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Summary

� The maximum photosynthetic carboxylation rate (Vcmax) is an influential plant trait that has

multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of

global gross primary production (GPP).
� Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental fil-

tering, and plant plasticity) with nine specific implementations were used to predict global

Vcmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation

Model (SDGVM).
� Global GPP varied from 108.1 to 128.2 PgC yr�1, 65% of the range of a recent model inter-

comparison of global GPP. The variation in GPP propagated through to a 27% coefficient of

variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly

correlated (r = 0.85–0.91) with three proxies of global GPP.
� Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis

that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with

increasing soil carbon, adequately reproduced global GPP distributions. Further improvement

could be achieved with accurate representation of water sensitivity and agriculture in

SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and

GPP suggested that greater effort is needed understand Vcmax variation in the field, particu-

larly in northern latitudes.

Introduction

Photosynthetic carbon (C) assimilation is the largest flux in the
global C cycle, and accurate future projections from terrestrial
biosphere models (TBMs) rely upon accurate representations of
photosynthesis. Rates of photosynthesis are most commonly sim-
ulated as the minimum carboxylation rate of two processes – the
Calvin�Benson cycle and light-activated electron transport –
modelled using Michaelis�Menten principles of enzyme kinetics
(Farquhar et al., 1980; Harley et al., 1992; von Caemmerer,
2000). These two realized rates are sensitive to their respective
maximum rates – the maximum carboxylation rate (Vcmax) and
the maximum electron transport rate (Jmax) – and terrestrial C
cycle models are highly sensitive to these parameters (Zaehle
et al., 2005; Bonan et al., 2011; Rogers, 2014; Sargsyan et al.,
2014; Rogers et al., 2017). Many methods are used across TBMs

to calculate Vcmax and Jmax, and these methods represent compet-
ing hypotheses, formally or informally posed, about how these
influential plant traits scale geographically. The diversity of
hypotheses potentially leads to large, and previously unquanti-
fied, variation in the simulation of global photosynthetic C
assimilation and poses the broader scientific question: what are
the primary drivers of global Vcmax scaling?

Plant functional traits consist of a wide range of measurable
plant phenotypic (chemical, physiological, and structural) prop-
erties that convey information pertaining to some aspect of plant
function, and thus are used to describe plant function and func-
tional diversity. Correlations between functional traits have been
used to define common axes of plant strategies (Grime, 1974;
Craine et al., 2002; Wright et al., 2004; Reich, 2014) and discrete
plant functional types (PFTs), designed to simplify the diversity
of plant life within a tractable modelling framework (Woodward
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& Cramer, 1996; Smith et al., 1998; Wullschleger et al., 2014).
The quantitative nature of plant functional traits makes them
useful in global simulation modelling, allowing functions that
represent the multiple ecosystem processes encoded in TBMs to
be parameterized using values of the relevant plant functional
traits. Recently, much attention has been paid to acknowledging
wider and continuous variation in plant functional traits within
ecosystem modelling (van Bodegom et al., 2012, 2014; Pavlick
et al., 2013; Scheiter et al., 2013; Verheijen et al., 2013; Fyllas
et al., 2014; Fisher et al., 2015; Kueppers et al., 2016). Modelling
this trait variation requires spatial and temporal trait-scaling
hypotheses that go beyond the implicit hypothesis for many traits
in many TBMs – that traits scale discretely across, and are static
within, a limited set of broadly defined PFTs.

In the current study, multiple competing trait-scaling hypothe-
ses for Vcmax and their impacts on global patterns of gross pri-
mary production (GPP) were assessed within a common
modelling framework (the Sheffield Dynamic Global Vegetation
Model (SDGVM)). Broadly defined, four Vcmax scaling hypothe-
ses were investigated: (1) discrete PFT variation, (2) nutrient lim-
itation, (3) environmental filtering, and (4) plant plasticity
allowing acclimation to environment. As described above, dis-
crete PFT variation is an hypothesis designed to represent key
features of global diversity in plant function within a tractable
modelling framework.

In more detail, nutrient, specifically nitrogen (N), limitation
is hypothesized to affect Vcmax as a result of the high concentra-
tions of the enzyme Rubisco in leaves which makes up a large
portion of whole-plant N demand. Empirically, Vcmax and pho-
tosynthetic rates correlate with leaf N (Field & Mooney, 1986;
Wright et al., 2004; Kattge et al., 2009) and plant N uptake
(Woodward & Smith, 1995). SDGVM incorporates the
hypothesis that plant N status is based on the principle of costs
associated with plant N uptake as soil C increases and across
mycorrhizal types (Read, 1991; Woodward et al., 1995). This
hypothesis has been expanded on by recent model development
efforts (Fisher et al., 2010; Brzostek et al., 2014). The environ-
mental filtering hypothesis states that adaptation to local envi-
ronment is the primary determinant of Vcmax scaling. In our
study, a data-driven approach was taken to represent environ-
mental filtering of Vcmax following Verheijen et al. (2013). Plant
plasticity, which allows acclimation to environment, is based on
the hypothesis that the process of natural selection has created
plants able to respond to their environment at shorter timescales
(e.g. days to weeks). These plant-centric methods tend to con-
sider an optimality perspective whereby plants adjust Vcmax to
maximize the difference between costs and benefits (Chen et al.,
1993; Maire et al., 2012; Prentice et al., 2014).

Our aims were to quantify and understand the causes of
variability across these various scaling hypotheses of: (1) global
Vcmax distributions; (2) simulated global distributions of GPP;
and (3) temporal trends in global GPP and subsequent impacts
on net biome productivity, the simulation of which is the pri-
mary purpose of global TBMs. To evaluate the spatial patterns
of global GPP predicted by the various methods to scale Vcmax

we used a number of global GPP observation proxies: the Max

Planck Institute (MPI) upscaled eddy-flux estimate of GPP
(Jung et al., 2011); global solar-induced fluorescence (SIF)
from the Global Ozone Monitoring Experiment – 2 (GOME-
2) instrument (Joiner et al., 2013, 2016), and the Carnegie
Ames Stanford Approach (CASA) model calibrated using SIF
data.

Description

The SDGVM was developed as a daily timestep, global biogeog-
raphy and eco-physiology model (Woodward et al., 1995; Wood-
ward & Lomas, 2004) to predict the primary biomes of Earth
and their associated fluxes of C and water in response to global
change. SDGVM has been described and extensively evaluated at
site and global scales (Woodward et al., 1995; Cramer et al.,
2001; Woodward & Lomas, 2004; Picard et al., 2005; Sitch
et al., 2008; Beer et al., 2010; De Kauwe et al., 2013, 2014;
Friend et al., 2014; Walker et al., 2014b; Zaehle et al., 2014), so
here we provide a brief description of the model and the process
simulation methods relevant to this paper.

In SDGVM, C and water cycles conserve mass, while
canopy N is simulated through an empirical relationship of N
uptake to soil C (Woodward et al., 1995; Woodward &
Lomas, 2004), based on the principle of costs associated with
plant N uptake as soil C increases and across mycorrhizal types
(Read, 1991). During the application of SDGVM to the Free
Air CO2 enrichment (FACE) experiment model data synthesis
(FACE-MDS; Walker et al., 2014b; Medlyn et al., 2015) it
was observed that SDGVM had low Vcmax values at a standard
temperature of 25�C (Vcmax,25 = 11Na, where Na is leaf N per
unit leaf area) and that using realistic values of Vcmax,25

observed at the FACE sites led to overprediction of GPP. The
default Vcmax,25 values in SDGVM were calibrated to compen-
sate biases caused by the assumption that photosynthesis calcu-
lated at mean daily radiation can be scaled by daylength to
calculate mean daily photosynthesis. This assumption overesti-
mates photosynthetic efficiency by effectively linearizing the
response of photosynthesis to light. We corrected this bias by
developing a sub-daily downscaling of light and photosynthesis
calculations to 10 time periods during a half day (described in
more detail in Supporting Information Notes S1). The sub-
daily calculation of photosynthesis allowed realistic Vcmax,25

values to generate realistic values of GPP in the model.
SDGVM scales Vcmax,25 and Jmax,25 by water limitation and
leaf age.

In view of their strong correlation, in this study we focus only
on Vcmax scaling hypotheses and employ a single relationship of
Vcmax,25 to Jmax,25 (Walker et al., 2014a):
Jmax;25 ¼ eV 0:890

cmax;25: Eqn 1

Each Vcmax scaling hypothesis – PFT, nutrient limitation, envi-
ronmental filtering, and plant plasticity – for Vcmax scaling
described in the Introduction was implemented in the SDGVM
in multiple ways using a number of data sets, empirical relation-
ships, and specific mathematical representations (see detailed
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descriptions of the implementations in the Methods below and
Table 1).

Static traits (Static_PFT)

Static values of Vcmax,25 were derived by taking PFT means (using
SDGVM PFT definitions; see Notes S1 for specific values) from
the TRY database (www.try-db.org; data accession on 16
November 2010) augmented to include data from the sparsely
represented tropics (described in the ‘Environmental filtering’
section below). This augmented TRY database was also used to
derive the trait�environment relationships and is described in
the Environmental Filtering section below. Each trait observation
was linked to a PFT based on information on growth form
(shrub, grass or tree), leaf habit (deciduous or evergreen) and
photosynthetic pathway (C3 or C4) (Verheijen et al., 2013,
2015).

Nutrient limitation hypotheses

We employ five implemetations of the nutrient limitation hypoth-
esis. First (Ntemp_global), the original version of SDGVM calcu-
lated Vcmax from the rate of N uptake (Nu) (Woodward & Smith,
1994, 1995). Nu was calculated as a function of soil C, N, and
mean annual air temperature (for details, see Woodward et al.,
1995). We label the original SDGVM method according to the
assumption that sets it apart from other nutrient limitation
hypotheses, that Nu is a function of temperature.

In later versions of SDGVM, the temperature modifier of Nu

was removed and canopy N was calculated using a globally uni-
form, empirical scalar on Nu (Woodward et al., 1995; Woodward
& Lomas, 2004). All of the remaining implementations of the
nutrient limitation hypotheses use the temperature-independent
function of Nu and canopy N. The second implementation of the
nutrient limitation hypothesis (N_global) was:

Table 1 Summary of Vcmax and maximum photosynthetic carboxylation rate (Vcmax) temperature scaling hypotheses

Hypothesis Label Specific method
PFT
specific Description Reference Papers/models Data set

Static Static_PFT Static Y Augmented TRY
database means

Verheijen et al.

(2015)
Most CMIP5
models

Literature search
augmented TRY

Nutrient
limitation

Ntemp_global Empirical f(Nu) N Woodward et al.

(1995)
Original
SDGVM

Woodward et al.

(1995)
N_global Empirical f(Na) N Power law Walker et al.

(2014a,b)
Literature search
Walker et al.
(2014a)

NP_global Empirical f(Na, Pa) N Power law including leaf
phosphorus

Walker et al.
(2014a,b)

Literature search
Walker et al.
(2014a)

N_PFT Empirical f(Na) Y Linear from TRY
database

Kattge et al. (2009) O-CN, other N
cycle models

TRY

N_oxisolPFT Empirical f(Na) Y As above but with oxisol
relationship for
evergreen broadleaf
PFT

Kattge et al. (2009) TRY

Environmental
filtering

Environ_PFT Empirical f(env.) Y Augmented TRY
relationship to . . .

Verheijen et al.
(2015)

Literature search
augmented TRY

Plant plasticity Co-ord_global Theoretical
f(Q, T, VDP)

N Vcmax adjusted so
wc =wj given mean
environment over the
past 30 d

Chen et al. (1993);
Maire et al. (2012)

First principles
Wang et al.

Na

Plant plasticity
and nutrient
limitation

LUNA_global 4. Theoretical
f(Na,Q, T, RH)

N Constrained
optimization of leaf N
allocation given mean
environment over the
past 30 d

Xu et al. (2012);
Ali et al. (2016)

CLM5.0 Literature search
Ali et al. (2015)

Temperature
scaling

Static * SDGVM default N Saturating exponential SDGVM
Static *_modA Modified Arrhenius Y Temperature optimum Medlyn et al.

(2002)
Plant plasticity *_tacc Modified Arrhenius

with acclimation
Y (modA
only)

Temperature optimum
varies with growth
temperature

Kattge & Knorr
(2007)

N, no; Nu, N uptake; Na, N per unit leaf area; Pa, P per unit leaf area; PFT, plant functional type;Q, incident photosynthetically active radiation per unit leaf
area; SDGVM, Sheffield Dynamic Global Vegetation Model; T, leaf temperature; VPD, vapour pressure deficit; RH, relative humidity; Y, yes.
*The label for one of four Vcmax scaling hypotheses (N_global, N_PFT, LUNA_global, or Co-ord_global) used in conjunction with these three temperature
scaling hypotheses.
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Vcmax;25 ¼ e3:712N 0:650
a ; Eqn 2

where Na is leaf N, and was taken from Walker et al. (2014a) and
implemented globally. Third (N_PFT), we used the PFT-
specific, linear Vcmax,25 to Na relationships derived by Kattge
et al. (2009). Fourth (N_oxisolPFT), to simulate an implicit
phosphorus (P) limitation, we used the N_PFT relationships but
replaced the evergreen broadleaved PFT relationship with a rela-
tionship derived on P-poor oxisols. Fifth (NP_global), to simu-
late a more explicit P limitation on Vcmax,25, a function of
Vcmax,25 where P was influential in interaction with N derived
from a database of field- and laboratory-grown plants (Walker
et al., 2014a) was also simulated:

Vcmax;25 ¼ e3:946N ½0:921þ0:282 lnðPaÞ�
a P0:121

a : Eqn 3

To simulate leaf P concentration, we used a global relationship
to total soil P derived by Ordonez et al. (2009), and a global total
soil P map (Yang et al., 2014).

Environmental filtering

Environmental filtering was represented by empirically deriving
PFT-specific trait�environment relationships (Environ_PFT)
from the TRY database Vcmax,25 values at the accession date
(Niinemets, 1999; Kattge et al., 2009) augmented by Verheijen
et al. (2015) to include Vcmax,25 from the tropics (Deng et al.,
2004; Meir et al., 2007; Domingues et al., 2010; Cernusak et al.,
2011; van de Weg et al., 2011; Azevedo & Marenco, 2012;
Nascimento & Marenco, 2013) which were not well covered in
the TRY database. Each species within the database was assigned
to a PFT based on the specific SDGVM PFT definitions.

Based on the global coordinates of the trait data, each trait
entry was associated with a set of environmental conditions –
mean annual temperature, mean temperature of the warmest
month, mean temperature of the coldest month, temperature dif-
ference of the warmest month and coldest month, total annual
precipitation, total precipitation in the driest quarter, fraction of
total precipitation that falls in the driest quarter, mean annual rel-
ative humidity, and total annual down-welling shortwave radia-
tion – taken from the Climatic Research Unit and National
Centers for Environmental Prediction (CRUNCEP) data set (the
same as used to run the model simulations). For each PFT, a
multiple regression with forward selection was run to relate varia-
tion in Vcmax,25 to environmental drivers. To avoid correlation
between explanatory variables, variables with a correlation > 0.7
were not used in the same regression model.

An empirical, linear decrease in Vcmax,25 with CO2 calculated
using the formulation of Verheijen et al. (2015) was also included
as part of the response to environment (see Notes S1 for the rela-
tionships). Vcmax,25 is calculated at the beginning of each year for
each PFT on each grid square based on the mean environmental
conditions of the past year.

Vcmax data for C4 plants were only available for these trait�en-
vironment relationships. Therefore, in the simulations for all

hypotheses, these relationships (or static values for Static_PFT)
were used to set Vcmax,25 and phosphoenolpyruvate carboxylase
(PepC25) activity in C4 plants.

Plant plasticity

We examined plant plasticity by using the co-ordination hypoth-
esis (Co-ord_global), which states that plants adjust Vcmax such
that the carboxylation-limited rate of photosynthesis (wc) equals
the electron transport-limited rate of photosynthesis (wj) over
mean environmental conditions, commonly considered those of
the past month (Chen et al., 1993; Maire et al., 2012). Using the
Harley et al. (1992) photosynthesis functions, the co-ordination
hypothesis to find Vcmax requires solving the following function
(see Notes S1 for derivation):

0 ¼ Vcmaxð4Ci þ 8C�Þ

1þ aiQ

St ;j eðVcmax=St ;vÞ0:890
 !2" #0:5

�aiQ ðCi þ KmÞ

Eqn 4

(Ci, the internal CO2 partial pressure (Pa); Γ*, the photorespira-
tory CO2 compensation point (Pa); ai, the intrinsic quantum
efficiency of electron transport (mol mol�1 absorbed photons);
Q , the mean absorbed light intensity of the past month
(lmol m�2 s�1); St,j and St,v, the temperature scalars for Jmax,25

and Vcmax,25 to scale to leaf temperature from 25°C; e, the base
of the natural logarithm; Km, the effective Michaelis�Menten
half-saturation constant for carboxylation when accounting for
oxygenation (Pa).) The denominator in the squared term,
St,je(Vcmax/St,v)

0.890, represents Jmax at the mean temperature of
the last month calculated using Eqn 1 and considering tempera-
ture scaling.

The leaf N utilization for assimilation (LUNA) (Xu et al.,
2012; Ali et al., 2016) hypothesis was also evaluated (LUNA_-
global). LUNA optimizes leaf N investment in various photo-
synthetic functions – light capture, electron transport and
carboxylation – to maximize daily net photosynthesis (assimila-
tion � leaf respiration) given mean environmental conditions
(Ali et al., 2016). The LUNA optimization also satisfies empiri-
cal environmental constraints and the constraint of co-
ordination of wc and wj. Thus, LUNA is a combination of
plant plasticity, nutrient limitation, and environmental filtering
hypotheses.

In this study we use the mean environmental conditions of the
past 30 d, consistent with the averaging used for the co-
ordination hypothesis (Ali et al., 2016 use the previous 10 d).

Scaling of Vcmax,25 to leaf temperature

Being enzymatically controlled, at short timescales Vcmax is
highly dependent on leaf temperature and is usually normal-
ized to a reference temperature, commonly 25°C, adding the
subscript 25 to the notation (Vcmax,25). Three methods used to
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scale Vcmax,25 to leaf temperature were investigated (see Fig. S1
and Notes S1 for more details): (1) a saturating exponential
(the SDGVM model default); (2) the Arrhenius equation modi-
fied for enzymatic loss of function at high temperatures as pre-
sented in Medlyn et al. (2002); and (3) the modified Arrhenius
with emprical acclimation of temperature optima to local envi-
ronmental conditions (Kattge & Knorr, 2007).

Model set-up and simulations

The model simulations were run using the CRUNCEP meteoro-
logical data set 1901–2012 (Le Qu�er�e et al., 2014; Figs S2–S4).
PFT distributions were assumed to be static throughout the
whole simulation period and were derived from land cover (LC)
maps provided by the European Space Agency Climate Change
Initiative (www.esa-landcover-cci.org; Figs S5–S12). The PFT
fractions were derived from the LC maps using the LC to PFT
conversion described in Poulter et al. (2015), and adjusted to
account for the separation of C3 and C4 species that cannot be
detected using medium resolution imaging spectrometer wave-
bands (Poulter et al., 2015). The resultant PFT maps were then
further categorized according to the SDGVM PFT classification.

Atmospheric CO2 data were taken from the Scripps Ocean
Institute merged ice-core and flask measurement global data set
(Keeling et al., 2005). The simulations were initialized with a
500-yr spin-up that randomly selected meteorological years from
the period 1901–1920. A separate spin-up was conducted for
each ensemble member. The ensemble consisted of the nine dif-
ferent trait-based approaches to simulate Vcmax (Table 1) and a
subset of these nine approaches – N_global, N_PFT, Co-
ord_global, and LUNA_global – each run with the three temper-
ature scaling assumptions, for a total of 17 simulations. N_-
global, N_PFT, Co-ord_global, and LUNA_global were chosen
to combine with the three temperature scaling approaches to rep-
resent a range of methods, and to see how the temperature scaling
assumptions interacted with the dynamic spatial-scaling plant
plasticity hypotheses (i.e. Co-ord_global and LUNA_global).

Evaluation data sets

The simulated spatial distributions of global GPP were used to
evaluate the impacts of the various Vcmax simulation methods.
No method exists to measure GPP directly at the global scale; all
methods involve assumptions and models (Anav et al., 2015) that
may introduce bias or nonindependence from the SDGVM sim-
ulations. We therefore compared modelled spatial distributions
of GPP to three global GPP proxies – the empirically up-scaled
flux tower estimates of GPP from the MPI (Beer et al., 2010;
Jung et al., 2011), and two data sets based on GOME-2 SIF
(Joiner et al., 2013, 2016).

The two SIF-based methods differed in their scaling of SIF
radiance (Wm�2 sr�1 yr�1) to GPP (gC m�2 yr�1). The first scal-
ing method (SIF-CASA) scaled SIF using modelled GPP from
the CASA Global Fire Emissions Database version 3 (GFED 3)
model (van der Werf et al., 2010). CASA primarily determined
the spatial variation in GPP while SIF determined the temporal

variation: in each gridpoint, monthly SIF data were normalized
by the gridpoint mean and then multiplied by the gridpoint
mean CASA-GFED GPP (Eqn 5; SIF-CASA). The second scal-
ing method (scaled-SIF) was intended to allow SIF to determine
both temporal and spatial variation in GPP: SIF values were
annually integrated in each grid cell, normalized by the global
mean SIF (S�IF) and then multiplied by the global mean of the
SIF-CASA data set (Eqn 6).

cSIFi;j ;t ¼
C�ASAi;j :SIFi;j ;t

S�IFi;j
; Eqn 5

s�SIFi;j ¼
cSIF:S�IFi;j

S�IF
Eqn 6

(C�ASA, the CASA GPP; cSIF, the CASA scaled GPP; sSIF, the
simply scaled SIF; subscripts are the gridpoint latitude, i; longi-
tude, j; and time, t.)

At the time of writing, SIF data were available for the period
2007–2012 and so for consistency we present analyses for all
model output over the same period. A comparison of model
results for the last full decade, 2001–2010, with 2007–2012 gave
quantitatively similar results. The MPI data were available only
until 2011, but given that the MPI data have little inter-annual
variability (Kumar et al., 2016) this was expected to have little
effect.

GPP values predicted by the trait-scaling hypotheses were
compared against the three GPP proxies using standard deviation
(SD), correlation, and centred root mean square difference.
Combining these metrics in polar co-ordinates allows compar-
ison of gridded data sets against a reference. These plots are
known as Taylor diagrams (Taylor, 2001). Data sets were also
analysed using principal component analysis (PCA) to identify
common axes of variation across the data sets. As well as hypothe-
ses and GPP proxies, climate variables (temperature, precipita-
tion, and short-wave radiation (SWR)) were included to
investigate climatic influence in the spatial patterns. Data sets
were mean centred and scaled by SD to give z-scores before con-
ducting the PCA. The R (R Core Development Team, 2011)
package PLOTRIX (Lemon, 2006) was used to plot the Taylor dia-
grams and the function PRCOMP from the STATS package to per-
form the PCA.

Results

Global Vcmax,25 distributions

Global distributions of top-leaf Vcmax,25 predicted by the various
trait scaling assumptions had markedly different means, vari-
ances, and latitudinal distributions (Figs 1, S13). All but one
(Ntemp_global) nutrient limitation hypothesis including
LUNA_global (which is constrained by nutrient limitation) pre-
dicted relatively low variance in global Vcmax,25, with moderate
values in the tropics, high values in the temperate zone, the high-
est values in dry temperate regions, and the lowest values in the
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boreal zone before increasing in the high Arctic (Fig. 1). The
exception (Ntemp_global) showed relatively high Vcmax,25 vari-
ance, with the highest values in the tropics which broadly
decreased with latitude. Inclusion of P, either implicitly (N_ox-
isolPFT; Kattge et al., 2009) for the evergreen broadleaf PFT in
the simulation or explicitly (NP_global; Walker et al., 2014a),
reduced Vcmax,25 marginally in much of the tropics (compared
with N_PFT and N_global, respectively).

By contrast, non-nutrient-based hypotheses (Static_PFT,
Environ_PFT, and Co-ord_global) tended to show the opposite
pattern (Figs 1, S13): more pronounced maximum Vcmax,25 val-
ues in northern cool wet areas dominated by green needle-leaf
PFTs (Scandinavia and the North American Pacific coast) and
dry areas dominated by C3 grasses (the North American west and
Central Asia). The Static_PFT values and the Environ_PFT rela-
tionships were derived from the same Vcmax,25 data set. There-
fore, the observed similar latitudinal pattern was expected, as was
the more spatially homogenous distribution for the static values
per PFT. The co-ordination hypothesis is independent of the
data sets used to produce the Static_PFT and Environ_PFT, and
produced the highest Vcmax,25 values in the coldest and driest
regions – north-eastern Canada and Asia, and the Himalayan
plateau.

Consequences for the simulated carbon cycle

Across the nine Vcmax,25 scaling implementations, global mean
annual GPP for the period 2007–2012 ranged from 108.1 to
128.2 PgC yr�1 (Fig. 2; Table 2). The ensemble mean� SD
annual GPP was 118.7� 6.4 PgC yr�1, giving a coefficient of
variation of 5.4% (Table 2). The variation was somewhat higher
for vegetation and soil C stocks (12.0% and 13.9%, respectively).
Most crucial for C sequestration from the atmosphere under
global change was that net biome productivity (NBP) varied by
27.1% across the hypotheses tested.

The highest global GPP was simulated by the Ntemp_global
implementation of nutrient limitation, closely followed by the
static PFT hypothesis at 127.8 PgC yr�1. The global and PFT
specific relationships of Vcmax,25 to leaf N simulated global GPP
of 121.7 and 116.5 PgC yr�1. The inclusion of P as an additional
limiting factor resulted in lower global GPP by 3.7 and
5.9 PgC yr�1, respectively, than consideration of N limitation
alone. The P-related drop in GPP was a result of disproportion-
ate GPP reduction by P in generally high productivity regions,
that is, the tropics (Figs 2, S14). Environmental filtering (Envi-
ron_PFT) and plant placticity (Co-ord_global) simulated similar
mean GPP at 118.1 and 119.2 PgC yr�1. The constrained
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optimization of functional leaf N allocation (LUNA hypothesis)
yielded the lowest GPP at 108.1 PgC yr�1.

For a subset of Vcmax,25 scaling hypotheses (N_global,
LUNA_global, and Co-ord_global), the more up-to-date modi-
fied Arrhenius temperature scaling (Medlyn et al., 2002; Kattge
& Knorr, 2007) was used, both with and without acclimation of
temperature optima to growth temperature. Using these tempera-
ture scaling functions generally increased global GPP (Fig. S15),
especially for the co-ordination hypothesis (119.1–
131.2 PgC yr�1). The increase in GPP for was primarily
attributable to increasing GPP in the northern temperate and
boreal zones (Fig. 3).

The hypotheses and their implementations also influenced the
temporal trend in GPP (1900–2012) in response to increasing
CO2 and changing climate (Fig. 4a). Ntemp_global resulted in
the strongest change in GPP over the 20th Century, the result of
increasing temperatures stimulating N uptake. The LUNA
hypothesis and the co-ordination hypothesis both predict shal-
lower trajectories in GPP than any of the other scaling

hypotheses. Scaling Vcmax,25 and Jmax,25 using the modified
Arrhenius function with and without temperature acclimation
made little difference to the relative trajectories of GPP when
used in conjunction with N_global, co-ordination, and LUNA
hypotheses (Fig. S16). Across the ensemble, NBP over the period
2007–2012 was strongly related to the change in global GPP over
the time period 1901–2012 (Fig. 4b).

Evaluating spatial distributions of GPP

Overlying the general, climatically driven spatial distribution of
GPP, the differences in the spatial distributions of Vcmax,25 are
observable in the simulated GPP distributions (Figs 2, S3). To
evaluate the various hypotheses, their global GPP predictions
(mean annual GPP over 2007–2012) are compared in Taylor
space (Fig. 5; Table S1) with several GPP proxies (MPI, scaled-
SIF, and SIF-CASA; Figs 2, S17). No matter which GPP proxy
was taken as reference, all hypotheses clustered closely in Taylor
space with a correlation of approximately r = 0.9 (r = 0.85–0.91),
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SD within � 25% (with the exception of Ntemp_global com-
pared against both SIF-based proxies and LUNA compared
against MPI), and centred root mean square difference between
250 and 500 gCm�2 yr�1. All hypotheses were marginally less
correlated to the scaled-SIF data (r = 0.85–0.89) than the other
two GPP proxies.

The hypotheses most closely correlated to MPI and SIF-CASA
were N_global and N_PFT, although the improvements in the
correlations were marginal (r = 0.91 vs 0.88–0.90). Ntemp_-
global was generally less well correlated to all three proxies with

substantially higher SD and predicting the highest global GPP
and strongest latitudinal gradient. The hypotheses that were least
well correlated to MPI were LUNA_global and Environ_PFT,
although again only marginally. Environ_PFT was also less well
correlated with both SIF-based proxies. N_PFT and N_ox-
isolPFT were the most closely correlated to scaled-SIF, being
marginally better than LUNA and N_global. The variance in the
correlation across the hypotheses was greater when hypotheses
were compared against the scaled-SIF proxy (Fig. 5c).

Difference plots between modelled GPP and GPP proxies
(Figs 6, S18, S19) showed that the N_oxisolPFT implementation
tended to perform well against all three proxies, although there
were some substantial under-predictions in tropical forests when
compared against MPI (Fig. S18). However, tropical GPP was
consistently under-predicted by many implementations when
compared against MPI, particularly in the Amazon. Static values
per PFT and Ntemp_global clearly showed the strongest mis-
matches with the GPP proxies. Environ_PFT performed poorly
in northern latitudes, particularly Scandinavia, and southern
China, where Vcmax was predicted to be higher than any other
implementation (Fig. 1). Co-ordination and LUNA performed
well, but tended to over-predict in nothern latitudes when com-
pared against N_PFT and N_oxisolPFT. Across all implementa-
tions, GPP was under-predicted in Europe, eastern North
America, and India while GPP was over-predicted in grasslands,
particularly in South America, western North America and sub-
Saharan Africa.

When the alternative, more realistic modified Arrhenius tem-
perature response hypotheses were implemented, mismatches
with scaled-SIF were unaffected for LUNA_global, slightly wors-
ened in N_global and N_PFT, and noticeably worsened for Co-
ord_global (Fig. 5d). Implemented within the LUNA model, the
three different temperature scaling assumptions made little differ-
ence to global GPP, presumably because the N constraint in
LUNA was strong and the optimization allowed flexibility
around temperature responses to find a similar maximum assimi-
lation rate across temperature scaling assumptions.

The SIF-CASA, scaled-SIF and MPI proxies were generally
more correlated to each other than to any of the Vcmax hypothesis
implementations, but only marginally. Arguably, the proxies
were as dissimilar from each other as the better model hypotheses
were from the proxies, making it difficult to provide a definitive
conclusion about which specific implementation of the various
hypotheses was closest to GPP observation proxies.

Principal component (PC) analysis (PCA) was used to identify
the common patterns and areas of divergence across both the
models and the GPP proxies, and the potential climatic drivers of
the commonalities and differences. PCA demonstrated that 82%
of the spatial variance across simulated GPP, GPP proxies, and
climatic variables was explained by a single PC (Fig. S20). All
model assumptions were closely grouped with high loadings on
PC1 (Fig. 7a); that is, all model predictions were positively corre-
lated with the spatial pattern of the first PC (Fig. 7c). Closely
grouped to the models on PC1 were all observed GPP proxies, as
well as precipitation. SWR and temperature were less strongly
correlated with PC1, although the correlation was also positive,

Table 2 Carbon cycle variables for the nine maximum photosynthetic
carboxylation rate (Vcmax) scaling hypotheses (means over the period 2007
–2012)

GPP NPP NBP Csoil Cveg Ctotal

Static_PFT 127.8 73.4 1.7 1619.8 777.7 2397.5
Ntemp_global 128.2 71.1 2.9 1009.5 768.0 1777.5
N_global 121.7 66.8 2.1 1304.6 680.9 1985.5
N_PFT 116.5 64.9 1.9 1285.6 581.8 1867.4
N_oxisolPFT 110.6 62.5 1.6 1270.9 517.4 1788.3
NP_global 118.0 64.1 1.9 1289.6 694.2 1983.8
LUNA_global 108.1 60.9 1.2 1349.2 558.4 1907.7
Environ_PFT 118.1 66.2 1.9 1253.1 781.2 2034.3
Co-ord_global 119.3 69.6 1.1 1494.9 714.3 2209.2
Mean 118.7 66.6 1.8 1319.7 674.9 1994.6
SD 6.4 3.9 0.5 158.8 94.0 189.6
CV (%) 5.4 5.8 27.3 12.0 13.9 9.5

GPP, gross primary production; NBP, net biome productivity; NPP, net
primary productivity; Csoil, soil carbon stocks; Cveg, vegetation carbon
stocks; Ctotal, total terrestrial carbon stocks; SD, standard deviation; CV,
coefficient of variation. All variables are in gCm�2 yr�1.
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suggesting that precipitation is the primary driver of the domi-
nant global pattern in GPP.

PC2 accounted for c. 11% of spatial variance and segregated
SWR and temperature (both positively correlated to PC2) from
the model implementations, GPP proxies, and precipitation
(Fig. 7d). The remaining PCs combined accounted for 7% of the
spatial variation in the data and it was these remaining PCs that
demonstrated the main areas of divergence between Vcmax imple-
mentations and GPP proxies.

PC3 and PC4 accounted for 4% of variation. SWR and mod-
elled GPP were correlated with PC3, while the GPP proxies
(MPI most strongly) and precipitation were anti-correlated. PC3
shows the regions where modelled GPP was stimulated by light
(primarily in natural grasslands; blue areas Fig. 7e) or restricted
by low light (red areas). By contrast, the GPP proxies appeared to
be stimulated by precipitation (red areas) or restricted by low pre-
cipitation (blue areas). PC4 segregated both SIF proxies from
precipitation. PC4 showed high values almost exclusively in the
world’s major agricultural regions – the North American corn-
belt, the northeastern and southern regions of Brazil and the area
surrounding S~ao Paulo, Europe, the Russian bread basket, India,
particularly northern India, central eastern China, and even
smaller agricultural regions such as the Indus valley in Pakistan
and alongside the Rift Valley in East Africa.

Discussion

We tested a series of plausible trait-scaling hypotheses for Vcmax,
many of which are implemented in terrestrial ecosystem models,
and found that they led to substantial variability in SDGVM sim-
ulated global GPP. Mean annual GPP ranged across the imple-
mentations of the hypotheses from 108.1 to 128.2 PgC yr�1

(mean � SD 118.7� 6.4 PgC yr�1). The range in global GPP
demonstrates the high sensitivity of simulated GPP to Vcmax and
this range encompasses 65% of that from a set of three models
run in coupled and uncoupled modes (1990–2009 mean annual
GPP range of 130–161 PgC yr�1; mean � SD

145.6� 12.6 PgC yr�1; Anav et al., 2015). The simulations used
by Anav et al. (2015) were drawn from two inter-comparison
projects, each with their own protocols, which is likely to inflate
the range of simulated GPP compared with the simulations pre-
sented in this study, which share a single protocol. Thus, varia-
tion in simulated GPP caused by Vcmax trait scaling hypotheses
probably represents a substantial source of variation in GPP
across models, which is currently unaccounted for in model inter-
comparisons.

Dynamic trait-scaling based on nutrient limitation, in which
plant nutrient status is inversely related to the cost of N acquisi-
tion, performed better than other hypotheses when compared
against three GPP observation proxies. PFT specific relationships
of Vcmax to leaf N resulted in the best performance. Static trait
values per PFT were not supported by this study. The better per-
formance of nutrient limitation implementations was most
apparent when compared against the scaled-SIF GPP proxy and
we argue that this is a more independent, and thus more robust,
comparison.

Evaluation of Vcmax distributions

Discerning which is the most realistic trait-scaling hypotheses
was nontrivial. Currently no independent, globally gridded esti-
mates of Vcmax,25 distributions exist. Many regions in global
Vcmax data sets are only sparsely represented and one of the most
comprehensive global Vcmax data sets was employed to compile
the Vcmax,25 relationships to environment (Environ_PFT) for the
trait-filtering hypothesis (Kattge et al., 2011; Verheijen et al.,
2013). The Environ_PFT prediction of the global Vcmax,25 distri-
bution (Fig. 1) is an empirical upscaling of Vcmax,25 point mea-
surements using global climatic and land-cover information.
Unlike other hypotheses tested, which additionally rely on either
model process representation (e.g. simulation of leaf N) or more
theoretical assumptions (e.g. co-ordination), Environ_PFT is
data-driven and contingent only on the assumption that Vcmax,25

scales with environment (coefficient of determination 0.49–0.82
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for C3 plants; see Notes S1; and Ali et al., 2015; Verheijen et al.,
2013).

The data-driven Environ_PFT Vcmax,25 values are higher in
northern latitudes relative to the tropics, as are Vcmax,25

distributions for the co-ordination hypothesis, which is in line
with current literature (A. Rogers et al., unpublished). All the N-
based hypotheses in SDGVM (including LUNA) generally
showed higher Vcmax,25 in the tropics than in the boreal and
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tundra zones (Fig. 1), which is not consistent with our data-
driven estimate (Environ_PFT). N limitation hypothesis predic-
tions of tropical Vcmax,25 were consistent with the literature, often
reported in the range 20–80 lmol m�2 s�1 (Domingues et al.,
2010, 2015; V�arhammar et al., 2015; Norby et al., 2017), but
were not consistent with values reported for the high Arctic, in
the range 60–160 lmol m�2 s�1 (A. Rogers et al., unpublished).

The primary cause of the zonal Vcmax,25 distribution for the
implementations constrained by N is the core SDGVM hypothe-
sis that plant nutrient status is inversely related to soil C. This
hypothesis is based on observations that plant N uptake decreases
as dependence on organic N supply (correlated with mycorrhizal
N supply) increases, which in turn is hypothesized to be a conse-
quence of increasing soil organic matter (Read, 1991; Woodward
et al., 1995). The global distributions of Vcmax,25 predicted by the
nutrient limitation hypothesis are therefore generally the inverse
of the distributions of soil C (Figs S21–S23), resulting in a broad
latitudinal gradient in leaf N as soil decomposition rates slow
with cooling temperatures. This cost-based hypothesis for plant
N status reproduces the broad macro-ecological pattern of
increasing N limitation as latitude increases suggested by leaf
C : N and N : P stoichiometry (McGroddy et al., 2004; Reich &
Oleksyn, 2004; Ordonez et al., 2009).

The original LUNA study at the global scale showed lower
Vcmax,25 in the tropics and global distributions of top-leaf
Vcmax,25 that were more similar to those predicted by Envi-
ron_PFT and Co-ord_global (Ali et al., 2016) than the N

limitation hypotheses to which LUNA was more similar in this
study. The defining difference is that Ali et al. (2016) assumed a
constant top-leaf N of 2 gm�2, while in SDGVM leaf N varies as
a function of soil C. The results in SDGVM suggest that LUNA
is more sensitive to variability in leaf N than to variability in envi-
ronment.

Evaluation of GPP distributions

PCA demonstrated that precipitation was the primary driver of
the dominant mode of global GPP distributions in both the GPP
proxies and all model simulations, and was therefore responsible
for the strong correlation (0.85–0.91) of all hypotheses to the
proxies. PCA indicated that the model simulations diverged from
the observation proxies for two reasons: (1) a relative GPP stimu-
lation by photosynthetically active radiation (PAR) in dry grass-
lands in SDGVM opposing a relative GPP reduction by low
precipitation in the proxies (and vice versa; PC3); and (2) a rela-
tive stimulation of GPP in SIF-based proxies in agricultural areas
of the planet that was anti-correlated with precipitation and that
was not apparent in the SDGVM or MPI (PC4).

The stimulation of GPP by PAR without a counteracting
reduction from low precipitation in SDGVM is probably
attributable to the relative insensitivity of SDGVM to low soil
water avaialability when compared against other models (Medlyn
et al., 2016). In contrast, the ubiquity of the under-prediction in
all of Earth’s major agricultural regions is probably attributable
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to agricultural improvement which was not represented by
SDGVM – for example, improved seeds, fertilization, and irriga-
tion. The negative correlation of precipitation to PC4 and the
positive SIF proxy correlation in these agricultural areas (Fig. 7)
demonstrate the independence of GPP from precipitation in
these regions. This independence implies that irrigation may be
the primary driver of the under-prediction of GPP, while recog-
nizing that irrigation levels are highly heterogeneous within these
regions (Siebert et al., 2010).

GPP proxies (MPI, SIF-CASA, and scaled-SIF) were as dissim-
ilar to each other as the better performing hypotheses were to the
proxies. PCA showed that the SIF-based proxies had higher GPP
in dry, agricultural regions of the planet compared with MPI.
Higher SIF-based GPP in cropland areas compared with MPI
has been previously observed (Guanter et al., 2014). This dissimi-
larity indicates an uncertain constraint from observations.

SIF is linearly related to MPI estimates of GPP at the temporal
and spatial scales typically simulated by global TEMs (Guanter
et al., 2014; Parazoo et al., 2014). SIF accurately reproduces sea-
sonality in GPP (Joiner et al., 2014), although the coefficients of
the linear relationships between SIF and GPP may vary with veg-
etation type (Frankenberg et al., 2011; Guanter et al., 2012; Para-
zoo et al., 2014). By assuming that the scaled-SIF proxy follows
the same linear relationship to GPP across all terrestrial ecosys-
tems, systematic errors (epistemic uncertainties in the classifica-
tion of Beven (2016)) are likely in the scaled-SIF estimate of the
global GPP distribution. However, it is also extremely likely that
epistemic uncertainties are common in the system of global GPP
estimation in the MPI data set – eddy-covariance flux estimates
of net ecosystem exchange, empirical flux partitioning to derive
GPP, derivation of empirical relationships of GPP with climate
variables, and scaling of point estimated GPP using a gridded

PC1 loading

P
C

2 
lo

ad
in

g

−0.2
0.0
0.2
0.4
0.6
0.8

0.0 0.1 0.2 0.3

PC3 loading

P
C

4 
lo

ad
in

g

−0.5

0.0

0.5

−0.6 −0.4 −0.2 0.0 0.2

−40
−20

0
20
40
60
80

−100 0 100

−4
−2

0
2
4
6
8

10

−40
−20

0
20
40
60
80

−100 0 100

−2

−1

0

1

2

3

−40
−20

0
20
40
60
80

−100 0 100

−3
−2
−1

0
1
2

−40
−20

0
20
40
60
80

−4
−3
−2
−1

0
1
2

Static_PFT
Ntemp_global
N_global
N_PFT
N_oxisolPFT
NP_global
LUNA_global
Environ_PFT

Co-ord_global
MPI
Scaled-SIF
SIF-CASA
prc
tmp
swr

(c)(a)

(d)

(e)

(f)

(b)

Fig. 7 Principal components (PC) analysis of the nine implementations of the four maximumphotosynthetic carboxylation rate (Vcmax) trait-scaling
hypotheses with the three gross primary production (GPP) proxies and three climatic variables: precipitation, temperature, and short-wave radiation.
Loadings of variables on (a) PC1 and PC2, and (b) PC3 and PC4.Maps of (c) PC1 pattern, (d) PC2 pattern, (e) PC3 pattern, and (f) PC4 pattern. Break points
on the colour scale are at quantiles (0.025, 0.1, 0.2, 0.35, 0.65, 0.8, 0.9, and 0.975) in the gridpoint scores on each PC to give even representation of the data.

� 2017 UT-Battelle LLC

New Phytologist� 2017 New Phytologist Trust
New Phytologist (2017) 215: 1370–1386

www.newphytologist.com

New
Phytologist Research 1381



climate data set. The scaled-SIF data are a relatively direct,
global-scale signal from the photobiochemical photosynthetic
pathway and their spatial distribution is entirely independent of
the model output, in contrast with the MPI product and SIF-
CASA, both of which use climate data in their calculation.

While the Environ_PFT had the most data-driven, and thus
what we believe to be more accurate Vcmax,25 distributions, Tay-
lor plots (Fig. 5) and difference plots (Figs 6, S7, S8) showed that
its relative global GPP distributions had a larger mismatch to
GPP proxies than the N limitation implementations in the
northern latitudes. This difference was most apparent when com-
pared against scaled-SIF. The latitudinal gradient in leaf N gener-
ated by the nutrient limitation implementations, and thus
Vcmax,25, redistributes global GPP towards the tropics compared
with other hypotheses (Figs 2, 6, S14), yielding global GPP dis-
tributions more similar to global GPP proxies.

The mismatch of the data-driven estimates of Vcmax,25 from
Environ_PFT indicates latitudinal variability in the relationship
of Vcmax,25 with GPP. The reason for this mismatch is unclear.
SDGVM may over-predict leaf area index (LAI) in northern
latitudes, and it may be that lower Vcmax in nutrient limitation
implementations is compensating for high LAI. However, using
a multi-scale state estimation procedure to combine GPP esti-
mates from TEMs, SIF, and flux towers, Parazoo et al. (2014)
noted a redistribution of GPP from northern latitudes to the
tropics in the optimized GPP state compared with the prior
estimates from the TEMs. Similar decoupling between Vcmax,25

and GPP at high latitude has also been observed in preliminary
simulations of the Community Land Model (CLM version 5.0)
using satellite phenology (i.e. data-driven LAI), LUNA, and
observed leaf N (R. A. Fisher, pers. comm.). Alternatively, there
may be insufficient Vcmax data for high-latuitude systems and
normalizing Vcmax to 25°C in regions that experience these
temperatures only in extreme cases and with generic tempera-
ture scaling functions could be introducing a bias in the Vcmax

data.
Recent evidence has suggested that leaf P may modify, co-

limit, or replace the Vcmax,25 to N relationship (Reich & Oleksyn,
2004; Domingues et al., 2010; Walker et al., 2014a; Norby et al.,
2017), although the physiological link to photosynthesis is more
complex. Considering P limitation either implicitly (N_ox-
isolPFT) or explicitly (NP_global) did not clearly improve the fit
to the GPP proxies (compared against their N-only counterparts)
based on the quantitative comparison. However, a visual compar-
ison of the difference plots suggests that the N_oxisolPFT imple-
mentation produced the smallest overall difference compared
with GPP proxies, indicating perhaps a role for P limitation of
photosynthesis in the tropics. A map of oxisols vs nonoxisols to
segregate evergreen broadleaved PFTs would probably improve
the simulation.

GPP trend and NBP

Most importantly for projections of the global C cycle under
environmental change, the response of GPP to global change
(1901–2012) across the Vcmax hypotheses was different, with

plant-centric acclimation hypotheses showing a lower response of
GPP to increasing CO2. NBP variability over 2007–2012 was
strongly related to the change in GPP over the 20th Century and
the 5.4% coefficient of variation in GPP propagated through to
29% variation in NBP.

Projecting the trajectory of land C uptake is the major purpose
of global terrestrial ecosystem models and the ‘acclimation’ of
Vcmax,25 to increasing CO2, and perhaps other factors of global
change, predicted by these hypotheses has consequences for the
projected terrestrial C sink. We cannot currently evaluate these
consequences with data because of the difficulty in measuring
GPP and terrestrial NBP, especially the 20th Century trends,
although coupled Earth system models are thought to underesti-
mate the global C sink (Hoffman et al., 2014).

Co-ord_global and LUNA_global predict the shallowest, and
almost indentical, GPP trends over the 20th Century (Fig. 4a).
The co-ordination hypothesis (also embedded within LUNA)
restricts CO2 fertilization of GPP to the effect of CO2 on light-
limited photosynthesis. Assuming all else is equal, increasing
CO2 increases both the carboxylation-limited photosynthetic
rate, wc, and the electron transport-limited rate, wj, but wc is
increased in greater proportion (the degree of which is dependent
on the choice of model for wj). Thus, co-ordination reduces
Vcmax at the higher CO2 concentration to balance wc with wj.
Thus, under co-ordination, the CO2 fertilization of GPP is
primarily driven by the CO2 response of light-limited photosyn-
thesis, which is lower than the CO2 response of carboxylation-
limited photosynthesis. The decline in Vcmax driven by the
co-ordination hypothesis is stronger than the decline in Envi-
ron_PFT (Fig. S24), which was the only hypothesis to have an
explicit reduction of Vcmax in response to CO2. We assumed a
fixed relationship between Jmax and Vcmax for the implementation
of co-ordination in this analysis (Eqn 5). Given that these plant
plasticity hypotheses are founded within the concept of optimal-
ity (Xu et al., 2012; Prentice et al., 2014; Wang et al., 2014), the
restriction of the CO2 response to the smaller electron transport
(light) limited response under co-ordination suggests that the
optimal solution would include an increase in the Jmax to Vcmax

ratio as CO2 concentrations increase.
In summary, based on an evaluation against global GPP, the

analysis of multiple Vcmax trait scaling hypotheses suggested that
nutrient limitation was the more likely driver of global Vcmax dis-
tributions. N limitation was implemented via a relationship of
decreasing leaf N with increasing soil C based on increasing costs
of N uptake. Of the nutrient limitation implementations, the
PFT specific relationships to leaf N that implicitly accounted for
P limitation in broadleaved evergreens (Noxisol_PFT; Kattge
et al., 2009) were found to most closely match the GPP proxies.
Incorporating a global map of oxisols would probably help to fur-
ther refine this implementation. For SDGVM and other global C
cycle models, we recommend the Noxisol_PFT relationships to
leaf N, particularly for models that can simulate N cycling or spa-
tially dynamic leaf N. For carbon C only models, the Static_PFT
hypothesis did not reproduce spatial distributions of global GPP
as well and we suggest that the scaled relationship of N uptake to
soil C (Woodward et al., 1995) without the temperature modifier
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could be a relatively straightforward way to implement dynamic
leaf N allowing the use of the Noxisol_PFT relationships. These
recommendations are contingent on the GPP proxies used, which
are uncertain. We suggest that further measurements of Vcmax in
boreal and Arctic ecosystems that include the Vcmax response to
temperature in these ecosystems will help to discriminate among
alternate hypotheses.
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Fig. S20 Variance explained by each principal component.

Figs S21–S23 Modelled relationships between leaf N and
Vcmax,25 with soil carbon.

Fig. S24 20th and 21st change in modelled Vcmax,25.

Table S1Metrics for Taylor plots

Notes S1 Additional methods description.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated
to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews. 

Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. 
We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time
to decision is <26 days. There are no page or colour charges and a PDF version will be provided for each article. 

The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table
of contents email alerts.

If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient,
our USA Office (np-usaoffice@lancaster.ac.uk)

For submission instructions, subscription and all the latest information visit www.newphytologist.com

New Phytologist (2017) 215: 1370–1386 � 2017 UT-Battelle LLC

New Phytologist� 2017 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist1386




