
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Learning and Optimization for Mixed Autonomy Systems - A Mobility Context

Permalink
https://escholarship.org/uc/item/3d93t6xq

Author
Wu, Cathy

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3d93t6xq
https://escholarship.org
http://www.cdlib.org/

Learning and Optimization for Mixed Autonomy Systems - A Mobility Context

by

Cathy Wu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alexandre M. Bayen, Chair
Professor Pieter Abbeel
Professor Ruzena Bajcsy
Professor Claire Tomlin

Professor-in-Residence Alexander Skabardonis
Dr. Eric Horvitz

Fall 2018

Learning and Optimization for Mixed Autonomy Systems - A Mobility Context

Copyright 2018
by

Cathy Wu

Abstract

Learning and Optimization for Mixed Autonomy Systems - A Mobility Context

by

Cathy Wu

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

Mixed autonomy characterizes problems surrounding the gradual and complex integration of
automation and AI into existing systems. In the context of mobility, we consider: how will
the gradual introduction of self-driving cars change urban mobility? In this dissertation, we
develop machine learning and optimization techniques to address three key challenges: 1)
quantifying the behavior of such complex systems, 2) addressing inherent sensing limitations,
and 3) mitigating negative effects of introducing the automation.

We demonstrate that deep reinforcement learning (RL) can serve as a unifying framework
for studying the behavior of disparate and complex scenarios common in mixed autonomy
systems. In particular, using deep RL, we find that automating a small fraction of vehicles
in various traffic scenarios can result in a significant system-level velocity increase and nu-
merous emergent driving behaviors. We demonstrate through the development of variance
reduction techniques for policy gradient methods, that deep RL has the potential to scale to
high-dimensional control systems, such as traffic networks and other mixed autonomy sys-
tems. We additionally present Flow, an open source RL platform with the goal of easing the
design and study of disparate traffic scenarios. To address sensing limitations inherent when
only parts of a system are automated, sensor fusion is explored. In particular, we introduce
a convex optimization method for cellular network measurements from AT&T at the scale
of the Greater Los Angeles Area, to address a flow estimation problem previously believed
to be intractable. Finally, when automation reduces the cost of the activity (of transport),
anticipated negative effects include induced demand and increased energy consumption. We
study how the design of the mobility system itself can mitigate these effects. In particular,
joint work with Microsoft Research provides insight into how high-occupancy vehicle lanes
can simultaneously satisfy comfort and time preferences of users, and provide system bene-
fits. We introduce combinatorial optimization methods based on clustering and local search
for the resulting ridesharing problem. Together, these learning and optimization methods
demonstrate that a small number of vehicles and sensors can be harnessed for significant
impact on urban mobility, and shed light into the future study of mixed autonomy systems.

1

A C K N O W L E D G M E N T S

Because I knew you
I have been changed for good.

Stephen Schwartz,
For Good, Wicked (2003)

I am extremely fortunate to be advised by Alexandre Bayen throughout my graduate
research. His constant support and advice is what made this thesis possible. I am as-
tounded at his ability to place problems in many different contexts all at once–technical,
domain, social, systemic–and it is through his guidance that I came to recognize the
richness of any problem.

Thanks especially also to Eric Horvitz for mentoring me at Microsoft Research and
ever since, and whose energy and thoughtful approach to people and AI both will always
inspire me; and to Pieter Abbeel for mentoring me as I sought to introduce reinforcement
learning to my own research, and whose calm and effectiveness I will always strive for.

I am grateful also for Daniela Rus, Seth Teller, and Jim Glass at MIT, who mentored
me as an undergraduate researcher and Masters student and whose encouragement led
me to pursue my dreams.

I am fortunate to have worked and learned with my amazing collaborators: Alexan-
dre Bayen, Jerome Thai, Alexei Pozdnukhov, Steven Yadlowsky, K. Shankari, Christos
Papadimitriou, Eric Horvitz, Ece Kamar, Eugene Vinitsky, Aboudy Kreidieh, Leah Dick-
stein, Kanaad Parvate, Nishant Kheterpal, Ankur Mehta, Pieter Abbeel, Yan Duan, Ar-
avind Rajeswaren, Igor Mordatch.

Thanks to Pieter Abbeel, Claire Tomlin, Laurent El Ghaoui, Ruzena Bajcsy, Alexan-
der Skabardonis, and Eric Horvitz for serving on my qualifying exam and dissertation
committees – I have cherished each of our conversations, and your advice and feedback
have greatly improved the research in this dissertation. I am grateful also for Microsoft
Research, Google X, and OpenAI, for providing me perspective and guidance over the
years. I thank also the National Science Foundation and the Berkeley Chancellor’s fel-
lowships for funding my PhD and for the freedom to explore important problems.

I want to thank the undergraduate, Masters, and graduate students and research assis-
tants who journeyed with me and trusted in my mentorship: Steven Yadlowsky, Lei Du,

i

Chenyang Yuan, Leah Dickstein, Kanaad Parvate, Nathan Mandi, Aziz Khiyami, Eugene
Vinitsky, Aboudy Kreidieh, Nishant Kheterpal, Ananth Kuchibhotla, and Luc Le Flem.

I had the great fortune of starting this journey with my cohort and great friends in con-
trol, intelligent systems, and robotics–Eric Kim, Jaime Fisac, Roel Dobbe, and Jason Poon–
with whom I gained a deep appreciation for continuous thinking and control. What
started out as a mere class project on compressed sensing and traffic assignment–with
Philipp Moritz, Richard Shin, Fanny Yang–turned into countless discussions and unceas-
ing explorations in optimization and statistics. I have tremendously enjoyed the many
invigorating discussions and refreshing perspectives on transportation, with Alexander
Skabardonis, Alexei Pozdnukhov, and Teddy Forscher. I am grateful for Yang Ruan, Mark
Tobenkin and Michael Pihulic, who have pushed me to consider the societal impact,
ethics, and the bigger picture, and who have always been there for me.

Both in and outside of research, there are just so many people not yet mentioned,
who have enriched my life, supported me, and inspired me over the last few years. I
am so grateful for: Marie McGraw, Pranjal Vachaspati, Alex Lee, Mo Chen, Timothée
Hunter, Dorsa Sadigh, Katie Driggs-Campbell, Roy Dong, Jacob Steinhardt, Dan Work,
Samitha Samaranayake, Walid Krichene, Jack Reilly, Kene Akametalu, Pavel Panchekha,
Mark Velednitsky, Kevin Fischer, Geza Kovacs, Aviv Ovadya, Lei Du, Vrajesh Modi,
Rishi Gupta, Michael Scarito, Ahmed El Alaoui, Lillian Ratliff, Sandy Huang, Eric Tzeng,
Chelsea Finn, Aude Hofleitner, Constantin Berzan. I am grateful also for my sister Nancy,
who is the most creative and understanding person I know, and my brother Joseph, who
always has a spare hour or ten for some computer games.

My home for five years, a huge house in South Berkeley called Little Mountain, was
the ultimate mix of calm and impetus–sparking intellectual discussions, dry ice parties,
spontaneous sing-alongs, pull-up contests, and countless memories. I am grateful to
Rishi Gupta for founding this wonderful home and for my amazing housemates for
simply being there. I am so happy for all the fun times at Total Athletic Conditioning
(TAC) led by coach Mark Jellison and the Cal Yongmudo Club, where I am especially
grateful for instructors Randy Vogel and Norman Link – for not only helping to keep
me sane, but also for bringing me closer with friends in the department.

Thanks to the wonderful staff within EECS and ITS, whose hard work keeps the
research machine going–in particular, Shirley Salanio, Jessica Gamble, Helen Bassham,
Jeanne Marie Acceturo, and Rosita Alvarez-Croft.

Finally, I dedicate this dissertation to my parents, Gody and Jeb Wu, who always
wanted a doctor in the family, and whose love and support made everything possible.

ii

C O N T E N T S

1 introduction 1

1.1 Mixed automated and human decision making 1

1.2 Motivating examples of mixed autonomy systems 3

1.3 How will automated vehicles change mobility? 4

1.4 Mixed autonomy systems 6

1.5 Thesis overview and contributions 8

2 review of optimization frameworks 12

2.1 Convex optimization 12

2.2 Reinforcement learning 15

2.3 Combinatorial optimization 18

3 review of automated transportation 23

3.1 Safety first 24

3.2 Freeing the freeway 27

3.3 Confronting the last mile 29

3.4 Taking to the streets 30

3.5 Full speed ahead 32

i control 34

4 emergent behaviors in mixed autonomy traffic 35

4.1 Overview 36

4.2 Preliminaries 39

4.3 Mixed autonomy traffic as reinforcement learning 41

4.4 State equivalence classes 43

4.5 Network configurations 44

4.6 Mixtures of autonomy 45

4.7 Metrics 46

4.8 Emergent behaviors 47

4.9 Related work 51

4.10 Chapter summary 54

4.11 Experiment details 55

5 variance reduction for policy gradient with action-dependent

factorized baselines 56

iii

5.1 Overview 57

5.2 Preliminaries 58

5.3 Action-dependent baselines 60

5.4 Experiments and Results 64

5.5 Related works 68

5.6 Chapter summary 70

5.7 Derivation of the optimal state-dependent baseline 70

5.8 Derivation of the optimal action-dependent baseline 71

5.9 Derivation of variance reduction improvement 73

5.10 Derivation of suboptimality of the optimal state-dependent baseline 75

5.11 Baselines for general actions 75

5.12 Compatibility with GAE 76

5.13 High-dimensional action spaces: training curves 78

5.14 Experiment details 78

6 flow : a library for reinforcement learning and microsimula-
tion 81

6.1 Overview 82

6.2 Preliminaries 86

6.3 Flow 87

6.4 Networks 90

6.5 Task space 92

6.6 Controller design case study: mixed autonomy ring 93

6.7 Related work 100

6.8 Chapter summary 103

6.9 Classical controllers 103

6.10 Additional experiments 107

6.11 Fail-safes 108

ii state estimation 112

7 cellpath : fusion of cellular and traffic sensor data for route

flow estimation via convex optimization 113

7.1 Overview 114

7.2 Problem formulation 121

7.3 Dimensionality reduction and projection via isotonic regression 128

7.4 Experimental setting and validation process 133

7.5 Numerical results 141

7.6 Chapter summary 146

iv

iii system design 148

8 human mobility preferences 149

8.1 Overview 150

8.2 Induced demand 150

8.3 Methodology and data collection 151

8.4 Findings 152

8.5 Recommendations for ridesharing systems 157

8.6 Chapter summary 159

8.7 Mobility preference survey questions 159

9 optimizing the diamond lane : complexity and algorithms for

ridesharing 165

9.1 Overview 166

9.2 Survey of complexity results in ridesharing 170

9.3 The carpool problem 170

9.4 Problem formulation 176

9.5 Methods for solving the carpool problem 182

9.6 Warm-starting the local search methods 186

9.7 Numerical implementation 188

9.8 Numerical results 191

9.9 Chapter summary 193

9.10 Scalability: time breakdown for local search 194

9.11 Initialization for local search methods 195

10 clustering for set partitioning with a case study in rideshar-
ing 201

10.1 Overview and combinatorial optimization problems 201

10.2 Set partitioning 202

10.3 A formal connection between clustering and set partitioning 204

10.4 Case study: ridesharing meetup problem 209

10.5 Chapter summary 210

iv final remarks 212

11 the road ahead 213

11.1 Challenges in mixed autonomy 213

11.2 Opportunities in mixed autonomy 215

v

1
I N T R O D U C T I O N

It is change, continuing change,
inevitable change, that is the
dominant factor in society today. No
sensible decision can be made any
longer without taking into account
not only the world as it is, but the
world as it will be...

Isaac Asimov,
Asimov on Science Fiction (1981)

1.1 mixed automated and human decision making

Current trends in computing and artificial intelligence give individuals, engineers, cor-
porations, and governments an unprecedented capability to introduce automation into
many aspects of our lives, from online services to our offline lives and our workplaces.
Online, we engage with video and music recommendations; crossing into offline, we
engage with restaurant recommendations and mapping services; in our workplaces, we
see decision support systems for clinical decisions, traffic operations, etc. As seen by
a multitude of articles pertaining to automation of work, unintended consequences of
automation, and AI safety, the integration of automation into existing systems has com-
plex and poorly understood effects, both near- and far-term. We term mixed autonomy as
the problem area concerning the gradual integration of automation into existing systems,
which often are large-scale, are complex in themselves, and involve many humans. The
resulting system consists of a mixture of automated and human decision making, hence
mixed autonomy. This designation indicates that the automated and human-decision

1

making aspects cannot be studied in isolation because each affects the other.

Learning, control, and mixed autonomy systems. To a large extent, automation using
machine learning thus far has investigated the paradigm of “static learning”. In this
paradigm, data is collected from a process and is assumed to be independent and iden-
tically distributed (i.i.d.) from a fixed (static) but unknown distribution. An output mea-
sure is determined, a classifier or similar is developed to minimize the empirical risk,
and if the world were to remain the same, akin to offline evaluation, then the classifier
would perform as expected. However, in practice, the mere introduction of the classi-
fier or any form of automation into the “wild” (open world) may drastically shift the
underlying data distribution. This phenomenon is also called behavioral drift and may
result from the altered behavior of interacting humans or other agents. Technically, the
distributional shift results in a violation of the i.i.d. assumption of the data and thus the
classifier may have unintended behaviors. The same story holds for control theory for
sequential decision making. A controller is designed and calibrated to system models
based on data collected from a natural process. The introduction of the controller into
the open world, however, may again shift the underlying data distribution, thereby void-
ing the model calibration. The controller, operating in the resulting system, could yield
unsafe or otherwise undesirable behaviors. While robust control alleviates these issues,
standard practices are suitable only for handling small distributional shift. The result,
whether due to automation by machine learning, control, or a combination thereof, is
a mixed autonomy system. A science and engineering of mixed autonomy systems is
required to ensure the continued performance of our systems amidst the introduction of
automation.

A recent emergence of mixed autonomy systems. Automation has been a boon for civ-
ilization, from the autopilot in commercial aircraft to automated production lines in
manufacturing. At the same time, it is possible that to date we have largely experienced
distributional shift that is limited or sufficiently slow. This can be explained by the in-
troduction of relatively isolated automation into society thus far. For instance, in an
air traffic control system, for safety reasons there is ample spatial distance between the
agents (including aircraft and weather sensing equipment), whether operated manually
or by an autopilot. As such, it is possible that the effects of autopilot are largely contained
to the aircraft itself, rather than imposing strong dynamics on the rest of the air traffic
system. Similarly, in manufacturing, factories often install heavy automation equipment
behind barriers or marked lines on the factory floor, as to limit its interaction with op-
erators and other agents. A single engineer using a spam classifier on her own email
inbox may also have limited systemic effects. However, the introduction of automation

2

into the open world may exhibit complex effects on both humans and other automated
components. Moreover, in systems where agents (humans) are freely able to choose to
adopt and use automation, the resulting distributional shift of the system dynamics may
be especially difficult to limit. A characterization of the potential effects of introduced
automation is an important direction of future research and is out of scope for this thesis.
Following, are a few important motivating examples of mixed autonomy systems.

1.2 motivating examples of mixed autonomy systems

Mobility System. A city with 5% adoption of self-driving cars is a mixed autonomy
system. Studying the characteristics such as system throughput and efficiency of a sys-
tem with no self-driving cars or 100% self-driving cars is distinct from that of a mixed
autonomy system. The no-autonomy setting, although already challenging, is purely a
modeling problem of current mobility systems. The 100% case is fictional (at the time
of writing) but can be modeled by domain experts, and, with some restrictions, the con-
trol problem reduces to a coordination problem. The in-between setting, requires careful
consideration of the interactions between the human and automated actors, as well as
with the rest of the system. It is known that up to 30% of traffic jams are caused by de-
ficiencies in human driving. Scalable computational tools for studying mixed autonomy
systems could help determine whether automated agents will augment or correct these
deficiencies.

Energy system. A power grid with 1% distributed devices which can choose to supply
energy back to the grid, such as electric vehicles and refrigerators. The “duck curve”, a
so-called curve to describe the cyclic daily energy demand curve with a dip during mid
day and a peak in the evening hours reflecting the aggregate behavior of the millions
of human users, is a major challenge for the adoption of renewable energy, for which
energy supply is much more challenging to control. Scalable computational tools for
studying mixed autonomy systems could help determine whether a small fraction of
controlled energy devices could help stabilize the overall network.

Social network. A social network with 1% of users which are “bots” that issue actions
such as sharing articles and rating videos. Mixed autonomy systems techniques could
help determine the effects of automation on the spread of public service announcements,
“viral” content, or misinformation.

Criminal justice. A nation with 7% of local county courts using automated recidivism
scores of criminals to determine sentences is a mixed autonomy system. Mixed auton-

3

omy could provide a perspective on long-term recidivism dynamics.

Financial systems. In the global financial system, 0.01% of monetary volume is ex-
changed via high-speed trading algorithms and systems, in an ecosystem with predom-
inantly human traders. Mixed autonomy could help detect unintended effects of the
complex interactions between the automated and non-automated components of our
financial markets.

In each of the above settings, automation is introduced into an existing large-scale
and already complex system. Although there is strong potential for benefit, the effects
of the automation are unknown; for instance, the automation could magnify existing
limitations in human behavior, such as bias or imprecise control, or achieve a desirable
system-level outcome. Moreover the increase or decrease of automation over time may
be dictated by a number of external factors, such as metrics of evaluation and market
forces.

1.3 how will automated vehicles change mobility?

A running example throughout this thesis concerns the complex integration of auto-
mated vehicles into existing mobility systems, which we term mixed autonomy mobility.
Mobility is a natural example because it is an existing system in which many human
agents interact closely and regularly with many automated agents, such as traffic lights.
An upcoming and long anticipated event is the introduction of automated vehicles into
the mobility system. This example helps identify and highlight a number of new scaling
challenges which push the limits of our optimization frameworks, as exemplified in this
thesis.

Transportation systems today form a literal physical backbone to civilization. Daily,
they touch the lives of 3.9 billion people who reside in urban areas or 54% of the world
population (United Nations, 2014) and support 1.32 billion motor vehicles worldwide1

(WardsAuto, 2017). At the same time, the transportation sector accounting for 29% of
energy consumption in the US (see Figure 1) (US Energy Information Administration,
2018, Table 2.1) and more than 20% of energy-related global GHG emissions world-wide.

Self-driving vehicles are slated to bring about dramatic changes in terms of energy
consumption, safety, access and time savings. They can affect energy consumption in
a variety of ways, including though vehicle platooning, eco-driving (Gense, 2000), and
many others, as summarized in Figure 2. In particular, the reduction in travel cost could

1 This measure, from 2016, excludes motorbikes.

4

Figure 1: Energy consumption in the United States by sector (April 2018). Source: US Energy Information
Administration (2018, Table 2.1).

result in a 5-60% increase in energy consumption. Depending on weighted likelihoods
of each of these factors, studies determined that with full adoption of self-driving cars,
the US mobility system could see anywhere from a minus 40% to a doubling of energy
consumption (Wadud et al., 2016). In short, we have a great amount of uncertainty with
regards to the impact of automation, even for a single metric (energy, in this case), let
alone a holistic measure. How do we even start to reason about all these factors? And
then shape the outcome?

This dissertation introduces several new machine learning and optimization tech-
niques that are needed to help guide the evolution of urban mobility in light of the
adoption of automated vehicles. We characterize the study of the integration of auto-
mated vehicles into existing mobility systems as mixed autonomy mobility.

A note on vehicle automation. In the spirit of near-term practicality, this thesis aims to
be compatible with a variety of forms and levels of vehicle automation. Vehicles may
be automated in a variety of ways, including a dedicated driver such as in a taxi, an
instructed or incentivized driver, or an electro-mechanical system such as those designed
for a self-driving vehicle. Levels of automation vary as well, from partial automation
in the forms of cruise control, braking or parking assistance, routing guidance, or trip
management to full automation of the driving or trip related tasks. Although there are
many other interesting forms of automation in mobility systems, such as traffic lights,
ramp meters, variable speed limits and other electronic roadway signage, mobility usage
fees, congestion pricing, and road directionality, the study of their integration into the

5

Figure 2: Automating transportation will not necessarily make transportation more efficient—-some es-
timates even show that energy consumption could increase once vehicles are fully automated.
In particular, the reduced cost of traveling may incentivize and enable more people to travel.
Everything from future adoption rates of automated vehicles to government regulations will
influence the net impact of automated transportation on transit-related energy consumption.
Source: Wadud et al. (2016).

mobility system are out of scope for the present manuscript. However, the presented
approaches may extend readily to many of these forms of automation.

1.4 mixed autonomy systems

Mixed autonomy systems, that is dynamical systems which involve the interaction of
automated and human actors (possibly dynamic in themselves), exhibit several attributes
and challenges which push the limits of state-of-the-art methods.

• Scale and heterogeneity. Mixed autonomy systems may consist of hundreds or
even millions of heterogeneous interacting agents, each of which have different
utility functions and constraints. For instance, automated vehicles, non-automated
vehicles, traffic lights, electronic signage, pedestrians, bicyclists, etc. each may have

6

different preferences, origins, destinations, and time bounds.
• Complex dynamical system. The overall mixed autonomy system is a highly stochas-

tic, cascaded, nonlinear, discontinuous, hybrid, networked dynamical system, in
which actions of an individual agent or a population may induce complex and
delayed effects on the system, such as traffic or demand.

• Limited actuators. The gradual integration or adoption of automation (e.g. auto-
mated vehicles) into the existing system implies that the number or fraction of
physical actuators may be small.

• Limited sensors. Often, actuators double as sensors, so in a mixed autonomy set-
ting, the existing systems may have varied but limited sensing capabilities.

• Limited human behavior models. Human behavior and reasoning are challenging
to model, as well as their interactions with automated decison making components
of the system. The problem is further exacerbated in settings which humans have
not yet experienced, such as with the introduction of new automation (e.g. auto-
mated vehicles).

• External process governing automation integration. There may be a process exter-
nal to the mixed autonomy system which governs the dynamics of the automation
integration. In the case of mobility, for instance, vehicle ownership models, ser-
vice models, competition, and economic incentives may dictate the progression of
adoption and use of automated vehicles.

Key questions. In light of the challenges in mixed autonomy, key questions of interest
include:

• What are the capabilities of a mixed autonomy mobility system? How does a mobil-
ity system with mixed automated and non-automated vehicles behave differently
from a non-automated mobility system?

• Given the system heterogeneity and complexity, what are the tools and techniques
suitable for systematically studying the capabilities and limitations of mixed auton-
omy systems?

• What are the requirements in terms of sensing, computation, incentives, and infras-
tructure for enabling mixed autonomy mobility systems?

• What are the potential impacts of mixed autonomy systems, both positive and
negative?

This thesis is a first step in answering these questions. Many additional questions and
research areas of interest to mixed autonomy are discussed in Chapter 11. The study
of mixed autonomy will require many more contributions from optimization, machine
learning, computer systems, robotics, control theory, algorithms, economics, psychology,

7

and domain specific social sciences and engineering disciplines. A science and a theo-
retical foundation for the understanding of mixed autonomy and a corresponding engi-
neering practice for their design are required to ensure long-term desirable performance
of our existing systems, in particular as automation is introduced.

Automation science and engineering. The study of mixed autonomy aims to advance
automation science and engineering, which is about developing methodology for effi-
ciency, quality, productivity, and reliability in automation systems; it draws from com-
puter science, control systems, electrical engineering, mathematics, mechanical engineer-
ing, operations research, among other fields. Mixed autonomy requires advances beyond
the current methods, including important areas such as computational scalability and
handling complex models. Recent advances in function approximation and representa-
tion learning indicate that reinforcement learning has the potential to overcome both
challenges. At the same time, reinforcement learning is ill-suited for problems which
benefit from exhaustive search, such as problems concerning safety, constraints, and
many combinatorial optimization problems. Thus advances in combinatorial optimiza-
tion would supplement reinforcement learning in the combinatorial aspects of studying
mixed autonomy. This thesis places emphasis on challenges in optimization scalability
for enabling the science and engineering of mixed autonomy and concludes with a dis-
cussion on the broad challenges in mixed autonomy.

1.5 thesis overview and contributions

This thesis introduces, develops scalable computational tools (including algorithms and
systems), and addresses concrete challenges in mixed autonomy systems. We begin with
a review of the common and powerful optimization frameworks of reinforcement learn-
ing, convex optimization, and combinatorial optimization. We briefly review the history,
research, challenges, and opportunities of automation in mobility systems. An early ver-
sion of the historical overview was published as Wu (2016). Then, what follows is the
structure and primary contributions of the thesis, as diagrammed in Figures 3 and 4.

Part i: Control. The first part of the thesis first demonstrates the existence of mixed
autonomy systems in the open world, showing that a mixture of automated and human-
driven vehicles may yield vastly different system characteristics, such as average velocity
of all vehicles in the system, as compared to a system with only human-driven vehicles.
Termed mixed autonomy traffic, this serves as a running example throughout the thesis
for concretely demonstrating the problems and challenges of mixed autonomy systems.

8

Algorithmic
contributions

Mobility
contributions

Optimization
 frameworks

Combinatorial
optimization

Convex optimization

Deep reinforcement
learning

Ridesharing optimization
for high-occupancy lanes

Route flow estimation

Mixed autonomy traffic
control

Policy gradient with
factorized baselines

Isotonic regression with
box constraints

Metric k-set partitioning

Part 1

Part 2

Part 3

Ch5 Ch6Ch4Ch2

Ch2

Ch2

Ch7 Ch7

Ch10 Ch9Ch8

Figure 3: Summary of contributions of the thesis, in terms of optimization frameworks, specific optimiza-
tion methods, and mobility challenges.

Part 1

Part 2

Part 3

Figure 4: A categorization of the dissertation, based on coverage of the AV impacts on energy consump-
tion, as shown in Figure 2.

Simultaneously, we demonstrate the potential of machine learning methods for studying
mixed autonomy systems, in contrast to classical techniques based on partial differen-
tial equations and manual controller design. In particular, by casting the problem into
the framework of model-agnostic reinforcement learning, it is established that a small

9

fraction of automated vehicles has the potential to dramatically improve overall road
velocities for all vehicles, and a number of interesting driving behaviors emerge. Many
advances are needed to enable mixed autonomy systems at the scale of thousands or
even millions of agents, including high-speed distributed simulation and algorithmic de-
velopments. To this end, we present generic deep reinforcement learning techniques for
scaling up to higher dimensional control problems, such as controlling many vehicles in
a mobility system. Additionally, an open-source library is introduced which allows for
integrated studies of reinforcement learning and traffic microsimulation, with scalable
distributed simulation and cloud deployment. The work in this part was published in
Wu et al. (2017d), Wu et al. (2018), and Wu et al. (2017c). The contributions of this part
have implications for the environment and public policy concerning the regulation of
automated vehicles, as well as scalable reinforcement learning.

Part ii: State estimation. The second part of the thesis explores the sensing challenges
and requirements to enable mixed autonomy systems. In mixed autonomy systems, only
parts of the system are automated and thus naturally observed, but information about
the other parts of the system may be required in order to achieve optimal system perfor-
mance. Thus being able to measure or estimate relevant quantities is critical to the per-
formance of mixed autonomy systems. In mobility, owing to control theoretic analysis
and advances in transportation engineering, vehicle throughput is such a critical quan-
tity to estimate, but has classically been hindered by sparse sensing of the transportation
infrastructure. By casting the problem into the framework of convex optimization, we de-
termined that currently available transportation sensing infrastructure, augmented with
also currently available aggregate data from cellular networks enables accurate through-
put estimation. The structure of cellular network data and the large scale of urban sys-
tems motivates the design of a new algorithm for projected gradient descent with a
block simplex constraint. The work in this part was published in Wu et al. (2015). The
contributions of this part have implications for near-term transportation management,
as opposed to long-term planning such as land-use planning, and infrastructure design,
as well as scalable convex optimization.

Part iii: System design. The third part of the thesis explores the design of the system
itself, to mitigate the potential effects of the external process on the system. Mixed auton-
omy systems may be viewed as being embedded within another dynamical system, one
which dictates the progression of the integration, adoption, and use of automation. This
process, external to the mixed autonomy system, may induce substantial effects upon the
system, both positive and negative. Mobility is embedded in an overall socioeconomic
system, and one major anticipated long-term impact of automated vehicles is induced de-

10

mand, in which more people travel in response to the newly available roadway capacity
(enabled in Part i). This additional demand on the mobility system may compromise the
benefits in road velocity and throughput by resulting in elevated energy consumption.
We start by empirically studying the dynamics of the overall socioeconomic system and
in particular, its couplings with the mobility system. To this end, we build a model of hu-
man mobility preferences based on a user study of 300 employees at a major technology
corporation. We identify ridesharing as a promising approach and give it treatment as
a design paradigm for the mobility system itself, with the goal of mitigating the effects
of induced demand by dramatically improving the throughput of the mobility system.
We conclude therefore that, with lightly modified existing infrastructure, ridesharing
has the potential to dramatically improve (nearly triple) the throughput of the mobility
system, and provide combinatorial algorithms to solve the allocation. The structure of
the ridesharing problem motivates the adaptation of clustering algorithms from machine
learning for set partitioning in the combinatorial optimization framework. The work in
this part was published in Wu et al. (2016b) and Wu et al. (2016a). The contributions
of this part have implications for mobility system design, urban planning, and public
policy, as well as scalable combinatorial optimization.

Discussion and closing remarks. This thesis is only a first step in enabling a science
and engineering of mixed autonomy systems, and takes the approach of introducing the
broad definition and challenges of mixed autonomy systems, developing scalable compu-
tational tools, and addressing concrete challenges, in particular, in mobility. We therefore
close with a discussion of the road ahead. We discuss remaining research questions and
system requirements for deployment. We present also directions of future research for
mixed autonomy systems.

11

2
R E V I E W O F O P T I M I Z AT I O N F R A M E W O R K S

It is our choices, Harry, that show
what we truly are, far more than our
abilities.

J.K. Rowling, Harry Potter and the
Chamber of Secrets (1998)

Many situations arise in mixed autonomy systems where we could like to optimize
the value of some function. That is, given a function f : Rn → R, we want to find x ∈ Rn

that minimizes (or maximizes) f(x). Many problems in control, estimation, and system
design can all be framed as optimization problems. This chapter presents a several com-
mon and powerful optimization frameworks used in this thesis–convex optimization,
reinforcement learning, and combinatorial optimization. Each of these frameworks has
seen extensive empirical and theoretical results. These frameworks solve vastly differ-
ent and yet each gigantic classes of optimization problems. It is key to identify when a
framework is appropriate for a problem at hand; this thesis utilizes these disparate op-
timization frameworks to address important problems within mixed autonomy systems
in the context of mobility.

2.1 convex optimization

In the general case, finding the global optimum of a function can be a very difficult task.
However, for a special class of optimization problems known as convex optimization
problems, we can efficiently find the global solution in many cases. Here, “efficiently”
has both practical and theoretical connotations – it means that we can solve many real-
world problems in a reasonable amount of time, and it means that theoretically we can
solve problems in time that depend only polynomially on the problem size. Importantly,

12

and in fact, for convex optimization problems, any local optimum is also necessarily a
global optimum. This section serves as preliminary material for Part ii of this thesis.

Convex optimization can be described as a fusion of three disciplines: optimization,
convex analysis, and numerical computation. It has recently become a tool of central
importance in engineering, enabling the solution of very large, practical engineering
problems reliably and efficiently. Successful applications of convex optimization have
been seen in a wide variety of areas, including control, signal processing, networks, cir-
cuit design, communication, information theory, computer science, operations research,
economics, statistics, structural design. Much of the challenge, and art, in using convex
optimization is in recognizing and formulating the problem. For an excellent text and
overview on convex optimization, see Boyd and Vandenberghe (2004); for an excellent
text and comprehensive account on numerical optimization, see Nocedal and Wright
(2006). For a survey of convergence results and algorithms in convex optimization, we
refer the reader to Bubeck et al. (2015).

A convex optimization problem consists of a convex function objective, inequality
constraints, and equality constraint. It can be written as:

minimize f0(x) (1)
subject to fi(x) 6 bi, i = 1, . . . ,m (2)

hi(x) = 0, i = 1, . . . ,p, (3)

where the functions f0, . . . , fm : Rn → R are convex, i.e. satisfy

fi(αx+βy) 6 αfi(x) +βfi(y) (4)

for all x,y ∈ Rn and all α,β ∈ R with α + β = 1,α > 0,β > 0. Note also that the
functions h0, . . . ,hp : Rn → R are affine, i.e. can be written as a function of the form
x 7→ aTi x+ bi, where ai is a linear transformation on x and bi is a scalar.

For the design of a convex optimization method, some of the important issues that
have to be dealt with are: how to descend the objective function, and how to remain
feasible, i.e. satisfy the constraints. In the following, we review important classes of con-
vex optimization problems, general descent methods, and general methods for handling
constraints.

Unconstrained convex optimization. Iterative convex optimization methods take advan-
tage of the local information f(xk) for the current iterate xk. Common examples include
using gradient information from the first- or second-order Taylor series approximation

13

to f(xk + p) for some search direction p ∈ Rn; these are also called the steepest descent
method and Newton’s method, respectively. Of critical importance is determining how
far to step in a descent direction, and these are commonly addressed by line search meth-
ods, which will look for the point in the direction of a search direction that minimizes
the objective.

We often have constraints on optimization problems, which represent natural bounds
on the variables, regularization, or restricted domains.

Equality constrained optimization. An equality constraint h(x) = 0 can be equivalently
replaced by a pair of inequality constraints h(x) 6 0 and −h(x) 6 0. Therefore, for
theoretical purposes, equality constraints are redundant; however, it can be beneficial to
treat them specially in practice. There are several ways to handle the equality constraints
hi(x) = 0 in convex optimization: variable reparameterization, solving the dual, and
analytically solving them. Equality constraints may be eliminated using a nullspace re-
parameterization, in which the optimization variable is replaced by one in the nullspace
of the equality constraint. That is, Ax = b is replaced by A(Nz + x0) = b, where z is
the new optimization variable, x0 is any feasible solution to the original constraint, and
N is a matrix whose range is in the nullspace of A. Equality constraints may similarly
be introduced, as is useful for example in distributed optimization, e.g. ADMM (Boyd
et al., 2011). There is also an important special case where linearly constrained quadratic
programs are analytically solvable (as per its Karush-Kuhn-Tucker (KKT) conditions),
and this forms the basis for Newton’s method and interior-point methods, powerful
methods for solving more complex forms of convex optimization problems.

Inequality constrained optimization. Perhaps the greatest difference between uncon-
strained (or equality constrained) optimization and inequality constrained optimization
is that for the latter, it is not known beforehand which constraints will influence the
result. Equality constraints in general influence the result. However, this is not the case
for inequalities. Due to this fact, there exist only iterative algorithms to solve inequality
constrained problems. The main ways to approach inequality constraints are based on
identifying “active” constraints, penalizing constraints, and projecting onto constraints.
Here, we briefly describe the approaches:

• Active-set methods: The essence of active-set methods follows from the observation
that at the optimal solution to an optimization problem, inequality constraints are
either satisfied with equality or not imposed (or “active”) at all. The number of
possible choices for the active set are very large, up to 2m, where m is the number
of inequality constraints, and therein lies the challenge of inequality constraints.
Active-set methods iterate on guesses of the optimal active set, that is, the set

14

of constraints that are satisfied with equalities at the optimal solution. We then
can solve the resulting equality constrained optimization problem with a variety
of techniques as described above. Famous active-set methods include sequential
quadratic programming (SQP).

• Barrier methods: Barrier methods avoid the combinatorial difficulty of inequality
constraints in a different way. These methods generate iterates that stay away from
the boundary of the feasible region defined by the inequality constraints, and hence
are also known as interior-point methods. This is done through the relaxation of in-
equality constraints with “barrier” functions which act as soft (and differentiable)
constraints. As the solution of the convex program is approached, the barrier ef-
fects are weakened to permit an increasingly accurate estimate of the solution.
While interior-point methods are generally much faster on large problems, active-
set methods often benefit greatly from warm-starting optimization.

• Projection methods: A conceptually simple approach to inequality constrained op-
timization is a projected descent method. Intuitively, these methods alternate be-
tween computing a descent direction and projecting the new iterate onto the feasi-
ble set of solutions. Projected gradient methods can be much faster than other meth-
ods, but projecting onto some types of constraints can be as difficult as solving the
overall problem. In special cases of “simple” constraints, where efficient methods
can be found for the projection step, these methods are very appealing because they
do not need to consider the combinatorial set of possible active constraints, nor do
they need to solve a relaxed problem. Examples of simple constraints include affine
images, norm balls, non-negative orthants, and some simple polyhedra and cones.

Although presented separately above, the techniques that address different aspects of
convex optimization can often by readily combined for designing an appropriate method
for a new problem. Chapter 7 devises a projected gradient descent method, employing
techniques for both equality and inequality constrained optimization with a convex ob-
jective.

2.2 reinforcement learning

Reinforcement learning (RL) studies algorithms for optimizing performance in sequen-
tial decision making problems, where an agent continually interacts with its environment
(see Figure 5).

Mathematically, we assume decisions are made at discrete time intervals. Each timestep,
the agent receives an observation ot (or state st) and takes an action at. The environment

15

Figure 5: A simple illustration of reinforcement learning.

then receives and executes this action, and a reward signal rt is computed according to
a reward function R(st,at). The environment advances the state to st+1 according to a
transition probability function, P(st+1|st,at). Both st+1, rt are sent back to the agent, and
the loop continues. An RL algorithm seeks to maximize the agent’s total reward, given
a previously unknown environment, through a trial-and-error learning process. Some
problems may optionally have a finite horizon H, after which the sequential process ter-
minates. Additionally, a real-valued discount factor γ ∈ (0, 1] may be given, which injects
a preference of rewards received sooner rather than later. The objective is to optimize the
expected sum of discounted rewards over time of the agent:

η = E[

H∑
t=0

γtrt], (5)

Reinforcement learning is a general framework that can be used to study a wide range
of problems and it has been applied in a variety of different fields, from business inven-
tory management (Van Roy et al., 1997) to robot control (Kober et al., 2013), to structured
prediction (Daumé et al., 2009). In mixed autonomy systems, the automated components
can be framed as the learning agent; the human decision making components and the
rest of the system can be framed as the environment. Chapter 4 will provide concrete
examples in the context of mobility. For a more thorough overview of reinforcement
learning and its history, we refer the reader to Sutton and Barto (1998).

This section serves as preliminary material for Part i of this thesis. Specific to this
thesis, we review deep reinforcement learning, the use of function approximators in
reinforcement learning, and policy gradient methods.

Deep learning. Deep learning employs powerful function approximators such as neural
networks in order to learn representations from data. This stands in sharp contrast to
traditional approaches in machine learning, which have typically required hand-crafted

16

features. Originally conceived in the 70s and 80s (Werbos, 1974; Parker, 1985; LeCun,
1985; Rumelhart et al., 1986), deep learning has grown increasingly popular in recent
years, achieving state-of-the-art performance in speech recognition, image classification,
machine translation, and many other applications. We refer the reader to LeCun et al.
(2015) for a high-level overview of the underlying techniques and recent advances in
deep learning, and to Goodfellow et al. (2016) for a more comprehensive account of the
subject.

Deep reinforcement learning. Deep reinforcement learning (Deep RL) studies reinforce-
ment learning algorithms that make use of expressive function approximators such as
neural networks. This allows the algorithm to scale up to high-dimensional sensory
inputs and complex control logic, without requiring manual feature engineering or lim-
iting oneself to simple, insufficiently expressive models. Its success can be traced back to
the 90s, with the work by Tesauro (1994) demonstrating a neural-network-learned strat-
egy achieving superior performance on the backgammon game. Recently, advances in
deep learning have led to significant progress in Deep RL, with impressive applications
such as learning to play Atari games from raw pixels (Mnih et al., 2013; Mnih et al.,
2015), mastering the game of Go (Silver et al., 2016), acquiring advanced manipulation
skills (Levine et al., 2016), and learning high-dimensional locomotion controllers (Schul-
man et al., 2015; Schulman et al., 2016; Lillicrap et al., 2016). We refer the reader to Y. Li
(2017) for a more recent survey of the algorithms and applications of deep reinforcement
learning.

There are two main model-free strategies for solving (deep) reinforcement learning
problems and both are amenable to the use of function approximation in different ways.
We first introduce the two strategies, and then describe function approximation in their
context. Model-free is meant to refer to approaches which are not based on a dynamics
model. For a more detailed classification of deep reinforcement learning methods, we
refer the reader to Schulman (2016).

Policy optimization. The first approach, policy optimization, is to search in the space
of behaviors in order to find one that performs well in the environment. These methods
are centered around the policy, the function that maps the agent’s state to its next action.
These methods view reinforcement learning as a numerical optimization problem where
we optimize the expected reward with respect to the policy’s parameters. There are two
ways to optimize a policy.

• Derivative free optimization (DFO): These methods work by perturbing the policy
parameters in many different ways, measuring the performance, and then moving
in the direction of good performance. These methods including random search, ge-

17

netic algorithms, genetic programming, and evolutionary algorithms. Some DFO
algorithms used for policy optimization include cross-entropy method (Szita and
Lörincz, 2006), covariance matrix adaptation (Wampler and Popović, 2009), and
natural evolution strategies (Wierstra et al., 2008) (these three use Gaussian distri-
butions); and HyperNEAT, which also evolves the network topology (Hausknecht
et al., 2012).

• Policy gradient methods: These algorithms can estimate the policy improvement di-
rection by using various quantities that were measured by the agent; unlike DFO
algorithms, they do not need to perturb the parameters to measure the improve-
ment direction. Policy gradient methods are a bit more complicated to implement,
and they have some difficulty optimizing behaviors that unfold over a very long
timescale, but they are capable of optimizing much larger policies than DFO algo-
rithms. Policy gradient methods include the work of Williams (1992), Sutton et al.
(2000), Jaakkola et al. (1994), and Kakade (2002).

Approximate dynamic programming. The second approach, approximate dynamic pro-
gramming, is to use statistical techniques and dynamic programming methods to esti-
mate the utility of taking actions in states of the environment. These methods focus on
learning value functions, which predict how much reward the agent will receive. The
true value functions obey certain consistency equations, and ADP algorithms work by
trying to satisfy these equations. Policy iteration and value iteration are two well-known
algorithms for exactly solving RL problems that have a finite number of states and ac-
tions.

Finally, there are actor-critic methods that combine elements from both policy opti-
mization and approximate dynamic programming. The method described in Chapter 5,
along with Lillicrap et al. (2016), Schulman et al. (2016), and Heess et al. (2015), are
examples of actor-critic methods.

Function approximation in reinforcement learning. In policy optimization methods,
function approximators such as deep neural networks are used to represent the policy.
In approximate dynamic programming methods, function approximators such as deep
neural networks are used to represent the value function (e.g. Mnih et al., 2015).

2.3 combinatorial optimization

In combinatorial optimization, we also wish to optimize a function f(x), however this
time x ∈ S resides in a set S of feasible solutions to the problem. For instance and in con-

18

trast to convex optimization, x may reside in a discrete space, e.g. S = Nm. Combinato-
rial optimization problems arise in countless applications, from billion-dollar operations
to everyday computing tasks. They are used by airline companies to schedule and price
flights; by large companies to decide what and where to stock in their warehouses; by de-
livery companies to decide the routes of their delivery trucks; by Netflix to decide which
movies to recommend you, by a GPS navigator to come up with driving directions; and
by word-processors to decide where to introduce blank spaces to justify a paragraph.

Importantly, in combinatorial optimization, one solution vector x may have no relation
to a different vector x ′, no matter how similar they may look. This is in stark contrast
to convex optimization, where conditions such as Lipschitz constants provide bounds
on the deviation ‖f(x) − f(x ′)‖. As such, in general, solution methods must either find a
global optimum through exhaustively searching all possible solutions (or cleverly reduc-
ing the search space using deductive reasoning techniques), find a local optimum within
some defined neighborhood, or find a solution that is within some bound of the global
optimum. In the following, we review the computational complexity of solving combina-
torial optimization problems and these main classes of combinatorial optimization meth-
ods, based on the type of solution they produce. We refer the reader to Papadimitriou
and Steiglitz (1998) and Trevisan (2011) for a more thorough overview and specific ex-
amples of combinatorial optimization and combinatorial algorithms. This section serves
as preliminary material for Part iii of this thesis.

Computational complexity. The complexity of an algorithm is the amount of resources
required for running it, for instance time or space. The complexity of a problem is
the minimum of the complexities of all possible algorithms for this problem (including
unknown algorithms). Problems are characterized by complexity classes, which divide
problems based on their resource requirements.

Famous named complexity classes include P, NP, NP-Complete, and NP-Hard.
• P: The complexity class P contains all decision problems that can be solved by

a deterministic Turing machine using a polynomial amount of computation time
(polynomial time).

• NP: The complexity class NP is the set of all decision problems for which the
instances where the answer is “yes” have efficiently verifiable proofs.

• NP-Complete: The hardest problems in NP are called NP-complete problems, whose
solutions are sufficient to solve any other NP problem in polynomial time.

• NP-Hard: The complexity class NP-Hard is the set of problems that are at least as
hard as the hardest problems in NP. Contained in the NP-Hard class are search and
optimization problems, not just decision problems.

19

That is P⊆NP⊆NP-Hard and NP-complete⊆NP. The most important open question in
complexity theory, the P versus NP (“P = NP?”) problem, asks whether polynomial time
algorithms actually exist for solving NP-complete, and by corollary, all NP problems. It
is widely believed that this is not the case. If P 6= NP, then NP-hard problems cannot
be solved in polynomial time. As such, many combinatorial optimization problems are
NP-hard, and so it is unlikely that we can design exact efficient algorithms for them.
Chapter 9 includes a survey of complexity results in ridesharing, typically posed as
search or optimization problems.

Reductions. A standard method for obtaining lower bounds of complexity consists of
reducing a problem to another problem. That is, a reduction from one problem to another
may be used to show that the second problem is at least as difficult as the first. ProblemA

reduces to problem B, written A 6m B1, if an algorithm for solving problem B efficiently
(if it existed) could also be used as a subroutine to solve problem A efficiently. When this
is true, solving A cannot be harder than solving B. In Chapter 9, we employ a reduction
to show that a ridesharing system optimization problem is NP-Hard.

Combinatorial optimization methods may be characterized based on the type of solution
they produce: globally optimal, locally optimal, and boundedly suboptimal.

Exact methods. Exact methods terminate with the global optimal solution to a combi-
natorial optimization method. In some special cases, there exist efficient exact methods,
such as for problems within the complexity class P, for example the shortest path, min-
imum spanning tree, and max flow problems. In general, however, these methods will
undergo exhaustive enumeration or implicit evaluation of all admissible solutions, in
order to obtain the optimal solution. Two important classes of methods which perform
implicit evaluation are dynamic programming and branch-and-bound techniques. The
main difference between them resides in the way they divide a problem into subprob-
lems. A branch and bound algorithm partitions the problem into independent subprob-
lems, solves the subproblems and outputs as optimal solution to the original problem the
best feasible solution found along the search. Branch and bound is the main workhorse
of commercial Mixed Integer Linear Programming (MILP) solvers (Koch et al., 2011).
Many techniques can heuristically speed up the search progress of branch and bound
techniques; for instance, cutting planes can reduce the search space. In contrast, a dy-
namic programming framework is applicable to a smaller set of optimization problems

1 The m in A 6m B indicates a mapping reduction and is a common type of reduction. A mapping reduction
is an algorithm that can transform (map) any instance of a decision problem A into an instance of decision
problem B, and the solution to any problem B can be efficiently (poly-time) transformed into the solution
of problem A.

20

and more specifically to problems that can be divided into subproblems not independent,
but into subproblems that share subsubproblems. In this context, a dynamic program-
ming approach does not repeatedly solve common subsubproblems: each of them is
solved just once and its optimal solution saved in a suitable table. Chapter 9 employs
exact methods, in the context of mobility systems.

Local search. One of the most intuitive solution approaches to combinatorial optimiza-
tion is to start with a known feasible solution and slightly perturb it while decreasing
the value of the objective function. In order to operationalize the concept of “slight per-
turbation,” let us associate with every x ∈ S a subset N(s) ⊆ S, called the neighborhood
of x. The solutions in N(s), or the neighbors of x, are viewed as perturbations of x. Local
search methods then move from neighbor to neighbor as long as possible while improv-
ing the objective value. This simplest variant of local search is called hill climbing (or
simple hill climbing). Local search can be seen as the basic principle underlying many
classical optimization methods, such as gradient descent for continuous optimization or
the simplex method for linear programming. Some of the important issues that have
to be dealt with when designing a local search procedure are: how to pick the initial
solution, how to define neighborhoods, and how to select a neighbor of a given solution.

A key benefit of these methods is their wide applicability and low empirical complex-
ity; local search methods can be used for highly intricate combinatorial optimization
problems, for which analytical models would involve astronomical numbers of variables
and constraints, or about which little theoretical knowledge is available. A key drawback
of local search methods is that the procedure stops when it encounters a local optimum.
Another is that, in general, there is no guarantee that the value of the objective function
at an arbitrary local optimum comes close to the globally optimal value. Metaheuristic
algorithms extend local search methods to overcome some of these challenges by intro-
ducing restarts (i.e. repeated local search), memory (i.e. tabu search), or stochasticity (e.g.
simulated annealing). Chapter 9 employs local search methods, in the context of mobility
systems.

Approximation algorithms. Approximation algorithms are those that run in polynomial
time and find solutions that are guaranteed to be close to optimal. By no longer seeking
the globally optimal solution, it may become feasible to aim for a polynomial running
time. At the same time, it is of interest that the worst case performance of the algorithm
is close to optimal. Common techniques for designing approximation algorithms include
greedy algorithms, local search, linear programming relaxations, primal-dual methods,
dynamic programming, and random sampling. Famous examples of problems with ap-
proximation algorithms include vertex cover, set cover, Steiner tree, knapsack, and travel

21

salesman problems. Chapter 10 presents an approximation algorithm for metric k-set
partitioning.

22

3
R E V I E W O F A U T O M AT E D T R A N S P O RTAT I O N

Study the past if you would define the
future.

Confucius (479 BC)

A self-driving taxi picks you up at home and seamlessly delivers you to work. Au-
tomated vehicles deliver your lunch and your packages; they pick up your kids from
school; they magically solve the problem of finding a parking spot; and they eliminate
drunk driving. Transportation is as easy as clicking a hyperlink in a browser. With min-
imal effort on your part, available vehicles are routed to you, intelligently balancing
network congestion to quickly get you where you are going.

Although these descriptions are still the future (as of the time of writing), automated
vehicle technology is now gradually nearing maturity and commercial introduction. Al-
phabet’s efforts–which involve a fleet of cars that collectively have logged hundreds of
thousands of autonomous miles–have received widespread media attention and demon-
strate that this technology has advanced considerably. Every major commercial automaker
is engaged in research in this area and full-scale commercial introduction of truly au-
tonomous (including driverless) vehicles are being predicted to occur within three to 20

years. Several states have passed laws to regulate the use of automated vehicles, and
many more laws have been proposed.

Some parts of this chapter are written based on personal correspondence with Steven
Shladover, a research engineer with UC Berkeley’s Partners for Advanced Transportation
Technology (PATH) program. Steven began pioneering automated transportation in the
1980s. He believes that a seamless, autonomous transportation network is still decades
away. However, recent advances in engineering and computer science have demonstrated
that automated driving can dramatically improve the safety, efficiency, and availability
of transportation, bringing this futuristic scenario a little closer to reality. This chapter

23

provides an overview of just how far automated transportation has come in recent years,
and where it may go in our lifetimes.

3.1 safety first

The stakes for automated vehicles are high. In the United States alone, more than 30,000

people are killed each year in crashes, approximately 2.5 million are injured, and the vast
majority of these crashes are the result of human error (Choi et al., 2008). All told, 5.4
million automotive crashes happen each year in the United States, and these car crashes
result in an estimated $871 billion in economic, social, and emotional damage (see Fig-
ure 6). By greatly reducing the opportunity for human error, AV technologies have the
potential to greatly reduce the number of crashes. Automobiles have become increasingly
heavy over the past 20 years partly to meet more rigorous crash test standards. If crashes
become exceedingly rare events, it may be possible to dramatically lighten automobiles.

Automated vehicles may also reduce congestion and its associated costs. Estimates
suggest that effective road capacity (vehicles per lane per hour) can be doubled or tripled.
The costs of congestion can also be greatly reduced if vehicle operators can productively
conduct other work. Automated vehicle technology may also reduce energy use.

In the long run, automated vehicles may also improve land use. Quite apart from the
environmental toll of fuel generation and consumption, the existing automobile shapes
much of our built environment. Its centrality to our lives accounts for the acres of parking
in even our most densely occupied cities. With the ability to drive and park themselves
at some distance from their users, automated vehicles may obviate the need for nearby
parking for commercial, residential, or work establishments, which may enable a reshap-
ing of the urban environment and permit new in-fill development as adjacent parking
lots are made unnecessary.

Simply replacing human drivers with machines does not guarantee safety–in fact,
nothing will ever guarantee absolute safety in a moving vehicle. From children play-
ing in the street, to birds, snowstorms, and even inattentive or aggressive human drivers,
the hurdles to making driving safer can seem insurmountable. However, autonomous
vehicles can limit the risks of driving. To work toward this goal, researchers and engi-
neers are trying to improve all the parts involved: on-board sensors, vehicle-to-vehicle
and vehicle-to-road communications, and underlying software (Korkmaz et al., 2004; F.
Li and Y. Wang, 2007; Gozalvez et al., 2012).

Nearly 20 years ago, researchers from UC Berkeley’s PATH showed that autonomous
vehicles could operate safely on a freeway. In partnership with General Motors (GM),

24

Figure 6: The annual cost of motor vehicle crashes in the United States in billions of dollars, according to
a study from 2010 by the US Department of Transportation. Credit: Florian Brown-Altvater.

they tested an autonomous platoon of vehicles on a freeway in San Diego in 1997

(Shladover, 2005; Shladover, 2007). Magnets were embedded a few feet underneath the
road surface and guided specialized vehicles along the center of each lane with high pre-
cision. Due to the nature of magnetic fields, this system was largely immune to weather
conditions and sensor malfunction. Eight driverless Buick LeSabres drove single-file with
just seven feet between each vehicle. They changed lanes and shifted positions, all with-
out any human input. The event enjoyed national news coverage, and the 1,000 visitors
who rode in the vehicles were ecstatic.

Despite the success of PATH’s early trials with its autonomous vehicles, the US De-
partment of Transportation decided to cut the funding for the project, citing budget
pressures and the greater importance of near-term safety systems. Much of the work
was left unfinished and unpublished. For a comprehensive view of automated highway
systems, we refer the reader to P. Ioannou (2013).

Nevertheless, this scheme for automated driving–using road-embedded magnets to
guide vehicles–remains the preferred strategy for helping autonomous vehicles “see”
the road. On a snowy day, most human drivers struggle to control their vehicles on the
road, due to low tire traction and reduced visibility. Soon after PATH’s first successful
demonstration in 1997, PATH researchers turned the problem of snow driving on its

25

head by developing a magnet-based automated guidance system for safe snow removal
(K. S. Yen et al., 1999; Ravani and K. S. Yen, 2000). The system allowed human snow plow
operators to safely navigate snow-obscured roads. Dubbed the Advanced Snowplow
Project, the automated snowplows were successfully tested at several locations, including
the notorious Donner Pass in the Sierra Nevada.

This precise magnetic guidance system (Lasky et al., 2004) has also made it easier for
wheelchair users to board public transportation vehicles, by guiding large vehicles to
within two centimeters of the curb. In 2013, PATH ran an autonomous public bus line
in Eugene, Oregon as part of a six-month study on improving bus accessibility for the
disabled (W.-B. Zhang et al., 2007). This embedded sensor approach also benefits from
robustness to changes in temperature, weather, and other conditions and has little main-
tenance requirements, and thus has potential for commercialization for wider adoption.

In addition to magnetically guided systems, which depend on the modification of
roads, researchers have developed alternative schemes for automating driving in novel
environments. In 2005, the US Department of Defense’s Defense Advanced Research
Projects Agency (DARPA) issued a “Grand Challenge” on autonomous driving in desert
areas, with the motivation of aiding in combat scenarios. This challenge spurred univer-
sity researchers across the United States to begin new projects with the goal of designing
autonomous vehicles that could navigate the desert environment (Thrun et al., 2006). In
2007, DARPA issued a follow-up challenge to develop autonomous vehicles for urban
driving (Buehler et al., 2009). Five vehicles completed the desert track and six completed
the urban track, expanding the applicability of automated transportation beyond high-
ways. Several members from the winning teams of both contests were soon recruited to
work on Google’s self-driving car team.

Unlike UC Berkeley’s PATH vehicles, the vehicles borne from the DARPA challenges
relied on expensive sensors, computer vision algorithms, and planning algorithms from
the field of robotics to “see” the road. Relying on computer vision alone complicates
road safety in an autonomous vehicle, but Google’s efforts to develop a self-driving car
have proven the feasibility of automating driving without specially-designed roads. At
the time of writing, Google’s self-driving cars have completed over one million miles of
testing, resulting in only one accident for which Google was at fault.

Following research continues to develop new methods for improving safety in au-
tomated transportation. One such approach employs reachability analysis, which uses
detailed physical models of vehicles and their environments to evaluate unsafe condi-
tions that could be encountered when moving along a particular route (Mitchell et al.,
2005; Bayen et al., 2007; Gillula et al., 2011). These models explicitly account for uncer-

26

tainty and worst-case scenarios, providing bounds for what an autonomous vehicle can
safely do.

NASA is now applying these reachability analyses to study the safety of drones fly-
ing in proximity to one another in vast airspaces. One goal of this research is to help
automate platoons of many drones, which are in part inspired by the ground vehicle pla-
toons of PATH’s 1997 highway experiments. Their research shows how treating groups
of drones as single units can dramatically improve the safety and efficiency of automated
flight.

Airspace and public roads have some key differences, however. “Automating driving
a vehicle on public roads is orders of magnitude more complicated than an autopilot
system for commercial aircraft flying at 30,000 feet,” says Shladover. “If something goes
wrong at 30,000 feet, you’ve got on the order of 10 seconds to identify what’s going on
and try to correct it; if you’re in a road vehicle, you have about one-tenth of a second.”
Still, efforts like these are bringing us closer to making safer roads a reality.

3.2 freeing the freeway

While road safety deserves careful consideration in the design of any autonomous car,
bumper-to-bumper traffic affects drivers frequently–and might be alleviated by driver-
less cars of the future. “Phantom” traffic jams, which appear out of nowhere, are per-
plexing to both drivers and researchers. There are no accidents, traffic bottlenecks, work
zones, or bad weather to explain why a road is backed up with traffic. This type of traffic
jam accounts for about a quarter of all traffic jams, and results in inefficient stop-and-go
driving. Solving phantom jams and reducing stop-and-go driving with the help of au-
tonomous vehicles would do more than save drivers time–the braking and acceleration
inherent to driving in traffic also wastes gas. So why do these jams occur in the first
place?

Car-following models were first developed by researchers at GM in the 1950s and ex-
plain patterns of stop-and-go traffic by relating one car’s speed to the speed of the car in
front of it (Brackstone and McDonald, 1999). As one car slows down, the following car is
forced to brake after a brief delay due to the driver’s reaction time. Then the next follow-
ing car brakes, and the reaction times of each driver begin to add up. This compounded
delay, caused by human reaction times and other response patterns, causes backwards
propagating waves to travel down the freeway, which we experience as stop-and-go traf-
fic. As demonstrated beautifully in the field experiment of Sugiyama et al. (2008), from
a constant reference frame, for instance watching the stop-and-go traffic from a high-

27

Figure 7: Top: In freeway traffic, human drivers typically accelerate to catch up with the car preceding
their own. This diagram shows how human reaction times can cause a chain reaction of drivers
braking, one after another, even after the first car begins to accelerate again. The group of slowed
or stopped vehicles seems to travel backwards, even though all the vehicles are moving forward.
This phenomenon is known as the backwards wave.
Bottom: An automated car can accelerate just enough to keep a safe distance between vehicles
both in front of and behind itself, dampening the backwards wave. Any following vehicles,
driven by humans or not, will react accordingly. Instead of stop-and-go, all cars can drive on
smoothly. Credit: Florian Brown-Altvater.

way overpass, one would see a wave of vehicles moving backwards even though all the
cars are moving forwards. In physics, this concept is known as the backwards wave (see
Figure 7).

One of the primary motivations of the automated highway project of 1997 was to
prove that autonomous vehicles can operate with minimal reaction times, and can be
designed to drive without the stop-and-go phenomenon. When vehicles follow one an-
other so closely, air drag is reduced and fuel economy improves by 20%. This finding has
particular implications for America’s vast trucking routes and net energy consumption.
In the future, freeway traffic may be optimized through the automated coordination of
platoons of passenger and commercial vehicles, cutting transit times, saving gas, and
reducing a major source of frustration for drivers.

28

3.3 confronting the last mile

If an automated taxi dropped passengers off at the freeway exit nearest to their destination–
rather than at their doorstep–most people would still have miles left to travel. This is
particularly true in the United States, where many people still live in sprawling suburbs.
This is called the last mile problem, referring to the technical, economic, and political
challenges of transporting people efficiently across short distances.

While the volume of vehicles passing through a given freeway exit is likely to be
high, the volume of vehicles driving on a particular neighborhood street tends to be low.
Such sparse traffic in residential areas has its benefits in less noise pollution and better
air quality. However, from an economic standpoint, this means that it is much cheaper
for transit systems to operate exclusively along freeways and freeway exits, avoiding
individual homes.

In dense urban centers like downtown San Francisco, the economics of the last mile
problem are less daunting. However, coordinating transportation needs in such places
presents its own challenges, requiring excellent estimation of timing and demand. When
and to where should available vehicles be sent? Can we measure or even predict where
people are coming and going?

Answering these questions relies on origin-destination estimation, which estimates the
demand for travel between pairs of locations in a network. Origin-destination estimation
has been actively studied by the transportation research community since the 1940s, but
a paucity of real-world data has long stymied its successful application to the last mile
problem. For decades, the best available data was based on census surveys, which di-
rectly query the population for its transportation needs. Since the 1970s, advances in
sensing infrastructure, including traffic counters embedded underneath roads, have bol-
stered origin-destination estimates. These estimates have played an integral role in long-
term urban planning and road development in highly-trafficked areas, but relatively few
roads in a given city are actually equipped to monitor their traffic, complicating efforts
to accurately predict exactly where and when bottlenecks might occur.

In 2015, we studied an alternative approach for estimating short-term transportation
needs, further elaborated in Chapter 7. In particular, we collaborated with AT&T to
develop a new optimization method, called Cellpath, which uses high-resolution data
from cell phones to predict transportation demands in the greater Los Angeles area.
This work showed that the demand for travel on particular routes could be estimated
with 90% accuracy using location traces from cell phones. We found that the aggregated
phone traces, demand for travel between an origin and destination, and demand for

29

a particular road could be combined to efficiently predict transportation demands with
unrivaled precision. Armed with comprehensive demand predictions, autonomous fleets
have enormous potential to efficiently coordinate a minimum number of deployed vehi-
cles on the street. A 2014 study, conducted by MIT and Stanford in Singapore, estimated
that an autonomous fleet of taxis could provide the same level of transportation service
as today’s taxi systems using just one-third the current number of vehicles (Spieser et al.,
2014).

3.4 taking to the streets

“Today we are well underway to a solution of the traffic problem.” This claim, made in
1948 by Robert Moses, the master builder of the New York City area, is as true today as
it was then. Which is to say, not at all. In the middle of the last century, the preferred
solution to “the traffic problem” was more cement: new highways, bridges, and lanes. To-
day, the sensible solution includes more sensors and better computers: highly automated
vehicles that use existing roadways and roadway networks much more efficiently. This
automation, we are told, will make vehicular congestion a “thing of the past.” As in the
past, however, this prediction presumes that more capacity necessarily means less con-
gestion. Today’s transportation planners recognize that the relationship between these
two concepts is much more complex.

Though automated transportation has come a long way in the last few decades of
research and development, the benefits of automated driving are still out of reach for
most people. Gains in efficiency promised by today’s studies of autonomous vehicles
and platoons are often computed in ideal settings. In these studies, autonomous vehicles
are either rare enough not to alter preexisting traffic patterns, or numerous enough to
coordinate nearly all vehicles on a given road.

However, adoption of autonomous vehicles will likely be gradual (as discussed in
Chapter 4), making it difficult to model future interactions between human and computer-
driven vehicles. Perhaps it should be the responsibility of policymakers to ensure a
smooth transition–one that is projected to take at least 20 years. The rapid rate of techno-
logical change makes it increasingly difficult to anticipate even short-term future trans-
portation needs (Levinson and Krizek, 2015). For instance, it is not yet known how com-
panies will financially manage their future autonomous fleets. Will these vehicles be
privately owned or rented? Will passengers hail the vehicles like taxis, or book particu-
lar routes on shared vehicles in advance? These distinct possibilities for organizing our
autonomous vehicle systems may create a whole new set of challenges, both technical

30

and political, for managing our roads.
By reducing the time cost of driving, automated vehicles may encourage greater travel

and increase total vehicle miles traveled (VMT), which could lead to more congestion.
A 2016 study estimated that fuel consumption could decrease as much as 40% or in-
crease as much as 100% once autonomous fleets of vehicles are rolled out onto the
streets (see Figure 2). Automated vehicles may increase sprawl if commuters move ever
farther away from workplaces. Similarly, they may eventually shift users’ preferences
toward larger vehicles to permit other activities, such as errands and leisure. In theory,
this could even include beds, showers, kitchens, shops, or offices. If automated vehicle
software becomes standardized, a single flaw might lead to many accidents. Internet-
connected systems might be hacked by the malicious. And perhaps the biggest risks are
simply unknowable. From seat belts, to air bags, to anti-lock brakes, automakers have
often been reluctant to incorporate expensive new technology, even if it can save many
lives (Mashaw and Harfst, 1990). Navigating the AV landscape makes implementation of
these earlier safety improvements appear simple by comparison. For now, the prospect
of autonomous vehicles introduces further uncertainty into our predictions about trans-
portation in the future, and negotiating the risks to reach the opportunities will require
careful engineering and policymaking.

Different population densities also complicate the adoption and operation of autonomous
fleets. Even in dense urban areas, autonomous vehicles will not become common for at
least the next decade. In contrast to the densely populated city of Singapore, where ex-
tensive automated fleet modeling has been carried out, half of the American population
resides in suburban and rural areas. In such sparsely-populated regions, car ownership
is high, and the economics of autonomous fleets are unsustainable. This has already
been observed with human-driven fleets: ride-hailing services such as Uber and Lyft are
expanding in urban centers worldwide, but efforts to expand into suburbs have been
limited.

Lastly, travel time and fuel costs are but two of the simplest factors that influence the
adoption of new transportation technologies. Each person has his or her own unique
transportation needs and preferences. Families with young children and people with
disabilities need reliable and flexible transportation options that may not resemble main-
stream commutes. More broadly, transportation must meet the diverse inclinations of a
large population, from safety to personal hygiene and smoking preferences. Some peo-
ple might prefer reliable, shared forms of transit versus fast, private forms of transit, and
might even have contradictory desires for transit that is both safe and fast, or both cheap
and available. This motivates the design of algorithms for coordinating vehicles amidst

31

these complex human needs, which will be discussed in Part iii of the thesis.
The ideal future–where transportation is safe, seamless, affordable, and available to

all–is a grand and beautiful picture. However, there are still many hurdles to cross when
it comes to making autonomous transportation generally available.

3.5 full speed ahead

In the early 1900s, there were no driver’s licenses, stop signs, traffic lights, lane lines,
street lighting, brake lights, or posted speed limits. In 1917, 75% of traffic fatalities were
pedestrians; now that number is less than 15%. We have certainly made a lot of progress
since then. Autonomous vehicles have the potential to solve some long-standing prob-
lems in traffic, but also threaten to introduce new ones. Perhaps in a couple decades,
other technological advances will eliminate a majority of transportation needs altogether,
thus providing an alternative to optimizing traffic.

As of the time of writing, there have been four self-driving car fatalities (three caused
by Tesla “Autopilot” vehicles in 2016-2018, and one caused by an Uber self-driving proto-
type in 2018). In recent years, the world has been bracing itself for these first major acci-
dents caused by autonomous vehicles, with countless discussions of the trolley problem
as well as active work in public policy. In the California State Legislature of 2012, state
senators passed a bill directing the California Department of Motor Vehicles (DMV) to
set testing and operating guidelines for autonomous vehicles, an unprecedented respon-
sibility. The California DMV was the first transit agency in the world to tackle the impli-
cations of self-driving vehicles, and called upon the Institute of Transportation Studies at
UC Berkeley to help the agency navigate this deeply technical problem. In the following
months, Shladover and his colleagues advised the DMV on the technologies involved
with autonomous vehicles and made policy recommendations to ensure the safety of
autonomous vehicles, while also providing companies with the room to innovate. Un-
fortunately, as evidenced by the recent fatalities, there is much more that is needed to
ensure safe testing and deployment practices.

Automating transportation is coming, slowly but surely. Automated vehicles can dra-
matically cut down on traffic accidents and fuel consumption on highways, complete
the last mile of each journey, and bring low-cost transportation to many people. Some-
day, the average commute may even resemble boarding an escalator (see Figure 8). But
a world in which we can leave transportation to the machines lies ahead of us, and the
challenges span from the technical and political to the human and the personal. It may
not be time for us to buckle our seat belts inside driverless cars, but our shared dream

32

Figure 8: Credit: Florian Brown-Altvater.

of an automated transportation system is slowly but surely becoming our future.

33

Part I

C O N T R O L

34

4
E M E R G E N T B E H AV I O R S I N M I X E D A U T O N O M Y T R A F F I C

A sip of wine, a cigarette,
And then it’s time to go.
I tidied up the kitchenette;
I tuned the old banjo.
I’m wanted at the traffic-jam.
They’re saving me a seat.

Leonard Cohen, Boogie Street (2001)

Part i of the thesis is dedicated to studying the control of mixed autonomy systems. In
particular, we demonstrate that machine learning methods, in particular deep reinforce-
ment learning, are suitable for this study, surpassing classical methods based in partial
differential equations and manual controller design in handling the system complexity.
We begin by first showing that a mixture of automated and human-driven vehicles may
yield vastly different system characteristics, such as average velocity, as compared to a
system with only human-driven vehicles (Chapter 4), thus demonstrating the existence
of mixed autonomy systems in the open world. In particular, by casting the problem into
the framework of model-agnostic reinforcement learning, it is established that a small
fraction of automated vehicles has the potential to eliminate congestion and dramatically
improve overall road velocities for all vehicles.

Many advances are needed to enable mixed autonomy systems at the scale of thou-
sands or even millions of agents, including high speed and distributed simulation sys-
tems and algorithmic development. To this end, we present generic deep reinforce-
ment learning techniques for scaling up to higher dimensional control problems, such
as controlling many vehicles in a mobility system (Chapter 5). Additionally, an open-
source library is introduced which allows for integrated studies of reinforcement learn-
ing and traffic microsimulation, with scalable distributed simulation and cloud deploy-

35

ment (Chapter 6). The contributions of this part have implications for the environment
and public policy concerning the regulation of automated vehicles, as well as scalable
reinforcement learning.

The present chapter formulates and approaches the mixed autonomy traffic control
problem (where both automated and human-driven vehicles are present) using the pow-
erful framework of deep reinforcement learning (RL). Traffic dynamics are often modeled
by complex dynamical systems for which classical analysis tools can struggle to pro-
vide tractable policies used by transportation agencies and planners. In light of the in-
troduction of automated vehicles into transportation systems, there is a new need for
understanding the impacts of automation on transportation networks.

The resulting policies and emergent behaviors in mixed autonomy traffic settings pro-
vide insight for the potential for automation of traffic through mixed fleets of automated
and manned vehicles. Model-agnostic learning methods are shown to naturally select
policies and behaviors previously designed by model-driven approaches to improve
roadway efficiency, such as stabilization, compressive platooning, traffic breaks, and
cooperative merging. We additionally demonstrate that state-of-the-art hand-designed
controllers for stabilizing traffic excel when in-distribution, but fail to generalize; on the
other hand, we show that even simple neural network policies can solve the stabilization
task across density settings, generalize to out-of-distribution settings, and yield or even
exceed a theoretical velocity upper bound on the non-controlled system. Remarkably, in
an intersection network configuration, the learned policy succeeds at maximizing veloc-
ity by leveraging the human driving behavior to form an emergent mixed autonomy
platoon, which efficiently spaces the vehicles in the network. We describe our results in
the context of existing control theoretic results for stability analysis and mixed autonomy
analysis. This chapter additionally introduces state equivalence classes to improve the
sample complexity for the learning methods. Mixed autonomy traffic, then, is a mixed
autonomy system in the open world, and serves as a running example throughout the
thesis for concretely demonstrating the problems and challenges of mixed autonomy
systems.

4.1 overview

Emergent behaviors have long motivated general learning methods such as genetic al-
gorithms, simulated annealing, and RL algorithms, producing interesting, useful and
captivating behaviors in complex dynamical systems such as swarms (Reynolds, 1987),
ant colonies (Maniezzo, 1992), and life (Gardner, 1970). The present chapter studies emer-

36

gent behaviors in road transportation networks in the presence of mixed autonomy, the
mixture of automated and non-automated vehicles, through the use of reinforcement
learning techniques. Such studies can eventually help to design controllers for deploy-
ment in real-world settings, and can aid in complex tasks such as traffic management,
reducing energy consumption, environmental monitoring, etc.

It has been found that greenhouse gas emissions could be reduced by up to 20%
through traffic congestion mitigation strategies (Barth and Boriboonsomsin, 2008) and
numerous field operational tests have demonstrated that a small number of vehicles
injected into a congested traffic system can result in a 13-40% reduction in fuel consump-
tion (CIECA, 2007; Barth and Boriboonsomsin, 2009; Stern et al., 2017). These studies mo-
tivate the design of controllers for a small number of vehicles in complex traffic scenarios
to achieve significant outcomes. However, modeling and analysis of traffic dynamics is
notoriously complex and yet is a prerequisite for model-based traffic control (Treiber and
Kesting, 2013; Papageorgiou et al., 2003). Researchers classically trade away the complex-
ity of the model (and thus the realism of the model) for tractability of analysis (for ex-
ample through aggregate models), often with the goal of designing optimal controllers
with desirable provable properties, such as safety or optimality (Technical Committee
ISO/TC 204, Intelligent transport systems, 2010). Consequently, results in traffic control
can largely be clustered into several groups which include simulation-based numerical
analysis or theoretical analysis on idealized settings. In the present chapter, we largely
focus our discussion on control of microscopic longitudinal dynamics1 and lateral dy-
namics (Zheng, 2014) on a variety of network configurations.

Deep RL, as presented in Section 2.2, is a powerful tool for control and has already
demonstrated success in complex but data-rich problem settings such as Atari games
(Mnih et al., 2013), 3D locomotion and manipulation (Schulman et al., 2015; Heess et
al., 2015), and chess (Lai, 2015), among others. In this chapter, we revisit the problem
of traffic control and view automated vehicles as a mechanism for congestion control,
using the framework of deep RL.

Using model-free RL methods, the present chapter studies emergent behaviors in
mixed autonomy traffic. This study sets the stage for further study of increasingly com-
plex and realistic scenarios and the discovery of policies that can be deployed in real life.
Real-world phenomena have highly stochastic driving dynamics with different human
drivers exhibiting differing levels of aggression or timidity, drivers merging and exiting,
accidents blocking a road, drivers distracted by nearby accidents, sudden slowdowns in

1 Microscopic longitudinal dynamics are sometimes referred to as car following models (CFMs) (Brackstone
and McDonald, 1999).

37

the presence of cops, different driving styles for different weather conditions, etc. All of
these affects the types of policies that might be deployed to mitigate congestion, and the
complexity and diversity of these policies make automatic discovery critical. This chap-
ter studies how model-free RL methods can autonomously discover interesting policies
that exploit the dynamics of the uncontrolled drivers. It sets the seed for further re-
search in more complex settings, one that will be increasingly important as companies
start deploying autonomous vehicles commercially, alongside several other core research
problems in the context of autonomous vehicles, such as localization, path planning, col-
lision avoidance, and perception. The discovery of policies in the presence of high-level
goals and complex dynamics is another crucial piece of the overall research which will
enable safe and efficient next generation mobility systems.

The contributions of this chapter include:
• The formulation of the mixed autonomy traffic problem, in which automated and

human-driven vehicles co-exist in the same system, in the framework of deep RL.
• The presentation of the first demonstration of model-free RL for the longitudinal

and lateral control of a fleet of automated vehicles in a variety of complex mixed
autonomy environments, including single- and multi-lane ring roads, a figure-eight
network, and environments with frequent perturbations.

• The introduction of the concept of state equivalence classes, which improves sam-
ple efficiency of the learning method.

• Emergent behaviors, demonstrated numerically in a variety of network configura-
tions, including stabilizing traffic, tailgating, platooning, and efficient vehicle spac-
ing. The chapter demonstrates the selection of policies previously discovered by
model-driven approaches, such as stabilization, platooning, and efficient vehicle
spacing at intersections, using a model-free learning paradigm.

• For the single-lane ring road, the presentation of a theoretical upper bound on the
average velocity of a mixed autonomy setting, and experiments which demonstrate
that the learned policy exceeds the optimal human performance and is close to
optimal mixed autonomy performance.

• The demonstration of an effective leveraging of the structure of the human driving
behavior, which allows the learned policies to surpass the performance of state-of-
the-art controllers designed for automated vehicles, for ring road and figure-eight
settings.

Videos and additional results of the chapter are available at https://bit.ly/2tm8lEV.

38

4.2 preliminaries

Notation. This chapter assumes a discrete-time Markov decision process (MDP), defined
by (S,A,P, r, ρ0,γ,H), in which S ⊆ Rn is an n-dimensional state space, A ⊆ Rm an m-
dimensional action space, P : S × A × S → R+ a transition probability function, r :

S×A → R a bounded reward function, ρ0 : S → R+ an initial state distribution, γ ∈
(0, 1] a discount factor, and H a time horizon. The presented models are based on the
optimization of a stochastic policy πθ : S×A→ R+ parameterized by θ. Let η(πθ) denote
its expected return: η(πθ) = Eτ[

∑
t=0 γ

tr(st,at)], where τ = (s0,a0, . . .) denotes the entire
trajectory, s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st,at) for all t. Our goal is to find
the optimal policy θ∗ := argmaxθ η(πθ) (Sutton et al., 2000).

Car following models. Car following models (CFMs) describe the longitudinal dynamics
of human-driven vehicles. We now describe standard CFMs and the concept of equilib-
rium velocity. In the next section, we detail a commonly used CFM called the intelligent
driver model, which we employ for the longitudinal dynamics of the human drivers, in
the numerical experiments of this chapter.

Standard CFMs are of the form:

ai = v̇i = f(hi, ḣi, vi), (6)

where the acceleration ai of car i is some typically nonlinear function of hi, ḣi, vi, which
are the headway, relative velocity, and velocity for vehicle i, respectively. Though a gen-
eral model may include time delays from the input signals hi, ḣi, vi to the resulting out-
put acceleration ai, we will consider a non-delayed system, where all signals are mea-
sured at the same time instant t. Example CFMs include the Intelligent Driver Model
(IDM) (Treiber et al., 2000) and the Optimal Velocity Model (OVM) (Bando et al., 1994;
Bando et al., 1995).

In a uniform flow equilibrium in homogeneous settings, each car moves at a constant
velocity v∗ with constant headway h∗. At this uniform flow equilibrium, we have

ai = 0 = f(h
∗, 0, v∗), (7)

defining the relationship between the two equilibrium quantities h∗, v∗.
It is intuitive to think of the equilibrium density (which is related to the equilibrium

headway h∗) as a traffic condition. Each traffic condition has associated with it an op-
timal (equilibrium) velocity v∗. In practice, the equilibrium density can be determined
or estimated by the local traffic density. In settings with heterogeneous vehicle types,

39

the equilibrium can be numerically solved by constraining the total headways to be the
total road length and the velocities to be uniform. It is important to note the difference
between the equilibrium velocity v∗ and the target velocity v0 (free flow speed) of the
vehicle models; v0 can be thought of as a speed limit for highway traffic (Treiber et al.,
2000). On the other hand, v∗ is a control theoretic quantity jointly determined by the
traffic condition h∗, the target velocity v0, the system dynamics, and various other pa-
rameters.

Intelligent Driver Model. The Intelligent Driver Model (IDM) is a microscopic car fol-
lowing model capable of accurately modeling realistic driver behavior (Treiber et al.,
2000). Using this model, the acceleration for a vehicle following IDM dynamics is de-
fined by its bumper-to-bumper headway s (distance to preceding vehicle), velocity v,
and relative velocity ∆v, via the following equation:

aIDM =
dv

dt
= a

[
1−

(
v

v0

)δ
−

(
s∗(v,∆v)

s

)2]
(8)

where s∗ is the desired headway of the vehicle, denoted by:

s∗(v,∆v) = s0 + max
(
0, vT +

v∆v

2
√
ab

)
(9)

where s0, v0, T , δ,a,b are given parameters.
Table 1 describes the parameters of the model and provides typically used values (cite

here):

Table 1: Model parameters of the Intelligent Driver Model

Symbol Definition Typical values (Treiber et al., 2000)

v0 Desired speed 54 km/h
T Time gap 1.0 s
s0 Minimum gap 2 m
δ Acceleration exponent 4

a Maximum acceleration 1.0 m/s2

b Comfortable deceleration 1.5 m/s2

40

4.3 mixed autonomy traffic as reinforcement learning

Consider a string of vehicles on a single-lane road. This relatively simple system can be
modeled as a dynamical system consisting of a cascade of n (possibly different) nonlin-
ear systems, one for each vehicle. Although conceptually clean, the complexity of such
an overall system already largely constrains formal analysis of such systems to homoge-
neous settings, where each of the n systems are identical, or where the system compo-
nents are assumed to be linear, non-delayed, etc. With the introduction of lane changes
(in any multi-lane setting), the dynamics additionally exhibit discrete events, when lane
changes occur. Modeling and studying lane changes and their effects on traffic is a dif-
ficult and active area of research (Oh and Yeo, 2015; W.-L. Jin, 2010). Additional com-
ponents such as traffic lights and intersections, turns, route choice, on- and off-ramps,
demand, specialized lanes, and heterogeneous vehicle types, introduce further complex-
ities in the overall dynamics of traffic control problems.

Due to discontinuous, non-smooth, and highly complex dynamics inherent to traf-
fic control problems, we choose to study the control problem using model-agnostic RL
methods, as opposed to model-based RL methods or classical control techniques. This
chapter assumes a discrete-time Markov decision process (MDP), See Section 2.2 for a
review of reinforcement learning and a summary of the notation.

Problem statement. In this chapter, we study the problem of mixed autonomy traffic: How
can a set of automated vehicles optimize a traffic system in the presence of both au-
tomated and human-driven vehicles? The present chapter studies this problem for the
objective of maximizing system-level velocity, for a variety of traffic settings. We note
that of particular interest in this problem is the study of system-level objectives rather
than local (vehicle-level or platoon-level) objectives. Other system-level objectives may
be studied as well, such as energy consumption, comfort, throughput, delays, air quality,
or a combination thereof.

Problem setting. We formulate the mixed autonomy traffic problem as a fully observed
cooperative RL problem. We study a centralized training regime and centralized execu-
tion; other learning settings such as shared policies, multi-headed policies, and decen-
tralized training and execution are beyond the scope of this work.

System dynamics and assumptions. The transitions of the MDP are dictated by the
system dynamics, which include longitudinal dynamics for individual vehicles, lateral
dynamics for individual vehicles, right-of-way dynamics at intersections, and fail-safe
dynamics for individual vehicles.

41

The basic longitudinal dynamics of human-driven vehicles follow IDM as described in
Equation 8, calibrated to accurately model realistic driver behavior on freeways (Treiber
et al., 2000). In order to incorporate stochasticity into the dynamics of human-driven
vehicles, the accelerations are additionally perturbed by Gaussian acceleration noise of
N(0, 0.2), calibrated to match measures of stochasticity presented in (Treiber and Kest-
ing, 2017). All other system dynamics are represented within SUMO, a state-of-the-art
and open-source traffic microsimulator (Behrisch et al., 2011), including calibrated lat-
eral (lane-changing) dynamics for human-driven vehicles, right-of-way, and a fail-safe
(optionally) imposed on automated vehicles to ensure safety.

State representation. The state representation provides full information of the system of
vehicles in the network, and takes advantage of state equivalence classes, explained in
Section 4.4. For a network of vehicles in a single lane setting, the full state consists of a
vector of velocities v and absolute positions x for each vehicle in the network, ordered by
the absolute position of each vehicle. Note that the absolute position is defined relative
to a pre-specified starting point for the network. For a network of vehicles in a multi-lane
setting, a vector of lane numbers l for each vehicle is also added to this representation.
Let sorted(x) denote the sequence of indices by ascending order of the values in vector
x. Then, the overall state representation is s := (vi, xi, li)i∈sorted(x) ∈ R3k. Partially ob-
servable settings are out of the scope of this chapter, as here we study possible learned
behaviors rather than focusing on the design of practical controllers. See Chapter 6 for
an exposition of a partially observed mixed autonomy study towards practical controller
design.

Action representation. The action representation permits automated vehicles to perform
lateral and longitudinal actions in the traffic network. In a single lane setting, the action
space simply consists of a vector of requested accelerations c ∈ [cmin, cmax]

k, where k is
the number of automated vehicles, bounded between certain minimum and maximum
acceptable accelerations. For the purpose of this study, automated vehicles are allowed
to perform accelerations within the range [−6, 3] m/s2. If the scenario contains more
than one lane, a vector of lane changing directions d ∈ [−1, 1]k is also provided. The lane
of the vehicle is then updated as follows: lt+1 = lt + round(d), thus encoding actions
{left, stay, right}. The lane change updates are restricted to 1) existence of the lane, and
2) a lane change cooldown duration, which prevents lane changes in quick succession.
The actions a = (c,d) ∈ R2k are applied to agents (automated vehicles) in order of
absolute position.

Reward function. We choose a reward function to encourage high system-level velocity.

42

This function measures the deviation of all vehicle velocities from a user-specified de-
sired velocity. Moreover, in order to ensure that the reward function naturally punishes
the early termination of rollouts due to collisions or other failures, the function must
have a non-negative range r : S×A→ R>0. This is done by subtracting the deviation of
the system from the desired velocity from the peak allowable deviation from the desired
velocity. Additionally, since the velocity of vehicles are unbounded above, the reward is
bounded below by zero, to ensure nonnegativity. Define vdes as the desired velocity, 1n

a vector of ones of length n, n as the number of vehicles in the system, and v as a vector
of velocities. The reward function (with abuse of notation for clarity) is given as

r(v) = max{0, ||vdes · 1n||2 − ||v− vdes · 1n||2} (10)

4.4 state equivalence classes

We define a state equivalence class to be subset of states T ⊆ S such that for any s1, s2 ∈
T,π∗(s1,a) = π∗(s2,a) for all actions a ∈ A. Define C to be a set of canonical states of
the state space S; for each equivalence class T, there exists exactly one state in C, that is,
|T ∩ C| = 1. We call T : S→ S a canonical projection mapping if T(s) ∈ S∩C,∀s ∈ T. Then,
we call s ∈ S∩C the canonical state for state equivalence class T. This concept is analogous
to specific solutions in constraint elimination in constrained convex optimization; C is
analogous to particular solutions, and T is analogous to a mapping from an arbitrary
solution to the particular solution (by projecting from the nullspace).

State equivalence classes arise commonly in multi-agent settings due to the redun-
dancy in state and action information exhibited by arbitrary ordering of agents, which
may occur due to random initialization, lane changes, or turns in the mixed autonomy
traffic setting. Such redundancy can lead to a combinatorial explosion in equivalent
states. This selection of a canonical state effectively reduces the combinatorial number
of states in each equivalence class to a single state. By learning for canonical states,
the policy learns for all states in the respective equivalence classes, thereby reducing the
sampling complexity of learning algorithms. However, the problem of finding and reduc-
ing such symmetries in MDPs is in general NP-Hard (Narayanamurthy and Ravindran,
2008).

We now demonstrate the use of this concept in the mixed autonomy problem. In the
mixed autonomy traffic problem, a naive state representation, for instance a vector of
vehicle positions and velocities, implicitly encodes an index for each human-driven vehi-
cle. However, swapping the indices of any two human-driven vehicles yields a change in

43

the state representation but should not change the behavior of the learning agents (and
could result from lane changes). Thus, with this state representation, the state equiva-
lence classes are closed under pairwise swaps of non-automated or automated agents.
In the ring road and figure-eight settings, we choose a canonical state which orders non-
automated agents based on absolute distance, followed by automated agents ordered on
absolute distance (thereby yielding a projection mapping T(·)). Swapping the indices of
two automated or two non-automated agents then leaves the resulting state unchanged.
Unfortunately, even though ordering by absolute distance resolves the symmetry reduc-
tion problem in these special cases, this solution may not generalize to more complex
network structures and is an open problem. For instance, absolute distance can be de-
fined for the closed circuit networks studied in this chapter, but is less clearly defined
for a large complex network or even for a road with many lanes.

An alternative approach not explored in this chapter is to discretize the space and
treat the observation space as an image-like representation. Both representations pre-
serve much of the spatial information in the state. While this approach resolves the issue
of combinatorially similar states in multi-agent environments, an image-like represen-
tation exhibits different challenges, such as learning fine-grained and high-dimensional
control. Levine et al. (2016) interprets an image-like representation as a partial observa-
tion, from which the true state information can be inferred or used in an end-to-end
manner. Related is the pixel-to-torques problem; Wahlström et al. (2015) uses a deep
auto-encoders to learn a closed-loop control policy from pixel information only, and
could be composed with our problem setup to work with pixel inputs.

Numerically, the learning curve in the multi-lane setting (Figure 9) demonstrates that
learning for state equivalence classes by ordering the observations speeds up the conver-
gence of the RL method. The state equivalence classes also allows the algorithm to move
past local maxima.

4.5 network configurations

Three traffic networks are studied: a ring road, a multi-lane ring road, and a figure-eight.
These are selected to isolate and study common traffic phenomena: 1) traffic shockwaves,
2) lane changes, which are large naturally occurring perturbations in the traffic flow, and
3) queuing at intersections.

Ring road. The ring road network consists of a circular lane with a specified length,
similar to that of Sugiyama et al. (2008). A visual representation of the scenario can be
seen in Figure 10a.

44

Figure 9: Learning curve for mixed autonomy in multi-lane traffic. Ordering the observations by position
accelerates the empirical convergence of the RL algorithm and allows the algorithm to escape
the local maximum of the unordered observations.

Multi-lane ring road. Multi-lane ring roads contain two or more lanes and permit lane
changing (See Figure 10b).

Figure-eight. The figure-eight network is an extension of the ring road network–two
rings, placed at opposite ends of the network, are connected by an intersection with
road segments of length equal to the diameter of the rings. A visual representation of
the scenario can be seen in Figure 10c. If two vehicles attempt to cross the intersection
from opposing directions, the dynamics of these vehicles are constrained by right-of-way
rules provided by SUMO.

4.6 mixtures of autonomy

This section details the specific experimental scenarios studied in this chapter. Detailed
training details are provided in Section 4.11.

No autonomy. Experimental work by Sugiyama et al. (2008) involving 22 human-driven
vehicles driving on a single-lane ring of length 230m has shown that similar dynamical
systems produce instabilities (also called stop-and-go waves; see Figure 11a). Similarly, a
figure-eight with a ring radius of 30m and total length of 402m is studied. The network
contains a total of 14 vehicles. The intersection in this environment is not controlled

45

(a) Ring road. (b) Multi-lane ring road. (c) Figure-eight.

Figure 10: Network configurations for studies of emergent behaviors in mixed autonomy traffic.

by a traffic light; instead vehicles cross the intersection following a right-of-way model
provided by SUMO to prevent crashes. In the absence of autonomous vehicles, human
drivers begin queuing at the intersection, leading to a significant reduction in the average
speed of vehicles in the network (see Figure 15a).

One automated vehicle among human-driven vehicles. A single human-driven vehicle
is replaced by an automated vehicle, which is operated by a learned controller. In Sec-
tion 4.7, we give an upper bound on the equilibrium velocity for vehicles in a single lane
ring, which serves as a performance measure for our learned policy.

Strings of automated vehicles. This scenario considers multiple consecutive automated
vehicles, in single- and multi-lane ring road settings. Recall that this chapter considers
cooperative (centralized) control. In the single-lane case of Figure 10a, a total of 22 ve-
hicles on a 230m length road are studied, and automated vehicle strings of size 3-11

are considered. We consider also a multi-lane scenario with twice as many lanes and
vehicles.

All automated vehicles. All human vehicles are replaced with automated vehicles.

4.7 metrics

Consider a single-lane ring road with na automated vehicles and nh human-driven vehi-
cles, with varying mixtures of autonomy, as described in Section 4.6. Let all the human-
driven vehicles follow homogeneous deterministic longitudinal dynamics, such as any

46

car following model.
We consider two metrics. First, we consider the equilibrium velocity of the uniform

flow equilibrium to the all-human traffic setting (no automated vehicles), which corre-
sponds to an unstable equilibrium.

Second, we derive the following performance upper bound for the Intelligent Driver
Model (IDM) (Treiber et al., 2000) and the bound can similarly be derived for other car
following models. Denote se the equilibrium headway and ve the equilibrium velocity.
For IDM, the equilibrium headway is given by:

se(v) = s
∗(v, 0)

[
1−

(
v

v0

)δ]−1/2
(11)

when in traffic equilibrium (v̇α = 0,∆vα = 0) (Khalil, 1996). Denote v̂e : R → R the
inverse mapping, from equilibrium headway to velocity.

Then, an upper bound on the average velocity of this mixed autonomy system, de-
noted Vmax

na,nh is conjectured as follows:

Vmax
na,nh = v̂e

(
L−naLveh

nh

)
, (12)

where L is the total length of the ring and Lveh is the length of each vehicle.
Conceptually, this is equivalent to the equilibrium velocity attained if the automated

vehicles were removed from the network and their cumulative length were added to
one of the human vehicles. In the fully human-driven setting, the upper bound V0,N is
exactly the equilibrium velocity of the system and, in such a setting, the bound is tight.

4.8 emergent behaviors

In this section, we present the findings of studying the analytically challenging scenarios
presented in Section 4.6, which push the limits of control theoretic analysis, including
multi-lane settings and mixed autonomy intersection control. Each of the following
behaviors result simply from maximizing the average velocity of a corresponding mixed
autonomy traffic system.

Emergent traffic stabilization. In the presence of 21 string unstable human-driven vehi-
cles on a single-lane road, a single automated vehicle eliminates the stop-and-go waves
and stabilizes the ring when provided the reward function of Equation (10), as shown in

47

Figure 11. Surprisingly, we observe that a single damping component (via the policy for
the automated vehicles) is sufficient for stabilizing the overall dynamical system, which
consists of a cascade of 21 nonlinear systems. This implies that, in a setting with mul-
tiple automated vehicles, not much benefit is expected from spreading the vehicles out
among the human vehicles. Experimentally, we thus study settings in which the auto-
mated vehicles are initialized in a string, rather than spread out among human vehicles.
Our results demonstrate the potential for machine learning techniques to exceed explicit
controllers obtained by classical control theory (S. Cui et al., 2017; Stern et al., 2017),
which successfully stabilize the ring below the equilibrium velocity. In Chapter 6, we
will further explore the use of machine learning techniques for designing controllers in
mixed autonomy settings.

Emergent tail-gating and collision avoidance. Notably, in the single-lane traffic system
of 22 total vehicles, the single automated vehicle learns to tailgate its preceding vehicle
and uses a safe distance less than that of the human drivers (see the magenta vehicle in
Figure 10a), thereby allowing the average velocity of vehicles in the ring to exceed the
theoretic equilibrium velocity of the system (an unstable equilibrium in the absence of
external control), as shown in Figure 12a. As predicted, the automated vehicle remains
below the average velocity upper bound derived in Section 4.7 (black dotted line).

Additionally, the reward function in Equation (10) successfully encourages automated
vehicles to avoid collisions. These emergent behaviors are observed even in the presence
of additive Gaussian acceleration noise in the human driver models.

Emergent compressive platoon and load balancing. A total of 22 vehicles are placed in
a ring road with a circumference of 230m. Strings of autonomous vehicles are placed con-
secutively, with between three and eleven autonomous vehicles. A string of consecutive
autonomous vehicles learn to drive with a smaller headway than the human models, re-
sulting in greater roadway utilization, thereby permitting a higher velocity for the overall
system, as can be seen in Figure 12b.

The single-lane multiple vehicle experiment is extended to the multiple lane setting,
with 44 vehicles placed in a two-lane ring road of circumference 230m. In this setting,
a string of six autonomous vehicles are initialized side-by-side (all in one lane). The
human-driven vehicles follow IDM longitudinal control and SUMO’s lane changing
model for lateral control. In a multi-lane setting, in addition to platooning together, the
automated vehicles learn to evenly distribute themselves among the lanes which ensures
that each lane in the network benefits from the same level of platooning, as shown in
Figure 10b (magenta vehicles). The resulting average velocity is 3.66 m/s, again exceed-
ing the 3.45 m/s uniform flow equilibrium velocity with six automated vehicles and 38

48

(a) 22 human-driven vehicles. (b) 21 human-driven, 1 automated vehicle.

Figure 11: A total of 22 vehicles are place in a ring road of length 230 m. Each line in the space-time dia-
grams represents the position of a specific vehicle as a function of time. Once a vehicle crosses
the entire length of the ring, its position is reset to zero. Left: In the absence of automated
vehicles, the inherently unstable human-driver vehicles experience stop-and-go traffic. Right:
A single automated vehicle stabilizes a string of string-unstable vehicles, when provided with
the reward function in Equation (10).

(a) Average velocity (1 AV). (b) Average velocity (multiple AVs).

Figure 12: Left: In a single lane ring with one automated vehicle (AV) and 21 human driven vehicles, the
automated vehicle tailgates its preceding vehicle with a safe distance less than that of the hu-
man drivers, thereby allowing the average velocity of vehicles in the ring to exceed the control
theoretic equilibrium velocity of the all-human system. Right: Having multiple consecutive
automated vehicles exhibits further improvements in average velocity, even for relatively few
automated vehicles. This velocity increases as the level of autonomous penetration increases.
At three autonomous vehicles, the average velocity settles at 3.70 m/s; at 11 autonomous ve-
hicles, the average velocity settles at 4.44 m/s. The automated vehicles are found to platoon
together.

49

human-driven vehicles. This experiment demonstrates the ability of the reinforcement
learning approach to handle settings with discontinuous model dynamics, such as lane
changes.

Figure 13: Velocity profile for single-lane ring road with multiple autonomous vehicles. The ad-
dition of autonomous vehicles permits in exceeding the uniform flow equilibrium
velocity. This velocity increases as the level of autonomous penetration increases. At
three autonomous vehicles, the average velocity settles at 3.70 m/s; at 11 autonomous
vehicles, the average velocity settles at 4.44 m/s.

Emergent mixed autonomy platoon and intersection weaving. In a figure-eight scenario
(described in Section 4.6), we examine the behavior of vehicles crossing the intersection.
In the mixed autonomy setting, consisting of one automated vehicle and 13 human-
driven vehicles, a single automated vehicle slows or stops entirely to allow all other
vehicles to uniformly space themselves behind it. The automated vehicle exploits the
dynamics of the human-driven vehicles to travel at a velocity just slow enough to allow
all vehicles to pass through the intersection without stopping for the other direction of
traffic, and just fast enough that all the available roadway (without causing weaving
traffic) is used by the vehicles. That is, the automated vehicle forms a train or snake the
length of half the length of the network and is an emergent mixed autonomy platoon,
in which most of the platoon vehicles are human-driven. This achieves a system-level
(average) velocity of 8.75 m/s with one automated vehicle and 13 human-driven vehicles,
as compared to 5.48 m/s with no automated vehicles (60% improvement).

In the same experimental setup, when the number of automated vehicles is increased
to 100% (14 of 14 vehicles), the vehicles weave through the intersection seamlessly at 14

50

(a) Single lane ring. (b) Figure-eight.

Figure 14: Learning curves for mixed autonomy traffic scenarios.

m/s (255% improvement).

For each of these mixed autonomy benchmarks, more investigation is required to un-
derstand the resulting learned behaviors and policies and thereby take steps towards a
real-world deployment.

4.9 related work

Mixed autonomy traffic. Numerous field operational tests have demonstrated that a
small number of vehicles injected into a congested traffic system can result in a 13-40%
reduction in fuel consumption. In particular, deployed eco-driving programs, which pro-
vide simple eco-friendly driving rules to individual drivers, in the Netherlands have
observed 15-25% reduction in fuel consumption and improved safety (CIECA, 2007).
Field studies in which a single vehicle is injected into real traffic on the California SR-
91 freeway during PM peak traffic observed a 13% reduction in fuel consumption by
following dynamic eco-driving rules (Barth and Boriboonsomsin, 2009). Recent field op-
erational tests by Stern et al. (2017) demonstrated a reduction in fuel consumption of
40% by the insertion of an autonomous vehicle in ring traffic to dampen the famous
ring instabilities displayed by Sugiyama et al. (2008) in their seminal experiment. These
studies are characterized by hand-designed control laws for specific settings and do not
consider the use of reinforcement learning, as is concerned by this chapter. However, the

51

(a) 14 human-driven vehicles. (b) 13 human-driven, 1 automated vehicle.

Figure 15: A total of 14 vehicles are placed in a figure-eight road network of ring radius 30 m (total
road length of 402 m). Position 0 in the above time-space diagrams denotes the location of
the intersection, and vehicles are traveling towards it from two different directions. Left: In
the absence of automated vehicles, the right-of-way model of the traffic simulator induces a
stop-sign-like intersection behavior, generating queues at either sides of the intersection. Right:
With a single automated vehicle, an emergent behavior observed is a mixed autonomy platoon,
where nearly all vehicles in the platoon are human drivers, and yet there is a 60% increase in
the average velocity of the overall system, as compared to non-automated setting.

impact on fuel consumption demonstrated by these studies motivates the (automatic) de-
sign of controllers for a small number of vehicles in complex traffic scenarios to achieve
significant outcomes on the system.

Emergent behaviors and multi-agent systems. Multi-agent systems is a rich modeling
framework, which can capture the complexities of organism dynamics and social orga-
nization (Weiss, 1999). These complex systems, which include many engineering and
infrastructure systems, exhibit cascaded mixed discrete-continuous nonlinear dynamics,
which are challenging to understand and control. When fused with learning frameworks
such as deep RL, multi-agent learning systems (Busoniu et al., 2008) have the potential
to exhibit many interesting emergent behaviors. Mordatch and Abbeel (2017) demon-
strate the interesting emergence of compositional language from multi-agent systems. P.
Peng et al. (2017) demonstrate emergent combat tactics in the multi-agent environment
of combat scenarios in the real-time strategy game StarCraft, including hit-and-run and
coordinated cover attacks. In this chapter, we study the behaviors which emerge when
a few automated vehicles are mixed in with the dynamics of human-driven vehicles in
traffic, in order to understand the potentially complex effects of partial penetration of
automation in transportation systems.

52

Figure 16: Velocity profile in the figure-eight for different levels of autonomous penetration. Sim-
ilar to the platooning setting, the performance of the network improves as the number
of autonomous vehicles improves. In particular, the inclusion of full autonomy almost
triples the average velocity in the network from around 5 m/s in the absence of auton-
omy for around 14 m/s.

Reinforcement learning and traffic. In the context of traffic problems, RL has been ex-
plored by Belletti et al., 2018, who demonstrates the use of multi-agent RL for ramp
metering and matches the performance of state-of-the-art techniques using feedback con-
trol. Additionally, Stevens and Yeh (2016) explore RL on traffic lights to increase traffic
flow through intersections. Deep learning methods (Goodfellow et al., 2016) are used
in several other aspects of transportation, including vision for self-driving cars (Bojarski
et al., 2016), traffic flow prediction (Lv et al., 2015; Polson and Sokolov, 2017), and origin-
destination prediction (Brébisson et al., 2015). For an overview on neural and non-neural
statistical methods in transportation, we refer the reader to Karlaftis and Vlahogianni
(2011). At a vehicular level, deep RL has been used to learn collision avoidance strate-
gies (Kahn et al., 2017; Y. F. Chen et al., 2017). Recognizing the potential for reinforcement
learning in complex domains such as traffic, this chapter focuses on studying the impact
through an exploration of emergent behaviors when optimizing with a simple system
objective.

Vehicle controller design. Classical techniques for vehicle controller design, such as
adaptive cruise control (ACC) (Technical Committee ISO/TC 204, Intelligent transport
systems, 2010; P. A. Ioannou and Chien, 1993; Vahidi and Eskandarian, 2003) and coop-
erative ACC (CACC) (Shladover, 2005; Rajamani and Zhu, 2002; Lu et al., 2004; Sheik-

53

holeslam and Desoer, 1992; Van Arem et al., 2006), typically optimize local metrics such
as driver comfort or local fuel consumption. Controllers and conditions for linear stabil-
ity have been proposed for suppressing stop-and-go waves in ACC models (Swaroop et
al., 1994; C.-Y. Liang and H. Peng, 1999; C.-Y. Liang and H. Peng, 2000). CACC addition-
ally permits the model-based design of compressive platoons, similar to those studied
in this chapter. Approaches to vehicle controller design include model predictive control
for steering control (Falcone et al., 2007; Falcone et al., 2008) and traffic control with au-
tomated vehicles (Baskar, 2009; M. Wang et al., 2014; Kamal et al., 2014), and frequency
domain analysis (Naus et al., 2010; I. G. Jin and Orosz, 2014). Relatedly, model-based ap-
proaches have permitted the reservation system design and derivation of vehicle weav-
ing behavior for fully automated intersections (Dresner and Stone, 2008; Miculescu and
Karaman, 2014). However, there is no such result for a mixed autonomy intersection.
Recently, a few studies have started to use formal techniques for controller design for
system-level evaluation of mixed autonomy traffic, including state-space (S. Cui et al.,
2017) and frequency domain analysis (Wu et al., 2017a). There are also several modeling-
and simulation-based evaluations of mixed autonomy systems (Kesting et al., 2007; Y.-M.
Yuan et al., 2009; Au et al., 2014). Despite these advances in controller design, many of
these approaches are generally limited to simplified models, such as homogeneous, non-
delayed, deterministic driver models, or restricted network configurations. The present
chapter presents the first model-agnostic study of system-level optimization of mixed
autonomy traffic through modern machine learning techniques.

4.10 chapter summary

This chapter studies the use of state-of-the-art machine learning techniques on control
of road traffic. In particular, we study emergent behaviors of automated vehicles in a
mixed autonomy environment through the use of model-free RL methods. Understand-
ing emergent behaviors in such complex systems is an important and often overlooked
part of understanding the impact of automation on transportation systems. By investi-
gating a variety of scenarios, behaviors such as stabilization, tailgating, platooning, and
efficient vehicle spacing at intersections have emerged as useful behaviors for improving
the system-level velocity of traffic. We additionally demonstrate that RL has the potential
of sometimes exceeding performance measures based in control theory for fully-human
traffic. Numerous extensions are still needed, however, to understand the potential im-
pact of automation on transportation systems. Topics of future research include learning
policies which generalize across a variety of traffic scenarios, studying other system-level

54

and local objectives, studying mixed control of automated vehicles and infrastructure,
and studying effects at the scale of city networks. Important is the study of other system-
level and local objectives, for instance trading off performance with energy consumption
and comfort. Additionally, the design of objectives may require careful consideration
of its implications on fairness (Lint et al., 2008, e.g.). Parameterized policies can also
be used to study settings with a variable number of vehicles by introducing a pooling
component to the policy, similar to (Mordatch and Abbeel, 2017), or by using recurrent
policies (Graves et al., 2012).

4.11 experiment details

The experiments conducted in this chapter utilize an open source library called Flow,
presented in Chapter 6, which enables the use of reinforcement learning methods for
traffic control. Three natural settings for benchmarking are the fully autonomous setting,
the mixed autonomy setting, and the fully-human setting. Designed controllers for these
settings may be implemented in Flow for additional benchmarking as well.

For all experiments, we use linear feature baselines as described in Duan et al. (2016)
and Trust Region Policy Optimization (Schulman et al., 2015) for learning the policy,
with discount factor γ = 0.999 and step size 0.01. A diagonal Gaussian MLP policy is
used with hidden layers (100, 50, 25) and tanh non-linearity. In all experiments in this
chapter, a fully observable setting is assumed. The experiments are run on Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) instances of model c4.2xlarge, which have
eight CPUs and 15 GB of memory.

55

5
VA R I A N C E R E D U C T I O N F O R P O L I C Y G R A D I E N T W I T H
A C T I O N - D E P E N D E N T FA C T O R I Z E D B A S E L I N E S

Certainty is the mother of quiet and
repose, and uncertainty the cause of
variance and contentions.

Sir Edward Coke, Institutes of the
Lawes of England, 1628

Policy gradient methods have demonstrated potential for control of mixed autonomy
systems, for example in mixed autonomy traffic as introduced in Chapter 4, and have en-
joyed great success in deep reinforcement learning. However, these methods suffer from
high variance of gradient estimates, which translates to poor sample complexity and high
computational cost. Moreover, the high variance problem is particularly exasperated in
problems with long horizons or high-dimensional action spaces, both characteristics of
mixed autonomy systems. To mitigate this issue, we derive a bias-free action-dependent
baseline for variance reduction which fully exploits the structural form of the stochastic
policy itself and does not make any additional assumptions about the MDP. We demon-
strate and quantify the benefit of the action-dependent baseline through both theoretical
analysis as well as numerical results, including an analysis of the suboptimality of the
optimal state-dependent baseline. The result is a computationally efficient policy gradi-
ent algorithm, which scales to high-dimensional control problems, as demonstrated by a
synthetic 2000-dimensional target matching task. Our experimental results indicate that
action-dependent baselines allow for faster learning on standard reinforcement learning
benchmarks and high-dimensional hand manipulation and synthetic tasks. Finally, we
show that the general idea of including additional information in baselines for improved
variance reduction can be extended to partially observed and multi-agent tasks.

56

5.1 overview

Deep reinforcement learning has achieved impressive results in recent years in domains
such as video games from raw visual inputs (Mnih et al., 2015), board games (Silver et al.,
2016), simulated control tasks (Schulman et al., 2016; Lillicrap et al., 2016; Rajeswaran et
al., 2017a), and robotics (Levine et al., 2016). An important class of methods behind many
of these success stories are policy gradient methods (Williams, 1992; Sutton et al., 2000;
Kakade, 2002; Schulman et al., 2015; Mnih et al., 2016), which directly optimize param-
eters of a stochastic policy through local gradient information obtained by interacting
with the environment using the current policy. Policy gradient methods operate by in-
creasing the log probability of actions proportional to the future rewards influenced by
these actions. On average, actions which perform better will acquire higher probability,
and the policy’s expected performance improves.

A critical challenge of policy gradient methods is the high variance of the gradient
estimator. This high variance is caused in part due to difficulty in credit assignment to
the actions which affected the future rewards. Such issues are further exacerbated in long
horizon problems, where assigning credit properly becomes even more challenging. To
reduce variance, a “baseline” is often employed, which allows us to increase or decrease
the log probability of actions based on whether they perform better or worse than the
average performance when starting from the same state. This is particularly useful in
long horizon problems, since the baseline helps with temporal credit assignment by
removing the influence of future actions from the total reward. A better baseline, which
predicts the average performance more accurately, will lead to lower variance of the
gradient estimator.

The key insight of this chapter is that when the individual actions produced by the
policy can be decomposed into multiple factors, we can incorporate this additional infor-
mation into the baseline to further reduce variance. In particular, when these factors are
conditionally independent given the current state, we can compute a separate baseline
for each factor, whose value can depend on all quantities of interest except that factor.
This serves to further help credit assignment by removing the influence of other fac-
tors on the rewards, thereby reducing variance. In other words, information about the
other factors can provide a better evaluation of how well a specific factor performs. Such
factorized policies are very common, with some examples listed below.

• In continuous control and robotics tasks, multivariate Gaussian policies with a
diagonal covariance matrix are often used. In such cases, each action coordinate
can be considered a factor. Similarly, factorized categorical policies are used in

57

game domains like board games and Atari (Silver et al., 2016; Mnih et al., 2015).
• In multi-agent and distributed systems, each agent deploys its own policy, and thus

the actions of each agent can be considered a factor of the union of all actions (by all
agents). This is particularly useful in the recent emerging paradigm of centralized
learning and decentralized execution (Lowe et al., 2017; Foerster et al., 2017). In
contrast to the previous example, where factorized policies are a common design
choice, in these problems they are dictated by the problem setting.

We demonstrate that action-dependent baselines consistently improve the performance
compared to baselines that use only state information. The relative performance gain is
task-specific, but in certain tasks, we observe significant speed-up in the learning process.
We evaluate our proposed method on standard benchmark continuous control tasks, as
well as on a high-dimensional door opening task with a five-fingered hand, a synthetic
high-dimensional target matching task, on a blind peg insertion POMDP task, and a
multi-agent communication task. We believe that our method will facilitate further appli-
cations of reinforcement learning methods in domains with extremely high-dimensional
actions, including multi-agent systems. Videos and additional results of the chapter are
available at https://sites.google.com/view/ad-baselines.

5.2 preliminaries

In this section, we establish the notations used throughout this chapter, as well as basic
results for policy gradient methods, and variance reduction via baselines.

5.2.1 Notation

This chapter assumes a discrete-time Markov decision process (MDP), defined by the
tuple (S,A,P, r, ρ0,γ), in which S ⊆ Rn is an n-dimensional state space, A ⊆ Rm an
m-dimensional action space, P : S×A× S → R+ a transition probability function, r :

S×A → R a bounded reward function, ρ0 : S → R+ an initial state distribution, and
γ ∈ (0, 1] a discount factor. The presented models are based on the optimization of a
stochastic policy πθ : S×A → R+ parameterized by θ. Let η(πθ) denote its expected
return: η(πθ) = Eτ[

∑
t=0 γ

tr(st,at)], where τ = (s0,a0, . . .) denotes the whole trajectory,
s0 ∼ ρ0(s0), at ∼ πθ(at|st), and st+1 ∼ P(st+1|st,at) for all t. Our goal is to find the
optimal policy argmaxθ η(πθ). We will use Q̂(st,at) to describe samples of cumulative
discounted return, and Q(at, st) to describe a function approximation of Q̂(st,at). We
will use “Q-function” when describing an abstract action-value function.

58

https://sites.google.com/view/ad-baselines

For a partially observable Markov decision process (POMDP), two more components
are required, namely Ω, a set of observations, and O : S×Ω → R>0, the observation
probability distribution. In the fully observable case, Ω ≡ S. Though the analysis in this
chapter is written for policies over states, the same analysis can be done for policies over
observations.

5.2.2 The Score Function (SF) Estimator

An important technique used in the derivation of the policy gradient is known as the
score function (SF) estimator (Williams, 1992), which also comes up in the justification of
baselines. Suppose that we want to estimate ∇θEx[f(x)] where x ∼ pθ(x), and the family
of distributions {pθ(x) : θ ∈ Θ} has common support. Further suppose that logpθ(x) is
continuous in θ. In this case we have

∇θEx[f(x)] = ∇θ
∫
pθ(x)f(x)dx =

∫
pθ(x)

∇θpθ(x)
pθ(x)

f(x)dx

=

∫
pθ(x)∇θ logpθ(x)f(x)dx = Ex [∇θ logpθ(x)f(x)] . (13)

5.2.3 Policy Gradient

The Policy Gradient Theorem (Sutton et al., 2000) states that

∇θη(πθ) = Eτ

[∑
t=0

∇θ logπθ(at|st)
∑
t ′=t

γt
′−trt ′

]
. (14)

where τ := (s0,a0, r0, . . . , st,at, rt) denotes a trajectory induced by the policy πθ. For
convenience, define ρπ(s) =

∑
t=0 γ

tp(st = s) as the state visitation frequency, and
Q̂(st,at) =

∑
t ′=t γ

t ′−trt ′ . We can rewrite the above equation (with abuse of notation)
as

∇θη(πθ) = Eρπ,π
[
∇θ logπθ(at|st)Q̂(st,at)

]
. (15)

It is further shown that we can reduce the variance of this gradient estimator without
introducing bias by subtracting off a quantity dependent on st from Q̂(st,at) (Williams,
1992; Greensmith et al., 2004). See Section 5.7 for a derivation of the optimal state-

59

dependent baseline.

∇θη(πθ) = Eρπ,π
[
∇θ logπθ(at|st)

(
Q̂(st,at) − b(st)

)]
(16)

This is valid because, applying the SF estimator in the opposite direction, we have

Eat [∇θ logπθ(at|st)b(st)] = ∇θEat [b(st)] = 0 (17)

5.3 action-dependent baselines

In practice there can be rich internal structure in the policy parameterization. For exam-
ple, for continuous control tasks, a very common parameterization is to make πθ(at|st)
a multivariate Gaussian with diagonal variance, in which case each dimension ait of the
action at is conditionally independent of other dimensions, given the current state st.
Another example is when the policy outputs a tuple of discrete actions with factorized
categorical distributions. In the following subsections, we show that such structure can
be exploited to further reduce the variance of the gradient estimator without introducing
bias by changing the form of the baseline. Then, we derive the optimal action-dependent
baseline for a class of problems and analyze the suboptimality of non-optimal baselines
in terms of variance reduction. We then propose several practical baselines for imple-
mentation purposes. We conclude the section with the overall policy gradient algorithm
with action-dependent baselines for factorized policies. We provide an exposition for
situations when the conditional independence assumption does not hold, such as for
stochastic policies with general covariance structures, in Section 5.11, and for compati-
bility with other variance reduction techniques in Section 5.12.

5.3.1 Baselines for Policies with Conditionally Independent Factors

In the following, we analyze action-dependent baselines for policies with conditionally
independent factors. For example, multivariate Gaussian policies with a diagonal co-
variance structure are commonly used in continuous control tasks. Assuming an m-
dimensional action space, we have πθ(at|st) =

∏m
i=1 πθ(a

i
t|st). Hence

∇θη(πθ) = Eρπ,π
[
∇θ logπθ(at|st)Q̂(st,at)

]
= Eρπ,π

[
m∑
i=1

∇θ logπθ(ait|st)Q̂(st,at)

]
(18)

60

In this case, we can set bi, the baseline for the ith factor, to depend on all other actions
in addition to the state. Let a−it denote all dimensions other than i in at and denote
the ith baseline by bi(st,a−it). Due to conditional independence and the score function
estimator, we have

Eat

[
∇θ logπθ(ait|st)bi(st,a

−i
t)
]
= E

a−it

[
∇θEait

[
bi(st,a−it)

]]
= 0 (19)

Hence we can use the following gradient estimator

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ logπθ(ait|st)
(
Q̂(st,at) − bi(st,a−it)

)]
(20)

This is compatible with advantage function form of the policy gradient (Schulman et al.,
2016):

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ logπθ(ait|st)Âi(st,at)

]
(21)

where Âi(st,at) = Q(st,at) − bi(st,a−it). Note that the policy gradient now consists of
m component policy gradient terms, each with a different advantage term.

In Section 5.11, we show that the methodology also applies to general policy structures
(for example, a Gaussian policy with a general covariance structure), where the condi-
tional independence assumption does not hold. The result is bias-free albeit different
baselines.

5.3.2 Optimal action-dependent baseline

In this section, we derive the optimal action-dependent baseline and show that it is better
than the state-only baseline. We seek the optimal baseline to minimize the variance of
the policy gradient estimate. First, we write out the variance of the policy gradient under
any action-dependent baseline. Let us define zi := ∇θ logπθ(ait|st) and the component
policy gradient:

∇ηi(πθ) := Eρπ,π

[
∇θ logπθ(ait|st)

(
Q̂(st,at) − bi(st,a−it)

)]
. (22)

61

The optimal action-dependent baseline is then derived to be:

b∗i (st,a
−i
t) =

Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(at|st)Q̂(st,at)
]

Eait

[
∇θ logπθ(ait|st)T∇θ logπθ(ait|st)

] . (23)

See Section 5.8 for the full derivation. The optimal baseline is similar in form to that
of the optimal state-only baseline, included in Section 5.7 for completeness. Since the
optimal action-dependent baseline is in general different for different action coordinates,
it is outside the family of state-dependent baselines, barring pathological cases.

5.3.3 Suboptimality of the optimal state-dependent baseline

How much do we reduce variance over a traditional baseline that only depends on state?
We use the following notation:

Zi := Zi(st,a−it) = Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)
]

(24)

Yi := Yi(st,a−it) = Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)Q̂(st,at)
]

(25)

Then, using Equation (64) (Section 5.9), we show the following improvement with the
optimal action-dependent baseline:

Ib=b∗(s) =
∑
i

E
ρπ,a−it

 1
Zi

 Zi∑
j Zj

∑
j

Yj − Yi

2
 (26)

See Sections 5.9 and 5.10 for the full derivation. We conclude that the optimal action-
dependent baseline does not degenerate into the optimal state-dependent baseline. Equa-
tion (26) states that the variance difference is a weighted sum of the deviation of the per-
component score-weighted marginalized Q (denoted Yi) from the component weight
(based on score only, not Q) of the overall aggregated marginalized Q values (denoted∑
j Yj). This suggests that the difference is particularly large when the Q function is

highly sensitive to the actions, especially along those directions that influence the gradi-
ent the most. Our empirical results in Section 5.4 additionally demonstrate the benefit of
action-dependent over state-only baselines.

62

5.3.4 Marginalization of the global action-value function

Using the previous theory, we now consider various baselines that could be used in
practice and their associated computational cost.

marginalized q baseline Even though the optimal state-only baseline is known,
it is rarely used in practice (Duan et al., 2016). Rather, for both computational and con-
ceptual benefit, the choice of b(st) = Eat [Q̂(st,at)] = V(st) is often used. Similarly,
we propose to use bi(st,a−it) = Eait

[
Q̂(st,at)

]
which is the action-dependent analogue.

In particular, when log probability of each policy factor is loosely correlated with the
action-value function, then the proposed baseline is close to the optimal baseline.

Ib=E
ait

[Q̂(at,st)] =
∑
i

E
ρπ,a−it

Zi
(

Eai
[
Q̂(at, st)

]
−

Eait

[
zTi ziQ̂(st,at)

]
Eait

[
zTi zi

])2 ≈ 0 (27)

when Eait

[
zTi ziQ̂(st,at)

]
≈ Eait

[
zTi zi

]
Eait

[
Q̂(st,at)

]
.

This has the added benefit of requiring learning only one function approximator, for
estimating Q(st,at), and implicitly using it to obtain the baselines for each action coor-
dinate. That is, Q(st,at) is a function approximating samples Q̂(st,at).

monte carlo marginalized q baseline After fitting Qπθ(st,at) we can obtain
the baselines through Monte Carlo estimates:

bi(st,a−it) =
1

M

M∑
j=0

Qπθ(st, (a
−i
t ,αj)) (28)

where αj ∼ πθ(ait|st) are samples of the action coordinate i. In general, any function may
be used to aggregate the samples, so long as it does not depend on the sample value ait.
For instance, for discrete action dimensions, the sample max can be computed instead
of the mean.

mean marginalized q baseline Though we reduced the computational burden
from learning m functions to one function, the use of Monte Carlo samples can still
be computationally expensive. In particular, when using deep neural networks to ap-
proximate the Q-function, forward propagation through the network can be even more
computationally expensive than stepping through a fast simulator (e.g. MuJoCo). In such

63

settings, we further propose the following more computationally practical baseline:

bi(st,a−it) = Qπθ(st, (a
−i
t , āit)) (29)

where āit = Eπθ
[
ait
]

is the average action for coordinate i.

5.3.5 Final algorithm

The final practical algorithm for fully factorized policies is as follows.

Algorithm 1 Policy gradient for factorized policies using action-dependent baselines

Require: number of iterations N, batch size B, initial policy parameters θ
Initialize action-value function estimate Qπθ(st,at) ≡ 0 and policy πθ
for j in {1, . . . ,N} do

Collect samples: (st,at)t∈{1,...,B}
Compute baseline: bi(st,a−it) = Eait

[
Q̂(st,at)

]
for i ∈ {1, . . . ,m} [e.g. Equations (28-

29)]
Compute advantages: Âi(st,at) := Q̂(st,at) − bi(st,a−it),∀t
Perform a policy update step on θ using Âi(st,at) [Equation (21)]
Update action-value function approximation with current batch: Qπθ(st,at)

end for

Computing the baseline can be done with either proposed technique in Section 5.3.4.
A similar algorithm can be written for general policies (Section 5.11), which makes no
assumptions on the conditional independence across action dimensions.

5.4 experiments and results

continuous control benchmarks Firstly, we present the results of the pro-
posed action-dependent baselines on popular benchmark tasks. These tasks have been
widely studied in the deep reinforcement learning community (Duan et al., 2016; Gu
et al., 2017; Lillicrap et al., 2016; Rajeswaran et al., 2017b). The studied tasks include
the hopper, half-cheetah, and ant locomotion tasks simulated in MuJoCo (Todorov et al.,
2012).1 In addition to these tasks, we also consider a door opening task with a high-
dimensional multi-fingered hand, introduced in Rajeswaran et al. (2017a), to study the

1 We used physics parameters as recommended in Rajeswaran et al. (2017b) and use the MuJoCo 1.5 simu-
lator. Thus the reward numbers may not be consistent with numbers previously reported in literature.

64

effectiveness of the proposed approach in high-dimensional tasks. Figure 17 presents the
learning curves on these tasks. We compare the action-dependent baseline with a base-
line that uses only information about the states, which is the most common approach
in the literature. We observe that the action-dependent baselines perform consistently
better.

A popular baseline parameterization choice is a linear function on a small number of
non-linear features of the state (Duan et al., 2016), especially for policy gradient methods.
In this work, to enable a fair comparison, we use a Random Fourier Feature represen-
tation for the baseline (Rahimi and Recht, 2007; Rajeswaran et al., 2017b). The features
are constructed as: y(x) = sin(1νPx + ϕ) where P is a matrix with each element inde-
pendently drawn from the standard normal distribution, ϕ is a random phase shift in
[−π,π), and ν is a bandwidth parameter. These features approximate the RKHS features
under a RBF kernel. Using these features, the baseline is parameterized as b = wTy(x)

where x are the appropriate inputs to the baseline, and w are trainable parameters. P and
ϕ are not trained in this parameterization. Such a representation was chosen for two rea-
sons: (a) we wish to have the same number of trainable parameters for all the baseline
architectures, and not have more parameters in the action-dependent case (which has
a larger number of inputs to the baseline); (b) since the final representation is linear, it
is possible to accurately estimate the optimal parameters with a Newton step, thereby
alleviating the results from confounding optimization issues. For policy optimization,
we use a variant of the natural policy gradient method as described in Rajeswaran et al.
(2017b). See Section 5.14 for further experimental details.

choice of action-dependent baseline form Next, we study the influence of
computing the baseline by using empirical averages sampled from the Q-function ver-
sus using the mean-action of the action-coordinate for computing the baseline (both
described in 5.3.4). In our experiments, as shown in Figure 18 we find that the two vari-
ants perform comparably, with the latter performing slightly better towards the end of
the learning process. This suggests that though sampling from the Q-function might pro-
vide a better estimate of the conditional expectation in theory, function approximation
from finite samples injects errors that may degrade the quality of estimates. In particular,
sub-sampling from the Q-function is likely to produce better results if the learned Q-
function is accurate for a large fraction of the action space, but getting such high quality
approximations might be hard in practice.

65

0 50 100 150 200 250
Iterations

500

0

500

1000

1500

2000

2500

3000

Sc
or

e

Ant

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 50 100 150 200 250
Iterations

0

1000

2000

3000

4000

Sc
or

e

HalfCheetah

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 50 100 150 200 250
Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

Sc
or

e

Hopper

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 25 50 75 100 125 150 175 200
Iterations

0

20

40

60

80

100

Su
cc

es
s

Pe
rc

en
ta

ge

Door Opening

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

Figure 17: Comparison between value function baseline and action-conditioned baseline on vari-
ous continuous control tasks. Action-dependent baseline performs consistently better
across all the tasks.

Figure 18: Variants of the action-dependent baseline that use: (i) sampling from the Q-function
to estimate the conditional expectation; (ii) Using the mean action to form a linear
approximation to the conditional expectation. We find that both variants perform com-
parably, with the latter being more computationally efficient.

high-dimensional action spaces Intuitively, the benefit of the action-dependent
baseline can be greater for higher dimensional problems. We show this effect on a sim-

66

ple synthetic example called m-DimTargetMatching. The example is a one-step MDP
consisting of a single state, S = {0}, an m-dimensional action space, A = Rm, and a
fixed vector c ∈ Rm. The reward is given as the negative squared `2 loss of the action
vector, r(s,a) = −‖a− c‖22. The optimal action is thus to match the given vector by se-
lecting a = c. The results for the demonstrative example are shown in Table 2, which
shows that the action-dependent baseline successfully improves convergence more for
higher dimensional problems than lower dimensional problems. Due to the lack of state
information, the linear baseline reduces to whitening the returns. The action-dependent
baseline, on the other hand, allows the learning algorithm to assess the advantage of each
individual action dimension by utilizing information from all other action dimensions.
Additionally, this experiment demonstrates that our algorithm scales well computation-
ally to high-dimensional problems.

Action Solve time (iterations) % speed Solution
dimensions Action-dependent State-dependent Delta improvement threshold

12 45.6 45.6 0 0.0% -0.01

100 136 150 14 9.3% -0.25

400 268.2 304 35.8 11.8% -0.99

2000 595.5 671.5 76 11.3% -4.96

Table 2: Shown are the results for the synthetic high-dimensional target matching task (5 seeds),
for 12 to 2000 dimensional action spaces. At high dimensions, the linear feature action-
dependent baseline provides notable and consistent variance reduction, as compared to
a linear feature baseline, resulting in around 10% faster convergence. For the correspond-
ing learning curves, see Section 5.13.

partially observable and multi-agent tasks Finally, we also consider the
extension of the core idea of using global information, by studying a POMDP task and
a multi-agent task. We use the blind peg-insertion task which is widely studied in the
robot learning literature (Montgomery and Levine, 2016). The task requires the robot
to insert the peg into the hole (slot), but the robot is blind to the location of the hole.
Thus, we expect a searching behavior to emerge from the robot, where it learns that the
hole is present on the table and performs appropriate sweeping motions until it is able
to find the hole. In this case, we consider a baseline that is given access to the location
of the hole. We observe that a baseline with this additional information enables faster
learning. For the multi-agent setting, we analyze a two-agent particle environment task

67

in which the goal is for each agent to reach their goal, where their goal is known by
the other agent and they have a continuous communication channel. Similar training
procedures have been employed in recent related works (Lowe et al., 2017; Levine et al.,
2016). Figure 19 shows that including the inclusion of information from other agents
into the action-dependent baseline improves the training performance, indicating that
variance reduction may be key for multi-agent reinforcement learning.

5.5 related works

Three main classes of methods for reinforcement learning include value-based methods
(Watkins and Dayan, 1992), policy-based methods (Williams, 1992; Kakade, 2002; Schul-
man et al., 2015), and actor-critic methods (Konda and Tsitsiklis, 2000; Peters and Schaal,
2008; Mnih et al., 2016). Value-based and actor-critic methods usually compute a gra-
dient of the objective through the use of critics, which are often biased, unless strict
compatibility conditions are met (Sutton et al., 2000; Konda and Tsitsiklis, 2000). Such
conditions are rarely satisfied in practice due to the use of stochastic gradient methods
and powerful function approximators. In comparison, policy gradient methods are able
to compute an unbiased gradient, but suffer from high variance. Policy gradient meth-
ods are therefore usually less sample efficient, but can be more stable than critic-based
methods (Duan et al., 2016).

A large body of work has investigated variance reduction techniques for policy gra-
dient methods. One effective method to reduce variance without introducing bias is
through using a baseline, which has been widely studied (Sutton and Barto, 1998; Weaver
and Tao, 2001; Greensmith et al., 2004; Schulman et al., 2016). However, fully exploiting
the factorizability of the policy probability distribution to further reduce variance has
not been studied. Recently, methods like Q-Prop (Gu et al., 2017) make use of an action-
dependent control variate, a technique commonly used in Monte Carlo methods and
recently adopted for RL. Since Q-Prop utilizes off-policy data, it has the potential to be
more sample efficient than pure on-policy methods. However, Q-prop is significantly
more computationally expensive, since it needs to perform a large number of gradient
updates on the critic using off-policy data, thus not suitable with fast simulators. In con-
trast, our formulation of action-dependent baselines has little computational overhead,
and improves the sample efficiency compared to on-policy methods with state-only base-
line.

The idea of using additional information in the baseline or critic has also been studied
in other contexts. Methods such as Guided Policy Search (Levine et al., 2016; Mordatch

68

0 25 50 75 100 125 150 175 200
Iterations

0

20

40

60

80

Su
cc

es
s

Pe
rc

en
ta

ge

Blind Peg Insertion
Bi = Q(s, [i, a i])
Bi = Q(s, g, [i, a i])

(a) Success percentage on the blind peg insertion task. The pol-
icy still acts on the observations and does not know the
hole location. However, the baseline has access to this goal
information, in addition to the observations and action, and
helps to speed up the learning. By comparison, in blue, the
baseline has access only to the observations and actions.

0 100 200 300 400
Iterations

250

200

150

100

50

Sc
or

e

CommunicateTarget

Bi = Q(s, [i, a i]) independent learners
Bi = Q(s, [i, a i]) shared baseline (Ours)

(b) Training curve for multi-agent communication task with
two agents. Two policies are simultaneously trained, one
for each agent. Each policy acts on the observations of its re-
spective agent only. However, the shared baseline has access
to the other agent’s state and action, in addition to its own
state and action, and results in considerably faster training.
By comparison, in blue, the independent learners baseline
has access to only a single agent’s state and action.

Figure 19: Experiments with additional information in the baseline.

69

et al., 2015) and variants train policies that act on high-dimensional observations like
images, but use a low dimensional encoding of the problem like joint positions during
the training process. Using the structure in the policy parameterization itself to enhance
the learning speed via a marginalised baseline that conditions on other independent
action dimensions, as we do in this work, was independently proposed in COMA by Fo-
erster et al. (2017), who evaluated it in the context of multi-agent learning. By contrast,
our method is applicable to continuous action spaces, and we derive the optimal base-
line and analyze the variance. We also propose a lower bias variant using GAE. For
an overview of other developments in action-dependent baselines, we refer the reader
to Tucker et al. (2018).

5.6 chapter summary

An action-dependent baseline enables using additional signals beyond the state to achieve
bias-free variance reduction. In this work, we consider both conditionally independent
policies and general policies, and derive an optimal action-dependent baseline. We pro-
vide analysis of the variance reduction improvement over non-optimal baselines, includ-
ing the traditional optimal baseline that only depends on state. We additionally propose
several practical action-dependent baselines which perform well on a variety of contin-
uous control tasks and synthetic high-dimensional action problems. The use of addi-
tional signals beyond the local state generalizes to other problem settings, for instance in
POMDP and multi-agent tasks. In future work, we propose to investigate related meth-
ods in such settings on large-scale problems.

5.7 derivation of the optimal state-dependent baseline

We provide a derivation of the optimal state-dependent baseline, which minimizes the
variance of the policy gradient estimate, and is based in Greensmith et al., 2004, Theo-
rem 8. More precisely, we minimize the trace of the covariance of the policy gradient; that
is, the sum of the variance of the components of the vectors. Recall the policy gradient
expression with a state-dependent baseline:

∇θη(πθ) := Eρπ,π
[
∇θ logπθ(at|st)

(
Q̂(st,at) − b(st)

)]
(30)

70

Denote g to be the associated random variable, that is, ∇θη(πθ) = Eρπ,π[g]:

g := ∇θ logπθ(at|st)
(
Q̂(st,at) − b(st)

)
, at ∼ πθ(at|st), st ∼ ρπ(st) (31)

The variance of the policy gradient is:

Var(g) = Eρπ,π

[
(g− Eρπ,π [g])

T (g− Eρπ,π [g])
]

(32)

= Eρπ,π

[
∇θ logπθ(at|st)T∇θ logπθ(at|st)

]
b(st)

2 (33)

− 2Eρπ,π

[
∇θ logπθ(at|st)T∇θ logπθ(at|st)Q̂(st,at)

]
b(st) (34)

Note that E [η(πθ)]) contains a bias-free term, by the score function argument, which
then does not affect the minimizer. Terms which do not depend on b(st) also do not
affect the minimizer.

∂

∂b
[Var(g)] = 0 (35)

= 2Eρπ,π

[
∇θ logπθ(at|st)T∇θ logπθ(at|st)

]
b(st) (36)

− 2Eρπ,π

[
∇θ logπθ(at|st)T∇θ logπθ(at|st)Q̂(st,at)

]
(37)

=⇒ b∗(st) =
Eρπ,π

[
∇θ logπθ(at|st)T∇θ logπθ(at|st)Q̂(st,at)

]
Eρπ,π [∇θ logπθ(at|st)T∇θ logπθ(at|st)]

(38)

5.8 derivation of the optimal action-dependent baseline

We derive the optimal action-dependent baseline, which minimizes the variance of the
policy gradient estimate. First, we write out the variance of the policy gradient under any
action-dependent baseline. Recall the following notations: we define zi := ∇θ logπθ(ait|st)
and the component policy gradient:

∇ηi(πθ) := Eρπ,π

[
∇θ logπθ(ait|st)

(
Q̂(st,at) − bi(st,a−it)

)]
. (39)

71

Denote gi to be the associated random variables:

gi := ∇θ logπθ(ait|st)
(
Q̂(st,at) − bi(st,a−it)

)
, at ∼ πθ(at|st), st ∼ ρπ(st), (40)

such that

∇θη(πθ) = ∇θ

[
m∑
i=1

ηi(πθ)

]
= Eρπ,π

[
m∑
i=1

gi

]
. (41)

The overall variance is as follows:

Var(
m∑
i=1

gi) =
∑
i

Var(gi) +
∑
i

∑
j 6=i

Cov(gi,gj) (42)

=
∑
i

Var(gi) +
∑
i

∑
j 6=i

Eρπ,π

[
gTi gj

]
− Eρπ,π [gi]

T
Eρπ,π

[
gj
]

(43)

Note that the third term does not affect the optima, since the baseline is unbiased. A
closer look at the second term reveals that only part of it affects the optima. Without loss
of generality, a single subterm of the second term can be written as:

Eρπ,π

[
gTi gj

]
= Eρπ,π

[
zTi zj

(
Q̂(st,at) − bi(st,a−it)

)(
Q̂(st,at) − bj(st,a

−j
t)
)]

(44)

We can check the derivative with respect to one of the baselines (without loss of general-
ity, choose bi):

∂

∂bi
Eρπ,π

[
gTi gj

]
= Eρπ,π

[
zTi zj

(
−Q̂(st,at) + bj(st,a

−j
t)
)]

(45)

In particular, the latter term is always zero, and therefore never affects the optima, be-
cause:

Eρπ,π

[
zTi zj

(
bj(st,a

−j
t)
)]

= Ea−j

[
zTi Eaj

[
zj
] (
bj(st,a

−j
t)
)]

(46)

= Ea−j

[
zTi 0

(
bj(st,a

−j
t)
)]

(47)

= 0 (48)

Then, assembling Equation 43 and the remainder of Equation 45, and following analysis

72

similar to Section 5.7, we have:

∂

∂bi
Var(

m∑
i=1

gi) = E
ρπ,a−it

[
−2Eait

[
zTi ziQ̂(st,at)

]
+ 2bi(st,a−it)Eait

[
zTi zi

]]
(49)

+ 2
∑
j 6=i

Eρπ,π

[
zTi zj

(
−Q̂(st,at)

)]
(50)

= 2E
ρπ,a−it

[
bi(st,a−it)Eait

[
zTi zi

]]
− 2

∑
j

Eρπ,π

[
zTi zjQ̂(st,at)

]
(51)

= 2E
ρπ,a−it

[
bi(st,a−it)Eait

[
zTi zi

]]
− 2Eρπ,π

[
zTi zQ̂(st,at)

]
= 0 (52)

where
∑
j zj = z = ∇θ logπθ(at|st).

The optimal action-dependent baseline follows:

b∗i (st,a
−i
t) =

Eai
[
zTi zQ

]
Eai

[
zTi zi

] (53)

=
Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(at|st)Q̂(st,at)
]

Eait

[
∇θ logπθ(ait|st)T∇θ logπθ(ait|st)

] (54)

5.9 derivation of variance reduction improvement

We now turn to quantifying the reduction in variance of the policy gradient estimate
under the optimal baseline derived above. Let Var∗(

∑
i gi) denote the variance result-

ing from the optimal action-dependent baseline, and let Var(
∑
i gi) denote the variance

resulting from another baseline b = (bi(st,a−it))i∈[m], which may be suboptimal or action-
independent. Recall the notation:

Zi := Zi(st,a−it) = Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)
]

(55)

Yi := Yi(st,a−it) = Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)Q̂(st,at)
]

(56)

Xi := Xi(st,a−it) = Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)Q̂(st,at)2
]

(57)

73

Finally, define the variance improvement Ib := Var(
∑
i gi) − Var∗(

∑
i gi). Using these

definitions, the variance can be re-written as:

Var(
∑
i

gi) =
∑
i

E
ρπ,a−it

[
Xi − 2bi(st,a−it)Yi + bi(st,a−it)2Zi

]
−M (58)

Furthermore, the variance of the gradient with the optimal baseline can be written as

Var∗(
∑
i

gi) =
∑
i

E
ρπ,a−it

[
Xi −

Y2i
Zi

]
−M (59)

The difference in variance can be calculated as:

Ib :=
∑
i

(
E
ρπ,a−it

[
Xi − 2bi(st,a−it)Yi + bi(st,a−it)2Zi

]
− (E

ρπ,a−it

[
Xi −

Y2i
Zi

]
)

)
(60)

=
∑
i

E
ρπ,a−it

[
−2bi(st,a−it)Yi + bi(st,a−it)2Zi +

Y2i
Zi

]
(61)

=
∑
i

E
ρπ,a−it

[(
bi(st,a−it)

√
Zi −

Yi√
Zi

)2]
(62)

=
∑
i

E
ρπ,a−it

[
Zi

(
bi(st,a−it) −

Yi
Zi

)2]
(63)

=
∑
i

E
ρπ,a−it

[
Zi

(
bi(st,a−it) − b∗i (st,a

−i
t)
)2]

(64)

=
∑
i

E
ρπ,a−it

[
Eait

[
∇θ logπθ(ait|st)

T∇θ logπθ(ait|st)
] (
bi(st,a−it) − b∗i (st,a

−i
t)
)2]

(65)

74

5.10 derivation of suboptimality of the optimal state-dependent base-
line

Using the notation from Section 5.9 and working off of Equation (64), we have:

Ib=b∗(s) :=
∑
i

E
ρπ,a−it

[
Zi

(
b∗(st) − b

∗
i (st,a

−i
t)
)2]

(66)

=
∑
i

E
ρπ,a−it

Zi
(∑

j Yj∑
j Zj

−
Yi
Zi

)2 (67)

=
∑
i

E
ρπ,a−it

 1
Zi

 Zi∑
j Zj

∑
j

Yj − Yi

2
 (68)

5.11 baselines for general actions

In the preceding derivations, we have assumed policy actions are conditionally inde-
pendent across dimensions. In the more general case, we only assume that there are m
factors a1t through amt which altogether forms the action at. Conditioned on st, the differ-
ent factors form a certain directed acyclic graphical model (including the fully dependent
case). Without loss of generality, we assume that the following factorization holds:

πθ(at|st) =

m∏
i=1

πθ(a
i
t|st,a

f(i)
t) (69)

where f(i) denotes the indices of the parents of the ith factor. Let D(i) denote the indices
of descendants of i in the graphical model (including i itself). In this case, we can set
the ith baseline to be bi(st,a

[m]\D(i)
t), where [m] = {1, 2, . . . ,m}. In other words, the ith

baseline can depend on all other factors which the ith factor does not influence. The
overall gradient estimator is given by

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ logπθ(ait|st,a
f(i)
t)

(
Q̂(st,at) − bi(st,a

[m]\D(i)
t)

)]
(70)

75

In the most general case without any conditional independence assumptions, we have
f(i) = {1, 2, . . . , i− 1}, and D(i) = {i, i+ 1, . . . ,m}. The above equation reduces to

∇θη(πθ) = Eρπ,π

[
m∑
i=1

∇θ logπθ(ait|st,a
1
t , . . . ,a

i−1
t)

(
Q̂(st,at) − bi(st,a1t , . . . ,a

i−1
t)

)]
(71)

The above analysis for optimal baselines and variance suboptimality transfers also to
the case of general actions.

The applicability of our techniques to general action spaces may be of crucial impor-
tance for many application domains where the conditional independence assumption
does not hold up, such as language tasks and other compositional domains. Even in
continuous control tasks, such as hand manipulation, and many other tasks where it is
common practice to use conditionally independent factorized policies, it is reasonable
to expect training improvement from policies without a full conditionally independence
structure.

Computing action-dependent baselines for general actions. The marginalization pre-
sented in Section 5.3.4 does not apply for the general action setting. Instead, m individ-
ual baselines can be trained according to the factorization, and each of them can be fitted
from data collected from the previous iteration. In the general case, this means fitting
m functions bi(st,a1t , . . . ,a

i−1
t), for i ∈ {1, . . . ,m}. The resulting method is described in

Algorithm 2.
There may also exist special cases like conditional independent actions, for which

more efficient baseline constructions exist. A closely related example to the conditionally
independent case is the case of block diagonal covariance structures (e.g. in multi-agent
settings), where we may wish to instead learn an overall Q function and marginalize over
block factors. Another interesting example to explore is sparse covariance structures.

5.12 compatibility with gae

Temporal Difference (TD) learning methods such as GAE (Schulman et al., 2016) allow
us to smoothly interpolate between high-bias, low-variance estimates and low-bias, high-
variance estimates of the policy gradient. These methods are based on the idea of being
able to predict future returns, thereby bootstrapping the learning procedure. In particu-

76

Algorithm 2 Policy gradient for general factorization policies using action-dependent
baselines
Require: number of iterations N, batch size B, initial policy parameters θ

Initialize baselines bi(st,a
[m]\D(i)
t) ≡ 0, for i ∈ {1, . . . ,m} and policy πθ

for j in {1, . . . ,N} do
Collect samples: (st,at)t∈{1,...,B}
Compute advantages: Âi(st,at) := Q̂(st,at) − bi(st,a

[m]\D(i)
t),∀t

Perform a policy update step on θ using Âi(st,at) [Equation (70)]
Update baseline functions with current batch: bi(st,a

[m]\D(i)
t)

end for

lar, when using the value function as a baseline, we have

A(st,at) = E [rt + γV(st+1) − V(st)] = [rt + γb(st+1) − b(st)]] (72)

if b(s) is an unbiased estimator for V(s). GAE uses an exponential averaging of such
temporal difference terms over a trajectory to significantly reduce the variance of the
advantage at the cost of a small bias (it allows us to pick where we want to be on the bias-
variance curve). Similarly, if we use bi(st,a−it) as an unbiased estimator for Eait

[Q̂(st,at)],
we have:

Eπ,M

[
rt + γbi(st+1,a−it+1) − bi(st,a

−i
t)
]
= Q(st,at) − Eait

[Q̂(st,at)] = Ai(st,at) (73)

Thus, the temporal difference error with the action dependent baselines is an unbiased
estimator for the advantage function as well. This allows us to use the GAE procedure
to further reduce variance at the cost of some bias.

The following study shows that action-dependent baselines are consistent with TD
procedures with their temporal differences being estimates of the advantage function.
Our results summarized in Figure 20 suggests that slightly biasing the gradient to reduce
variance produces the best results, while high-bias estimates perform poorly. Prior work
with baselines that utilize global information (Foerster et al., 2017) employ the high-bias
variant. The results here suggest that there is potential to further improve upon those
results by carefully studying the bias-variance trade-off.

77

0 50 100 150 200 250
Iterations

0

1000

2000

3000

4000

Sc
or

e

Effect of GAE()
= 0
= 0.5
= 0.9
= 0.97
= 1.0

Figure 20: We study the influence of λ in GAE which allows us to trade off bias and variance as
desired. High bias gradient corresponding to smaller values of λ do not make progress
after a while. High variance gradient (λ = 1) has trouble learning initially. Allowing
for a small bias to reduce the variance, corresponding to the intermediate λ = 0.97
produces the best overall result, consistent with the findings in Schulman et al. (2016).

5.13 high-dimensional action spaces : training curves

Figure 21 shows the resulting training curves for a synthetic high-dimensional target
matching task, as described in Section 5.4. For higher dimensional action spaces (100

dimensions or greater), the action-dependent baseline consistently converges to the opti-
mal solution 10% faster than the state-only baseline.

5.14 experiment details

Parameters: Unless otherwise stated, the following parameters are used in the experi-
ments in this work: γ = 0.995, λGAE = 0.97, kldesired = 0.025.

Policies: The policies used are 2-layer fully connected networks with hidden sizes=(32,
32).

Initialization: the policy is initialized with Xavier initialization except final layer weights
are scaled down (by a factor of 100x). Note that since the baseline is linear (with RBF
features) and estimated with a Newton step, the initialization is inconsequential.

Per-experiment configuration: The following parameters in Tables 3 and 4 are for both
state-only and action-dependent versions of the experiments. Them-DimTargetMatching

78

0 10 20 30 40 50
Iterations

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Sc
or

e

12-DimTargetMatching

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 20 40 60 80 100 120 140
Iterations

3.0

2.5

2.0

1.5

1.0

Sc
or

e

100-DimTargetMatching

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 50 100 150 200 250 300
Iterations

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Sc
or

e

400-DimTargetMatching

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

0 100 200 300 400 500 600
Iterations

6

5

4

3

2

Sc
or

e

2000-DimTargetMatching

Bi = V(s) i
Bi = Q(s, [i, a i]) (Ours)

Figure 21: Shown is the learning curve for a synthetic high-dimensional target matching task
(5 seeds), for 12 to 2000 dimensional action spaces. At high dimensions, the linear
feature action-dependent baseline provides notable and consistent variance reduction,
as compared to a linear feature state baseline. For 100, 400, and 2000 dimensions, our
method converges 10% faster to the optimal solution.

experiments use a linear feature baseline. Table 5 details the dimensionality of the action
space for each task.

Task Benchmarks Hand task Peg Insertion
Trajectories 10 100 200

Horizon 1000 200 250

RBF features 100 250 250

Table 3: Experiment details

79

Task CommunicateTarget m-DimTargetMatching
Trajectories 300 150

Horizon 100 1

RBF features 250 N/A

Table 4: Experiment details

Task Action dimensions
Hopper 3

HalfCheetah 6

Ant 8

Hand 30

Peg 7

CommunicateTarget 8 (4 per agent)
m-DimTargetMatching m

Table 5: Action dimensionality of tasks

80

6
F L O W : A L I B R A RY F O R R E I N F O R C E M E N T L E A R N I N G A N D
M I C R O S I M U L AT I O N

I thought cars were the dominant
life-form. I was trying to introduce
myself.

Douglas Adams, The Hitchhiker’s
Guide to the Galaxy, 2005 movie

Powerful simulation systems which can capture the complexity of the interacting auto-
mated and human actors are a key component to the study of mixed autonomy systems.
To this end, Flow is a new computational framework, built to support a key need trig-
gered by the rapid growth of autonomy in ground traffic: controllers for autonomous
vehicles in the presence of complex nonlinear dynamics in traffic. Leveraging recent
advances in deep Reinforcement Learning (RL), Flow enables the use of RL methods
such as policy gradient, derivative-free, and approximate dynamic programming meth-
ods, including those presented in Chapter 5, for traffic control. Flow additionally en-
ables benchmarking the performance of classical (including hand-designed) controllers
with learned policies (control laws). In particular, Flow integrates traffic microsimulator
SUMO with deep reinforcement learning libraries, in particular rllab and Ray RLlib, and
exposes a Task Designer, which enables the easy design of traffic tasks, including dif-
ferent networks configurations and vehicle dynamics. Flow supports advanced features,
including distributed simulation, cloud support, hierarchical policies, and multi-agent
environments. Flow is an advanced simulation system which is instrumental in study-
ing emergent behaviors in mixed autonomy traffic, as introduced in Chapter 4, as well
as other transportation applications which benefit from high-intensity computing.

81

6.1 overview

Transportation accounts for 28% of energy consumption in the US. Workers spent on
aggregate over three million driver-years commuting to their jobs (DOT, 2016), with sig-
nificant impact on nation-wide congestion. Based on 2012 estimates, U.S. commuters
experienced an average of 52 hours of delay per year, causing $121 billion of delay and
fuel costs annually (Schrank et al., 2012). Depending on its use in traffic, automation has
the potential to achieve many benefits or to exacerbate problems at the system level, with
potential amelioration or worsening of various system metrics including greenhouse gas
(GHG) emissions, vehicle miles traveled (VMT), total travel time (TTT). Estimates project
that 2% of fuel consumption today is wasted due to congestion, a figure that rises to
4.2% in 2050 (Wadud et al., 2016). As such, the potential efficiency improvement pro-
vided by autonomous vehicles is 2-4% of total fuel consumption due to the alleviation
of congestion alone.

Recent field operational tests by Stern et al. (2017) demonstrated a reduction in fuel
consumption of 40% by the insertion of an autonomous vehicle in ring traffic to dampen
the famous ring instabilities displayed by Sugiyama et al. (2008) in their seminal ex-
periment. These tests are motivations for the present work: it demonstrates the power
of automation and its potential impact on complex traffic phenomena such as stop-and-
go waves (Garavello and Piccolli, 2006). These results are part of a broader core set of
robotics challenges concerning the deployment of multi-agent automation systems, such
as fleets of self-driving cars as seen in Pavone et al., 2012 and in Chapter 4 (an early
version was published in Wu et al., 2017d), coordinated traffic lights (Xie et al., 2012;
Belletti et al., 2018), or other coordinated infrastructure. Robotics has already demon-
strated tremendous potential in improving transportation systems through autonomous
vehicles research; highly related problems include localization (Sukkarieh et al., 1999;
Dissanayake et al., 2001; Y. Cui and Ge, 2003), path planning (Shiller and Gwo, 1991;
Bopardikar et al., 2015), collision avoidance (Minguez and Montano, 2009), and per-
ception (Kanatani and Watanabe, 1990) problems. Considerable progress has also been
made in recent decades in vehicle automation, including anti-lock braking systems (ABS),
adaptive cruise control (ACC), lane keeping, lane changing, parking, overtaking, etc. (S.
Drakunov et al., 1995; Van Arem et al., 2006; Lee et al., 2014; Son et al., 2015; Lefevre
et al., 2014; Hatipoglu et al., 2003; Corporation, 1934; Paromtchik and Laugier, 1996; Mi-
lans et al., 2012), which also have great potential to improve energy efficiency and safety
in traffic (reviewed in Section 4.9).

Down the road, the emergence of automated districts, i.e. districts where all vehicles

82

are automated and operate efficiently with collaborative path-planning, might push
this paradigm to next generation mobility (Meyer and S. Shaheen, 2017). Fleets of au-
tonomous vehicles have recently been explored in the context of shared-mobility systems,
such as autonomous mobility-on-demand systems, which abstracts out the low-level ve-
hicle dynamics and considers a queuing theoretic model. Low-level vehicle dynamics,
however, are of crucial importance, as exhibited by Sadigh et al. (2016) and because
many traffic phenomena, which affect energy consumption, safety, and travel time are
exhibited at the level of low-level dynamics (Sugiyama et al., 2008; Lee et al., 2016; Rios-
Torres and Malikopoulos, 2017a; Rios-Torres and Malikopoulos, 2017b). In some settings,
model-based controllers enable analytical solutions, or tractable algorithmic solutions.
However, often, due to the nonlinearity of the models, numerous guarantees are lost in
the process of developing controllers (i.e. optimality, run-time, complexity, approxima-
tion ratio, etc.). For example, while the ring setting enables elegant controllers to work
in practice, the extension of these results (both theoretical and experimental) to arbi-
trary settings (network topologies, number of lanes, heterogeneity of the fleet, etc.) is
challenging.

Deep reinforcement learning (RL), which is the main enabler in our framework, is a
powerful tool for control and has already had demonstrated success in complex but
data-rich problem settings such as Atari games (Mnih et al., 2013), 3D locomotion and
manipulation (Schulman et al., 2016; Schulman et al., 2015; Heess et al., 2015), chess
(Lai, 2015), among others. RL testbeds exist for different problem domains, such as the
Arcade Learning Environment (ALE) for Atari games (Bellemare et al., 2013), DeepMind
Lab for a first-person 3D game (Beattie et al., 2016), OpenAI gym for a variety of control
problems (Brockman et al., 2016), FAIR TorchCraft for Starcraft: Brood War (Synnaeve et
al., 2016), MuJoCo for multi-joint dynamics with Contact (Todorov et al., 2012), TORCS
for a car racing game (Wymann et al., 2000), among others. DeepMind and Blizzard will
collaborate to release the Starcraft II AI research environment (Vinyals, 2016). Each of
these RL testbeds enables the study of control through RL of a specific problem domain
by leveraging of the data-rich setting of simulation. One of the primary goals of this
chapter is to present a similarly suitable RL testbed for traffic dynamics by making use
of an existing traffic simulator.

These recent advances in deep RL provide a promising alternative to model-based con-
troller design, which the present chapter explores. One key step in the development of
such paradigms is the ability to provide high fidelity microsimulations of traffic that can
encompass accurate vehicle dynamics to simulate the action of these new RL-generated
control policies, a pre-requisite to field experimental tests. This is precisely one of the

83

aims of the present chapter. RL promises an approach to design controllers using black
box machine learning systems. However, note that there are a number of challenges to
consider. It still requires the physical vehicle response to be incorporated in the simula-
tion to learn controllers that match physical vehicle dynamics. Additional considerations
extends beyond the vehicle for which the controller is to be designed. For example, al-
though vehicle velocity is intuitive as a control variable, it is important to keep in mind
that other variables, such as actuator torques, are those actually controlled; another ex-
ample is that the input may consist of data from cameras, LIDAR, or radar. The conver-
sion between the variables may not be direct and may require the design of additional
controllers, the performance of which would also have to be considered.

In the present chapter, we propose the first computational framework and architecture
to integrate deep RL and traffic microsimulation, thereby enabling the systematic study
of autonomous vehicles in complex traffic settings, including mixed autonomy and fully
autonomous settings. Our framework permits both RL and classical control techniques to
be applied to microsimulations. As classical control is a primary approach for studying
traffic dynamics, supporting benchmarking with such methods is crucial for measur-
ing progress of learned controllers. As an illustration, the present chapter provides a
benchmark of the relative performance of learned and explicit controllers (Stern et al.,
2017) for the mixed autonomy ring road setting. The computational framework encom-
passes model-free reinforcement learning approaches, which complement model-based
methods such as model-based reinforcement learning, dynamic programming, optimal
control, and hand-designed controllers; these methods dramatically range in complex-
ity, sometimes exhibiting prohibitive computational costs. Our initial case study inves-
tigates microscopic longitudinal dynamics (forwards-backwards) and lateral dynamics
(left-right) of vehicles (Brackstone and McDonald, 1999; Zheng, 2014). We study a va-
riety of network configurations, and our proposed framework largely extends to other
reinforcement learning methods and other dynamics and settings, such as coordinated
behaviors (Kotsialos et al., 1999), other sophisticated behavior models, and more complex
network configurations.

The contribution of this chapter includes three components, (1) a computational frame-
work and architecture, which provides a rich design space for traffic control problems
and exposes model-free RL methods, (2) the implementation of several instantiations
of RL algorithms that can solve complex control tasks, and (3) a set of use cases that
illustrates the power of the building block and benchmark scenarios. Specifically, our
contributions are:

• Flow, a computational framework for deep RL and control experiments for traffic

84

microsimulation. Flow integrates the traffic microsimulator SUMO (Behrisch et al.,
2011; Krajzewicz et al., 2012) with standard deep reinforcement learning libraries
rllab (Duan et al., 2016) and Ray RLLib (Moritz et al., 2017; E. Liang et al., 2017),
thereby permitting the training of large-scale reinforcement learning experiments
at scale on Amazon Web Services (AWS) Elastic Compute Cloud (EC2) for traffic control
tasks using a variety of reinforcement learning methods. Our computational frame-
work is open-source and available at https://github.com/flow-project/flow.

• An interface, provided by Flow for the design of traffic control tasks, including
customized configurations of different road networks, vehicle types and vehicle
dynamics, noise models, as well as other attributes provided by a standard MDP
interface.

• Extensions of SUMO to support high frequency simulation and greater flexibility
in controllers.

• Exposing model-free reinforcement algorithms for discounted finite (partially ob-
served) MDPs such as policy gradient, with specific examples including Trust Re-
gion Policy Optimization (TRPO) (Schulman et al., 2015) and Generalized Advantage
Estimation (GAE) (Schulman et al., 2016), to the domain of traffic control problems.

• Benchmarking of relative performance of learned and explicit controllers in rich
traffic control settings. We present a benchmark on the mixed autonomy single-
lane ring road network and find that a reinforcement learning agent is capable
of learning policies exceeding the performance of state-of-the-art controllers. The
particular case of Sugiyama instabilities is used to demonstrate the power of our
tool (Sugiyama et al., 2008).

• Building block networks, including multi-lane ring road, figure-eight, merging, and
intersection networks.

The rest of the chapter is organized as follows: Section 6.2 provides background on
the RL framework used in the rest of the chapter. Section 6.3 describes the architecture of
Flow and the processes it can handle in the three computational environments they are
run (including SUMO, rllab, Ray RLlib). Section 6.4 presents the various building blocks
used by SUMO for building general networks (underlying maps). Section 6.5 presents
the various settings for the optimization, incl. action / observation space, reward func-
tions and policies. This is followed by two experimental sections: in Section 6.6, in which
we benchmark the performance of the RL-based algorithm to the FollowerStopper con-
troller (Stern et al., 2017). Finally, Section 6.7 presents related work to place this in the
broader context of traffic flow modeling, deep RL and microsimulations.

85

6.2 preliminaries

In this section, we define the notation used in subsequent sections. See Section 2.2 for a
review of reinforcement learning.

The system described in this chapter solves tasks which conform to the standard
interface of a finite-horizon discounted Markov decision process (MDP) (Bellman, 1957;
Howard, 1964), defined by the tuple (S,A,P, r, ρ0,γ, T), where S is a (possibly infinite)
set of states, A is a set of actions, P : S × A × S → R>0 is the transition probability
distribution, r : S × A → R is the reward function, ρ0 : S → R>0 is the initial state
distribution, γ ∈ (0, 1] is the discount factor, and T is the horizon. For partially observ-
able tasks, which conform to the interface of a partially observable Markov decision process
(POMDP), two more components are required, namely Ω, a set of observations, and
O : S×Ω→ R>0, the observation probability distribution.

RL studies the problem of how agents can learn to take actions in its environment
to maximize its cumulative reward. The Flow framework uses policy gradient meth-
ods (Sutton et al., 2000), a class of reinforcement learning algorithms which optimize a
stochastic policy πθ : S×A → R>0. These algorithms iteratively update the parameters
of the policy through optimizing the expected cumulative reward using sampled data
from SUMO. The policy usually consists of neural networks, and may be of several forms.
Two policies used in this chapter are the Multilayer Perceptron (MLP) and Gated Recurrent
Unit (GRU). MLP is a classical artificial neural network with multiple hidden layers and
utilizes backpropagation to optimize its parameters (Haykin, 1994). GRUs are recurrent
neural network capable of storing memory on the previous states of the system through
the use of parametrized update and reset gates, which are also optimized by the policy
gradient method (Chung et al., 2015). This enables GRUs to make decisions based on
both current input and past inputs.

The autonomous vehicles in our system execute controllers which are parameterized
policies, trained using policy gradient methods. For all experiments in this chapter, we
use the TRPO (Schulman et al., 2015) policy gradient method for learning the policy,
linear feature baselines as described in Duan et al. (2016), discount factor γ = 0.999, and
step size 0.01. The experiment stabilizing the ring, described later, uses a hidden layer
of shape (3,3) and tanh non-linearity. For experiments requiring memory, a GRU policy
with hidden layers (5,) and tanh non-linearity is used.

86

Figure 22: Flow Process Diagram. Flow interfaces SUMO via TraCI with rllab or Ray RLlib to permit
the construction and simulation of traffic MDPs and for the training and evaluation of poli-
cies (control laws). After initializing the simulation in some initial configuration, rllab or Ray
RLlib collects samples by advancing and observing the simulation. In each step, vehicles are
provided actions through a pre-specified controller or through a policy (via rllab or Ray RL-
lib). These actions are then applied via TraCI and the simulation progresses. At the end of an
episode, rllab or Ray RLlib issues a reset command to the environment, which returns vehicles
to their initial (possibly random) position.

6.3 flow

Flow is created to fill the gap between modern machine learning and complex control
problems in traffic. Flow is a computational framework for traffic microsimulation with

87

RL methods. Although the architecture is agnostic to specific machine learning and traf-
fic software packages, we chose to integrate widely used open-source tools to promote
access and extension.

The first of those open-source tools is SUMO (Simulation of Urban MObility) (Kra-
jzewicz et al., 2012). SUMO is a continuous-time and continuous-space microscopic traf-
fic simulator. It is capable of handling large road networks and of modeling the dynamics
of each vehicle in the simulation. SUMO was chosen particularly for its extensibility, as
it includes an API called TraCI (Traffic Control Interface). TraCI allows users to extend
existing SUMO functionality through querying and modifying the state of the simula-
tion, at the single time-step resolution. This allows the user to easily provide intricate,
custom commands that modify the simulation directly.

Secondly, we use rllab or Ray RLlib, open source framework that enables running and
evaluating RL algorithms on a variety of different scenarios, from classic tasks such as
cartpole balancing to more complicated tasks such as 3D humanoid locomotion (Duan
et al., 2016; E. Liang et al., 2017). Flow uses rllab or Ray RLlib to facilitate the training,
optimization, and application of control policies that manipulate the simulation. By mod-
eling traffic scenarios as reinforcement learning problems, we use rllab or Ray RLlib to
issue longitudinal and lateral controls to vehicles. Rllab or Ray RLlib further interfaces
with OpenAI Gym, another framework for the development and evaluation of reinforce-
ment learning algorithms. The SUMO environments built in Flow are also compatible
with OpenAI Gym.

Flow encapsulates SUMO via TraCI to permit the definition and simulation of traffic
MDPs for rllab or Ray RLlib to train and evaluate policies. After initializing the simu-
lation in some initial configuration, the RL library collects samples by advancing and
observing the simulation. In each step, vehicles are provided actions through a pre-
specified controller or through a policy. These actions are then applied via TraCI and the
simulation progresses. After a specified number of timesteps (i.e. the end of a rollout)
or after the simulation has terminated early (i.e. a vehicle has crashed), the RL library
issues a reset command to the environment, which returns vehicles to their initial (pos-
sibly random) position. The interactions between Flow, SUMO/TraCI, and rllab or Ray
RLlib are illustrated in Figure 22.

In addition to learned policies, Flow supports classical control (including hand-designed
controllers and calibrated models of human dynamics) for longitudinal and lateral con-
trol. Flow also supports the car following models and lane-changing models that are
provided in SUMO. These models work analogously to the policies generated by rllab or
Ray RLlib, providing longitudinal and lateral controls to vehicles through ordinary dif-

88

ferential equations. Together, these controllers comprise the overall dynamics of mixed
autonomy, fully human, or full autonomy settings.

Additionally, Flow provides various fail-safe mechanisms presented in Section 6.11,
including the ones that are built into SUMO, to prevent the vehicles from crashing and
the simulation from terminating early.

Flow can be used to perform both pure model-based control experiments by using
only pre-specified controllers for issuing actions, or experiments with a mixture of pre-
specified and learned controllers. Together, this permits the study of heterogeneous or
mixed autonomy settings.

6.3.1 Architecture of Flow

Figure 23: Flow Architecture. A Flow experiment involves a scenario and environment, interfaced with
rllab or Ray RLlib and controllers. The experiment scenario runs a generator to create road
networks for use in SUMO, which is started by the environment. Controllers and rllab or Ray
RLlib take experiment states and return actions, which are applied through SUMO’s TraCI
API. (See Section 6.3.1).

An experiment using Flow requires defining two components: a scenario and an en-
vironment. These and several supporting components as well as their interactions are
summarized in Figure 23.

The scenario for an experiment specifies network configuration in the form of network
shape and attributes, for example two-lane loop road with circumference 200m, or by

89

importing OpenStreetMap data (see Figure 24). Based on the specifications provided,
the net and configuration files needed by SUMO are generated. The user also specifies
the number and types of vehicles (car following model and a lane-change controller),
which will be placed in the scenario.

The generator is a predefined class, which allows for rapid generation of scenar-
ios with user-defined sizes, shapes, and configurations. The experiments presented in
this chapter include large loop roads generated by specifying the number of lanes and
ring circumference, figure-eight networks with a crossing intersection, closed loops with
merging networks, and standard intersections.

The environment encodes the MDP, including functions to step through the simula-
tion, retrieve the state, sample and apply actions, compute the reward, and reset the
simulation. The environment is updated at each timestep of the simulation and, im-
portantly, stores each vehicle’s state (e.g. position and velocity). Information from the
environment is provided to a controller or passed to rllab or Ray RLlib to determine an
action for a vehicle to apply, e.g. an acceleration. Note that the amount of information
provided to either RL or to a controller can be restricted as desired, thus allowing fully
observable or partially observable MDPs. This chapter studies both fully and partially
observed settings.

When provided with actions to apply, Flow calls the action applicator which uses
TraCI to enact the action on the vehicles. Actions specified as accelerations are converted
into velocities, using numerical integration and based on the timestep and current state
of the experiment. These velocities are then applied to vehicles using TraCI.

6.4 networks

Flow currently supports learning policies on a arbitrary (user-defined) networks. These
include closed networks such as single and multi-lane ring roads, figure-eight networks,
and loops with merge as well as open networks, such as intersections, and open networks
with such as merge and highway networks with pre-defined in-flows of vehicles into the
traffic system. See Figure 24 for various example networks supported by Flow. In each
of these networks, Flow can be used to study the design or learning of controllers which
optimize the system-level velocity or fuel consumption, in the presence of different types
of vehicles, model noise, etc.
Single-lane ring roads: The ring road network consists of a circular lane with a speci-
fied length, inspired by the 230m track studied by Sugiyama et al. (2008). This network
has been extensively studied and serves as an experimental and numerical baseline for

90

Figure 24: Various network building blocks supported by the Flow framework. Top left: Single-lane ring
road network. Top middle: Multi-lane ring road network. Top right: Figure-eight road network.
Bottom left: Intersection network. Bottom Middle: Closed loop merge network. Bottom right:
Imported San Francisco network (currently operational for forward simulation). In Flow, maps
can be generated from OSM data and visualized using SUMO.

benchmarking.
Multi-lane ring roads: Multi-lane ring roads are a natural extension to problems in-
volving a single lane ring. The inclusion of lane-changing behavior in this setting makes
studying such problems exceedingly difficult from an analytical perspective, thereby con-
straining most classical control techniques to the single-lane case. Many multi-lane mod-
els forgo longitudinal dynamics in order to encourage tractable analysis (Michalopoulos
et al., 1984; Klar and Wegener, 1998; Sasoh and Ohara, 2002; Daganzo, 2002). Recent
strides have been made in developing simple stochastic models that retain longitudinal
dynamics while capturing lane-changing dynamics in a single lane setting (Wu et al.,

91

2017b). Modern machine learning methods, however, do not require a simplification of
the dynamics for the problem to become tractable, as explored in Section 4.8.
Figure-eight network: The figure-eight network is a simple closed network with an in-
tersection. Two ring roads, placed at opposite ends of the network, are connected by
two perpendicular intersections. Vehicles that try to cross this intersection from opposite
ends are constrained by a right-of-way model provided by SUMO to prevent crashes.
Loops with merge network: This network permits the study of merging behavior in
closed loop networks. This network consists of two ring roads which are connected
together. Vehicles in the smaller ring stay within this ring, while vehicles in the larger
ring try to merge into the smaller ring and then back out to the larger ring. This typically
results in congestion at the merge points.
Intersections: This network permits the study of intersection management in an open
network. Vehicles arrive in the control zone of the intersection according to a Poisson
distribution. At the control zone, the system speeds or slows down vehicles to either
maximize average velocity or minimize experienced delay. The building block can be
used to build a general schema for arbitrary maps such as the one shown in Figure 24

(bottom right).

6.5 task space

Flow provides an interface for fine-grained traffic control task design. This section de-
scribes the options in the task design space, beyond the selection of a network configu-
ration, as described in Section 6.4.
Action Space: When following a pre-defined route, a vehicle performs longitudinal (ac-
celeration) and lateral (lane-changing) actions. Accordingly, for tasks with k autonomous
vehicles, the action space is a set of accelerations c ∈ Rk and lane-changing decisions
d ∈ [−1, 1]k. The lane-changing values are rounded to the nearest integer (-1, 0, 1) denot-
ing lane-change left, do not lane-change, and lane-change right, respectively; this keeps
the action space representation continuous. In cases where the network only has one
lane, the action space may be reduced to solely a set of accelerations.
Observation Space: The observation space may be any set of state information the user
wishes to provide to the agent. This information may fully or partially describe the
state of the environment. For instance, the autonomous vehicles may observe only the
preceding vehicle, only nearby vehicles, or all vehicles and their corresponding position,
relative position, velocity, lane information, etc.

92

Custom Reward Functions: The reward function can be any function of vehicle speed,
position, fuel consumption, acceleration, distance elapsed, etc. Note that existing Ope-
nAI Gym environments (atari and mujoco) come with a pre-specified reward function
(Brockman et al., 2016). However, depending on the context, a researcher, control engi-
neer, or planner may desire a different reward function or may even want to study a
range of reward functions.

For all experiments presented in this chapter, we evaluate the reward on the average
velocity of vehicles in the network. At times, this reward is also augmented with an
added penalty to discourage accelerations or excessive lane-changes by the autonomous
vehicles.
Heterogeneous Settings: Flow supports traffic settings with heterogeneous vehicle types,
such as those with different controllers or parameters. Additionally, simulations can con-
tain both learning agents (autonomous vehicles) and vehicles with pre-specified con-
trollers or dynamics. This permits the use of Flow for mixed autonomy experiments.
Noise and Perturbations: Arbitrary vehicle-level perturbations can be specified in an
experiment, choosing and randomly perturbing a vehicle by overriding its control in-
puts and commanding a deceleration for some duration. Gaussian noise may also be
introduced to the accelerations of all human car-following models in Flow.
Vehicle Placement: Flow supports several vehicle placement methods that may be used
to generate randomized starting positions. Vehicles may be distributed uniformly across
the length of the network or perturbed from uniformity by some noise. In addition,
vehicles may be bunched together to reduce the space they take up on the network
initially, and spread out across one or multiple lanes (if the network permits it); these
create configurations resembling traffic jams. Finally, the sequence in which vehicles are
placed in the system may also be randomly shuffled, and thus their ordering in the state
space may be randomized.

6.6 controller design case study : mixed autonomy ring

This section uses Flow to benchmark the relative performance of an explicit controller
and the reinforcement learning approach to a given set of scenarios. The next section
will show similar outcomes of our RL approaches, including examples for which there
are no known explicit controllers.

The goal of this section is to demonstrate the performance of the reinforcement learn-
ing approach on the mixed autonomy single-lane ring, following the canonical single-
lane ring setup of Sugiyama et al. (2008), consisting of 22 human-driven vehicles on a

93

230m ring track. This seminal experiment shows that such a dynamical system produces
backward propagating waves, causing part of the traffic to come to a complete stop, even
in the absence of typical traffic perturbations, such as those caused by lane changes and
intersections. The field experiment of Stern et al. (2017) studies the case of 21 human-
driven vehicles and one additional vehicle employing one of two proposed controllers,
which we detail in Section 6.6.1. This setting invokes a cascade of nonlinear dynamics
from n (homogeneous) agents. In this and following sections, we study the potential for
machine learning techniques (RL in particular) to produce well-performing controllers,
even in the presence of highly nonlinear and complex settings.

We begin by defining the experimental setup and the state-of-the-art controllers that
had been designed for the mixed autonomy ring setting. We then benchmark the perfor-
mance of the controller learned by Flow under the same experimental setup against the
hand-designed controllers under a partially observed setting.

Experimental Scenario. In our numerical experiments, we similarly study 22 vehicles,
one of which is autonomous, with ring lengths ranging between 180m and 380m, result-
ing in varying traffic densities. The vehicles are each 5m long and follow Intelligent Driver
Model (IDM) dynamics with parameters specified by (Treiber and Kesting, 2013). The
IDM dynamics are additionally perturbed by Gaussian acceleration noise of N(0, 0.2),
calibrated to match measures of stochasticity to the IDM model presented by (Treiber
and Kesting, 2017). We focus on the partially observed setting of observing only the
velocity of the autonomous vehicle, the velocity of its preceding vehicle, and its relative
position to the preceding vehicle. Each experiment runs for a finite time horizon, ranging
from 150 to 300 seconds.

Definitions. We briefly present the important terms used in this case study. Uniform flow
is an equilibrium state of the dynamical system (and a corresponding solution to the
dynamics) where vehicles are traveling at a constant velocity. In this chapter, because the
dynamical system has multiple equilibria, we use uniform flow to describe the unstable
equilibrium in which the velocity is constant. We call this velocity the equilibrium velocity
of the system. Uniform flow differentiates it from the stable equilibrium in which stop-
and-go waves are formed, which does not exhibit a constant velocity.

Controllers. We compare the following controllers and observation settings for the single
autonomous vehicle:

• Learned agent with GRU policy, with partial observation.
• Learned agent with MLP policy, with partial observation.
• Proportional Integral (PI) controller with saturation, with partial observation. This

94

controller is given in Stern et al. (2017) and is included in Section 6.6.1 for com-
pleteness.

• FollowerStopper, with partial observation, and desired velocity fixed at 4.15 m/s.
The FollowerStopper controller is introduced in Stern et al. (2017) and is also detailed
in Section 6.6.1. FollowerStopper requires an external desired velocity, so we selected
the largest fixed velocity which successfully stabilizes the ring at 260m; this is
further discussed in the results.

• Human driver using the Intelligent Driver Model (IDM), with partial observation,
which is presented in more details in Chapter 6.9. This setting yields traffic jams as
in Sugiyama et al. (2008) and serves as a baseline comparison.

6.6.1 Explicit Controllers

In this section, we describe the two state-of-the-art controllers for the mixed autonomy
ring, against which we benchmark our learned policies generated using Flow.

FollowerStopper. Recent work by Stern et al. (2017) presented two control models that
may be used by autonomous vehicles to attenuate the emergence of stop-and-go waves in
a traffic network. The first of these models is the FollowerStopper. This model commands
the autonomous vehicles to maintain a desired velocityU, while ensuring that the vehicle
does not crash into the vehicle behind it. Following this model, the command velocity
vcmd of the autonomous vehicle is:

vcmd =

0 if ∆x 6 ∆x1

v ∆x−∆x1∆x2−∆x1
if ∆x1 < ∆x 6 ∆x2

v+ (U− v) ∆x−∆x2∆x3−∆x2
if ∆x2 < ∆x 6 ∆x3

U if ∆x3 < ∆x

(74)

where v = min(max(vlead, 0),U), vlead is the speed of the leading vehicles, ∆x is the
headway of the autonomous vehicle, subject to boundaries defined as:

∆xk = ∆x
0
k +

1

2dk
(∆v−)

2, k = 1, 2, 3 (75)

The parameters of this model can be found in Stern et al. (2017).

PI with Saturation. In addition to the FollowerStopper model, Stern et al. (2017) presents

95

a model called the PI with Saturation Controller that attempts to estimate the average
equilibrium velocity U for vehicles on the network, and then drives at that speed. This
average is computed as a temporal average from its own history: U = 1

m

∑m
j=1 v

AV
j . The

target velocity at any given time is then defined as:

vtarget = U+ vcatch ×min
(

max
(
∆x− gl
gu − gl

, 0
)

, 1
)

(76)

Finally, the command velocity for the vehicle at time j+ 1, which also ensures that the
vehicle does not crash, is:

vcmd
j+1 = βj(αjv

target
j + (1−αj)v

lead
j) + (1−βj)v

cmd
j (77)

The values for all parameters in the model can be found in Stern et al. (2017).

6.6.2 Results

Through this detailed case study of the mixed autonomy single-lane ring, we demon-
strate that Flow enables the fine-grained benchmarking of classical and learned con-
trollers. Videos and additional results are available at https://sites.google.com/view/
ieee-tro-flow.

Performance. Figure 27 shows several key findings. This traffic density versus velocity
plot shows the performance of the different learned and hand-designed controllers. First,
we observe that GRU and MLP controllers (in partially observed settings) are capable of
matching the uniform flow speed very closely for all trained densities, thereby effectively
stabilizing traffic in all densities in the training range. The PI with Saturation controller,
on the other hand, is only capable of properly performing at densities less than or equal
to the density at which it was calibrated (less congested settings).

Figure 25 shows the velocity profiles for the different learned and hand-designed con-
trollers for the 260m ring and additionally includes the FollowerStopper controller. We
observe that although all controllers are able to stabilize the system, the GRU controller
allows the system to reach the uniform flow equilibrium velocity most quickly. The GRU
and MLP policies stabilize the system with less oscillatory behavior than the FollowerStop-
per and PI with Saturation controllers, as observed in the velocity profiles. In addition,
the FollowerStopper controller is the least performant; the controller can only stabilize a
260m ring road to a speed of 4.15 m/s, well below the 4.82 m/s uniform flow velocity.

Finally, Figure 26 shows the space-time curves for all vehicles in the system, using a

96

https://sites.google.com/view/ieee-tro-flow
https://sites.google.com/view/ieee-tro-flow

Figure 25: All experiments are run for 300 seconds with the autonomous vehicle acting as a human driver
before it is activated. As we can see, an autonomous vehicle trained in a partially observable
ring road setting with variable traffic densities is capable of stabilizing the ring in a similar
fashion to the FollowerStopper and PI with Saturation Controller. Among the four controller,
the GRU controller allows the system to reach the uniform flow equilibrium velocity most
quickly. In addition, the FollowerStopper controller is the most brittle and can only stabilize a
260m ring road to a speed of 4.15 m/s, well below the 4.82 m/s uniform flow velocity.

97

Figure 26: Prior to the activation of the single automated vehicle in the ring road network, all settings
exhibit backward propagating waves resulting from stop-and-go behavior. The automated ve-
hicle then employs different policies aimed at attenuating these waves. Top left: Space-time
diagram for an AV employing a FollowerStopper Controller. Top Right: Space-time diagram for
an AV employing a PI with Saturation Controller. Bottom left: Space-time diagram for an AV
employing a MLP Controller. Bottom right: Space-time diagram for an AV employing a GRU
Controller.

variety of controllers. We observe that the PI with Saturation and FollowerStopper con-
trollers leave much smaller openings in the network (smaller headways) than the MLP
and GRU policies. The MLP policy exhibits the largest openings, as can be seen by the
large white portion of the MLP plot within Figure 26. If this were instead applied in a
multi-lane ring study, then the smaller openings would have the benefit of preventing
opportunistic lane changes, so this observation can lead to better reward design for more
complex mixed autonomy traffic studies.

Robustness. One of the strengths of our GRU and MLP policies is that it does not rely
on external calibration of parameters that is specific to a particular traffic setting, such
as density.

98

Although the PI with Saturation controller can conceptually adjust to different densi-
ties, with its moving average filter, we experimentally found that its performance is sen-
sitive to its parameters. Using parameters calibrated for 260m ring roads (as described
in Stern et al. (2017)), the PI with Saturation controller indeed performs the best at
260m among the density range considered in this study. However, this controller’s per-
formance quickly degrades at higher density (more congested settings), dipping close to
the stop-and-go equilibrium velocity.

Similarly, the FollowerStopper Controller suffers from the same calibration deficiencies
as the PI with Saturation Controller. Additionally, the desired velocity must be provided
beforehand. Interestingly and moreover, we found that this controller often fails to sta-
bilize the system if provided too high of a desired velocity, even if it is well below the
equilibrium velocity. Instead, if a lower desired velocity is first provided as an interme-
diate control target, then the desired velocity may then subsequently be achieved. This
suggests that a simple control law such as the FollowerStopper cannot optimally stabilize
a mixed autonomy ring, and additionally, that there is additional tuning and augmenta-
tion necessary to use the FollowerStopper controller.

Generalization of the Learned Control Policy. Training on different vehicle densities
encourages the learning of a more robust policy. We found the policy to generalize even
to densities outside of the training regime. Figure 27 shows the average velocity vehicles
in the network achieve for the final 100s of simulation time; the gray regions indicate the
test-time densities. Surprisingly, we found that even when training on different densities
but in the absence of acceleration error in the human driver models, the learned policies
successfully stabilized settings with human model noise during test time.

Discussion. This benchmark study demonstrates that deep RL can be used to learn a
controller which performs better than state-of-the-art hand-designed controllers for the
given setting, in terms of velocity. In particular, policy gradient methods, using the same
state information provided to the hand-designed controllers and with access to samples
from the overall traffic system (via a black box simulator), can learn a near-optimal
controller in terms of average system-level velocity performance.

This study focuses on the partially observed setting, since it is the more realistic set-
ting for near-term deployments. Furthermore, there are hand-designed controllers in
the literature for this setting, with which we can benchmark. We would expect that the
fully observed setting (with a MLP policy) would perform as well if not better than our
learned policies in the partially observed setting. Since our policies already closely track
the equilibrium velocity curve, we do not explore the fully observed setting.

99

Figure 27: The performance of the MLP, GRU, and PI Saturation controllers for various densities are
averaged over ten runs for each of the tested densities. The GRU and MLP controllers are
capable of matching the uniform flow speed very closely for all trained densities. The PI with
Saturation controller, on the other hand, is only capable of properly performing at densities
less than or equal to the density at which it was calibrated. Remarkably, the GRU and MLP
controllers are also reliable enough to stabilize the system at velocities close to the uniform
flow equilibrium even for densities outside the training set.

6.7 related work

Traffic Dynamics. Modeling and analysis of traffic dynamics is notoriously complex
and yet is historically considered a prerequisite for traffic control (Treiber and Kesting,
2013; Papageorgiou et al., 2003). Researchers classically trade away the complexity of the
model (and thus the realism of the model) in favor of the tractability of analysis, using
high level abstraction with the goal of designing optimal controllers or other controllers
with desirable properties, such as safety or comfort (P. A. Ioannou and Chien, 1993;
Vahidi and Eskandarian, 2003; Technical Committee ISO/TC 204, Intelligent transport
systems, 2010; Martin et al., 2013). Consequently, results in traffic control can largely be
classified as small-scale simulation-based numerical analysis (C.-Y. Liang and H. Peng,
2000; Bose and P. A. Ioannou, 2003; P. A. Ioannou and Stefanovic, 2005; Kamal et al.,
2014, e.g.) or theoretical analysis on simple settings such as assuming non-oscillatory
responses (Swaroop, 1997, e.g.) or focusing on a single-lane ring road (Orosz et al., 2010;
Orosz et al., 2011; I. G. Jin and Orosz, 2014; Horn, 2013; L. Wang et al., 2016; Wu et al.,

100

2017a, e.g.).
In particular, with the advent of autonomous vehicles, new frameworks and tech-

niques are urgently needed to establish a foundation for studying the control and the
effects of autonomous vehicles, thereby preparing the world for their adoption. Modern
reinforcement learning techniques indicate promise towards the goal of obtaining con-
trollers with desirable (though perhaps not optimal) properties while simultaneously
studying complex settings.
Deep RL and Traffic. Several recent studies incorporated ideas from deep learning in
traffic optimization. Deep RL has been used for traffic prediction (Lv et al., 2015; Polson
and Sokolov, 2017) and control (L. Li et al., 2016; Belletti et al., 2018). A deep RL archi-
tecture was used in Polson and Sokolov (2017) to predict traffic flows, demonstrating
success even during special events with nonlinear features; to learn features to repre-
sent states involving both space and time, Lv et al. (2015) additionally used hierarchical
autoencoding in the traffic flow prediction problem. Deep Q Networks (DQN) was em-
ployed for learning traffic signal timings in L. Li et al. (2016). A multi-agent deep RL
algorithm was introduced in Belletti et al. (2018) to learn a policy for ramp metering.
For additional uses of deep learning in traffic, we refer the reader to Karlaftis and Vla-
hogianni (2011), which presents an overview comparing non-neural statistical methods
versus neural networks in transportation research. These recent results demonstrate that
deep learning and deep RL are a promising approach to traffic problems. This chapter
aims to bridge the gap between deep RL and traffic control problems by providing a com-
putational framework for learning well-performing controllers; a preliminary prototype
of our architecture is published in Wu et al. (2017e).
Traffic Simulation. Traffic microsimulators include Quadstone Paramics (Cameron and
Duncan, 1996), VISSIM (Fellendorf, 1994; Fellendorf and Vortisch, 2010), AIMSUN (Casas
et al., 2010), MATSIM (Horni and (eds.), 2016), POLARIS (Auld et al., 2016), and SUMO
(Krajzewicz et al., 2012). The first three are closed-source commercial software, whereas
the latter three are open source commercial-grade software. Of the three open source
solutions, the first two are designed for agent-based modeling (B. Chen and Cheng, 2010)
and the third is designed for traffic microsimulation. Each of these tools are capable of
large-scale traffic simulation and can handle a variety of policies and control strategies.
Each tool offers an Application Programming Interface (API) which permits overriding or
extending the default models such as car following, lane changing, route choice, etc.
Each of these simulators are widely used in the research community. These tools differ
in their precise offerings and features, such as visualization tools, supported models,
and simulation speed. Because most studies focus their study on a single simulator, a

101

comprehensive comparison of these tools is unfortunately lacking.
In the present work, we choose to integrate SUMO, an open-source, extensible, mi-

croscopic simulator that can simulate large road networks. SUMO discretizes time and
progresses the simulation for a user-specified timestep; furthermore, because SUMO is
microscopic, individual vehicles are controlled by car following models—functions of
the vehicle’s headway, velocity and the velocity of the preceding vehicle. The accelera-
tion provided by the car following model is applied as a change of velocity over the
course of the next timestep. SUMO’s car following models include IDM, IDMM, and
Wiedermann.

SUMO has several current issues which limit its suitability for RL. First, all SUMO
built-in car following models are configured with a minimal time headway, τ, that is used
to ensure safety (Erdmann, 2016), and do not support time delays. Second, SUMO’s car
following models are calibrated for a simulation timestep of 1.0 seconds, and their behav-
ior for smaller timesteps is known to produce unnatural behaviors (SUMO Team, 2016),
whereas we would like to simulate at 10-100ms timesteps, consistent with human physi-
ological reaction times. Finally, there does not yet exist an interface between commercial-
grade microsimulation and RL libraries, although studies have demonstrated the poten-
tial of integrating microsimulation and powerful optimization methods such as genetic
algorithms (Sanchez-Medina et al., 2010). Similarly, because reinforcement learning is
fully data-driven and thus its success relies on the realism of the model/simulator, we
require traffic models that capture realistic fine-grained dynamics, including operating
at a higher granularity (smaller simulation step), with a different model of time delays,
with acceleration-based control, etc.

Our work aims to address each of these limitations. Flow extends SUMO to permit
rich custom controllers which may operate at smaller simulation steps and with time
delays. These richer control actions allow Flow to support a larger class of controllers,
thus permitting a more realistic and suitable testbed for reinforcement learning in traffic
dynamics. SUMO also includes a Python API called TRAffic Control Interface (TraCI),
from which the user can retrieve information about the vehicles’ current states and issue
precise commands to set the vehicles’ velocities, positions, and lanes. This API allows
us to interface SUMO with RL libraries, read out state information, issue actions, define
our own car following models, etc.

102

6.8 chapter summary

Flow is a computational framework built on open source tools; it enables learning poli-
cies for autonomous vehicles in complex traffic settings involving nonlinear vehicle dy-
namics and arbitrary network configurations. This chapter demonstrates its capabilities
and provides several concrete examples and a case study which effectively benchmarks
learned policies against established control results. The expansion and combination of
benchmark networks to additional network types, including arbitrary grid networks,
more complex intersections, and importing arbitrary map networks, is the subject of
ongoing work, and will be operational soon (it is already functional for simulation). Sup-
porting more advanced RL algorithms and non-RL methods in Flow will be important
for benchmarking and overcoming the poor sample efficiency of current RL methods,
due to the presence of combinatorial structures such as graphs (road networks) (Dai et
al., 2017) and multiple agents (Lowe et al., 2017). Interesting and promising future direc-
tions include extending Flow to support additional features, such as evaluating safety
(in addition to efficiency), using Flow as a tool to design and deploy specific controllers
(which can be interpreted or for which properties such as optimality can be proven), and
using it to inform public policy in preparation for the increased adoption of autonomous
vehicles. Finally, as seen in many traffic management project led by State agencies, mi-
crosimulation tools are the last step before field implementation, which we hope to see
for this work as well.

6.9 classical controllers

Flow enables the study of automated vehicles in complex traffic settings, which in-
cludes interactions with human-driven vehicles. This section presents several classical
controllers that are commonly used in the literature for prescribing human and auto-
mated driving behavior (e.g. including ACC). We provide these implementations in Flow
for several reasons: 1) to support studies of heterogeneous traffic control with mixtures of
vehicles of different types, and 2) to enable numerical experiments which are backwards
compatible with the literature.

103

6.9.1 Longitudinal controllers

Longitudinal Controllers: Longitudinal dynamics are usually defined by car following
models (Orosz et al., 2010). Standard car following models (CFMs) are of the form:

ai = v̇i = f(hi, ḣi, vi), (78)

where the acceleration ai of vehicle i is some typically nonlinear function of hi, ḣi, vi,
which are respectively the headway, relative velocity, and velocity for vehicle i. A general
model may include time delays from the input signals hi, ḣi, vi to the resulting output
acceleration ai. Example CFMs include the Intelligent Driver Model (IDM) (Treiber et
al., 2000) and the Optimal Velocity Model (OVM) (Bando et al., 1994; Bando et al., 1995).
Our presented system implements several known CFMs and provides an easy way to
implement custom CFMs.

Custom longitudinal controllers can be implemented in Flow using methods similar
to the general car following model in Equation 78, in which a vehicle’s acceleration is
some function of its speed, headway, and relative velocity. Car following models are
not limited to those inputs, however; full access to the state of the environment at each
timestep is provided to controllers.

Out of the box, Flow supports a variety of car following models, including SUMO
default models and custom models not provided by SUMO. Each model specifies the
acceleration for a vehicle at a given time, which is commanded to that vehicle for the
next time-step using TraCI.

Controllers with arbitrary time delays between perception and action are supported
in Flow. Delays are implemented by storing control actions in a queue. For delayed con-
trollers, a new action is computed using the state at each timestep and enqueued, and an
action corresponding to some previous state is dequeued and commanded. Descriptions
of supported car-following models follow below.

6.9.1.1 Second-order linear model

The first, and simplest, car following model implemented is the forward-looking car
following model specified in (Orosz et al., 2010). The model specifies the acceleration of
vehicle i as a function of a vehicle’s current position and velocity, as well as the position
and velocity of the vehicle ahead. Thus: v̇i = kd(di − ddes) + kv(vi−1 − vi) + kc(vi − vdes)

where vi, xi are the velocity and position of the i-th vehicle, di := xi−1− xi is the headway
for the i-th vehicle, kd,kc,kv are controller gains for the difference between the distance

104

to the leading car and the desired distance, relative velocity, and the difference between
current velocity and desired velocity, respectively. In addition, ddes, vdes are the desired
headways and velocities respectively.

6.9.1.2 Intelligent Driver Model

As described in Chapter 4 and included here for completeness, the Intelligent Driver
Model (IDM) is a microscopic car-following model commonly used to model realistic
driver behavior (Treiber et al., 2000). Using this model, the acceleration for a vehicle
following IDM dynamics is defined by its bumper-to-bumper headway s (distance to
preceding vehicle), velocity v, and relative velocity ∆v, via the following equation:

aIDM =
dv

dt
= a

[
1−

(
v

v0

)δ
−

(
s∗(v,∆v)

s

)2]
(79)

where s∗ is the desired headway of the vehicle, denoted by:

s∗(v,∆v) = s0 + max
(
0, vT +

v∆v

2
√
ab

)
(80)

where s0, v0, T , δ,a,b are given parameters. Typical values for these parameters can be
found in (Treiber et al., 2000) or in Section 4.2.

6.9.1.3 Optimal Velocity Model (OVM)

Another car following model implemented in Flow is the optimal velocity model from
I. G. Jin and Orosz (2014). A variety of optimal velocity functions exist for use in spec-
ifying car following models (Batista and Twrdy, 2010; Treiber and Kesting, 2013); I. G.
Jin and Orosz (2014) uses a cosine-based function to define optimal velocity V(h) as a
function of headway:

V(h) =

0 h 6 hst

vmax
2 (1− cos(πh−hst

hgo
− hst)) hst < h < hgo

vmax h > hgo

The values hst,hgo correspond to headway thresholds for choosing an optimal velocity,
so that for headways below hst, the optimal velocity is 0, and for headways above hgo,

105

the optimal velocity is some maximum velocity vmax. The optimal velocity transitions
using a cosine function for headways between hst and hgo. V(h) is used in the control
law for the acceleration of the i-th vehicle, where v̇i = α[V(hi) − vi] +β[vi−1 − vi] at each
timestep. This controller can also be implemented with delay to simulate perception
and reaction times for human drivers, in which case v̇i(t) would be a function of states
hi(t− τ), vi(t− τ), vi−1(t− τ).

6.9.1.4 Bilateral Control Model (BCM)

The bilateral controller presented by Horn (2013) and L. Wang et al. (2016) considers not
only the relation of a subject vehicle to the vehicle ahead but also to the vehicle behind it.
In their controller, the subject vehicle’s acceleration depends on the distance and velocity
difference to both the vehicle ahead and behind, with

v̇i = kdhi + kv((vi−1 − vi) − (vi − vi+1)) + kc(vi − vdes)

where hi := (xi−1 − xi) − (xi − xi+1). Horn (2013) and L. Wang et al. (2016) argue that
bilateral controllers can stabilize traffic.

6.9.2 Lateral controllers

SUMO has lateral dynamics models dictating when and how to lane change (Erdmann,
2015); however, to extend lateral control to the RL framework, Flow permits the easy
design of new and higher fidelity lane changing models. The current implementation of
Flow includes a proof of concept lane-changing model in which vehicles change lanes
stochastically based on speed advantage when adjacent lanes satisfy a set of constraints.
Vehicles in Flow do not check to change lanes at each timestep, as that might lead to an
excessive number of lane changes. Instead, at some time interval, the vehicle determines
if it should lane change. SUMO’s existing lane-changing models can also be used in a
Flow experiment in place of custom models.

As with longitudinal controllers, custom lateral controllers can also be built in Flow.
These lane-changing models have access to the full state of the environment at each time
step to use as potential inputs. This allows, for example, a vehicle to identify all nearby
vehicles in adjacent lanes and their speeds, and then send a lane-change command if a
lane is clear and offers potentially higher speed. Due to the rich development interface
available, Flow supports the integration of complex lateral controllers.

106

6.10 additional experiments

This section uses Flow to benchmark the controllers described in Section 6.9 in single-
lane ring traffic. Note that the experiments described in this section are forward simula-
tions only and have no learning components.

6.10.1 OVM from uniform initial state (Figure 28a)

The first experiment runs the Sugiyama setup from an initial state in which all 22 vehicles
were spaced evenly around the ring road and start with the same velocity. Each of the
vehicles was using a Optimal Vehicle Model (OVM) controller (see Section 6.9.1.3). The
experiment begins from a stopped state, gets up to speed, and proceeds free of traffic
shockwaves for its duration.

6.10.2 OVM with a perturbation (Figure 28b)

In this experiment, 22 OVM vehicles are run from a uniform, evenly-spaced starting state.
No traffic shockwaves form until the system is perturbed 9 seconds into the experiment,
once the vehicles have roughly reached their equilibrium velocities from the unperturbed
setting. One vehicle is randomly chosen and an acceleration of −5 m/s2 is applied for 1.5
seconds. The braking of that vehicle forces the vehicles behind it to slow down as well,
and the system degrades into stop-and-go traffic.

6.10.3 OVM from a nonuniform motion state (Figure 28c)

This experiment simulates the Sugiyama setup but from a non-uniform initial configu-
ration. Starting with the first vehicle, the subsequent position of each vehicle is drawn
from a Gaussian distribution with mean equal to the length of track divided by number
of vehicles and a standard deviation given by one fifth the mean. The unstable starting
state also incorporates a bunching factor, in which no vehicles are placed on some seg-
ment of the track, with the length of that segment being a user-defined variable. All 22

vehicles use the OVM controller. Instability is apparent from the beginning, with traffic
rapidly degrading into traffic shockwaves and failing to recover.

107

6.10.4 BCM with a perturbation (Figure 29a)

22 vehicles implementing the bilateral car following model (BCM) (see Section 6.9.1.4),
are implemented in this simulation. The simulation begins from a uniform, evenly-
spaced starting state. As with the experiment above, a random vehicle is perturbed at
an acceleration of −5m/s2, 9 seconds into the simulation for 1.5 seconds. Some braking
results, but unlike the OVM case described above, the BCM vehicles recover from this
perturbation and traffic returns to uniform motion shortly after.

6.10.5 BCM from a nonuniform state (Figure 29b)

Again, 22 BCM vehicles are run in this simulation, but from the same nonuniform start-
ing state as in the nonuniform motion OVM case, in which vehicles are spaced randomly
subject to a bunching factor. There is some initial instability and small traffic shockwaves,
but again the BCM vehicles recover from this non-stable state and return to uniform mo-
tion.

6.10.6 Mixed BCM/OVM from a nonuniform initial state (Figure 29c)

Here, 11 BCM vehicles and 11 OVM vehicles begin from a randomly spaced, and bunched
starting state as described above. The proportion of bilateral control vehicles proves suffi-
cient to prevent the stop-and-go waves seen in the unstable OVM setting. Some velocity
variation persists, however, unlike the full-BCM unstable setting which returns to a com-
pletely uniform motion state.

6.11 fail-safes

Flow supplements its car following models with safe driving rules that prevent the in-
herently unstable car following models from crashing. As SUMO experiments terminate
when a collision occurs, Flow provides a fail-safe mechanism, called the final position
rule, which runs constantly alongside other controllers. Fail-safes are passed in the ac-
tion commanded by the vehicle controller, regardless of whether it is an action specified
by RL or a control model. Fail-safes are a standard feature in any traffic simulator that is
required to handle large perturbations and string unstable traffic. The conservativeness
of the fail-safe affects the braking behavior of the traffic. In general, fail-safes operate ac-
cording to the principle of maintaining a minimum safe distance from the leading vehicle

108

where the maximum acceleration and deceleration of the leading vehicle is stochastically
generated (dowling2004traffic; Yeo et al., 2008).
Final Position Rule. This fail-safe aims to keep a velocity such that if the preceding ve-
hicle suddenly starts braking with max deceleration a, then even if the following vehicle
has a delay τ it can still slow down such that it comes to rest at the final position of
the rear bumper of the preceding vehicle. If the preceding vehicle is initially at position

xi−1(0), and decelerates maximally, it will come to rest at position xi−1(0) +
v2i−1(0)

2a . Be-
cause the fail-safe issues the maximum velocity, if the ego vehicle has delay τ, it will first
travel a distance of vsafeτ and then begins to brake with maximum deceleration, which
brings it to rest at position xi(0) + vsafe ·

(
τ+ vsafe

2a

)
.

SUMO-Imposed Safety Behavior. In addition to incorporating its own safe velocity
models, Flow leverages various safety features from SUMO, which may also be used
to prevent longitudinal and lateral collisions. These fail-safes serve as bounds on the ac-
celerations and lane-changes human and autonomous vehicles may perform, and may be
relaxed on any set of vehicles in the network to allow for the prospect of more aggressive
actions to take place.

109

(a) 22 OVM vehicles from uniform state on a ring
road, showing an average speed of 4.87 m/s
across all vehicles.

(b) 22 OVM vehicles on a ring road with a per-
turbation, breaking down from uniform mo-
tion into stop-and-go traffic with an average
speed of 7.5 m/s.

(c) 22 OVM vehicles from a nonuniform ring
road initial state, showing stop-and-go traffic
with an average speed of 7.8 m/s.

Figure 28: Spatial-temporal dynamics of numerical experiments with Optimal Velocity Model
(OVM) vehicles in a ring road network with different starting conditions.

110

(a) 22 BCM vehicles on a ring road with a per-
turbation, showing an average speed of 7.9
m/s.

(b) 22 BCM vehicles from a nonuniform ring
road initial state, showing an average speed
of 7.9 m/s.

(c) 11 BCM and 11 OVM vehicles, from a nonuni-
form ring road initial state, showing an aver-
age speed of 7.1 m/s.

Figure 29: Spatial-temporal dynamics of numerical experiments showing different mixtures of
Bilateral Control Model (BCM) and Optimal Velocity Model (OVM) vehicles in a ring
road network.

111

Part II

S TAT E E S T I M AT I O N

112

7
C E L L PAT H : F U S I O N O F C E L L U L A R A N D T R A F F I C S E N S O R D ATA
F O R R O U T E F L O W E S T I M AT I O N V I A C O N V E X O P T I M I Z AT I O N

And, sure, fine, I do check my phone
about every two minutes, but so do a
lot of people, and it’s better than
smoking, that’s what I say. It’s the
new, lung-safe cigarette.

Aimee Bender,
The Color Master: Stories (2013)

Part 2 of the thesis explores the sensing challenges and requirements to enable mixed-
autonomy systems. In mixed autonomy systems, only parts of the system are automated
and thus naturally observed, but information about the other parts of the system may be
required in order to achieve optimal system performance. Thus being able to measure or
estimate relevant quantities is critical to the performance of mixed autonomy systems. In
mobility, from a control theoretic viewpoint, vehicle density determines the optimal ve-
locity of a linear vehicle system (see Chapter 4), and thus is a critical quantity to estimate,
but has classically been hindered by sparse sensing of the transportation infrastructure.
Owing to advances in traffic velocity estimation due to mobile phones and the natural
relationship between throughput, speed, and density, the problem reduces to that of es-
timating link-level traffic throughput, also called flow or demand (that is, vehicles/hour
on a link in the network). By casting the problem into the framework of convex opti-
mization, we determined that currently available transportation sensing infrastructure,
augmented with also currently available aggregate data from cellular networks enables
accurate route-level (and link-level) flow estimation. The structure of cellular network
data and the large scale of urban systems motivates the design of a new algorithm for
projected gradient descent with a block simplex constraint. The contributions of this

113

part have implications for near-term transportation management, as opposed to long-
term planning such as land-use planning, and infrastructure design, as well as scalable
convex optimization.

In particular, a new convex optimization framework is developed for the route flow es-
timation problem from the fusion of vehicle count and cellular network data. The issue
of highly underdetermined link flow based methods in transportation networks is in-
vestigated, then solved using the proposed concept of cellpaths for cellular network data.
With this data-driven approach, our proposed approach is versatile: it is compatible with
other data sources, and it is model agnostic and thus compatible with user equilibrium,
system-optimum, Stackelberg concepts, and other models. Using a dimensionality reduc-
tion scheme, we design a projected gradient algorithm suitable for the proposed route
flow estimation problem. The algorithm solves a block isotonic regression problem in
the projection step in linear time. The accuracy, computational efficiency, and versatility
of the proposed approach are validated on the I-210 corridor near Los Angeles, where
we achieve 90% route flow accuracy with 1033 traffic sensors and 1000 cellular towers
covering a large network of highways and arterials with more than 20,000 links. In con-
trast to long-term land use planning applications, we demonstrate the first system to our
knowledge that can produce route-level flow estimates suitable for short time horizon
prediction and control applications in traffic management. Our system is open source
and available for validation and extension.

7.1 overview

While there is a wealth of literature in transportation science that is aimed at modeling,
computing, and estimating the movement of people in terms of link flows and origin-
destination (OD) flows, there is relatively little work focused on route flow estimation. The
route flow estimation problem is particularly important because route flow estimates
can capture phenomena in traffic behavior that link flows and OD flows (also called
OD demands) cannot. For instance, route flows would enable analysis and re-routing
of commuters who would be most affected by a link closure. Additionally, route flows
provides a rich state estimate of the network which may be used to compute link flows,
OD flows, turning ratios, etc., thereby providing backwards compatibility with past and
ongoing work that builds upon those estimates.

Simultaneously accurate and efficient methods for estimating route flows are crucial
for large scale urban network analysis and planning demands. However, the first step
for many approaches to estimating route flow requires enumerating all feasible routes,

114

which is an unreasonable task for many urban road networks because it may require
exponential time to compute (Ford and Fulkerson, 1962, §1.2). Classically, the set of
potential routes may be extracted from the induced equilibrium in network flow models.
At the cost of restrictive assumptions, deterministic user equilibrium (UE) (Wardrop and
Whitehead, 1952) permits the modeling of unique link flows and feasible route (or path)
flows without requiring full route enumeration, see Sheffi (1985, §3.3) and M. G. H. Bell
and Iida (1997, §5.2). The stochastic user equilibrium (SUE) (probit-based (Daganzo and
Sheffi, 1977; Maher and Hughes, 1997) and logit-based (Fisk, 1980; M. G. H. Bell and Iida,
1997)) addresses some of the shortcomings of the UE by modeling imperfect knowledge
of the network and variation in drivers’ preferences, which makes the estimation of
route flows possible (M. Bell et al., 1997). However, frequent perturbations in traffic
networks indicate that real-world transportation networks may not be in equilibrium (or
only approximately so) (Hato et al., 1999), so we develop a data-driven framework that
focuses on effectively utilizing the large amount of data available for estimation in traffic
networks. Indeed, in recent years, the growing number of mobile sensors in urban areas
enables the use of probe vehicles for route inference from GPS traces (Hunter et al., 2009;
Rahmani and Koutsopoulos, 2013).

7.1.1 Traffic data sources

Traditional traffic sensing systems such as loop detectors embedded in the pavement
and cameras provide accurate volume and speed estimates, but their placements are
typically sparse and their information content is too coarse. Most importantly, they mea-
sure total counts of vehicles passing through a road segment without distinguishing
between vehicles following different routes. In order to partially address the shortage of
information on the routes followed by vehicles, other types of static sensors have been
deployed on the road network: cameras that measure split ratios at different intersections
(Veeraraghavan et al., 2003) and plate scanning systems (Castillo et al., 2008; Castillo et
al., 2010). However, these systems require costly infrastructure and only provide highly
localized traffic information. Meanwhile, given the large penetration of mobile phones
among the driving population and the ubiquitous coverage of service providers in urban
areas, mobile phones have become an increasingly popular source of location data for the
transportation community. For example, dynamic probing by means of in-car GPS traces
(Horvitz et al., 2005; Work et al., 2008; Herrera et al., 2009; Hunter et al., 2009; Ban et al.,
2011; Sun and Ban, 2013) is a promising technology for congestion prediction, trajectory
recovery, travel time estimation, queue length estimation, and vehicle-type classification.

115

However, due to the read-only nature of GPS signals (Farrell and Barth, 1999), the low
penetration rate of GPS-enabled devices running a dedicated sensing application cur-
rently limits the ability to accurately estimate traffic volumes, and it is also unlikely that
such data would become available to public agencies (Patire et al., 2013).

Cellular network data, in contrast to GPS traces, benefit from dedicated communica-
tion between mobile phones and cellular network base stations, and the (coarse) location
data are available directly from cellular communication network operators. Cellular net-
work infrastructures record a variety of phone to cell communication events, such as
handovers (HO), location updates (LU) and call detail records (CDR) (Volinsky et al., 2011),
and this data has already been shown to be effective in studying urban environments
(Candia et al., 2008; Jiang et al., 2013; Toole et al., 2012). Since typical cellular networks
in urban areas include thousands of cells, HO/LU/CDR events are dense enough to be
used effectively to estimate the route choice of agents without requiring any additional
infrastructure. When an agent is moving, HOs transfer ongoing calls or data sessions
from one cell to another without disconnecting the session, and LUs allow a mobile de-
vice to inform the cellular network when the device move from one location (or cell)
to the next. CDRs (mainly used by service providers for billing purposes) contain times-
tamped summaries of the cell through which each data transmission came, and therefore
contain abundant mobility traces for a majority of the population. Due to the granularity
of sensing, these records alone are not sufficient for recovering agent routes precisely.
The spatial resolution of CDR, HO, and LU data varies with the density of antennas
and is roughly proportional to the daytime population density. In the present work, we
use a standard localization approach when dealing with cellular data based on Voronoi
tessellation, a simple model solely based on the locations of the cell towers (Baert and
Seme, 2004; Candia et al., 2008).

7.1.2 Related work

Several problems within traffic estimation have already benefited from incorporating
data from cellular networks: OD matrix computation using cell phone location data
(Caceres et al., 2007; Calabrese et al., 2011) such as CDRs (White and Wells, 2002), link
flow estimation (Yadlowsky et al., 2014), and travel time and type of road congestion
(Janecek et al., 2012). These studies vary in scale and assumptions, but they indicate
the promise of non-pervasive sensing to provide a richer understanding of mobility. In
particular, cellular network data has been used to improve the accuracy of OD matrix
estimation (Caceres et al., 2007; Calabrese et al., 2011). There are many surveys on the

116

subject in the past decades (M. G. H. Bell and Iida, 1997; Abrahamsson, 1998; Ortuzar
and Willumsen, 2001), and the accuracy of OD estimates will continue to improve. More
generally, the growing variety of region-scale data sources shows promise for improved
performance of transportation systems (J. Zhang et al., 2011). Additionally, convex opti-
mization techniques have been used quite frequently by the transportation community
for diverse purposes, including several of these problems. For example, the classical
Wardrop equilibrium approach to the traffic assignment problem can be formulated as a
convex optimization program given some typical assumptions on the link performance
(or delay) functions (Sheffi, 1985). Recent works often combine convex optimization with
machine learning techniques (Blandin et al., 2009; Shen and Wynter, 2012; Mardani and
Giannakis, 2013).

An early study on the use of cellular network data for traffic assignment (Tettamanti
et al., 2012) estimates the route choice for each user in the cellular network using a
distance measure to determine the best matching route. Their small experiment (2-4
routes) performed via a macro-simulator indicates the potential of cellular network data
for solving this problem. However, a recent survey on the use of wireless signals for
road traffic detection (Mathew and Xavier, 2014) concludes that there is thus far no
existing system that can estimate traffic densities in a practical sense, that is, in terms of
scalability, coverage, cost, and reliability, thus motivating our work on estimating route
flows.

7.1.3 Contributions of this chapter

One of the key innovations of the present work is generalizing the common notion of
an OD matrix to a general form of coarse (route) flow measurements (here collected
from cellular network data). As mentioned above, the problem of traffic assignment is
historically highly underdetermined because the OD matrix and link flows (even when
all the links are observed) contains relatively little information as compared to the num-
ber of available routes. We introduce the concept of cellpaths, which generalizes 2-point
network flow, which we call OD flow, to n-point network flow, which we call cellpath flow.
Where OD flow is characterized by two centroids (illustrated in Figure 32), cellpath flow
can be characterized by n region centroids through with vehicles pass on a single trip. In
this chapter, the centroids for cellpath flow correspond to cellular base stations, and the
centroids for OD flows correspond to centroids of Traffic Analysis Zones (TAZ). Since
our approach includes a “strict” generalization of ODs to cellpaths, the methodology
presented in this chapter can be applied to a variety of traffic modeling and estimation

117

problems.
Now, we define our problem as follows: given a large-scale road network in the quasi-

static regime, a set of OD demands, a set of admissible routes between each OD pairs,
cellpath flow measurements along the network, and link flow measurements on a subset
of links in the network, our goal is to develop a method to estimate the distribution of
flow over the set of routes. We pose the route flow estimation problem as a mathematical
program optimizing the fit to link sensor data over feasible route flow distributions,
constrained to those which are consistent with measured cellpath flows in the network.

Our analysis of the structure of the constraints in the optimization program allows
us to present a more efficient solution method that scales to full-sized networks. By
recognizing the constraints as block-simplex constraints, we apply a standard equality
constraint elimination technique (Boyd and Vandenberghe, 2004, §4.2.4) with a particu-
lar change of variables to convert the non-negativity constraints on the variables into
ordering constraints. In the new space induced by the change of variables, we show that
the projection on the feasible set (characterized by the ordering constraints) can be per-
formed in linear time via bounded isotonic regression (see Tibshirani et al. (2011) for
a short survey on isotonic regression), where n is the number of routes per OD pair.
This is an improvement over the O

(
n logn

)
time required by the projection onto the

simplex (Duchi et al., 2008b; W. Wang and Carreira-Perpinán, 2013). Then we solve our
convex optimization program with a first-order projected descent algorithm. The change
of variables presents two main advantages: our projection requires O

(
n
)

time and the
dimensionality is reduced (sometimes by a factor of 1/3), which is critical for large-scale
problems. In addition, it is worth noting that a wide variety of problems can benefit
from this methodology. First, the use of algorithms that feature a projection step, e.g.
projected descent methods and alternating direction methods, is very popular since they
often provide a simple and efficient way to solve constrained convex optimization prob-
lem as opposed to more specialized active set methods. There is also a great deal of
applications that feature simplex constraints, such as the aforementioned traffic assign-
ment problem, many game theory settings for the computation of strategy distributions,
and `1-based approach in machine learning (Duchi et al., 2008b).

Practical considerations that traffic flow in urban areas may not be in equilibrium
motivate our emphasis on a data-driven approach that benefits from the sheer amount
of cellular network data without relying on equilibrium-based models or other route
choice models. Aiming at a real-world production system pipeline summarized in Fig-
ure 30, we demonstrate the versatility and data-driven nature of the proposed approach
via validation on three datasets produced by two simulators of route assignment, where

118

Network topology, routes, cell towers

Cellular data

Traffic cameras, radars, detectors

Convex

optimization

formulation

Projected Route

flow

solution

Map

Cellpath flow

Link flow

Convex

optimization

formulation

Solver

OD flowCensus, travel surveys, OD models

Figure 30: Proposed route flow estimation pipeline, from raw data to route flows, including: 1) a scheme
for route selection and resolution cellular and road networks into a unified map; 2) a trip
analysis step to filter driver cellular traces from other traces and infer cellpath flows; 3) an
aggregation of the link flow obtained from static sensors over a sizable duration (e.g. 1 hour)
suitable to address the static estimation problem; 4) a state-of-the-art OD matrix estimation
method; 5) a problem formulation that handles data fusion from disparate sources; and 6) the
route inference method.

the positions of the cell towers are sampled randomly on the urban networks. To as-
sess our approach on a variety of possible route choice models that may be realized in
a real-world setting, we develop a small equilibrium-based model that generates user
equilibrium (UE) and system-optimal (SO) flows on the I-210 corridor near Los Angeles,
CA. We also use MATSim, an agent-based transport simulator1, on a large-scale urban
road network near Los Angeles, CA (with more than 20K links and 290K routes) to
showcase the performance of our methodology on large datasets. We demonstrate that
our full pipeline, from the simulators to the procedures to estimate static route flows on
small and large-scale urban networks, can be extended easily to incorporate other types
of data such as link capacities, split ratios etc. Hence we hope that our framework will be
a benchmark for many future studies of estimation problems in transportation science.2

We summarize the contributions of the presented work:
• We propose a convex optimization formulation for the route flow estimation prob-

lem which uses a new data fusion approach for loop detectors counts and cellular
signal traces (ubiquitous among the driving population).

• We demonstrate that our formulation is also compatible with several other ap-
proaches to this problem, including equilibrium concepts, which may be used in
conjunction for improved estimation.

1 MATSim is an open source project: http://www.matsim.org/publications.
2 Our full system is open source and available at https://megacell.github.io/ for validation and exten-

sion.

119

http://www.matsim.org/publications
https://megacell.github.io/

Figure 31: I-210 corridor in Los Angeles county used for the numerical work presented in Section 7.5. Left
subfigure: The 700 regions are origin/destinations areas called Traffic Analysis Zones (TAZ)
used for the numerical experiments. Right subfigure: Corresponding Voronoi partition of the
cellular network based on 1000 cell towers. Best viewed in color.

• We introduce the concept of cellpaths and demonstrate its application to traffic es-
timation problems. We address the issues with highly underdetermined link flow
based methods (which was already raised in the traffic assignment literature) by for-
malizing cellular data as cellpaths and incorporating them as constraints. Though
we focus on the route flow estimation problem, many traffic problems may benefit
from such an approach.

• Using a reduction scheme, we design an algorithm to solve the route flow estima-
tion problem and large-scale traffic assignment problems. In the resulting formu-
lation, the projection step can be performed in O

(
n
)

via isotonic regression, an
improvement over O

(
n logn

)
, where n is the number of routes per OD pair.

• We present a full system pipeline from cellular network and link flow data to
estimate the static route flow (and as a by-product, link flow) on a large-scale ur-
ban network. We demonstrate the first system to our knowledge that can produce
route-level flow estimates suitable for short time horizon prediction and control ap-
plications in traffic management from the fusion of data from the cellular network
and static sensors along roads.

• We present numerical results from different sets of small and large-scale datasets
for the Greater Los Angeles Area (see Figure 31). In particular, the emphasis is
placed on a data-driven approach: it is versatile to different types of underlying
agent behavior models.

The remainder of the chapter is organized as follows: In Section 7.2, we present the
problem setup and assumptions, then formulate our route estimation problem in the
framework of convex optimization. We also provide a re-formulation necessary for the
algorithmic approach described in Section 7.3. Further in Section 7.3, we develop a spe-

120

cialized projected gradient method to solve convex optimization programs with simplex
constraints. Section 7.4 is dedicated to our experiment settings. Section 7.5 presents our
numerical results. Section 7.6 concludes the chapter by placing the presented method
within a general data-driven traffic estimation framework and identifying future direc-
tions.

7.2 problem formulation

7.2.1 Problem setup and assumptions

We define the terminology used in the chapter, the notation is presented in Table 6, and
the setup is illustrated in Figure 32. It is important to distinguish between four types of
flows: cellpath flow, link flow, route flow, and OD flow. Our setup consists of:

• Origins: traffic regions each with an associated centroid, defined by a partitioning
of the road network. Each region is both an origin (its centroid is a source from which
trips emanate) and a destination (its centroid is a sink at which trips terminate). To
demonstrate a possible implementation, the numerical work in this chapter uses
the Traffic Analysis Zones (TAZ) (see Figure 31) as origins/destinations. We define
OD flow to be the flow (vehicle count per time) that originates and terminates with
an OD pair.

• Cells: regions defined by the Voronoi partition of the locations of the cellular network
base stations; they are generally a different set of regions from the origins.

• Cellpath: a sequence of cells; we define cellpath flow to be the flow along a cellpath.
• Link: a segment of road in the network, and the link flow is the flow through a link.
• Route: a sequence of links from an origin to a destination. Each route also has a

particular associated cellpath, as well as a particular associated OD; this insight is
important for the structure of our convex optimization formulation. The route flow
is the flow on the route.

The link-route incidence matrix A encodes the network topology (which routes r ∈ R

contains which links l ∈ L); the cellpath-route incidence matrix U encodes the collection
of routes with the same cellpaths (which routes r ∈ R is associated to which cellpath
p ∈ P); and the OD-route incidence matrix T encodes which routes r ∈ R is between OD
pairs k ∈ O2.3

3 The lowercase letters l, r,p,k written as subscripts refer to the indices associated to links, routes, cellpaths,
and ODs respectively.

121

Table 6: Notation for route estimation problem. We have m observed links, q cellpaths, n routes.

Notation Description

O, D Set of origins/destinations D = O

L |L| = m, links with observed flow
P |P| = q, observed cellpaths
R |R| = n, set of routes
A Set of all links in the network

d ∈ R
|O|2

>0 Vector of OD flows, d = (dk)k∈O2

b ∈ R
|L|
>0 Observed link flow vector, b = (bl)l∈L

f ∈ R
|P|
>0 Cellpath flows vector, f = (fp)p∈P

x ∈ R
|R|
>0 Vector of route flows x = (xr)r∈R

v ∈ R
|A|
+ Full link flow vector, v = (va)a∈A

A ∈ {0, 1}|L|×|R| Link-route incidence matrix
Afull ∈ {0, 1}|A|×|R| Full link-route incidence matrix
U ∈ {0, 1}|P|×|R| cellpath-route incidence matrix
T ∈ {0, 1}|O|

2×|R| OD-route incidence matrix

Subset Rp Subset of np := |Rp| routes with cellpath p
x̃p ∈ [0, 1]|R

p| Ratios of flows across routes r ∈ Rp

xp ∈ R
np
+ x

p
r is the flow of route r ∈ Rp

Rk ⊂ R Subset of nk routes between OD pair k

122

Figure 32: In this illustration of the cellular and loop data fusion, we have two origins A and C (the
blue traffic regions and their centroid as blue dots) and one destination B (the red traffic re-
gion). We have routes r1, r2, r3, r4 with flows x = (x1, x2, x3, x4) such that r1, r2 go from A
to B and r3, r4 go from C to B. Cells c1, · · · , c7 are shown in purple dashed regions. Since
route r1 goes through cells c1, c2, c3, c4, its associated cellpath is p1234. Similarly, routes
r2, r3, r4 have cellpaths p1654,p654,p654 respectively. Let fp1234, fp1654, fp654 be the cellpath
flows (obtained from cellular network data), i.e. there are fp1234=1000 veh/h going through
c1, c2, c3, c4. Let dAB and dCB be the OD demands. Cellpaths p1234 and p1654 disambiguate
routes between AB: fp1234 = x1, fp1654 = x2, contrary to the ODs: dAB = x1 + x2. How-
ever, cell towers are not dense along r3, r4, hence dCB = fp654 = x3 + x4. The cellpath-
route incidence matrix generalizes OD matrices since we consider the sequence of interme-
diate regions (cells here) that intersect with trips. We also have x2 + x3 = b, with b the
flow on the green link (from loop detectors). There is a unique route flow inducing flows
b, fp1234, fp1654, fp654 that is x? = [1 4 5 5], while there are infinitely many flows inducing
b, dAB, dCB: x = x? + [1−1 1−1]T t, ∀ t ∈ [−1, 4], so the problem has one degree of freedom and
is underdetermined with only the OD demands as data. Best viewed in color.

123

link-route:Alr =

1 if l ∈ r

0 else
(81)

cellpath-route:Upr =

1 if r ∈ Rp

0 else
(82)

OD-route: Tkr =

1 if r ∈ Rk

0 else
(83)

The model assumptions are as follows:
• We consider a quasi-static setting, where traffic demands (flows) remain constant

over time, and we focus on the noiseless case, with a short commentary on the
noisy case in Section 7.5.

• Since enumerating all routes is not tractable, we consider the top routes between
each OD pair following different criteria depending on the setting of the numerical
experiment (see Section 7.4).

• We can reliably determine the cellpath flow fp from the cellular traces along each
cellpath p.

• All cellpaths p ∈ P are contiguous: each pair of consecutive cells in p shares a
boundary.

• The set of cellpaths P is well-posed: each route r ∈ R corresponds to exactly 1

cellpath p ∈ P, and we have a cellpath flow measurement fp for each p ∈ P.

7.2.2 Formulation and analysis of the model

The fusion of cellular and loop data for route flow estimation is one of the key contri-
butions of this chapter. We pose the route flow estimation problem as a mathematical
program optimizing the fit to link sensor data over feasible route flow distributions, con-
strained to those which are consistent with measured cellpath flows in the network. We
formulate this in the framework of convex optimization as a minimization of a quadratic
program:

min 1
2‖Ax− b‖

2
2

s.t. Ux = f, x � 0
(84)

124

The problem is a constrained linear inverse problem in which we want to estimate a
signal of length n (the route flows) given that we have m measurements (the observable
link flows). We additionally have q cellpath flow constraints: for each cellpath p ∈ P,
there are np routes corresponding to p, such that their flow must sum up to the cellpath
flow fp:

Ux = f :
∑
r∈Rp

xpr = fp ∀p ∈ P (85)

We note that the subsets of routes Rp are disjoint (each route has at most one cellpath
associated to it), hence (85) along with the nonnegativity constraint in (84), together
forms a block simplex constraint, which we further analyze in Section 7.3.

In general, m� n and q 6 n, thus typically the Hessian ATA of our convex quadratic
objective is singular (ATA ∈ Rn×n but rank (ATA) 6 m � n). Thus the problem might
have multiple optimal solutions (underdetermined) or might have more observations
than unknowns (overdetermined), depending on the number of cellpath flow constraints.
Our cellpath formulation encodes more constraints than methods that consider less de-
tailed flow measurements (e.g. OD flow), thereby constraining the solution space. More-
over, when there are uncorrelated measurement errors on the vector flow b (absence of
interactions between the detection process of the link sensors), the ordinary least squares
is the best unbiased estimator of the route flow.4

We now make the following observation, which is key for our algorithm described in
Section 7.3.

Theorem 1. Problem (84) can be reduced to a least-squares problem with (separable) stan-
dard simplex constraints:

min 1
2‖Ãx̃− b‖

2
2

s.t. 1T x̃p = 1, x̃p � 0, ∀p ∈ P
where Ã ∈ R

|L|×|R|
+ : Ãlr =

fp if l ∈ r ∈ Rp

0 else
(86)

where 1 = [1, · · · , 1]T ∈ Rnp and Ã is a modified link-route incidence matrix containing the
cellpath flows fp.

Proof. The constraints Ux = f in (84) can be written explicitly:
∑
r∈Rp x

p
r = fp, ∀p ∈ P.

With the change of variables x̃p := xp/fp for all p, the constraints become
∑
r∈Rp x̃

p
r =

4 The errors must also have zero-mean and constant variance, then the result holds as link flows linearly
depend on route flows: b̂ = Ax+ ε, from the Gauss-Markov theorem.

125

1, ∀p ∈ P, or in matrix form: 1T x̃p = 1, ∀p ∈ P. Since fp > 0 for all p, then the inequal-
ities xp � 0 are equivalent to x̃p = xp/fp � 0. Finally, the vector Ax has entries vl =∑
r : l∈r xr for l ∈ L, where vl is the flow on link l. The sum can be decomposed between

the different cellpaths p: vl =
∑
r : l∈ r

xr =
∑
p

{ ∑
r : l∈ r∈Rp

x
p
r

}
=
∑
p

{ ∑
r : l∈ r∈Rp

fpx̃
p
r

}
= (Ãx̃)l,

hence the objectives are the same.

7.2.3 Compatibility of our formulation

Our formulation is related to the traffic assignment problem (also called the route assign-
ment problem) used to solve traffic equilibrium problems (see Wardrop and Whitehead
(1952), Sheffi (1985, §3), M. G. H. Bell and Iida (1997, §5)), where A is the set of all links
(arcs) in the network, Afull ∈ [0, 1]|A|×|R| is the full link-route incidence matrix, and ϕ is
the Beckmann objective function (Beckmann et al., 1956):

min ϕ(Afullx) s.t. Tx = d, x � 0 (87)

This is a standard formulation in traffic assignment in which a local minimum of (87) is
a Wardrop equilibrium of a congestion game (Monderer and Shapley, 1996); the relation
between OD and route flows given by Tx = d is equivalent to the “approach proportions”
formulation of Bar-Gera (Bar-Gera, 2002). If the cellpath-route incidence matrix U is
reduced to an OD-route incidence matrix (see Fig. 32), both (84) and (87) share the same
constraints. Furthermore, the cellpath constraints can be added to (87) to restrict its
solution space as well. The main difference lies in the minimization objective: in (84) it is
the link flows measurement residual while in (87) the Beckmann objective ϕ expresses
the incentives of all vehicles (or players) to take the shortest route.

In the context of game theory, each cellpath can be seen as a player who chooses a
strategy or a probability distribution with weights (x̃pr)r∈Rp over the np routes, and a set
defined by Sp := {x̃p ∈ [0, 1]n

p
|
∑
r∈Rp x̃

p
r = 1} is a strategy set or a probability simplex over

the routes r ∈ Rp.
We observe that the traffic assignment problem (87) can also be reduced in a similar

fashion, where O2 is the set of all OD pairs:

min ϕ(Ãfullx̃)

s.t. 1T x̃ = 1, x̃k � 0, ∀ k ∈ O2
where Ãfull =

dk if l ∈ r ∈ Rk

0 else
(88)

126

Our formulation in (84) is also compatible with several other types of data, e.g. turning
ratios, link capacities, OD flows. We demonstrate this by augmenting our problem for-
mulation with turning ratios as follows: If, at some node (intersection) j ∈ N, we know
the flow of vehicles coming from link a = (i, j) ∈ A and turning into link a ′ = (j,k), we
denote the pair of successive links by t = (a,a ′), denote T the set of monitored traffic
turns (intersections), let G ∈ {0, 1}|T|×|R| be the turn-route incidence matrix, and denote h
the vector of flow that passes through each monitored intersection. Then, the objective
of (84) can be generalized to include turning ratios:

min 1
2‖A

′x− b ′‖22
s.t. Ux = f, x � 0

where A ′ =

[
A

G

]
, b ′ =

[
b

h

]
and (89)

Gtr =

1 if t = (a,a ′) : a,a ′ ∈ r

0 otherwise
(90)

Similarly, the objective of (84) can be generalized to include OD flows, and we later
demonstrate the incorporation of this information in our numerical experiments:5

min
1

2
‖A ′x− b ′‖22 s.t. Ux = f, x � 0 where A ′ =

[
A

T

]
and b ′ =

[
b

d

]
(91)

Suppose we know the link capacities m̃a, then the constraints Afullx � m̃, where m̃ :=

(m̃a)a∈A is the link capacities vector, can be added to program (84). To approximate the
new problem as a program with simplex constraints, we can make the added constraints
implicit in the objective:

min
1

2
‖Ax− b‖22 +

∑
a∈A

Φ(LTax− m̃a) s.t. Ux = f, x � 0 (92)

where the barrier Φ is an approximation of the indicator function of R− given as I−(u) =
(0 if u 6 0 else), and the vectors LTa, a ∈ A are the rows of Afull. A common choice for
Φ is the logarithm barrier Φ(u) = −α log(−u) where α > 0 is a parameter that sets the

5 Since the inequalities Ux = f, Tx = d, x � 0 might not define simplexes, we chose formulation (91) over:
min 1

2‖Ax− b‖
2
2 s.t. Ux = f, Tx = d, x � 0 to have the same constraints as in (84) for our algorithmic

approach. Besides, with dense cellular networks, satisfying Tx = d is redundant with the constraints
Ux = f because OD demands are included in cellular network data, hence both formulations reduce to
(84).

127

accuracy of the approximation (Boyd and Vandenberghe, 2004, §11.2.1).

In summary, we pose the route flow estimation problem as a mathematical program
optimizing the fit to link sensor data (and possibly other sources of data) over feasible
route flow distributions, constrained to those which are consistent with measured cell-
path flows in the network. Our data-driven approach is compatible with other types of
data and also similar in formulation to route-based traffic assignment models.

7.3 dimensionality reduction and projection via isotonic regression

In this section, we present an efficient constraint elimination technique relying on the
choice of a particular nullspace, which is suitable for both the proposed route flow es-
timation problem (84) and the traffic assignment problem (87). The projection on the
inequality constraints is performed in linear time via isotonic regression.

7.3.1 Exploiting the structure of the equality constraints

We consider the reduced route flow estimation problem (86) and the reduced traffic
assignment problem (87):

route flow estimation problem: min
x

1
2‖Ãx̃− b‖

2
2 s.t. 1T x̃p = 1, x̃p � 0, ∀p ∈ P

traffic assignment problem: min
x
ϕ(Ãfullx̃) s.t. 1T x̃k = 1, x̃k � 0, ∀ k ∈ O2

(93)
We consider a general objective function f and the simplices Sp = {x̃p ∈ [0, 1]n

p
|
∑
r∈Rp x̃

p
r =

1} as constraints, but the following analysis applies for both problems. We use standard
linear algebra operations to eliminate the equality constraints (Boyd and Vandenberghe,
2004, §4.2.4). Since the constraints have disjoint support, we treat each one of them sep-
arately. For all p ∈ P, we find a direction ep which is a particular solution of 1T x̃p = 1,
and a matrix Np whose range is the orthogonal complement of the vector 1 ∈ Rnp , denoted
{t 1 | t ∈ R}⊥. With the vectors {ep}p∈P stacked into an overall vector x̃0 := (ep)p∈P, and
the matrices {Np}p∈P encoded in an overall block-diagonal matrix N := diag((Np)p∈P),

128

the resulting problem is:

min
z

1
2f(x̃0 +Nz)

s.t. x̃0 +Nz � 0
; or with blocks made explicit:

min
z

f((ep +Npzp)p∈P)

s.t. ep +Npzp � 0, ∀p ∈ P

(94)
Vectors of the form [· · · , 1,−1, · · ·]T are orthogonal to 1 ∈ Rnp . We also choose a simple
ep solution of 1Txp = 1:

ep := [0, · · · , 0, 1]T ∈ Rnp ; Np =

1

−1 1

−1
. . .
. . .

 ∈ Rnp×(np−1) ∀p ∈ P (95)

where the columns of Np form a basis of {t 1 | t ∈ R}⊥. These choices result in a simplifi-
cation of the constraints in (94), and we can interchangeably operate on variables xp in
(84) and variables zp in (86) since they are simply related:

x̃p = ep +Npzp = [zp1 , zp2 − z
p
1 , · · · , zpnp − z

p
np−1

, 1− zpnp]
T , ∀p ∈ P

zp = [x̃p1 , x̃p1 + x̃
p
2 , · · · ,

∑n−2
i=1 x̃

p
i ,
∑n−1
i=1 x̃

p
i ,]T , ∀p ∈ P

(96)

The constraint ep +Npzp � 0 becomes an ordering constraint 0 6 z
p
1 6 · · · 6 z

p
np−1

6 1.
The program (94) is now:

min
z
f((ep +Npzp)p∈P) s.t. 0 6 zp1 6 · · · 6 z

p
np−1

6 1, ∀p ∈ P (97)

The main advantage of this constraint elimination is the reduction of the dimension
from n to n− q, where n is the number of routes and q the number of cellpaths (see
Table 6). If each cellpath has maximum k routes, then we have n 6 kq, hence n− q 6
n(1− 1/k). For our target problem, we generally have k ∈ [3, 50] hence the dimension
can be reduced by as much as 1/3.

The problem (97) can be solved quite efficiently with a simple (accelerated) first order
or second order projection algorithm, or an Augmented Lagrangian method. In partic-
ular, the basic descent projection algorithm (see Algorithm 3) iteratively takes a step in
a descent direction ∆z (line 2) from the current point z, projects the new point z+ ∆z
onto the constraint set z+ := Π(z+∆z) (line 3), and performs a line search (line 4). The
projection step is performed with q Euclidean projections of zp + ∆zp onto ordering

129

constraints:

Πp(yp) : min
up
‖up − yp‖22 s.t. 0 6 up1 6 u

p
2 6 · · · 6 u

p
np−1

6 1 ∀p ∈ P (98)

Algorithm 3 Proj-descent(·) General projected descent method

Require: initial point z = (zp)p∈P in the feasible set X.
1: while stopping criteria not met do
2: Determine a descent direction ∆z = (∆zp)p∈P
3: Projection: (zp)+ := argmin

up
{‖zp + ∆zp − up‖2 : 0 6 u

p
1 6 u

p
2 6, · · · 6 u

p
np−1

6

1}, ∀p ∈ P

4: Line search on the projected arc: γ :≈ argmin {f(z+ t(z+ − z)) : t ∈ [0, 1]}
5: z := z+ γ(z+ − z)
6: end while
7: return z

In line 4 of Algorithm 3, we perform a backtracking line search (Boyd and Vanden-
berghe, 2004, §9.2). This is an Armijo-rule based step size selection that ensures suf-
ficient descent, it approximately minimizes the objective along the projected arc {z +

t(z+ − z) | t ∈ [0, 1]}. Since the feasible set is convex, the projected arc is feasible, hence
the method also ensures feasibility of the next iterate. We apply backtracking with objec-
tive f(z) = ‖A(x̃0 +Nz)‖22 and descent direction d = z+ − z.

7.3.2 A simple projection using isotonic regression

The projections (98) have general form (99), given data points y := [y1, · · · ,yn] ∈ Rn,
weights w := [w1, · · · ,wn] � 0, and bounds L < U.6 Without bounds, we have an isotonic
regression problem (100) (see Tibshirani et al. (2011) and references therein).

ISO[L,U]
1→n(y,w) : minu

∑n
i=1wi(yi − ui)

2 s.t. L 6 u1 6 u2 6 · · · 6 un 6 U (99)
ISOR

1→n(y,w) : minu
∑n
i=1wi(yi − ui)

2 s.t. u1 6 u2 6 · · · 6 un (100)

where we use the notation ISOI
s→t(y,w) such that subscript s → t means we only con-

sider data points with indices from s to t, and superscript I is the interval in which the

6 For subsection 7.3.2 only, U ∈ R is the upper bound in problem (99). In the rest of the chapter, U is the
cellpath-route incidence matrix.

130

variables us,us+1, · · · ,ut lie. Since both problems are strongly convex, they both have
unique solutions. The solution to (100), denoted uiso, can be computed in linear time
using the Pool Adjacent Violators (PAV) algorithm (Best and Chakravarti, 1990, §3), so one
hopes that the solution to (99), denoted u?, derives easily from uiso. In fact, we prove the
following result:

Theorem 2. The solution u? to (99) is the Euclidean projection of the solution uiso to (100)
onto [L,U]n.

Although isotonic regression is generally studied in the form (100), the bounded ver-
sion (99) has appeared in Grotzinger and Witzgall (1984). The simple connection pre-
sented in Theorem 2 is new to the best of our knowledge. This result can be written
u? = Π[L,U]n(u

iso) where ΠK is the Euclidean projector onto space K. When K = [L,U]n,
the projected vector p := Π[L,U]n(u) is obtained from u ∈ Rn by simply projecting each
entry ui onto [L,U], i.e. pi = ui if ui ∈ [L,U], pi = L if xi < L, and pi = U if xi > U. We
first give a lemma.

Lemma 1. Given uiso the solution to (100), if there exists k such that uiso
k < uiso

k+1 then (100)
reduces to two subproblems:

ISOR
1→k(y,w) : minu

∑k
i=1wi(yi − ui)

2 s.t. u1 6 · · · 6 uk
ISOR

k+1→n(y,w) : minu
∑n
i=k+1wi(yi − ui)

2 s.t. uk+1 6 · · · 6 un
(101)

such that [uiso
1 , · · · ,uiso

k] is the solution to the first one and [uiso
k+1, · · · ,uiso

n] is the solu-
tion to the second one. The same result holds for (99) and u?, with resulting subproblems
ISO[L,+)

1→k (y,w) and ISO(−,U]
k+1→n(y,w).

Proof. Since the constraint uk 6 uk+1 is not active at uiso, it may be removed from (100)
without altering the solution. Then the resulting program can be separated into the two
programs in (101) with respective solutions [uiso

1 , · · · ,uiso
k] and [uiso

k+1, · · · ,uiso
n].

Proof of Theorem. We start with two simple cases.
Case 1: [uiso

i 6 L, ∀ i]. Suppose ∃ k, u?k > L. We choose k the smallest of such indices,
then either k = 1 or L = uk−1 < uk. In both cases, [u?k, · · · ,u?n] is the unique solution

131

to ISO(−,U]
k→n (y,w) from Lemma 1. Since [uiso

k , · · · ,uiso
n] is also feasible for ISO(−,U]

k→n (y,w),
we have

∑n
i=kwi(yi − u

iso
i)2 >

∑n
i=kwi(yi − u

?
i)
2, and adding

∑k−1
i=1 wi(yi − u

iso
i)2 on

both sides yields
∑n
i=1wi(yi − u

iso
i)2 >

∑k−1
i=1 wi(yi − u

iso
i)2 +

∑n
i=kwi(yi − u

?
i)
2. Since

[uiso
1 , · · · ,uiso

k−1,u
?
k, · · · ,u?n] is also feasible for (100) (uiso

k−1 6 l < u?k), this contradicts the
optimality of uiso. Hence u?k = L, ∀ k, i.e. u? = Π[L,U]n(u

iso).

Case 2: [uiso
i > U, ∀ i]. The analysis is similar to case 2. We have: u?k = U, ∀ k, i.e.

x? = Π[L,U]n(u
iso).

General case: Without loss of generality, we suppose there exist two indices s, t such that:
uiso
1 6 · · · 6 uiso

s 6 L < uiso
s+1 6 · · · 6 uiso

t−1 < U 6 xiso
t 6 · · · 6 xiso

n . From Lemma 1,
[uiso
1 , · · · ,uiso

s], [uiso
s+1, · · · ,uiso

t−1], and [uiso
t , · · · ,uiso

n] are then solutions to

ISOR
1→s(y,w), ISOR

s+1→t−1(y,w),

and ISOR
t→n(y,w) respectively. From case 1, the vector [L, · · · ,L] ∈ Rs is solution to

ISO[L,+)
1→s (y,w) and from case 2, the vector [U, · · · ,U] ∈ Rn−t+1 is solution to ISO(−,U]

t→n (y,w).
Then the global vector x∗ := [L, · · · ,L, uiso

s+1, · · · ,uiso
t−1, U, · · · ,U] is the solution to the

global program:

minu
∑n
i=1wi(yi − ui)

2

s.t. L 6 u1 6 · · · 6 us, us+1 6 · · · 6 ut−1, ut 6 · · · 6 un 6 U
(102)

Adding the constraints us 6 us+1 and ut−1 6 ut to (102) does not alter the solution
since they are inactive. Hence [L, · · · ,L, uiso

s+1, · · · ,uiso
t−1, U, · · · ,U] is the solution to (99),

i.e. u? = Π[L,U]n(u
iso).

Algorithm 4 PAV-proj(yp) Projection onto ordering constraints in line 3 of Algorithm 3

Require: vector yp ∈ Rnp−1

1: compute yp,iso := argmin
up

{‖up − yp‖22 : up1 6 u
p
2 6 · · · 6 u

p
np−1

} with the PAV

algorithm (Best and Chakravarti, 1990)
2: project yp,iso onto [0, 1]np−1: ỹ

p
k = y

p,iso
k if yp,iso

k ∈ [0, 1]; ỹ
p
k = 0 if yp,iso

k 6 0;
ỹ
p
k = 1 if yp,iso

k > 1.
3: return return ỹp

132

In Algorithm 4, we give an efficient algorithm to perform the projections (98) in line 3

of Algorithm 3. We note that without the constraint elimination described earlier, a pro-
jected descent method applied to (86) would require q projections onto the probability
simplices {x̃p ∈ Rnp | 1T x̃p = 1, x̃p � 1} at each iteration. The complexity of these projec-
tions is O

(
np lognp

)
(Duchi et al., 2008a; W. Wang and Carreira-Perpinán, 2013), which

is less attractive than the O
(
np
)

complexity of Algorithm 4.
Problems (86) and (88) are both convex, and can be solved efficiently with including

interior point methods, augmented Lagrangian, gradient projection, and conjugate gra-
dient. In particular, we choose the Barzilai and Borwein (BB) method for the accelerated
gradient method, where z is the current iterate and z− and previous iterate:

∆z = −((yTs)/(yTy))∆f(z) where y = ∇f(z) −∇f(z−), s = z− z− (103)

The change of variable reduces the dimensionality, at the cost of losing some of the
intuitive structure of the route choice problem. While long-standing algorithms such
as the Frank-Wolfe assignment (LeBlanc et al., 1975) and the Origin-based assignment
(Bar-Gera, 2002) and their modifications may have diminished efficiency since the all-
or-nothing assignment step is no longer available, their slow convergence is known (Or-
tuzar and Willumsen, 2001, §11.2.3.1). We propose that the estimation problem (86) and
the traffic assignment problem (88) can be reduced to the form (94), and then be solved
efficiently with quasi-Newton methods (e.g. L-BFGS (Nocedal and Wright, 2006)), accel-
erated gradient methods, or alternating direction methods. These algorithms are proven
to have fast convergence, and the proposed projection step is efficient as discussed above.

7.4 experimental setting and validation process

We demonstrate our approach by providing numerical results on networks of varying
sizes, applying different traffic assignment models and sensor configurations, all based
on the I-210 highway corridor in Los Angeles. To demonstrate the versatility to the un-
derlying data-driven approach, we investigate the following three scenarios (see Figure
33):

1. Highway network in user equilibrium (UE), with varying cell densities and static sen-
sor coverage.

2. Highway network in system optimum (SO), with varying cell densities and static sen-
sor coverage.

3. Activity-based agent model on full network, with varying cell densities, 5% static sensor

133

coverage.

Model Solver

Error(x̂, xtrue)

UE

SO
agent-based

data route flow estimate

x̂

true route flow xtrue

A, b, T, d, U, f

Figure 33: Our experiment flow block diagram, where the model is comprised of a network, traffic as-
signment model, and sensor configuration. The solver is presented in Section 7.3. The error
metric represented here is a function of the estimated and actual route flow. We may compute
the percent flow error or, using additional information (e.g. network topology and actual link
flow), we may also compute the link flow GEH error.

We have intentionally selected three different traffic assignment models (UE, SO, agent-
based) to test the versatility of our method; we aim to demonstrate that our method is not
only accurate (provided enough measurements) and appropriate for full-scale networks
but also model agnostic, thereby highlighting a major advantage of our approach to
those that require more rigid assumptions on agent behavior. Thus, we study networks
of different sizes and complexities, different driver behavior models, and trade-offs for
different sensor placements. We additionally present preliminary investigation on the
effect of measurement and model error on the accuracy of the approach.

7.4.1 Sensor configurations

We have two main types of data: link sensors data (loop based) and cellpath sensors
(cell based). We consider link sensors on a subset of the links in the network (ranging
from 5% to 100% coverage). For the highway network with UE/SO flow, the subsets of
links are chosen such that the most congested links are observed, i.e. links with highest
traffic volumes or flows, whereas in the full large-scale network, we use locations of real
highway (PeMS, see Choe et al. (2002)) and arterial loop sensors where the coverage is
5%.

Although the use of real cellular network data from a service provider would demon-
strate even stronger applicability of our framework, its availability is restricted for pri-
vacy issues. Our team at the present time is not able to share findings based on collab-
orations with companies such as AT&T. Nevertheless, the use of well-designed simula-
tors remains necessary for demonstrating how of our framework may apply to different
networks and settings, and also for the ease of validation, as route flows are not yet
measurable in real-world settings. Our model for cell placement is based on employee

134

population density and locations of major roads. Most notably, many ordinances pro-
hibit towers in residential areas but promote towers in industrial and commercial cen-
ters. For both networks, the locations (Xi, Yi) ∈ R2 of the cell towers are randomly sam-
pled on the plane such that the distribution models realistically represent the coverage
based on region demographics. The overall sensor configuration (104,105,106) consists of
N = NB+NS+NL total cell towers, where NB,NS,NL are predetermined for each experi-
ment and the weights of the multinomial distributions are determined by demographics
and geometry. Our sensor configurations are drawn from three distribution models:

1. Within the whole region delimited by a bounding box: NB cell tower locations
{(XBi , YBi)}i=1,··· ,NB are sampled uniformly (104).

2. Within sub-regions S comprising the full region: For each sub-region s ∈ S, de-
limited by a rectangle (Xsmin, Ysmin), (X

s
max, Ysmax), Ns additional cell tower locations

{(Xsi , Y
s
i)}i=1,··· ,Ns are sampled (105). The number of base stations Ns for each sub-

region s is sampled from a multinomial distribution withNS trials and weights pro-
portional to demographic information for each region (e.g. employee population).
That is, NS =

∑
s∈SN

s is the total number of cell towers among all the sub-regions
(excluding those sampled from the entire bounding box).

3. Near major links in the network: Along each link a ∈ Ã ⊂ A (also called arcs),
where Ã denotes a pre-selected subset of major links in the network, Na cell tower
locations are sampled uniformly along the link with Gaussian noise (106) where
(Xas , Yas) is the location of the start of link a, and (Xat , Yat) is the location of the end
of link a. The numbers of base stations Na along links a ∈ A are sampled from a
multinomial distribution with NL trials and weights proportional to the length of
a, where NL is the total number of cells along links.

Bounding box : XBi ∼ U([XBmin, XBmax]), Y
B
i ∼ U([YBmin, YBmax]), for i = 1, · · · ,NB (104)

Sub-region S : Xsi ∼ U([X
s
min, Xsmax]), Y

s
i ∼ U([Y

s
min, Ysmax]), for i = 1, · · · ,Ns (105)

Link a :

Xai ∼ Xas + ti(X
a
t −X

a
s) +N(0,σ)

Yai ∼ Yas + ti(Y
a
t − Y

a
s) +N(0,σ)

s.t. ti ∼ U([0, 1]), for i = 1, · · · ,Na

(106)

135

7.4.2 Scenarios 1 and 2: UE and SO on the highway network

We consider first the highway network of the I-210 region in Los Angeles7. The roads are
extracted from OpenStreetMaps (OSM) and we retain only links with at least five (up to
11) lanes. This results in a directed graph G = (N, A) with |N| = 44 nodes and |A| = 122

directed links. We calibrate the free flow delay τa for each link a ∈ A using the link’s
length and free flow speed (provided by OSM) and empirical delays values (provided by
Google Maps). An illustration of the network is provided in Fig. 34.

Figure 34: Benchmark (small-scale) example used for the first numerical run: The four subfigures present
the highway network of the I-210 highway corridor in L.A. county. Starting from the top left
and in clockwise order: 1) The state of traffic on 2014-06-12 at 9:14 AM from Google Maps;
2) The nodes in blue and red are nodes from which positive flows emanate, nodes in red are
nodes from which positive flows terminate; 3) Network with 80 sampled cells, with a higher
concentration of cells near downtown. A random path from 25 to 22 is shown in red with the
closest cell towers. 4) The highway network in user equilibrium with the resulting delays. Best
viewed in color.

The OD demands are based on census data and employment concentration in L.A.

7 The region has bounding box [-118.328299, 33.984601, -117.68132, 34.255881] in latitude and longitude
coordinates.

136

county, which are extracted from the Census Bureau. The OD demand model is simpli-
fied to a static morning rush hour model8 of the region such that: i) only 21 origins have
positive flows emanating from them; ii) all the trips terminate at three destinations: near
Burbank at node 5, towards Santa Monica at node 20, and in Downtown L.A. at node 22;
iii) we only have 42 OD pairs with positive flows ranging from 1200 veh/hour to 12,000

veh/hour.9

In our equilibrium-based numerical study, we consider the traffic assignment model
presented in Sheffi (1985, §3.1) to generate route flows and cellpath flows. The delay on
a given link a is assumed to be a strictly increasing function ca(·) of the traffic volume
(flow) va on that link. We choose the widely used delay function estimated by the Bureau
of Public Roads, where τa is the free flow delay (sec) and ma is the number of lanes on
link a, and provide the Beckmann objective function ϕUE associated to the overall model
(Beckmann et al., 1956)):

link delay: ca(va) = τa(1+ 0.15(va/ma)
4), ∀a ∈A (107)

UE objective: ϕUE(v) =
∑
a∈A

∫ va

0
ca(u)du (108)

In this section only, we use the following notation: the nodes of the network are in-
dexed by i ∈ N, the 42 OD pairs with positive OD flow are indexed by k ∈ {1, · · · ,Q},
Afull ∈ R|A|×|R| is the link-route incidence matrix, andN ∈ {−1, 0, 1}|N|×|A| is the node-link
incidence matrix. For each OD pair k = (sk, tk) we define an associated vector ek ∈ R|N|

such that eki = −dk at node i = sk (the origin), eki = dk at node i = tk (the destination),
and eki = 0 otherwise. Under the assumptions of our experiment, the path-flow traffic
assignment (PTA) is equivalent to the link-flow traffic assignment (LTA), i.e. they give
the same unique link flow solution (Ford and Fulkerson, 1962):

PTA : minϕUE(Afullx) (109)
s.t. Tx = d, x � 0

8 Based on observed flows on 2014-06-12 at 9:14 AM from Google Maps.
9 Highway experiment implementation (Python) is available at https://github.com/megacell/
traffic-estimation-wardrop.

137

https://github.com/megacell/traffic-estimation-wardrop
https://github.com/megacell/traffic-estimation-wardrop

LTA : minϕUE(v) (110)

s.t. v ∈ K :=

v ∈ R
|A|
+ | ∃wk ∈ R

|A|
+ , v =

Q∑
k=1

wk, Nwk = ek, ∀ k ∈ {1, · · · ,Q}

Since PTA is not tractable due to the computational cost of enumerating all the possible
routes, we solve LTA in the first step, then perform the following steps to generate a set
of routes R with an associated UE route flow vector xUE ∈ R

|R|
+ , and a set P of cellpaths

with a feasible UE cellpath flow vector fUE ∈ R
|P|
+ :

1. We solve LTA and obtain the UE link flow vUE ∈ R
|A|
+ and resulting link delays.

2. We find the K-shortest paths with the UE delays for each of the 42 OD pairs, using
Yen’s algorithm (J. Y. Yen, 1971). Note that K is chosen large enough such that at
least all used routes are extracted, i.e. all the routes with the (same) shortest delays
as characterized by the Wardrop equilibrium. We choose K = 5 and extract 207

candidate routes.
3. We solve PTA with the 207 candidate routes starting from a random initial point. Let
xUE be a route flow solution (the resulting link flow AfullxUE should equal to vUE

since the UE link flow is unique).
4. We sample cells on the highway network following the model presented in Sec-

tion 7.4.1 (see Fig. 34).
5. Among the 207 routes, we found

∣∣{r | xUE
r > 0}

∣∣ = 90 used routes. We compute the
sequence of cells that intersects with each used route to determine the cellpath
flows, given by: fUE

p =
∑
r∈Rp x

p
r .

On a network with SO flow, the total delay is minimized (Wardrop and Whitehead,
1952; Kelly, 1991), hence the objective function to be minimized is ϕSO in (111) subject to
the constraints in (109) and (110), for the path-flow and link-flow formulations, respec-
tively. In fact, the SO link flow corresponds to the UE link flow with the modified delay
function c̃a(·) in (111), called the marginal delay function (Roughgarden, 2003) (where
the prime indicates the derivative function):

link marginal delay : c̃a = ca(va) + vac
′
a(va) ; SO objective: ϕSO(v) =

∑
a∈A

vaca(va)

(111)
Steps 1 to 5 are performed for the SO objective ϕSO via the link marginal delay formula-
tion to generate a SO route flow xSO and a SO cellpath flow fSO on the highway network
described above, with a few minor differences:

138

• In step 2, we find the K-shortest paths under the marginal delays induced by the
SO link flow. We choose K = 10 and we extract 411 candidate routes.

• In step 5, we found 164 routes with positive flow on it.

7.4.3 Scenario 3: activity-based agent model on the large-scale full network

Figure 35: Full-scale network including highway and arterial networks of the I-210 corridor used for MAT-
Sim data generation, and for the estimation problem. See Figure 31 for the Voronoi tessellation
model of the cellular network and the 700 origins given by the TAZ.

We additionally consider a large full network, consisting of both the highway network
and the arterial networks in the region. We use the OpenStreetMaps network of the
greater Los Angeles area, excluding residential links. Our network consists of 20,513

edges (links) and 10,538 nodes (intersections). We take the origins to be the Traffic Anal-
ysis Zones (TAZ) given by the US census, of which there are 778 in the region (see
Fig. 35). We use a commercially available OD model for the region, called the Census
Transportation Planning Products (CTPP) model.

On this large-scale network, we utilize an activity-based agent model for simulating the
traffic assignment. MATSim is a well-known open-source traffic simulation framework
(Illenberger and Nagel, 2007), which takes in a set of K agent home and work locations
and outputs a set of K trajectories (time-stamped sequences of links) that each agent

139

performed. MATSim searches for a user equilibrium in terms of utility functions defined
for the agents using a co-evolutionary optimization algorithm. In our setting, we con-
sider agent utility as a function of travel time. MATSim differs from the user equilibrium
model above in that it is quasi-static, by allowing slight variation in the departure times
for each agent. MATSim is suitable for performing large-scale agent simulations; we sim-
ulate the morning and evening rush-hours using 500,000 agents, as those are the most
vital times to understand the state of traffic. The home and work locations for each agent
are distributed randomly according to census demographics. Since these locations are se-
lected randomly within origins and destination (as opposed to selected randomly among
the region centroids), typically all of the trajectories generated are unique. Viewing the
full set of trajectories as our set of possible routes lends itself to be a trivial problem in
our formulation. Instead of all routes, we consider the “important” routes in the network.
Therefore, we examine trajectories between each OD pair and group them by similarity
as follows: 1) Find the trajectory which matches with the most other trajectories (>80%
match in length). Add this trajectory to the list of routes for the OD pair; 2) Remove all
trajectories that match with this route and repeat. We stop when 50 routes are selected
or when there are no more trajectories. 50 routes empirically accounts for 99.4% of the
500K trajectories. This procedure yields a set of 304,695 routes.

7.4.4 Implementation

Our full system is available at https://megacell.github.io/ for validation and exten-
sion, including the optimization routine, the small-scale network experiments, and the
large-scale pipeline. We hope that our framework will be a benchmark for many fu-
ture studies of estimation problems in transportation science. The software to run the
full-scale experiments was developed mostly in python 2.7, using the GEOS (v.3.4.2)
library for geometric computations. All data is managed and stored in a PostGIS 2.1.3
database. The geometries and other data about routes, cell tower Voronoi tesselations,
and the links of the road network are all stored in the database with spatial indices
on all geometry columns, allowing PostGIS spatial queries to be performed efficiently
for extracting cellpath information associated with each route. The convex optimization
program10 was developed in Python, using scipy.sparse and numpy for matrix compu-
tation. Finally, the PAV projection algorithm was written in C, and bindings were written
so that it could be called from the Python optimization algorithm.

10 Implementation (Python, C) is open source and available at https://github.com/megacell/
block-simplex-least-squares.

140

https://megacell.github.io/
https://github.com/megacell/block-simplex-least-squares
https://github.com/megacell/block-simplex-least-squares

The full network dataset for the I-210 corridor contains 280x691 routes, 778 origins,
1033 sensors, and was tested with a variety of different cells, ranging in number from
250 to 8000. The incidence matrices U (roughly 250K-by-300K matrices) are generated
by finding the cellpath for each route from the database by ordering the sequence of
Voronoi cells that intersect with the respective route; the link-route incidence matrices A
and are formed by finding all routes whose distance from the sensor locations was less
than some threshold empirically selected such that the maps matched well (≈ 10 meters
tolerance for the PeMS loop sensor locations). All incidence matrices are saved in the
scipy.sparse format.

7.5 numerical results

We validate our approach by measuring our accuracy in terms of the route flow estimates,
denoted x̂, given different scenarios. Note that we solve the reduced problem presented
in (86) according to our algorithmic approach, and the solution in z-space is converted
to x̃-space following the simple relation in (96), and is subsequently rescaled to x̂ =

diag(fTU)x̃. We additionally present our accuracy in terms of link flow estimates, to
serve as a comparison to classical approaches to link flow estimation:

• Route flow error: εr =
∥∥xtrue − x̂∥∥

1
/
∥∥xtrue∥∥

1
, with xtrue the true route flow and x̂

the estimated route flow. This relative error may be thought of as the percent error
of flow allocation among all routes.

• Link flow error for observed links and all links, respectively:

εobsl =

∣∣εGEH(btruei , b̂i) < 5, ∀i ∈
{
1, · · ·

∣∣b̂∣∣}∣∣
|btrue|

, with btrue = Axtrue, b̂ = Ax̂ (112)

εfulll =

∣∣εGEH(vtruei , v̂i) < 5,∀i ∈ {1, · · · |v̂|}
∣∣

|btrue|
, with vtrue = Afullxtrue, v̂ = Afullx̂

(113)

where |·| denotes cardinality and εGEH(y, ŷ) =
√

(y−ŷ)2

0.5(y+ŷ) .
The εGEH(·, ·) is called the GEH statistic, a heuristic formula commonly used to compare
two sets of traffic volumes, e.g. for calibration of microsimulation models (Dowling et
al., 2004, §5.6) and for validating hourly traffic flows (Transportation (WisDOT), 2013,
§11-13). For an individual link, a GEH value of less than 5.0 is considered to be a good
match. For a vector of links, a fraction εl > 0.85 of good matches is considered a good
match overall between modeled and observed volumes.

141

Note that our method always achieves the optimal link flow error εobsl = 1 for all
networks, traffic assignment models, and sensor configurations, since our formulation
minimizes the error to the observed link flows. However, we include this metric because
it is a metric upon which we can validate real network settings, without relying on traffic
simulators.

7.5.1 Highway network

Using the highway network scenarios in Section 7.4.2, we vary the link coverage from
10% to 100% and the cell density from 10 to 120 cells such that the proportions are
NB : NL : NS :: 1 : 2 : 1. We always observe the most congested links, and regions S

contains only 1 region and is roughly downtown Los Angeles (see 7.4.1). We analyze
how the relative error εr in route flows vary when sensors are more sparse. Since we
choose random initial points in PTA (109) and in the solver (84) to generate synthetic
route flows and compute the estimate respectively, and since the cellular network is
sampled randomly, all the results presented in this section have been averaged over
100 trials. Figure 36 presents the numerical results when link flows and optionally OD
demands are known, and cellular network data are assimilated into the model. That is,
we solve and compare both the problem without OD flows in (84) and with OD flows in
(91).

In the left column of Fig. 36, we consider Problem (84), where we compare the per-
formance of route flow estimation via cellpath flow vs OD flow alone. As expected, the
accuracy increases as we observe more links and/or more cells. We observe that in the
regime where we have low link sensor coverage, having even very few cells outperforms
OD demands. It is interesting that observing the additional links in the 40-70% region
makes a significant difference in the accuracy for the OD demands. In this region (and
beyond), it is possible to achieve an accuracy of 98.8% and 98.4% (for UE and SO, re-
spectively) with a sufficient selection of cells. Finally, we note that 80 cells and 120 cells
respectively achieves 96.0% and 98.7% accuracy for UE and 93.5% and 98.0% accuracy
for SO, in the absence of OD demands and with only 10% links observed. This indi-
cates that with a sufficient selection of cells, route flow estimation may be possible even
without other kinds of sensor data.

In the middle column of Fig. 36, we consider Problem (91), which considers cellpath
flows and OD demands together for estimation. As expected, adding information from
any number of cells performs strictly better than having no cells. With both types of
information, the highway network can achieve beyond 99.0% accuracy (with at least 70%

142

Route flow error (SO): OD vs OD+cellpathRoute flow error (SO): OD vs cellpath

Degree of freedom for network in (UE)

Number of cellpaths over routes

Route flow error (UE): OD vs OD+cellpathRoute flow error (UE): OD vs cellpath

Percentage of links observed (%) Percentage of links observed (%)

Percentage of links observed (%)Percentage of links observed (%)

Percentage of links observed (%)

Number of cells

Re
la
tiv
e
er
ro
r

Re
la
tiv
e
er
ro
r

Re
la
tiv
e
er
ro
r

Re
la
tiv
e
er
ro
r

Pe
rc
en
ta
ge

D
eg
re
es
 o
f f
re
ed
om

Figure 36: The six subfigures present the numerical results for the highway network. Top row, from the
left to right: 1) the route flow error εr from OD demands (red curve) and cellpath flows only
(other curves) with different link coverage values and different numbers of cells for the network
in UE; 2) the route flow error εr from OD demands (red curve) and OD demands & cellpath
flows (other curves) with different link coverage values and different numbers of cells for the
network in UE; 3) lower bound on the degree of freedom for the program with OD demands
(red curve), cellpath flows only (other curves, solid), and OD demands & cellpath flows (other
curves, dotted) for the network in UE; Bottom row, left to right: 4) εr from OD demands (red
curve) and cellpath flows only (other curves) for different configurations of the network in
SO; 5) εr from OD demands (red curve) and OD demands & cellpath flows (other curves) for
different configurations of the network in SO; 6) ratio of the number of observed cellpaths to
the number of candidate routes. Best viewed in color.

links observed) and 98.4% accuracy (with at least 60% links observed), for UE and SO,
respectively.

For both experiments above, the accuracy in the UE settings is generally better than
that of the SO settings. In the bottom right subfigure of Fig. 36, we see that the ratio of
the number of cellpaths observed to the number of routes used is greater for UE than SO
for all the cell counts in our experimental setup; this is due to the tendency of agents to
consider more routes in SO, and thus the same number of cells provides less resolution
into the route choice of the agents. This provides evidence that the SO setting is more
difficult for estimation.

143

The accuracy of the estimates is closely related to the degree of freedom of the solu-
tion in Problems (84) and (91). We compute an upper bound on the degree of freedom as
n− rank[AT ,UT] and n− rank[AT , T T ,UT], respectively, where n is the dimension of the
problem. It is an upper bound because we do not consider how the non-negativity con-
straint x � 0 limits the solution space. In the top right subfigure of Figure 36, we observe
that in all cases, the use of cellpath information limits the degree of freedom moreso
than with only OD information. As expected, the combined information from cellpaths
and ODs (the dotted lines) limits the degree of freedom more than cellpath information
alone (the solid lines). As the number of cells is increased, the degree of freedom tends
towards zero, at which point we can fully recover the route flow. These numerical re-
sults confirms the utility of cellular network data for addressing the traditionally highly
underdetermined route flow estimation problem.

7.5.2 Full network, activity-based model

Using the full network scenario in Section 7.4.3, we perform experiments using the actual
locations of PeMS static highway count sensors on 1033 links (about 5% coverage). We
vary cell density from 250 to 8000 cells such that the proportions are NB : NL : NS :: 3 :

1 : 16.11 The sub-regions S is given by the bounding boxes for the TAZ within the whole
region. We analyze how the errors in route flows and link flows vary with the density of
cell towers. Additionally, we study the effect of performing inference on only a subset of
routes from our dataset.

Figure 37 presents the numerical results for Problem (84), where we compare the per-
formance of route flow estimation via cellpath flow vs OD flow alone. To select a partic-
ular estimate from the solution space, we add an `2 regularization term to the objective.
In our dataset, selecting the top 50 routes per OD pair was sufficient to account for
99.4% of trajectories; however, in general, the corresponding number of routes needed
will vary based on the network, time of day, underlying driver behavior, etc. Thus, to
represent these different settings, we present trade-off curves for accuracy when varying
the number of routes from 3 up to 50. As expected, as more routes are considered by
agents, the route flow accuracy εr declines, since the solution space (and its correspond-
ing nullspace) grows. Fortunately, the accuracy increases with the number of cells. Thus,
Figure 37 (top left) shows that the same level of accuracy may be attained when con-

11 The I-210 region is 688mi2 and, with cell towers spaced 1
4 to 2 miles apart for suburban and urban areas,

a reasonable range of cell towers for modern urban areas is 180 to 5500. We select 1000 for our baseline
model.

144

sidering different numbers of routes (per OD pair) by varying also the number of cells.
Our method performs comparably for the morning (shown in Figure 37) and evening
(not shown) rush hours, achieving 89.5% and 89.9% route flow accuracy respectively
and well exceeding the GEH test (with 1000 cells and 50 routes per OD), indicating the
versatility of our method for diverse traffic settings. Figure 8 (bottom right) shows that
we always achieve the link flow error εfulll = 1 on all links (including those not observed)
for various link volume classes, indicating that our method is effective for estimating link
flows on unobserved links in noiseless settings.

Figure 37: Full (highway and arterial) network experiment results, corresponding to the regularized so-
lution for the morning commute (rush hour). The top row is specific to the noiseless setting;
the bottom row includes experiments with modeling error (noise). The green dotted vertical
line highlights the results for 1000 cells, which is a reasonable setting for urban areas today.
Top left: Route flow εr from OD demands (dotted) and cellpath flows (solid) for varying cell
counts. The different curves indicate the number of routes (per OD) considered; Top right: Ap-
proximate degrees of freedom for the program with OD demands (dotted) and cellpath flows
(solid) for varying cell counts. Bottom left: Including modeling error, the route flow εr from
OD demands (dotted line) and cellpath flows (curves) for varying cell counts. Bottom right:
Link flow error evaluated on all links εfulll without model error (dotted) and with model error
(solid), shown for different link flow volume classes for 1000 cells. Best viewed in color.

Similarly to the highway network experiment, the accuracy in the estimates is closely

145

related to the degree of freedom in Problem (84). For computational reasons, we com-
pute an approximate measure of the degrees of freedom by nullity(AN) > |z|− rank(A),
using notation from (94). Although the problem remains underdetermined (based on
equality constraints in the noiseless setting), the accuracy increases substantially as the
degrees of freedom decreases (Figure 37, top right). In all scenarios except the lowest
cell configuration (250 cells), we observe that performing inference using cellpath flows
(compared to using OD flow information) greatly improves the estimates of route flow.

However, selecting the top routes between each OD pair for a real network relies
on sophisticated models and techniques. Though this chapter focuses on the noiseless
setting, here we present preliminary results for a noisy setting, motivated by situations
where not all top routes may be curated. That is, using the same flow measurements b, f,
etc., we now estimate a route flow vector x ∈ R|R|, where R ⊆ R denotes the curated
routes; then, we compute the validation metrics as before, taking the corresponding
entries of xtrue. We call modeling error the route flow that is not modeled by the curated
subset of routes. Figure 37 (bottom subfigures) shows an experiment where we consider
the performance of our method where, among the top 50 routes (per OD), we are only
able to curate the top 3-50 routes, and we evaluate our method in the presence of this
modeling error. We observe that curating 20-50 routes (per OD) is sufficient for achieving
a low (< 15%) route flow error and also sufficient for performing well on the GEH metric
on all links. Our preliminary results show promise for estimating route and link flows
with our approach despite the challenge of selecting all routes that agents may take.

7.6 chapter summary

Our work demonstrates a data-driven method that is capable of estimating route-level
flow accurately on a large scale network and is versatile to different vehicle behaviors.
We address the traditionally highly underdetermined problem by introducing the con-
cept of cellpaths for formalizing cellular network data as n-point network flows. This
chapter introduces a projected gradient algorithm suitable for the route flow estimation
problem, as well as the traffic assignment problem. We validate our approach on several
networks of varying sizes and underlying traffic assignment models, showing that the
incorporation of cellular network data dramatically improves estimates over the use of
traditional data sources by providing flow information on (coarse) routes.

Our methodology is highly compatible with past and present work in the transporta-
tion community. As route flows contain strictly more information than link flows and
OD flows, which underlie many transportation methods, the potential for accurate route

146

flow estimates in transportation applications is vast. Additionally, our solution method is
shown to be compatible with related transportation problems, which may be combined
for improved estimation.

Whereas work on traffic assignment, which models rather than estimates route flows,
is critical for long-term land-use planning, strong model assumptions limit their appli-
cation to short time-horizon applications. Taking a data-driven approach, our method
enables new short time-horizon applications for the prediction and control of trans-
portation such as route guidance, re-routing (e.g. minimizing effects of road closures,
disasters, large events, etc.), demand prediction, and anomaly detection and analysis.
Our framework aims to be widely deployable (wherever there is wide-spread cellular
network coverage) and extendable, thereby providing a baseline estimator of the state
of our current traffic networks, against which new controls and designs for intelligent
transportation systems can compare.

The directions for future work are driven by our plans for integration with the decision
support system for the I-210 corridor in California, US. We plan to analyze and improve
the robustness of our model and methods in the presence of measurement error. Real
loop sensors are notoriously noisy and a sizable fraction of them are offline at any given
point. Since cellpath flow is not measured directly, but rather is inferred from cellular
network data, it is prone to error from any inference procedure used. Fine-grained con-
trol applications will require even richer state estimates of the road network, for which
we plan to extend our work to the dynamic setting. The full pipeline (summarized in
Figure 30) will be implemented to perform large-scale route flow estimation using cel-
lular network traces from AT&T and actual cell tower locations for the I-210 corridor in
California, US.

147

Part III

S Y S T E M D E S I G N

148

8
H U M A N M O B I L I T Y P R E F E R E N C E S

How can you govern a country which
has two hundred and forty-six
varieties of cheese?

Charles de Gaulle,
Les mots du général, 1962

Part iii of this thesis looks beyond the internal dynamics of mixed autonomy systems,
and the problems of control and estimation thereof. Mixed autonomy systems may be
viewed as being embedded within another dynamical system, one which dictates the
progression of the integration, adoption, and use of automation. This process, external
to the mixed autonomy system, may induce substantial effects upon the system, both
positive and negative. Thus, this part of the thesis explores the design of the system
itself, to mitigate the potential effects of the external process on the system.

Mobility is embedded in an overall socioeconomic system, and one major anticipated
long-term impact of automated vehicles is induced demand, in which more people travel
in response to the newly available roadway capacity (enabled in Part i of the thesis). This
additional demand on the mobility system may compromise the benefits in road velocity
and throughput by resulting in elevated energy consumption. We start in Chapter 8 by
empirically studying the dynamics of the overall socioeconomic system and in particular,
its couplings with the mobility system. To this end, in collaboration with Microsoft, we
investigate human mobility preferences based on a user study of employees at a major
technology corporation. We identify ridesharing as a promising approach and give it
treatment as a design paradigm for the mobility system itself, with the goal of mitigat-
ing the effects of induced demand by dramatically improving the throughput (supply)
of the mobility system. We propose that, with lightly modified existing infrastructure,
ridesharing has the potential to dramatically improve (nearly triple) the throughput of

149

the mobility system. In Chapter 9, we propose a number of algorithms to solve the
allocation problem within the framework of combinatorial optimization. The structure
of the ridesharing problem motivates the adaptation of clustering algorithms from ma-
chine learning for set partitioning in the combinatorial optimization framework, which
is discussed in Chapter 10. The contributions of this chapter have implications for mobil-
ity system design, urban planning, and public policy, as well as scalable combinatorial
optimization.

8.1 overview

Human decision making is notoriously complex and challenging to model, and is the
impetus for entire fields and subfields, including game theory, behavioral economics,
psychology, sociology, and human-robot interaction (HRI). In the mobility context, we
therefore focus on human decision making or preferences in the commuting context, as
a representative travel demand activity, where we may expect both more data and regu-
larity. We first introduce induced demand as a potential long-term impact of modifying
the mobility system. We then present the findings of a user study on human mobility
preferences, conducted at Microsoft with 232 participants. Finally, we provide recommen-
dations to the design of a mobility system based on the mobility preferences to increase
the system performance.

8.2 induced demand

“Today we are well underway to a solution of the traffic problem.” This claim, made by
Robert Moses in 1948, known as the “master builder” of mid-20th century New York
City area, is as true today as it was then. Which is to say, not at all. In the middle of the
last century, the preferred solution to “the traffic problem” was more cement: new high-
ways, bridges, and lanes. Today, the sensible solution includes more sensors and better
computers: highly automated vehicles that use existing roadways and roadway networks
much more efficiently. This automation, we are told, will make vehicular congestion a
“thing of the past.” As in the past, however, this prediction presumes that more capacity
necessarily means less congestion. Today’s transportation planners recognize that the
relationship between these two concepts is much more complex.

By reducing the time cost of driving or the capacity or throughput of roadways, au-
tomated vehicles may encourage greater travel and increase total vehicle miles traveled
(VMT), which could lead to more congestion. This induced demand, or latent demand,

150

is an example of demand elasticity (Lee Jr et al., 1999) and can be explained by basic
supply and demand theory from microeconomics. Travel demand may be determined
by a combination of exogenous and endogenous factors (Lee Jr et al., 1999). Exogenous
factors include land use, population, employment, and income; that is, factors external
to the mobility system. Endogenous factors, on the other hand, are internal to the mo-
bility system and may include factors such as the capacity and level of service of the
transportation infrastructure and the price points of different modes of travel. Overall,
then, travel demand is the result of a combination of both exogenous factors that de-
termine the location of the demand curve, and endogenous factors that determine the
price-volume point along the demand curve (where it meets the supply curve).

The effect of endogenous factors on the overall mobility system corresponds to the
emerging claim that additional capacity stimulates corresponding increases in demand,
hence induced demand; the inverse effect is called reduced demand. This concept embod-
ies the “build it and they will come” idea, or a belief in the existence of “latent demand,”
which suggests that there are willing buyers who will express their demand for travel
once the service is offered. In growing urban areas, the evidence from recent decades
seemed to support this interpretation. For planning projections, the U.S. DOT Highway
Economic Requirements System (HERS) estimates vehicle-demand price elasticity in the
most likely scenarios to fall by -0.7 to -0.8 in the short run, and to fall about twice that in
the long run, with a range of -1.0 to -2.0 (Lee Jr et al., 1999; Litman, 2017). This implies
that as travel costs (time and expenses) reduce by 10%, travel is expected to increase: by
7-8% in the short run (time period over which exogenous demand factors remain fixed,
estimated to be about one year) and by an additional 2-12% in the long run (time for
exogenous characteristics to change, frequently assumed at 5-20 years) (Anderson et al.,
2016).

In this part of the thesis, we focus on the endogenous factors. The extent to which
they affect the system is jointly dictated by design or policy choices within the mobility
system, that is whether to permit travel to grow or to suppress it, and its complex in-
terface with human decision making. Thus, we study ridesharing as a design paradigm
for the mobility system, with the goal of shaping the effects of endogenous factors by
considering the effect of design choices on human decision making in mobility.

8.3 methodology and data collection

Human decision making is notoriously complex and challenging to model, and is the
impetus for entire fields and subfields, including game theory, behavioral economics,

151

psychology, sociology, and human-robot interaction (HRI). In the mobility context, we
therefore focus on human decision making or preferences in the commuting context,
as a representative travel demand activity, where we may expect both more data and
regularity. In fact, commuting more than doubles the population of the city of Redmond,
Washington each weekday, which has a night-time population of 52K and a day-time
population of 110K (Balk, 2013).

Study methodology. We designed a survey consisting of 35 detailed questions concern-
ing mobility preferences, particularly in commuting and ridesharing contexts, including
commuting modes and typical travel patterns (see full list of survey questions in Chap-
ter 8.7). We conducted the user study on SurveyGizmo, and the estimated survey length
was 18 minutes. The overall survey was divided into seven pages.

Participant demographics. In July 2015, we selected 1000 employees at the Microsoft
Corporation uniformly at random, among those located in Redmond, Washington in the
Seattle area. Overall, there were 232 respondents to the online study, which excludes
a sizeable fraction of the original 1000 who were on vacation at the time or had since
relocated to another office location. Another 66 started but did not complete the survey.

The user study of 232 participants consisted of 70% male and 29% female; 86% were
full-time employees, 13% were contingent staff (including contractors). The largest rep-
resented age group is 41-45 years of age (17.4%), followed by 51 or older (16.5%), 31-35

(15.2%), and 36-40 (15.2%). No respondents were below 21, and the smallest represented
age range is 21-25 (10.4%). Most respondents own a vehicle (90%). The mean commute
time is 40 minutes, with a standard deviation of 23 minutes.

8.4 findings

The main findings of the study are summarized below:

Most drive alone. 68.3% of respondents drive alone to or from work. 24.6% of respon-
dents were unwilling to drive others to work, even under “sufficient incentive.” A small
fraction of respondents rideshare to or from work (11.8%) and in all cases the carpool was
with a family member. Other transportation options include a company shuttle, public
transit, walking, biking, vanpool, ferry, motorcycle, running, scooter, and working from
home. See Figure 38 for summary of typical commute modes.

Comfort from intra-organization and larger rideshare. Respondents felt more sharing a
ride with someone else working at Microsoft and while with other people, as compared
to by themselves or with someone not at Microsoft. While sharing a ride with someone

152

Figure 38: Typical commute modes. A majority of user study participants drive alone.

else working at Microsoft seems to increase respondent comfort levels, sharing a ride
with multiple people seems to primarily decrease discomfort, rather than result in a
comfortable experience. See Figure 39 for the levels of comfort anticipated by respon-
dents in the different situations.

Backup option, time savings, and data protection most important features of a rideshar-
ing system. Two features were observed as most important: 1) having a backup option,
e.g. the system provides the user with an alternative transportation option like a taxi
if a planned rideshare trip falls through (79.2%), 2) time savings, as compared to one’s
current commute (70.9%), and 3) protection of personal data (67.9%). See Figure 40 for a
five-point Likert scale results on the preferences for ridesharing system features.

HOV and distance convenience most important to ridesharing drivers. The factors
most important to the driver when ridesharing to/from work include: 1) the passengers
live along their route to work (78.8%), 2) the passengers live close to them (69.7%), and
3) the number of passengers permit them to use the HOV lane (59.3%). These factors are
significantly more important than other factors, including: 1) there being only one stop
to pick up passengers, 2) there being a central and easy meeting location in the morning,
or 3) that the passengers meet the driver at their home or office. See Figure 41 for a
five-point Likert scale results on the pick-up and drop-off preferences of drivers when
ridesharing.

It’s not all about time savings. Ridesharing has a wide variety of benefits that are recog-
nized by a sizeable fraction of the study participants. In particular, 23.8% of respondents
would even consider carpooling even if the resulting trip takes longer than their current
commute, when factoring potential social, economical, environmental, and other benefits.

153

Figure 39: Impact of intra-organization and rideshare size on comfort. On a seven-point Likert
scale, respondents compared their comfort level for ridesharing on two factors: 1) rid-
ing with someone working at Microsoft (intra-organization rideshare) versus not, and
2) riding with someone else alone versus with other people. Respondents greatly pre-
ferred intra-organizational carpools. Riding with other people shifted the discomfort
levels but did not noticeably improve the comfort levels.

21.5% of respondents would consider carpooling if their trip times are more consistent
(but not necessarily longer or shorter), and 35% of participants would consider carpool-
ing if they save time on average over multiple trips (but not with each trip).

Bimodal splits on preferences. A number of factors observed bimodal splits, including
the preference to spend one’s commute time socializing (32% for, 37% against), driving
(23% for, 44% against), getting to know people better (26.7% for, 42.2% against), or work-
ing (42.3% for, 31.7% against). Note that a “neutral” category was excluded from these

154

Figure 40: Importance of features of ridesharing systems. Respondents rated as most important
the features of providing a backup option, time savings, and protection of personal
data.

calculations, so the percentages may not add up to 100%. These bimodal splits indicate
multiple distinct and complex subpopulations within the overall commuting population,
each of which has distinct preferences, needs, and likely requirements for a mobility

155

Figure 41: Importance of pick-up and drop-off considerations for rideshare drivers. On a five-
point Likert scale, respondents rated as “very important” that as a rideshare driver,
the factors of the passengers living close to them, the passengers living along their
route to work, and the number of passengers permitting them to use the HOV lane.

system to suit their needs. See Figure 42 for a complete list of activities and preferences
for how to spend one’s commute time.

Morning and evenings trips are different. Morning and evening trips vary dramati-
cally in terms of how respondents choose when to commute. Morning trips are largely
governed by the time of the first meeting (30.7%) and the preference to keep a regular
schedule (25.5%). Evening trips are largely dictated by traffic considerations (31.0%) and
external constraints such as child pick-ups and social outings (26.6%). See Figure 43

156

Figure 42: Commute time activity preferences. A few activities are strongly preferred by most
respondents, including relaxing and reading or thinking. A number of activities, how-
ever, have bimodal preferences, including driving, working, socializing, and getting to
know people better. Respondents largely did not prefer to spend their commute time
meeting new people.

These findings on human mobility preferences form the basis for considering rideshar-
ing as a design paradigm for the mobility system, as detailed next.

8.5 recommendations for ridesharing systems

Time is more important than money. Although many ridesharing services feature lot-
tery, gas coupons, and other monetary incentives, time savings are significantly more
important to users (see Figure 40). Time savings can come in the form of reduced vari-
ance or reduced mean travel times, such as through parking benefits.

157

Figure 43: Factors for when to commute. Factors important to respondents vary greatly, between
morning and evening commutes. Morning trips are largely governed by the time of the
first meeting and the preference to keep a regular schedule. Evening trips are largely
dictated by traffic considerations and external constraints such as child pick-ups and
social outings.

Utilize high-occupany vehicle (HOV) lanes. HOV lanes are compelling because 1) they
have the potential to counter social barriers against carpooling, such as comfort (see
Figure 39), trust and personal commute preferences, through permitting the use of lower
latency lanes (Parsons Transportation Group, Inc., 2002; U.S. Dept. of Transportation,
Federal Highway Administration, 1977), 2) they provide time savings and lower variance
commutes, which are a critically needed incentive for ridesharing (see Figure 40), and
3) they provide a relatively easy to implement scheme, through the re-purposing of
existing infrastructure. Moreover, the discomfort level can be adjusted by converting a
general purpose lane or by restricting 2+ HOV lanes to 3+ (see Figure 39). In several
dense urban areas, such as the Puget Sound area in Washington and the San Francisco
Bay Area, these 3+ HOV lanes in fact already exist and are in use. Chapter 9 will further
develop, formalize, analyze, and propose computational solutions to this aspect of the
mobility system. Chapter 10 will then relax the resulting NP-complete problem and
propose a clustering-based algorithm, which converges in expectation to within a bound
of the optimal solution.

Reduce trip uncertainty. Driving alone corresponds to the lowest trip uncertainty among
commonly available modes of transportation. Respondents also identified having a backup
option as the most important feature for a ridesharing system, for situations where the
planned trip falls through.

Reduce cognitive load. A vast majority of respondents (94.8%) indicated that the most
important factor in choosing their mode of commute is convenience, in terms of ease,

158

flexibility, and “not needing to think about it.” Convenience was more important than
traffic considerations (82.3%), family constraints (47.6%), and monetary savings (46.2%).
A ridesharing system should limit its cognitive load on users and try to retain ease of
use and flexibility.

Focus on a subpopulation. This user study demonstrated that there are distinct sub-
populations within the overall commuting population, each with different needs and
preferences. While 24.6% of the respondents are unwilling to rideshare even under ideal
circumstances, 35.1% believe that a well-designed ridesharing program could improve
their current commute. A ridesharing system should focus its efforts on a promising sub-
population, for instance a population which is more elastic on their mode of commute,
based on time savings, money savings, social benefits, etc.

8.6 chapter summary

This chapter considered human decision making in the commuting context, as a way to
understand both soft human factors, such as comfort and inconvenience, and hard fac-
tors, such as time and monetary cost. It is crucial to understand the rich spectrum of hu-
man preferences, as evidenced by decades of lackluster attempts at large-scale rideshar-
ing. These nuanced human preferences provide several recommendations for the design
of ridesharing systems moving forward, including focusing on time, trip uncertainty,
cognitive load, and subpopulations. Future work should include a more rigorous study
and identification of the major subpopulations of users within a mobility system. Ad-
ditionally, morning and evening commutes vary in significant ways, and thus further
study can investigate the design of one-way rideshare systems that would encourage
users in both settings. It is also important to recognize that mobility preferences may
vary in different contexts, such as at companies in different sectors or in universities.

8.7 mobility preference survey questions

Following are the survey introductory text and questions.

Survey introductory text.

Welcome to the MSR Commuting Survey!

As part of a study conducted by Microsoft Research to see how much better
we can make your everyday life, we are interested in your commuting

159

patterns, the factors which influence your commute, and the opportunities
to improve.

As part of this study, we will be asking you for personal information (e.g.
email address, age). Your personal data will not be shared with anyone
outside of the research team. Aggregate information may be shared with
university collaborators outside of Microsoft and for publication. Please
contact xxxxxx@microsoft.com if you have any questions about this re-
search project.

Estimated survey length: 18 minutes. (You can save and continue later at the
top of the next page.)

Now, let’s start. Please tell us a little about you and your life at Microsoft.

Survey questions.
1. Team / organization (optional)
2. Age
3. Gender
4. In which building do you primarily work (e.g. 88, Studio A)?
5. What is your employment status?
6. Do you use the Outlook app on your phone?
7. What is your vehicle capacity (including the driver)? (Enter 0 if you don’t have a

car.)
8. What’s the maximum number of people you are willing to drive to/from work,

with sufficient incentive (e.g. splitting tolls, gas reimbursement, lottery, social ben-
efits)?

9. For a typical day, when do you arrive at work at the beginning of your day?
10. For a typical day, when do you depart from work at the end of your day?
11. How long is your commute on average (minutes), departing from work?
12. During a typical week, how variable are your...

• Arrival times at the start of your day?
• Departure times at the end of your day?

13. When your arrival/departure time does vary, how much does it usually vary?
• Arrival time
• Departure time

14. Tell us about your typical commute. Please check all that apply.
• I drive (alone)
• I drive others (carpool)

160

• I am a passenger
• I commute with family members
• Connector
• Public transit
• Walk
• Bike
• Vanpool
• Other, e.g. ferry, jetpack

15. If “other”, please specify:
16. Please qualify the following statements.

• I am happy with my current commute.
• I enjoy driving.

17. What’s the most important factor for when you arrive/depart at work?
• Time of first/last meeting
• I prefer to keep a regular schedule
• Traffic considerations
• External constraints (e.g. kid’s schedule, social outings)
• No regular pattern
• Other

18. If “other,” please specify:
19. How often do you make other stops along the way to/from work (e.g. pickup/-

dropoff someone, social outings, errands)?
20. How often do you carpool to/from work?
21. In choosing your mode of commute, how important are the following factors to

you?
• Convenience (e.g. easiest, flexibility, don’t need to think about it)
• Traffic
• Environmental reasons (e.g. greenhouse gases, polar bears)
• Monetary savings (e.g. tolls, gas, vehicle maintenance, parking)
• External incentives (e.g. HOV lanes, lottery, special parking)
• Family constraints (e.g. pickup/dropoff family member)
• Social reasons (e.g. family, friends, significant other)
• Health reasons (e.g. walk, run, bike, to not sit all the time)

22. Anything else we should know about your commute? Other factors for your choice
of mode of commute, anything out of the ordinary about your commute, e.g. last
week not representative, high irregularity, high variance in commute times, asym-

161

metry in your arrival/departure commutes? (optional)
23. I would like to spend my commute time...

• Driving
• Relaxing
• Reading / thinking
• Working
• Socializing
• Meeting new people
• Getting to know people better
• Taking care of errands

24. Please state your preferences.
• I can imagine an efficient and well-designed carpool program to be better than

my current commute.
• If carpooling, I would be willing to drive.
• If carpooling, I would be willing to be a passenger.

25. Would you consider carpooling, even if the resulting trip may take longer than
your current commute, considering potential social, economical, environmental, etc.
benefits? Please check all that resonate with you.

26. When sharing a ride to/from work, I would be willing to share a ride with...
• People who work at Microsoft
• People who don’t work at Microsoft
• People in my organization
• People on my team
• My management chain (e.g. manager, skip, skip skip)
• People of the opposite gender
• People of a similar age
• People of a different age group
• People who drive safely and carefully
• Friends
• Friends of friends
• Family

27. How comfortable do you feel about traveling by car with someone you don’t know,
in the following scenarios?

• Someone at Microsoft, and you are by yourself
• Someone at Microsoft, with other people
• Someone not at Microsoft, and you are by yourself

162

• Someone not at Microsoft, with other people
28. On a typical day, by how much would you be willing (or able) to modify your

usual work arrival/departure times? Please check all that apply.
29. When carpooling to/from work, please qualify the importance of these factors

when you are the driver...
• The passengers live close to me.
• The passengers live along my route to work.
• There is only one stop to pick up passengers.
• There is a central and easy meeting location in the morning, e.g. a Park &

Ride.
• The passengers meet me at my home in the morning / travel from my home

in the evening.
• The passengers can be dropped off at my office building in the morning (as

opposed to theirs).
• The passengers meet me at my office building in the evening.
• The number of passengers permit me to use the HOV lane.

30. As the driver, how much time would you be willing to spend in gathering the
passengers before/after work? This is the time you are willing to deviate from
your usual route, wait for people to come out of their homes/offices, or wait at the
PR, etc.

31. How regularly would you like your ridemates to change?
32. If “other,” please specify:
33. Please state the importance of the following characteristics / features of a rideshar-

ing system to you.
• Time savings, as compared to your current commute
• Money savings, as compared to your current commute
• Ease of expressing preferences and constraints
• Automated matching of ridemates based on personal preferences
• Clear pricing structure for fees
• Financial incentives (e.g. lottery, direct payment, gas money, coupons, toll

money)
• Fairness (compensation for drivers, taking turns driving, etc.)
• Protection of personal data
• Reserved parking (for carpoolers)
• Backup option (in case a planned trip falls through, the system will provide

an alternative transportation option, e.g. taxi)

163

• Real-time rideshare (ability to request a ride whenever or “snooze” an upcom-
ing ride)

34. If you do not carpool regularly, why don’t you? What are your concerns about
ridesharing? Have you tried carpooling in the past? What would encourage you
to try carpooling (again)? (optional) If you do carpool, what aspects of carpooling
make it worthwhile to you? (optional)

35. What are some other features / characteristics that you think would be important
for an effective ridesharing system? (optional)

164

9
O P T I M I Z I N G T H E D I A M O N D L A N E : C O M P L E X I T Y A N D
A L G O R I T H M S F O R R I D E S H A R I N G

Move fast with stable infrastructure.

Mark Zuckerberg,
Founder and CEO, Facebook, 2014

Ridesharing (or carpooling) has been long deemed a promising approach to improved
transportation infrastructure operation. However, there are several reasons why rideshar-
ing is still not the preferred mode of commute in the United States: first, complex hu-
man factors, including trust, compatibility, and not having the right incentive structures,
discourage the sharing of rides; second, algorithmic and technical barriers inhibit the
development of online services for matching riders. In Chapter 8, we substantiated the
human factors concerning ridesharing and subsequently proposed that high-occupancy
vehicle (HOV) lanes which permit vehicles that hold three or more people (HOV3+) have
the potential to simultaneously decrease trust concerns and dramatically reduce travel
times, thereby providing a promising avenue for addressing both types of issues.

The goal of this chapter is to present algorithms which provide a basis for optimizing
the use of HOV3+ lanes. We formalize the HOV3 Carpool problem, show that it is NP-
Complete, and provide a brief survey of related complexity results in ridesharing. We
then formally pose the HOV3- Carpool problem, relaxing the strict capacity constraint of
size three. Unlike the previous problem, this new problem is amenable to a wide range of
common exact and heuristic methods for solving the problem of finding globally optimal
carpool groups (in terms of total vehicle distance) that may utilize these HOV lanes. We
present local search, integer programming, and dynamic programming methods; our
local search methods include sampling-based (hill-climbing and simulated annealing),
classical neighborhood search, and a hybrid random neighborhood search. This chap-
ter assesses the methods numerically in terms of scalability and convergence to a naive

165

“perfect carpooling” lower bound. We additionally assess the impact of domain-specific
warm-starting strategies to the convergence of the iterative methods. Our numerical ex-
periments study synthetic agents set in both Euclidean plane and San Francisco Bay
Area settings and highlight that the hill climbing local search method scales up to 100K
agents, thereby improving upon related previous work (which studies up to 1000 agents),
and numerically converge to 1.1 of the lower bound. All other benchmark methods were
shown to face scaling or convergence limitations.

One primary aim of this chapter is to introduce methods which are practical for imple-
mentation in real-world settings; as such, this chapter successfully studies the carpool
problem in the context of true road networks and large populations. Importantly, our
focus on the HOV3+ setting is specifically to counter known social and implementation
barriers to improving transportation efficiency. Our work additionally shows that despite
the theoretical challenges of the problem, heuristic algorithms can still efficiently and ef-
fectively solve the problem. The hill climbing method studied in this chapter is not only
easy to implement, computationally efficient, and converges quickly, it is also flexible
to rich classes of costs not studied in this chapter, including travel time, inconvenience,
and social preferences. Additional constraints, such as hard preferences and required
stops, may also be encoded in this problem formulation. Some types of constraints, how-
ever, such as requiring exactly three passengers per vehicle, may require further method
design.

9.1 overview

General Background. Transportation-related costs of air pollution, greenhouse gas emis-
sions, noise, delay from traffic congestion, and losses and injury from collisions are esti-
mated to be approaching $1.1 trillion annually in the US alone (Blincoe et al., 2015; Grant
et al., 2000; Schrank et al., 2015). With the introduction of the sharing economy, there is
renewed interest and energy in improving transportation infrastructure utilization and
operation through the design of automation (Hoshino et al., 2007), optimization (Miao
et al., 2016), and logistics systems (Venkatadri et al., 2016). Mobility-on-demand services
and public mass transit are promising but cannot address a large segment of commuting.
Today, 50% of Americans live in suburban regions, where current public transit services
and mobility-on-demand services are not economically feasible. These regions are major
contributors to the cost of transportation. For example, it has been estimated that nearly
20% of suburban household GHG emissions in the US are linked to transportation (Jones
and Kammen, 2014). We investigate ridesharing (Chan and S. A. Shaheen, 2012; Furuhata

166

et al., 2013) as a promising path forward for reducing the multiple costs associated with
transportation. Ridesharing has the potential to significantly reduce congestion and air
pollution and to make cities more social and pleasant places (Selker and Saphir, 2010).

Goals and motivation. The main goal of the present chapter is studying the carpool-
ing incentive of high-occupancy-vehicle (HOV) lanes, and how such incentives can be
algorithmically incorporated into ridesharing systems to achieve higher transportation
system efficiency, thereby permitting more reliable transportation estimates and opera-
tion. As seen in Chapter 8, HOV lanes are compelling because 1) they have the potential
to counter social barriers against carpooling, such as comfort, trust and personal com-
mute preferences, through permitting the use of lower latency lanes, 2) they provide
time savings and lower variance commutes, which are a critically needed incentive for
ridesharing, and 3) they provide a relatively easy to implement scheme, through the
re-purposing of existing infrastructure.

Commonly, HOV lanes may have restrictions which specify how many people must
be in a vehicle in order to use the lane. In most locations, HOV lanes require at least two
occupants. Increasingly, in bottleneck areas such as metropolitan areas, including the San
Francisco Bay Area and Seattle, WA, HOV lanes increasingly require three passengers
in order to maintain high throughput (Department of Transportation Division of Traffic
Operations, 2016; Washington State Department of Transportation, 2017). Optimizing the
use of the existing road network is a highly complex problem, but it starts with optimiz-
ing the use of the HOV lanes, which is the topic of this chapter, and we will pose this
as the HOV3 or HOVk carpool problem. The problem of having exactly two occupants
in each vehicle reduces to bipartite graph matching, for which efficient algorithms exist
(Garey and Johnson, 1979). Remarkably, the problem of having exactly three occupants
in each vehicle is NP-Complete, so it is very unlikely that an efficient algorithm can
solve the problem exactly. In this chapter, we prove this complexity result and present
algorithms to solve the problem approximately. This crossing from a tractable (HOV2)
to intractable (HOV3, formally defined in Section 9.3) problem, if not addressed, would
greatly impede the scalability of any practical rideshare matchup system.

We cast the ridesharing problem with HOV lanes into a general combinatorial opti-
mization framework (Papadimitriou and Steiglitz, 1998; Wolsey and Nemhauser, 2014),
which enables us to devise and invoke several types of solution methods and assess
their accuracy and scalability. In particular, we formulate our problem as a set partition-
ing problem, an integer program, and as a dynamic programming recurrence. We study
local search, integer programming, and dynamic programming methods to the problem.

We call the problem of finding optimal size-three groups for carpooling the HOV3

167

Carpool problem. We show that this problem is NP-Complete and, in addition, is difficult
to approximate or solve iteratively. Thus, we formulate a relaxed problem, which we
call the HOV3- Carpool problem (note the minus sign). This problem relaxes the size-
three carpool groups to allow up to size three carpools. The relaxed form is amenable
to iterative methods such as local search. We refer to this relaxed ridesharing problem
as the carpool problem throughout the chapter. We validate our methods numerically
through workloads of agents (simulated participants) generated from census data in the
San Francisco Bay Area in California.

Contributions. The main contributions of this chapter are:
• We study the challenges of optimizing for high-occupancy vehicle (HOV) lane us-

age, then find and present a relaxation of the problem with properties amenable to
highly scalable and powerful heuristic algorithms, thereby transforming a challeng-
ing combinatorial problem into a practical solution for ridesharing optimization.

• We formulate and present the HOV3 Carpool and HOV3- Carpool problems, which
specifically integrate the carpooling incentive of 3+ HOV lanes.

• We prove that the HOV3 Carpool problem is NP-Complete by reduction from Exact
Cover by 3-Set. We then demonstrate that the relaxed HOV3- Carpool problem is
amenable to iterative methods such as local search, due to the existence of a poly-
nomial algorithm for finding feasible solutions. The complexity results of this HOV
carpool problems are summarized in Table 7 in Section 9.3.3.

• We study four local search methods for the relaxed HOV3- Carpool problem: hill
climbing, simulated annealing, classical local search, and local search with random
neighborhood. The first two are sampling-based local search methods; the third is
a classical local search approach; the fourth combines sampling with the classical
local search approach.

• To demonstrate the limitations of classical and general methods for the carpool
problem, we present for comparison an integer program (IP) formulation and a
dynamic programming formulation for the HOV3- Carpool problem. Our IP formu-
lation utilizes the problem structure to yield a concise representation.

• We empirically compare the above six methods on Euclidean world and Bay Area
synthetic workloads (simulated participants) of up to 100K agents. We show that
the hill climbing method outperforms by far the rest in terms of scale, computa-
tional runtime, and convergence to a naive lower bound. For the largest problem
size of 100K, the hill climbing method converges to a ratio close to 1 to the lower
bound. Interestingly, we additionally find that a greedy initialization performs just
as well as other heuristic warm-starts, which may incorporate more domain knowl-

168

edge.

Related work. Many variants of the carpooling problem have been studied, for instance
focusing on maximizing the number of participants (Armant et al., 2015) or minimizing
the total distance or time (Herbawi and Weber, 2012); for more variants, we refer the
reader to excellent surveys on ridesharing by Agatz et al. (2012) and Furuhata et al.
(2013). Although there are numerous works studying the HOV or high-occupancy toll
(HOT) lanes from the perspective of pricing (Yang and H.-J. Huang, 1999; Konishi and
Mun, 2010), we are not aware of any work that explicitly optimizes for its utilization.

Our work temporarily side-steps the pricing aspect of the carpooling problem to focus
on the optimization aspect; however, since we optimize for the global cost, our work is
compatible with the incentive-compatible pricing mechanism introduced in Kamar and
Horvitz (2009), based on the Vickery auction (Vickrey, 1961).

General optimization techniques from operations research are very natural approaches
to this problem. A closely related work by Armant and Brown (2014) studies MILP and
CP methods for a variant of the global optimization problem where passengers travel
to the pickup locations that are along the path of the driver. Our work also compares
against some of these underlying techniques, but we show that sampling methods can do
much better in our setting. This pickup restriction tremendously simplifies the problem
but may provide a less seamless experience for passengers. We provide a formulation
which permits driver deviations for passenger pickups. Perhaps surprisingly, however,
the restriction to fixed routes results in no easier of a problem in terms of theoretical
complexity. Even slight variants in the carpooling problem can lead to large differences
in the theoretical and numerical results. As such, we compare our work against several
common underlying techniques of related work, instead of comparing against related
problem formulations. An early version of our work is present in Wu et al. (2016b).

The remainder of this chapter is organized as follows: In Section 9.2, we survey known
complexity results of ridesharing problems. We then formally pose the carpooling prob-
lem in Section 9.3, prove NP-Completeness, and present a relaxation. In Section 9.4, we
present three ways to formulate the problem; Section 9.5 details the methods we study
for each formulation. In Section 9.6, different warm-starts for the carpooling problem
are proposed. Section 9.7 poses the numerical implementation and setup, and Section 9.8
summarizes the numerical findings. We conclude with a summary, additional challenges,
and next steps in Section 9.9.

169

9.2 survey of complexity results in ridesharing

Specific ridesharing problems take on many forms, for example having varying prob-
lem setups in terms of objectives, costs, and constraints. For instance, some studies in-
vestigate maxmizing participation whereas other studies investigate minimizing total
travel time or distance (see Agatz et al. (2012) for a review and overview on the space
of ridesharing problems and optimization approaches). However, almost all ridesharing
problems studied to date are NP-Complete (decision versions) or NP-Hard (optimization
versions), with a few exceptions.

Several works which address the computational complexity of ridesharing, study a
setting where the drivers take a fixed route; that is, the riders accommodate the driver,
either by meeting up at the driver’s origin or meeting along the driver’s route (Simonin
and O’Sullivan, 2014; Kutiel, 2016; Ma and Wolfson, 2013). In contrast, in our work the
driver’s route is determined by the optimal route considering the members of its carpool.
The general forms of these problems, which consider capacity or both capacity and delay
constraints (Ma and Wolfson, 2013) or desire a balance of users among vehicles (Simonin
and O’Sullivan, 2014), are NP-Complete. Some restricted settings have been found to
be polynomial-time solvable. Ma and Wolfson (2013) show that its non-capacitated or
capacity-two versions are polynomial-time solvable. Kutiel (2016) shows that when the
set of drivers and riders is given in advance, it is polynomial-time solvable. Simonin and
O’Sullivan (2014) show that in the case of optimizing for the maximal number of partic-
ipating ridesharing users (irrespective of cost) in a fixed capacity setting, a polynomial
time algorithm is admissible. We do not consider restrictions such as pre-assigned roles,
size-two carpools, or unlimited capacity carpools and focus on the harder problem.

Due to the computational complexity of ridesharing, numerical studies have largely
focused on small problem sizes (up to about 1000 agents) (Armant et al., 2015) or these
special polynomial-solvable cases (Hartman et al., 2014), which are strong technical lim-
itations for providing carpooling at scale as a suitable transportation alternative. While
it is unrealistic to provide scalable methods for the general problem, one of the primary
goals of our work is to provide highly scalable methods for a problem that is realistic;
thus, we focus on devising scalable methods for our specific HOV carpool problem.

9.3 the carpool problem

A natural way to optimize for HOV3 lane use is to optimize for the best configuration of
carpools of size three. However, we prove in this section by reduction that this problem

170

is NP-Hard. Subsequently, we study a relaxed version where we optimize for carpools
of size up to (and including) three. The relaxed problem lends itself more easily to ap-
proximation methods such as local search. The complexity results of these HOV carpool
problems are summarized in Table 7.

9.3.1 Optimizing usage of the HOV3+ lane

We study the carpool incentive of permitting usage of specific lower latency lanes (often
on the freeway) which require at least three occupants in a vehicle. Under such a policy,
there is little incentive for vehicles to have more than three occupants, since each addi-
tional passenger adds additional divergence costs to the carpool group. Consequently,
we reason that the best reasonably achievable solution would optimize for three occu-
pants per vehicle.

Now we specialize to the HOV3 carpool problem, in which the goal is to find size-
three ridesharing groups that minimize the overall cost of the system. Additionally, we
consider time constraints.

Definition 1 (HOV3 carpool problem). Let U be the set of agents. Each agent is endowed with
a home and a work location (puh,puw),∀u ∈ U as well as time constraints Tu = (tu0 , tu1 , . . .),∀u ∈
U with tui = [tui,s, t

u
i,e] for each time window (interval). The subscript s denotes the start time

of a time window; the subscript e denotes the end time. The collection of feasible subsets of the
universe (rideshare groups) S consists of groups of size 3 such that the agents have a non-empty
common time window. That is,

S :=

{
S : S ∈ 2U, |S| = 3,

⋂
u∈S

Tu 6= ∅

}
. (114)

The overall objective of the HOV3 carpool problem is to find the optimal partition with size-
three groups of agents; that is, to find a subset R ⊆ S such that

• R minimizes some given cost function C : 2S → R.
• R forms a partition of U, as no agent may participate simultaneously in multiple rideshar-

ing groups.

The specific cost function we study is given in Equation (118). The search version (as
opposed to the optimization version) of this problem, which excludes costs, is already
NP-complete, as we will prove next in Section 9.3.2. Note that, in general, the time
constraints can be used to encode other types of constraints as well, such as age restric-
tions or arbitrary agent preferences, which are also important for a practical rideshare

171

Problem Version Complexity
HOV3 carpool problem Optimization NP-Hard
HOV3 carpool problem Search NP-complete
HOV3 carpool problem Feasible solution NP-complete

HOV3- carpool problem Optimization N/A
HOV3- carpool problem Search N/A
HOV3- carpool problem Feasible solution P
HOVk carpool problem Optimization NP-Hard

Table 7: This table summarizes the complexity analysis of the HOV carpool problems. The original HOV3

carpool problem is NP-Hard. One of the key contributions of this chapter is finding that its
relaxation, the HOV3- carpool problem, although perhaps still NP-Hard, offers a polynomial-
time solution for finding a feasible solution, which lends itself to the rich and powerful family of
local search methods.

matchup system. For clarity and concreteness, we represent rideshare group constraints
as time constraints.

For completeness, we define the search version of the problem, which excludes costs,
but is otherwise identical to Definition 1.

Definition 2 (HOV3 carpool problem (search version)). Let U be the set of agents. Each
agent is endowed with a home and a work location (puh,puw), ∀u ∈ U as well as a set of time
windows Tu = (tu0 , tu1 , . . .), ∀u ∈ U with the ith time window defined as tui := [tui,s, t

u
i,e] for each

time window (interval). The subscript s denotes the start time of a time window; the subscript e
denotes the end time. The collection of feasible subsets of the universe (rideshare groups) S consists
of groups of size three such that the agents have a non-empty common time window. That is,

S :=

{
S : S ∈ 2U, |S| = 3,

⋂
u∈S

Tu 6= ∅

}
. (115)

Find a subset R ⊆ S such that
• R forms a partition of U, as no agent may participate simultaneously in multiple rideshar-

ing groups.

172

9.3.2 Reduction from Exact Cover by 3-Set

The Exact Cover by 3-Set problem is a known NP-Complete problem (by generalization of
Tripartite Matching, which is NP-Complete (Dasgupta et al., 2006)). The problem is as
follows: F = {S1, . . . ,Sm} of subsets of a finite set U with |Si| = 3 and |U| = 3m for some
m. Find m sets in F that are disjoint and have U as their union.

We observe that Exact Cover by 3-Set problem is closely related to the search version
of the HOV3 carpool problem, allowing us to show the following complexity result:

Theorem 3. HOV3 carpool search is NP-complete.

Proof. First, the problem is trivially in NP. Given a set of rideshare groups, it can be
checked in polynomial time that groups indeed form a partition. Naively this can be
done in O

(
n2
)
. Furthermore, even if given a solution that may contain arbitrary subsets

of U (not necessarily in S), it can be checked in linear time if the groups satisfy time and
size constraints (and thus are feasible subsets in S).

Now, we show by reduction from Exact Cover by 3-Set that the HOV3 carpool problem
is NP-Hard.
(⇒) : An instance of Exact Cover by 3-Set can be mapped in polynomial time to an
instance of the HOV3 carpool problem as follows: Let U := U. For each subset Si ∈ F,
select a new time window t which has no overlap with any other time window used so
far, and let t ∈ Tu, ∀u ∈ Si. This assignment ensures that Si ∈ F =⇒ Si ∈ S, and the
uniqueness of the time window ensures that Si ∈ S =⇒ Si ∈ F. Note that the size-three
constraint is satisfied by definition of the Exact Cover by 3-Set problem.
(⇐) : A solution, i.e. a partition, R to the HOV3 carpool instance can then be mapped
directly to a solution to the Exact Cover by 3-Set instance, as all sets S ∈ R are size three,
are subsets of U = U, and are by construction in S = F.

Then, Exact Cover by 3-Set reduces to HOV3 carpool search problem, and thus we
conclude that the latter is NP-Complete.

Corollary 1. The HOV3 carpool problem (optimization version) (see Definition 1), is NP-
Hard.

In addition to the complexity result, the HOV3 Carpool problem has several additional
pain points. First, simply finding a feasible solution to the HOV3 problem is difficult.

173

Lemma 2. Finding a feasible solution to the HOV3 problem (optimization version) is NP-
Complete.

Proof. Finding a feasible solution is the same as the search version of the problem, which
disregards the cost. Then, the result follows from Theorem 3.

Second, due to the partition constraint, it is difficult to use standard approximation
techniques such as linear programming (LP) relaxation. Once the partition constraint is
violated, such as through an LP rounding scheme, it is difficult to recover a partition;
recovering it may be seen as another combinatorial optimization problem.

Finally, the above results generalize to additional HOV restrictions, such as 4+, 5+, etc.
We refer to the more general problem as the HOVk carpool problem, where k denotes
the minimum number of occupants in a vehicle required for use of the HOVk lane.

Corollary 2. The HOVk carpool problem is NP-Hard.

9.3.3 Relaxation of HOV3 carpool problem

Finally, we present the HOV3- carpool problem, which we study for the remainder of the
chapter, referred to simply as the carpool problem. The only difference from the previous
problem is that feasible rideshare groups may now have size less than or equal to three
(|S| 6 3).

Definition 3 (HOV3- carpool problem). Let U be the set of agents. Each agent is endowed with
a home and a work location (puh,puw), ∀u ∈ U as well as time windows Tu = (tu0 , tu1 , . . .),∀u ∈ U

with tui = [tui,s, t
u
i,e]. The collection of feasible subsets of the universe (rideshare groups) S consists

of groups of size three such that the agents have a non-empty common time window. That is,

S :=

{
S : S ∈ 2U, |S| 6 3,

⋂
u∈S

Tu 6= ∅

}
. (116)

The overall objective of the HOV3- carpool problem is to find a subset R ⊆ S such that
• R minimizes some given cost function C : 2S → R.
• R forms a partition of U, as no agent may participate simultaneously in multiple rideshar-

ing groups.

174

9.3.4 Problem setting

Global optimum. In this chapter, we study computing the globally optimal rideshare
groupings with the minimal physical (vehicle) distance. In particular, any agent may be
a driver or a passenger. The driver picks up all the passengers. The cost of a rideshare
group is the distance traveled by the driver. The overall cost of a carpool solution is thus
the sum of the cost of each rideshare group in the solution. That is,

cS =
∑

(u,v)∈TSP(S)

duv (117)

C =
∑
S∈R

cS (118)

where TSP(S) denotes the solution to the Traveling Salesman Problem. Given a set of
agents S, TSP(S) computes the minimum cost tour (given as pairs of locations, i.e.
(x1, x2), (x2, x3), ...). We study the global optimum in the sense that this objective mini-
mizes the total vehicle distance traveled, and thus has implications for fuel consumption
and greenhouse gas (GHG) emissions.

Assumptions.
• Capacity. We assume that all agents have vehicles, that the capacity is three, that the

vehicle capacity is uniform.

• Single destination, single time window. We specialize to the setting where all agents
have the same destination and all agents are allowed to specify one time window.
This is representative of many situations common in the transportation world, for
example casual carpool in SF or carpool to campus services (national labs, Mi-
crosoft, etc.) and is complementary to real-time dispatch systems such as studied
in Miao et al. (2016).

• Static assignment. We solve the static version of the problem, where travel is instan-
taneous; there is no time overhead for pickups.

175

9.4 problem formulation

9.4.1 Carpool as a set partition problem

We give a natural 3-set partition formulation of the carpool problem.

min
X=(xS)S∈S

∑
S∈S

cSxS (119)

s.t.
∑
S:u∈S

xS = 1, ∀u ∈ U (120)

xS ∈ {0, 1} , ∀S ∈ S (121)

where S is the feasible subsets defined in Equation (116) and cS is the group cost defined
in Equation (117).

This formulation, unlike the dynamic programming and integer programming for-
mulations (given in Sections 9.4.2 and 9.4.3, respectively), not only decouples the cost
computation cS from the rest of the problem, it allows representing all the constraints
concisely as S. Additionally, by representing the solution vector X as a binary vector of
size |S|, this formulation enables the easy design and expression of neighborhoods with
respect to the solution vector.

9.4.1.1 Neighborhoods

We now describe the studied neighborhoods. We consider two neighborhoods in our
subsequent methods: the swap neighborhood and the move neighborhood. The swap
neighborhood consists of a single pairwise swap between two groups. The move neighbor-
hood consists of a single move of an agent from one group to another. Here we define
them explicitly. For simplicity, although X denotes a binary vector, we abuse the notation
here to represent the set of rideshare groups indicated by the binary vector.

swap neighborhood The swap neighborhood consists of a single pairwise swap
between two groups. The neighborhood is denoted NS and can be explicitly defined as

176

follows:

NS(X) :=

{
X ′ : ∃A ′,B ′ ∈ X ′, s.t. A ′,B ′ 6∈ X, (122)

∃A,B ∈ X, s.t. A,B 6∈ X ′, (123)
∃u ∈ A ′ s.t. u ∈ B,u 6∈ A, (124)
u ′ ∈ A ′ ⇐⇒ u ′ ∈ A, for u ′ 6= u
∃v ∈ B ′ s.t. v ∈ A, v 6∈ B, (125)
v ′ ∈ B ′ ⇐⇒ v ′ ∈ B, for v ′ 6= v

S ∈ X ⇐⇒ S ∈ X ′ (126)

if S 6∈
{
A,B,A ′,B ′

}}
Equations (122) and (123) mean that a solution in the neighborhood of X differs by

four entries (i.e. four rideshare groups), since two groups are modified. In particular,
there are two groups, denoted A ′,B ′, that exist in X ′ but not X (and vice versa). Now,
within these four groups, there exists agents (u, v) which are swapped between them,
whereas the rest of the agents in those groups are kept the same (see Equations (124)
through (125)). Finally, Equation (126) states that the rest of the solution vectors X ′,X are
the same.

move neighborhood The move neighborhood consists of a single move of an agent
from one group to another. The neighborhood is denoted NM and can be explicitly de-
fined as follows:

NM(X) :=

{
X ′ : ∃A ′,B ′ ∈ X ′, s.t. A ′,B ′ 6∈ X, (127)

∃A,B ∈ X, s.t. A,B 6∈ X ′, (128)
∃u ∈ A ′ s.t. u ∈ B,u 6∈ A, (129)
u ′ ∈ A ′ ⇐⇒ u ′ ∈ A, for u ′ 6= u,
v ′ ∈ B ′ ⇐⇒ v ′ ∈ B, for v ′ 6= u,

S ∈ X ⇐⇒ S ∈ X ′ (130)

if S 6∈
{
A,B,A ′,B ′

}}

177

Figure 44: An example of a solution X ′ in the swap neighborhood of X is given in this figure. Each vector
is an indicator vector of the rideshare groups in the assignment; each entry represents one
rideshare group. The white entries indicate unselected rideshare groups in the assignment,
whereas the blue and black entries indicate selected rideshare groups. As described in Equa-
tions (122)-(126), the two vectors differ by exactly four entries (denoted by the black entries),
consisting of a swap of a two agents (the green and red agents) between two groups. Best
viewed in color.

Similarly to the swap neighborhood, Equations (127) and (128) mean that a solution in
the neighborhood of X differs by four rideshare groups, since two groups are modified.
In particular, there are two groups that exist in X ′ but not X (and vice versa). Now, within
these four groups, there exists a single agent u which was moved from B into A, and the
rest of these groups are unmodified (see Equation (129)). Finally, Equation (130) states
that the rest of the solution vectors X ′,X are the same.

9.4.2 Carpool as a dynamic programming problem

For completeness of the exposition, we derive a dynamic programming solution. In par-
ticular, we present a formulation of the carpool problem which lends itself to a dynamic

178

programming (DP) scheme for exhaustively searching the solution space for the optimal
solution. This approach provides a naive but exact baseline for comparing our methods,
as this is a highly expensive method but one that is guaranteed to return the optimal
answer (in exponential time).

Let I = {1, 2, . . .} denote the index set numbering the rideshare groups in the solution.
For convenience, let index j = 0 represent an unassigned agent, and let j = 1, 2, . . . be
the rideshare group number (i.e., the first group, the second group, etc.). Let M ∈ (I ∪
{0})n denote a (partial) assignment vector, where agent i is assigned to rideshare group
number M[i] (which may be 0, i.e. unassigned). This vector keeps track of subproblems
in our DP formulation.

The following is notation used in the dynamic programming problem. Let M0 denote
the indices of the zero entries of M, and we let m := minM0, the index of the first unas-
signed agent. We denote 1i ∈ Zn as the indicator vector, with a one in the ith position
and zero everywhere else. We use the following binomial coefficient as shorthand for
the set of all groups of size two among unassigned agents M0, excluding agents with
indices M ′:

g ∈
(
M0 \M

′

2

)
⇐⇒ (131)

g = {a1,a2} : {a1,a2} ∈M0 \M
′ ×M0 \M

′,a1 6= a2. (132)

Now, we define the following subproblem: G(M, j) assigns the first unassigned agent
of M (denoted as m, as above) to rideshare group number j and gives an optimal assign-
ment for the unassigned agents in M:

G(M, j) = min
{
c{i} +G(M+ j1i, j+ 1), (133)

min
g∈M0\{i}

c{i,g} +G(M+ j1g + j1i, j+ 1), (134)

min
g∈(M0\{i}2)

c{i}∪g +G(M+ j1g + j1i, j+ 1)
}

(135)

G(M, j) = 0 ∀j if M0 = ∅ (base case) (136)

The three terms within the minimization refers to placing i in the best carpool group of
size one, two, and three, respectively, and then labeling that as the jth rideshare group.
The subsequent subproblem finds the assignment for the j + 1th rideshare group and
excludes the agents just assigned to group number j. Notice that there is no explicit

179

collection of feasible subsets, so let cS = when S is infeasible (e.g. incompatible time
windows). The base case (Equation (136)) is invoked when all agents have been assigned,
i.e. M0 = ∅.

To solve the overall problem, we invoke G(0, 1), where 0 denotes the all zeros vector.
That is, at first, all agents are unassigned, and without loss of generality we can place
the first agent in rideshare group number 1.

Using the recursion of Equations (133)-(136), we can examine the combinatorial explo-
sion of possible rideshare group assignments. A problem of 10, 20, and 100 agents re-
quires checking 6× 104, 5× 1012, and 1× 10103 assignments, respectively. With 20 agents,
if each possibility can be checked in 1nsec, then the computation would take 1.4 hours.
The size 10 problem, on the other hand, computes in 0.00006 seconds. Given these pro-
hibitive costs, the only valid use of this algorithm for our purposes is checking for opti-
mality in small benchmark cases.

9.4.3 Carpool as an integer program

For completeness, we also present an integer programming solution to the carpool prob-
lem.
Variables. We first define some additional needed notation.
inputs • oouv = distance between the origin of agent u and origin of agent v. Note

that oouu = 0.
• odu = distance between the origin and destination of agent u
• Tu= ([tu0,s, t

u
0,e]) = the time window of valid departure times for agent i. Note

that in this formulation, we restrict to setting with only one time window per
agent.

output • yuvw ∈ {0, 1} = 1 if driver u is carpooling with passengers v and w, 0

otherwise. In addition, if a driver is picking up only one passenger, yuvv = 1

and if no passengers, yuuu = 1.
IP Formulation. The key insight of our integer programming (IP) formulation, which
permits a clean and concise representation, is to encode fixed-size groups of size three,
and pad smaller groups as needed. Thus, a lone driver u ∈ U would be represented by a
group (u,u,u); observe that the distance traveled is oouu + oouu + odu = 0+ 0+ odu =

odu. The IP formulation is as follows:

min
y

∑
i∈U

yuvw · [oouv + oovw + odw]

180

subject to ∑
v,w∈U

yuvw +
∑
v,w∈U

yvuw +
∑
v,w∈U

yvwu (137)

−
∑
v∈U

yuuv −
∑
v∈U

yuvu −
∑
v∈U

yvuu

+ yuuu = 1,∀u
yuuv = 0, ∀u, v,u 6= v (138)
yuvw =⇒ [tu0,s, t

u
0,e]∩ [tv0,s, tv0,e]∩ [tw0,stw0,e] 6= ∅,∀u, v,w (139)

(1− yuvw)∨ (max
x∈{u,v,w}

(tx0,s) 6 min
x∈{u,v,w}

(tx0,e)),∀u, v,w

The overall objective is the total distance traveled by the drivers. Equation (137) ensures
that each agent be in exactly one group. Since each agent may be a driver yu∗∗, first
passenger y∗u∗, or the second passenger y∗∗u, we need to delete double- and triple-
counted duplicates.

Equation (138) addresses the fact that we can represent a two person group with (u, v)
as either yuuv or yuvv, but not both. We have chosen arbitrarily yuvv for this case, so we
need to ensure that yuuv is never set. Finally, Equation (139) enforces that for each group
of agents, there is some overlap in their time windows.

9.4.4 Carpooling lower bound

Due to the NP-Completeness of HOV3 carpool problem, the optimal solution cannot
be determined efficiently, even for small problem instances; however, by comparing our
numerical results to a lower bound on the optimal solution, the effectiveness of the
proposed methods can be evaluated.

We denote the perfect carpooling lower bound on the carpool problem by

objLB =
1

3

∑
u∈U

c{u} (140)

which encodes the situation in which every agent is in a three-person carpool and incurs
no additional pickup costs. This lower bound is achieved by a problem instance in which
there are 3m agents and exactly three agents live in each location (and thus incur the
same singleton travel costs); that is, for such a problem instance, the lower bound is

181

indeed the optimal solution.

9.5 methods for solving the carpool problem

By relaxing the original HOV3 carpool problem to the HOV3- carpool problem, we have
presented a formulation which is amenable to highly scalable and powerful heuristic
algorithms, thereby transforming a challenging combinatorial problem into a practical
solution for ridesharing optimization. In this section, we thus describe the algorithms
for solving the carpool problem, given in Definition (3), presenting methods for each of
the problem formulations given in Section 9.4. For the set partitioning problem, we pose
four local search methods; for dynamic programming, we use a memoized recursive ap-
proach; for integer programming, we invoked an open-source MILP solver. The methods
are summarized in Table 8.

9.5.1 Local search: hill climbing

Hill climbing is the simplest and most efficient of our local search methods in terms
of per-iteration computation cost, given in Algorithm 5. In each iteration, a random
coin flip determines from which neighborhood to sample. Then, a swap or move is
sampled accordingly. Since not all solution vectors in the neighborhood are equally close,
the sampling distribution is determined by a heuristic weighting (based on the relative
distance of the agents involved in the swap or move). Importantly, all neighbors have
nonzero probability of being sampled. Then, if the action improves the overall objective
value, then the action is accepted (X is updated).

Sampling a neighbor takes O
(
n
)

and computing the cost difference takes O
(
1
)
, so

each iteration takes O
(
n
)

time.

9.5.2 Local search: simulated annealing

A generalization of hill climbing is simulated annealing (see Algorithm 6), which has a
few key aspects: 1) it allows multiple actions to occur in a single iteration, 2) it allows
actions which worsen the objective to be accepted, and 3) it allows tuning the number of
actions and probability of accepting a worse solution, even as the algorithm progresses.

At each iteration, this method consists of sampling a number of actions (moves or
swaps) according to the current temperature T . All actions are performed and then eval-

182

H
O

V
3

W
ar

m
-s

ta
rt

M
et

ho
d

O
pt

im
al

co
m

pa
ti

bl
e

co
m

pa
ti

bl
e

St
oc

ha
st

ic
R

un
ti

m
e

Pr
ac

ti
ca

lL
im

it
H

ill
cl

im
bi

ng
7

7
3

3
O
(ni)

1
0
0
,0

0
0
+

ag
en

ts
Si

m
ul

at
ed

an
ne

al
in

g
7

7
3

3
O
(ni)

1
0
0
,0

0
0
+

ag
en

ts
Sw

ap
an

d
m

ov
e

ne
ig

hb
or

ho
od

7
7

3
7

O
(n2 i

)
1

,0
0
0

ag
en

ts
R

an
do

m
ne

ig
hb

or
ho

od
7

7
3

7
O
(n2 i

)
1

,0
0
0

ag
en

ts
In

te
ge

r
pr

og
ra

m
m

in
g

3
3

7
7

O
(n! 2n)

2
0

ag
en

ts
D

yn
am

ic
pr

og
ra

m
m

in
g

3
3

7
7

O
(n! 2n)

1
0

ag
en

ts

Ta
bl

e
8
:T

hi
s

ta
bl

e
su

m
m

ar
iz

es
th

e
m

et
ho

ds
st

ud
ie

d
in

th
is

ch
ap

te
r

fo
r

th
e

H
O

V
3

-
ca

rp
oo

lp
ro

bl
em

.T
he

at
tr

ib
ut

es
ex

am
in

ed
ar

e
as

fo
llo

w
s:

gu
ar

an
te

ed
op

ti
m

al
it

y
of

th
e

so
lu

ti
on

,
co

m
pa

ti
bi

lit
y

w
it

h
th

e
or

ig
in

al
H

O
V

3
pr

ob
le

m
,

w
he

th
er

th
e

m
et

ho
d

is
co

m
pa

ti
bl

e
w

it
h

w
ar

m
-s

ta
rt

s,
w

he
th

er
th

e
m

et
ho

d
is

st
oc

ha
st

ic
,t

he
m

et
ho

d’
s

ru
nt

im
e,

an
d

th
e

pr
ac

ti
ca

l
lim

it
of

th
e

m
et

ho
d,

in
te

rm
s

of
th

e
nu

m
be

r
of

ag
en

ts
fo

r
w

hi
ch

th
e

m
et

ho
d

ca
n

co
m

pu
te

a
go

od
so

lu
ti

on
.

Th
e

i
de

no
te

s
th

e
nu

m
be

r
of

it
er

at
io

ns
,

fo
r

th
e

lo
ca

l
se

ar
ch

m
et

ho
ds

.
Th

e
pr

ac
ti

ca
l

lim
it

is
de

te
rm

in
ed

ba
se

d
on

ou
r

nu
m

er
ic

al
ex

pe
ri

m
en

ts
w

he
re

th
e

ti
m

e
lim

it
fo

r
n

ag
en

ts
is

se
t

to
be

lo
g
n

ho
ur

s.
Th

e
in

te
ge

r
pr

og
ra

m
m

in
g

ru
nt

im
e

is
ap

pr
ox

im
at

ed
as

th
e

sa
m

e
as

th
e

dy
na

m
ic

pr
og

ra
m

m
in

g
ru

nt
im

e,
w

hi
ch

is
co

m
pu

te
d

ba
se

d
on

th
e

re
cu

rs
iv

e
fo

rm
ul

at
io

n.

183

Algorithm 5 Hill climbing

Require: feasible initial solution X
Require: number of iterations k > 0

1: for i in range(k) do
2: r ∼ Bernoulli(0.5)
3: if r == 0 then
4: X ′ ∼ NS(X)
5: else
6: X ′ ∼ NM(X)
7: end if
8: if cX ′ 6 cX then
9: X← X ′

10: end if
11: end for
12: return X

uated relative to the current iterate X. If the objective is better, it is accepted as before.
If the objective is worse, the actions can be accepted with probability according to the
magnitude of change and a temperature parameter. At the end of each iteration, the
temperature parameter is decayed at rate β. The full algorithm is given in Algorithm 6.

Note that in the limit as k→ , simulated annealing converges to hill climbing. That is,
the method then samples a single action at a time and with high probability accepts the
action only if it improves the objective.

The iteration complexity of this method is again O
(
n
)
. However, the constant factor is

larger and determined by the temperature parameters (T ,β).

9.5.3 Local search: swap and move neighborhood

In the classical local search method (see Algorithm 7), at each iteration, a full search of
the swap and move neighborhoods is performed and the single best action is selected, if
it yields an improvement.

9.5.4 Local search: random neighborhood

Our last local search method combines some of the deterministic aspects of the classical
local search method with the stochastic nature of hill climbing. At each iteration, a coin

184

Algorithm 6 Simulated annealing

Require: feasible initial solution X
Require: number of iterations k > 0
Require: initial temperature T > 0
Require: temperature decay rate β > 0 (default= 0.99)

1: for i in range(k) do
2: nActions← dexp (T)e
3: X ′ ← X

4: for j in range(nActions) do
5: r ∼ Bernoulli(0.5)
6: if r == 0 then
7: X ′ ∼ NS(X

′)
8: else
9: X ′ ∼ NM(X ′)

10: end if
11: end for
12: r ∼ Unif(0, 1)
13: if cX ′ 6 cX or r 6 1

1+exp ((cX ′−cX)/T)
then

14: X← X ′

15: end if
16: T ← βT

17: end for
18: return X

Algorithm 7 Classical local search

Require: feasible initial solution X
Require: number of iterations k > 0

1: for i in range(k) do
2: cX ′ ,X ′ ← min(minX ′∈NS(X)CX ′ , minX ′∈NM(X)CX ′)
3: if cX ′ 6 cX then
4: X← X ′

5: end if
6: end for
7: return X

185

flip chooses a random neighborhood (move or swap). Then, the best action within that
neighborhood is selected (see Algorithm 8).

Algorithm 8 Local search with random neighborhood

Require: feasible initial solution X
Require: number of iterations k > 0

1: for i in range(k) do
2: r ∼ Bernoulli(0.5)
3: if r == 0 then
4: cX ′ ,X ′ ← minX ′∈NS(X)CX ′
5: else
6: cX ′ ,X ′ ← minX ′∈NM(X)CX ′

7: end if
8: if cX ′ 6 cX then
9: X← X ′

10: end if
11: end for
12: return X

9.5.5 Exact search: dynamic programming

We use a memoized recursive DP scheme to solve the subproblems given by Equa-
tions (133)-(136) in Section 9.4.2.

9.5.6 Exact search: Integer programming

We implement our IP formulation in Python-based Numberjack (Hebrard et al., 2010),
an open-source framework that interfaces with MILP and constraint programming (CP)
solvers. Specifically, we use the SCIP solver (Achterberg, 2009).

9.6 warm-starting the local search methods

In this section, we study the techniques for using a warm start to affect the convergence
of our iterative local search methods for the carpool problem. We describe several ini-
tialization schemes and study whether they help speed up the computation, important
for practical ridesharing optimization solutions. We refer to them as raw initializations

186

because they may not satisfy all the constraints of our problem; for instance, time con-
straints may be violated. However, we developed a procedure to transform the raw ini-
tializations into a feasible solution with which to start the local search methods (given in
Section 9.11). Each of these initializations is no worse (and almost certainly better) than
the trivial initial solution, which consists of all singleton sets as the rideshare groups.

Since local search methods may converge slowly or to a poor local optimum given
an arbitrary starting point, in this section, we utilize the structure of the problem to
construct raw initialization points to warm start the local search method, instead of
using a naive initialization. An example naive initial solution is to group agents into sets
of three arbitrarily (and then transform that assignment into a feasible solution). We now
give several heuristic alternatives, which we compare numerically in Section 9.8.4.

Greedy initialization. The greedy initialization is an O
(
n2
)

scheme, which forms groups
by greedily selecting an unassigned agent and the two unassigned agents who are closest
(in origin); the scheme terminates when all agents are assigned (see Algorithm 9 in
Section 9.11 for more details).

Distance-based clustering initialization. This initialization computes a distance-based
clustering, with a measure on agent origins, and is similar to the approach in Chap-
ter 10, which uses centroid-based clustering to solve a set partitioning problem, such as
ridesharing. The algorithm essentially computes a clustering using k-means, and then
splits up the clusters into subsets that satisfy the capacity constraints of agents. Note that
both clustering-based initializations implicitly assume an Euclidean space through use
of k-means clustering. Thus, these heuristic initializations are likely to perform better for
the Euclidean settings and Euclidean-like network configurations than the general road
network settings. For example, networks divided by rivers or other geography may ben-
efit less from such a heuristic. The initialization is given in more details in Algorithm 10

in Section 9.11.

Angle-based clustering initialization. Similarly, this initialization computes an angle-
based clustering on the angle of the agents origins, relative to the destination. The algo-
rithm for computing an angle-based clustering is given in Algorithm 11 in Section 9.11.

Extending the greedy initialization to clustering-based initialization (either distance-
based or angle-based) has the potential to boost the performance significantly by start-
ing the objective closer to an optimal value. However, since the initializations promote
better starting objectives without explicitly considering the time constraints (the greedy
initialization has the same fault), much of the objective gained could be lost as soon as
the time constraints are enforced.

187

9.7 numerical implementation

For our experiments, we generate problem instances with agent sizes that are exponen-
tially increasing (from 10 to 100K) and attempt to solve them using multiple methods,
both exact and approximate.

9.7.1 Workloads

We experiment with problem instances drawn from two different settings.

Euclidean setting. In the Euclidean setting, we generate agent home locations based on
a Gaussian distribution over the R2 space. We assume that the distances in the space
are Euclidean. Work locations are fixed at the origin, and home locations are distributed
according to a single Gaussian distribution with standard deviation 0.1 and centered at
the work location. Time windows are determined by sampling two numbers uniformly
in the range [6,9] (i.e. morning commute hours). Then, the smaller of the numbers is the
start time of the time window; the larger is the end time.

San Francisco (SF) Bay Area setting. In this setting, we assign agent home locations
by sampling with replacement from a dataset consisting of 400K agent plans for the
San Francisco Bay Area (Pozdnoukhov et al., 2016) based on the California Metropolitan
Transportation Commission (MTC) travel model.

The dataset was generated using MATSIM, an agent-based transportation simula-
tor (Horni and (eds.), 2016), which invokes a co-evolutionary scheme to generate agent
plans in a large-scale multi-agent urban environment. The distances in this space are
clearly not Euclidean, due to the bay in middle, and had to be computed using the real
road network. Work locations are fixed at Soda Hall at UC Berkeley. The agent plans
include the time that the agent arrives at her work location, so we used that as the end
time of the time window. We uniformly fix a one-hour time window for each agent.

Problem sizes. In the prior work, the largest instances have been 1000 and typically
much smaller (Armant et al., 2015). However, if we want to support carpooling at a
scale that can make a significant social impact, we need to work with much larger prob-
lem sizes. For example, the population of the nine-county Bay Area is more than seven
million (Cynthia Kroll et al., 2016). So supporting even 1-2% of the population will re-
quire supporting agent counts that are one-two orders of magnitude larger (70K - 140K).
Therefore, we studied instances of {10, 100, 1K, 10K, 100K} agents.

188

9.7.2 Initialization

We now briefly describe our stages of computing an initial solution, which is important
for the local search methods. Using one of the initialization schemes in Section 9.6, we
compute a raw initialization to the problem; we refer to this as a raw initialization (de-
noted the raw_init stage in Figures (49) and (50)) because this initialization could violate
the time constraints. Then to satisfy the time constraints, we arbitrarily break up groups
which are not compatible in time. We refer to this as the raw_init_time_ranges stage.
Finally, we solve the small traveling salesman problem to optimize the ordering of the
agents in each group and thereby compute cS; this is the raw_init_opt_pickup stage.

9.7.3 Computational challenges of routing distance

In this section we discuss the non-trivial computational challenges of using distances on
networks and how we overcame them. In summary, pre-computation is desirable but
may be expensive; we must consider both storage and time costs of pre-computation.

In the San Francisco Bay Area setting, the act of querying (i) distances from origin
to destination of agents, and (ii) pairwise distances between agent origins, underlies
the operation of every method. Although computing Euclidean distances takes roughly
0.5 msec, querying a routing service incurs I/O cost, thus increasing the time cost to
the order of hundreds of milliseconds. Thus network settings (such as the SF Bay Area
network) appears to immediately incur a penalty of 100x, regardless of how fast the
algorithm is. To overcome this, we pre-compute the O

(
n2
)

required distances. For 100K
agents, the space requirement for pre-computation is on the order of 20GB; this is easily
supportable even with a general purpose m4.2xlarge AWS instance, which has 32GB of
RAM.

Unfortunately, due to the O
(
n2
)

nature of the pairwise distance computations, even
the pre-computation time does not scale well beyond 10k agents. As we can see from
Table 9, even using the roadsindb distance oracle (Samet and Sankaranarayanan, 2014),
which uses a pre-computed representation of driving distances between all locations in
a particular region, scaling from problem size 1k to size 10k increases the time required
from 209 secs to 3 hours. This quadratic increase implies that the pre-computing dis-
tances for 100k agents would require 300 hours = 12.5 days. Thus in the 100K agents
instances, we instead query distances on the fly as needed from roadsindb, and this
is successfully used in our largest hill climbing and simulated annealing experiments,
which require fewer distance queries per iteration than the other local search methods.

189

Agents Euclidian dists SF Bay Area dists

10 0.009 0.043

100 0.721 2.010

1000 71.760 209.356

10K 412.742 12.3×103

Table 9: Time scaling for pre-computing pairwise agent distances for different problem sizes, for both
Euclidean plane and SF Bay Area settings; the latter is calculated using queries to the cached
roadsindb data. All times are in secs.

9.7.4 Experimental Setup

Our experimental setup consists of a combination of a medium-sized AWS instance and
a large shared server. The system configurations of the two servers: 1) an AWS instance
with 8 CPUs and 30GB RAM, used to generate instances, pre-compute distance matrices,
and execute the 100k-agent local search experiments, and 2) a shared lab server with
24 cores and 256GB RAM, used to run instances of 10-10K agents using pre-computed
distance matrices.

The experimental timeouts are set logarithmically; the timeouts are {1, 2, 3, 4, 5} hours
for {10, 100, 1000, 10k, 100k} agents, respectively.

9.7.5 Implementation

The local search algorithms and dynamic programming scheme are implemented en-
tirely in Python and could be further optimized to achieve a speedup of several magni-
tudes. Thus, the implementations are proof of concept prototypes. On the other hand,
the MILP solver is already highly tuned software. Additionally, we used simple and
fixed parameters (such as a simple temperature schedule for the simulated annealing
method) and did very little tuning of hyperparameters, as that is not the focus of this
chapter.

190

9.8 numerical results

9.8.1 Scalability

In line with findings from Section 9.7.3, algorithms with linear or greater running times
did not scale well. While the exponential exhaustive search algorithms was not expected
to scale, we were surprised to find that it did not finish solving even the 20 agent problem
in over a day.

When we analyzed the computation time of four local search methods (hill climbing,
simulated annealing, classical local search (called best_step), and random neighbor-
hood local search (called best_random) with increasing workloads, we found that the
best_step and best_random methods did not finish even one 10k iteration before timing
out after 4 hours. Figure 45 summarizes the time per iteration cost of each method for
varying problem sizes.

Figure 45: Time per iteration for the local search methods for varying numbers of agents. Note that the
scale is log-log. The best_step and best_random methods were not able to compute problem
sizes 10k and 100K within the time alloted for the respective problem sizes (see Section 9.7.1).

We additionally break the computation time down into the various initialization stages
(see Section 9.7.2) and the per iteration computation. The results are summarized in
Figure 49. Hill climbing and simulated annealing scale significantly better than the local
search methods that perform a full neighborhood search. For these methods, the per

191

iteration computation is significantly less than the initialization time.
This is an expected assessment because the local search methods that perform a full

neighborhood search are much more thorough in their evaluation of which action to
perform at each iteration (thus taking O

(
n2
)

time to choose). The next natural question
is whether it is a necessary expense.

9.8.2 Exact solvers

We were unable to compute exact solutions for problem sizes greater than 50 for IP and
greater than 10 for dynamic programming (see Table 10). Even in the case of 10 agents,
hill climbing out performs IP.

size IP obj IP time HC obj HC time

10 agents 0.898 2.137 0.898 1.11

20 agents 1.578 44.360 1.577 2.77

50 agents 3.413 12225.513 3.513 8.35

Table 10: Comparison between the objective and the run-time (sec) for the IP and hill climbing (HC)
methods. This data is from a single random instance from the Euclidean setting.

9.8.3 Convergence

We now turn to assessing the convergence of each of the methods to the naive lower
bound. Relating the objective value to the naive lower bound conveniently allows us to
assess different problem sizes in the same figure by normalizing the value. Figure 46

summarizes the convergence of the different methods (minus simulated annealing) for
different problem sizes. We find that hill climbing by far converges the fastest. However,
the classical local search method converges to a lower ratio in some instances. These
findings suggest combining the two methods to achieve the best of both worlds: first
using hill climbing to quickly converge close to a local optimum, then using classical
local search to converge to an exact local optimum.

Simulated annealing is excluded from the previous figure due to its chaotic nature in
convergence. To demonstrate this we have included a figure comparing the convergence
of simulated annealing to hill climbing (see Figure 47). We note that our simulated an-

192

nealing implementation is not highly tuned for our problem. With tuning such as spe-
cialized temperature schedules and restarts, simulated annealing has been demonstrated
to perform very well in many practical combinatorial optimization settings. We do not
claim that it would not work here as well, but that we have not discovered optimal
hyperparameters.

9.8.4 Warm-start

All three proposed warm-starts give a solution that is between two- and three- times the
lower bound objective (see Figure 48), indicating that all the initial solutions are far from
optimal. In fact, three times the lower bound is the upper bound and corresponds to the
solution where each agent rides alone (which is the trivial solution of singleton groups).

Surprisingly, hill climbing with the greedy initialization warm-start performs at least
as well as the other proposed warm-starts (see Figure 48). This is surprising because
we would expect that the distance- and angle-based warm-starts are closer to the final
solution than a greedy initialization. In particular, the angle-based warm start is a proxy
for the arcs emanating out of the single destination, which we expect drivers to follow to
best optimize. On the contrary, the angle-based initialization often performs the worst,
and remains much farther from the optimal solution than the other methods. Further in-
vestigation is required into the causes of this deviation. For the SF Bay Area setting, this
may make sense because the geography of the region (the bay, highways, etc.) does not
often permit straight-line routes to the destination. Nonetheless, all the warm-starts be-
gin far from the optimal solution, and these results imply that the optimization method
is effective enough to compensate for any differences in the warm-start strategies. For
practitioners, this implies that a greedy initialization strategy may be good enough.

9.9 chapter summary

In this chapter, we cast the HOV3- Carpool problem into the framework of combinatorial
optimization and shown that it is NP-Hard and difficult to solve iteratively. Next, we
show that a relaxed version of the problem, the HOV3- Carpool problem, is amenable to
many classes of solution methods for combinatorial optimization: local search, integer
programming, and dynamic programming. In particular, the new relaxed formulation
permits local search methods, and we experimentally show that a sampling-based lo-
cal search method (hill climbing) scales up to 100K agents and converges to a ratio of
within 1.1 of the lower bound in five hours, with a prototype implementation. The other

193

methods either do not complete in the time allotted or do not converge as well.
This work is a first step towards incorporating various, complex human considera-

tions into carpool optimization. There are many considerations yet to be addressed for a
real-world ride sharing system to be viable. For instance, our work does not consider the
delay caused by waiting for participants, travel time, routing complications, or conges-
tion. Additionally, participants’ preferences with respect to when to travel or arrive may
be non-uniform and may be correlated with spatial-temporal features. There are also
many complex human factors that must be considered including fairness, social norms,
and cultural compatibility. One of the major benefits of local search methods such as
the ones studied in this chapter is that they are extremely flexible with respect to differ-
ent cost terms in the objective; however, further investigation is needed for an empirical
confirmation.

On the other hand, local search methods are highly sensitive to the constraints of the
optimization problem, and therefore new methods will be needed for new or modified
constraints, such as allowing for more flexible carpool sizes or permitting participants to
specify intermediate stops. However, problems with such constraints can potentially be
decomposed into independent problems with simplified constraints.

In practice, we expect that some of these complex cost factors and constraints may
actually contribute to cleaner or faster methods, introduce new technical problems, and
improve the feasibility of carpooling in the real-world. We especially encourage the re-
search community to embrace the complexity and take advantage of the structure within
these complex human factors.

There are several extensions to pursue next. We would like to understand the algorith-
mic complexity of the HOV3- problem, and we are interested in convergence guarantees
for the hill climbing method, perhaps by casting the method into a MCMC framework
and studying Markov chain summaries. We are also interested in studying more com-
plex agent constraints and costs; for instance, agents may have limited tolerance for
deviating from a baseline travel plan. We are interested in conducting more extensive
experiments after improving implementations, combining methods, or trying alternative
warm-starting schemes.

9.10 scalability : time breakdown for local search

See Figures 49 and 50 for breakdowns on computational time in the various stages for
the local search methods.

194

9.11 initialization for local search methods

See Algorithms 9, 10, and 11 for details of the three warm-start strategies. The procedure
for enforcing feasibility of solutions is described in Algorithm 12 and essentially removes
agents from groups until feasibility is achieved. Note that the group.agents.pop() func-
tion in line 3 is arbitrary – it can remove the first agent in the list, the most troublesome
agent, etc. Groups of singleton agents form trivially feasible groups. In our experiments,
we refer to this feasibility enforcement by the raw_init_time_ranges stage, since capac-
ity constraints are already taken care of in the raw initialization, so the only constraint
to enforce is the time constraint.

Algorithm 9 Greedy initialization of groups R0

Require: agents.size > 0
1: R = {}

2: free_agents← agents
3: while free_agents is not empty do
4: a = free_agents.pop()
5: agents = a.get_nearest_two_agents()
6: free_agents.remove(agents)
7: R← R ∪ group([a, agents])
8: end while
9: return R

Algorithm 10 Distance cluster initialization of groups R0

Require: number of clusters k > 0
1: X = (xi,yi)i∈[n]
2: R = {}

3: lists_of_agents← k-means(X,k)
4: for list_of_agents in lists_of_agents do
5: while list_of_agents is not ∅ do
6: agents← list_of_agents.pop_three()
7: list_of_agents.remove(agents)
8: R← R ∪ group(agents)
9: end while

10: end for
11: return R

195

Algorithm 11 Angle cluster initialization of groups R0

Require: number of clusters k > 0
1: X = (xi −wx,yi −wy)i∈[n]
2: Y = arctan((yi −wy)/(xi −wx)) {Compute the angle relative to the destination}
3: R = {}

4: lists_of_agents← k-means(Y,k)
5: for list_of_agents in lists_of_agents do
6: while list_of_agents is not ∅ do
7: agents← list_of_agents.pop_three()
8: list_of_agents.remove(agents)
9: R← R ∪ group(agents)

10: end while
11: end for
12: return R

Algorithm 12 Ensure feasibility of R

1: for group in R do
2: while group is not feasible do
3: a = group.agents.pop()
4: R← R ∪ new_group([a])
5: end while
6: end for
7: return R

196

Figure 46: This figure demonstrates the convergence of the methods in the SF Bay Area setting. Top:
For the smaller problem instances: {10, 20}, the three methods displayed converge to the same
ratio to the lower bound, but hill climbing converges much faster and, for the larger problem
instances of {50, 100, 1000}, to a lower ratio. The classical local search method gives a steady but
slow convergence, whereas the random neighborhood search gives a more jagged convergence.
In the case of size 50 and 100, the classical local search method converges to a slightly lower
ratio than hill climbing, implying that hill climbing may have reached a different local optimum
(or not reached one at all). In the case of problem size 1000, the best_step and best_random
(the gray near-horizontal lines) are further from the lower bound and were cut short due to
the timeout. Bottom: We display convergence only for the hill climbing method and problem
instances 6 100K. In all instances the problem converges to between 1.1 to 2.4 times the lower
bound. Notably, in the largest problem size, hill climbing achieves a ratio close to 1, implying
that the solution is near optimal. Note that the x-axis is on a log scale.

197

Figure 47: Convergence of the simulated annealing method (lighter shades) is much more chaotic than
hill climbing (darker shades), and simulated annealing does not converge to as low a ratio to
the lower bound as the hill climbing method. The experiments shown here are from the SF Bay
Area setting. Note that the x-axis is on a log scale.

Figure 48: Three different warm-start strategies (shown for the SF Bay Area setting) and their subsequent
performance with the hill climbing method. The three warm-starts are: a greedy grouping, a
clustering of the initial positions based on relative distance, and a clustering of the initial posi-
tions based on relative angle to the destination. They appear to perform similarly numerically,
with the angular clustering performing the worst. Here is displayed a sample experiment con-
figuration, using the hill climbing method, 10K agents, and averaged across nine runs. Note
that the x-axis is on a log scale.

198

Figure 49: This figure demonstrates the scalability of the methods in the SF Bay Area setting, using the
greedy warm-start. Top: With 20 agents or more, the per iteration computation dominates the
local search methods which perform a full neighborhood search. Beyond 100 agents, the rel-
ative timing becomes indistinguishable because the per iteration time dominates, so we have
excluded the larger values. Bottom: We focus on the sampling-based local search methods,
which scale much better in per iteration computation time. At 1000 agents, the per iteration
computation is only a small fraction of the total initialization time (the topmost stacked bar
(light green), barely visible), although for larger sizes, the initialization far dominates the per
iteration computation because the initialization time is O

(
n2
)
, whereas the per iteration com-

putation is O
(
n
)
. Best viewed in color.

199

Figure 50: For the larger problem instances (10k and 100K), the initialization time far dominates the per
iteration computation time. This is a result of the O

(
n2
)

nature of the initialization process,
which computes pairwise distances between unassigned agents and searches for the minimum.
The results shown here are for the SF Bay Area setting. Top: Up to problem size 10k is included,
and we can see that the smaller problem instances are already dwarfed by it. Bottom: Including
problem size 100K, we can no longer even see the runtime of any of the smaller experiments,
and for size 100K, the other steps in the computation are dwarfed by the init time. Best viewed
in color.

200

10
C L U S T E R I N G F O R S E T PA RT I T I O N I N G W I T H A C A S E S T U D Y I N
R I D E S H A R I N G

We are all connected;
To each other, biologically
To the earth, chemically
To the rest of the universe atomically.

Neil deGrasse Tyson,
We Are All Connected,

Symphony of Science, 2009

By exploring alternative approaches to combinatorial optimization, we propose the
first known formal connection between clustering and set partitioning, with the goal of
identifying a subclass of set partitioning problems that can be solved efficiently and with
optimality guarantees through a clustering approach. We prove the equivalence between
classical centroid clustering problems and a special case of set partitioning called metric
k-set partitioning. We discuss the implications for k-means and regularized geometric
k-medians, and we give several future extensions and applications. Finally, we present a
case study in combinatorial optimization for ridesharing, in which we use an efficient Ex-
pectation Maximization (EM) style algorithm to achieve a 69% reduction in total vehicle
distance, as compared with no ridesharing.

10.1 overview and combinatorial optimization problems

Set partitioning is the optimization form of exact cover, one of Karp’s 21 NP-complete
problems, and it arises commonly in planning applications where it is used to identify
the best partition of a set of objects. Examples include scheduling airline flight crews
(Hoffman and M. Padberg, 1993; Chu et al., 1997), sharing rides (Santi et al., 2013), and

201

kidney swapping programs (Biro et al., 2009; Vemuganti, 1999). Optimizing for the best
set partitioning solution is NP-hard, and classical combinatorial optimization methods
are cumbersome (e.g. integer programming (M. W. Padberg, 1973), branch-and-cut (Hoff-
man and M. Padberg, 1993)), restricted (e.g. triangle-packing approximation (Hassin
and Rubinstein, 2006; J. Wang and Feng, 2008), m-sets (Arkin and Hassin, 1998; Chan-
dra and Halldorsson, 2001)), or do not provide guarantees (e.g. simulated annealing
(Dowsland, 1993), genetic algorithms (Gandibleux et al., 2004), metaheuristics (Delorme
et al., 2004)). At the same time, clustering methods also solve a partitioning problem, and
although the underlying optimization problem is again NP-hard, methods in common
use provide efficient iterative procedures that offer probabilistic guarantees and that are
amenable to parallelization. On the other hand, while classical combinatorial optimiza-
tion approaches are suitable for extremely general and expressive problems, clustering
methods are typically restricted to specific models and objectives.

We are interested in the following questions:
• What optimization problems can be expressed at the intersection of the two ap-

proaches?
• How can these problems benefit from the formalism of one and the methods of the

other?
We formalize the connection between set partitioning and clustering, with the goal of
identifying a subclass of set partitioning problems that can be solved efficiently and with
optimality guarantees through a clustering approach. We offer a demonstrative example
of the connection: we demonstrate the correspondence between a restricted setting of set
partitioning and classical centroid-based unsupervised clustering methods, for instance
the k-means algorithm (Hartigan and Wong, 1979).

10.2 set partitioning

First, consider the problem of set partitioning (see Figure 51), where the goal is to find the
best disjoint cover within some collection S ⊆ 2U, where U is the universe of elements.
This is a restricted setting of set packing, where feasible solutions must cover the whole
universe, rather than a subset. Best is defined as minimizing the overall cost in terms of
weights assigned to each subset. We denote the cost of each subset S ∈ S by cS. We denote
the solution vector x = (xS)S∈S, where xS = 1 indicates that S is in our set partitioning
solution. Then, the problem is defined as follows:

opt = min
x

∑
S∈S

cSxS (141)

202

Figure 51: Set partitioning problem.

subject to ∑
S:u∈S

xS = 1, u ∈ U (142)

xS ∈ {0, 1} S ∈ S (143)

10.2.1 Metric k-set partitioning and centroid-based clustering

Now, we specialize to the special case of metric spaces and k-covers (covers of exactly
size k). We let S = 2U, and we endow universe U with a metric space (X,d) such that
U ⊆ X and define the cost of a subset to be minimal relative to a centroid point, that
is cS := minx∈X

∑
s∈S d(s, x). Additionally including a k-set constraint, we then have the

following optimization problem, which we call the metric k-set partitioning problem:

min
x

∑
S∈S

min
x ′∈X

∑
s∈S

d(s, x ′)xS = min
x

∑
S∈S

∑
s∈S

d(s,µS)xS (144)

subject to ∑
S:u∈S

xS = 1, u ∈ U (145)

∑
S∈S

xS = k (146)

xS ∈ {0, 1} S ∈ S (147)

203

where we define the subset centroids µS := arg minx∈X
∑
s∈S d(s, x). Note that under a

metric, without the size k constraint, the optimal solution would be all the singleton sets.
This is true for clustering as well.

Constraint (145) implies that each element is measured with respect to exactly one
centroid (and in fact, the closest one, due to the objective) and Constraint (146) encodes
that there are exactly k centroids (and in fact, they minimize the distance with respect to
the elements assigned to it, due to the objective). With these observations, the previous
optimization problem then collapses neatly into the following well-studied optimization
problem for centroid-based clustering:

min
(T1,T2,...,Tk)

k∑
j=1

∑
x∈Tj

d(x,µj) (148)

subject to
∪j∈[k] Tj = U (149)

Ti ∩ Tj = ∅, ∀i 6= j (150)

µj = arg min
x∈X

∑
s∈Tj

d(s, x) (151)

When the metric d(·, ·) is restricted to the sum of squares loss, also knowns as k-
means clustering, the resulting optimization problem may be solved efficiently and with
probabilistic guarantees with k-means++ initialization (Arthur and Vassilvitskii, 2007)
and the k-means algorithm. Thus, the metric k-set partitioning problem, an instance of set
partitioning, benefits tremendously from a clustering approach. We now prove the result.

10.3 a formal connection between clustering and set partitioning

Theorem 4 (Equivalence). Metric k-set partitioning and centroid-based clustering are
equivalent. That is, Problem (144)-(147) and Problem (148)-(151) are equivalent.

Before proving the theorem, we first make the following definition and lemma:

Definition 4 (k-partition). If P is a k-partition constraint of U, then P = (P1,P2, . . . ,Pk) ⊆ S

204

such that:

Pi ⊆ U, ∀i⋃
i

Pi = U

Pi ∩ Pj = ∅, ∀i 6= j

Lemma 3 (k-partition constraint). The constraints of Problem (144)-(147) is a k-partition
constraint.

Proof of claim. (→) : We first show that we may construct such a partition P from a
solution x = (xS)S∈S satisfying the constraints of the problem defined by Equations (144)-
(147). Define P := {S : xS = 1,S ∈ S}. By construction, ∀P ∈ P,P ∈ S =⇒ P ⊆ U. Con-
straint (146) (

∑
S∈S xS = k) implies that |P| = k. Constraint (145) (

∑
S:u∈S xS = 1, u ∈ U)

implies both coverage and mutually disjoint conditions. Thus, x may be represented as
a k-partition P.

(←) : Now we show that a partition P may be used to construct a solution x = (xS)S∈S
satisfying the constraints of Problem (144)-(147). We define x ∈ {0, 1}|S| such that

xS :=

1 if S ∈ P

0 otherwise

Then ⋃
i

Pi = U =⇒
∑
S:u∈S

xS > 1, u ∈ U

Pi ∩ Pj = ∅, ∀i 6= j =⇒
∑
S:u∈S

xS 6 1, u ∈ U

Together, this implies Constraint (145) (
∑
S:u∈S xS = 1,u ∈ U). Constraint (146) is trivially

satisfied by construction. Thus, P may be represented as a length-|S| binary vector satis-
fying the constraints of Problem (144)-(147). Finally, we conclude that the constraints of
Problem (144)-(147) are equivalent to that of a k-partition.

205

Proof of theorem. We perform a change of variables in Problem (144)-(147) from x =

(xS)S∈S to P (established in Lemma 3), taking P := {S : xS = 1,S ∈ S}.

min
x

∑
S∈S

min
x ′∈X

∑
s∈S

d(s, x ′)xS = min
P

∑
S∈P

min
x ′∈X

∑
s∈S

d(s, x ′)1

+
∑
S∈S\P

min
x ′∈X

∑
s∈S

d(s, x ′)0

= min
P

∑
S∈P

min
x ′∈X

∑
s∈S

d(s, x ′)

subject to the k-partition constraint. We observe that our sum is reduced from |S| terms
to k terms. To make the size of P more explicit, we may write equivalently,

min
P=(P1,P2,...,Pk)

k∑
i=1

min
x ′∈X

∑
s∈Pi

d(s, x ′)

Finally, we define µi := arg minx ′∈X
∑
s∈Pi d(s, x

′), and we arrive at a common form of
the centroid-based clustering problem (as in Problem (148)-(151)):

min
P=(P1,P2,...,Pk)

k∑
i=1

∑
s∈Pi

d(s,µi)

subject to

Pi ⊆ U, ∀i⋃
i

Pi = U

Pi ∩ Pj = ∅, ∀i 6= j

Since all operations are reversible (equivalences), we have established equivalence of the
two problems.

Some examples of centroid-based clustering problems include the k-means problem,
the k-median problem, and the geometric k-median problem. Under equivalence given
by Theorem 4, the algorithms for one problem may apply also to the other. We now
present several special cases and extensions, and then we present an application that

206

makes use of these settings.

10.3.1 Special case: k-means

A special case of the equivalence is the k-means objective (Steinhaus, 1956), where
d(s, x) = minx∈X

∑
s∈S ‖s− x‖

2
2.

Corollary 3 (k-means++ for set partitioning). When restricted to sum of squares loss,
k-means++ attains a O

(
logk

)
-approximate solution in expectation to the metric k-set parti-

tioning problem k-means++.

By examining the operations of the k-means algorithm, we may gain intuition on how
the steps translate back into context of the set partitioning problem.

Atomic operations of Lloyd’s algorithm: Lloyd’s algorithm for k-means clustering is an
iterative method with two main steps (Lloyd, 1982):

1. Assignment step:

P
(t)
i =

{
s :
∥∥∥s− µ(t)i ∥∥∥ 6

∥∥∥s− µ(t)j ∥∥∥ ,∀j ∈ [k]
}

(152)

where each s ∈ U is assigned to exactly one P(t)i .
2. Update step:

µ
(t+1)
i =

1∣∣∣P(t)i ∣∣∣
∑
sj∈P

(t)
i

sj (153)

In the context of set partitioning, the two steps have the following interpretation:
1. Assignment step: Select a (better) feasible binary solution vector x = (xS)S∈S. Recall

that a feasible x implies that x satisfies a k-partition constraint.
2. Update step: Update the objective to reflect the cost of the selected subsets, i.e.

update
∑
S∈S cSxS by computing cS for each selected subset S.

The algorithm terminates when no change is made during the assignment step; that
is, a better feasible binary solution vector cannot be found by the algorithm. We observe
that, after each iteration of Lloyd’s algorithm (after the update step), the algorithm main-
tains a feasible solution to the corresponding set partitioning problem. This observation
also motivates related methods for solving set partitioning problems, such as local search
methods, which maintain feasible solutions at each iteration.

207

10.3.2 Extension: regularized centroid-based clustering

We can now discuss our first extension beyond the classical centroid-based clustering to
the regularized setting.

Definition 5 (Relative cost). We call cS,r a relative cost if it takes the form

cS,r := min
x∈X

∑
s∈S

d(s, x) + r(x)

where r : X→ R denotes a relative term.

Corollary 4 (Regularization is relative-cost). Denote regularizer r : X 7→ R. Then adding∑k
j=1 r(µj) to the objective of centroid-based clustering (Problem (148)-(151)) and the cor-

responding definition of µj is equivalent to the k-set partitioning problem (144)-(147) with
the relative cost cS,r := minx∈X

∑
s∈S d(s, x) + r(x). That is, the regularized centroid-based

clustering problem is equivalent to the relative-cost metric k-set partitioning problem.

10.3.3 Extension: k-median on graphs

Instead of embedding our universe U in a metric space, we can embed it in a graph
G = (V,E). Then, set partitioning has an equivalence to clustering according to graph
distance instead of a metric. We define an analogous cost called graph median.

Definition 6 (Graph median). Given a graph G = (V,E), v ∈ V is the graph median of a subset
S ⊆ V if

v = arg min
u∈V

∑
s∈S

d̃(s,u)

where d̃(s,u) denotes the shortest path distance between nodes s and u.

Lemma 4 (Median on graphs). The graph median for a subset S of cardinality m can be
computed in O

(
log(m(|V |+ |E|) log |V |))

)
.

208

10.3.4 Embeddable cost substructures

In the more general setting of metric set packing, where the solution need not cover the
entire universe, we may draw a connection to how clustering methods handle outliers.
Additionally, by making use of recent advances in semi-supervised clustering and spec-
tral clustering, we propose to further identify a subclass of set partitioning problems that
may be embedded in a cluster learning framework for efficient computation and prob-
abilistically optimal set partitioning. When we characterize set partitioning problems
in terms of their underlying cost structure and additional constraints, we conjecture a
formal parallel between set partitioning and clustering with the following embeddable
substructures: metric spaces, relative cost, pairwise affinity, m-sets, and singleton sets.
For each embeddable substructure, we plan to prove the equivalence to their clustering
counterpart and give an example efficient and often parallelizable algorithm. We also
discuss when the substructures and algorithms may be combined and study clustering
methods beyond centroid-based methods, and we hope to contribute a unifying theory
of semi-supervised clustering in terms of the underlying optimization problems.

10.4 case study : ridesharing meetup problem

We have been studying the cluster learning approach to solving a large-scale ridesharing
problem. The ridesharing problem is classically formulated as a set partitioning or set
cover problem (Kamar and Horvitz, 2009), with complex costs dependent on a road
network and the constraints of the participants. When these costs are decomposed into
embeddable substructures, we hope to demonstrate the ability of fast clustering methods
to solve classically combinatorial problems.

We first study a simplified setting of sharing rides when commuting to work in the
morning. We restrict to a single destination area. Consider the setting where users in a
ride share group agree to meet up at a location, the users travel there individually, and
then they share a single vehicle from the meetup point to work. We formally define the
ridesharing meetup problem (see Figure 52):

Definition 7 (Ridesharing meetup problem). Let U denote the universe of users u ∈ U, who
live in X = R2 and work at the origin (0, 0) ∈ X. Let S be the collection of possible ride shares.
We wish to select the ride share groups and their respective meetup points that minimize the total
vehicle distance.

This is very naturally a set partitioning problem. The cost of each subset S ∈ S can be
written as cS = minx∈X

∑
s∈S ‖s− x‖2 + ‖x‖2. The first term is the total distance traveled

209

by each member of the ride share to the meetup point, and the second term is the
distance traveled by one shared vehicle. Assume (for now) that vehicles have infinite (or
large) capacity. By Corollary 4, we observe that we have a relative cost that is equivalent
to an `2-regularized loss in the clustering optimization.

Figure 52: Ridesharing meetup problem. 100 normally distributed users, with a single destination
at the origin (0, 0).

Then, by Theorem 4 and Corollary 4, we formulate this problem as a regularized
geometric k-median problem, which takes the following objective

min
(T1,T2,...,Tk)

k∑
j=1

∑
x∈Tj

∥∥x− µj∥∥2 + λ ∥∥µj∥∥2 (154)

When λ = 1, this formulation exactly minimizes the total vehicle distance. Thus, we can
solve the ridesharing problem with an Expectation Maximization (EM) style method. We
present preliminary results in Figure 53, resulting in 69% less vehicle distance (compared
against singleton sets, i.e. no ridesharing). We may further extend the ride share meetup
problem to networks (instead of Euclidean space) by Lemma 4.

10.5 chapter summary

We have presented the first formal connection between set partitioning and clustering,
with the goal of identifying a subclass of set partitioning problems that can benefit from
algorithms and theoretical guarantees for clustering problems. We prove that classical

210

Figure 53: Regularized geometric k-median for the ridesharing meetup problem results in 26 ride
share groups from 100 users.

centroid clustering problems are equivalent to metric k-set partitioning, and we present
a simplified ridesharing problem that uses this formalism to achieve fast algorithms for
a classical combinatorial optimization problem.

In reality, the constraints and costs of a large-scale ridesharing problem will be signifi-
cantly more complicated than the setting we studied in this chapter. As suggested above,
distances will be non-Euclidean, there will be multiple destinations and time windows,
and participants will have different preferences about time, money, and social factors, as
well as different types of constraints. A real-world ridesharing system may have extrinsic
properties such as monetary incentives by means of payments between participants or
time incentives by means of high-occupancy vehicles (HOV) lanes. In some settings, a
linear pickup order may make more sense than a participant meetup scheme.

Moving forward, one promising approach is to decompose the complex overall rideshar-
ing problem into simple problems such as those studied in this chapter, as a way to both
compose principled building blocks for complex system design and achieve theoretical
guarantees. Further investigation is needed to determine how solutions of the decom-
posed problems might be merged together meaningfully to solve the overall problem. In
another direction of work, we seek to understand how multiple complex cost structures
and embeddable substructures can be supported within the combinatorial optimization
framework such that efficient algorithms are still admissible.

211

Part IV

F I N A L R E M A R K S

212

11
T H E R O A D A H E A D

Today we are well underway to a
solution of the traffic problem.

Robert Moses, master builder of the
New York City area, 1948

Automation and AI have profound impacts on society. As such, mixed autonomy is a
challenging, broad, and increasingly important problem domain for society moving for-
ward. This thesis is only a first step in enabling a science and engineering of mixed au-
tonomy systems. We introduced the broad definition and challenges of mixed autonomy
systems, developed scalable optimization algorithms and systems, and addressed con-
crete challenges–in control, state estimation, and system design–in particular in mobility.
Historically, these problems have largely been studied in isolation by different research
communities and subcommunities using vastly different tools. This thesis sought estab-
lish through a concrete example from the open world–in mobility–the complex interplay
between all the moving parts in mixed autonomy: from the theoretical and algorithmic
development to the computer and simulation systems to the ultimate application. We
close now with a discussion of the road ahead. We present challenges and opportunities
for research in mixed autonomy.

11.1 challenges in mixed autonomy

The continued and accelerating introduction of AI and automation into society will gen-
erate wide-spread yet poorly understood externalities; this calls for a new science and
engineering of mixed autonomy, with the goal of enabling the design, management, and
regulation of such mixed autonomy systems. The challenges presented in this section
aims to be the start rather than the end of a dialogue. Mixed autonomy inherits the

213

challenges of automation science, including those for control systems, machine learning
systems, and engineering systems. These challenges include safety, security, efficiency,
stability, robustness, resilience, and backwards compatibility. Following are a few addi-
tional important challenges specific to mixed autonomy.

Degrees of autonomy. Mixed autonomy is most intuitive in settings which can be posed
as a fraction of a system being automated, such as the fraction of vehicles or workers
being automated, as studied in this thesis. However, there are different ways of viewing
the degree of automation of a task, such as driving. Different degrees, levels, or combina-
tions of partial automation, such as steering, lane keeping, route guidance, or highway
driving, have different implications on critical human factors such as trust and atten-
tion. These, in turn, have consequences for safety and efficiency. How can the degrees of
automation of tasks be better understood? What are the external effects of such partial
automation on other participating agents, such as other roadway users, pedestrians, and
traffic lights? How can the effects of combinations of partial automation be modeled or
predicted?

Learning in the absence of human behavior models. The introduction of automation
into the open world, may alter the behavior of the human actors with whom it interacts.
As discussed in Chapter 1, this phenomenon is also called behavioral drift, and current
design paradigms for automation largely do not take this into account. The challenge lies
in the fact that we simply do not have models for human behavior in situations they have
never experienced, such as with the introduction of new (or a new degree of) automation.
For instance, how can we anticipate the very first interaction of a human driver with an
automated vehicle at an intersection, if humans have never experienced that situation
before? Or how can we predict the “steady state” intersection interaction, once humans
have acclimated to the automation? In what situations can we predict behavioral drift?
How can we design automation that is resilient to behavioral drift?

Mixed mixed autonomy. As automation is increasingly adopted by society, we can imag-
ine situations in which the automated components will not only have complex effects
when interacting with human agents, but also with one another. For example, with
enough adoption of electric automated vehicles, these vehicles can directly interact with
and influence energy markets (e.g. negotiating with refrigerators), in addition to the mo-
bility system. Such integration of multiple mixed autonomy systems can certainly yield
a more desirable outcome than the separate systems, but is likely also to exhibit unan-
ticipated effects. What methods and tools would enable the study of these mixed mixed
autonomy systems?

214

Science of abstraction. Due to the increasing introduction of automation and AI, our
previous working assumption (or abstraction) of different system components as being
independent no longer holds in many systems of societal relevance. For instance, in
mobility systems, we demonstrated that even a very small fraction of automated vehicles
can have a profound impact on the overall mobility system through subtle effects on the
human actors in the system. As such, we can no longer study these different system
components in isolation. That is not to say that we must study all components jointly, as
that is likely to be intractable. However, this observation calls for a re-evaluation of what
types of abstractions (or assumptions) are “reasonable” to permit desirable outcomes in
mixed autonomy systems.

Unanticipated effects. The interaction of automated and human actors can generate
both anticipated and unanticipated effects. Both types of effects are important. An effect
being anticipated does not mean it is easy to address, of course, but it can be viewed
as a first step. In this thesis, we studied anticipated effects, such as induced demand,
and unanticipated effects, such as the emergent behaviors in traffic settings. How can
unanticipated effects be discovered? Can unanticipated effects be addressed directly?

11.2 opportunities in mixed autonomy

In light of these challenges, we see great opportunities to leverage modern advances in
computing, both in terms of algorithms and systems, for the study of mixed autonomy
in a variety of application domains. As such, we describe specific directions of promising
research in terms of three broad areas, which we have seen throughout this thesis:

Optimization, control, and learning: Mixed autonomy systems are hugely com-
plex systems which in different situations employ different optimization frame-
works, including convex optimization, reinforcement learning, and combinatorial
optimization.

High performance computing: Mixed autonomy benefits tremendously from
high performance computing, for large-scale optimization, processing massive data-
sets, as well as for rich and complex simulation.

Domain modeling and engagement: Mixed autonomy tightly interfaces with do-
mains with existing systems, and it is the domain which gives the mixed autonomy
system both the rich problem structure and the eventual impact on people.

These broad areas overlap in interesting and exciting ways that point towards promising

215

research directions. Below, as we discuss research directions, we indicate the correspond-
ing area(s) using the above colored dots.

Structured reinforcement learning algorithms. () Reinforcement learning algorithms
can benefit substantially from design that utilizes the structure of a given task. Model-
based reinforcement learning or optimal control is the most dramatic instantiation of this,
which assumes full knowledge of the problem structure. Model-based reinforcement
learning methods seek to speed up learning by fitting a dynamics model and using it
for planning or speeding up learning (Deisenroth and Rasmussen, 2011). However, in
most situations, the algorithm may only have access to incomplete or crude information
about the problem. Exciting research in this direction utilizes the inherent hierarchical
structure of tasks, i.e hierarchical RL (Dayan and Hinton, 1993; Vezhnevets et al., 2017),
multi-agent problem structure, i.e. multi-agent deep RL (Busoniu et al., 2008; Lowe et
al., 2017), reward structures, e.g. reward shaping and implicit rewards (Ng et al., 1999;
Chentanez et al., 2005), and learned models (Levine et al., 2016; Nagabandi et al., 2017).
Also of interest is the automatic detection of certain structures within a given task and
utilizing this information to leverage the strength of a variety of methods, such as in
switching or sliding mode control (S. V. Drakunov and Utkin, 1992; Young et al., 1999).

Task complexity. (,) A closely related and very important question in reinforcement
learning is one of sample complexity. The question of sample complexity can be viewed
as: how much data must we collect in order to achieve “learning” for a large class of
tasks, such as discrete MDPs? We refer the reader to Kakade et al. (2003) for an overview
of sample complexity in reinforcement learning. Relatedly, the question of task complex-
ity can be viewed as: how much data must we collect in order to solve a particular task?
This view is motivated by the fact that we can consider an algorithm to be successful if
it can solve problems that we care about, rather than all problems, many of which may
never manifest. Conversely, with the amount of time that we have to collect data, what
kinds of tasks can we solve? This question is implicit in nearly all empirical reinforce-
ment learning research–from determining the number of expert demonstration needed
for an imitation learning task to reward shaping to selecting critical hyperparameters
(e.g. discount factor, batchsize). Task complexity is also the key question for the de-
sign for reinforcement learning benchmarks (Todorov et al., 2012; Bellemare et al., 2013;
Brockman et al., 2016; Synnaeve et al., 2016; Beattie et al., 2016; Côté et al., 2018). Task
complexity would benefit from dedicated empirical and theoretical exploration, with an
eye to problem structure drawn from important domains. For instance, techniques from
control theory can shed light on when a task can or cannot be solved with a linear policy
(Callier and Desoer, 2012; Khalil, 1996).

216

Compute-aware optimization. (,) The development of optimization algorithms and
systems has largely been conducted in isolation. One result is the observation that only
linear and sublinear algorithms are often tractable in practice, even though a much larger
class of algorithms are tractable in theory. Similarly, workloads are increasingly complex
for modern machine learning and optimization; beyond the algorithm itself, there is
the computational cost to loading, sampling, or simulating data, the time cost of com-
municating between processes and nodes, and the complexity introduced by the use
of function approximation. Important directions moving forward include the develop-
ment of optimization methods and system which can intelligently trade off between the
costs of different computational resources (e.g. bandwidth, CPU time, space), as well as
further development of finite sample analysis of learning algorithms.

High performance simulation. (,) Closely integrated with high performance comput-
ing systems, simulations of molecular dynamics have the capability of simulating multi-
trillion particles for a variety of scientific and engineering domains, including molecular
biology, solid-state physics, material science (Heinecke et al., 2015). Societal domains,
such as mobility, energy, and social networks, on the other hand, have historically heav-
ily emphasized simplistic models for its component actors. While this has the benefit of
permitting analysis tools such as game theory and mean field analysis, it has the down-
side of often failing to capture pertinent attributes of the actors. There is great potential
moving forward in building high performing simulation for large-scale societal domains,
which closely integrate domain-specific modeling and high performance computing sys-
tems.

Closing the loop. (,) Closing the loop on mixed autonomy systems means work-
ing closely with domain experts to carefully evaluate the systems. Depending on the
domain, these integrated studies can take the form of user studies, field experiments,
system design recommendations, public policy recommendations, and/or decision sup-
port systems. These studies will likely involve highly performant real-time systems, with
which users, policy makers, engineers alike may engage and provide feedback.

217

B I B L I O G R A P H Y

Abrahamsson, T. (1998). “Estimation of origin-destination matrices using traffic counts
- a literature survey.” In: Interim Report IR-98-021, International Institute for Applied
Systems Analysis, Laxenburg, Austria (cit. on p. 117).

Achterberg, T. (2009). “SCIP: Solving constraint integer programs.” In: Mathematical Pro-
gramming Computation 1.1. http://mpc.zib.de/index.php/MPC/article/view/4,
pp. 1–41 (cit. on p. 186).

Agatz, N., A. Erera, M. Savelsbergh, and X. Wang (2012). “Optimization for dynamic
ride-sharing: A review.” In: European Journal of Operational Research 223.2, pp. 295–
303 (cit. on pp. 169, 170).

Anderson, J. M., N. Kalra, K. D. Stanley, P. Sorensen, C. Samaras, and O. A. Oluwatola
(2016). Autonomous vehicle technology: a guide for policymakers. Santa Monica, CA: Rand
Corporation (cit. on p. 151).

Arkin, E. M. and R. Hassin (1998). “On local search for weighted k-set packing.” In:
Mathematics of Operations Research 23.3, pp. 640–648 (cit. on p. 202).

Armant, V. and K. N. Brown (2014). “Minimizing the driving distance in ride sharing
systems.” In: Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Con-
ference on. IEEE, pp. 568–575 (cit. on p. 169).

Armant, V., N. Mahbub, and K. N. Brown (2015). “Maximising the number of partici-
pants in a ride-sharing scheme: MIP versus CP formulations.” In: Tools with Artificial
Intelligence (ICTAI), 2015 IEEE 27th International Conference on. IEEE, pp. 836–843 (cit.
on pp. 169, 170, 188).

Arthur, D. and S. Vassilvitskii (2007). “k-means++: The advantages of careful seeding.”
In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Society for Industrial and Applied Mathematics, pp. 1027–1035 (cit. on p. 204).

Au, T.-C., S. Zhang, and P. Stone (2014). “Semi-autonomous intersection management.”
In: Proceedings of the 2014 international conference on Autonomous agents and multi-agent
systems. International Foundation for Autonomous Agents and Multiagent Systems,
pp. 1451–1452 (cit. on p. 54).

Auld, J., M. Hope, H. Ley, V. Sokolov, B. Xu, and K. Zhang (2016). “POLARIS: Agent-
based modeling framework development and implementation for integrated travel
demand and network and operations simulations.” In: Transportation Research Part C:

218

http://mpc.zib.de/index.php/MPC/article/view/4

Emerging Technologies 64, pp. 101–116. url: https://polaris.es.anl.gov/ (cit. on
p. 101).

Baert, A.-E. and D. Seme (2004). “Voronoi mobile cellular networks: topological proper-
ties.” In: In Third International Symposium on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks, pp. 29–35 (cit. on p. 116).

Balk, G. (2013). “Census: Redmond has largest daytime population surge in U.S.” In: The
Seattle Times. url: http://blogs.seattletimes.com/fyi-guy/2013/06/03/census-
redmond-has-largest-daytime-population-surge-in-u-s/ (cit. on p. 152).

Ban, X. (, P. Hao, and Z. Sun (2011). “Real time queue length estimation for signalized
intersections using travel times from mobile sensors.” In: Transportation Research Part
C: Emerging Technologies 19.6, pp. 1133–1156. issn: 0968-090X. doi: https://doi.org/
10.1016/j.trc.2011.01.002. url: http://www.sciencedirect.com/science/
article/pii/S0968090X11000143 (cit. on p. 115).

Bando, M., K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama (1994). “Structure
stability of congestion in traffic dynamics.” In: Japan Journal of Industrial and Applied
Mathematics 11.2, pp. 203–223 (cit. on pp. 39, 104).

Bando, M., K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama (1995). “Dynamical
model of traffic congestion and numerical simulation.” In: Physical review E 51.2,
p. 1035 (cit. on pp. 39, 104).

Bar-Gera (2002). “Origin-based Algorithm for the Traffic Assignment Problem.” In: Trans-
portation Science (cit. on pp. 126, 133).

Barth, M. and K. Boriboonsomsin (2008). “Real-world carbon dioxide impacts of traffic
congestion.” In: Transportation Research Record: Journal of the Transportation Research
Board 2058, pp. 163–171 (cit. on p. 37).

Barth, M. and K. Boriboonsomsin (2009). “Energy and emissions impacts of a freeway-
based dynamic eco-driving system.” In: Transportation Research Part D: Transport and
Environment 14.6. The interaction of environmental and traffic safety policies, pp. 400–
410. issn: 1361-9209. doi: https://doi.org/10.1016/j.trd.2009.01.004. url:
http://www.sciencedirect.com/science/article/pii/S1361920909000121 (cit. on
pp. 37, 51).

Baskar, L. D. (2009). Traffic management and control in intelligent vehicle highway systems. TU
Delft, Delft Univ. of Technology (cit. on p. 54).

Batista, M. and E. Twrdy (2010). “Optimal velocity functions for car-following models.”
In: Journal of Zhejiang University-SCIENCE A 11.7, pp. 520–529 (cit. on p. 105).

219

https://polaris.es.anl.gov/
http://blogs.seattletimes.com/fyi-guy/2013/06/03/census-redmond-has-largest-daytime-population-surge-in-u-s/
http://blogs.seattletimes.com/fyi-guy/2013/06/03/census-redmond-has-largest-daytime-population-surge-in-u-s/
http://dx.doi.org/https://doi.org/10.1016/j.trc.2011.01.002
http://dx.doi.org/https://doi.org/10.1016/j.trc.2011.01.002
http://www.sciencedirect.com/science/article/pii/S0968090X11000143
http://www.sciencedirect.com/science/article/pii/S0968090X11000143
http://dx.doi.org/https://doi.org/10.1016/j.trd.2009.01.004
http://www.sciencedirect.com/science/article/pii/S1361920909000121

Bayen, A. M., I. M. Mitchell, M. K. Osihi, and C. J. Tomlin (2007). “Aircraft autolander
safety analysis through optimal control-based reach set computation.” In: Journal of
Guidance, Control, and Dynamics 30.1, pp. 68–77 (cit. on p. 26).

Beattie, C., J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, et al. (2016). “DeepMind Lab.” In: arXiv preprint arXiv:
1612.03801 (cit. on pp. 83, 216).

Beckmann, M., C. B. McGuire, and C. B. Winsten (1956). Studies in the Economics of Trans-
portation. Ed. by N. H. Yale Univ. Press. Cowles Commission Monograph (cit. on
pp. 126, 137).

Behrisch, M., L. Bieker, J. Erdmann, and D. Krajzewicz (2011). “SUMO–simulation of
urban mobility: an overview.” In: Proceedings of SIMUL 2011, The Third International
Conference on Advances in System Simulation. ThinkMind (cit. on pp. 42, 85).

Bell, M. G. H. and Y. Iida (1997). Transportation Network Analysis. Wiley, West Sussex,
United Kingdom (cit. on pp. 115, 117, 126).

Bell, M., C. Shield, F. Busch, and G. Kruse (1997). “A stochastic user equilibrium path
flow estimator.” In: Transportation Research Part C: Emerging Technologies 5.34, pp. 197–
210. issn: 0968-090X. doi: http://dx.doi.org/10.1016/S0968-090X(97)00009-0.
url: http://www.sciencedirect.com/science/article/pii/S0968090X97000090
(cit. on p. 115).

Bellemare, M. G., Y. Naddaf, J. Veness, and M. Bowling (2013). “The Arcade Learning
Environment: An evaluation platform for general agents.” In: Journal of Artificial In-
telligence Research (JAIR) 47, pp. 253–279 (cit. on pp. 83, 216).

Belletti, F., D. Haziza, G. Gomes, and A. M. Bayen (2018). “Expert level control of ramp
metering based on multi-task deep reinforcement learning.” In: IEEE Transactions on
Intelligent Transportation Systems 19.4, pp. 1198–1207 (cit. on pp. 53, 82, 101).

Bellman, R. (1957). A Markovian decision process. Tech. rep. DTIC Document (cit. on p. 86).
Best, M. J. and N. Chakravarti (1990). “Active set algorithms for isotonic regression; a

unifying framework.” In: Math. Programming 47, pp. 425–439 (cit. on pp. 131, 132).
Biro, P., D. F. Manlove, and R. Rizzi (2009). “Maximum weight cycle packing in directed

graphs, with application to kidney exchange programs.” In: Discrete Mathematics, Al-
gorithms and Applications 1.04, pp. 499–517 (cit. on p. 202).

Blandin, S., L. E. Ghaoui, and A. Bayen (2009). “Kernel regression for travel time esti-
mation via convex optimization.” In: IEEE Conference on Decision and Control (cit. on
p. 117).

Blincoe, L., T. R. Miller, E. Zaloshnja, and B. A. Lawrence (2015). The economic and societal
impact of motor vehicle crashes, 2010 (Revised). Tech. rep. (cit. on p. 166).

220

http://dx.doi.org/http://dx.doi.org/10.1016/S0968-090X(97)00009-0
http://www.sciencedirect.com/science/article/pii/S0968090X97000090

Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. (2016). “End to end learning for self-driving
cars.” In: arXiv preprint arXiv:1604.07316 (cit. on p. 53).

Bopardikar, S. D., B. Englot, and A. Speranzon (2015). “Multiobjective Path Planning:
Localization Constraints and Collision Probability.” In: IEEE Transactions on Robotics
31.3, pp. 562–577. issn: 1552-3098. doi: 10.1109/TRO.2015.2411371 (cit. on p. 82).

Bose, A. and P. A. Ioannou (2003). “Analysis of traffic flow with mixed manual and semi-
automated vehicles.” In: IEEE Trans. on Intelligent Transportation Systems 4.4, pp. 173–
188 (cit. on p. 100).

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Distributed Optimization
and Statistical Learning via the Alternating Direction Method of Multipliers.” In:
Foundations and Trends in Machine Learning 3, pp. 1–122 (cit. on p. 14).

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.
url: http://www.stanford.edu/~boyd/cvxbook/ (cit. on pp. 13, 118, 128, 130).

Brackstone, M. and M. McDonald (1999). “Car-following: a historical review.” In: Trans-
portation Research Part F: Traffic Psychology and Behaviour 2.4, pp. 181–196 (cit. on pp. 27,
37, 84).

Brébisson, A. de, É. Simon, A. Auvolat, P. Vincent, and Y. Bengio (2015). “Artificial neural
networks applied to taxi destination prediction.” In: arXiv preprint arXiv:1508.00021
(cit. on p. 53).

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zar-
emba (2016). “OpenAI gym.” In: arXiv preprint arXiv:1606.01540 (cit. on pp. 83, 93,
216).

Bubeck, S. et al. (2015). “Convex optimization: Algorithms and complexity.” In: Founda-
tions and Trends® in Machine Learning 8.3-4, pp. 231–357 (cit. on p. 13).

Buehler, M., K. Iagnemma, and S. Singh (2009). The DARPA urban challenge: autonomous
vehicles in city traffic. Vol. 56. springer (cit. on p. 26).

Busoniu, L., R. Babuska, and B. De Schutter (2008). “A comprehensive survey of multia-
gent reinforcement learning.” In: IEEE Transactions on Systems, Man, and Cybernetics–
Part C: Applications and Reviews 38.2, p. 156 (cit. on pp. 52, 216).

Caceres, N., J. P. Wideberg, and F. G. Benitez (2007). “Deriving origin-destination data
from a mobile phone network.” In: IET Intell. Transp. Syst 1, pp. 15–26 (cit. on p. 116).

Calabrese, F., G. D. Lorenzo, L. Liang, and C. Ratti (2011). “Estimating Origin-Destination
Flows Using Mobile Phone Location Data.” In: IEEE Pervasive Computing, pp. 36–44

(cit. on p. 116).

221

http://dx.doi.org/10.1109/TRO.2015.2411371
http://www.stanford.edu/~boyd/cvxbook/

Callier, F. M. and C. A. Desoer (2012). Linear system theory. Springer Science & Business
Media (cit. on p. 216).

Cameron, G. D. and G. I. Duncan (1996). “PARAMICS–Parallel microscopic simulation
of road traffic.” In: The Journal of Supercomputing 10.1, pp. 25–53 (cit. on p. 101).

Candia, J., M. González, P. Wang, T. Schoenharl, G. Madey, and A.-L. Barabási (2008).
“Uncovering individual and collective human dynamics from mobile phone records.”
In: Journal of Physics A: Mathematical and Theoretical 41 (cit. on p. 116).

Casas, J., J. L. Ferrer, D. Garcia, J. Perarnau, and A. Torday (2010). “Traffic Simulation
with Aimsun.” In: Fundamentals of traffic simulation. Springer, pp. 173–232 (cit. on
p. 101).

Castillo, E., I. Gallego, J. M. Menendez, and A. Rivas (2010). “Optimal Use of Plate-
Scanning Resources for Route Flow Estimation in Traffic Networks.” In: IEEE Trans.
on Intelligent Transportation Systems 11, pp. 380–391 (cit. on p. 115).

Castillo, E., J. M. Menendez, and P. Jimenez (2008). “Trip matrix and path flow reconstruc-
tion and estimation based on plate scanning and link observations.” In: Transportation
Research Part B: Methodological 42, pp. 455–481 (cit. on p. 115).

Chan, N. D. and S. A. Shaheen (2012). “Ridesharing in north america: Past, present, and
future.” In: Transport Reviews 32.1, pp. 93–112 (cit. on p. 166).

Chandra, B. and M. M. Halldorsson (2001). “Greedy local improvement and weighted
set packing approximation.” In: Journal of Algorithms 39.2, pp. 223–240 (cit. on p. 202).

Chen, B. and H. H. Cheng (2010). “A review of the applications of agent technology in
traffic and transportation systems.” In: IEEE Transactions on Intelligent Transportation
Systems 11.2, pp. 485–497 (cit. on p. 101).

Chen, Y. F., M. Liu, M. Everett, and J. P. How (2017). “Decentralized non-communicating
multiagent collision avoidance with deep reinforcement learning.” In: Robotics and
Automation (ICRA), 2017 IEEE International Conference on. IEEE, pp. 285–292 (cit. on
p. 53).

Chentanez, N., A. G. Barto, and S. P. Singh (2005). “Intrinsically motivated reinforcement
learning.” In: Advances in neural information processing systems, pp. 1281–1288 (cit. on
p. 216).

Choe, T., A. Skabardonis, and P. Varaiya (2002). “Freeway performance measurement
system (PeMS): an operation tool.” In: 81st Annual Meeting Transportation Research
Board, Washington, DC (cit. on p. 134).

Choi, E.-H., F. Zhang, E. Y. Noh, S. Singh, and C.-L. Chen (2008). Sampling Design Used
in the National Motor Vehicle Crash Causation Survey. Tech. rep. DOT HS 810 930, 2008.
Washington, D.C.: National Highway Traffic Safety Administrations National Center

222

for Statistics and Analysis. url: http://purl.access.gpo.gov/GPO/LPS98147 (cit. on
p. 24).

Chu, H. D., E. Gelman, and E. L. Johnson (1997). “Solving large scale crew scheduling
problems.” In: Interfaces in Computer Science and Operations Research. Springer, pp. 183–
194 (cit. on p. 201).

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2015). “Gated feedback recurrent neural
networks.” In: International Conference on Machine Learning, pp. 2067–2075 (cit. on
p. 86).

CIECA (2007). Internal project on Eco-driving in category B driver training & the driving test
(cit. on pp. 37, 51).

Corporation, B. (1934). “Four Wheels On Jacks Park Car.” In: Popular Science Monthly.
url: https : / / books . google . com / ?id = HCgDAAAAMBAJ & pg = PA58 & dq = Popular +
Science+1931+plane#v=onepage&q&f=true (cit. on p. 82).

Côté, M.-A., Á. Kádár, X. Yuan, B. Kybartas, T. Barnes, E. Fine, J. Moore, M. Hausknecht,
L. E. Asri, M. Adada, et al. (2018). “TextWorld: A Learning Environment for Text-
based Games.” In: arXiv preprint arXiv:1806.11532 (cit. on p. 216).

Cui, S., B. Seibold, R. Stern, and D. B. Work (2017). “Stabilizing Traffic Flow via a Single
Autonomous Vehicle: Possibilities and Limitations.” In: Intelligent Vehicles Symposium
(IV), 2017 IEEE. IEEE, pp. 447–453 (cit. on pp. 48, 54).

Cui, Y. and S. S. Ge (2003). “Autonomous vehicle positioning with GPS in urban canyon
environments.” In: IEEE Transactions on Robotics and Automation 19.1, pp. 15–25. issn:
1042-296X. doi: 10.1109/TRA.2002.807557 (cit. on p. 82).

Cynthia Kroll, Shija Lu, Aksel Olsen, and Hing Wong (2016). Regional Forecast for Plan Bay
Area 2040. Tech. rep. Association of Bay Area Governments. (Visited on 06/07/2016)
(cit. on p. 188).

Daganzo, C. F. and Y. Sheffi (1977). “On stochastic models of traffic assignment.” In:
Transportation Science 11, pp. 253–274 (cit. on p. 115).

Daganzo, C. F. (2002). “A behavioral theory of multi-lane traffic flow. Part I: Long ho-
mogeneous freeway sections.” In: Transportation Research Part B: Methodological 36.2,
pp. 131–158 (cit. on p. 91).

Dai, H., E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song (2017). “Learning Combinatorial
Optimization Algorithms over Graphs.” In: arXiv preprint arXiv:1704.01665 (cit. on
p. 103).

Dasgupta, S., C. H. Papadimitriou, and U. Vazirani (2006). Algorithms. McGraw-Hill, Inc.
(cit. on p. 173).

223

http://purl.access.gpo.gov/GPO/LPS98147
https://books.google.com/?id=HCgDAAAAMBAJ&pg=PA58&dq=Popular+Science+1931+plane#v=onepage&q&f=true
https://books.google.com/?id=HCgDAAAAMBAJ&pg=PA58&dq=Popular+Science+1931+plane#v=onepage&q&f=true
http://dx.doi.org/10.1109/TRA.2002.807557

Daumé, H., J. Langford, and D. Marcu (2009). “Search-based structured prediction.” In:
Machine learning 75.3, pp. 297–325 (cit. on p. 16).

Dayan, P. and G. E. Hinton (1993). “Feudal reinforcement learning.” In: Advances in neural
information processing systems, pp. 271–278 (cit. on p. 216).

Deisenroth, M. and C. E. Rasmussen (2011). “PILCO: A model-based and data-efficient
approach to policy search.” In: Proceedings of the 28th International Conference on ma-
chine learning (ICML-11), pp. 465–472 (cit. on p. 216).

Delorme, X., X. Gandibleux, and J. Rodriguez (2004). “GRASP for set packing problems.”
In: European Journal of Operational Research 153.3, pp. 564–580 (cit. on p. 202).

Department of Transportation Division of Traffic Operations (2016). High-Occupancy Vehi-
cle Guidelines for Planning, Design, and Operations. State of California Business, Trans-
portation, and Housing Agency. url: http://www.dot.ca.gov/trafficops/tm/
docs/HOV-Guidelines-English-Edition-Nov2016.pdf (cit. on p. 167).

Dissanayake, M. W. M. G., P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba
(2001). “A solution to the simultaneous localization and map building (SLAM) prob-
lem.” In: IEEE Transactions on Robotics and Automation 17.3, pp. 229–241. issn: 1042-
296X. doi: 10.1109/70.938381 (cit. on p. 82).

DOT, U. (2016). “National transportation statistics.” In: Bureau of Transportation Statistics,
Washington, DC (cit. on p. 82).

Dowling, R., A. Skabardonis, and V. Alexiadis (2004). Traffic analysis toolbox volume III:
guidelines for applying traffic microsimulation modeling software. Tech. rep. (cit. on p. 141).

Dowsland, K. A. (1993). “Some experiments with simulated annealing techniques for
packing problems.” In: European Journal of Operational Research 68.3, pp. 389–399 (cit.
on p. 202).

Drakunov, S., U. Ozguner, P. Dix, and B. Ashrafi (1995). “ABS control using optimum
search via sliding modes.” In: IEEE Transactions on Control Systems Technology 3.1,
pp. 79–85. issn: 1063-6536. doi: 10.1109/87.370698 (cit. on p. 82).

Drakunov, S. V. and V. I. Utkin (1992). “Sliding mode control in dynamic systems.” In:
International Journal of Control 55.4, pp. 1029–1037 (cit. on p. 216).

Dresner, K. and P. Stone (2008). “A multiagent approach to autonomous intersection
management.” In: Journal of artificial intelligence research 31, pp. 591–656 (cit. on p. 54).

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel (2016). “Benchmarking deep
reinforcement learning for continuous control.” In: Proceedings of the 33rd International
Conference on Machine Learning (ICML) (cit. on pp. 55, 63–65, 68, 85, 86, 88).

224

http://www.dot.ca.gov/trafficops/tm/docs/HOV-Guidelines-English-Edition-Nov2016.pdf
http://www.dot.ca.gov/trafficops/tm/docs/HOV-Guidelines-English-Edition-Nov2016.pdf
http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1109/87.370698

Duchi, J., S. Gould, and D. Koller (2008a). “Projected subgradient methods for learning
sparse gaussians.” In: Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence (cit. on p. 133).

Duchi, J., S. Shalev-Shwartz, Y. Singer, and T. Chandra (2008b). “Efficient Projections onto
the l1-Ball for Learning in High Dimensions.” In: Proceedings of the 25th International
Conference on Machine Learning (cit. on p. 118).

Erdmann, J. (2015). “SUMO’s Lane-Changing Model.” In: Modeling Mobility with Open
Data. Springer, pp. 105–123 (cit. on p. 106).

Erdmann, J. (2016). Simulation of Urban MObility - Wiki: Car-Following-Models. url: http:
//sumo.dlr.de/wiki/Car-Following-Models#tau (visited on 11/14/2016) (cit. on
p. 102).

Falcone, P., F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat (2007). “Predictive active
steering control for autonomous vehicle systems.” In: IEEE Transactions on control
systems technology 15.3, pp. 566–580 (cit. on p. 54).

Falcone, P., H. Eric Tseng, F. Borrelli, J. Asgari, and D. Hrovat (2008). “MPC-based yaw
and lateral stabilisation via active front steering and braking.” In: Vehicle System Dy-
namics 46.S1, pp. 611–628 (cit. on p. 54).

Farrell, J. and M. Barth (1999). The global positioning system and inertial navigation. Vol. 61.
Mcgraw-hill New York (cit. on p. 116).

Fellendorf, M. (1994). “VISSIM: A microscopic simulation tool to evaluate actuated signal
control including bus priority.” In: 64th Institute of Transportation Engineers Annual
Meeting. Springer, pp. 1–9 (cit. on p. 101).

Fellendorf, M. and P. Vortisch (2010). “Microscopic traffic flow simulator VISSIM.” In:
Fundamentals of traffic simulation. Springer, pp. 63–93 (cit. on p. 101).

Fisk, C. (1980). “Some developments in equilibrium traffic assignment.” In: Transportation
Research Part B 14, pp. 243–255 (cit. on p. 115).

Foerster, J., G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson (2017). “Counterfactual
Multi-Agent Policy Gradients.” In: arXiv preprint arXiv:1705.08926 (cit. on pp. 58, 70,
77).

Ford, L. R. and D. R. Fulkerson (1962). Flows in Networks. Princeton Univ. Press, Princeton,
NJ (cit. on pp. 115, 137).

Furuhata, M., M. Dessouky, F. Ordóñez, M.-E. Brunet, X. Wang, and S. Koenig (2013).
“Ridesharing: The state-of-the-art and future directions.” In: Transportation Research
Part B: Methodological 57, pp. 28–46 (cit. on pp. 166, 169).

225

http://sumo.dlr.de/wiki/Car-Following-Models#tau
http://sumo.dlr.de/wiki/Car-Following-Models#tau

Gandibleux, X., X. Delorme, and V. T?Kindt (2004). “An ant colony optimisation algo-
rithm for the set packing problem.” In: Ant Colony Optimization and Swarm Intelligence.
Springer, pp. 49–60 (cit. on p. 202).

Garavello, M. and B. Piccolli (2006). Traffic flow on networks: Conservation Laws Models.
Springfield, MO: American Institute of Mathematical Sciences (cit. on p. 82).

Gardner, M. (1970). “Mathematical games: The fantastic combinations of John Conway’s
new solitaire game “life”.” In: Scientific American 223.4, pp. 120–123 (cit. on p. 36).

Garey, M. R. and D. S. Johnson (1979). “A Guide to the Theory of NP-Completeness.” In:
WH Freemann, New York 70 (cit. on p. 167).

Gense, N. (2000). Driving style, fuel consumption and emissions–final report. Tech. rep. TNO
Automotive Technical Report Number 00. OR. VM. 021.1/NG, TNO Automotive (cit.
on p. 4).

Gillula, J. H., G. M. Hoffmann, H. Huang, M. P. Vitus, and C. J. Tomlin (2011). “Appli-
cations of hybrid reachability analysis to robotic aerial vehicles.” In: The International
Journal of Robotics Research 30.3, pp. 335–354. doi: 10.1177/0278364910387173. eprint:
https://doi.org/10.1177/0278364910387173. url: https://doi.org/10.1177/
0278364910387173 (cit. on p. 26).

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT Press (cit. on pp. 17,
53).

Gozalvez, J., M. Sepulcre, and R. Bauza (2012). “IEEE 802.11p vehicle to infrastructure
communications in urban environments.” In: IEEE Communications Magazine 50.5,
pp. 176–183. issn: 0163-6804. doi: 10.1109/MCOM.2012.6194400 (cit. on p. 24).

Grant, J., W. Schroeer, B. Petersen, and M. O’Neill (2000). Our built and natural environ-
ments: A technical review of the interactions between land use, transportation, and environ-
mental quality. Tech. rep. EPA 231-R-00-005): US Environmental Protection Agency
(cit. on p. 166).

Graves, A. et al. (2012). Supervised sequence labelling with recurrent neural networks. Vol. 385.
Springer (cit. on p. 55).

Greensmith, E., P. L. Bartlett, and J. Baxter (2004). “Variance reduction techniques for
gradient estimates in reinforcement learning.” In: Journal of Machine Learning Research
5.Nov, pp. 1471–1530 (cit. on pp. 59, 68, 70).

Grotzinger, S. J. and C. Witzgall (1984). “Projection onto Order Simplexes.” In: Applied
Mathematics and Optimization 12, pp. 247–270 (cit. on p. 131).

Gu, S., T. Lillicrap, Z. Ghahramani, R. E. Turner, and S. Levine (2017). “Q-Prop: Sample-
Efficient Policy Gradient with An Off-Policy Critic.” In: International Conference on
Learning Representations (ICLR2017) (cit. on pp. 64, 68).

226

http://dx.doi.org/10.1177/0278364910387173
https://doi.org/10.1177/0278364910387173
https://doi.org/10.1177/0278364910387173
https://doi.org/10.1177/0278364910387173
http://dx.doi.org/10.1109/MCOM.2012.6194400

Hartigan, J. A. and M. A. Wong (1979). “Algorithm AS 136: A k-means clustering algo-
rithm.” In: Applied statistics, pp. 100–108 (cit. on p. 202).

Hartman, I. B.-A., D. Keren, A. A. Dbai, E. Cohen, L. Knapen, D. Janssens, et al. (2014).
“Theory and practice in large carpooling problems.” In: Procedia Computer Science 32,
pp. 339–347 (cit. on p. 170).

Hassin, R. and S. Rubinstein (2006). “An approximation algorithm for maximum triangle
packing.” In: Discrete Applied Mathematics 154.6, pp. 971–979 (cit. on p. 202).

Hatipoglu, C., U. Ozguner, and K. A. Redmill (2003). “Automated lane change controller
design.” In: IEEE Transactions on Intelligent Transportation Systems 4.1, pp. 13–22. issn:
1524-9050. doi: 10.1109/TITS.2003.811644 (cit. on p. 82).

Hato, E., M. Taniguchi, Y. Sugie, M. Kuwahara, and H. Morita (1999). “Incorporating an
information acquisition process into a route choice model with multiple information
sources.” In: Transportation Research Part C 7, pp. 109–129 (cit. on p. 115).

Hausknecht, M., P. Khandelwal, R. Miikkulainen, and P. Stone (2012). “HyperNEAT-
GGP: A HyperNEAT-based Atari general game player.” In: Proceedings of the 14th
annual conference on Genetic and evolutionary computation. ACM, pp. 217–224 (cit. on
p. 18).

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR (cit. on
p. 86).

Hebrard, E., E. OMahony, and B. OSullivan (2010). “Constraint programming and com-
binatorial optimisation in numberjack.” In: Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems. Springer, pp. 181–185.
(Visited on 06/06/2016) (cit. on p. 186).

Heess, N., G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa (2015). “Learning contin-
uous control policies by stochastic value gradients.” In: Advances in Neural Information
Processing Systems, pp. 2944–2952 (cit. on pp. 18, 37, 83).

Heinecke, A., W. Eckhardt, M. Horsch, and H.-J. Bungartz (2015). Supercomputing for
Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics. Spring-
er (cit. on p. 217).

Herbawi, W. M. and M. Weber (2012). “A genetic and insertion heuristic algorithm for
solving the dynamic ridematching problem with time windows.” In: Proceedings of
the 14th annual conference on Genetic and evolutionary computation. ACM, pp. 385–392

(cit. on p. 169).
Herrera, J.-C., D. B. Work, R. Herring, J. Ban, Q. Jacobson, and A. M. Bayen (2009). “Eval-

uation of traffic data obtained via GPS-enabled mobile phones: the Mobile Century
experiment.” In: Transportation Research Part C 18, pp. 568–583 (cit. on p. 115).

227

http://dx.doi.org/10.1109/TITS.2003.811644

Hoffman, K. L. and M. Padberg (1993). “Solving airline crew scheduling problems by
branch-and-cut.” In: Management Science 39.6, pp. 657–682 (cit. on pp. 201, 202).

Horn, B. K. (2013). “Suppressing traffic flow instabilities.” In: Intelligent Transportation
Systems-(ITSC), 2013 16th International IEEE Conference on. IEEE, pp. 13–20 (cit. on
pp. 100, 106).

Horni A., K. N. and K. A. (eds.) (2016). The Multi-Agent Transport Simulation MATSim.
Ubiquity, London (cit. on pp. 101, 188).

Horvitz, E., J. Apacible, R. Sarin, and L. Liao (2005). “Prediction, Expectation, and Sur-
prise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service.” In:
Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence. UAI’05.
Edinburgh, Scotland: AUAI Press, pp. 275–283. isbn: 0-9749039-1-4. url: http://dl.
acm.org/citation.cfm?id=3020336.3020371 (cit. on p. 115).

Hoshino, S., J. Ota, A. Shinozaki, and H. Hashimoto (2007). “Hybrid Design Method-
ology and Cost-Effectiveness Evaluation of AGV Transportation Systems.” In: IEEE
Transactions on Automation Science and Engineering 4.3, pp. 360–372. issn: 1545-5955.
doi: 10.1109/TASE.2006.887162 (cit. on p. 166).

Howard, R. A. (1964). “Dynamic programming and Markov processes.” In: (cit. on p. 86).
Hunter, T., R. Herring, P. Abbeel, and A. Bayen (2009). “Path and travel time inference

from GPS probe vehicle data.” In: NIPS Analyzing Networks and Learning with Graphs
(cit. on p. 115).

Illenberger J., G. F. and K. Nagel (2007). “Enhancing MATSim with capabilities of within-
day re-planning.” In: IEEE Intelligent Transportation Systems Conference (cit. on p. 139).

Ioannou, P. (2013). Automated highway systems. Springer Science & Business Media (cit. on
p. 25).

Ioannou, P. A. and C.-C. Chien (1993). “Autonomous intelligent cruise control.” In: IEEE
Trans. on Vehicular technology 42.4, pp. 657–672 (cit. on pp. 53, 100).

Ioannou, P. A. and M. Stefanovic (2005). “Evaluation of ACC vehicles in mixed traffic:
Lane change effects and sensitivity analysis.” In: IEEE Transactions on Intelligent Trans-
portation Systems 6.1, pp. 79–89 (cit. on p. 100).

Jaakkola, T., M. I. Jordan, and S. P. Singh (1994). “Convergence of stochastic iterative dy-
namic programming algorithms.” In: Advances in neural information processing systems,
pp. 703–710 (cit. on p. 18).

Janecek, A., A. A. Hummel, D. Valerio, F. Ricciato, and H. Hlavacs (2012). “Cellular data
meet vehicular traffic theory: location area updates and cell transitions for travel
time estimation.” In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing.
ACM, pp. 361–370 (cit. on p. 116).

228

http://dl.acm.org/citation.cfm?id=3020336.3020371
http://dl.acm.org/citation.cfm?id=3020336.3020371
http://dx.doi.org/10.1109/TASE.2006.887162

Jiang, S., G. A. Fiore, Y. Yang, J. Ferreira Jr, E. Frazzoli, and M. C. González (2013). “A
review of urban computing for mobile phone traces: current methods, challenges
and opportunities.” In: Proc. of the 2nd ACM SIGKDD International Workshop on Urban
Computing. ACM, p. 2 (cit. on p. 116).

Jin, I. G. and G. Orosz (2014). “Dynamics of connected vehicle systems with delayed
acceleration feedback.” In: Transportation Research Part C: Emerging Technologies 46,
pp. 46–64 (cit. on pp. 54, 100, 105).

Jin, W.-L. (2010). “A kinematic wave theory of lane-changing traffic flow.” In: Transporta-
tion Research Part B: Methodological 44.8-9, pp. 1001–1021. doi: 10.1016/j.trb.2009.
12.014 (cit. on p. 41).

Jones, C. and D. M. Kammen (2014). “Spatial distribution of US household carbon foot-
prints reveals suburbanization undermines greenhouse gas benefits of urban popula-
tion density.” In: Environmental science & technology 48.2, pp. 895–902 (cit. on p. 166).

Kahn, G., A. Villaflor, V. Pong, P. Abbeel, and S. Levine (2017). “Uncertainty-aware re-
inforcement learning for collision avoidance.” In: arXiv preprint arXiv:1702.01182 (cit.
on p. 53).

Kakade, S. M. (2002). “A natural policy gradient.” In: Advances in neural information pro-
cessing systems, pp. 1531–1538 (cit. on pp. 18, 57, 68).

Kakade, S. M. et al. (2003). “On the sample complexity of reinforcement learning.” Doc-
toral dissertation. University of London London, England (cit. on p. 216).

Kamal, M. A. S., J.-i. Imura, T. Hayakawa, A. Ohata, and K. Aihara (2014). “Smart driv-
ing of a vehicle using model predictive control for improving traffic flow.” In: IEEE
Transactions on Intelligent Transportation Systems 15.2, pp. 878–888 (cit. on pp. 54, 100).

Kamar, E. and E. Horvitz (2009). “Collaboration and Shared Plans in the Open World:
Studies of Ridesharing.” In: IJCAI. Vol. 9, p. 187 (cit. on pp. 169, 209).

Kanatani, K. and K. Watanabe (1990). “Reconstruction of 3-D road geometry from images
for autonomous land vehicles.” In: IEEE Transactions on Robotics and Automation 6.1,
pp. 127–132. issn: 1042-296X. doi: 10.1109/70.88128 (cit. on p. 82).

Karlaftis, M. G. and E. I. Vlahogianni (2011). “Statistical methods versus neural networks
in transportation research: Differences, similarities and some insights.” In: Transporta-
tion Research Part C: Emerging Technologies 19.3, pp. 387–399 (cit. on pp. 53, 101).

Kelly, F. P. (1991). “Network routing.” In: Philosophical Trans.: Physical Sciences and Engi-
neering 337, pp. 343–367 (cit. on p. 138).

Kesting, A. et al. (2007). “Jam-avoiding adaptive cruise control (ACC) and its impact on
traffic dynamics.” In: Traffic and Granular Flow05. Springer, pp. 633–643 (cit. on p. 54).

229

http://dx.doi.org/10.1016/j.trb.2009.12.014
http://dx.doi.org/10.1016/j.trb.2009.12.014
http://dx.doi.org/10.1109/70.88128

Khalil, H. K. (1996). “Noninear Systems.” In: Prentice-Hall, New Jersey 2.5, pp. 5–1 (cit. on
pp. 47, 216).

Klar, A. and R. Wegener (1998). “A hierarchy of models for multilane vehicular traffic I:
Modeling.” In: SIAM Journal on Applied Mathematics 59.3, pp. 983–1001 (cit. on p. 91).

Kober, J., J. A. Bagnell, and J. Peters (2013). “Reinforcement learning in robotics: A sur-
vey.” In: The International Journal of Robotics Research 32.11, pp. 1238–1274 (cit. on
p. 16).

Koch, T., T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G.
Gamrath, A. M. Gleixner, S. Heinz, et al. (2011). “MIPLIB 2010.” In: Mathematical
Programming Computation 3.2, p. 103 (cit. on p. 20).

Konda, V. R. and J. N. Tsitsiklis (2000). “Actor-critic algorithms.” In: Advances in neural
information processing systems, pp. 1008–1014 (cit. on p. 68).

Konishi, H. and S.-i. Mun (2010). “Carpooling and congestion pricing: HOV and HOT
lanes.” In: Regional Science and Urban Economics 40.4, pp. 173–186 (cit. on p. 169).

Korkmaz, G., E. Ekici, F. Özgüner, and Ü. Özgüner (2004). “Urban Multi-hop Broadcast
Protocol for Inter-vehicle Communication Systems.” In: Proceedings of the 1st ACM
International Workshop on Vehicular Ad Hoc Networks. VANET ’04. Philadelphia, PA,
USA: ACM, pp. 76–85. isbn: 1-58113-922-5. doi: 10.1145/1023875.1023887. url:
http://doi.acm.org/10.1145/1023875.1023887 (cit. on p. 24).

Kotsialos, A., M. Papageorgiou, and A. Messmer (1999). “Optimal coordinated and inte-
grated motorway network traffic control.” In: 14th International Symposium on Trans-
portation and Traffic Theory (cit. on p. 84).

Krajzewicz, D., J. Erdmann, M. Behrisch, and L. Bieker (2012). “Recent Development and
Applications of SUMO-Simulation of Urban MObility.” In: International Journal On
Advances in Systems and Measurements 5.3&4 (cit. on pp. 85, 88, 101).

Kutiel, G. (2016). “Approximation Algorithms for the Maximum Carpool Matching Prob-
lem.” In: arXiv preprint arXiv:1604.05609 (cit. on p. 170).

Lai, M. (2015). “Giraffe: Using deep reinforcement learning to play chess.” In: arXiv
preprint arXiv:1509.01549 (cit. on pp. 37, 83).

Lasky, T. A., S. M. Donecker, K. S. Yen, and B. Ravani (2004). Intelligent ultra high speed
distributed sensing system and method for sensing roadway markers for intelligent vehicle
guidance and control. US Patent 6,772,062 (cit. on p. 26).

LeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla (1975). “An efficient approach to solving
the road network equilibrium traffic assignment problem.” In: Transportation Research
9, pp. 309–318 (cit. on p. 133).

230

http://dx.doi.org/10.1145/1023875.1023887
http://doi.acm.org/10.1145/1023875.1023887

LeCun, Y. (1985). “Une procedure d’apprentissage ponr reseau a seuil asymetrique (a
learning scheme for asymmetric threshold networks).” In: proceedings of Cognitiva 85,
pp. 599–604 (cit. on p. 17).

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning.” In: nature 521.7553, p. 436

(cit. on p. 17).
Lee Jr, D., L. Klein, and G. Camus (1999). “Induced traffic and induced demand.” In:

Transportation Research Record: Journal of the Transportation Research Board 1659, pp. 68–
75 (cit. on p. 151).

Lee, J., M. Park, and H. Yeo (2016). “A probability model for discretionary lane changes
in highways.” In: KSCE Journal of Civil Engineering 20.7, pp. 2938–2946 (cit. on p. 83).

Lee, J., J. Choi, K. Yi, M. Shin, and B. Ko (2014). “Lane-keeping assistance control algo-
rithm using differential braking to prevent unintended lane departures.” In: Control
Engineering Practice 23, pp. 1–13 (cit. on p. 82).

Lefevre, S., Y. Gao, D. Vasquez, H. E. Tseng, R. Bajcsy, and F. Borrelli (2014). “Lane
keeping assistance with learning-based driver model and model predictive control.”
In: 12th International Symposium on Advanced Vehicle Control (cit. on p. 82).

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of deep visuo-
motor policies.” In: Journal of Machine Learning Research 17.1, pp. 1334–1373 (cit. on
pp. 17, 44, 57, 68, 216).

Levinson, D. M. and K. J. Krizek (2015). The End of Traffic & the Future of Transport. David
M. Levinson (cit. on p. 30).

Li, F. and Y. Wang (2007). “Routing in vehicular ad hoc networks: A survey.” In: IEEE
Vehicular technology magazine 2.2 (cit. on p. 24).

Li, L., Y. Lv, and F. Wang (2016). “Traffic signal timing via deep reinforcement learning.”
In: IEEE/CAA Journal of Automatica Sinica 3.3, pp. 247–254. issn: 2329-9266. doi: 10.
1109/JAS.2016.7508798 (cit. on p. 101).

Li, Y. (2017). “Deep reinforcement learning: An overview.” In: arXiv preprint arXiv:1701.
07274 (cit. on p. 17).

Liang, C.-Y. and H. Peng (1999). “Optimal adaptive cruise control with guaranteed string
stability.” In: Vehicle system dynamics 32.4-5, pp. 313–330 (cit. on p. 54).

Liang, C.-Y. and H. Peng (2000). “String stability analysis of adaptive cruise controlled
vehicles.” In: JSME International Journal Series C Mechanical Systems, Machine Elements
and Manufacturing 43.3, pp. 671–677 (cit. on pp. 54, 100).

Liang, E., R. Liaw, R. Nishihara, P. Moritz, R. Fox, J. Gonzalez, K. Goldberg, and I. Stoica
(2017). “Ray RLLib: A Composable and Scalable Reinforcement Learning Library.”
In: arXiv preprint arXiv:1712.09381 (cit. on pp. 85, 88).

231

http://dx.doi.org/10.1109/JAS.2016.7508798
http://dx.doi.org/10.1109/JAS.2016.7508798

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra (2016). “Continuous control with deep reinforcement learning.” In: International
Conference on Learning Representations (ICLR2016) (cit. on pp. 17, 18, 57, 64).

Lint, J. van, H. J. van Zuylen, and H. Tu (2008). “Travel time unreliability on freeways:
Why measures based on variance tell only half the story.” In: Transportation Research
Part A: Policy and Practice 42.1, pp. 258–277. issn: 0965-8564. doi: https://doi.org/
10.1016/j.tra.2007.08.008. url: http://www.sciencedirect.com/science/
article/pii/S0965856407000742 (cit. on p. 55).

Litman, T. (2017). Generated traffic and induced travel. Victoria Transport Policy Institute
(cit. on p. 151).

Lloyd, S. (1982). “Least squares quantization in PCM.” In: IEEE transactions on information
theory 28.2, pp. 129–137 (cit. on p. 207).

Lowe, R., Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch (2017). “Multi-agent
actor-critic for mixed cooperative-competitive environments.” In: Advances in Neural
Information Processing Systems, pp. 6379–6390 (cit. on pp. 58, 68, 103, 216).

Lu, X., S. Shladover, and J. Hedrick (2004). “Heavy-duty truck control: Short inter-vehicle
distance following.” In: American Control Conference, 2004. Proceedings of the 2004.
Vol. 5. IEEE, pp. 4722–4727 (cit. on p. 53).

Lv, Y., Y. Duan, W. Kang, Z. Li, and F.-Y. Wang (2015). “Traffic flow prediction with
big data: a deep learning approach.” In: IEEE Transactions on Intelligent Transportation
Systems 16.2, pp. 865–873 (cit. on pp. 53, 101).

Ma, S. and O. Wolfson (2013). “Analysis and evaluation of the slugging form of rideshar-
ing.” In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. ACM, pp. 64–73 (cit. on p. 170).

Maher, M. J. and P. C. Hughes (1997). “A probit-based stochastic user equilibrium as-
signment model.” In: Transportation Research 31, pp. 341–355 (cit. on p. 115).

Maniezzo, A. C. M. D. V. (1992). “Distributed optimization by ant colonies.” In: Toward a
Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial
Life. MIT Press, p. 134 (cit. on p. 36).

Mardani, M. and G. B. Giannakis (2013). “Robust network traffic estimation via spar-
sity and low rank.” In: IEEE International Conference on Acoustics, Speech and Signal
Processing (cit. on p. 117).

Martin, E. W., K. Boriboonsomsin, N. D. Chan, N. Williams, S. A. Shaheen, and M. Barth
(2013). “Dynamic ecodriving in Northern California: A Study of survey and vehicle
operations data from an ecodriving feedback device.” In: 92nd Annual Meeting of the
Transportation Research Board, Washington, DC, January (cit. on p. 100).

232

http://dx.doi.org/https://doi.org/10.1016/j.tra.2007.08.008
http://dx.doi.org/https://doi.org/10.1016/j.tra.2007.08.008
http://www.sciencedirect.com/science/article/pii/S0965856407000742
http://www.sciencedirect.com/science/article/pii/S0965856407000742

Mashaw, J. L. and D. L. Harfst (1990). The struggle for auto safety. Harvard University
Press Cambridge, MA (cit. on p. 31).

Mathew, J. and P. Xavier (2014). “A survey on using wireless signals for road traffic
detection.” In: International Journal of Research in Engineering and Technology 3.1 (cit.
on p. 117).

Meyer, G. and S. Shaheen, eds. (2017). Disrupting Mobility: Impacts of Sharing Economy and
Innovative Transportation on Cities. Springer (cit. on p. 83).

Miao, F., S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir, H. Huang, T. He, and G. J.
Pappas (2016). “Taxi Dispatch With Real-Time Sensing Data in Metropolitan Areas:
A Receding Horizon Control Approach.” In: IEEE Transactions on Automation Science
and Engineering 13.2, pp. 463–478. issn: 1545-5955. doi: 10.1109/TASE.2016.2529580
(cit. on pp. 166, 175).

Michalopoulos, P. G., D. E. Beskos, and Y. Yamauchi (1984). “Multilane traffic flow dy-
namics: some macroscopic considerations.” In: Transportation Research Part B: Method-
ological 18.4, pp. 377–395 (cit. on p. 91).

Miculescu, D. and S. Karaman (2014). “Polling-systems-based control of high-perform-
ance provably-safe autonomous intersections.” In: Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE, pp. 1417–1423 (cit. on p. 54).

Milans, V., D. F. Llorca, J. Villagr, J. Prez, C. Fernndez, I. Parra, C. Gonzlez, and M. A.
Sotelo (2012). “Intelligent automatic overtaking system using vision for vehicle de-
tection.” In: Expert Systems with Applications 39.3, pp. 3362–3373. issn: 0957-4174. doi:
https://doi.org/10.1016/j.eswa.2011.09.024. url: http://www.sciencedirect.
com/science/article/pii/S0957417411013339 (cit. on p. 82).

Minguez, J. and L. Montano (2009). “Extending Collision Avoidance Methods to Con-
sider the Vehicle Shape, Kinematics, and Dynamics of a Mobile Robot.” In: IEEE
Transactions on Robotics 25.2, pp. 367–381. issn: 1552-3098. doi: 10.1109/TRO.2009.
2011526 (cit. on p. 82).

Mitchell, I. M., A. M. Bayen, and C. J. Tomlin (2005). “A time-dependent Hamilton-Jacobi
formulation of reachable sets for continuous dynamic games.” In: IEEE Transactions
on automatic control 50.7, pp. 947–957 (cit. on p. 26).

Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K.
Kavukcuoglu (2016). “Asynchronous methods for deep reinforcement learning.” In:
International Conference on Machine Learning, pp. 1928–1937 (cit. on pp. 57, 68).

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller (2013). “Playing atari with deep reinforcement learning.” In: arXiv preprint
arXiv:1312.5602 (cit. on pp. 17, 37, 83).

233

http://dx.doi.org/10.1109/TASE.2016.2529580
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2011.09.024
http://www.sciencedirect.com/science/article/pii/S0957417411013339
http://www.sciencedirect.com/science/article/pii/S0957417411013339
http://dx.doi.org/10.1109/TRO.2009.2011526
http://dx.doi.org/10.1109/TRO.2009.2011526

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). “Human-level control through
deep reinforcement learning.” In: Nature 518.7540, pp. 529–533 (cit. on pp. 17, 18, 57,
58).

Monderer, D. and L. S. Shapley (1996). “Potential Games.” In: Games and Economic Behav-
ior 14, pp. 124–143 (cit. on p. 126).

Montgomery, W. H. and S. Levine (2016). “Guided policy search via approximate mirror
descent.” In: Advances in Neural Information Processing Systems, pp. 4008–4016 (cit. on
p. 67).

Mordatch, I. and P. Abbeel (2017). “Emergence of Grounded Compositional Language in
Multi-Agent Populations.” In: arXiv preprint arXiv:1703.04908 (cit. on pp. 52, 55).

Mordatch, I., K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov (2015). “Interactive
control of diverse complex characters with neural networks.” In: Advances in Neural
Information Processing Systems, pp. 3132–3140 (cit. on p. 68).

Moritz, P., R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul, M. I. Jordan,
and I. Stoica (2017). “Ray: A Distributed Framework for Emerging AI Applications.”
In: arXiv preprint arXiv:1712.05889 (cit. on p. 85).

Nagabandi, A., G. Kahn, R. S. Fearing, and S. Levine (2017). “Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning.” In: arXiv
preprint arXiv:1708.02596 (cit. on p. 216).

Narayanamurthy, S. M. and B. Ravindran (2008). “On the hardness of finding symmetries
in Markov decision processes.” In: Proceedings of the 25th international conference on
Machine learning. ACM, pp. 688–695 (cit. on p. 43).

Naus, G. J., R. P. Vugts, J. Ploeg, M. J. van de Molengraft, and M. Steinbuch (2010).
“String-stable CACC design and experimental validation: A frequency-domain ap-
proach.” In: IEEE Trans. on Vehicular Technology 59.9, pp. 4268–4279 (cit. on p. 54).

Ng, A. Y., D. Harada, and S. Russell (1999). “Policy invariance under reward transfor-
mations: Theory and application to reward shaping.” In: ICML. Vol. 99, pp. 278–287

(cit. on p. 216).
Nocedal, J. and S. Wright (2006). Numerical Optimization. Springer, 2nd edition (cit. on

pp. 13, 133).
Oh, S. and H. Yeo (2015). “Impact of stop-and-go waves and lane changes on discharge

rate in recovery flow.” In: Transportation Research Part B: Methodological 77, pp. 88–102

(cit. on p. 41).
Orosz, G., J. Moehlis, and F. Bullo (2011). “Delayed car-following dynamics for human

and robotic drivers.” In: ASME 2011 International Design Engineering Technical Con-

234

ferences and Computers and Information in Engineering Conference. American Society of
Mechanical Engineers, pp. 529–538 (cit. on p. 100).

Orosz, G., R. E. Wilson, and G. Stépán (2010). “Traffic jams: dynamics and control.” In:
Philosophical Trans. of the Royal Society of London A: Mathematical, Physical and Engineer-
ing Sciences 368.1928, pp. 4455–4479 (cit. on pp. 100, 104).

Ortuzar, J. d. D. and L. Willumsen (2001). Modelling Transport. 3rd, Edition, Wiley, West
Sussex, United Kingdom (cit. on pp. 117, 133).

Padberg, M. W. (1973). “On the facial structure of set packing polyhedra.” In: Mathemat-
ical programming 5.1, pp. 199–215 (cit. on p. 202).

Papadimitriou, C. H. and K. Steiglitz (1998). Combinatorial optimization: algorithms and
complexity. Courier Corporation (cit. on pp. 19, 167).

Papageorgiou, M., C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang (2003). “Review
of road traffic control strategies.” In: Proceedings of the IEEE 91.12, pp. 2043–2067 (cit.
on pp. 37, 100).

Parker, D. B. (1985). “Learning logic.” In: (cit. on p. 17).
Paromtchik, I. E. and C. Laugier (1996). “Motion generation and control for parking

an autonomous vehicle.” In: Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on. Vol. 4. IEEE, pp. 3117–3122 (cit. on p. 82).

Parsons Transportation Group, Inc. (2002). High Occupancy Lanes and Value Lanes Study
Final Report: High Occupancy Vehicle Facilities Policy Guidelines and Plan for the MAG
Freeway System. §2-2. Arizona Department of Transportation; Maricopa Association
of Governments; Regional Public Transportation Authority (cit. on p. 158).

Patire, A., M. Wright, B. Prodhomme, and A. Bayen (2013). “How much GPS data do we
need?” In: Transportation Research Part C (cit. on p. 116).

Pavone, M., S. L. Smith, E. Frazzoli, and D. Rus (2012). “Robotic load balancing for
mobility-on-demand systems.” In: The International Journal of Robotics Research 31.7,
pp. 839–854 (cit. on p. 82).

Peng, P., Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang (2017). “Multiagent
Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games.” In:
arXiv preprint arXiv:1703.10069 (cit. on p. 52).

Peters, J. and S. Schaal (2008). “Natural actor-critic.” In: Neurocomputing 71.7, pp. 1180–
1190 (cit. on p. 68).

Polson, N. G. and V. O. Sokolov (2017). “Deep learning for short-term traffic flow pre-
diction.” In: Transportation Research Part C: Emerging Technologies 79, pp. 1–17 (cit. on
pp. 53, 101).

235

Pozdnoukhov, A., A. Campbell, S. Feygin, M. Yin, and S. Mohanty (2016). “The SmartBay
Project: Connected Mobility in San Francisco Bay Area.” In: The Multi-Agent Trans-
port Simulation MATSim. Ed. by N. K. Horni A. and K. Axhausen. Ubiquity, London.
Chap. 83, pp. 541–546 (cit. on p. 188).

Rahimi, A. and B. Recht (2007). “Random Features for Large-Scale Kernel Machines.” In:
NIPS (cit. on p. 65).

Rahmani, M. and H. N. Koutsopoulos (2013). “Path inference from sparse floating car
data.” In: Transportation Research Part C: Emerging Technologies 30, pp. 41–54 (cit. on
p. 115).

Rajamani, R. and C. Zhu (2002). “Semi-autonomous adaptive cruise control systems.” In:
IEEE Trans. on Vehicular Technology 51.5, pp. 1186–1192 (cit. on p. 53).

Rajeswaran, A., V. Kumar, A. Gupta, J. Schulman, E. Todorov, and S. Levine (2017a).
“Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and
Demonstrations.” In: CoRR abs/1709.10087 (cit. on pp. 57, 64).

Rajeswaran, A., K. Lowrey, E. Todorov, and S. Kakade (2017b). “Towards Generalization
and Simplicity in Continuous Control.” In: NIPS (cit. on pp. 64, 65).

Ravani, B. and K. S. Yen (2000). Development of an Advanced Snowplow Driver Assistance
System (ASP-II). California AHMCT Program (cit. on p. 26).

Reynolds, C. W. (1987). “Flocks, herds and schools: A distributed behavioral model.” In:
ACM SIGGRAPH computer graphics 21.4, pp. 25–34 (cit. on p. 36).

Rios-Torres, J. and A. A. Malikopoulos (2017a). “A survey on the coordination of con-
nected and automated vehicles at intersections and merging at highway on-ramps.”
In: IEEE Transactions on Intelligent Transportation Systems 18.5, pp. 1066–1077 (cit. on
p. 83).

Rios-Torres, J. and A. A. Malikopoulos (2017b). “Automated and cooperative vehicle
merging at highway on-ramps.” In: IEEE Transactions on Intelligent Transportation Sys-
tems 18.4, pp. 780–789 (cit. on p. 83).

Roughgarden, T. (2003). “The price of anarchy is independent of the network topology.”
In: Journal of Computer and System Sciences 67, pp. 341–364 (cit. on p. 138).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). “Learning representations by
back-propagating errors.” In: Nature 323.6088, p. 533 (cit. on p. 17).

Sadigh, D., N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan (2016). “Planning for
cars that coordinate with people: leveraging effects on human actions for planning
and active information gathering over human internal state.” In: Autonomous Robots,
pp. 1–22 (cit. on p. 83).

236

Samet, H. and J. Sankaranarayanan (2014). Path oracles for spatial networks. US Patent
8,744,770 (cit. on p. 189).

Sanchez-Medina, J. J., M. J. Galan-Moreno, and E. Rubio-Royo (2010). “Traffic Signal Op-
timization in La Almozara District in Saragossa Under Congestion Conditions, Us-
ing Genetic Algorithms, Traffic Microsimulation, and Cluster Computing.” In: IEEE
Transactions on Intelligent Transportation Systems 11.1, pp. 132–141. issn: 1524-9050. doi:
10.1109/TITS.2009.2034383 (cit. on p. 102).

Santi, P., G. Resta, M. Szell, S. Sobolevsky, S. Strogatz, and C. Ratti (2013). “Taxi pooling
in New York City: a network-based approach to social sharing problems.” In: arXiv
preprint arXiv 310 (cit. on p. 201).

Sasoh, A. and T. Ohara (2002). “Shock wave relation containing lane change source term
for two-lane traffic flow.” In: Journal of the Physical Society of Japan 71.9, pp. 2339–2347

(cit. on p. 91).
Schrank, D., B. Eisele, and T. Lomax (2012). “TTI’s 2012 urban mobility report.” In: Texas

A&M Transportation Inst. The Texas A&M Univ. System (cit. on p. 82).
Schrank, D., B. Eisele, T. Lomax, and J. Bak (2015). Urban Mobility Scorecard. Tech. rep.

Technical Report August, Texas A&M Transportation Inst. and INRIX, Inc (cit. on
p. 166).

Schulman, J. (2016). “Optimizing expectations: From deep reinforcement learning to
stochastic computation graphs.” Doctoral dissertation. UC Berkeley (cit. on p. 17).

Schulman, J., S. Levine, P. Abbeel, M. Jordan, and P. Moritz (2015). “Trust region policy
optimization.” In: International Conference on Machine Learning, pp. 1889–1897 (cit. on
pp. 17, 37, 55, 57, 68, 83, 85, 86).

Schulman, J., P. Moritz, S. Levine, M. Jordan, and P. Abbeel (2016). “High-Dimensional
Continuous Control Using Generalized Advantage Estimation.” In: Proceedings of the
International Conference on Learning Representations (ICLR) (cit. on pp. 17, 18, 57, 61, 68,
76, 78, 83, 85).

Selker, T. and P. H. Saphir (2010). “TravelRole: A carpooling/physical social network
creator.” In: Collaborative Technologies and Systems (CTS), 2010 International Symposium
on. IEEE, pp. 629–634 (cit. on p. 167).

Sheffi, Y. (1985). Urban Transportation Networks. Prentice-Hall, Englewood Cliffs, NJ (cit.
on pp. 115, 117, 126, 137).

Sheikholeslam, S. and C. A. Desoer (1992). “A system level study of the longitudinal con-
trol of a platoon of vehicles.” In: Journal of dynamic systems, measurement, and control
114.2, pp. 286–292 (cit. on p. 53).

237

http://dx.doi.org/10.1109/TITS.2009.2034383

Shen, W. and L. Wynter (2012). “A new one-level convex optimization approach for esti-
mating origin?destination demand.” In: Transportation Research Part B: Methodological
46, pp. 1535–1555 (cit. on p. 117).

Shiller, Z. and Y. R. Gwo (1991). “Dynamic motion planning of autonomous vehicles.” In:
IEEE Transactions on Robotics and Automation 7.2, pp. 241–249. issn: 1042-296X. doi:
10.1109/70.75906 (cit. on p. 82).

Shladover, S. E. (2005). “Automated vehicles for highway operations (automated highway
systems).” In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering 219.1, pp. 53–75 (cit. on pp. 25, 53).

Shladover, S. E. (2007). “PATH at 20History and major milestones.” In: IEEE Transactions
on intelligent transportation systems 8.4, pp. 584–592 (cit. on p. 25).

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016). “Mastering the
game of Go with deep neural networks and tree search.” In: Nature 529.7587, pp. 484–
489 (cit. on pp. 17, 57, 58).

Simonin, G. and B. O’Sullivan (2014). “Optimisation for the Ride-Sharing Problem: a
Complexity-based Approach.” In: ECAI, pp. 831–836 (cit. on p. 170).

Son, Y. S., W. Kim, S.-H. Lee, and C. C. Chung (2015). “Robust multirate control scheme
with predictive virtual lanes for lane-keeping system of autonomous highway driv-
ing.” In: IEEE Transactions on Vehicular Technology 64.8, pp. 3378–3391 (cit. on p. 82).

Spieser, K., K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone (2014). “To-
ward a Systematic Approach to the Design and Evaluation of Automated Mobility-
on-Demand Systems: A Case Study in Singapore.” In: Road Vehicle Automation. Spring-
er, pp. 229–245 (cit. on p. 30).

Steinhaus, H. (1956). “Sur la division des corp materiels en parties.” In: Bull. Acad. Polon.
Sci 1.804, p. 801 (cit. on p. 207).

Stern, R. E., S. Cui, M. L. D. Monache, R. Bhadani, M. Bunting, M. Churchill, N. Hamilton,
R. Haulcy, H. Pohlmann, F. Wu, B. Piccoli, B. Seibold, J. Sprinkle, and D. B. Work
(2017). “Dissipation of stop-and-go waves via control of autonomous vehicles: Field
experiments.” In: CoRR abs/1705.01693. url: http://arxiv.org/abs/1705.01693
(cit. on pp. 37, 48, 51, 82, 84, 85, 94–96, 99).

Stevens, M. and C. Yeh (2016). Reinforcement Learning for Traffic Optimization. Tech. rep.
Stanford University. url: http://cs229.stanford.edu/proj2016spr/report/047.
pdf (cit. on p. 53).

Sugiyama, Y., M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S.-i. Tadaki,
and S. Yukawa (2008). “Traffic jams without bottlenecks–experimental evidence for

238

http://dx.doi.org/10.1109/70.75906
http://arxiv.org/abs/1705.01693
http://cs229.stanford.edu/proj2016spr/report/047.pdf
http://cs229.stanford.edu/proj2016spr/report/047.pdf

the physical mechanism of the formation of a jam.” In: New Journal of Physics 10.3,
p. 033001 (cit. on pp. 27, 44, 45, 51, 82, 83, 85, 90, 93, 95).

Sukkarieh, S., E. M. Nebot, and H. F. Durrant-Whyte (1999). “A high integrity IMU/GPS
navigation loop for autonomous land vehicle applications.” In: IEEE Transactions on
Robotics and Automation 15.3, pp. 572–578. issn: 1042-296X. doi: 10.1109/70.768189
(cit. on p. 82).

SUMO Team (2016). Simulation/Basic Definition. url: http : / / sumo . dlr . de / wiki /
Simulation / Basic _ Definition # Defining _ the _ Time _ Step _ Length (visited on
12/08/2016) (cit. on p. 102).

Sun, Z. and X. (Ban (2013). “Vehicle classification using GPS data.” In: Transportation
Research Part C: Emerging Technologies 37, pp. 102–117. issn: 0968-090X. doi: https:
//doi.org/10.1016/j.trc.2013.09.015. url: http://www.sciencedirect.com/
science/article/pii/S0968090X13002040 (cit. on p. 115).

Sutton, R. S. and A. G. Barto (1998). Reinforcement learning: An introduction. Vol. 1. 1. MIT
press Cambridge (cit. on pp. 16, 68).

Sutton, R. S., D. A. McAllester, S. P. Singh, and Y. Mansour (2000). “Policy gradient
methods for reinforcement learning with function approximation.” In: Advances in
neural information processing systems, pp. 1057–1063 (cit. on pp. 18, 39, 57, 59, 68, 86).

Swaroop, D., J. Hedrick, C. C. Chien, and P. Ioannou (1994). “A Comparision of Spac-
ing and Headway Control Laws for Automatically Controlled Vehicles.” In: Vehi-
cle System Dynamics 23.1, pp. 597–625. doi: 10 . 1080 / 00423119408969077. eprint:
https://doi.org/10.1080/00423119408969077. url: https://doi.org/10.1080/
00423119408969077 (cit. on p. 54).

Swaroop, D. (1997). “String stability of interconnected systems: An application to pla-
tooning in automated highway systems.” In: California Partners for Advanced Transit
and Highways (PATH) (cit. on p. 100).

Synnaeve, G., N. Nardelli, A. Auvolat, S. Chintala, T. Lacroix, Z. Lin, F. Richoux, and N.
Usunier (2016). “TorchCraft: a Library for Machine Learning Research on Real-Time
Strategy Games.” In: arXiv preprint arXiv:1611.00625 (cit. on pp. 83, 216).

Szita, I. and A. Lörincz (2006). “Learning Tetris using the noisy cross-entropy method.”
In: Neural computation 18.12, pp. 2936–2941 (cit. on p. 18).

Technical Committee ISO/TC 204, Intelligent transport systems (2010). Intelligent trans-
port systems – Adaptive Cruise Control systems – Performance requirements and test proce-
dures. ISO (cit. on pp. 37, 53, 100).

Tesauro, G. (1994). “TD-Gammon, a self-teaching backgammon program, achieves master-
level play.” In: Neural computation 6.2, pp. 215–219 (cit. on p. 17).

239

http://dx.doi.org/10.1109/70.768189
http://sumo.dlr.de/wiki/Simulation/Basic_Definition#Defining_the_Time_Step_Length
http://sumo.dlr.de/wiki/Simulation/Basic_Definition#Defining_the_Time_Step_Length
http://dx.doi.org/https://doi.org/10.1016/j.trc.2013.09.015
http://dx.doi.org/https://doi.org/10.1016/j.trc.2013.09.015
http://www.sciencedirect.com/science/article/pii/S0968090X13002040
http://www.sciencedirect.com/science/article/pii/S0968090X13002040
http://dx.doi.org/10.1080/00423119408969077
https://doi.org/10.1080/00423119408969077
https://doi.org/10.1080/00423119408969077
https://doi.org/10.1080/00423119408969077

Tettamanti, T., H. Demeter, and I. Varga (2012). “Route Choice Estimation Based on Cel-
lular Signaling Data.” In: Acta Polytechnica Hungarica 9.4, pp. 207–220 (cit. on p. 117).

Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, et al. (2006). “Stanley: The robot that won the DARPA
Grand Challenge.” In: Journal of field Robotics 23.9, pp. 661–692 (cit. on p. 26).

Tibshirani, R. J., H. Hoefling, and R. Tibshirani (2011). “Nearly-Isotonic Regression.” In:
Technometrics 53 (cit. on pp. 118, 130).

Todorov, E., T. Erez, and Y. Tassa (2012). “MuJoCo: A physics engine for model-based
control.” In: International Conference on Intelligent Robots and Systems (cit. on pp. 64, 83,
216).

Toole, J., M. Ulm, M. González, and D. Bauer (2012). “Inferring land use from mobile
phone activity.” In: Proceedings of the ACM SIGKDD International Workshop on Urban
Computing, pp. 1–8 (cit. on p. 116).

Transportation (WisDOT), W. D. of (2013). Unofficial WI Traffic Analysis Guidelines, Draft.
http://www.wisdot.info/microsimulation/index.php?title=Model_Calibration.
[Online; accessed 2014-08-30] (cit. on p. 141).

Treiber, M., A. Hennecke, and D. Helbing (2000). “Congested traffic states in empirical
observations and microscopic simulations.” In: Physical review E 62.2, p. 1805 (cit. on
pp. 39, 40, 42, 47, 104, 105).

Treiber, M. and A. Kesting (2013). “Traffic flow dynamics.” In: Traffic Flow Dynamics: Data,
Models and Simulation, Springer-Verlag Berlin Heidelberg (cit. on pp. 37, 94, 100, 105).

Treiber, M. and A. Kesting (2017). “The Intelligent Driver Model with Stochasticity-New
Insights Into Traffic Flow Oscillations.” In: Transportation Research Procedia 23, pp. 174–
187 (cit. on pp. 42, 94).

Trevisan, L. (2011). Combinatorial optimization: exact and approximate algorithms. Stanford
University (cit. on p. 19).

Tucker, G., S. Bhupatiraju, S. Gu, R. E. Turner, Z. Ghahramani, and S. Levine (2018). “The
mirage of action-dependent baselines in reinforcement learning.” In: arXiv preprint
arXiv:1802.10031 (cit. on p. 70).

United Nations (2014). “World urbanization prospects: The 2014 revision, highlights. de-
partment of economic and social affairs.” In: Population Division, United Nations. url:
http://www.un.org/en/development/desa/news/population/world-urbanization-
prospects-2014.html (cit. on p. 4).

U.S. Dept. of Transportation, Federal Highway Administration (1977). Module 6. HOV
Treatments. Freeway Management Handbook. 6-7, 8 (cit. on p. 158).

240

http://www.wisdot.info/microsimulation/index.php?title=Model_Calibration
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html

US Energy Information Administration (2018). Monthly energy review. Table 2.1 (cit. on
pp. 4, 5).

Vahidi, A. and A. Eskandarian (2003). “Research advances in intelligent collision avoid-
ance and adaptive cruise control.” In: IEEE transactions on intelligent transportation
systems 4.3, pp. 143–153 (cit. on pp. 53, 100).

Van Arem, B., C. J. Van Driel, and R. Visser (2006). “The impact of cooperative adaptive
cruise control on traffic-flow characteristics.” In: IEEE Trans. on Intelligent Transporta-
tion Systems 7.4, pp. 429–436 (cit. on pp. 54, 82).

Van Roy, B., D. P. Bertsekas, Y. Lee, and J. N. Tsitsiklis (1997). “A neuro-dynamic program-
ming approach to retailer inventory management.” In: Decision and Control, 1997.,
Proceedings of the 36th IEEE Conference on. Vol. 4. IEEE, pp. 4052–4057 (cit. on p. 16).

Veeraraghavan, H., O. Masoud, and N. Papanikolopoulos (2003). “Computer Vision Al-
gorithms for Intersection Monitoring.” In: IEEE Trans. on Intelligent Transportation
Systems 4, pp. 78–89 (cit. on p. 115).

Vemuganti, R. (1999). “Applications of set covering, set packing and set partitioning
models: A survey.” In: Handbook of combinatorial optimization. Springer, pp. 573–746

(cit. on p. 202).
Venkatadri, U., K. S. Krishna, and M. A. lk (2016). “On Physical Internet Logistics: Mod-

eling the Impact of Consolidation on Transportation and Inventory Costs.” In: IEEE
Transactions on Automation Science and Engineering 13.4, pp. 1517–1527. issn: 1545-5955.
doi: 10.1109/TASE.2016.2590823 (cit. on p. 166).

Vezhnevets, A. S., S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Silver, and K.
Kavukcuoglu (2017). “FeUdal Networks for Hierarchical Reinforcement Learning.”
In: Proceedings of the 34th International Conference on Machine Learning. Ed. by D. Precup
and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. International Con-
vention Centre, Sydney, Australia: PMLR, pp. 3540–3549. url: http://proceedings.
mlr.press/v70/vezhnevets17a.html (cit. on p. 216).

Vickrey, W. (1961). “Counterspeculation, auctions, and competitive sealed tenders.” In:
The Journal of finance 16.1, pp. 8–37 (cit. on p. 169).

Vinyals, O. (2016). DeepMind and Blizzard to release StarCraft II as an AI research environment.
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-
research-environment/. Blog (cit. on p. 83).

Volinsky, C., R. Becker, R. Caceres, K. Hanson, J. Loh, S. Urbanek, and A. Varshavsky
(2011). “Clustering Anonymized Mobile Call Detail Records to Find Usage Groups.”
In: 1st Workshop on Pervasive Urban Applications (PURBA) (cit. on p. 116).

241

http://dx.doi.org/10.1109/TASE.2016.2590823
http://proceedings.mlr.press/v70/vezhnevets17a.html
http://proceedings.mlr.press/v70/vezhnevets17a.html
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/
https://deepmind.com/blog/deepmind-and-blizzard-release-starcraft-ii-ai-research-environment/

Wadud, Z., D. MacKenzie, and P. Leiby (2016). “Help or hindrance? The travel, energy
and carbon impacts of highly automated vehicles.” In: Transportation Research Part A:
Policy and Practice 86, pp. 1–18 (cit. on pp. 5, 6, 82).

Wahlström, N., T. B. Schön, and M. P. Deisenroth (2015). “From pixels to torques: Policy
learning with deep dynamical models.” In: arXiv preprint arXiv:1502.02251 (cit. on
p. 44).

Wampler, K. and Z. Popović (2009). “Optimal gait and form for animal locomotion.” In:
ACM Transactions on Graphics (TOG). Vol. 28. 3. ACM, p. 60 (cit. on p. 18).

Wang, J. and Q. Feng (2008). “An O*(3.523 k) parameterized algorithm for 3-set packing.”
In: Theory and Applications of Models of Computation. Springer, pp. 82–93 (cit. on p. 202).

Wang, L., B. K. Horn, and G. Strang (2016). “Eigenvalue and Eigenvector Analysis of
Stability for a Line of Traffic.” In: Studies in Applied Mathematics (cit. on pp. 100, 106).

Wang, M., W. Daamen, S. P. Hoogendoorn, and B. van Arem (2014). “Rolling horizon
control framework for driver assistance systems. Part I: Mathematical formulation
and non-cooperative systems.” In: Transportation research part C: emerging technologies
40, pp. 271–289 (cit. on p. 54).

Wang, W. and M. A. Carreira-Perpinán (2013). “Projection onto the probability simplex:
An efficient algorithm with a simple proof, and an application.” In: arXiv preprint
arXiv:1309.1541 (cit. on pp. 118, 133).

Wardrop, J. G. and J. I. Whitehead (1952). “Correspondence. Some Theoretical Aspects
of Road Traffic Research.” In: ICE Proc: Engineering Divisions 1 (cit. on pp. 115, 126,
138).

WardsAuto (2017). World Vehicle Population Rose 4.6% in 2016. url: http://subscribers.
wardsintelligence.com/analysis/world-vehicle-population-rose-46-2016 (cit.
on p. 4).

Washington State Department of Transportation (2017). High Occupancy Vehicle (HOV)
lanes. url: http://www.wsdot.wa.gov/HOV/ (cit. on p. 167).

Watkins, C. J. and P. Dayan (1992). “Q-learning.” In: Machine learning 8.3-4, pp. 279–292

(cit. on p. 68).
Weaver, L. and N. Tao (2001). “The optimal reward baseline for gradient-based reinforce-

ment learning.” In: Proceedings of the Seventeenth conference on Uncertainty in artificial
intelligence. Morgan Kaufmann Publishers Inc., pp. 538–545 (cit. on p. 68).

Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial intelligence.
MIT press (cit. on p. 52).

Werbos, P. (1974). “Beyond Regression:" New Tools for Prediction and Analysis in the
Behavioral Sciences.” In: Ph. D. dissertation, Harvard University (cit. on p. 17).

242

http://subscribers.wardsintelligence.com/analysis/world-vehicle-population-rose-46-2016
http://subscribers.wardsintelligence.com/analysis/world-vehicle-population-rose-46-2016
http://www.wsdot.wa.gov/HOV/

White, J. and I. Wells (2002). “Extracting origin destination information from mobile
phone data.” In: 11th Int. Conf. on Road Transport Information and Control, London,
pp. 30–34 (cit. on p. 116).

Wierstra, D., T. Schaul, J. Peters, and J. Schmidhuber (2008). “Natural evolution strate-
gies.” In: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE Congress on. IEEE, pp. 3381–3387 (cit. on p. 18).

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for connectionist
reinforcement learning.” In: Machine learning 8.3-4, pp. 229–256 (cit. on pp. 18, 57, 59,
68).

Wolsey, L. A. and G. L. Nemhauser (2014). Integer and combinatorial optimization. John
Wiley & Sons (cit. on p. 167).

Work, D., O.-P. Tossavainen, S. Blandin, A. Bayen, T. Iwuchukwu, and K. Tracton (2008).
“An ensemble Kalman filtering approach to highway traffic estimation using GPS
enabled mobile devices.” In: 47th IEEE Conference on Decision and Control (cit. on
p. 115).

Wu, C. (2016). “Traffic Jammin’: Making automated transportation a reality.” In: Berkeley
Science Review (cit. on p. 8).

Wu, C., A. M. Bayen, and A. Mehta (2017a). “Stabilizing traffic with autonomous vehi-
cles.” In: Submission to IEEE International Conference on Robotics and Automation (ICRA)
(cit. on pp. 54, 100).

Wu, C., E. Kamar, and E. Horvitz (2016a). “Clustering for set partitioning with a case
study in ridesharing.” In: Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on. IEEE, pp. 1384–1388 (cit. on p. 11).

Wu, C., A. Kreidieh, E. Vinitsky, and A. M. Bayen (2017b). “Multi-lane Reduction: A
Stochastic Single-lane Model for Lane Changing.” In: Intelligent Transportation Systems
(ITSC), 2017 IEEE 20th International Conference on (cit. on p. 91).

Wu, C., A. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen (2017c). “Flow: Architecture
and Benchmarking for Reinforcement Learning in Traffic Control.” In: arXiv preprint
arXiv:1710.05465. url: https://arxiv.org/abs/1710.05465 (cit. on p. 10).

Wu, C., A. Kreidieh, E. Vinitsky, and A. M. Bayen (2017d). “Emergent Behaviors in Mixed-
Autonomy Traffic.” In: Proceedings of the 1st Annual Conference on Robot Learning. Ed.
by S. Levine, V. Vanhoucke, and K. Goldberg. Vol. 78. Proceedings of Machine Learn-
ing Research. PMLR, pp. 398–407. url: http://proceedings.mlr.press/v78/wu17a.
html (cit. on pp. 10, 82).

Wu, C., K. Parvate, N. Kheterpal, L. Dickstein, A. Mehta, E. Vinitsky, and A. M. Bayen
(2017e). “Framework for Control and Deep Reinforcement Learning in Traffic.” In:

243

https://arxiv.org/abs/1710.05465
http://proceedings.mlr.press/v78/wu17a.html
http://proceedings.mlr.press/v78/wu17a.html

Intelligent Transportation Systems (ITSC), 2017 IEEE 20th International Conference on (cit.
on p. 101).

Wu, C., A. Rajeswaran, Y. Duan, V. Kumar, A. M. Bayen, S. Kakade, I. Mordatch, and P.
Abbeel (2018). “Variance Reduction for Policy Gradient with Action-Dependent Fac-
torized Baselines.” In: International Conference on Learning Representations. url: https:
//openreview.net/forum?id=H1tSsb-AW (cit. on p. 10).

Wu, C., K. Shankari, E. Kamar, R. Katz, D. Culler, C. Papadimitriou, E. Horvitz, and A. M.
Bayen (2016b). “Optimizing the diamond lane: A more tractable carpool problem and
algorithms.” In: Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International
Conference on. IEEE, pp. 1389–1396 (cit. on pp. 11, 169).

Wu, C., J. Thai, S. Yadlowsky, A. Pozdnoukhov, and A. Bayen (2015). “Cellpath: Fusion of
cellular and traffic sensor data for route flow estimation via convex optimization.” In:
Transportation Research Part C: Emerging Technologies 59. Special Issue on International
Symposium on Transportation and Traffic Theory, pp. 111–128. issn: 0968-090X. doi:
https://doi.org/10.1016/j.trc.2015.05.004. url: http://www.sciencedirect.
com/science/article/pii/S0968090X15001758 (cit. on p. 10).

Wymann, B., E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner (2000).
“TORCS, the open racing car simulator.” In: Software available at http://torcs. sourceforge.
net (cit. on p. 83).

Xie, X.-F., S. F. Smith, L. Lu, and G. J. Barlow (2012). “Schedule-driven intersection con-
trol.” In: Transportation Research Part C: Emerging Technologies 24, pp. 168–189 (cit. on
p. 82).

Yadlowsky, S., J. Thai, C. Wu, A. Pozdnukhov, and A. Bayen (2014). “Link Density Infer-
ence from Cellular Infrastructure.” In: Transportation Research Board (TRB) 94th Annual
Meeting (cit. on p. 116).

Yang, H. and H.-J. Huang (1999). “Carpooling and congestion pricing in a multilane
highway with high-occupancy-vehicle lanes.” In: Transportation Research Part A: Policy
and Practice 33.2, pp. 139–155 (cit. on p. 169).

Yen, J. Y. (1971). “Finding the k Shortest Loopless Paths in a Network.” In: Management
Science 17, pp. 712–716 (cit. on p. 138).

Yen, K. S., H.-S. Tan, A. Steinfeld, C. H. Thorne, B. Bougler, E. Cuelho, P. Kretz, D. Empey,
R. R. Kappesser, H. A. Ghaida, M. Jenkinson, S. R. Owen, W.-B. Zhang, T. A. Lasky,
and B. Ravani (1999). “Advanced snowplow development and demonstration: Phase
I: Driver assistance.” In: AHMCT Rept.# UCD-ARR-99-06-30-03 (cit. on p. 26).

244

https://openreview.net/forum?id=H1tSsb-AW
https://openreview.net/forum?id=H1tSsb-AW
http://dx.doi.org/https://doi.org/10.1016/j.trc.2015.05.004
http://www.sciencedirect.com/science/article/pii/S0968090X15001758
http://www.sciencedirect.com/science/article/pii/S0968090X15001758

Yeo, H., A. Skabardonis, J. Halkias, J. Colyar, and V. Alexiadis (2008). “Oversaturated free-
way flow algorithm for use in next generation simulation.” In: Transportation Research
Record: Journal of the Transportation Research Board 2088, pp. 68–79 (cit. on p. 109).

Young, K. D., V. I. Utkin, and U. Ozguner (1999). “A control engineer’s guide to sliding
mode control.” In: IEEE Transactions on Control Systems Technology 7.3, pp. 328–342.
issn: 1063-6536. doi: 10.1109/87.761053 (cit. on p. 216).

Yuan, Y.-M., R. Jiang, M.-B. Hu, Q.-S. Wu, and R. Wang (2009). “Traffic flow character-
istics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A
hybrid modelling approach.” In: Physica A: Statistical Mechanics and its Applications
388.12, pp. 2483–2491 (cit. on p. 54).

Zhang, J., F. Wang, K. Wang, W. Lin, X. Xu, and C. Chen (2011). “Data-Driven Intelligent
Transportation Systems: A Survey.” In: IEEE Transactions on Intelligent Transportation
Systems 12.4, pp. 1624–1639. issn: 1524-9050. doi: 10.1109/TITS.2011.2158001 (cit.
on p. 117).

Zhang, W.-B., S. Shladover, D. Cooper, J. Chang, M. Miller, C.-Y. Chan, and F. Bu (2007).
Lane Assist Systems for Bus Rapid Transit, Volume II: Needs and Requirements. Tech. rep.
(cit. on p. 26).

Zheng, Z. (2014). “Recent Developments and Research Needs in Modeling Lane Chang-
ing.” In: Transportation Research Part B: Methodological 60, pp. 16–32 (cit. on pp. 37,
84).

245

http://dx.doi.org/10.1109/87.761053
http://dx.doi.org/10.1109/TITS.2011.2158001

	Acknowledgments
	Contents
	1 Introduction
	1.1 Mixed automated and human decision making
	1.2 Motivating examples of mixed autonomy systems
	1.3 How will automated vehicles change mobility?
	1.4 Mixed autonomy systems
	1.5 Thesis overview and contributions

	2 Review of optimization frameworks
	2.1 Convex optimization
	2.2 Reinforcement learning
	2.3 Combinatorial optimization

	3 Review of automated transportation
	3.1 Safety first
	3.2 Freeing the freeway
	3.3 Confronting the last mile
	3.4 Taking to the streets
	3.5 Full speed ahead

	Control
	4 Emergent behaviors in mixed autonomy traffic
	4.1 Overview
	4.2 Preliminaries
	4.3 Mixed autonomy traffic as reinforcement learning
	4.4 State equivalence classes
	4.5 Network configurations
	4.6 Mixtures of autonomy
	4.7 Metrics
	4.8 Emergent behaviors
	4.9 Related work
	4.10 Chapter summary
	4.11 Experiment details

	5 Variance Reduction for Policy Gradient with Action-Dependent Factorized Baselines
	5.1 Overview
	5.2 Preliminaries
	5.3 Action-dependent baselines
	5.4 Experiments and Results
	5.5 Related works
	5.6 Chapter summary
	5.7 Derivation of the optimal state-dependent baseline
	5.8 Derivation of the optimal action-dependent baseline
	5.9 Derivation of variance reduction improvement
	5.10 Derivation of suboptimality of the optimal state-dependent baseline
	5.11 Baselines for general actions
	5.12 Compatibility with GAE
	5.13 High-dimensional action spaces: training curves
	5.14 Experiment details

	6 Flow: a library for reinforcement learning and microsimulation
	6.1 Overview
	6.2 Preliminaries
	6.3 Flow
	6.4 Networks
	6.5 Task space
	6.6 Controller design case study: mixed autonomy ring
	6.7 Related work
	6.8 Chapter summary
	6.9 Classical controllers
	6.10 Additional experiments
	6.11 Fail-safes

	State estimation
	7 Cellpath: fusion of cellular and traffic sensor data for route flow estimation via convex optimization
	7.1 Overview
	7.2 Problem formulation
	7.3 Dimensionality reduction and projection via isotonic regression
	7.4 Experimental setting and validation process
	7.5 Numerical results
	7.6 Chapter summary

	System design
	8 Human mobility preferences
	8.1 Overview
	8.2 Induced demand
	8.3 Methodology and data collection
	8.4 Findings
	8.5 Recommendations for ridesharing systems
	8.6 Chapter summary
	8.7 Mobility preference survey questions

	9 Optimizing the diamond lane: complexity and algorithms for ridesharing
	9.1 Overview
	9.2 Survey of complexity results in ridesharing
	9.3 The carpool problem
	9.4 Problem formulation
	9.5 Methods for solving the carpool problem
	9.6 Warm-starting the local search methods
	9.7 Numerical implementation
	9.8 Numerical results
	9.9 Chapter summary
	9.10 Scalability: time breakdown for local search
	9.11 Initialization for local search methods

	10 Clustering for set partitioning with a case study in ridesharing
	10.1 Overview and combinatorial optimization problems
	10.2 Set partitioning
	10.3 A formal connection between clustering and set partitioning
	10.4 Case study: ridesharing meetup problem
	10.5 Chapter summary

	Final remarks
	11 The Road Ahead
	11.1 Challenges in mixed autonomy
	11.2 Opportunities in mixed autonomy

