

KP+SDS 1.75 1.89 3.71 1.87 1.75 2.27 1.84 6.56 2.76 3.39 2.78

PP+SDS 1.84 2.02 4.59 1.86 1.88 2.41 2.01 7.30 2.74 3.27 2.99

Puff [145] 3.31 2.49 2.95 3.40 2.87 3.09 2.65 2.73 3.91 3.33 3.07

Depth

KP+Mask 9.83 9.95 21.07 12.80 10.07 9.10 9.98 29.39 25.70 9.85 14.77

KP+SDS 9.95 10.35 20.11 13.06 10.49 9.24 10.61 27.94 26.13 10.10 14.80

PP+SDS 11.42 11.25 21.93 22.04 13.69 10.27 11.71 26.76 34.92 9.88 17.39

SIRFS [9] 13.58 14.48 19.64 30.14 22.60 20.12 16.81 21.54 41.40 23.67 22.40

Table 2.2: Ablation study for our method assuming/relaxing various annotations
at test time on objects in PASCAL VOC. As can be seen, our method degrades
gracefully with relaxed annotations. Note that these experiments are in a train/test
setting and numbers will differ from Table 2.1. Please see text for more details.

factor to account for absolute object size for which we use the bounding box diagonal.
Note that our depth map error is translation and scale invariant.

Results. We report the performance of our model learning approach in Table 2.1.
Here, ‘SIRFS’ denotes a state-of-the art intrinsic image decomposition method and
‘Puffball’l [145] denotes a shape-inflation method for reconstruction. ‘Carvi’ denotes
the recent method by Vicente et al. [148] which is specifically designed for the task of
reconstructing an annotated image collection as their visual hull based reconstruction
technique makes strong assumptions regarding the accuracy of the object mask and
predicted viewpoint.

We observe that category-agnostic methods – Puffball [145] and SIRFS [8,9] –
consistently perform worse on the benchmark by themselves as they use generic priors
to reconstruct each image individually and cannot reason over the image collection
jointly. Our model learning performs comparably to the specialized approach of
Vicente et al.– we demonstrate competitive, if not better, performance on both
benchmarks with our models showing greater robustnes to perspective foreshortening
effects on “trains” and “buses”. Certain classes like “boat” and “sofa” are especially
hard because of large intra-class variance and data sparsity respectively.

2.3. EXPERIMENTS 20

Figure 2.6: Fully automatic reconstructions on detected instances (0.5 IoU with
ground truth) using our models on rigid categories in PASCAL VOC. We show our
instance segmentation input, the inferred shape overlaid on the image, a 2.5D depth
map (after the bottom-up refinement stage), the mesh in the image viewpoint and
two other views. It can be seen that our method produces plausible reconstructions
which is a remarkable achievement given just a single image and noisy instance
segmentations. Color encodes depth in the image coordinate frame (blue is closer).
More results can be found at https://goo.gl/MgVQzZ.

https://goo.gl/MgVQzZ

2.3. EXPERIMENTS 21

2.3.2 Sensitivity Analysis for Recognition based Reconstruc-
tion

Our primary goal is to reconstruct objects in an image automatically. Towards
this goal, we study the performance of our system when relaxing the availability of
various expensive annotations of the form of keypoint correspondences or instance
segmentations.

Dataset and Metrics. The reconstruction error metrics for measuring mesh and
depth error are the same as described previously (Section 2.3.1). The segmentation,
keypoint annotations for learning and the mesh annotations for evaluation are also
similarly obtained. However, for the sensitivity analysis, we introduce a train/test
split since the recognition components used for instance segmentation and viewpoint
estimation are trained on the PASCAL VOC train set. We therefore train our
category-shape models on only the subset of the data corresponding to PASCAL
VOC train set. We then reconstruct the held out objects in the PASCAL validation
set and report performance for these test objects.

Results. In order to analyze sensitivity of our models to noisy inputs we recon-
structed held-out test instances using our models given just ground truth bounding
boxes. We compare various versions of our method using ground truth(Mask)/imperfect
segmentations(SDS) and keypoints(KP)/our pose predictor(PP) for viewpoint es-
timation respectively. For pose prediction, we use a state-of-the-art CNN-based
system [142]. To obtain an approximate segmentation from the bounding box, we
use the refinement stage of the state-of-the-art joint detection and segmentation
system proposed in [58].

Table 2.2 shows that our results degrade gracefully from the fully annotated to
the fully automatic setting. Our method is robust to some mis-segmentation owing
to our shape model that prevents shapes from bending unnaturally to explain noisy
silhouettes. Our reconstructions degrade slightly with imperfect pose initializations
even though our projection parameter optimization deals with it to some extent.
With predicted poses, we observe that sometimes even when our reconstructions
look plausible, the errors can be high as the metrics are sensitive to bad alignment.
The data sparsity issue is especially visible in the case of sofas where in a train/test
setting in Table 2.2 the numbers drop significantly with less training data (only 34
instances). Note we do not evaluate our bottom-up component as the PASCAL 3D+
meshes provided do not share the same high frequency shape details as the instance.

2.4. DISCUSSION 22

2.3.3 Fully Automatic Reconstruction

We qualitatively demonstrate reconstructions on automatically detected and
segmented instances with 0.5 IoU overlap with the ground truth in whole images in
PASCAL VOC using [58] in Figure 2.6. We can see that our method is able to deal
with some degree of mis-segmentation. Some of our major failure modes include not
being able to capture the correct scale and pose of the object and thus badly fitting
to the silhouette in some cases.

2.4 Discussion
We proposed an approach to perform fully automatic object reconstruction

from a single image on a large and realistic dataset. Critically, our deformable 3D
shape model can be learned from easily acquired ground-truth 2D annotations, by
enforcing consistency between the annotations and the model projections. This allows
bypassing the need for a-priori manual mesh design or 3D scanning and making it
possible for convenient use of these types of models on large real-world datasets (e.g.
PASCAL VOC).

While this ability to learn and infer 3D using such supervision is certainly desirable,
leveraging a linear morphable model does restrict expressivity e.g. topological
changes across shapes are not easily modeled. Further, the reliance on a model fitting
approach leads to a computationally expensive inference procedure. We address
these challenges in Chapter 3 and Chapter 4, where we show that building upon
similar ideas of enforcing geometric consistency, we can learn even more expressive
prediction models that also allow efficient inference.

23

Chapter 3

Multi-view Supervised Single-view
Reconstruction

Humans are moving organisms: our ecological supervision [44] comprises of
observing the world and the objects in it from different perspectives. These multiple
views inform us of the underlying geometry. In addition to allowing us to understand
in 3D the particular instance(s) we observe from multiple views, this supervision also
enables us to learn about the common structure in the world and reconstruct new
objects even from a single view. In Chapter 2, we extracted this common structure
in the form of a deformable 3D model, which allowed us to infer 3D shapes for novel
instances. In this chapter, we pursue neural network based reconstruction models
which are both, more expressive and more efficient for inference. We present an
approach that allows learning these single-view prediction models using only the
ecologically plausible multi-view supervisory data. As depicted in Figure 3.1, we can
learn to infer the 3D shape from a single input image without relying on ground-truth
3D supervision during training.

The insight the multiple views inform us of the underlying geometry has been
successfully leveraged by a long line of geometry-based reconstruction techniques.
While these structure from motion or multi-view stereo methods work for specific
instances, they do not, unlike humans, generalize to predict the 3D shape of a novel
instance given a single view. Recent learning-based methods have attempted to
address this single-view 3D inference task. However, these approaches rely on full
3D supervision and require known 3D shape for each training image. Not only is this
form of supervision ecologically implausible, it is also practically tedious to acquire
and difficult to scale. Instead, as depicted in Figure 3.1(b), our goal is to learn 3D

This chapter is based on joint work with Tinghui Zhou, Alexei A. Efros, and Jitendra Malik.
The two papers corresponding to this chapter appeared in CVPR, 2017 [144] and CVPR, 2018 [139].

24

Figure 3.1: We learn to predict 3D shape from a single input view. Our framework can
leverage training data of the form of multi-view observations, and learn 3D reconstruction
despite the lack of any direct supervision.

prediction using the more naturally plausible multi-view supervision.
We therefore aim to combine aspects of classical multi-view reconstruction with

learning based prediction. Akin to the classical geometry-based approaches, we rely
on multi-view supervisory signal, while being able to generalize to novel instances
and infer their 3D structure from a single view. Our approach is to learn shape
prediction by enforcing geometric consistency between the predicted 3D and the
available multi-view data. Concretely, given one image of an object instance, we
predict a corresponding shape, and enforce that this predicted shape is consistent
with the multiple views of this instance.

A central aspect of this approach is the notion of geometric consistency between
a 3D shape and 2D image. In particular, our learning system requires signals for
how to improve predicted shapes such that they become more consistent with the
available observations. One way this problem has been traditionally addressed is by
space carving [88]. Rays are projected out from pixels into the 3D space and each
ray that is known not to intersect the object removes the volume in its path, thereby
making the carved-out shape consistent with the observed image.

However, to leverage it in a learning-based system, we want to extend this notion
of consistency to a differential setting. That is, instead of deleting chunks of volume
all at once, we would like to compute incremental changes to the 3D shape that make
it more consistent with the 2D image. In this chapter, we present a differentiable ray
consistency formulation that allows computing the gradient of a predicted 3D shape
of an object, given an observation (depth image, foreground mask, color image etc..)
from an arbitrary view. The differentiability of our consistency formulation is what
allows its use in a learning framework, such as a neural network. Every new piece of
evidence gives gradients for the predicted shape, which, in turn, yields incremental
updates for the underlying prediction model. Since this prediction model is shared
across object instances, it is able to find and learn from the commonalities across

3.1. BACKGROUND 25

different 3D shapes, requiring only sparse per-instance supervision.
We first describe in Section 3.2 the formulation of our geometric consistency loss,

and then present our approach to leverage it for learning single-view reconstruction via
multi-view supervision in Section 3.3. In Section 3.4 we demonstrate the applicability
of our framework to learn 3D inference across various scenarios.

Figure 3.2: Visualization of various aspects of our Differentiable Ray Consistency formula-
tion. a) Predicted 3D shape represented as probabilistic occupancies and the observation
image where we consider consistency between the predicted shape and the ray corresponding
to the highlighted pixel. b) Ray termination events (Section 3.2.2) – the random variable
zr = i corresponds to the event where the ray terminates at the ith voxel on its path,
zr = Nr + 1 represents the scenario where the ray escapes the grid. c) Depiction of event
probabilities (Section 3.2.2) where red indicates a high probability of the ray terminating at
the corresponding voxel. d) Given the ray observation, we define event costs (Section 3.2.3).
In the example shown, the costs are low (white color) for events where ray terminates in
voxels near the observed termination point and high (red color) otherwise. e) The ray
consistency loss (Section 3.2.4) is defined as the expected event cost and our formulation
allows us to obtain gradients for occupancies (red indicates that loss decreases if occupancy
value increases, blue indicates the opposite). While in this example we consider a depth
observation, our formulation allows incorporating diverse kinds of observations by defining
the corresponding event cost function as discussed in Section 3.2.3 and Section 3.2.5. Best
viewed in color.

3.1 Background
Object Reconstruction from Image-based Annotations. Blanz and Vetter
[14] demonstrated the use of a morphable model to capture 3D shapes. Cashman and
Fitzgibbon [19] learned these models for complex categories like dolphins using object
silhouettes and keypoint annotations for training and inference. Wu et al. [156], using
similar annotations, learned a system to predict sparse 3D by inferring parameters
of a shape skeleton. However, since the use of such low-dimensional models restricts
expressivity, Vicente et al. [148] proposed a non-parametric method by leveraging

3.1. BACKGROUND 26

surrogate instances – but at the cost of requiring annotations at test time. We
leverage similar training data but using a CNN-based voxel prediction framework
allows test time inference without manual annotations and allows handling large
shape variations.

Object Reconstruction from 3D Supervision. The advent of deep learning
along with availability of large-scale synthetic training data has resulted in applica-
tions for object reconstruction. Choy et al. [24] learned a CNN to predict a voxel
representation using a single (or multiple) input image(s). Girdhar et al. [45] also
presented similar results for single-view object reconstruction, while also demon-
strating some results on real images by using realistic rendering techniques [133] for
generating training data. Several approaches have further improved these voulmetric
predictions [77, 155, 170], or pursued alternate 3D representations such as point
clouds [36], octrees [56, 135], or meshes [75, 87, 89]. A crucial assumption in the
procedure of training these models, however, is that full 3D supervision is available.
As a result, these methods primarily train using synthetically rendered data where
the underlying 3D shape is available.

While the progress demonstrated by these methods is encouraging and supports
the claim for using CNN based learning techniques for reconstruction, the requirement
of explicit 3D supervision for training is potentially restrictive. We relax this
assumption and show that alternate sources of supervision can be leveraged. It
allows us to go beyond reconstructing objects in a synthetic setting, to extend to
real datasets which do not have 3D supervision.

Multi-view Instance Reconstruction. Perhaps most closely related to our work
in terms of the proposed formulation is the line of work in geometry-based techniques
for reconstructing a single instance given multiple views. Visual hull [90] formalizes
the notion of consistency between a 3D shape and observed object masks. Techniques
based on this concept [18,101] can obtain reconstructions of objects by space carving
using multiple available views. It is also possible, by jointly modeling appearance
and occupancy, to recover 3D structure of objects/scenes from multiple images via
ray-potential based optimization [28,95] or inference in a generative model [43, 154].
Ulusoy et al. [146] propose a probabilistic framework where marginal distributions
can be efficiently computed. More detailed reconstructions can be obtained by
incorporating additional signals e.g. depth or semantics [86,120,121].

The main goal in these prior works is to reconstruct a specific scene/object from
multiple observations and they typically infer a discrete assignment of variables such
that it is maximally consistent with the available views. Our insight is that similar
cost functions which measure consistency, adapted to treat variables as continuous
probabilities, can be used in a learning framework to obtain gradients for the current

3.2. FORMULATION 27

prediction. Crucially, the multi-view reconstruction approaches typically solve a
(large) optimization to reconstruct a particular scene/object instance and require
a large number of views. In contrast, we only need to perform a single gradient
computation to obtain a learning signal for the CNN and can even work with sparse
set of views (possibly even just one view) per instance.

Multi-view Supervision for Single-view Depth Prediction. While single-view
depth prediction had been dominated by approaches with direct supervision [30],
recent approaches based on multi-view supervision have shown promise in achieving
similar (and sometimes even better) performance. Garg et al. [41] and Godard
et al. [48] used stereo images to learn a single image depth prediction system by
minimizing the inconsistency as measured by pixel-wise reprojection error. Zhou et
al. [168] further relax the constraint of having calibrated stereo images, and learn a
single-view depth model from monocular videos. The motivation of these multi-view
supervised depth prediction approaches is similar to ours, but we aim for 3D instead
of 2.5D predictions and address the related technical challenges in this work.

3.2 Formulation
In this section, we formulate a differentiable ‘view consistency’ loss function which

measures the inconsistency between a (predicted) 3D shape and a corresponding
observation image with an associated known (or predicted) camera viewpoint. We
first formally define our problem setup by instantiating the representation of the 3D
shape and the observation image with which the consistency is measured.

Shape Representation. Our 3D shape representation is parametrized as occupancy
probabilities of cells in a discretized 3D voxel grid, denoted by the variable x. We use
the convention that xi represents the probability of the ith voxel being empty (we use
the term ‘occupancy probability’ for simplicity even though it is a misnomer as the
variable x is actually ‘emptiness probability’). Note that the choice of discretization
of the 3D space into voxels need not be a uniform grid – the only assumption we make
is that it is possible to trace rays across the voxel grid and compute intersections
with cell boundaries.

Observation and Camera. We aim for the shape to be consistent with some
available observation O from a camera C. This ‘observation’ can take various forms
e.g. a depth image, an object foreground mask, a color image etc.– these are treated
similarly in our framework. Concretely, we have a observation-camera pair (O,C)
where the ‘observation’ O is from a view defined by (known or predicted) camera
C. The camera C is defined via an intrinsic matrix and the extrinsics specifying its

3.2. FORMULATION 28

rotation and translation in the world coordinate frame.
Our view consistency loss, using the notations mentioned above, is of the form

L(x; (O,C)). Towards defining this loss, in Section 3.2.1 we reduce the notion
of consistency between the 3D shape and an observation image to consistency
between the 3D shape and a ray with associated observations. We then present
a differentiable formulation for ray consistency, the various aspects of which are
visualized in Figure 3.2. In Section 3.2.2, we examine the case of a ray travelling
though a probabilistically occupied grid and in Section 3.2.3, we instantiate costs
for each probabilistic ray-termination event. We then combine these to define the
consistency cost function in Section 3.2.4. While we initially only consider the case
of the shape being represented by voxel occupancies x, we show in Section 3.2.5
that it can be extended to incorporate optional per-voxel predictions p. This
generalization allows us to incorporate other kinds of observation e.g. color images,
pixel-wise semantics etc.. The generalized consistency loss function is then of the
form L(x, [p]; (O,C)) where [p] denotes an optional argument. The view consistency
loss formulation we present, while differentiable w.r.t the shape x, is not differentiable
w.r.t the camera C. In Section 3.2.6 we present an alternative formulation of this
loss that, using a simple re-parametrization, is also differentiable w.r.t C.

3.2.1 View Consistency as Ray Consistency

Every pixel in the observation image O corresponds to a ray with a recorded
observation (depth/color/foreground label/semantic label). Assuming known camera
intrinsic parameters (fu, fv, u0, v0), the image pixel (u, v) corresponds to a ray r
originating from the camera centre travelling in direction (u−u0

fu
, v−v0

fv
, 1) in the camera

coordinate frame. Given the camera extrinsics, the origin and direction of the ray r
can also be inferred in the world frame.

Therefore, the available observation-camera pair (O,C) is equivalently a collection
of arbitrary rays R where each r ∈ R has a known origin point, direction and an
associated observation or e.g. depth images indicate the distance travelled before
hitting a surface, foreground masks inform whether the ray hit the object, semantic
labels correspond to observing category of the object the ray terminates in.

Analogous to the common practice in classical multi-view reconstruction ap-
proaches [95,120,121,146] which formulate objectives using a set of ray potentials,
we can similarly formulate the view consistency loss L(x; (O,C)) using per-ray based
consistency terms Lr(x). Here, Lr(x) captures if the inferred 3D model x correctly
explains the observations associated with the specific ray r. Our view consistency

3.2. FORMULATION 29

loss is then just the sum of the consistency terms across the rays:

L(x; (O,C)) ≡
∑

r∈R

Lr(x) (3.1)

Our task for formulating the view consistency loss is simplified to defining a differen-
tiable ray consistency loss Lr(x).

3.2.2 Ray-tracing in a Probabilistic Occupancy Grid

With the goal of defining the consistency cost Lr(x), we examine the ray r as it
travels across the voxel grid with occupancy probabilities x. The occupancy proba-
bilities in this grid (instantiated by the shape parameters x) induce a distribution
over possible terminations for a ray which can be efficiently computed [18,154]. We
denote the various likely ray terminations as events that can occur to ray r, and
we can define Lr(x) by seeing the incompatibility of these events with available
observations or.

Ray Termination Events. Since we know the origin and direction for the ray r,
we can trace it through the voxel grid - let us assume it passes though Nr voxels. The
events associated with this ray correspond to it either terminating at one of these Nr

voxels or passing through. We use a random variable zr to correspond to the voxel
in which the ray (probabilistically) terminates - with zr = Nr + 1 to represent the
case where the ray does not terminate. These events are shown in Figure 3.2.

Event Probabilities. Given the occupancy probabilities x, we want to infer the
probability q(zr = i). The event zr = i occurs iff the previous voxels in the path are
all unoccupied and the ith voxel is occupied. Assuming an independent distribution
of occupancies where the prediction xri correspnds to the probability of the ith voxel
on the path of the ray r as being empty, we can compute the probability distribution
for zr.

q(zr = i) =

(1− xri)
i−1∏

j=1

xrj , if i ≤ Nr

Nr∏

j=1

xrj , if i = Nr + 1

(3.2)

3.2.3 Event Cost Functions

Note that each event (zr = i), induces a prediction e.g. if zr = i, we can
geometrically compute the distance dri the ray travels before terminating. We can

3.2. FORMULATION 30

define a cost function between the induced prediction under the event (zr = i) and
the available associated observations for ray or. We denote this cost function as
ψr(i) and it assigns a cost to event (zr = i) based on whether it induces predictions
inconsistent with or. We now show some examples of event cost functions that can
incorporate diverse observations or and used in various scenarios.

Object Reconstruction from Depth Observations. In this scenario, the avail-
able observation or corresponds to the observed distance the ray travels dr. We use
a simple distance measure between observed distance and event-induced distance to
define ψr(i).

ψdepthr (i) = |dri − dr| (3.3)

Object Reconstruction from Foreground Masks. We examine the case where
we only know the object masks from various views. In this scenario, let sr ∈ {0, 1}
denote the known information regarding each ray - sr = 0 implies the ray r intersects
the object i.e. corresponds to an image pixel within the mask, sr = 1 indicates
otherwise. We can capture this by defining the corresponding cost terms.

ψmaskr (i) =

{
sr, if i ≤ Nr

1− sr, if i = Nr + 1
(3.4)

We note that some concurrent approaches [111, 160] have also been proposed to
specifically address the case of learning object reconstruction from foreground masks.
These approaches, either though a learned [111] or fixed [160] reprojection function,
minimize the discrepancy between the observed mask and the reprojected predictions.
Our ray consistency based approach effectively minimizes a similar loss using a
geometrically derived re-projection function, while also allowing us to handle more
general observations.

3.2.4 Ray-Consistency Loss

We have examined the case of a ray traversing through the probabilistically
occupied voxel grid and defined possible ray-termination events occurring with
probability distribution specified by q(zr). For each of these events, we incur a
corresponding cost ψr(i) which penalizes inconsistency between the event-induced
predictions and available observations or. The per-ray consistency loss function Lr(x)
is simply the expected cost incurred.

3.2. FORMULATION 31

Lr(x) = Ezr [ψr(zr)] (3.5)

Lr(x) =
Nr+1∑

i=1

ψr(i) q(zr = i) (3.6)

Recall that the event probabilities q(zr = i) were defined in terms of the voxel
occupancies x predicted by the CNN (Eq. 3.2). Using this, we can compute the
derivatives of the loss function Lr(x) w.r.t the CNN predictions.

∂ Lr(x)

∂ xrk
=

Nr∑

i=k

(ψr(i+ 1)− ψr(i))
∏

1≤j≤i,j 6=k

xrj (3.7)

The ray-consistency loss Lr(x) completes our formulation of view consistency loss
as the overall loss is defined in terms of Lr(x) as in Eq. 3.1. The gradients derived
from the view consistency loss simply try to adjust the voxel occupancy predictions
x, such that events which are inconsistent with the observations occur with lower
probabilities.

3.2.5 Incorporating Additional Labels

We have developed a view consistency formulation for the setting where the
shape representation is described as occupancy probabilities x. In the scenario
where alternate per-pixel observations (e.g. semantics or color) are available, we
can modify consistency formulation to account for per-voxel predictions p in the
3D representation. In this scenario, the observation or associated with the ray r
includes the corresponding pixel label and similarly, the induced prediction under
event (zr = i) includes the auxiliary prediction for the ith voxel on the ray’s path –
pri .

Inspired by Savinov et al. [120,121] who address a similar challenge for multi-view
reconstruction, we incorporate consistency between these by extending Lr(x) to
Lr(x, [p]) by using a generalized event-cost term ψr(i, [p

r
i]) in Eq. 3.5 and Eq. 3.6.

Examples of the generalized cost term for two scenarios are presented in Eq. 3.9
and Eq. 3.10. The gradients for occupancy predictions xri are as previously defined
in Eq. 3.7, but using the generalized cost term ψr(i, [p

r
i]) instead. The additional

per-voxel predictions can also be trained using the derivatives below.

∂ Lr(x, [p])

∂ pir
= q(zr = i)

∂ ψr(i, [p
i
r])

∂ pir
(3.8)

3.2. FORMULATION 32

Note that we can define any event cost function ψ(i, [pri]) as long as it is differ-
entiable w.r.t pri . We can interpret Eq. 3.8 as the additional per-voxel predictions
p being updated to match the observed pixel-wise labels, with the gradient being
weighted by the probability of the corresponding event.

Scene Reconstruction from Depth and Semantics. In this setting, the ob-
servations associated with each ray correspond to an observed depth dr as well as
semantic class labels cr. The event-induced prediction, if zr = i, corresponds to
depth dri and class distribution pri and we can define an event cost penalizing the
discrepancy in disparity (since absolute depth can have a large variation) and the
negative log likelihood of the observed class.

ψsemr (i, pri) = | 1
dri
− 1

dr
| − log(pri (cr)) (3.9)

Object Reconstruction from Color Images. In this scenario, the observations
cr associated with each ray corresponds to the RGB color values for the corresponding
pixel. Assuming additional per voxel color prediction p, the event-induced prediction,
if zr = i, yields the color at the corresponding voxel i.e. pri . We can define an event
cost penalizing the squared error.

ψcolorr (i, pri) =
1

2
‖pri − cr‖2 (3.10)

In addition to defining the event cost functions, we also need to instantiate the
induced observations for the event of ray escaping. We define drNr+1 in Eq. 3.3 and
Eq. 3.9 to be a fixed large value, and prNr+1 in Eq. 3.9 and Eq. 3.10 to be uniform
distribution and white color respectively.

3.2.6 Pose-Differentiable Ray Consistency

The loss formulation presented above is differentiable w.r.t the shape x, but not
w.r.t the camera parameters C. This is because {xri}, which represents the occupancy
probability of the ith voxel in the ray’s path, is not a differentiable function of
the camera (since the ordering of voxels on a ray’s path is a discrete function).
However, in certain scenarios e.g. when leveraging predicted camera parameters
instead of known ones, it would be necessary to have a formulation where the loss is
differentiable w.r.t both, shape and pose.

In order to overcome this, we use an alternate pose-differentiable ray consistency
loss formulation, with the corresponding view loss denoted as L̃(x; (O,C)). We do
so by redefining the variable {xri} to correspond to the occupancy at the ith sample

3.3. LEARNING SINGLE-VIEW RECONSTRUCTION 33

along the ray. Therefore, instead of using probabilities of voxels along a ray, we
consider probabilities at point samples along a ray. Concretely, we sample points at
a fixed set of Nr = 80 depth values {di|1 ≤ i ≤ N} along each ray.

To determine xri , we look at the 3D coordinate of the corresponding point (deter-
mined using camera parameters), and trilinearly sample the shape x to determine
the occupancy at this point.

li ≡ (
u− u0

fu
di,

v − v0

fv
di, di) (3.11)

xri = T (x,R× (li + t)) (3.12)

As the trilinear sampling function T is differentiable w.r.t its arguments, the sampled
occupancy xri , and consequently the alternate view consistency loss L̃(x; (O,C)), is
differentiable w.r.t the shape x and the camera C.

We note that although this idea of using samples instead of voxels (similar to [160])
is less physically grounded, it provides us a convenient tool to obtain gradients for
the predicted cameras. While we primarily use the original loss formulation for most
of our experiments, we leverage this pose-differentiable loss in some scenarios where
the associated cameras for observations are also predicted.

3.3 Learning Single-view Reconstruction
We aim to learn a function f – modeled as a parameterized CNN fθ, which

given a single image I corresponding to a novel object, predicts its shape as a voxel
occupancy grid. A straightforward learning-based approach would require a training
dataset {(Ii, x̄i)} where the target voxel representation x̄i is known for each training
image Ii. However, we are interested in a scenario where the ground-truth 3D models
{x̄i} are not available for training fθ directly, as is often the case for real-world
objects/scenes. While collecting the ground-truth 3D is not feasible, it is relatively
easy to obtain 2D or 2.5D observations (e.g. depth maps) of the underlying 3D
model from other viewpoints. In this scenario we can leverage the ‘view consistency’
loss function described in Section 3.2 to train fθ.

We consider two supervision scenarios for learning fθ. We first examine the
setting where the available multi-view observations have known associated camera
poses (e.g. as possible for a moving agent that knows its egomotion), and then
address the scenario where even the camera poses associated are unknown.

3.3. LEARNING SINGLE-VIEW RECONSTRUCTION 34

3.3.1 Learning with Pose Supervision

Training Data. As our training data, corresponding to each training (RGB) image
Ii in the training set, we also have access to one or more additional observations of
the same instance from other views. The observations, as described in Section 3.2,
can be of varying forms. Concretely, corresponding to image Ii, we have one or more
observation-camera pairs {Oi

k, C
i
k} where the ‘observation’ Oi

k is from a view defined
by camera Ci

k. Note that these observations are required only for training; at test
time, the learned CNN fθ predicts a 3D shape from only a single 2D image.

Predicted 3D Representation. The output of our single-view 3D prediction CNN
is fθ(I) ≡ (x, [p]) where x denotes voxel occupancy probabilities and [p] indicates
optional per-voxel predictions (used if corresponding training observations e.g. color,
semantics are leveraged).

To learn the parameters θ of the single-view 3D prediction CNN, for each training
image Ii we train the CNN to minimize the inconsistency between the prediction fθ(Ii)
and the one or more observation(s) {(Oi

k, C
i
k)} corresponding to Ii. This optimization

is the same as minimizing the (differentiable) loss function
∑
i

∑
k

L(fθ(Ii); (Oi
k, C

i
k))

i.e. the sum of view consistency losses (Eq. 3.1) for observations across the training
set. To allow for faster training, instead of using all rays as defined in Eq. 3.1, we
randomly sample a few rays (about 1000) per view every SGD iteration.

3.3.2 Learning without Pose Supervision

In this supervision scenario, we do not assume known camera poses associated
with the multiple views. Instead, we assume that we have an RGB image I ik associated
with each observation image, and leverage a predicted camera to enforce geometric
consistency. To operationalize this setup, in addition to learning the single-view 3D
prediction CNN fθ, we also jointly learn a pose prediction CNN gφ. We first describe
the training data and representations predicted, and then summarize the learning
process.
Training Data. Similar to the setup in Section 3.3.1, we rely on multi-view training
data, but without camera pose annotations. Corresponding to image Ii, we have
observation-image pairs {Oi

k, I
i
k} where the ‘observation’ Oi

k is associated with an
RGB image I ik (which we use to predict pose).
Predictions. The output of the shape prediction CNN fθ is a voxel occupancy
grid as in Section 3.3.1. The pose prediction CNN gφ predicts, from a single input
image, the corresponding camera extrinsic parameters: a quaternion to instantiate
the rotation, and a translation ∈ R3. We assume known camera intrinsics (although

3.4. EXPERIMENTS 35

these can also be predicted), and therefore the predictions of gφ suffice to instantiate
the associated camera.

To jointly learn the shape and pose prediction CNNs fθ and gφ, we train these
CNNs to minimize the inconsistency between a predicted shape prediction fθ(Ii) and
available observations with their corresponding predicted cameras {(Oi

k, gφ(I ik)}. As
we also want the consistency loss to be differentiable w.r.t the predicted cameras,
we use the formulation defined in Section 3.2.6, and minimize the loss function∑
i

∑
k

L̃(fθ(Ii); (Oi
k, gφ(I ik))).

We empirically observe that training both fθ and gφ jointly from scratch, and
without any direct supervision, is challenging. The optimization often gets stuck at
a local minima for the camera pose prediction and only predicts a restricted range of
poses e.g. conflating front and back facing chairs. To overcome this, we incorporate
a pose prior as well as allow gφ to predict a distribution of pose hypotheses instead
of a single one.

3.4 Experiments
We consider various scenarios where we can learn single-view reconstruction

using our differentiable ray consistency (DRC) formulation. First, we examine the
ShapeNet dataset where we use synthetically generated images and corresponding
multi-view observations to study our framework. We then demonstrate applications
on the PASCAL VOC dataset where we train a single-view 3D prediction system
using only one observation per training instance. We then explore the application of
our framework for scene reconstruction using short driving sequences as supervision.
We also show qualitative results for using multiple color image observations as
supervision for single-view reconstruction. While these scenarios assume known
camera pose for training, we finally examine two settings where we demonstrate that
we can learn 3D prediction even without pose supervision.

3.4.1 Empirical Analysis on ShapeNet

We study the framework presented and demonstrate its applicability with different
types of multi-view observations and also analyze the susceptibility to noise in the
learning signal. We perform experiments in a controlled setting using synthetically
rendered data where the ground-truth 3D information is available for benchmarking.

Setup. The ShapeNet dataset [20] has a collection of textured CAD models and we
examine 3 representative categories with large sets of available models : airplanes,

3.4. EXPERIMENTS 36

Figure 3.3: Reconstructions on the ShapeNet dataset visualized using two representative
views. Left to Right : Input, Ground-truth, 3D Training, Ours (Mask), Fusion (Depth),
DRC (Depth), Fusion (Noisy Depth), DRC (Noisy Depth).

Figure 3.4: Analysis of the per-category reconstruction performance. a) As we increase
the number of views available per instance for training, the performance initially increases
and saturates after few available views. b) As the amount of noise in depth observations
used for training increases, the performance of our approach remains relatively consistent.

cars, and chairs . We create random train/val/test splits and use rendered images
with randomly sampled views as input to the single-view 3D prediction CNNs.

Our CNN model is a simple encoder-decoder which predicts occupancies in a
voxel grid from the input RGB image. To perform control experiments, we vary the
sources of information available (and correspondingly, different loss functions) for
training the CNN. The various control settings are briefly described below:
Ground-truth 3D. We assume that the ground-truth 3D model is available and use
a simple cross-entropy loss for training. This provides an upper bound for the
performance of a multi-view consistency method.
DRC (Mask/Depth). In this scenario, we assume that (possibly noisy) depth images
(or object masks) from 5 random views are available for each training CAD model
and minimize the view consistency loss.

3.4. EXPERIMENTS 37

Figure 3.5: PASCAL VOC reconstructions visualized using two representative views. Left
to Right : Input, Ground-truth (as annotated in PASCAL 3D), Deformable Models [141],
DRC (Pascal), Shapenet 3D, DRC (Joint).

Training Data 3D Mask Depth Depth (Noisy)

class Fusion DRC Fusion DRC Fusion DRC

aero 0.57 - 0.50 0.54 0.49 0.46 0.51
car 0.76 - 0.73 0.71 0.74 0.71 0.74
chair 0.47 - 0.43 0.47 0.44 0.39 0.45

Table 3.1: Analysis of our method using mean IoU on ShapeNet.

Depth Fusion. As an alternate way of using multi-view information, we preprocess
the 5 available depth images per CAD model to compute a pseudo-ground-truth 3D
model. We then train the CNN with a cross-entropy loss, restricted to voxels where
the views provided any information. Note that unlike our method, this is applicable
only if depth images are available and is more susceptible to noise in observations.

Evaluation Metric. We use the mean intersection over union (IoU) between the
ground-truth 3D occupancies and the predicted 3D occupancies. Since different
losses lead to the learned models being calibrated differently, we report mean IoU at
the optimal discretization threshold for each method (the threshold is searched at a
category level).

Results. We present the results of the experiments in Table 3.1 and visualize sample
predictions in Figure 3.3. In general, the qualitative and quantitative results in our
setting of using only a small set of multi-view observations are encouragingly close
to the upper bound of using ground-truth 3D as supervision. While our approach
and the alternative way of depth fusion are comparable in the case of perfect depth

3.4. EXPERIMENTS 38

information, our approach is much more robust to noisy training signal. This is
because of the use of a ray potential where the noisy signal only adds a small penalty
to the true shape unlike in the case of depth fusion where the noisy signal is used to
compute independent unary terms. We observe that even using only object masks
leads to comparable performance to using depth but is worse when fewer views are
available (Figure 3.4) and has some systematic errors e.g. the chair models cannot
learn the concavities present in the seat using foreground mask information.

Ablations. When using muti-view supervision, it is informative to look at the
change in performance as the number of available training views is increased. We
show this result in Figure 3.4 and observe a performance gain as number of views
initially increase but see the performance saturate after few views. We also note
that depth observations are more informative than masks when very small number
of views are used. Another aspect studied is the reconstruction performance when
varying the amount of noise in depth observations. We observe that our approach is
fairly robust to noise unlike the fusion approach.

3.4.2 Object Reconstruction on PASCAL VOC

We demonstrate the application of our DRC formulation on the PASCAL VOC
dataset [34] where previous 3D supervised single-view reconstruction methods cannot
be used due to lack of ground-truth training data. However, available annotations
for segmentation masks and camera pose allow application of our framework.

Training Data. We use annotated pose (in PASCAL 3D [158]) and segmentation
masks (from PASCAL VOC) as training signal for object reconstruction. To augment
training data, we also use the Imagenet [114] objects from PASCAL 3D (using an
off-the shelf instance segmentation method [92] to compute foreground masks on
these). These annotations effectively provide an orthographic camera Ci for each
training instance. Additionally, the annotated segmentation mask provides us with
the observation Oi. We use the proposed view consistency loss on objects from
the training set in PASCAL3D – the loss measures consistency of the predicted 3D
shape given training RGB image Ii with the single observation-camera pair (Oi, Ci).
Despite only one observation per instance, the shared prediction model can learn to
predict complete 3D shapes.

Benchmark. PASCAL3D also provides annotations for (approximate) 3D shape of
objects using a small set of CAD models (about 10 per category). Similar to previous
approaches [24, 141], we use these annotations on the test set for benchmarking
purposes. Note that since the same small set of models is shared across training
and test objects, using the PASCAL3D models for training is likely to bias the

3.4. EXPERIMENTS 39

Method aero car chair mean

CSDM 0.40 0.60 0.29 0.43

DRC (PASCAL) 0.42 0.67 0.25 0.44

Shapenet 3D 0.53 0.67 0.33 0.51

DRC (Joint) 0.55 0.72 0.34 0.54

Table 3.2: Mean IoU on PASCAL VOC.

evaluation. This makes our results incomparable to those reported in [24] where a
model pretrained on ShapeNet data is fine-tuned on PASCAL3D using shapes from
this small set of models as ground-truth.

Setup. The various baselines/variants studied are described below. Note that for
all the learning based methods, we train a single category-agnostic CNN.
Category-Specific Deformable Models (CSDM). We compare to [141] in a setting
where, unlike other methods, it uses ground-truth mask, keypoints to fit deformable
3D models.
ShapeNet 3D (with Realistic Rendering). To emulate the setup used by previous
approaches e.g. [24, 45], we train a CNN on rendered ShapeNet images using cross
entropy loss with the ground-truth CAD model. We attempt to bridge the domain gap
by using more realistic renderings via random background/lighting variations [133]
and initializing the convolution layers with a pretrained ResNet-18 model [61].
DRC (Pascal). We only use the PASCAL3D instances with pose, object mask
annotations to train the CNN with the proposed view consistency loss.
DRC (Joint : ShapeNet 3D + Pascal). We pre-train a model on ShapeNet 3D data
as above and finetune it using PASCAL3D using our view consistency loss.

Results. We present the comparisons of our approach to the baselines in Table 3.2
and visualize sample predictions in Figure 3.5. We observe that our model when
trained using only PASCAL3D data, while being category agnostic and not using
ground-truth annotations for testing, performs comparably to [141] which also
uses similar training data. We observe that using the PASCAL data via the view
consistency loss in addition to the ShapeNet 3D training data allows us to improve
across categories as using real images for training removes some error modes that
the CNN trained on synthetic data exhibits on real images. Note that the learning
signals used in this setup were only approximate – the annotated pose, segmentation
masks computed by [92] are not perfect and our method results in improvements

3.4. EXPERIMENTS 40

despite these.

3.4.3 3D Scene Reconstruction from Ego-motion

The problem of scene reconstruction is an extremely challenging one. While
previous approaches, using direct [30], multi-view [41,48] or even no supervision [40]
predict detailed 2.5D representations (pixelwise depth and/or surface normals),
the task of single image 3D prediction has been largely unexplored for scenes. A
prominent reason for this is the lack of supervisory data. Even though obtaining full
3D supervision might be difficult, obtaining multi-view observations may be more
feasible. We present some preliminary explorations and apply our framework to learn
single image 3D reconstruction for scenes by using driving sequences as supervision.

Figure 3.6: Sample results on Cityscapes using ego-motion sequences for learning single
image 3D reconstruction. Given a single input image (left), our model predicts voxel
occupancy probabilities and per-voxel semantic class distribution. We use this prediction
to render, in the top row, estimated disparity and semantics for a camera moving forward
by 3, 6, 9, 12 metres respectively. The bottom row renders similar output but using a 2.5D
representation of ground-truth pixel-wise disparity and pixel-wise semantic labels inferred
by [162].

We use the cityscapes dataset [26] which has numerous 30-frame driving sequences
with associated disparity images, ego-motion information and semantic labels1. We
train a CNN to predict, from a single scene image, occupancies and per-voxel
semantic labels for a coarse voxel grid. We minimize the consistency loss function
corresponding to the event cost in Eq. 3.9. To account for the large scale of scenes,
our voxel grid does not have uniform cells, instead the size of the cells grows as we
move away from the camera.

We show qualitative results in Figure 3.6 and compare the coarse 3D representation
inferred by our method with a detailed 2.5D representation by rendering inferred
disparity and semantic segmentation images under simulated forward motion. The
3D representation, while coarse, is able to capture structure not visible in the original
image (e.g. cars occluding other cars). While this is an encouraging result that
demonstrates the possibility of going beyond 2.5D for scenes, there are several

1while only sparse frames are annotated, we use a semantic segmentation system [162] trained
on these to obtain labels for other frames

3.4. EXPERIMENTS 41

challenges that remain e.g. the pedestrians/moving cars violate the implicit static
scene assumption, the scope of 3D data captured from the multiple views is limited
in context of the whole scene and finally, one may never get observations for some
aspects e.g. multi-view supervision cannot inform us that there is road below the
cars parked on the side.

3.4.4 Object Reconstruction from RGB Supervision

We study the setting where only 2D color images of ShapeNet models are available
as supervisory signal. In this scenario, our CNN predicts a per-voxel occupancy as
well as a color value. We use the generalized event cost function from Eq. 3.10 to
define the training loss. Some qualitative results are shown in Figure 3.7. We see the
learned model can infer the correct shape as well as color, including the concavities
in chairs, shading for hidden parts etc..

Figure 3.7: Sample results on ShapeNet dataset using multiple RGB images as
supervision for training. We show the input image (left) and the visualize 3D shape
predicted using our learned model from two novel views. Best viewed in color.

3.4.5 ShapeNet Reconstruction without Pose Supervision

We again consider the ShapeNet dataset, but in this scenario to demonstrate
our ability to learn without requiring known poses associated with the available
observations. We use the loss formulation defined in Section 3.2.6 and show that we
can learn both shape and pose prediction without direct supervision for either.
Dataset. We use the same splits as in Section 3.4.1. We render the training objects
under two settings - a) origin centred (as in Section 3.4.1), or b) randomly translated
around the origin. As the camera is always at a fixed distance away from the
origin, the first setting corresponds to training with a known camera translation, but

3.4. EXPERIMENTS 42

Training Multi-view Multi-view Multi-view w/o
Data & GT Pose w/o Rot Rot & Trans

class Mask Depth Mask Depth Mask Depth

aero 0.55 0.43 0.52 0.44 0.38 0.37
car 0.75 0.69 0.74 0.71 0.48 0.68
chair 0.42 0.45 0.40 0.43 0.35 0.37

mean 0.57 0.52 0.55 0.53 0.40 0.47

Table 3.3: Analysis of the performance for single-view shape prediction. We report
the mean IoU on the test set using various supervision settings.

Training GT MV w/o Rot MV w/o Rot & Trans
Data Pose Mask Depth Mask Depth

class Acc Err Acc Err Acc Err Acc Err Acc Err

aero 0.79 10.7 0.69 14.3 0.60 21.7 0.53 26.9 0.63 12.3
car 0.90 7.4 0.87 5.2 0.85 4.9 0.53 24.8 0.56 20.6
chair 0.85 11.2 0.81 7.8 0.83 8.6 0.55 24.0 0.62 19.1

mean 0.85 10.0 0.79 9.0 0.76 11.7 0.54 25.1 0.61 17.4

Table 3.4: Analysis of the performance for single-view pose prediction.We report the
Pose Accuracy/Error: Accπ

6
and Med-Err across different supervision settings.

3.4. EXPERIMENTS 43

Figure 3.8: Shape predictions on the validation set using a single RGB input image. We
visualize the voxel occupancies by rendering the corresponding mesh (obtained via marching
cubes) from a canonical pose. Left to Right: a) Input Image b) Ground-truth c) 3D
Supervised Prediction d,e) Multi-view & Pose Supervision (Mask, Depth) f,g) Mult-view
w/o Rotation Supervision (Mask, Depth), and h,i) Mult-view w/o Rotation and Translation
Supervision (Mask, Depth)

Figure 3.9: Rotation predictions on a random subset of the validation images. For
visualization, we render the ground-truth voxel occupancies using the corresponding rotation.
Left to Right: a) Input Image b) Ground-truth Rotation c) GT Supervised Prediction d,e)
Multi-view w/o Rot Supervision (Mask, Depth), and f,g) Multi-view w/o Rot and Trans
Supervision (Mask, Depth)

3.4. EXPERIMENTS 44

unknown rotation. The second corresponds to training with both translation and
rotation unknown. To have a common test set across various control setting, we use
the origin centered renderings for our validation and test sets.
Setup. We use the same evaluation setup, hyperparameters, and network architec-
tures as used in Section 3.4.1, and additionally train a pose CNN which predicts the
(unknown) associated camera poses. As we jointly learn both shape ans pose predic-
tion, the obtained reconstructions are in some arbitrary canonical frame different
from the ShapeNet canonical frame. Therefore, before evaluating our results, we
compute an optimal rotation to best align the predictions to the canonical ShapeNet
frame.

In addition to evaluating the target setting where we learn without pose supervi-
sion, we also report control settings regarding training with known camera poses.
This is similar to the setup in Section 3.4.1, with the difference that we instead use
the pose-differentiable loss defined in Section 3.2.6.
Shape Prediction Results. Our results and the performance under various control
settings with stronger supervision is reported in Table 3.3 and visualized in Figure 3.8.
In general, we observe that the performance degrades gracefully as the amount of
supervision available is reduced. This clearly indicates that our approach is able to
learn single-view shape prediction despite the lack of either shape or pose information
during training. As expected, we also observe that we cannot learn about concavities
in chairs via consistency against mask validation images, though we can do so using
depth images. We observe a noticeable performance drop in case of mask supervision
with unknown translation, as this setting results in scale ambiguities which our
evaluation does not account for e.g. we learn to predict larger cars, but further away,
and this results in a low empirical score.
Pose Estimation Results. The results of our approach are reported in Table 3.4
and visualized in Figure 3.9. We report performance using the metrics used in [142]
– median angular error and the fraction of instances with error less than a threshold
of 30 degrees. We observe a similar trend for the task of pose prediction – that our
approach performs comparably to directly supervised learning using ground-truth
pose supervision. Interestingly, we often get lower median errors than the supervised
setting. We attribute this to the different topologies of the loss functions. The
squared L2 loss used in the supervised setting yields small gradients if the pose is
almost correct. Our consistency loss however, would want the observation image to
perfectly align with the shape via the predicted pose.

3.4. EXPERIMENTS 45

Figure 3.10: Visualization of predictions using the Stanford Online Product Dataset. (Top)
Input image. (Middle) Predicted shape in the emergent canonical pose. (Bottom) Predicted
shape rotated according to the predicted pose.

3.4.6 Learning from Online Product Images

Online images of products are a natural source of multi-view observations. While
no associated shape or pose supervision is available in such setting, we demonstrate
that we can learn 3D prediction systems using such data.
Dataset. We examined the ‘chair’ object category from the Stanford Online Products
Dataset [129] which comprises of automatically downloaded images from eBay.com [1].
Since multiple images (views) of the same product are available, we can leverage
our approach to learn from this data. As we also require associated foreground
masks for these images, we use an out-of-the-box semantic segmentation system [21]
to obtain these. However, the obtained segmentation masks are often incorrect.
Additionally, many of the product images were not suited for our setting as they
only comprised of a zoom-in of a small portion of the instance (e.g. chair wheel).
We therefore manually selected images of unoccluded/untruncated instances with a
reasonably accurate (though still noisy) predicted segmentation. We then used the
object instances with at least 2 valid views for training. This results in a filtered
dataset of 282 instances with 3.65 views on average per instance.
Results. We can apply our approach to learn from this dataset comprising of
multiple views with associated (approximate) foreground masks. Since the camera
intrinsics are unknown, we assume a default intrinsic matrix. We then learn to
predict the (unknown) translation and rotation via the pose CNN gφ and the
(unknown) shape via the shape CNN fθ using the available multi-view supervision.
Note that the learned CNNs are trained from scratch, and that we use the same
architecture/hyperparameters as in the ShapeNet experiments.

3.5. DISCUSSION 46

Some results (on images of novel instances) using our learned CNN are visualized
in Figure 3.10. We see that we can learn to predict meaningful 3D structure and
infer the appropriate shape and pose corresponding to the input image. Since only
foreground mask supervision is leveraged, we cannot learn to infer the concavities in
shapes. We also observe confusion across poses which result in similar foreground
masks. However, we feel that this result using training data derived from a challenging
real world setting, concretely demonstrates our method’s ability to learn despite the
lack of direct shape or pose supervision. To the best of our knowledge, this is the
first such result and it represents an encouraging step forward.

3.5 Discussion
We have presented a differentiable formulation for consistency between a 3D

shape and a 2D observation and demonstrated its applications for learning single-
view reconstruction in various scenarios using multi-view supervision. These are,
however, a number of challenges yet to be addressed. Our formulation is applicable to
voxel-occupancy based representations and an interesting direction is to extend these
ideas to alternate representations which allow finer predictions e.g. meshes or octrees.
Finally, while our approach allows us to bypass the availability of ground-truth 3D
information for training, we still rely on multi-view training data, which may be
tedious to acquire in certain scenarios. We address these challenges in Chapter 4.

47

Chapter 4

Learning Mesh Reconstruction from
Image Collections

How can we learn to model the 3D structure for all object classes? In Chapter 3,
we demonstrated that leveraging multiple views per instance of a category is a
possibility. This supervision allows us to learn a CNN that can predict a volumetric
3D representation for new instances. While this is encouraging, volumetric repre-
sentations are fundamentally limited in their ability to represent finer details and
additional surface properties e.g. texture. Further, the reliance on multiple views
per instance is also restrictive – while we can obtain these for inanimate objects, it is
rather difficult to conceive of a similar setup being applicable for animate categories
e.g. birds.

In this chapter, we address these challenges, and present a computational model
that can similarly infer a mesh based 3D representation given just a single image.
Additionally, as illustrated in Figure 4.1, the learning only relies on an annotated
2D image collection of a given object category, comprising of foreground masks and
semantic keypoint labels. Our training procedure, depicted in Figure 4.2, forces a
common prediction model to explain all the image evidences across many examples
of an object category. This allows us to learn a meaningful 3D structure despite only
using a single-view per training instance, without relying on any ground-truth 3D
data for learning.

At inference, given a single unannotated image of a novel instance, such as the
one depicted in Figure 4.1, our learned model allows us to infer the shape, camera
pose, and texture of the underlying object. We represent the shape as a 3D mesh in a

This chapter is based on joint work with Angjoo Kanazawa, Alexei A. Efros, and Jitendra
Malik, which will appear in the proceedings of ECCV, 2018 [76].

48
Texture

Camera

Shape

f

TODO:	Lots	
of	pictures	
of	birds

(b)(a)

Texture

Camera

Shape

f

Figure 4.1: Given an annotated image collection of an object category, we learn a predictor
f that can map a novel image I to its 3D shape, camera pose, and texture.

canonical frame, where the predicted camera transforms the mesh from this canonical
space to the image coordinates. The particular shape of each instance is instantiated
by deforming a learned category-specific mean shape with instance-specific predicted
deformations. The use of this shared 3D space affords numerous advantages as it
implicitly enforces correspondences across 3D representations of different instances.
As we detail in Section 4.1, this allows us to formulate the task of inferring mesh
texture of different objects as that of predicting pixel values in a common texture
representation. Furthermore, we can also easily associate semantic keypoints with
the predicted 3D shapes.

Our shape representation is an instantiation of deformable models, the history
of which can be traced back to D’Arcy Thompson [137], who in turn was inspired
by the work of Dürer [29]. Thompson observed that shapes of objects of the
same category may be aligned through geometrical transformations. Cootes and
Taylor [25] operationalized this idea to learn a class-specific model of deformation
for 2D images. Pioneering work of Blanz and Vetter [14] extended these ideas to
3D shapes to model the space of faces. These techniques have since been applied
to model human bodies [3, 96], hands [81, 136], and more recently on quadruped
animals [174]. Unfortunately, all of these approaches require a large collection of 3D
data to learn the model, preventing their application to categories where such data
collection is impractical. In contrast, our approach is able to learn using only an
annotated image collection.

Sharing our motivation for relaxing the requirement of 3D data to learn morphable
models, some related approaches have examined the use of similarly annotated
image collections. Cashman and Fitzgibbon [19] use keypoint correspondences and
segmentation masks to learn a morphable model of dolphins from images. Kar et
al. [78] extend this approach to general rigid object categories. Both approaches

49

follow a fitting-based inference procedure, which relies on mask (and optionally
keypoint) annotations at test-time and is computationally inefficient. We instead
follow a prediction-based inference approach, and learn a parametrized predictor
which can directly infer the 3D structure from an unannotated image. Moreover,
unlike these approaches, we also address the task of texture prediction which cannot
be easily incorporated with these methods.

While deformable models have been a common representation for 3D inference,
the recent advent of deep learning based prediction approaches has resulted in a
plethora of alternate representations being explored using varying forms of supervision.
Relying on ground-truth 3D supervision (using synthetic data), some approaches
have examined learning voxel [24, 45, 155, 170], point cloud [36] or octree [56, 135]
prediction. While some learning based methods do pursue mesh prediction [75,87,89],
they also rely on 3D supervision which is only available for restricted classes or in a
synthetic setting. Reducing the supervision to multi-view masks [55,111,144,160] or
depth images [144] has been explored for voxel prediction, but the requirement of
multiple views per instance is still restrictive. While these approaches show promising
results, they rely on stronger supervision (ground-truth 3D or multi-view) compared
to our approach.

In the context of these previous approaches, the proposed approach differs
primarily in three aspects:

• Shape representation and inference method. We combine the benefits of the
classically used deformable mesh representations with those of a learning based
prediction mechanism. The use of a deformable mesh based representation
affords several advantages such as memory efficiency, surface-level reasoning and
correspondence association. Using a learned prediction model allows efficient
inference from a single unannotated image

• Learning from an image collection. Unlike recent CNN based 3D prediction
methods which require either ground-truth 3D or multi-view supervision, we
only rely on an annotated image collection, with only one available view per
training instance, to learn our prediction model.

• Ability to infer texture. There is little past work on predicting the 3D shape
and the texture of objects from a single image. Recent prediction-based learning
methods use representations that are not amenable to textures (e.g. voxels).
The classical deformable model fitting-based approaches cannot easily incorpo-
rate texture for generic objects. An exception is texture inference on human
faces [14,118], but these approaches require a large-set of 3D ground truth data

4.1. APPROACH 50

with high quality texture maps. Our approach enables us to pursue the task
of texture inference from image collections alone, and we address the related
technical challenges regarding its incorporation in a learning framework.

4.1 Approach
We aim to learn a predictor fθ (parameterized as a CNN) that can infer the 3D

structure of the underlying object instance from a single image I. The prediction
fθ(I) is comprised of the 3D shape of the object in a canonical frame, the associated
texture, as well as the camera pose. The shape representation we pursue in this
work is of the form of a 3D mesh. This representation affords several advantages
over alternates like probabilistic volumetric grids e.g. amenability to texturing,
correspondence inference, surface level reasoning and interpretability.

The overview of the proposed framework is illustrated in Figure 4.2. The input
image is passed through an encoder to a latent representation that is shared by three
modules that estimate the camera pose, shape deformation, and texture parameters.
The deformation is added to the learned category-level mean shape to obtain the
final predicted shape. The objective of the network is to minimize the corresponding
losses when the shape is rendered onto the image. We train a separate model for
each object category.

We first present the representations predicted by our model in Section 4.1.1,
and then describe the learning procedure in Section 4.1.2. We initially present our
framework for predicting shape and camera pose, and then describe how the model
is extended to predict the associated texture in Section 4.1.3.

4.1.1 Inferred 3D Representation

Given an image I of an instance, we predict fθ(I) ≡ (M,π), a mesh M and
camera pose π to capture the 3D structure of the underlying object. In addition
to these directly predicted aspects, we also learn the association between the mesh
vertices and the category-level semantic keypoints. We describe the details of the
inferred representations below.

Shape Parametrization. We represent the shape as a 3D mesh M ≡ (V, F),
defined by vertices V ∈ R|V |×3 and faces F . We assume a fixed and pre-determined
mesh connectivity, and use the faces F corresponding to a spherical mesh. The
vertex positions V are instantiated using (learned) instance-independent mean vertex
locations V̄ and instance-dependent predicted deformations ∆V , which when added,

4.1. APPROACH 51

Ca
m
er
a

De
fo
rm

at
io
n

Texture

�V

Mean	
Shape

Predicted	
Shape

3D	
keypoints

Encoder A

⇡

Texture	Flow

Losses:
Predicted,	GT���

�� ���
�� ���

��

���
�� ���

�� ���
��

Texture:

x⇡̃()
���

�� ���
�� ���

��Keypoint:

Mask:

Ca
m
er
a

De
fo
rm

at
io
n

Texture

�V

Mean	
Shape

Predicted	
Shape

3D	
keypoints

Encoder A

⇡

Texture	Flow

Losses:
Predicted,	GT���

�� ���
�� ���

��

���
�� ���

�� ���
��Texture:

x⇡̃()
���

�� ���
�� ���

��Keypoint:

Mask:

Figure 4.2: Overview of the mesh prediction framework. An image I is passed
through a convolutional encoder to a latent representation that is shared by modules
that estimate the camera pose, deformation and texture parameters. Deformation is an
offset to the learned mean shape, which when added yield instance specific shapes in a
canonical coordinate frame. We also learn correspondences between the mesh vertices
and the semantic keypoints. Texture is parameterized as an UV image, which we predict
through texture flow (see Section 4.1.3). The objective is to minimize the distance between
the rendered mask, keypoints and textured rendering with the corresponding ground truth
annotations. We do not require ground truth 3D shapes or multi-view cues for training.

yield instance vertex locations V = V̄ + ∆V . Intuitively, the mean shape V̄ can be
considered as a learnt bias term for the predicted shape V .

Camera Projection. We model the camera with weak-perspective projection and
predict, from the input image I, the scale s ∈ R, translation t ∈ R2, and rotation
(captured by quaternion q ∈ R4). We use π(P) to denote the projection of a set of
3D points P onto the image coordinates via the weak-perspective projection defined
by π ≡ (s, t,q).

Associating Semantic Correspondences. As we represent the shape using
a category-specific mesh in the canonical frame, the regularities across instances
encourage semantically consistent vertex positions across instances, thereby implicitly
endowing semantics to these vertices. We can use this insight and learn to explicitly
associate semantic keypoints e.g., beak, legs etc. with the mesh via a keypoint
assignment matrix A ∈ R+

|K|×|V | s.t.
∑

v Ak,v = 1. Here, each row Ak represents a
probability distribution over the mesh vertices of corresponding to keypoint k, and
can be understood as approximating a one-hot vector of vertex selection for each
keypoint. As we describe later in our learning formulation, we encourage each Ak to
be a peaked distribution. Given the vertex positions V , we can infer the location
vk for the kth keypoint as vk =

∑
v Ak,vv. More concisely, the keypoint locations

4.1. APPROACH 52

induced by vertices V can be obtained as A ·V . We initialize the keypoint assignment
matrix A uniformly, but over the course of training it learns to better associate
semantic keypoints with appropriate mesh vertices.

In summary, given an image I of an instance, we predict the corresponding camera
π and the shape deformation ∆V as (π,∆V) = f(I). In addition, we also learn
(across the dataset), instance-independent parameters {V̄ , A}. As described above,
these category-level (learned) parameters, in conjunction with the instances-specific
predictions, allow us to recover the mesh vertex locations V and coordinates of
semantic keypoints A · V .

4.1.2 Learning from an Image Collection

We present an approach to train fθ without relying on strong supervision in the
form of ground truth 3D shapes or multi-view images of an object instance. Instead,
we guide the learning from an image collection annotated with sparse keypoints and
segmentation masks. Such a setting is more natural and easily obtained, particularly
for animate and deformable objects such as birds or animals. It is extremely difficult
to obtain scans, or even multiple views of the same instance for these classes, but
relatively easier to acquire a single image for numerous instances.

Given the annotated image collection, we train fθ by formulating an objective
function that consists of instance specific losses and priors. The instance-specific
energy terms ensure that the predicted 3D structure is consistent with the available
evidence (masks and keypoints) and the priors encourage generic desired properties
e.g. smoothness. As we learn a common prediction model fθ across many instances,
the common structure across the category allows us to learn meaningful 3D prediction
despite only having a single-view per instance.

Training Data. We assume an annotated training set {(Ii, Si, xi)}Ni=1 for each object
category, where Ii is the image, Si is the instance segmentation, and xi ∈ R2×K

is the set of K keypoint locations. As previously leveraged by [78, 148], applying
structure-from-motion to the annotated keypoint locations additionally allows us to
obtain a rough estimate of the weak-perspective camera π̃i for each training instance.
This results in an augmented training set {(Ii, Si, xi, π̃i)}Ni=1 which we use for training
our predictor fθ.

Instance Specific Losses. We ensure that the predicted 3D structure matches
the available annotations. Using the semantic correspondences associated to the
mesh via the keypoint assignment matrix A, we formulate a keypoint reprojection
loss. This term encourages the predicted 3D keypoints to match the annotated 2D

4.1. APPROACH 53

keypoints when projected onto the image:

Lreproj =
∑

i

||xi − π̃i(AVi)||2. (4.1)

Similarly, we enforce that the predicted 3D mesh, when rendered in the image
coordinates, is consistent with the annotated foreground mask: Lmask =

∑
i ||Si −

R(Vi, F, π̃i)||2. Here, R(V, F, π) denotes a rendering of the segmentation mask image
corresponding to the 3D mesh M = (V, F) when rendered through camera π. In all
of our experiments, we use Neural Mesh Renderer [80] to provide a differentiable
implementation of R(·).

We also train the predicted camera pose to match the corresponding estimate
obtained via structure-from-motion using a regression loss Lcam =

∑
i ||π̃i − πi||2.

We found it advantageous to use the structure-from-motion camera π̃i, and not
the predicted camera πi, to define Lmask and Lreproj losses. This is because during
training, in particular the initial stages when the predictions are often incorrect, an
error in the predicted camera can lead to high errors despite accurate shape, and
possibly adversely affect learning.

Priors. In addition to the data-dependent losses which ensure that the predictions
match the evidence, we leverage generic priors to encourage additional properties.
The prior terms that we use are:

Smoothness. In the natural world, shapes tend to have a smooth surface and we
would like our recovered 3D shapes to behave similarly. An advantage of using a mesh
representation is that it naturally affords reasoning at the surface level. In particular,
enforcing smooth surface has been extensively studied by the Computer Graphics
community [108,131]. Following the literature, we formulate surface smoothness as
minimization of the mean curvature. On meshes, this is captured by the norm of the
graph Laplacian, and can be concisely written as Lsmooth = ||LV ||2, where L is the
discrete Laplace-Beltrami operator. We construct L once using the connectivity of
the mesh and this can be expressed as a simple linear operator on vertex locations.

Deformation Regularization. In keeping with a common practice across deformable
model approaches [14,19,78], we find it beneficial to regularize the deformations as it
discourages arbitrarily large deformations and helps learn a meaningful mean shape.
The corresponding energy term is expressed as Ldef = ||∆V ||2.
Keypoint association. As discussed in Section 4.1.1, we encourage the keypoint
assignment matrix A to be a peaked distribution as it should intuitively correspond
to a one-hot vector. We therefore minimize the average entropy over all keypoints:
Lvert2kp = 1

|K|
∑

k

∑
v−Ak,v logAk,v.

4.1. APPROACH 54

In summary, the overall objective for shape and camera is

L = Lreproj + Lmask + Lcam + Lsmooth + Ldef + Lvert2kp. (4.2)

Symmetry Constraints. Almost all common object categories, including the ones
we consider, exhibit reflectional symmetry. To exploit this structure, we constrain
the predicted shape and deformations to be mirror-symmetric. As our mesh topology
corresponds to that of a sphere, we identify symmetric vertex pairs in the initial
topology. Given these pairs, we only learn/predict parameters for one vertex in each
pair for the mean shape V̄ and deformations ∆V .

Initialization and Implementation Details. While our mesh topology corre-
sponds to a sphere, following previous fitting based deformable model approaches [78],
we observe that a better initialization of the mean vertex positions V̄ speeds up
learning. We compute the convex hull of the mean keypoint locations obtained during
structure-from-motion and initialize the mean vertex locations to lie on this convex
hull. As the different energy terms in Eq. 4.2 have naturally different magnitudes,
we weight them accordingly to normalize their contribution.

4.1.3 Incorporating Texture Prediction

TODO:		Some	illustration	of	UV	mapping

Image	Colored	
according	to	(u,v)

Same	coloring	
on	the	sphere

Same	coloring	on	the	
mean	bird

�V �, ✓

Flow	image Sphere	with	
that	UV	Map

TODO:	Something	like	this	illustrating	the	texture	procedure

�, ✓

⇠=

Iuv

Vi

V̄

+�Vi

�V1

�V2

Figure 4.3: Illustration of the UV map-
ping. We illustrate how a texture image Iuv

can induce a corresponding texture on the
predicted meshes. A point on a sphere can be
mapped onto the image Iuv via using spheri-
cal coordinates. As our mean shape has the
same mesh geometry (vertex connectivity) as
a sphere we can transfer this mapping onto the
mean shape. The different predicted shapes,
in turn, are simply deformations of the mean
shape and can use the same mapping.

In our formulation, all recovered
shapes share a common underlying 3D
mesh structure – each shape is a deforma-
tion of the mean shape. We can leverage
this property to reduce texturing of a
particular instance to predicting the tex-
ture of the mean shape. Our mean shape
is isomorphic to a sphere, whose texture
can be represented as an image Iuv, the
values of which get mapped onto the sur-
face via a fixed UV mapping (akin to
unrolling a globe into a flat map) [71].
Therefore, we formulate the task of tex-
ture prediction as that of inferring the
pixel values of Iuv. This image can be
thought of as a canonical appearance
space of the object category. For ex-
ample, a particular triangle on the pre-
dicted shape always maps to a particular

4.1. APPROACH 55

TODO:		Some	illustration	of	UV	mapping

Image	Colored	
according	to	(u,v)

Same	coloring	
on	the	sphere

Same	coloring	on	the	
mean	bird

�V �, ✓

Flow	image Sphere	with	
that	UV	Map

TODO:	Something	like	this	illustrating	the	texture	procedure

�, ✓

⇠=

Iuv

V̄

�V1

�V2

F
Iuv

Texture	Flow UV	Image

Textured	shapes

Figure 4.4: Illustration of texture flow. We predict a texture flow F that is used to
bilinearly sample the input image I to generate the texture image Iuv. We can use this
predicted UV image Iuv to then texture the instance mesh via the UV mapping procedure
illustrated in Figure 4.3.

region in Iuv, irrespective of how it was
deformed. This is illustrated in Figure 4.3. In this texture parameterization, each
pixel in the UV image has a consistent semantic meaning, thereby making it easier
for the prediction model to leverage common patterns such as correlation between
the bird back and the body color.

We incorporate texture prediction module into our framework by setting up a
decoder that upconvolves the latent representation to the spatial dimension of Iuv.
While directly regressing the pixel values of Iuv is a feasible approach, this often
results in blurry images. Instead, we take inspiration from [169] and formulate this
task as that of predicting the appearance flow. Instead of regressing the pixel values
of Iuv, the texture module outputs where to copy the color of the pixel from the
original input image. This prediction mechanism, depicted in Figure 4.4, easily
allows our predicted texture to retain the details present in the input image. We
refer to this output as ‘texture flow’ F ∈ RHuv×Wuv×2, where Huv,Wuv are the height
and width of Iuv, and F(u, v) indicates the (x, y) coordinates of the input image to
sample the pixel value from. This allows us to generate the UV image Iuv = G(I;F)
by bilinear sampling G of the original input image I according to the predicted flow
F . This is illustrated in Figure 4.4.

Now we formulate our texture loss, which encourages the rendered texture image
to match the foreground image:

Ltexture =
∑

i

dist(Si � Ii, Si �R(Vi, F, π̃i, I
uv)). (4.3)

R(Vi, F, π̃i, I
uv
i) is the rendering of the 3D mesh with texture defined by Iuv. We use

the perceptual metric of Zhang et al. [165] as the distance metric.
The loss function above provides supervisory signals to regions of Iuv corre-

sponding to the foreground portion of the image, but not to other regions of Iuv
corresponding to parts that are not directly visible in the image. While the common

4.2. EXPERIMENTS 56

patterns across the dataset e.g. similar colors for bird body and back can still allow
meaningful prediction, we find it helpful to add a further loss that encourages the
texture flow to select pixels only from the foreground region in the image. This
can be simply expressed by sampling the distance transform field of the foreground
mask DS (where for all points x in the foreground, DS(x) = 0) according to F and
summing the resulting image:

Ldt =
∑

i

∑

u,v

G(DSi ;Fi)(u, v). (4.4)

In contrast to inferring the full texture map, directly sampling the actual pixel values
that the predicted mesh projects onto creates holes and leaking of the background
texture at the boundaries. Similarly to the shape parametrization, we also explicitly
encode symmetry in our Iuv prediction, where symmetric faces gets mapped on to
the same UV coordinate in Iuv. Additionally, we only back-propagate gradients
from Ltexture to the predicted texture (and not the predicted shape) since bilinear
sampling often results in high-frequency gradients that destabilize shape learning.
Our shape prediction is therefore learned only using the objective in Eq. 4.2, and the
losses Ltexture and Ldt can be viewed as encouraging prediction of correct texture
‘on top’ of the learned shape.

4.2 Experiments
We demonstrate the ability of our presented approach to learn single-view inference

of shape, texture and camera pose using only a category-level annotated image
collection. As a running example, we consider the ‘bird’ object category as it
represents a challenging scenario that has not been addressed via previous approaches.
We first present, in Section 4.2.1, our experimental setup, describing the annotated
image collection and CNN architecture used.

As ground-truth 3D is not available for benchmarking, we present extensive
qualitative results in Section 4.2.2, demonstrating that we learn to predict meaningful
shapes and textures across birds. We also show we capture the shape deformation
space of the category and that the implicit correspondences in the deformable model
allow us to have applications like texture transfer across instances.

We also present some quantitative results to provide evidence for the accuracy of
our shape and camera estimates in Section 4.2.3. While there has been little work
for reconstructing categories like birds, some approaches have examined the task of
learning shape prediction using an annotated image collection for some rigid classes.
In Section 4.2.4 we present our method’s results on some additional representative

4.2. EXPERIMENTS 57

categories, and show that our method performs comparably, if not better than
the previously proposed alternates while having several additional advantages e.g.
learning semantic keypoints and texture prediction.

4.2.1 Experimental Setup

Dataset. We use the CUB-200-2011 dataset [150], which has 6000 training and
test images of 200 species of birds. Each image is annotated with the bounding
box, visibility indicator and locations of 14 semantic keypoints, and the ground
truth foreground mask. We filter out nearly 300 images where the visible number of
keypoints are less than or equal to 6, since these typically correspond to truncated
close shots. We divide the test set in half to create a validation set, which we use for
hyper-parameter tuning.

Network Architecture. A schematic of the various modules of our prediction
network is depicted in Figure 4.2. The encoder consists of an ImageNet pretrained
ResNet-18 [61], followed by a convolutional layer that downsamples the spatial and
the channel dimensions by half. This is vectorized to form a 4096-D vector, which is
sent to two fully-connected layers to get to the shared latent space of size 200. The
deformation and the camera prediction components are linear layers on top of this
latent space. The texture flow component consists of 5 upconvolution layers where
the final output is passed through a tanh function to keep the flow in a normalized
[-1, 1] space. We use the neural mesh renderer [80] so all rendering procedures are
differentiable. All images are cropped using the instance bounding box and resized
such that the maximum image dimension is 256. We augment the training data on
the fly by jittering the scale and translation of the bounding box and with image
mirroring. Our mesh geometry corresponds to that of a perfectly symmetric sphere
with 642 vertices and 1280 faces.

4.2.2 Qualitative Results

We visualize the results and application of our learned predictor using the
CUB dataset. We show various reconstructions corresponding to different input
images, visualize some of the deformation modes learned, and show that the common
deformable model parametrization allows us to transfer the texture of one instance
onto another.

Single-view 3D Reconstruction. We show sample reconstruction results on
images from the CUB test set in Figure 4.5. We show the predicted shape and
texture from the inferred camera viewpoint, as well as from novel views.

4.2. EXPERIMENTS 58

Figure 4.5: Sample results. We show predictions of our approach on images from the test
set. For each input image on the left, we visualize (in order): the predicted 3D shape and
texture viewed from the predicted camera, and textured shape from three novel viewpoints.

4.2. EXPERIMENTS 59

We observe that our learned model can accurately predict the shape, estimate
the camera and also infer meaningful texture from the corresponding input image.
Our predicted 3D shape captures the overall shape (fat or thin birds), and even
some finer details e.g. beaks or large deformations e.g. flying birds. Additionally,
our learned pose and texture prediction are accurate and realistic across different
instances. We observe that the error modes corresponds to not predicting rare poses,
and inability to incorporate asymmetric articulation. However, we feel that these
predictions learned using only an annotated image collection are encouraging.

Figure 4.6: Learned deformation
modes. We visualize the space of learned
shapes by depicting the mean shape (cen-
tre) and three common modes of deforma-
tion as obtained by PCA on the predicted
deformations across the dataset.

Learned shape space. The presented ap-
proach represents the shape of an instance
via a category-level learned mean shape and
a per-instance predicted deformation ∆V .
To gain insight into the common modes of
deformation captured via our predictor, ob-
tained the principal deformation modes by
computing PCA on the predicted deforma-
tions across all instances in the training set.

We visualize in Figure 4.6 our mean
shape deformed in directions corresponding
three common deformation modes. We note
that these plausibly correspond to some of
the natural factors of variation in the 3D
structure across birds e.g. fat or thin birds,
opening of wings, deformation of tails and
legs.

Texture Transfer. Recall that the textures of different instance in our formulation
are captured in a canonical appearance space in the form of a predicted ‘texture
image’ Iuv. This parametrization allows us to easily modify the surface appearance,
and in particular transfer texture across instances.

We show some results in Figure 4.7 where we sample pairs of instances, and
transfer the texture from one image onto the predicted shape of the other. We can
achieve this by simply using the predicted texture image corresponding to the first
when rendering the predicted 3D for the other. We note that even though the two
views might be different, since the underlying ‘texture image’ space is consistent, the
transferred texture is also semantically consistent e.g. the colors corresponding to
the one bird’s body are transferred onto the other bird’s body.

4.2. EXPERIMENTS 60

Figure 4.7: Texture Transfer Results. Our representation allows us to easily transfer
the predicted texture across instances using the canonical appearance image (see text for
details). We visualize sample results of texture transfer across different pairs of birds. For
each pair, we show (left): the input image, (middle): the predicted textured mesh from the
predicted viewpoint, and (right): the predicted mesh textured using the predicted texture
of the other bird.

4.2.3 Quantitative Evaluation

We attempt to indirectly measure the quality of our recovered reconstructions on
the CUB dataset. As there is no ground-truth 3D available for benchmarking, we
instead evaluate the mask reprojection accuracy. For each test instance in the CUB
dataset, we obtain a mask prediction via rendering the predicted 3D shape from the
predicted camera viewpoint. We then compute the intersection over union (IoU) of
this predicted mask with the annotated ground-truth mask. Note that to correctly
predict the foreground mask, we need both, accurate shape and accurate camera.

Our results are plotted in Figure 4.8. We compare the accuracy our full shape
prediction (using learned mean shape V̄ and predicted deformation ∆V) against
only using the learned mean shape to obtain the predicted mask. We observe that

4.2. EXPERIMENTS 61

Figure 4.8: Mask reprojection accuracy eval-
uation on CUB. We plot the fraction of test in-
stances with IoU between the predicted and ground-
truth mask higher than different thresholds (higher
is better) and compare the predictions using the full
model against only using the learned mean shape.
We report the reprojection accuracy using predicted
cameras and cameras obtained via structure-from-
motion based on keypoint annotation.

Method Aeroplane Car

CSDM [78] 0.40 0.60
DRC [144] 0.42 0.67
Ours 0.46 0.64

Table 4.1: Reconstruction
evaluation using PASCAL
3D+. We report the mean in-
tersection over union (IoU) on
PASCAL 3D+ to benchmark
the obtained 3D reconstructions
(higher is better). We compare
to previous deformable model
fitting-based [78] and volumet-
ric prediction [144] approaches
that use similar image collection
supervision. Note that our ap-
proach can additionally predict
texture and semantics.

the predicted deformations result in improvements, indicating that we are able
to capture the specifics of the shape of different instances. Additionally, we also
report the performance using the camera obtained via structure from motion (which
uses ground-truth annotated keypoints) instead of using the predicted camera. We
note that comparable results in the two settings demonstrate the accuracy of our
learned camera estimation. Lastly, we can also measure our keypoint reprojection
accuracy using the percentage of correct keypoints (PCK) metric [161]. We similarly
observe that our full predicted shape performs (slightly) better than only relying
on the category-level mean shape – by obtaining a PCK (at normalized distance
threshold 0.1) of 0.72 compared to 0.71. The improvement over the mean shape is
less prominent in this scenario as most of the semantic keypoints defined are on the
torso and therefore typically undergo only small deformations.

4.2.4 Evaluation on Other Object Classes

While our primary results focus on predicting the 3D shape and texture of birds
using the CUB dataset, we note that some previous approaches have examined the
task of shape inference/prediction using a similar annotated image collection as

4.3. DISCUSSION 62

Figure 4.9: Pascal 3D+ results. We show predictions of our approach on images from
the test set. For each input image on the left, we visualize (in order): the predicted 3D
shape viewed from the predicted camera, the predicted shape with texture viewed from the
predicted camera, and the shape with texture viewed from a novel viewpoint.

supervision. While these previous methods do not infer texture, we can compare our
shape predictions against those obtained by these techniques.

We compare to previous deformable model fitting-based [78] and volumetric
prediction [144] methods using the PASCAL 3D+ dataset and examine the car
and aeroplane categories. Both of these approaches can leverage the annotation we
have available i.e. segmentation masks and keypoints to learn 3D shape inference
(although [144] requires annotated cameras instead of keypoints). Similar to [144], we
use PASCAL VOC and Imagenet images with available keypoint annotations from
PASCAL3D+ to train our model, and use an off-the shelf segmentation algorithm [60]
to obtain foreground masks for the ImageNet subset.

We report the mean IoU evaluation on the test set in Table 4.1 and observe that
we perform comparably, if not better than these alternate methods. We also note
that our approach yields additional outputs e.g. texture, that these methods do
not. We visualize some predictions in Figure 4.9. While our predicted shapes are
often reasonable, the textures have more errors due to shiny regions (e.g. for cars)
or smaller amount of training data (e.g. for aeroplanes).

4.3 Discussion
We have presented a framework for learning single-view prediction of a textured

3D mesh using an image collection as supervision. However, we have by no means
solved the problem in the general case, and a number of interesting challenges and
possible directions remain. Our formulation addresses shape change and articulation
via a similar shape deformation mechanism, and it would be beneficial to extend
our deformable shape model to explicitly allow articulation. Additionally, while
we presented a method to synthesize texture via copying image pixels, a more
sophisticated mechanism that allows both, copying image content and synthesizing

4.3. DISCUSSION 63

novel aspects might be desirable. Finally, it would be desirable to relax the need
of annotation even further, and investigate learning similar prediction models using
unannotated image collections.

64

Part II

Inferring Compositional 3D
Representations

65

Chapter 5

Unsupervised Learning of Shape
Abstractions

“Treat nature by means of the cylinder, the sphere,
the cone, everything brought into proper perspective"

Paul Cezanne

We demonstrated in Part I that we can learn to predict 3D structure using
only image-based supervision. While we may have the capability to infer 3D,
what representation should we pursue? Cezanne’s insight is that an object can be
conceived as assembled from a set of simpler underlying entities. In this chapter, we
operationalize this insight, and present a learning framework for abstracting complex
shapes using 3D volumetric primitives.

The idea of representing a complex shape in terms of simper entities has resurfaced
multiple times in the vision and graphics literature. In computer vision, generalized
cylinders were introduced by Binford back in 1971, where a cross-sectional area is
swept along a straight or curved axis while possibly being shrunk or expanded during
the process [13]. One of the key motivations was parsimony of description – an object
could be described by relatively few generalized cylinders, each of which in turn
requiring only a few parameters. Volumetric primitives remained popular through
the 1990s as they provided a coherent framework for explaining shape inference from
a single image, perceptual organization, as well as recognition of a 3D object from
2D views. However, fitting generalized cylinders to image data required considerable

This chapter is based on joint work with Hao Su, Leonidas J. Guibas, Alexei A. Efros, and
Jitendra Malik, presented primarily as it appeared in the proceedings of CVPR, 2017 [143].

66

Figure 5.1: Examples of chair and animal shapes assembled by composing simple
volumetric primitives (cuboids). The obtained reconstructions allows an interpretable
representation for each object and provides a consistent parsing across shapes e.g.
chair seats are captured by the same primitive across the category.

hand crafting, and as machine learning techniques for object recognition came to the
fore in the 1990s, this paradigm faded from the main stage.

Of course, finding parsimonious explanations for complex phenomena lies at
the core of learning-based visual understanding. Indeed, machine learning is only
possible because our visual world, despite its enormous complexity, is also highly
structured – visual patterns don’t just happen once, but keep on repeating in
various configurations. In contemporary computer vision, this structure is most often
modeled via human supervision: the repeating patterns are labeled as objects or
object parts, and supervised learning methods are employed to find and name them
in novel imagery. However, it would seem more satisfying if complex structures could
be explained in terms of simpler underlying structures.

In this chapter, we return to the classic problem of explaining objects with
volumetric primitives, but using the modern tools of unsupervised learning and
convolutional neural networks (CNNs). We choose the simplest possible primitives,
rigidly transformed cuboids, and show how deep convolutional networks can be trained
to assemble arbitrary 3D objects out of them (at some level of approximation). The
main reason we succeed where the classic approaches failed is because we aim to
explain the entire dataset of 3D objects jointly, allowing us to learn the common 3D
patterns directly from the data.

While the representation of the 3D object shapes e.g. as meshes or voxel
occupancies, is typically complex and high-dimensional, the resulting explanation in
terms of basic primitives is parsimonious, with a small number of parameters. As
examples of their applicability, we leverage the primitive based representation for

5.1. BACKGROUND 67

various tasks e.g. part discovery, image based abstraction, shape manipulation etc..

5.1 Background

3D Representation and Reconstruction. The classic approaches for modeling
objects and scenes dating to the very beginnings of the computer vision discipline,
such as blocks world [112], generalized cylinders [13], and geons [12], emphasized
the compactness of representation as the central goal. In a similar spirit, a few
modern approaches have attempted to reconstruct objects/scenes using simple
primitives, including Lego pieces [147] and qualitative 3D blocks [51]. Apart from
these attempts, most mainstream methods for representing and reconstructing
objects typically use much higher-dimensional representations e.g. objects as point
clouds [78, 148] or exemplar CAD models [93, 94, 158]. The success of the latter
set of approaches has been largely driven by the data-driven reasoning which the
classical methods did not leverage. Our work aims to combine the two – we aim for a
parsimonious representation but discover the underlying parsimony in a data-driven
manner instead of relying on hand-crafted cues and priors. Similar to our approach,
Yumer and Kara [163, 164] showed that parsimonious modelling with data-driven
reasoning can allow consistent geometry simplifications or deformations in shape
collections but our learning based approach allows efficient test time inference for
novel shapes. An additional property of our approach, compared to classical methods,
is the consistency of representation across instances. Classical approaches solve a
per-instance optimization and obtain an unordered set of primitives whereas our
our approach outputs a consistent indexed set of primitives – this allows several
applications examined in Section 5.4.

Parsing Objects, Scenes and 3D Shapes. The idea of exploiting repeating
structures in large datasets has been central to efforts on unsupervised object discovery
and co-segmentation [113,116]. Data-driven compositionality, in particular, has been
used for co-segmentation [35], scene parsing and novel scene generation [72, 115].
In the domain of 3D shapes, the idea of exploiting compositionality has played
a similarly important role for object representation, parsing, and manipulation.
Pre-labeled, part-based shape representations were used for capturing the category-
specific shape manifold [38], generating novel objects [70, 74] or recovering 3D from
2.5D data [134]. Other methods aim to automatically discover these components
in 3D shape datasets [69], and their relative arrangements [167]. Similar to these
shape and scene based methods, our framework can automatically discover consistent
components and understand the structure of the data, but we do so by virtue of

5.2. LEARNING OBJECT ASSEMBLY 68

Figure 5.2: Overview of our approach. Given the input volume corresponding
to an object O, we use a CNN to predict primitive shape and transformation
parameters {(zm, qm, tm)} for each part (Section 5.2.1). The predicted parameters
implicitly define transformed volumetric primitives {P̄m} whose composition induces
an assembled shape. We train our system using a loss function which attempts to
minimize the discrepancy between the ground-truth mesh for O and the assembled
shape which is implicitly defined by the predicted parameters (Section 5.2.2).

learning to generate parsimonious explanations.

Deep Generative Models. The rapid recent progress in supervised learning tasks
by using deep learning techniques has been accompanied by a growing interest in
leveraging similar methods to discover structure in the visual data. Using generative
adversarial networks [49,110] allows learning the data distribution but the underlying
latent space lacks interpretability. Other generative methods aim to explicitly
decouple the underlying factors of variation [23, 85] but rely on supervision for
disentangling these factors. More closely related to our work, some recent approaches
use recurrent networks to iteratively generate components to explain a simple 2D
input scene [32,50,68]. Our work uses similar principles of learning component based
explanations of complex shapes where the components are interpretable simple 3D
primitives.

5.2 Learning Object Assembly
We formulate the problem of assembling a target object O, given input signal I

as that of predicting (up to) M distinct parts which are then composed to output
the final shape. Towards this, we learn a CNN hθ parametrized by θ which outputs
a primitive based representation. The task of learning this CNN is an unsupervised
one – we do not have any annotations for the primitive parameters that best describe
the target objects. However, even though there is no direct supervision, one can
measure if a predicted primitive configuration is good by checking if the assembled
object matches the target object. Using this insight, we formulate a loss function
which informs us if the shape assembled using the predicted primitives matches the
target shape and optimize this loss to train the CNN.

5.2. LEARNING OBJECT ASSEMBLY 69

An overview of our approach is presented in Figure 5.2. Given a discretized
representation of the target shape as input, we use a CNN to predict a primitive
representation (described in Section 5.2.1). The predicted representation implicitly
defines an assembled shape by composing the predicted primitives. Section 5.2.2
describes a differentiable loss function that allows using this representation in a
learning framework. While the initial presentation assumes the use of a fixed number
of primitives, Section 5.2.3 extends our approach to allow a variable number of
primitives.

5.2.1 Primitive based Representation

We represent an assembled shape by composing the predicted simple transformed
primitives. Each primitive is encoded in terms of a tuple (z, q, t) where z represents its
shape in a canonical frame and (q, t) represent the spatial transformation (rotation
and translation). The assembled shape predicted by the neural network hθ can
therefore be written as below.

{(zm, qm, tm)|m = 1, · · · ,M} = hθ(I) (5.1)

The motivation for this parametrization is to exploit the compositionality of
parts as well as the independence of ‘what’ and ‘where’ (part shape and spatial
transformation respectively). The representation of a shape as a set of parts allows
independent reasoning regarding semantically separate units like chair legs, seat etc..
The decomposition in terms of part shape and transformation parameters further
decomposes factors of variation like ‘broad aeroplane wing’ (captured by shape) and
‘tilted chair back’ (captured by transformation).

5.2.2 Loss Function for Assembled Shape

We want to define a differentiable loss function L({(zm, qm, tm)}, O) between the
CNN prediction {(zm, qm, tm)} and the target object O. This is a challenging task
because the prediction and the groundtruth have different 3D representations – the
prediction is a parametrized shape whereas the groundtruth is a mesh consisting
of triangles. To overcome this, we leverage the fact that the parametrization in
terms of simple primitives allows efficient computation of some properties of the
shape induced by their composition. In particular, we can compute the distance field
(Section 5.2.2) of the assembled shape as well as sample points on the surface of
the primitives. These allow us to define two complimentary losses which together
aim to minimize the discrepancy between the predicted and ground-truth shape.
The Coverage Loss tries to enforce that the object O is subsumed by the predicted

5.2. LEARNING OBJECT ASSEMBLY 70

assembled shape. The Consistency Loss enforces the other direction – that the object
O subsumes the predicted shape. By optimizing these losses together, we ensure
that the assembled shape tries to be maximally consistent with the target object.

Preliminaries

Notation. We represent by Pm, the untransformed primitive as predicted according
to zm and use P̄m to denote the primitive Pm after rotation, translation according
to (qm, tm). Therefore, the final shape induced by the composition of the predicted
primitives is ∪

m
P̄m.

We use the function S(·) to represent the surface of the argument and p ∼ S(·)
represents a random point sampled on it e.g. p ∼ S(P̄m) corresponds to a point
sampled on the surface of mth primitive. We also require notations for simple
rigid transformations – we denote by R(p, q) result of rotating a point p according
to rotation specified by quaternion q and similarly, T (p, t) denotes the result of
translating a point p by t. Note that the operations R, T are both differentiable.

Distance Field. A distance field C(· ;O) corresponding to an object O is a
function R3 → R+ that computes the distance to the closest point of the object.
Note that it evaluates to 0 in the object interior.

C(p;O) = min
p′∈O

‖p− p′‖2 (5.2)

Coverage Loss : O ⊆ ∪
m
P̄m .

We want to penalize the CNN prediction if the target object O is not completely
covered by the predicted shape ∪

m
P̄m. A sufficient condition to ensure this is that the

distance field of the assembled shape evaluates to zero for all points on the surface
of O.

L1({(zm, qm, tm)}, O) = Ep∼S(O)‖C(p;∪
m
P̄m)‖2 (5.3)

Computation can be simplified due to a nice property of distance fields. It is
easy to show that the distance field of a composed shape equals to the pointwise
minimum of the distance fields of all composing shapes:

C(p;∪
m
P̄m) = min

m
C(p; P̄m) (5.4)

This decomposition rule boils the distance field of a whole shape down to the
distance field of a primitive. In the following, we show how to efficiently compute C
for primitives as cuboids.

5.2. LEARNING OBJECT ASSEMBLY 71

Distance field of Primitives. Given an origin-centred cuboid represented by
z ≡ (w, h, d) – its extent in the three dimensions, its distance field Ccub(· ; z) can
be computed as below (using max(0, x) ≡ x+):

Ccub(p; z)2 = (|px| − w)2
+ + (|py| − h)2

+ + (|pz| − d)2
+

Consider an object O (with an associated field C(· ;O)) undergoing a rotation
R (parametrized by quaternion q) followed by a translation t. The distance field at
a point p w.r.t. the transformed object is the same as the distance field at p′ wrt.
the canonical object where p′ = R−1(p− t). This observations allows us to complete
the formulation by defining C(p; P̄m) (required in Eq. 5.4) as below.

C(p; P̄m) = C(p′;Pm); p′ = R(T (p,−tm), q̄m) (5.5)
C(· ;Pm) = Ccub(· ; zm) (5.6)

Consistency Loss : ∪
m
P̄m ⊆ O.

We want to penalize the CNN prediction if the predicted shape ∪
m
P̄m is not

completely inside the target object O. A sufficient condition is to ensure this is that
the distance field of the object O shape evaluates to zero for all points on the surface
of individual primitives P̄m.

L2({(zm, qm, tm)}, O) =
∑

m

Ep∼S(P̄m)‖C(p;O)‖2 (5.7)

Additionally, we observe that to sample a point p on the surface of P̄m, one can
equivalently sample p′ on the surface of the untransformed primitive Pm and then
rotate, translate p′ according to (qm, zm).

p ∼ S(P̄m) ≡ T (R(p′, qm), tm); p′ ∼ S(Pm)

An aspect for computing gradients for the predicted parameters using this loss is
the ability to compute derivatives for zm given gradients for a sampled point on
the canonical untransformed primitive p′ ∼ S(Pm). We do so by using the re-
parametrization trick [83] which decouples the parameters from the random sampling.
As an example, consider a point being sampled on a rectangle extending from
(−w,−h) to (w, h). Instead of sampling the x-coordinate as x ∼ [−w,w], one can
use u ∼ [−1, 1] and x = uw. This re-parametrization of sampling allows one to
compute ∂x

∂w
.

5.2. LEARNING OBJECT ASSEMBLY 72

5.2.3 Allowing Variable Number of Primitives

The framework we have presented so far reconstructs each instance in an object
category using exactly M primitives. However, different instances in an object
category can be explained by different number of primitives e.g. some chairs have
handles, others don’t. To incorporate this, in addition to predicting the shape and
transformation of each primitive, we also predict the probability of its existence pm.
We first discuss the modified representation predicted by the CNN and discuss how
the loss function can incorporate this.

Primitive Representation. As we mentioned above, the primitive representation
has an added parameter pm – the probability of its existence. To incorporate
this, we factor the primitive shape zm into two components – (zsm, z

e
m). Here zsm

represents the primitive’s dimensions (e.g. cuboid height, width, depth) as before
and zem ∼ Bern(pm) is a binary variable which denotes if the primitive actually exists
i.e. if zem = 0 we pretend as if the mth primitive does not exist. The prediction of
the CNN in this scenario is as below.

{(zsm, qm, tm, pm)|m = 1 · · ·M} = hθ(I) (5.8)
∀m zem ∼ Bern(pm); zm ≡ (zsm, z

e
m) (5.9)

Note that the CNN predicts pm – the parameter of the Bernoulli distribution
from which the part existence variable zem is sampled. This representation allows
the prediction of a variable number of parts e.g. if a chair is best explained using
k < M primitives, the network can predict a high pm for only k primitives and a low
pm for the remaining M − k primitives.

Learning. Under the reformulated representation of primitives, the CNN output
does not induce a unique assembled shape – it induces a distribution of possible shapes
where the mth primitive stochastically exists with probability pm. In this scenario, we
want to minimize the expected loss across the possible assemblies. The first step is
to modify the consistency and coverage losses to incorporate zm ≡ (zsm, z

e
m). Towards

this, we note that the untransformed primitive Pm is either a cuboid (if zem = 1) or
empty (if zem = 0). In case it is empty, we can simply skip it the the consistency
loss (Section 5.2.2) for this primitive and can incorporate this in the coverage loss
(Section 5.2.2) by modifying Eq. 5.6 as follows -

C(· ;Pm) =

{
∞, if zem = 0

Ccub(· ; zsm), if zem = 1
(5.10)

We can now define the final loss L(hθ(I), O) using the concepts developed. Note

5.3. EXPERIMENTS 73

Figure 5.3: Final predictions of our method on chairs, animals and aeroplanes. We
visualize the more commonly occurring modes on the left and progressively towards
the right show rarer configurations predicted.

that this is simply the expected loss across possible samplings of zem according to pm.

L({(zm, qm, tm)}, O) = L1({(zm, qm, tm)}, O) + L2({(zm, qm, tm)}, O) (5.11)

L(hθ(I), O) = E∀m zem∼Bern(pm)L({(zm, qm, tm)}, O)

Under this loss function, the gradients for the continuous variables i.e. {(zsm, qm, tm)}
can be estimated by averaging their gradients across samples. However, to compute
gradients for the distribution parameter pm, we use the REINFORCE algorithm [153]
which basically gives positive feedback if the overall error is low (reward is high) and
negative feedback otherwise. To further encourage parsimony, we include a small
parsimony reward (reward for choosing fewer primitives) when computing gradients
for pm.

5.3 Experiments

Dataset. We perform our experiments primarily using the ShapeNet [20] dataset
which has a large collection of 3D models. In particular, we use the ‘airplane’ and
‘chair’ object categories which have thousands of meshes available. The ShapeNet
models are already aligned in a canonical frame and are of a fixed scale. Additionally,
in order to demonstrate applicability beyond rigid objects, we also manually download

5.3. EXPERIMENTS 74

and similarly preprocess a set of around 100 models corresponding to four-legged
animals.

Network Architecture and Training. The dataset described above gives us a
set of 3D objects {Oi}. Corresponding to Oi, the input to our CNN is a discretized
representation as a volumetric occupancy grid Ii of size 32∗32∗32 (we later experiment
with rendered images as input in Section 5.4.3). The encoder used in our shape
assembler, as shown in Figure 5.2, takes in as input an occupancy grid and passes it
through 3D convolutional and fully connected layers with intermediate non-linearities
to output the primitive parameters {(zsm, qm, tm, pm)|m = 1 · · ·M} ≡ hθ(Ii). In this
work, we use cuboid primitives and zsm represents the width, height and thickness of
cuboids. We use ADAM [82] to train our network according to the loss L(hθ(Ii), Oi)
described in Section 5.2 which aims to make the assembled shape predicted using Ii
match to the target object Oi.

Figure 5.4: Visualization of the training progression. We visualize the prediction
for two instances (shown in column 1) after every 10,000 iterations (left to right,
in columns 2-6). The last column shows the result after post-processing to remove
redundant parts that overlap significantly with others. The initial training stage (up
to 20,000 iterations) uses all primitives but we later allow the network to learn to
use fewer primitives and the predictions gradually become more parsimonious.

Implementation Details. The coverage and consistency loss functions are both
defined using expectations over sampled points. In practice, we randomly sample
1000 points on S(O) to implement Eq. 5.3 and 150 points from each S(P̄m) to
implement Eq. 5.7. To efficiently compute the distance field of the target object O at
an arbitrary point p in Eq. 5.7, we precompute the distance field and its derivatives
for samples in a dense regular grid and use it to obtain efficient but approximate
gradients ∂C(p,O)

∂p
.

Another practical difficulty is that the gradients for the primitive existence
probabilities pm are extremely noisy in the initial training stages – e.g. in the initial
stages if a primitive is incorrectly placed, the CNN may learn to predict a very small
pm instead of learning to align the primitive correctly. To overcome this, we use a

5.3. EXPERIMENTS 75

Figure 5.5: We plot the Coverage (L1) and Consistency (L2) losses over training
iterations. The losses both decreases in the initial stage of training (up to 20,000
iterations) but when we allow the use of varying number of primitives along with
parsimony reward, the losses initially increase. This reveals a tradeoff between
representation parsimony and reconstruction accuracy.

two-stage training process. We first train the network using a fixed high value of pm
across primitives and later allow the network to also learn pm while also encouraging
simplicity by the external parsimony reward. As shown in Figure 5.5, this has the
effect of first using a large number of primitives and in later stages, merging them
together and using fewer primitives.

After the CNN has been trained, when computing the assembled representation
for an object, we use MLE estimates instead of sampling i.e. zem = 1(pm > 0.5).
The final shape predictions using the CNN may still have redundant parts used and
we use a simple post-processing step to refine the prediction by removing the parts
which significantly overlap with others.

Results and Analysis. We show the results of our method for three object
categories – chairs, aeroplanes and animals in Figure 5.3. We observe that the
predictions successfully capture the coarse structure and are consistent across objects.
The results indicate that the we can handle structural variations within a category
e.g. the objects in the right side of Figure 5.3 have a different structure than those
on the left which occur more commonly in the dataset.

We visualize in Figure 5.5 the training error across iterations. We observe that
in the initial training stage (up to 20000 iterations), the loss rapidly decreases as
the correct configuration is being learned. In the second stage of training, when we
allow pm to be learned, the error initially increases – this is because some primitives,
encouraged by the parsimony reward, now start disappearing and the network
eventually learns to use fewer primitives better. Even though the reconstruction error
in the initial stages is lower, the reconstructions using fewer primitives, are more
parsimonious. This provides an insight regarding the tradeoff between representation

5.4. APPLICATIONS 76

Figure 5.6: Projection of the predicted primitives onto the original shape. We assign
each point p in the original shape to the corresponding primitive with lowest distance
field C(p, P̄m). We visualize the parsing by coloring each point according to the
assigned primitive. We see that similar parts e.g. aeroplane wings, chair seat, etc.
are consistently colored.

parsimony and reconstruction accuracy – and that we should not judge the former
by the latter.

5.4 Applications
We observe in Figure 5.1 and Figure 5.3 that the inferred representations are

consistent across a category – chair seat is explained consistently using the same
primitive. They are also descriptive of the underlying shape and are, by construction,
interpretable. Therefore, our framework allows us to automatically discover descrip-
tive, consistent and interpretable shape abstractions using a collection of 3D models.
By virtue of these properties, our representation can enable several applications
related to shape similarity, part discovery, perception and shape manipulation.

5.4.1 Unsupervised Parsing and Correspondence

The learned primitive decomposition is useful for obtaining part-level correspon-
dences across instances. Since we use a common network across an object category,
simple and consistent solutions are preferred to explain the data i.e. the same
primitive explains the chair back across the category. We can leverage this obser-
vation to extract correspondences across the category by assigning labels to points
according to the primitive that explains them – we assign each point to the primitive

5.4. APPLICATIONS 77

Figure 5.7: Embeddings computed using various distance measures - a) Voxel IoU
based distance b) Ours (all primitives) c) Ours (chair back, seat primitives) d) Ours
(chair back orientation). While the IoU based embedding conflates chairs different
fine level structure (e.g. with/without handles), our embedding using all primitives
encodes them separately. Additionally, unlike common shape representations, our
inferred abstractions give us control over similarity measures – we can choose to
consider only specific primitives if required e.g. chair back and seat which, as
expected, results in ignoring existence of chair handles. We can also focus on specific
properties e.g. chair back orientation and observe a 1D manifold emerge in this
scenario.

that has the lowest C(p, P̄m), giving preference to larger primitives to break ties.
We therefore obtain a consistent labelling of all points across instances using the
predicted primitive decomposition – some examples are depicted in Figure 5.6.

We also evaluate this parsing on the Shape COSEG [152] dataset by measuring
the accuracy using annotated ground-truth. While the ground-truth only has
3 clusters (chair back, seat, legs), our method as well as previous unsupervised
approaches [126,152] cluster shapes into a larger number of partitions (number of
primitives in our case) and assign each partition a ground-truth label to evaluate. We
obtain a mean accuracy of 89.0% whereas [126] reports 78.6% and 84.8% accuracy
with initial and refined parsings respectively1.

5.4.2 Interpretable Shape Similarity

The trained CNN of our shape assembler maps every 3D shape to correspond-
ing primitive parameters {(zm, qm, tm)}. These parameters succinctly capture the
geometry of the underlying object. We find that a simple euclidean distance in the
embedding space is a reliable measure of shape similarity. We use this distance

1Unfortunately, we found that [126] used a preliminary version of the Shape COSEG dataset [152].
We were unable to obtain this preliminary version, therefore the results are not exactly comparable.
The algorithm in [152] does use the current dataset but reports no quantitative results.

5.4. APPLICATIONS 78

to compute a t-sne [98] embedding of shapes and visualize 1000 random instances
in Figure 5.7 . We observe that the automatically discovered structure captures
similarity better than a simple voxel IoU based metric and that clusters correspond
to natural sub-categories e.g. sofa etc..

One aspect unique to our approach is that the shape embedding is interpretable
and instead of using primitive parameters for all parts, we can modify the distance
measure to focus on specifics of interest for the application. As an example, we
show the resulting t-sne embedding if only 2 primitives, which correspond to back
and seat, are used to compute the distance across shapes. We observe that the
embedding reflects the desired similarity e.g. unlike in the case of using all primitives
to measure shape similarity, chairs with and without handles are now embedded
together. We also compute the embedding for the distance measure which only
measures the difference in the orientation (qm) for a specific part (chair back) and
observe that this is a 1D manifold with the tilt increasing as we traverse it. Therefore,
unlike common shape representations, our inferred abstractions give us control over
similarity measures.

Figure 5.8: Inferred abstractions using real image inputs.

Figure 5.9: We deform the source mesh (top) to have a shape similar to the target
mesh (bottom) by using the inferred primitive representation. Each source mesh
point is assigned a local coordinate in the closest primitive’s frame. A deformation
of the primitives from the source to target configuration induces a deformed mesh
(shown on right).

5.5. DISCUSSION 79

5.4.3 Image based Abstraction

Given our trained model hθ which infers primitive representation using volume
inputs, we can train an image based prediction model gθ′ . We obtain volume-image
pairs (Vi, Ii) by rendering ShapeNet models with random lighting and background
(as suggested in [133]) and train the image based network to mimic the volume
based network’s predictions i.e. we train gθ′ to minimize ‖hθ(Vi)− gθ′(Ii)‖2. This
distillation technique [64] for using paired data to train a model for predicting outputs
similar to a pre-trained CNN is common [53] and has previously also been used for
learning shape embeddings [45]. We find that we can successfully apply this to our
scenario and learn an image-based prediction model that outputs the abstraction of
the underlying shape given a single image. We show some results in Figure 5.8. This
demonstrates that one can learn to predict shape abstractions using varying inputs
and this might enable applications in robotics settings where such inference might
help in grasping, planning etc..

5.4.4 Shape Manipulation

The inferred primitive based shape abstractions can be used as a skeleton to
guide manipulation of the underlying objects. We can assign each mesh point a local
coordinate in the frame of its corresponding primitive (as computed in Section 5.4.1).
A rotation, translation or scaling of the corresponding primitive can thereby induce
a change in the global coordinates of the associated mesh points. We show some
examples in Figure 5.9 where we deform a source mesh to have a similar configuration
as a target mesh. While the transformation used in this example is defined using
a target mesh, one can also use our representation for other transformation e.g.
making the legs longer or tilting the back etc.

5.5 Discussion
In this chapter, we took an unsupervised, data-driven approach to explain visual

information in terms of simpler primitives. Taking inspiration from the classic work
on generalized cylinders [13] and geons [12], we demonstrated that we can learn to
represent complex 3D structures in terms of simpler entities. However, unlike the
earlier work in this area, we demonstrated the benefits of being data-driven and
letting the data itself discover the best representation.

While we focused here on a relatively simple setting of isolated objects, we demon-
strated the benefits of inferring the underlying compositional structure. This merely

5.5. DISCUSSION 80

represents an initial step towards our goal of discovering and inferring the composi-
tional structure underlying complex scenes. It is an interesting and challenging to
similarly discover, in an unsupervised manner, the notion of objects, planar surfaces
etc. by reasoning about full scenes. Assuming these known factors, in Chapter 6
we examine the benefits of being able to infer a compositional representations for
complex 3D scenes in terms of these factors.

81

Chapter 6

Factoring Shape, Pose and Layout

How should we represent the 3D structure of the scene in Figure 6.1? Most
current methods for 3D scene understanding produce one of two representations: i)
a 2.5D image of the scene such as depth [31,122] or surface normals [7, 39]; or ii) a
volumetric occupancy grid/voxels representation in terms of a single voxel grid [24,
45, 157]. Accordingly, they miss a great deal. First, all of these representations erase
distinctions between objects and would represent Figure 6.1 as an undifferentiated
soup of surfaces or volumes rather than a set of chairs next to a table. Moreover, the
2.5D representations intrinsically cannot say anything about the invisible portions of
scenes such as the thickness of a table or presence of chair legs. While in principle
voxel-based representations can answer these questions, they mix together beliefs
about shape and pose and cannot account for the fact that it is easy to see that the
chair has a thin back but difficult to determine its exact depth.

We demonstrated in Chapter 5 the benefits of inferring a compositional repre-
sentation for objects. Motivated by similar insights, in this chapter, we present an
alternative representation for 3D scenes: we should think of scenes as being composed
of a distinct set of factors. One represents the layout, which we define as the scene
surfaces that enclose the viewer, such as the walls and floor, represented in terms
of their full, amodal extent i.e. what the scene would look like without the objects.
The others represent a discrete set of objects which are in turn factored into 3D
shape (voxels) and pose (location and rotation). This representation solves a number
of key problems: rather than a muddled mess of voxels, the scene is organized into
discrete entities, permitting subsequent tasks to reason in terms of questions like
“what would the scene be like if I moved that chair.” In terms of reconstruction

This chapter is based on joint work with Saurabh Gupta, David Fouhey, Alexei A. Efros, and
Jitendra Malik, presented primarily as it appeared in the proceedings of CVPR, 2018 [140].

82

fed

a cb

Figure 6.1: Our 3D representation. Given a single 2D image (a) we infer a 3D
representation which is factored in terms of a set of objects inside an enclosed volume. We
show it from the camera view in (b) and a novel view in (c). By virtue of being factored,
our representation trivially enables answering questions that are impossible in other ones.
For example, we can give the scene (d) without any objects; (e) without the table; or (f)
answer “what would it be like if I moved the chair”. These and all results best viewed in
color on screen.

itself, the factored approach does not conflate uncertainties in pose and shape, and
automatically allocates voxel resolution, enabling high resolution output for free.

One needs a way to infer this representation from single 2D images. We thus
propose an approach in Section 6.2 which is summarized in Figure 6.2. Starting with
an image and generic object proposals, we use convolutional neural networks (CNNs)
to predict both the layout, i.e. amodal scene surfaces, as well as the underlying
shape and pose of objects. We train this method using synthetic data [130], although
we show it on both synthetic and natural data.

We investigate a number of aspects of our method in Section 6.3. Since our
approach is the first method to tackle this task and many design decisions are non-
obvious, we first present extensive ablations in Section 6.3.3. We then demonstrate
that we can infer the full representation and find current performance limitations
in Section 6.3.4. Next, since one might naturally wonder how the representation
compares to others, we compare it to the more standard representations of a per-
pixel depthmap and single voxel grid in Section 6.3.5. Figure 6.6 qualitatively and
Figure 6.8 quantitatively demonstrate the benefits of our representation. We finally
show qualitative results on the NYUv2 dataset.

6.1. BACKGROUND 83

6.1 Background
This chapter aims to take a single 2D image and factor it into a set of constituent

3D components, and thus touches on a number of topics in 3D scene understanding.
This goal of recovering 3D properties from a 2D image has a rich history in computer
vision starting from Robert’s Blocks World [112]. In the learning-based era, this has
mainly taken the form of estimating view-based per-pixel 3D properties of scenes
such as depth [31, 122] or orientation information [39, 66]. These approaches are
limited in the sense that they intrinsically cannot say anything about non-visible
parts of the scene. This shortcoming has motivated a line of work aiming to infer
volumetric reconstructions from single images [24,45,157], working primarily with
voxels. These have been exclusively demonstrated with presegmented objects in
isolation, and never with scenes: scenes pose the additional challenges of delineating
objects, properly handling uncertainty in shape and pose, and scaling up resolution.
Our representation automatically and naturally handles each of these challenges.

Our goal of a volumetric reconstruction of a scene has been tackled under relaxed
assumptions that alleviate or eliminate the difficulty of handling either shape or
pose. For example, with RGBD input, one can complete the invisible voxels from
the visible ones as in [130]. Here, the problem of pose is eliminated: because of
the depth sensor, one knows where the objects are, and the remaining challenge is
inferring the missing shape. Similarly, in CAD retrieval scenarios, one assumes the
object [6, 7, 52, 93,94] or scene [73] can be represented in terms of a pre-determined
dictionary of shapes; a great deal of earlier work [51, 91, 123] tackled this with a
dictionary of box models. The challenge then is to detect these objects and figure
out their pose. In contrast, we jointly infer both shape and pose. Our approach,
therefore does not rely on privileged information such as the precise location of the
visible pixels or is restricted to a set of pre-determined objects.

In the process of predicting our representation, we turn to tools from the object
detection literature. There is, of course, a large body of work between classic 2D
detection and full 3D reconstruction. For instance, researchers have predicted 3D
object pose [106, 142], low-dimensional parametric shapes [37, 158], and surface
normals [125]. Our representation is richer than this past work, providing detailed
volumetric shape and pose, as well as the layout of the rest of the scene.

6.2 Approach
The goal of our method is to take a single 2D image and infer its 3D properties

in terms of scene layout, object shape and pose. We attack this problem with two

6.2. APPROACH 84

Scene Layout

Object

Shape

(323)

Translation

Rotation

Scale
(Per-bounding-box)

R

Convolution

Fully

Connected

Upconvolution

R ROI Pool

Concatenate

Legend

BB

Fine Shape

Layout

Coarse

Bounding

Boxes

(Per-scene)

Figure 6.2: Overview of our framework. We take as input an image and set of
bounding boxes. The scene layout H is predicted by the layout module, a skip-connected
CNN. Each bounding box is then represented by features from three sources: ROI-pooled
features extracted from a fine module that uses the original resolution, full image context
features from the coarse module, and the bounding-box location. These features are
concatenated and passed through several layers, culminating in the prediction of a shape
code s, scale c, translation t, and rotation of the object q. The shape code is mapped to
voxels V by the shape decoder.

main components, illustrated in Figure 6.2, that can be trained end-to-end. The first
is a scene network that maps a full image to an amodal layout describing the scene
minus the object. The second is an object-centric network that maps bounding boxes
to the their constituent factors: shape and pose. We now describe the architectural
details of each component, the loss functions learned to learn each, and the training
and inference procedures.

6.2.1 Layout

We first predict the layout. This represents the enclosing surfaces of the scene,
such as the walls and floor. Specifically, the layout is the amodal extent of these
surfaces (i.e. the floor as it exists behind the objects of the scene). Past approaches
to this [62,123] have primarily posed this in terms of fitting a vanishing-point-aligned
3D box, which intrinsically cannot generalize to non-box environments. Here, we
treat the more general case as 2.5D problem and propose to predict the layout as
the disparity (i.e. inverse depth) map of the scene as if there were no objects.

We predict the layout using the layout module, a skip-connected network similar
to [102]. The first half of the network takes the image and maps it to an intermediate
representation, slowly decreasing spatial resolution and increasing increasing feature

6.2. APPROACH 85

channel count. The latter half, upconvolves in the reverse fashion while concatenating
features from the encoder. We train our network end-to-end using the L1 objective,
or if Ĥ denotes our prediction and H the ground-truth layout, LH = ||H− Ĥ||1.

6.2.2 Object Predictions

We represent the shape of an object as a 323 voxel occupancy grid V and the
pose as anisotropic scaling c, followed by a rotation represented by a quaternion q,
and finally a translation t. Without any other constraints, this representation is
underdetermined: one can apply many types of changes to the shape and undo them
in the pose. Therefore, we represent the shape in a canonical (i.e. front-facing and
upright) coordinate frame which is normalized and centered so the object dimensions
vary between [−0.5m, 0.5m]. This in turn specifies the pose.
Architecture and features. First, we describe how the system maps an image
and bounding box to this representation; the following subsection explains how this
is done for a set of regions. Given a feature vector, linear layers map directly to t, q,
and c. Since V is high dimensional and structured, we first map to a shape code s
which is then reshaped and upconvolved to V.

We use three sources to construct our feature vector. The primary one is the
fine module, which maps the image at its original resolution to convolutional feature
maps, followed by ROI pooling to obtain features for the window [46]. As additional
information, we also include fixed-length features from: (1) a coarse module that maps
the entire image at a lower resolution through convolutional layers then vectorizes
it; and (2) bounding box module mapping the bounding box location through fully
connected layers. The three sources are concatenated. In the experiment section, we
report experiments without the contextual features.
Shape loss. The shape of the object is a discrete volumetric grid V, which we
decode from a fixed-length shape code s using the shape decoder. Our final objective
is a per-voxel cross-entropy loss between the prediction V̂ and ground-truth V, or

LV =
1

N

∑

n

Vn log V̂n + (1−Vn) log(1− V̂n). (6.1)

In practice, this objective is difficult to optimize, so we bootstrap the network
following [45]. We learn an autoencoder on voxels whose bottleneck and decoder
match our network in size. In the first stage, the network learns to mimic the
autoencoder: given a window of the object, we minimize the L2 distance between
the autoencoder’s bottleneck representation and the predicted shape code. The
voxel decoder is then initialized with the autoencoder’s decoder and the network is
optimized jointly to minimize LV .

6.2. APPROACH 86

Rotation Prediction. We parameterize rotation with a unit-normalized quaternion.
We found that framing the problem as classification as in [133, 142] handled the
multi-modality of the problem better. We cluster the quaternions in the training
set into 24 bins and predict a probability distribution kd over them. Assuming k
denotes the ground-truth bin, we minimize the negative log-likelihood,

Lcq = − log(kkd). (6.2)

The final prediction is then the most likely bin. We evaluate the impact of this choice
in the experiment section and compare it with a standard squared Euclidean loss.
Scale and translation prediction. Finally, anisotropic scaling and translation
are formulated as regression tasks, and we minimize the squared Euclidean loss (in
log-space for scaling):

Lt = ||t− t̂||22; and Lc = || log(c)− log(ĉ)||22. (6.3)

6.2.3 Training to Predict A Full Scene

We now describe how to put these components together to predict the represen-
tation for a full scene: so far, we have described how to predict with the boxes given
as opposed to the case where we do not know the boxes a-priori. At training time,
we assume that we have a dataset of annotated images in which we have the box as
well as corresponding 3D structure information (i.e., pose, shape, etc.).
Proposals. To handle boxes, we use an external bounding-box proposal source and
predict, from the same features as those used for object prediction, a foreground
probability f representing the probability that a proposal corresponds to a foreground
object and optimize this with a cross-entropy loss. If B+ and B− represent foreground
and background proposals, our final objective is

∑

b∈B+
(LV + Lq + Lt + Lr − ln(f)) +

∑

b∈B−
ln(1−f),

which discriminates between foreground and background proposals and predicts the
3D structure corresponding to foreground proposals.

For proposals, we use 1K edge boxes [173] proposals per image. We assign
proposals to ground truth objects based on modal 2D bounding box IoU. We treat
proposals with more than 0.7 IoU as foreground-boxes (B+) and those with less than
0.3 IoU with any ground truth object as background boxes (B−).
Training Details. We initialize the coarse and fine convolution modules with
Renset-18 [61] pretrained on ILSVRC [114] and all other modules randomly. We
train the object network for 8 epochs with the autoencoder mimicking loss and then
1 additional epoch with the volumetric loss.

6.3. EXPERIMENTS 87

Figure 6.3: Predicted 3D representation using ground-truth boxes. Left: Input
RGB image. Middle (2nd and 3rd column): Two views of ground-truth 3D configuration of
the objects in the scene. The first view corresponds to the camera view and the second
to a slight rotation towards the top. Right (4th and 5th column): The same two views of
our predicted 3D structure. We visualize the predicted object shape by representing each
voxel as a cube with size proportional to its occupancy probability and then transform
it according to the predicted scaling, rotation and translation. The colors associate the
corresponding ground-truth and predicted objects.

6.3 Experiments
We now describe the experiments done to validate our proposed representation

and the described approach for predicting it. We first introduce the datasets that
we use, one synthetic and one real, and the metrics used to evaluate our rich
representation. Since our approach is the first to predict this representation, we
begin by analyzing a number of design decisions by evaluating shape prediction in
isolation. We then analyze the extent to which we can predict the representation and
identify current performance bottlenecks. Having demonstrated that we can infer
our representation, we compare the representation itself with alternate ones both
qualitatively and quantitatively. Finally, we show some results on natural images.

6.3.1 Datasets

We use two datasets. The first is SUNCG, introduced by Song et al. [130]. The
dataset consists of 3D models of houses created by users on an online modeling
platform and has a diverse set of scenes with numerous objects and realistic clutter
and therefore provides a challenging setup to test our approach. We use the physically-
based renderings provided by Zhang et al. [166] for our experiments and randomly
partition the houses into a 70%-10%-20% train, validation and test split. Overall,
we obtain over 400,000 rendered training images and for each image we associate the

6.3. EXPERIMENTS 88

Shape Rotation Translation Scale

method %(IoU> 0.25) IoU %(∆q < 30) Err %(∆t < 1m) Err %(∆c < 0.5) Err

Base 59.5% 0.31 75.2% 5.44 90.7% 0.38 85.5% 0.15
Base - context 54.4% 0.27 69.3% 7.69 85.4% 0.47 82.6% 0.19
Regression 58.4% 0.31 48.1% 31.87 88.4% 0.38 86.1% 0.14
Base + decoder ft 70.7% 0.41 74.6% 5.28 87.3% 0.42 85.1% 0.15

Table 6.1: Performance of predictions on SUNCG with ground-truth boxes: We
report the performance of the base network (quaternion classification, use of context) and
its variants. We measure the median error (or IoU) across the 3D code parameters and
also report the fraction of data with performance above/error below certain thresholds. See
text for details on evaluation metrics.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

 (
H

ig
he

r
is

 b
et

te
r)

Shape Analysis
base + decoder finetuning (0.41, 70.7%)
base (0.31, 59.5%)
retrieval (0.24, 49.1%)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0

20

40

60

80

100

120

140

160

180

E
rr

or

Rotation Analysis
Classification (5.44, 75.2%)
Regression (31.87, 48.1%)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
rr

or
 (

in
 m

)

Translation Analysis
base (0.38, 90.7%)
base context (0.47, 85.4%)

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
rr

or

Scale Analysis
base (0.15, 85.5%)
base context (0.19, 82.6%)

Figure 6.4: Analysis of the prediction performance across shape, rotation, translation
and scale prediction. To compare alternative approaches, we plot the error (or IoU for
shape) against the fraction of data up to the threshold. The plot legends also report the
median value as well as fraction of data with error lower (or IoU higher) than the threshold
depicted by the gray line.

visible objects with their corresponding 3D code by parsing the available house model.
However, the objects present in the images are often too diverse e.g. fruit-baskets,
ceiling lights, doors, candlesticks etc.. and detecting and reconstructing these is
extremely challenging so we restrict the set of ground-truth boxes to only correspond
to a small but diverse set of indoor object classes – bed, chair, desk, sofa, table,
television. The second is NYU [127], which we use to verify qualitatively that our
model is able to generalize, without additional training, to natural images.

6.3.2 Metrics

Our method and representation subsumes a number of different past works
and thus there is no standard way of evaluating it. We therefore break down

6.3. EXPERIMENTS 89

Figure 6.5: Predicted 3D representation from an unannotated RGB image. Left:
Input image. Middle (2nd and 3rd column): Two views of ground-truth 3D configuration of
the objects in the scene. Right (4th and 5th column): The corresponding two views of our
predicted 3D structure. The colors only indicate a grouping of the predicted points and the
coloring is uncorrelated between the prediction and the ground-truth. We observe that we
can infer the 3D representations despite clutter, occlusions etc..

the components of our approach and use the standard evaluation metrics for each
component (i.e. V, q, t, and c). For each component, we define an error ∆ that
measures the discrepancy between the predicted value and the ground truth as well
as a threshold δ that defines a true positive in the detection setting. For evaluating
shape prediction in isolation, we aggregate results by taking the median over ∆ and
fraction of instances with distance below (or for IoU, overlap above) δ.
Shape (V): We use the standard [24] protocol and set ∆V to measuring intersection
over union (IoU) and use as threshold δV = 0.25.
Rotation (q): We compute the geodesic distance between two rotations, or ∆q(R1,R2) =
(2)−1/2|| log(RT

1 R2)||F . We set δq = π
6
following [142].

Scale (c): We define distance as the average logarithmic difference in scaling factors,
or ∆(c1, c2) = 1

3

∑3
i=1 | log2(ci1)− log2(ci2)|. We threshold at δc = 0.5, corresponding

to being within a factor of
√

2.
Translation (t): We use the standard Euclidean distance ∆t(t1, t2) = ||t1 − t2|| and
threshold at δt = 1m.
2D Bounding Box (b): In the detection setting, we also consider the 2D bounding
box (b) and define ∆b and δB as standard 2D IoU with the standard threshold of
0.5.

6.3. EXPERIMENTS 90

Detection Metrics. In the detection setting, we combine these metrics and define a
true positive as one within/above the threshold for all of the five metrics. We use this
to define average precision AP(δb, δV , δr, δt, δc). To better understand performance
limitations, we consider variants where we relax one of these predicates (indicated
by a ·).

6.3.3 Analyzing 3D Object Prediction

This is the first work that attempts to predict this representation from images
and so many design decisions along the way were not obvious. We therefore study
the 3D prediction model in isolation to analyze the impact of these approaches. This
avoids mixing detection and shape prediction errors, which helps remove confounding
factors; it is also the setting in which all other voxel prediction approaches have been
evaluated historically.
Qualitative Results. We first show some predictions of the method using ground-
truth boxes in Figure 6.3. Our approach is able to obtain a good interpretation of
the image in terms of a scene and set of objects.
Comparisons. We report comparisons to test the importance of various components.
We begin with a base model (Base) from which we add and remove components.
This base model is trained using the losses and features described previously, but
the decoder set to the autoencoder’s decoder.

We first experiment with shape prediction. We add decoder fine-tuning to get
(Base + Decoder Finetuning), which tests the effect of fine-tuning the decoder. We
also try a retrieval setup (Retrieval); rather than use the decoder, we retrieve the
nearest shape in the shape embedding space.

We then evaluate our features and losses. We try (No Context) in which we use
only the ROI-pooled features; this tests whether context, in the form of bounding box
coordinates and full image features, is necessary. Since our classification approach to
rotation prediction may seem non-standard, we try an antipodal regression loss for
estimating q. We normalize the prediction q̂ and minimize min(||q− q̂||, ||q + q̂||).
Quantitative Results. We plot cumulative errors over fractions of the data
in Figure 6.4 and report some summary statistics in Table 6.1. For the task of
shape inference, we observe that fine-tuning the decoder improves performance. The
alternate method of retrieval using a shape embedding yields some accurate retrievals,
but is less robust to uncertainties, and incurs large errors for many instances. We
note that as SUNCG dataset has a common set of 3D objects across all scenes, this
retrieval performance can be further improved by explicitly learning to predict a
model index. However, this approach would still suffer from large errors in case of

6.3. EXPERIMENTS 91

Voxels Depth Factored

Figure 6.6: A visualization of the proposed (Factored) representation in comparison to
(Voxels) a single voxel grid and (Depth) a depthmap. For each input image shown on the
left, we show the various inferred representations from two views each: a) camera view
(left), and b) a novel view (right).

incorrect retrieval, and not be generally applicable.
We observe that classification outperforms regression for predicting rotation. We

hypothesize that this is because classification handles multi-modality (e.g. whether
a chair is front- or back-facing) better. Additionally, classification has systematically
different failure modes than regression: as compared to a nearly uniform set of errors
from regression, the model trained with classification tends to be either very accurate
or off by 90◦ or 180◦ degrees, corresponding to natural ambiguities. Finally, having
context features is consistently important for each error metric, in particular for
inferring absolute translation and scale, which are hard to infer from a cropped
bounding box.

6.3.4 Placing Objects in Scenes

Having analyzed the factors of performance for 3D object prediction with known
2D bounding boxes, we now analyze performance on the full problem including
detection.

We report in Figure 6.7 some variants of average precisions on the SUNCG test set
for our approach. We obtain an average precision of 40.3% for the full 3D prediction
task AP (0.5, π

6
, 1, 0.5, 0.25). This is particularly promising on our challenging task

of making full 3D predictions in cluttered images of scenes from a single RGB image.

6.3. EXPERIMENTS 92

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision Recall Plots on Test Set

40.3 all
46.0 shape
47.5 rot
41.9 trans
43.6 scale
42.5 box2d

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Precision Recall Plots on Test Set

71.0 box2d
55.3 +shape
54.7 +rot
65.6 +trans
60.5 +scale
46.2 +rot+shape

Figure 6.7: Detection Performance on SUNCG Test Set: We plot PR curves for
our method on the SUNCG test set under different settings. Left: PR curve for full
3D prediction (denoted by ‘all’) and its variants when relaxing one condition at a time.
Right: 2D bounding box PR curve (denoted by ‘box2d’) and its variants when adding one
additional constraint at a time. The average precision for each setting is indicated in the
legend.

We also report variants of the AP when relaxing one constraint at a time Figure 6.7
(left).

Figure 6.5 visualizes the output of our detector on some validation images from
the SUNCG dataset. We show the input RGB image, ground truth and predicted
objects from the current view and an additional view (obtained by rotating the
camera up about a point in the scene). We observe some interesting error modes, e.g.
duplicate detections in 3D space despite the underlying boxes not being classified as
duplicates via 2D non-max suppression.

6.3.5 Comparing Scene Representations

We have proposed a new way of representing the 3D structure of scenes, and
so one might ask how it compares to the alternatives in use, per-pixel depth or a
single voxel grid. As has been argued throughout the chapter, our representation
is qualitatively different and captures aspects that are missing in the others: as
shown in Figure 6.6), voxel grids and depthmaps present an undifferentiated array
of surfaces and volumes whereas ours represents a world of objects. However, we
also quantitatively evaluate this. Each representation (depth, voxels, factored) is
trained on different tasks. We study how well each representation solves the tasks
being solved by the other representations. While each representation will perform
the best at the specific task that it was trained for, a versatile representation will

6.3. EXPERIMENTS 93

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
in

 m
2
)

Depth Representation Ability
Scene Representations:

Factored (ours)
Depth
Voxels

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

 (
H

ig
he

r
is

 b
et

te
r)

Volume Representation Ability
Scene Representations:

Factored (ours)
Depth
Voxels

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.000

0.002

0.004

0.006

0.008

0.010

S
ca

le
n

or
m

al
iz

ed
 M

ea
n

S
qu

ar
ed

 E
rr

or

Object Representation Ability
Scene Representations:

Factored (ours)
Depth
Voxels

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
in

 m
2
)

Visible Layout Representation Ability
Scene Representations:

Factored (ours)
Depth
Voxels

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Data

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
S

qu
ar

ed
 E

rr
or

 (
in

 m
2
)

Amodal Layout Representation Ability
Scene Representations:

Factored (ours)
Depth
Voxels

Figure 6.8: Analysis of the ability of various representations to capture different aspects
of the whole scene. We compare our proposed factored representation against voxel or
depth-based alternatives and evaluate their ability to capture the following aspects of the
3D scene (from left to right): a) Visible depth, b) Volumetric occupancy, c) Individual
objects, d) Visible depth for scene surfaces (floor, walls etc..), and e) Amodal depth for
scene surfaces. See text for a detailed discussion.

also work reasonably well on the others’ tasks. Our experiments below show that our
factored representation is empirically more versatile than these two other popular
3D representations.
Other representations.
Per-pixel depth representations estimate the depth (or equivalently disparity i.e.
inverse depth) for each pixel in the image. We train this representation the same way
we train our layout prediction module as described in Section 6.2.1 on the SUNCG
dataset, except instead of predicting the amodal disparity for scene surfaces we make
predictions for all pixels in the image as would be observed from a depth sensor.
Full scene voxel representations use occupancy of voxels to represent the scene. We
use 64× 32× 64 voxels each of size 8cm× 8cm× 8cm to represent the scene. These
voxels are expressed in the camera coordinate frame.
Quantitative results. We show quantitative results in Figure 6.8. We plot the
cumulative distribution for various performance metrics (described below).
Explaining Visible Depth: We obtain a point cloud for the scene from each of these
representations (for depth, we backproject points in space using the camera matrix,
for voxels we use the point at the center of the voxel). We measure the average
distance of points in the predicted point cloud to points in the ground truth point
cloud obtained by back projecting the ground truth depth image.
Explaining Scene Voxels: We obtain voxel occupancy from each of the representations
(depth is converted to voxel occupancy by checking if any back-projected point lies
within a voxel). We measure intersection over union for the output voxel occupancy
with the ground truth voxel occupancy.

Our factored representation involves two tasks: reasoning about the objects and
the scene surfaces.

6.3. EXPERIMENTS 94

Figure 6.9: Results on NYU dataset. We show the results of our model trained using
synthetically rendered data on real, unannotated images from the NYU dataset. Left: Input
RGB image. Middle and Right: Two views of predicted 3D representation.

Explaining Objects: To measure this we align the ground truth object point clouds
(obtained by sampling points at center of occupied voxels) to point clouds obtained
from the three representations (in the same manner as above). We use iterative
closest point to align and report the final fitness value (mean squared distance
normalized with respect to the object size). We compute this at instance level for
the six categories that we study.
Explaining Layout: We measure how well depth corresponding to the scene layout
surfaces is explained and consider two cases: modal scene surfaces (Figure 6.8(d))
and amodal scene surfaces (Figure 6.8(e). This metric is similar to the visible depth
evaluation described above except it appropriately adjusts the ground truth to focus
only on layout (i.e., walls/floors/ceiling).

We observe that indeed each representation excels at the task they were specifically
trained for. However our representation consistently shows much better generalization
to the other tasks compared to other the other representations. Additionally, even
though the visible layout can, in principle, be equally well described using a depth
image, our representation works better at predicting visible layout as compared to
the full image depth prediction baseline, showing the merit of factored modeling of
scene composition.

6.3.6 Results on NYU

We also tested our models trained on the SUNCG dataset on images from the
NYU dataset (Note we only use the RGB image to obtain these results). Figure 6.9
visualizes the output of our models on NYU Test set images. We obtain these
visualizations by running our model with 2D bounding box proposals from [4].
Despite being trained on synthetic data, we are able to obtain a good interpretation
of the scene.

6.4. DISCUSSION 95

6.4 Discussion
We argue that the representation that one should infer to understand the structure

of a 3D scene should be factored in terms of a small number of components: a scene
layout, and individual objects, each in turn explained in terms of its shape and pose.
We presented a learning based system capable of inferring such a 3D representation
from a single image. However, a number of challenges remain. In particular, we
do not reason about the physics and support relationships of the predicted scenes.
Additionally, we rely on synthetically rendered data with associated ground-truth for
training which limits the performance on real data. However, we hope that parallel
efforts in the vision community on more realistic renderings [103], leveraging weaker
supervision [168], or scaling up real datasets [27] will help bridge this gap.

96

Chapter 7

Conclusion

In this thesis, we addressed the task of single-view 3D reconstruction. In particular,
in Part I we developed learning based techniques that leveraged the notion of
geometric consistency to enable 3D inference without requiring explicit 3D supervision,
and then in Part II proposed frameworks to infer compositional representations.

As an initial effort to learn 3D structure via geometric consistency, Chapter 2
presented a method to learn deformable 3D models, and leverage these for inference.
In Chapter 3, we proposed a differentiable ray consistency formulation that enabled
us to learn a more expressive CNN based prediction model, while relying on multi-
view training data. In Chapter 4, we then introduced a CNN based framework to
learn prediction of textured 3D meshes using an annotated image collection. These
highlight the feasibility of our proposed learning methodology – that it is possible to
learn to predict 3D by enforcing consistency with the 2D supervisory data. Towards
inferring compositional representations, we presented in Chapter 5 an unsupervised
approach to discover the consistent compositional structure across instances of a
category. In Chapter 6, we then presented an approach to similarly represent a
3D scene in terms of a small set of factors, and demonstrated the benefits of this
representation.

While these are encouraging steps towards the goal of scalable, robust and
accurate 3D reconstruction, a number of challenges still remain. We discuss some of
these below and highlight interesting future directions.

Enforcing Geometric Consistency during Inference. In Part I, we relied on
geometric consistency to provide supervisory signal during training. However, during
inference, our learned CNN based prediction models are used to simply perform
feedforward prediction to yield the output reconstruction. Therefore, the predicted
3D reconstructions as not constrained (or even encouraged) to be photometrically or
geometrically consistent with the input image. Some recent approaches [155] propose

97

mechanisms to rectify this in certain scenarios, but incorporating this consistency
across different representations and 2D observations remains a challenge.

Physically Consistent Scene Representation. We proposed in Part II a mech-
anism to infer compositional 3D representations. While this approach allowed us to
predict the independent entities that comprised the scene, we did not ensure that
the resulting composed structure is physically plausible. As an example, two inferred
chairs might be intersecting each other, or a laptop floating above a table. It would
be an interesting direction to incorporate such physical constraints in the inferred
structure, perhaps by additionally modeling relationships across entities.

Learning Multi-view Reconstruction. The goal of of this thesis was to re-
construct objects and scenes given a single input image. However, there are oten
scenarios where a small number of additional views might be available for inference.
Such a setup is a natural generalization of the single-view reconstruction task, and
would be ideal to explore approaches that integrate learning based inference with
classical geometric reconstruction methods. Some recent methods [77] propose novel
solutions to utilize the information across multiple views in a geometrically motivated
manner, but require known camera poses for inference, and the more general setting
remains a largely unaddressed problem.

Learning 3D Reconstruction by and for Interaction. A motivation for several
techniques and setups in the thesis was to enable learning 3D reconstruction in an
ecologically plausible manner. While the proposed solutions allowed us to learn using
previously challenging supervision setups, we primarily relied on supervisory data
collected via internet images. It would be interesting to apply these ideas to settings
where the supervisory data comes from an actual robotic agent actively exploring
and interacting with the world. Further, the ability to infer and reason with these
structured 3D representations might also be beneficial for such agents in their goals
e.g. learning to grasp [99].

98

Bibliography

[1] https://www.ebay.com/.
[2] E. H. Adelson and A. P. Pentland. The perception of shading and reflectance.

Perception as Bayesian inference, 1996.
[3] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis.

SCAPE: Shape Completion and Animation of PEople. SIGGRAPH, 2005.
[4] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale

combinatorial grouping. In CVPR, 2014.
[5] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. Mesh: Measuring errors between

surfaces using the hausdorff distance. In ICME, 2002.
[6] M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D

chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD
models. In CVPR, 2014.

[7] A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2D-3D alignment via
surface normal prediction. In CVPR, 2016.

[8] J. T. Barron and J. Malik. Color constancy, intrinsic images, and shape
estimation. ECCV, 2012.

[9] J. T. Barron and J. Malik. Shape, illumination, and reflectance from shading.
PAMI, 2015.

[10] H. Barrow and J. Tenenbaum. Interpreting line drawings as three-dimensional
surfaces. Artificial Intelligence, 1981.

[11] A. Bartoli, V. Gay-Bellile, U. Castellani, J. Peyras, S. Olsen, and P. Sayd.
Coarse-to-fine low-rank structure-from-motion. In CVPR, 2008.

[12] I. Biederman. Recognition-by-components: a theory of human image under-
standing. Psychological review, 1987.

[13] T. O. Binford. Visual perception by computer. In IEEE Conference on Systems
and Control, 1971.

BIBLIOGRAPHY 99

[14] V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In
SIGGRAPH, 1999.

[15] V. Blanz and T. Vetter. Face recognition based on fitting a 3d morphable
model. TPAMI, 2003.

[16] L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually
consistent poselet activations. In ECCV, 2010.

[17] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3d shape
from image streams. In CVPR, 2000.

[18] A. Broadhurst, T. W. Drummond, and R. Cipolla. A probabilistic framework
for space carving. In ICCV, 2001.

[19] T. J. Cashman and A. W. Fitzgibbon. What shape are dolphins? building 3d
morphable models from 2d images. TPAMI, 2013.

[20] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An
Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], 2015.

[21] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. TPAMI, 2017.

[22] Y. Chen, T.-K. Kim, and R. Cipolla. Inferring 3d shapes and deformations
from single views. In ECCV, 2010.

[23] B. Cheung, J. A. Livezey, A. K. Bansal, and B. A. Olshausen. Discovering
hidden factors of variation in deep networks. arXiv preprint arXiv:1412.6583,
2014.

[24] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-r2n2: A unified
approach for single and multi-view 3d object reconstruction. In ECCV, 2016.

[25] T. F. Cootes and C. J. Taylor. Active shape modelsâĂŤâĂŸsmart snakesâĂŹ.
In BMVC, 1992.

[26] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, 2016.

[27] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner.
ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In CVPR,
2017.

[28] J. De Bonet and P. Viola. Roxels: Responsibility weighted 3d volume recon-
struction. In ICCV, 1999.

BIBLIOGRAPHY 100

[29] A. Dürer. Four Books on Human Proportion. Formschneyder, 1528.
[30] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels

with a common multi-scale convolutional architecture. In ICCV, 2015.
[31] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single

image using a multi-scale deep network. In NIPS, 2014.
[32] S. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, G. E. Hinton, et al.

Attend, infer, repeat: Fast scene understanding with generative models. In
NIPS, 2016.

[33] C. H. Esteban and F. Schmitt. Silhouette and stereo fusion for 3d object
modeling. CVIU, 2004.

[34] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010.

[35] A. Faktor and M. Irani. Co-segmentation by composition. In ICCV, 2013.
[36] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object

reconstruction from a single image. In CVPR, 2017.
[37] S. Fidler, S. Dickinson, and R. Urtasun. 3D object detection and viewpoint

estimation with a deformable 3D cuboid model. In NIPS, 2012.
[38] N. Fish, M. Averkiou, O. van Kaick, O. Sorkine-Hornung, D. Cohen-Or, and

N. J. Mitra. Meta-representation of shape families. Transactions on Graphics
(SIGGRAPH), 2014.

[39] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single
image understanding. In ICCV, 2013.

[40] D. F. Fouhey, W. Hussain, A. Gupta, and M. Hebert. Single image 3D without
a single 3D image. In ICCV, 2015.

[41] R. Garg and I. Reid. Unsupervised cnn for single view depth estimation:
Geometry to the rescue. In ECCV, 2016.

[42] R. Garg, A. Roussos, and L. Agapito. Dense variational reconstruction of
non-rigid surfaces from monocular video. In CVPR, 2013.

[43] P. Gargallo, P. Sturm, and S. Pujades. An occupancy–depth generative model
of multi-view images. In ACCV, 2007.

[44] J. J. Gibson. The ecological approach to visual perception. 1979.
[45] R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable

and generative vector representation for objects. In ECCV, 2016.
[46] R. Girshick. Fast R-CNN. In ICCV, 2015.

BIBLIOGRAPHY 101

[47] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In CVPR, 2014.

[48] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In CVPR, 2017.

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[50] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra. Draw: A recurrent neural
network for image generation. arXiv preprint arXiv:1502.04623, 2015.

[51] A. Gupta, A. A. Efros, and M. Hebert. Blocks world revisited: Image under-
standing using qualitative geometry and mechanics. In ECCV, 2010.

[52] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik. Aligning 3D models to
RGB-D images of cluttered scenes. In CVPR, 2015.

[53] S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation for supervision
transfer. In CVPR, June 2016.

[54] A. Guzman. Computer recognition of three-dimensional objects in a visual
scene. PhD thesis, MIT AI-Lab., 1968.

[55] J. Gwak, C. B. Choy, A. Garg, M. Chandraker, and S. Savarese. Weakly
supervised 3d reconstruction with adversarial constraint. In 3DV, 2017.

[56] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface prediction for 3d object
reconstruction. In 3DV, 2017.

[57] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik. Semantic
contours from inverse detectors. In ICCV, 2011.

[58] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection
and segmentation. In ECCV. Springer, 2014.

[59] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object
segmentation and fine-grained localization. In CVPR, 2015.

[60] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, 2017.
[61] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In CVPR, 2016.
[62] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered

rooms. In ICCV, 2009.
[63] M. Hejrati and D. Ramanan. Analyzing 3d objects in cluttered images. In

NIPS, 2012.
[64] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

BIBLIOGRAPHY 102

[65] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo pop-up. ACM
Transactions on Graphics (TOG), 2005.

[66] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context from a single image.
In CVPR, 2005.

[67] B. Horn. Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view. PhD thesis, Massachusetts Inst. of Technology,
1970.

[68] J. Huang and K. Murphy. Efficient inference in occlusion-aware generative
models of images. arXiv preprint arXiv:1511.06362, 2015.

[69] Q. Huang, V. Koltun, and L. Guibas. Joint shape segmentation with linear
programming. In ACM Transactions on Graphics (TOG). ACM, 2011.

[70] Q. Huang, H. Wang, and V. Koltun. Single-view reconstruction via joint
analysis of image and shape collections. ACM Transactions on Graphics
(TOG), 2015.

[71] J. F. Hughes and J. D. Foley. Computer graphics: principles and practice.
Pearson Education, 2014.

[72] P. Isola and C. Liu. Scene collaging: Analysis and synthesis of natural images
with semantic layers. In ICCV, 2013.

[73] H. Izadinia, Q. Shan, and S. M. Seitz. IM2CAD. In CVPR, 2017.
[74] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A probabilistic model

for component-based shape synthesis. ACM Transactions on Graphics (TOG),
31(4):55, 2012.

[75] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-to-end recovery
of human shape and pose. In CVPR, 2018.

[76] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learning category-specific
mesh reconstruction from image collections. arXiv preprint arXiv:1803.07549,
2018.

[77] A. Kar, C. Häne, and J. Malik. Learning a multi-view stereo machine. In
NIPS, 2017.

[78] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-specific object recon-
struction from a single image. In CVPR, 2015.

[79] K. Karsch, Z. Liao, J. Rock, J. T. Barron, and D. Hoiem. Boundary cues for
3d object shape recovery. In CVPR, 2013.

[80] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In CVPR, 2018.

BIBLIOGRAPHY 103

[81] S. Khamis, J. Taylor, J. Shotton, C. Keskin, S. Izadi, and A. Fitzgibbon.
Learning an efficient model of hand shape variation from depth images. In
CVPR, 2015.

[82] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[83] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[84] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

[85] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional
inverse graphics network. In Advances in Neural Information Processing
Systems, pages 2539–2547, 2015.

[86] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg. Joint semantic segmenta-
tion and 3d reconstruction from monocular video. In ECCV, 2014.

[87] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy, and S. Savarese.
Deformnet: Free-form deformation network for 3d shape reconstruction from a
single image. arXiv preprint arXiv:1708.04672, 2017.

[88] K. N. Kutulakos and S. M. Seitz. A theory of shape by space carving. IJCV,
2000.

[89] S. Laine, T. Karras, T. Aila, A. Herva, S. Saito, R. Yu, H. Li, and J. Lehtinen.
Production-level facial performance capture using deep convolutional neural
networks. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, page 10. ACM, 2017.

[90] A. Laurentini. The visual hull concept for silhouette-based image understanding.
TPAMI, 1994.

[91] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of
rooms using volumetric reasoning about objects and surfaces. In NIPS, 2010.

[92] K. Li, B. Hariharan, and J. Malik. Iterative instance segmentation. In CVPR,
2016.

[93] Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J. Guibas. Joint
embeddings of shapes and images via cnn image purification. TOG, 2015.

[94] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing ikea objects: Fine pose
estimation. In ICCV, 2013.

[95] S. Liu and D. B. Cooper. Ray markov random fields for image-based 3d
modeling: model and efficient inference. In CVPR, 2010.

BIBLIOGRAPHY 104

[96] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black. SMPL: A
skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH
Asia), 2015.

[97] D. G. Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial intelligence, 1987.

[98] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 2008.
[99] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,

K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg. Dex-net 1.0: A cloud-
based network of 3d objects for robust grasp planning using a multi-armed
bandit model with correlated rewards. In ICRA, 2016.

[100] D. Marr. Vision: A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information. Henry Holt and Co., Inc.,
1982.

[101] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-
based visual hulls. In SIGGRAPH, 2000.

[102] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox. A large dataset to train convolutional networks for disparity, optical
flow, and scene flow estimation. In CVPR, 2016.

[103] J. McCormac, A. Handa, S. Leutenegger, and A. J.Davison. Scenenet RGB-
D: Can 5m synthetic images beat generic imagenet pre-training on indoor
segmentation? In ICCV, 2017.

[104] C. Nandakumar, A. Torralba, and J. Malik. How little do we need for 3-d
shape perception? Perception-London, 2011.

[105] R. Nevatia and T. O. Binford. Description and recognition of curved objects.
AI, 1977.

[106] G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and K. Daniilidis. 6-dof object
pose from semantic keypoints. In ICRA, 2017.

[107] B. Pepik, M. Stark, P. Gehler, T. Ritschel, and B. Schiele. 3d object class
detection in the wild. In Workshop on 3D from a Single Image (3DSI) (in
conjunction with CVPR’15), 2015.

[108] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their
conjugates. Experimental mathematics, 2(1):15–36, 1993.

[109] M. Prasad, A. Fitzgibbon, A. Zisserman, and L. Van Gool. Finding nemo:
Deformable object class modelling using curve matching. In CVPR, 2010.

BIBLIOGRAPHY 105

[110] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[111] D. J. Rezende, S. A. Eslami, S. Mohamed, P. Battaglia, M. Jaderberg, and
N. Heess. Unsupervised learning of 3d structure from images. In NIPS, 2016.

[112] L. G. Roberts. Machine Perception of Three-Dimensional Solids. PhD thesis,
MIT, 1963.

[113] M. Rubinstein, A. Joulin, J. Kopf, and C. Liu. Unsupervised joint object
discovery and segmentation in internet images. In CVPR, 2013.

[114] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015.

[115] B. Russell, A. Efros, J. Sivic, B. Freeman, and A. Zisserman. Segmenting
scenes by matching image composites. In NIPS, 2009.

[116] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using
multiple segmentations to discover objects and their extent in image collections.
In CVPR, 2006.

[117] Y. Sahillioğlu and Y. Yemez. A surface deformation framework for 3d shape
recovery. In International Workshop on Multimedia Content Representation,
Classification and Security, 2006.

[118] S. Saito, L. Wei, L. Hu, K. Nagano, and H. Li. Photorealistic facial texture
inference using deep neural networks. In CVPR, 2017.

[119] S. Satkin, M. Rashid, J. Lin, and M. Hebert. 3dnn: 3d nearest neighbor. IJCV,
2014.

[120] N. Savinov, C. Hane, L. Ladicky, and M. Pollefeys. Semantic 3d reconstruction
with continuous regularization and ray potentials using a visibility consistency
constraint. In CVPR, 2016.

[121] N. Savinov, C. Häne, M. Pollefeys, et al. Discrete optimization of ray potentials
for semantic 3d reconstruction. In CVPR, 2015.

[122] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3D scene structure from
a single still image. TPAMI, 2009.

[123] A. G. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box In the Box: Joint
3D Layout and Object Reasoning from Single Images. In ICCV, 2013.

[124] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for
semantic segmentation. IEEE transactions on pattern analysis and machine
intelligence, 2016.

BIBLIOGRAPHY 106

[125] A. Shrivastava and A. Gupta. Building part-based object detectors via 3D
geometry. In ICCV, 2013.

[126] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or. Unsupervised
co-segmentation of a set of shapes via descriptor-space spectral clustering.
ACM Trans. on Graphics (Proc. SIGGRAPH Asia), 2011.

[127] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and
support inference from RGBD images. In ECCV, 2012.

[128] P. Sinha and E. Adelson. Recovering reflectance and illumination in a world of
painted polyhedra. In ICCV, 1993.

[129] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via
lifted structured feature embedding. In CVPR, 2016.

[130] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. Semantic
scene completion from a single depth image. In CVPR, 2017.

[131] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing. ACM, 2004.

[132] H. Su, Q. Huang, N. J. Mitra, Y. Li, and L. Guibas. Estimating image depth
using shape collections. ACM Transactions on Graphics (TOG), 33, 2014.

[133] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn: Viewpoint estimation
in images using cnns trained with rendered 3d model views. In ICCV, 2015.

[134] M. Sung, V. G. Kim, R. Angst, and L. Guibas. Data-driven structural priors
for shape completion. ACM Transactions on Graphics (TOG), 2015.

[135] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks:
Efficient convolutional architectures for high-resolution 3d outputs. In ICCV,
2017.

[136] J. Taylor, R. Stebbing, V. Ramakrishna, C. Keskin, J. Shotton, S. Izadi,
A. Hertzmann, and A. Fitzgibbon. User-specific hand modeling from monocular
depth sequences. In CVPR, 2014.

[137] D. Thompson. On Growth and Form. Cambridge Univ. Press, 1917.
[138] L. Torresani, A. Hertzmann, and C. Bregler. Non-rigid structure-from-motion:

Estimating shape and motion with hierarchical priors. TPAMI, 2008.
[139] S. Tulsiani, A. A. Efros, and J. Malik. Multi-view consistency as supervisory

signal for learning shape and pose prediction. In CVPR, 2018.
[140] S. Tulsiani, S. Gupta, D. Fouhey, A. A. Efros, and J. Malik. Factoring shape,

pose, and layout from the 2d image of a 3d scene. In CVPR, 2018.

BIBLIOGRAPHY 107

[141] S. Tulsiani, A. Kar, J. Carreira, and J. Malik. Learning category-specific
deformable 3d models for object reconstruction. TPAMI, 2017.

[142] S. Tulsiani and J. Malik. Viewpoints and keypoints. In CVPR, 2015.
[143] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik. Learning shape

abstractions by assembling volumetric primitives. In CVPR, 2017.
[144] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik. Multi-view supervision for

single-view reconstruction via differentiable ray consistency. In CVPR, 2017.
[145] N. R. Twarog, M. F. Tappen, and E. H. Adelson. Playing with puffball: simple

scale-invariant inflation for use in vision and graphics. In ACM Symposium on
Applied Perception, 2012.

[146] A. O. Ulusoy, A. Geiger, and M. J. Black. Towards probabilistic volumetric
reconstruction using ray potentials. In 3DV, 2015.

[147] A. van den Hengel, C. Russell, A. Dick, J. Bastian, D. Pooley, L. Fleming, and
L. Agapito. Part-based modelling of compound scenes from images. In CVPR,
2015.

[148] S. Vicente, J. Carreira, L. Agapito, and J. Batista. Reconstructing pascal voc.
In CVPR, 2014.

[149] S. Vicente and L. de Agapito. Balloon shapes: Reconstructing and deforming
objects with volume from images. In 3DV, 2013.

[150] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California
Institute of Technology, 2011.

[151] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface
normal estimation. In CVPR, 2015.

[152] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or, and B. Chen. Active
co-analysis of a set of shapes. ACM Transactions on Graphics (TOG), 2012.

[153] R. J. Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 1992.

[154] O. J. Woodford and G. Vogiatzis. A generative model for online depth fusion.
In ECCV, 2012.

[155] J. Wu, Y. Wang, T. Xue, X. Sun, W. T. Freeman, and J. B. Tenenbaum.
MarrNet: 3D Shape Reconstruction via 2.5D Sketches. In NIPS, 2017.

[156] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T.
Freeman. Single image 3d interpreter network. In ECCV, 2016.

BIBLIOGRAPHY 108

[157] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. Learning a proba-
bilistic latent space of object shapes via 3D generative-adversarial modeling.
In NIPS, 2016.

[158] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d
object detection in the wild. In WACV, 2014.

[159] J. Xiao, B. Russell, and A. Torralba. Localizing 3D cuboids in single-view
images. In Advances in neural information processing systems, pages 746–754,
2012.

[160] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective transformer nets:
Learning single-view 3d object reconstruction without 3d supervision. In NIPS,
2016.

[161] Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-
of-parts. In CVPR, 2011.

[162] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
In ICLR, 2016.

[163] M. E. Yumer and L. B. Kara. Co-abstraction of shape collections. ACM
Transactions on Graphics (TOG), 2012.

[164] M. E. Yumer and L. B. Kara. Co-constrained handles for deformation in shape
collections. ACM Transactions on Graphics (TOG), 2014.

[165] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep networks as a perceptual metric. In CVPR, 2018.

[166] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin, and T. Funkhouser.
Physically-based rendering for indoor scene understanding using convolutional
neural networks. CVPR, 2017.

[167] Y. Zheng, D. Cohen-Or, M. Averkiou, and N. J. Mitra. Recurring part
arrangements in shape collections. Computer Graphics Forum (Eurographics
2014), 2014.

[168] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of
depth and ego-motion from video. In CVPR, 2017.

[169] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View synthesis by
appearance flow. In ECCV, 2016.

[170] R. Zhu, H. Kiani, C. Wang, and S. Lucey. Rethinking reprojection: Closing
the loop for pose-aware shape reconstruction from a single image. In ICCV,
2017.

[171] S. Zhu, L. Zhang, and B. Smith. Model evolution: An incremental approach
to non-rigid structure from motion. In CVPR, 2010.

BIBLIOGRAPHY 109

[172] M. Z. Zia, M. Stark, B. Schiele, and K. Schindler. Detailed 3D representations
for object recognition and modeling. IEEE transactions on pattern analysis
and machine intelligence, 35(11):2608–2623, 2013.

[173] C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges.
In ECCV, 2014.

[174] S. Zuffi, A. Kanazawa, D. Jacobs, and M. J. Black. 3d menagerie: Modeling
the 3d shape and pose of animals. In CVPR, 2017.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	I Learning via Geometric Consistency
	Category-Specific Deformable 3D Models
	Learning Deformable 3D Models
	Camera Estimation
	3D Basis Shape Model Learning

	Reconstruction in the Wild
	Category Specific Shape Inference
	Bottom-up Shape Refinement

	Experiments
	Quality of Learned 3D Models
	Sensitivity Analysis for Recognition based Reconstruction
	Fully Automatic Reconstruction

	Discussion

	Multi-view Supervised Single-view Reconstruction
	Background
	Formulation
	View Consistency as Ray Consistency
	Ray-tracing in a Probabilistic Occupancy Grid
	Event Cost Functions
	Ray-Consistency Loss
	Incorporating Additional Labels
	Pose-Differentiable Ray Consistency

	Learning Single-view Reconstruction
	Learning with Pose Supervision
	Learning without Pose Supervision

	Experiments
	Empirical Analysis on ShapeNet
	Object Reconstruction on PASCAL VOC
	3D Scene Reconstruction from Ego-motion
	Object Reconstruction from RGB Supervision
	ShapeNet Reconstruction without Pose Supervision
	Learning from Online Product Images

	Discussion

	Learning Mesh Reconstruction from Image Collections
	Approach
	Inferred 3D Representation
	Learning from an Image Collection
	Incorporating Texture Prediction

	Experiments
	Experimental Setup
	Qualitative Results
	Quantitative Evaluation
	Evaluation on Other Object Classes

	Discussion

	II Inferring Compositional 3D Representations
	Unsupervised Learning of Shape Abstractions
	Background
	Learning Object Assembly
	Primitive based Representation
	Loss Function for Assembled Shape
	Allowing Variable Number of Primitives

	Experiments
	Applications
	Unsupervised Parsing and Correspondence
	Interpretable Shape Similarity
	Image based Abstraction
	Shape Manipulation

	Discussion

	Factoring Shape, Pose and Layout
	Background
	Approach
	Layout
	Object Predictions
	Training to Predict A Full Scene

	Experiments
	Datasets
	Metrics
	Analyzing 3D Object Prediction
	Placing Objects in Scenes
	Comparing Scene Representations
	Results on NYU

	Discussion

	Conclusion
	Bibliography

