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Abstract: We introduce the Redundant Information Neural Estimator (RINE), a method that allows
efficient estimation for the component of information about a target variable that is common to a
set of sources, known as the “redundant information”. We show that existing definitions of the
redundant information can be recast in terms of an optimization over a family of functions. In
contrast to previous information decompositions, which can only be evaluated for discrete variables
over small alphabets, we show that optimizing over functions enables the approximation of the
redundant information for high-dimensional and continuous predictors. We demonstrate this on
high-dimensional image classification and motor-neuroscience tasks.

Keywords: redundant information; usable information; Partial Information Decomposition

1. Introduction

Given a set of sources X1, . . . , Xn and a target variable Y, we study how information
about the target Y is distributed among the sources: different sources may contain informa-
tion that no other source has (“unique information”), contain information that is common
to other sources (“redundant information”), or contain complementary information that
is only accessible when considered jointly with other sources (“synergistic information”).
Such a decomposition of the information across the sources can inform the design of
multi-sensor systems (e.g., to reduce redundancy between sensors), or support research
in neuroscience, where neural activity is recorded from two areas during a behavior. For
example, a detailed understanding of the role and relationship between brain areas dur-
ing a task requires understanding how much unique information about the behavior is
provided by each area that is not available to the other area, how much information is
redundant (or common) to both areas, and how much additional information is present
when considering the brain areas jointly (i.e., information about the behavior that is not
available when considering each area independently).

Standard information–theoretic quantities conflate these notions of information.
Williams and Beer [1] therefore proposed the Partial Information Decomposition (PID),
which provides a principled framework for decomposing how the information about a
target variable is distributed among a set of sources. For example, for two sources X1 and
X2, the PID is given by

I(X1, X2; Y) = UI(X1; Y) + SI + UI(X2; Y) + I∩, (1)

where UI represents the “unique” information, SI the “synergistic” information, and
I∩ represents the redundant information, shown in Figure A1. We provide details in
Appendix C.1, describing how standard information–theoretic quantities, such as the mu-
tual information I(X1; Y) and conditional mutual information I(X2; Y|X1), are decomposed
in terms of the PID constituents.
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Despite efforts and proposals for defining the constituents [2–7], existing definitions in-
volve difficult optimization problems and remain only feasible in low-dimensional spaces,
limiting their practical applications. One way to sidestep these difficult optimization prob-
lems is to assume a joint Gaussian distribution over the observations [8], and this approach
has been applied to real-world problems [9]. To enable optimization for high-dimensional
problems with arbitrary distributions, we reformulate the redundant information through
a variational optimization problem over a restricted family of functions. We show that our
formulation generalizes existing notions of redundant information. Additionally, we show
that it correctly computes the redundant information on canonical low-dimensional exam-
ples and demonstrate that it can be used to compute the redundant information between
different sources in a higher-dimensional image classification and motor-neuroscience task.
Importantly, RINE is computed using samples from an underlying distribution, which
does not need to be known.

Through RINE, we introduce a similarity metric between sources which is task depen-
dent, applicable to continuous or discrete sources, invariant to reparametrizations, and
invariant to addition of extraneous or noisy data.

2. Related Work

Central to the PID is the notion of redundant information I∩, and much of the work
surrounding the PID has focused on specifying the desirable properties that a notion of
redundancy should follow. Although there has been some disagreement as to which properties
a notion of redundancy should follow [1,4,7], the following properties are widely accepted:

• Symmetry: I∩(X1; . . . ; Xn→Y) is invariant to the permutation of X1, . . . , Xn.
• Self-redundancy: I∩(X1→Y) = I(X1; Y).
• Monotonicity: I∩(X1; . . . ; Xn→Y) ≤ I∩(X1; . . . ; Xn−1→Y).

Several notions of redundancy have been proposed that satisfy these requirements,
although we emphasize that these notions were generally not defined with efficient com-
putation in mind.

Griffith et al. [2] proposed a redundancy measure I∧∩ , defined through the optimiza-
tion problem:

I∧∩ (X1; . . . ; Xn→Y) := max
Q

I(Y; Q) s.t. ∀i ∃ fi Q = fi(Xi) (2)

where Q is a random variable and fi is a deterministic function. The redundant informa-
tion is thus defined as the maximum information that a random variable Q, which is a
deterministic function of all Xi, has about Y. This means that Q captures a component of
information common to the sources Xi.

An alternative notion of redundant information IGH
∩ [5,10] with a less restrictive

constraint is defined in terms of the following optimization problem:

IGH
∩ (X1; . . . ; Xn→Y) := max

Q
I(Y; Q) s.t. ∀i I(Y; Q|Xi) = 0. (3)

IGH
∩ reflects the maximum information between Y and a random variable Q such that

Y− Xi − Q forms a Markov chain for all Xi, relaxing the constraint that Q needs to be a
deterministic function of Xi.

We show in Section 3 that our definition of redundant information is a generalization
of I∧∩ and can be extended to compute IGH

∩ .
The main hurdle in applying these notions of information to practical problems is

the difficulty of optimizing over all possible random variables Q in a high-dimensional
setting. Moreover, even if that was possible, such unconstrained optimization could recover
degenerate forms of redundant information that may not be readily “accessible” to any
realistic decoder. In the next section we address both concerns by moving from the notion
of Shannon Information to the more general notion of Usable Information [11–13].
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Usable Information in a Random Variable

An orthogonal line of recent work has looked at defining and computing the “usable”
information Iu(X; Y) that a random variable X has about Y [11–13]. This aims to capture the
fact that not all information contained in a signal can be used for inference by a restricted
family of functions. Given a family of decoders V ⊆ U = { f : X → P(Y)}, the usable
information that X has about Y is defined as

Iu(X; Y) = H(Y)− HV (Y|X), (4)

where HV (Y|X) is defined as

HV (Y|X) = inf
f∈V

Ex,y∼X,Y[− log f (y|x)]. (5)

Thus, the “usable” information differs from Shannon’s mutual information in that
it involves learning a decoder function f in a model family V , which is a subset of all
possible decoders U . When the “usable” information is defined such that the model family
corresponds to the universal model family, the definition recovers Shannon’s mutual in-
formation, I(X; Y) = H(Y)− HU (Y|X). However, in many cases, the “usable information”
is closer to our intuitive notion of information, reflecting the amount of information that
a learned decoder, as opposed to the optimal decoder, can extract under computational
constraints [11]. We extend these ideas to compute the “usable redundant information” in
the next section.

3. Redundant Information Neural Estimator

We introduce the Redundant Information Neural Estimator (RINE), a method that
enables the approximation of the redundant information that high-dimensional sources
contain about a target variable. In addition to being central for the PID, the redundant
information also has direct applicability in that it provides a task-dependent similarity
metric that is robust to noise and extraneous input, as we later show in Section 4.4.

Our approximation leverages the insight that existing definitions of redundancy can
be recast in terms of a more general optimization over a family of functions, similar to
how the “usable information” was defined above. To this end, given two sources, we
define a notion of redundancy, RINE, through the following optimization over models
f1, f2 ∈ V ⊆ U = { f : X → P(Y)}.

LV∩(X1; X2→Y) := min
f1, f2∈V

1
2
[
H f1(Y|X1) + H f2(Y|X2)

]
(6)

s.t. D( f1, f2) = 0 (7)

IV∩ (X1; X2→Y) :=H(Y)− LV∩ , (8)

where H fi
(Y|Xi) denotes the cross-entropy when predicting Y using the decoder fi(y|x)

and D( f1, f2) = Ex1,x2

[
‖ f1(y|x1) − f2(y|x2)}‖1

]
denotes the expected difference of the

predictions of the two decoders. Importantly, the model family V can be parametrized by
neural networks, enabling optimization over the two model families with backpropagation.
In general, one can optimize over different model families V1 and V2, but for notational
simplicity we assume we optimize over the same model family V in the paper. Note that
here we constrained the predictions directly, as opposed to using an intermediate random
variable Q. In contrast, direct optimization of Equations (2) and (3) is only feasible for
discrete sources with small alphabets [7]. Our formulation can be naturally extended
to n sources (Appendix C.8) and other divergence measures between decoders. Since
our formulation involves learning decoders that map the sources to target predictions,
the learned decoder can safely ignore task-irrelevant variability, such as noise, as we
demonstrate in Section 4.4.
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To solve the constrained minimization problem in Equations (6) and (7), we can
minimize the corresponding Lagrangian:

LV∩(X1; X2→Y, β) := min
f1, f2∈V

1
2
[
H f1(Y|X1) + H f2(Y|X2)

]
+ βD( f1, f2). (9)

When β→ ∞ the solution to the Lagrangian is such that D( f1, f2)→ 0, thus satisfying
the constraints of the original problem. In practice, when optimizing this problem with
deep networks, we found it useful to start the optimization with a low value of β, and
then increase it slowly during training to some sufficiently high value (β = 50 in most
of our experiments). Note that while H(Y) does not appear in the Lagrangian, it is still
used to compute IV∩ , as in Equation (8). The Lagrangian is optimized, using samples from
an underlying distribution p(X1, X2, Y); importantly, the underlying distribution can be
continuous or discrete.

Our definition of V-redundant information (Equation (8)) is a generalization of I∧∩
(Section 2) as shown by the following proposition:

Proposition 1 (Appendix B). Let V = { f : X → P(Y)} consist of the family of deterministic
functions from X to distributions over Y . Then IV∩ = I∧∩ .

Our formulation involving a constrained optimization over a family of functions is
general: indeed, optimizing over stochastic functions or channels with an appropriate
constraint can recover IGH

∩ or IK
∩ [7] (described in the Appendix) but the computation in

practice becomes more difficult.
Our definition of redundant information is also invariant to reparametrization of the

sources as shown by the following proposition:

Proposition 2 (Appendix B). Let t : X → X be any invertible transformation in V . Then,

IV∩ (X1; X2→Y) = IV∩ (t1(X1); t2(X2)→Y). (10)

Note that when V = U , IV∩ is invariant to any invertible transformation. In practice,
when optimizing over a subset V ⊆ U , our definition is invariant to transformations that
preserve the usable information (this accounts for practical transformations, for example
the reflection or rotation of images). As an example of transformations that lie in V , consider
the case in which V is a set of linear decoders. This model family is closed under any linear
transformation t(X) applied to the source, since the composition of linear functions is still
a linear function.

As an additional example, the family of fully connected networks is closed to permu-
tations of the pixels of an image since there exists a corresponding network f ∈ V that
would behave the same on the transformed image. The family of convolutional networks,
for a given architecture on the other hand, is not closed under arbitrary transformations of
the pixels, but it is closed, e.g., under rotations/flips of the image.

In contrast, complex transformations such as encryption or decryption (which preserve
Shannon’s mutual information) can decrease or increase respectively the usable information
content with respect to the model family V . Arguably, such complex transformations do
modify the “information content” or the “usable information” (in this case measured with
respect to V) even though they do not affect Shannon’s mutual information (which assumes
an optimal decoder in U that may not be in V).

Implementation Details

In our experiments, we optimize over a model family V of deep neural networks,
using gradient descent. In general, the model family to optimize over should be selected
such that it is not so complicated that it overfits to spurious features of the finite training
set, but has high enough capacity to learn the mapping from source to target.
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We parametrize the distribution fi(y|x) in Equation (9), using a deep neural network.
In particular, in the case that y is discrete (which is the case in all our experiments),
the distribution fi(y|x) = softmax(hwi (x)) is parametrized as the softmax of the output
of a deep network with weights wi. In this case, the distance D( f1, f2) can be readily
computed as the average L1 distance between the softmax outputs of the two networks
hw1(x1) and hw2(x2) for different inputs x1 and x2. If the task label y is continuous, for
example in a regression problem, one can parametrize fi(y|x) = N (hwi (x), σ2 I) using a
Normal distribution whose means is the output of a DNN. We optimize over the weights
parametrizing all fi(y|x) jointly, and we show a schematic of our architecture in Figure 1.

Figure 1. A schematic of our architecture for two sources X1 and X2. Note that the two networks do
not share weights. The dashed lines indicate that the predictions are constrained to be similar.

Once we parametrize f1 and f2, we need to optimize the weights in order to minimize
the Lagrangian in Equation (9). We do so using Adam [14] or stochastic gradient descent,
depending on the experiment. For images we optimize over ResNet-18’s [15], and for other
tasks we optimize over fully-connected networks. The hyperparameter β needs to be high
enough to ensure that the constraint is approximately satisfied. However, we found that
starting the optimization with a very high value for β can destabilize the training and make
the network converge to a trivial solution, where it outputs a constant function (which
trivially satisfies the constraint). Instead, we use a reverse-annealing scheme, where we
start with a low beta and then slowly increase it during training up to the designated value
(Appendix C.3). A similar strategy is also used (albeit in a different context) in optimizing
β-VAEs [16].

4. Results

We apply our method to estimate the redundant information on canonical examples
that were previously used to study the PID, and then demonstrate the ability to compute
the redundant information for problems where the predictors are high dimensional.

4.1. Canonical Examples

We first describe the results of our method on standard canonical examples that have
been previously used to study the PID. They are particularly appealing because for these
examples, it is possible to ascertain ground truth values for the decomposition. Addi-
tionally, the predictors are low dimensional and have been previously studied, allowing
us to compare our variational approximation. We describe the tasks, the values of the
sources X1, X2, and the target Y for in Appendix A. Briefly, in the UNQ task, each in-
put X1 and X2 contributes 1 bit of unique information about the output, and there is no
redundant information. In the AND task, the redundant information should be in the
interval [0, 0.311] depending on the stringency of the notion of redundancy used [5]. When
using deterministic decoders, as we do, we expect the redundant information to be 0 bits
(not 0.311 bits). The RDNXOR task corresponds to a redundant XOR task, where there is
1 bit of redundant and 1 bit of synergistic information. Finally, the IMPERFECTRDN task
corresponds to the case where X1 fully specifies the output, with X2 having a small chance



Entropy 2021, 23, 922 6 of 17

of flipping one of the bits. Hence, there should be 0.99 bits of redundant information. As
we show in Table 1, RINE (optimizing with a deterministic family; Appendix C.4) recovers
the desired values on all these canonical examples.

Table 1. Comparison of redundancy measures on canonical examples. Quantities are in bits, and IV∩
denotes our approximation, shown in bold (for β = 15). The mean and standard deviation (inside
parentheses) are reported over 5 different initializations. I∧∩ denotes the redundant information
in Griffith et al. [2] and IGH

∩ denotes the redundant information in Griffith and Ho [5]. Note that
Kolchinsky [7] computed IGH

∩ for the AND operation and obtained 0.123 bits, as opposed to the 0 bits
reported in [5]. We carry out this computation for different values of β in Table A5.

True I∧∩ IGH
∩ IV∩ (β = 15)

UNQ [Table A1] 0 0 0 0.006 (0.016)
AND [Table A2] [0, 0.311] 0 0 0.007 (0.001)

RDNXOR [Table A3] 1 1 1 0.977 (9 × 10−4)
IMPERFECTRDN [Table A4] 0.99 0 0.99 0.984 (0.002)

4.2. Redundant Information in Different Views of High-Dimensional Images

To the best of our knowledge, computations of redundant information have been
limited to predictors that were one-dimensional [2,5–7]. We now show the ability to
compute the redundant information when the predictors are high dimensional. We focus
on the ability to predict discrete target classes, corresponding to a standard classification
setting. In particular, we analyze redundant information between left and right crops of an
image (to simulate a system with two stereo cameras), between different color channels of
an image (sensors with different frequency bands), and finally between the high and low
spatial frequency components of an image.

We analyze the redundant information between different views of the same CIFAR-10
image (Figure 2) by optimizing over a model family of ResNet-18’s [15], described in
Appendix C.6. In particular, we split the image in two crops, a left crop X1 containing
all pixels in the first w columns, and a right crop X2 containing all pixels in the last w
columns (Figure A3). Intuitively, we expect that as the width of the crop w increases, the
two views will overlap more, and the redundant information that they have about the task
will increase. Indeed, this is what we observe in Figure 2B.

A B C

Figure 2. (A) Examples of the different views of the image used in the experiment. (B) Redundant information of different
crops of CIFAR-10 images. Redundant information as a function of the width of each partition, for different values of β.
A width of 16 means that both X1 and X2 is a 16 × 32 image. The images begin from opposing sides, so in the case of the
16 × 32 image, there is no overlap between X1 and X2. As the amount of overlap increases, the redundant information
increases. The distance function used was the L1 norm of the difference. (C) Per class redundant information for different
channels, crops, and frequency decompositions, with β = 50 used in the optimization.

We next study the redundant information between different sensor modalities. In
particular, we decompose the images into different color channels (X1 = red channel and
X2 = blue channel), and frequencies (X1 = high-pass filter and X2 = low-pass filter). We
show example images in Figure A3. As expected, different color channels have highly
redundant information about the task (Figure 2C), except when discriminating classes
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(such as dogs and cats) where precise color information (coming from using jointly the
two channels synergistically) may prove useful. On the contrary, the high-frequency and
low-frequency spectrum of the image has a lower amount of redundant information, which
is also expected since the high and low-frequencies carry complementary information. We
also observe that the left and right crops of the image are more redundant for pictures of
cars than other classes. This is consistent with the fact that many images of cars in CIFAR-10
are symmetric frontal pictures of cars, and can easily be classified using just half of the
image. Overall, there is more redundant information between channels, then crops, then
frequencies. Together, these results show that we can compute the redundant information
of high dimensional sources, providing empirical validation for our approximation and a
scalable approach to apply in other domains.

4.3. Neural Data Decoding

We next applied our framework to analyze how information is encoded in motor-
related cortical regions of monkeys during the preparatory period of a center-out reaching
task [17]. Our goal was to confirm prior hypotheses known about motor cortical encoding
from the literature. In the center-out reaching task, there are 8 target locations and the
monkey needs to make a reach to one of the targets depending on a cue (Figure 3 Left).
Our data set consists of a population recording of spike trains from 97 neurons in the
dorsal premotor cortex (PMd) during trials that were 700 ms long. Each trial comprises
a 200 ms baseline period (before the reach target is turned on) and a 500 ms preparatory
(planning) period after the reach target is turned on but before the monkey can initiate a
reach. Both our training and testing data sets consisted of 91 reaches to each target. During
the 500 ms preparatory period, the monkey prepared to reach toward a target but did not
initiate the reach, enabling us to study the PMd neural representation of the planned reach
to the target.

Go cuePreparatory Period Reach
(500ms)

50ms 150ms 250ms 350ms

50ms

150ms

250ms

350ms

2.58 2.30 2.10 1.89

2.29 2.63 2.24 2.05

2.16 2.26 2.55 1.97

1.83 2.07 1.99 2.20

Beta 50

Figure 3. (Left): Schematic of delayed-center-out reaching task. There are 8 possible target locations (equally spaced), one of
which is shown. Neural data are recorded from the premotor cortex of a monkey, using 97 electrodes. (Right): Redundant
information between short disjoint time windows during the preparatory period, before a reach can be initiated. Even
before the reach is initiated, the target location can be decoded from the premotor cortex, using neural data averaged in
a short 100 ms time window. In the confusion matrix, adjacent time bins have higher redundant information about the
target location during the preparatory period, reflecting that the encoding of the target location is more similar in adjacent
time windows.

First, we used RINE to compute redundant information of the PMd activity over
time during the delay period. PMd activity is known to be relatively static during the
delay period, approaching a stable attractor state [18]. We therefore expect the redundant
information between adjacent time windows to be high. To quantify this, we evaluated
the redundant information between different time segments of length 100 ms, beginning
50 ms after the beginning of the preparatory period. For our feature vector, we counted the
total number of spikes for each neuron during the time segment. We note that even in the
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relatively short window of 100 ms, there is a significant amount of usable information about
the target in the recorded population of neurons, since the diagonal elements of Figure 3
are close to 3 bits. This is consistent with prior studies that show that small windows
of preparatory activity can be used to decode the target identity [17,19]. We also found
that adjacent time windows contain higher redundant information (closer to the 3 bits),
consistent with the idea that the encoding of the target between adjacent time windows are
more similar [20]. Together, these results show that RINE computes redundant information
values consistent with results reported in the literature showing that PMd representations
stably encode a planned target.

Second, we used RINE to study the redundant information between the neural activity
recorded on different days and between subjects. We analyzed data from another delayed-
center-out task with 8 targets and a variable 400–800 ms delay period, during which the
monkey could prepare to reach to the target, but was not allowed to initiate the reach
(Appendix C.7.2). We examined the redundant information about the target location in the
premotor cortex on different sessions and between the different monkeys, Monkey J and
Monkey R. When data came from different sessions, we generated a surrogate data set by
conditioning on the desired target reach, ensuring that X1 and X2 corresponded to the same
target Y. At an extreme, if we could only decode 4 of the 8 targets from Monkey J’s PMd
activity and the other 4 of the 8 targets from Monkey R’s PMd activity, there would be no
redundant information in the recorded PMd activity. Our results are shown in Figure 4 Left.
Since the PMd electrodes randomly sample tens of neurons out of hundreds of millions in
the motor cortex, we expect the redundant information between Monkey J and Monkey
R PMd recordings to be relatively low. We also expect the redundant information across
sessions for the same monkey to be higher since the electrodes are relatively stable across
days [21]. RINE calculations are consistent with these prior expectations. We found that
the redundant information is higher between sessions recorded from the same monkey
than between sessions recorded from different monkeys.

J1 J2 J3 J4 R1 R2 R3
Premotor

J1

J2

J3

J4

R1

R2

R3

Pr
em

ot
or

1.94 1.57 1.35 0.75 0.90 0.92 0.43

1.51 1.83 1.31 0.73 0.57 0.78 0.37

1.46 1.14 2.00 0.56 0.34 0.31 0.33

0.89 0.73 0.64 1.67 0.20 0.44 0.26

0.64 0.53 0.51 0.38 1.79 0.43 0.28

0.96 0.81 0.44 0.58 0.27 1.02 0.22

0.43 0.33 0.24 0.15 0.17 0.16 1.08

Beta 100

J1 J2 J3 J4 R1 R2 R3
Motor

J1

J2

J3

J4

R1

R2

R3

Pr
em

ot
or

0.28 0.31 0.15 0.16 -0.02 -0.03 -0.03

0.11 0.39 0.28 0.06 -0.04 -0.10 -0.06

0.08 0.11 0.20 0.07 -0.03 -0.15 -0.01

0.08 0.18 0.09 0.18 -0.05 -0.04 -0.01

0.07 0.06 0.07 0.06 -0.04 -0.08 -0.04

0.13 0.16 0.20 0.07 -0.04 -0.04 -0.06

0.10 0.14 0.09 -0.01 -0.02 -0.06 -0.03

Beta 100

J1 J2 J3 J4 R1 R2 R3
Motor

J1

J2

J3

J4

R1

R2

R3

M
ot

or

0.47 0.08 -0.03 -0.03 0.01 -0.02 -0.06

0.07 0.77 0.07 0.03 -0.02 -0.09 -0.01

0.04 0.14 0.95 0.01 -0.03 -0.08 -0.03

0.00 0.02 0.06 0.42 -0.05 -0.03 -0.06

-0.03 -0.04 -0.02 -0.03 -0.05 -0.08 -0.05

-0.05 -0.05 -0.08 -0.04 -0.09 -0.22 -0.08

-0.08 -0.06 -0.02 -0.04 -0.02 -0.08 -0.06

Beta 100

Figure 4. Neural decoding confusion matrix for different monkeys and different sessions (Left), motor and premotor cortex
(Middle) and between motor cortex across different monkeys and sessions (Right).

Finally, we quantified redundant information between PMd and the primary motor
cortex (M1) during the delay period (Figure 4 Middle). We expect redundant information
to be relatively low; whereas PMd strongly represents the motor plan through an attractor
state, activity in M1 is more strongly implicated in generating movements with dynamic
activity [22]. We find that the values of the redundant information between PMd and
M1 are low (0.4 to 0.7 bits), indicating that there is little redundant encoding of target
information during the delay period between premotor and motor cortex, even for the
same monkey. This is consistent with these two regions having distinct roles related to
the initiation and execution of movement [18]. One explanation for having low redundant
information between the motor and the premotor cortex during the preparatory period is
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that there is little encoding of the target location in the motor cortex during the preparatory
period, and that the motor cortex serves a role more related to producing appropriate
muscle activity. Similar to how we analyzed the redundant information between the
premotor cortex, we analyzed the redundant information between the motor cortex across
sessions (Figure 4 Right). We find that there is little information about the planned target in
M1 activity for both monkeys (far from 3 bits). Monkey R’s M1 information is particularly
low due to M1 electrodes recording from very few neurons. The lower values of redundant
information between motor cortices compared to premotor cortices implies that there is
less information in M1 than PMd about the target during the preparatory, consistent with
prior literature.

4.4. Advantage of Redundant Information as a Task-Related Similarity Measure

How does the notion of redundancy compare to other similarity metrics such as
I(X1; X2) or the cosine similarity between X1 and X2? Critically, both measures are agnostic
to a target Y, whereas the redundant information reflects the common information about
the target Y. Hence, the redundant information is unaffected by factors of variation
that are either pure noise or caused by target-independent factors, but these factors of
variation affect other similarity metrics. This may be particularly important in neuroscience,
since recordings from different areas or neurons contain significant noise or non-task
variability that can affect similarity metrics. We designed a synthetic task to showcase
these effects. The task is similar to the neural center-out reaching task, with 8 classes. The
task was designed so that each input X1 and X2 contains information about n classes, with
the minimum overlap between the classes specified: when each input specifies n = 4
classes, there are no classes that are encoded by both X1 and X2 (hence 0 bits of redundant
information), and with n = 5 classes it means that 2 common classes are encoded by the
two inputs.

In Figure 5 Left, we show that the redundant information increases with increasing
the overlap between the classes specified by the input, but the redundant information is
unaffected by adding units that are uncorrelated with the target, evidenced by approxi-
mately flat lines for each value of n. In contrast, the cosine similarity is affected by the
addition of such units (Figure 5 Right). Adding noisy inputs decreases the cosine similarity,
whereas the addition of shared non-task-related inputs increases the cosine similarity
(Appendix C.5). Thus, the important distinction of the redundant information in compar-
ison to direct similarity metrics applied on the inputs is that the redundant information
captures information in sources about a target Y, whereas direct similarity metrics applied
on the sources are agnostic to the target or task Y.
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Figure 5. Comparison of redundant information against cosine similarity metric. (Left) The redun-
dant information is invariant to the number of uncorrelated inputs, and we validate empirically
that our approximation of redundant information remains approximately constant with increasing
number of uncorrelated inputs. (Right) In contrast, alternative similarity metrics, such as the cosine
similarity, decreases with increasing number of random noisy units (dashed lines) or increases with
correlated non-task units, (solid line).
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5. Discussion

Central to the Partial Information Decomposition, the notion of redundant information
offers promise for characterizing the component of task-related information present across
a set of sources. Despite its appeal for providing a more fine-grained depiction of the infor-
mation content of multiple sources, it has proven difficult to compute in high-dimensions,
limiting widespread adoption. Here, we show that existing definitions of redundancy can
be recast in terms of optimization over a family of deterministic or stochastic functions. By
optimizing over a subset of these functions, we show empirically that we can recover the
redundant information on simple benchmark tasks and that we can indeed approximate
the redundant information for high-dimensional predictors.

Although our approach correctly computes the redundant information on canonical
examples as well as provides intuitive values on higher-dimensional examples when
ground-truth values are unavailable, with all optimization of overparametrized networks
on a finite training set, there is the possibility of overfitting to features in the training
set and having poor generalization on the test set. This is not just a problem for our
method, but is a general feature of many deep learning systems, and it is common to use
regularization to help mitigate this. PAC-style bounds on the test set risk that factor in
the finite nature of the training set exist [23], and it would be interesting to derive similar
bounds that could be applied on the distance term to bound the deviation on the test
set. Additionally, future work should investigate the properties arising from the choice of
distance term since other distance terms could have preferable optimization properties or
desirable information-theoretic interpretations, especially when it is non-zero. Last, the
choice of beta-schedule beginning with a small value and increasing during training was
important (Figure A2), and may need to be tuned to a particular task.

Our approach only provides a value summarizing how much of the information in a
set of sources is redundant, and it does not detail what aspects of the sources are redundant.
For instance, when computing the redundant information in the image classification tasks,
we optimized over a high-dimensional parameter space, learning a complicated nonlinear
function. Although we know the exact function mapping the input sources to prediction, it
is difficult to identify the “features” or aspects of the input that contributed most to the
prediction. Future work should try to extend our work to describe not only how much
information is redundant, but what parts of the sources are redundant.
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Appendix A. Canonical Tasks

The probabilities on the right hand side of the table denote the probability p(x1, x2, y).
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Table A1. UNQ: X1 and X2 contribute uniquely 1 bit of Y. Hence, there is no redundant and
synergistic information.

X1 X2 Y

a b ab 1/4

a B aB 1/4

A b Ab 1/4

A B AB 1/4

Table A2. AND: X1 and X2 combine nonlinearly to produce the output Y. It is generally accepted
that the redundant information is between [0, 0.311] bits [5], where I(X1; Y) = I(X2; Y) = 0.311 bits.

X1 X2 Y

0 0 0 1/4

0 1 0 1/4

1 0 0 1/4

1 1 1 1/4

Table A3. RDNXOR: A combination of redundant a synergistic information where X1 and X2

contributes 1 bit of redundant information, and 1 bit of synergistic information.

X1 X2 Y

r0 r0 r0 1/8

r0 r1 r1 1/8

r1 r0 r1 1/8

r1 r1 r0 1/8

R0 R0 R0 1/8

R0 R1 R1 1/8

R1 R0 R1 1/8

R1 R1 R0 1/8

Table A4. IMPERFECTRDN: X1 fully specifies the output, with X2 having a small chance of flipping
one of the bits. There should be 0.99 bits of redundant information.

X1 X2 Y

0 0 0 0.499
0 1 0 0.001
1 1 1 0.500

Appendix B. Proofs

Proposition A1. Let V = { f : X → P(Y)} consist of the family of deterministic functions from
X to distributions over Y . Then IV∩ = I∧∩ .

Proof. We show that IV∩ = I∧∩ by proving both inequalities IV∩ ≥ I∧∩ and IV∩ ≤ I∧∩ .
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To show that IV∩ ≥ I∧∩ . Let fi : X → Q be the functions that maximize Equation (2), and
let Q = fi(Xi). Let p(y|q) be the corresponding optimal decoder. Define f̂i : X → P(Y) as
f̂i(x) = p(y| fi(x)). Note that

H f̂i
(Y|Xi) = −

∫
p(y, x) log p(y| fi(x))dx dy

= −
∫

p(y, x)
( ∫

δq, fi(x) log p(y|q)dq
)

dx dy

= −
∫

p(y, x)
( ∫

p(q|x, y) log p(y|q)dq
)

dx dy

= −
∫

p(q, x, y) log p(y|q)dq dx dy

= −
∫

p(q, y) log p(y|q)dq dy

= H(Y|Q),

where between the first and second line we used the definition of dirac delta; between
the second and third we used the definition of p(q|x) = δq, fi(x); and between the fourth
and fifth line we marginalized over x. Using this result in Equations (6) and (8), we obtain
the following:

IV∩ ≥ H(Y)− H(Y|Q) = I(Y; Q) = I∧∩ .

The above inequality is obtained because f̂i ∈ V = U but is not necessarily the
function corresponding to the infimum.

To show that IV∩ ≤ I∧∩ , let fi : X → Q and let Q = fi(Xi). Define f̂i : X → P(Y) as
f̂i(x) = p̂(y| fi(x)) where f̂i satisfies Equations (6) and (7). Note that

IV∩ = H(Y)− H f̂i
(Y|X)

= H(Y)− H(Y|Q)

= I(Y; Q)

≤ I∧∩ .

The second equality comes since we showed above H(Y|Q) = H f̂i
(Y|X). The inequal-

ity comes since Q satisfies the constraint of Equation (2) but does not necessarily maximize
the objective.

Proposition A2. Let t : X → X be any invertible transformation in V . Then:

IV∩ (X1; X2→Y) = IV∩ (t1(X1); t2(X2)→Y) (A1)

Proof. We define an invertible transformation in V to be one such that f ◦ t ∈ V for all
f ∈ V , which implies that f ◦ t−1 ∈ V . Recall that IV∩ := H(Y)− LV∩ (Equation (8)), and
note that H(Y) is not affected by transformations on the sources. Let L∗ correspond to the
minimum of the following:

min
f1, f2∈V

1
2
[
H f1(Y|X1) + H f2(Y|X2)

]
s.t D( f1, f2) = 0. (A2)

And let L∗t correspond to the minimum of

min
f̃1, f̃2∈V

1
2
[
H f̃1

(Y|t1(X1)) + H f̃2
(Y|t2(X2))

]
s.t D( f̃1, f̃2) = 0. (A3)

We will show that L∗ = L∗t . Let
f̃1 = f1 ◦ t−1

1 ∈ V ,
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f̃2 = f2 ◦ t−1
2 ∈ V ,

where f̃1, f̃2, f1, f2 ∈ V ⊆ U = { f : X → P(Y)}. We can rewrite Equation (A3) by
canceling out t−1 ◦ t as shown below so that:

L∗t = min
f̃1, f̃2∈V

1
2
[
H f̃1

(Y|t1(X1)) + H f̃2
(Y|t2(X2))

]
s.t D( f̃1, f̃2) = 0

= min
f ◦1 t−1

1 , f ◦2 t−1
2 ∈V

1
2
[
H f1◦t−1

1
(Y|t1(X1)) + H f2◦t−1

2
(Y|t2(X2))

]
s.t D( f1 ◦ t−1

1 , f2 ◦ t−1
2 ) = 0

= min
f1, f2∈V

1
2
[
H f1(Y|X1) + H f2(Y|X2)

]
s.t D( f1, f2) = 0

= L∗.

Appendix C. Additional Details

Appendix C.1. Partial Information Decomposition

Information theory provides a principled framework for understanding the depen-
dencies of random variables through the notion of mutual information [24]. However,
information theory does not naturally describe how the information about a target Y is
distributed among a set of sources X1, . . .Xn. For example, ideally, we could decompose the
mutual information I(X1, X2; Y) into a set of constituents describing how much informa-
tion that X1 contained about Y was also contained in X2, how much information about Y
was unique to X1 (or X2), as well as how much information about Y was only present when
knowing both X1 and X2 together. These ideas were introduced in Williams and Beer [1]
as the Partial Information Decomposition (PID).

Standard information-theoretic quantities I(X1; Y), I(X1; Y|X2), and I(X1, X2; Y) can
be formed with components of the decomposition:

I(X1; Y) = UI(X1; Y) + I∩ (A4)

I(X2; Y|X1) = UI(X2; Y) + SI (A5)

I(X1, X2; Y) = UI(X1; Y) + SI + UI(X2; Y) + I∩ (A6)

Here, UI represents the “unique” information and SI represents the “synergistic”
information. Equation (A6) comes from the chain rule of mutual information, and by
combining Equations (A4) and (A5). These quantities are shown in the PID diagram shown
in Figure A1. Computing any of these quantities allows us to compute all of them [3]. In
Banerjee et al. [6], they described an approach to compute the unique information, which
was only feasible in low dimensions. In our paper, we instead focus on computing the
“redundant” information.

SI

UIX1\X2
UIX2\X1

I∩

Figure A1. Decomposition of the mutual information of a sources X1, X2 and target Y into the
synergistic information SI, the unique information UI of X1 with respect to Y and X2 with respect to
Y, and the redundant information I∩. Figure adapted from [6].
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Appendix C.2. Alternative Notion of Redundancy

Recently Kolchinsky [7] proposed to quantify redundancy through the following
optimization problem:

IK
∩ (X1; . . . ; Xn→Y) := max

sQ|Y
I(Q; Y) s.t. ∀i sQ|Y � pXi |Y (A7)

The notation sQ|Y � pXi |Y indicates that there exists a channel pQ|Xi
such that

Equation (A8) holds for all q and y.

s(q|y) = ∑
xi

p(q|xi)p(xi|y). (A8)

In a sense, Equation (A8) indicates that Q is a “statistic” of Xi.

Appendix C.3. Setting Value of β

When optimizing the equation in practice, it is more difficult to optimize initially
using very large values of β since the network could easily learn a trivial solution. We
therefore adaptively set β depending on the epoch of training. In this manner, we find that
the network settles in a redundant solution that performs well on the task, as opposed to a
solution that is trivial. We smoothly increase βi during training following the formula so
that the value of β at epoch i is (γ = 0.97):

βi = β(1− γi). (A9)

We also perform an ablation study where we fix βi = β, and find that the network
settles at a more trivial solution (Figure A2).
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Figure A2. (Left) If B = 50 for all epochs of training, the network is stuck in a trivial solution in
learning. Setting β adaptively leads to an improved solution. (Right) The final distance terms are
comparable.

Appendix C.4. Training Details for Canonical Examples

We trained a small fully-connected network with hidden layers of size [25− 15− 10],
using batch normalization and ReLU activations, with an initial learning rate of 0.01
decaying smoothly by 0.97 per epoch, for 30 epochs. We generated a data set consisting
of 10,000 samples of which 80% corresponded to training data, and the remaining 20%
corresponded to the test data. We trained with different values of β. β = 0 corresponds to
the average usable information of Iu(X1; Y) and Iu(X2; Y). As β increases, the quantity IV∩
more strongly reflects redundant information. RINE produces values close to the ground
truth for these canonical examples. The tasks, with their corresponding inputs, outputs and
associated probabilities are shown in Appendix A. Our comparison is shown in Table 1.
Note that there is some randomness that occurs due to different initialization optimizing
the neural networks; hence, the values may differ slightly.
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Appendix C.5. Comparison with Cosine Similarity

To highlight the difference between the redundant information that two inputs X1 and
X2 have about a task Y and a direct similarity measure that could be applied on X1 and
X2, we designed a synthetic task. In this task, there are 8 classes. We designed the inputs
so that each input X1 and X2 would contain information about n classes, with minimal
overlap. For instance, if n = 4, each input would contain information about 4 distinct
classes, so there would be no redundant information. We swept the value of n ranging
from 4 to 8 (Figure 5 Left, with increasing redundant information for increasing values
of n). We optimized over a two-hidden-layer deterministic neural network with hidden
layer dimensions of 25 and 15, using Adam with a learning rate of 0.005 for 50 epoch, with
β = 50. We added noisy inputs with each input coming from N (0, 22). These inputs did
not affect the value of redundant information; however, adding noisy inputs decreases the
cosine similarity (shown for the case of n = 8), whereas the addition of non-task related
common inputs increases the cosine similarity (shown for the case of n = 4).

Appendix C.6. Training Details for CIFAR-10

To compute the redundant information for CIFAR-10, we optimized over the weights
in Equation (6) using ResNet-18’s [15]. We trained the network for 40 epochs, with an
initial learning rate of 0.075, decreasing smoothly by 0.97 per epoch, with weight decay
of 0.005. We show example images that represent the inputs x1 and x2 in Figure A3. We
jointly trained two networks that process inputs x1 and x2, respectively, constrained to
have similar predictions through including D( f1, f2) in the loss. To compute D( f1, f2), we
quantified the L1 norm of the distance between the softmax scores of the predictions. We
evaluated the cross-entropy loss on the test set.

Appendix C.7. Training Details for Neural Decoding

Appendix C.7.1. Fixed Delay Center Out Task

In this task, there are 8 target locations. After a target is shown, the monkey makes
a plan to reach towards the target. The monkey then reaches to the target after a go cue
(Figure 3 Left). Our data set consisted of a population recording of spike trains from
97 neurons in the premotor cortex during trials that were 700 ms long. Each trial comprises
a 200 ms baseline period (before the reach target turned on) and a 500 ms preparatory
(planning) period after the reach target turned on but before the monkey can initiate a
reach. Both our training and testing data sets consisted of 91 reaches to each target.

Appendix C.7.2. Variable Delay Center Out Task

We analyzed data from another delayed-center-out task with 8 targets with a variable
400–800 ms delay period, during which the monkey could prepare to reach to the target,
but was not allowed to initiate the reach until the go cue. In these data sets, there were
significantly fewer total trials per session (220 total reaches across 8 targets) in comparison
to the data set with a fixed delay period. Data from two motor-related regions, the premotor
and primary motor cortex, was recorded from 2 monkeys (J and R). There were 4 sessions
associated with monkey J and 3 sessions associated with monkey R. We used 90% of the
trials to train and 10% of the trials to test, and the plots reflect the redundant information
on the test set.

Appendix C.8. Generalization to n Sources

Our formulation naturally generalizes to n sources X1, . . . , Xn. In particular, Equation (9)
can be generalized as follows:

LV∩(X1; . . . ; XN→Y, β) := min
f1,..., fn∈V

1
n
[ n

∑
i=1

H fi
(Y|Xi)

]
+ βD( f1, . . . , fn). (A10)
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We note that when computing the redundant information, we compute the loss
without the distance term D( f1, . . . , fn). A naive extension of the distance term to n sources
is computing the sum of all the pairwise distance terms. If the number of sources is large,
however, it may be beneficial to consider efficient approximations of this distance term.

Appendix C.9. Details on Canonical Examples

Table A5. Comparison of redundancy measures on canonical examples for additional values of β

than Table 1. Quantities are in bits. IV∩ denotes our variational approximation for different values of
β. I∧∩ denotes the redundant information in Griffith et al. [2] and IGH

∩ corresponds to the redundant
information in Griffith and Ho [5].

True I∧∩ IGH
∩ IV∩ (β = 0) IV∩ (β = 5) IV∩ (β = 15)

UNQ [Table A1] 0 0 0 0.981 0.809 0.006
AND [Table A2] [0, 0.311] 0 0 0.318 0.008 0.007

RDNXOR [Table A3] 1 1 1 0.981 0.983 0.977
IMPERFECTRDN [Table A4] 0.99 0 0.99 0.983 0.978 0.984

Appendix C.10. Example Decomposition of Cifar-10 Images

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure A3. Example decompositions of an image (car) from CIFAR-10. This is an example of x1 and x2

in our CIFAR experiments. Top: different crops; Middle: colors of channels; and Bottom: frequencies.
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