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Abstract

Hidden Markov Models for Analysis of Multimodal Biomedical Images

by

Renuka Vidyut Shenoy

Modern advances in imaging technology have enabled the collection of huge

amounts of multimodal imagery of complex biological systems. The extraction of

information from this data and subsequent analysis are essential in understanding

the architecture and dynamics of these systems. Due to the sheer volume of the

data, manual annotation and analysis is usually infeasible, and robust automated

techniques are the need of the hour. In this dissertation, we present three hid-

den Markov model (HMM)-based methods for automated analysis of multimodal

biomedical images. First, we outline a novel approach to simultaneously classify

and segment multiple cells of different classes in multi-biomarker images. A 2D

HMM is set up on the superpixel lattice obtained from the input image. Pa-

rameters ensuring spatial consistency of labels and high confidence in local class

selection are embedded in the HMM framework, and learnt with the objective

of maximizing discrimination between classes. Optimal labels are inferred using

the HMM, and are aggregated to obtain global multiple object segmentation. We

then address the problem of automated spatial alignment of images from differ-
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ent modalities. We propose a probabilistic framework, constructed using a 2D

HMM, for deformable registration of multimodal images. The HMM is tailored

to capture deformation via state transitions, and modality-specific representation

via class-conditional emission probabilities. The latter aspect is premised on the

realization that different modalities may provide very different representation for

a given class of objects. Parameters of the HMM are learned from data, and

hence the method is applicable to a wide array of datasets. In the final part of the

dissertation, we describe a method for automated segmentation and subsequent

tracking of cells in a challenging target image modality, wherein useful information

from a complementary (source) modality is effectively utilized to assist segmenta-

tion. Labels are estimated in the source domain, and then transferred to generate

preliminary segmentations in the target domain. A 1D HMM-based algorithm

is used to refine segmentation boundaries in the target image, and subsequently

track cells through a 3D image stack. This dissertation details techniques for

classification, segmentation and registration, that together form a comprehensive

system for automated analysis of multimodal biomedical datasets.
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Chapter 1

Introduction

Modern advances in imaging technology have enabled the collection of huge amounts

of image data of complex biological systems. The extraction of information from

this image data and subsequent analysis and interpretation on the information are

the central tasks in the fast-growing field of biomedical image computing. In the

recent past, there has been an increased interest in the development of “omics”

fields, which are fields in biology devoted to the characterization and quantifica-

tion of organisms in terms of their anatomy, physiology and dynamics. Due to the

sheer size of these datasets, manual annotation and analysis is usually not feasible

- the development of robust automated and semi-automated techniques is critical

for analysis and diagnosis.

Connectomics [1] is an omics field which aims at comprehensively mapping an

1



Chapter 1. Introduction

organism’s neural connections at various scales. Analyzing this map of connections

is essential in understanding the the architecture and dynamics of the nervous

system. To assist in the understanding and interpretation of connectomes, tissues

may be imaged with two or different modalities, resulting in complementary types

of information (eg., structural and functional). While multimodal image data can

be of great utility in providing insights about the tissue being imaged, it is often

challenging to work with and usually requires specialized methods for automated

analysis.

1.1 The RC1 Connectome Dataset

The methods described in this dissertation have all been tested on the RC1

connectome [2], the first practical connectome dataset from mammalian retina.

RC1 is a multimodal built by imaging a 0.25 mm diameter, 370 serial section col-

umn of rabbit retinal tissue. 341 of these slices are acquired using an automated

transmission electron microscope (ATEM) at a resolution of 2.18 nm/pixel. Com-

putational Molecular Phenotyping (CMP) is a light microsopy modality that is

used to image the remaining 29 sections of the volume. In CMP, each physical

slice is probed using one of six molecular markers, namely glutamate, glutamine,

glycine, taurine, 4-aminobutyrate (GABA), and the excitation marker 1-amino-4-

guanidobutane (AGB). The ATEM modality clearly shows the structure of cells,
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Chapter 1. Introduction

but does not give any substantial functional information, while CMP images form

a complementary source of information that do not show structure clearly but

provide functional information. RC1 contains a total of 1132 cells belonging to 7

major cell classes. We focus our attention mainly on the first few slices, which con-

sist of a ‘capstone’ CMP section containing six molecular marker images, followed

by thirty ATEM slices, and which contains 581 cells.

Through the dataset, there are slices that were skipped due to damaged tissue.

Physical defects (tissue folding/breakage) in the tissue being imaged is also present

in some portions of RC1, leading to large areas that are unusable in the acquired

image data. We manually mark damaged regions or slices of the data before

analysis to prevent errors later in the process.

The data within RC1 totals 16.5 terabytes, and it is estimated to require over

a million annotations to completely label the structures within the dataset. Large

scale automated annotation can hence be of significant help in reducing time to

downstream analysis.

1.2 Dissertation Overview

We begin with a short discussion on hidden Markov models in Chapter 2.

In Chapter 3, we describe a probabilistic approach to simultaneously classify

and segment multiple cells of different classes in a multi-variate setting. Super-
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Chapter 1. Introduction

pixels are extracted from the input vector-valued image, and a 2D hidden Markov

model (HMM) is set up on the superpixel graph. HMM emission probabilities are

used to ensure high confidence in local class selection based on superpixel feature

vectors. Spatial consistency of labels is enforced by proper choice of transition

probabilities, which are conditioned on the feature vectors of neighboring super-

pixels at each location. Optimal superpixel-level class labels are inferred using

the HMM, and are aggregated to obtain global multiple object segmentation.

In Chapter 4, we describe a method for deformable registration with a generic

theoretical formulation. Smoothness is ensured via transition probabilities of the

2D HMM and cross-modality similarity via class-conditional, modality-specific

emission probabilities. The method is first derived for unimodal data and then

extended to the multimodal, multi-channel setting. We also describe an edge-

adaptive constraint which allows for variation in degree of smoothness across the

image.

Chapter 5 describes a method to effectively utilize complementary information,

if available, in ATEM segmentation. Images of both modalities are oversegmented

into superpixels. A 2D HMM is set up on the superpixel graph to determine the

optimal superpixel mapping between images. This mapping is used to trans-

fer labels and generate preliminary segmentations in the ATEM domain, whose

boundaries are then refined, to eliminate imprecisions due to the superpixel grid,
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Chapter 1. Introduction

using a 1D HMM based contour refinement method. The refined cell boundary

is now used to initialize a tracking algorithm through the ATEM stack. As an

added benefit, this method intrinsically transfers cell label information from CMP

to ATEM.

Finally, in Chapter 6, we discuss possible future directions and provide con-

cluding remarks.

The complementary techniques described in this dissertation, when applied in

conjunction with each other, form a complete system for classification, registra-

tion, segmentation and tracking of multimodal data.

5



Chapter 2

Hidden Markov Models

In this chapter, we provide a brief overview of conventional (one-dimensional)

hidden Markov models and the algorithms involved in their optimization, followed

by a discussion on extending to two dimensions and addressing the issue of high

computational complexity associated with it.

2.1 One-dimensional Hidden Markov Models

One-dimensional hidden Markov model (1D HMMs) were introduced in the

late 1960s and early 1970s, with a series of theoretical papers [3, 4, 5]. Subse-

quently, they have been used in applications in many fields, most notably speech

processing [6, 7, 8, 9]. There are many reasons for the widespread use and suc-

cess of the HMM. First, due its rich mathematical structure, the HMM can form
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Chapter 2. Hidden Markov Models

Figure 2.1: A one-dimensional hidden Markov model, with hidden states (grey
squares) and observable emissions (circles).

the theoretical basis for even complex applications. Second, it has been found to

work well in practice for a variety of applications when applied properly. Finally,

the central problems associated with HMM - namely inferring the optimal state

sequence given observation data and a model, and learning the parameters of the

model - can be solved using efficient, effective algorithms. A comprehensive tuto-

rial on the theory of HMMs and some applications in speech processing may be

found in [10].

The HMM is a doubly embedded stochastic process - it consists of an under-

lying stochastic Markov process that is not observable (i.e., hidden), but can only

be observed through a set of visible stochastic processes that produce observations

(“emissions”).

An HMM is characterized by the following:

(1) N , the number of states in the model. Although states are hidden, they may

have some significance in the context of the application. The set of states is

usually denoted by S = {S1, S2, · · · , SN}, and the state at a given time t by

qt.

7



Chapter 2. Hidden Markov Models

(2) M , the number of distinct observable symbols per state (in the case of dis-

crete emissions) or a function describing the emission mechanism (in the

case of continuous emissions). Individual symbols are usually denoted by

V = {v1, v2, · · · , vM}, and the observation at a given time t by ot.

(3) The state transition probability distribution A = {aij}, where

ai,j = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N.

(4) The observation probability distribution for each state j, given by B =

{bj(k)}, where

bj(k) = P (vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M

for discrete emission HMMs and B = {bj(o)}

bj(ot) = p(ot|qt = Sj), 1 ≤ j ≤ N

for continuous emission HMMs.

8



Chapter 2. Hidden Markov Models

(5) The initial state distribution π = {πi} where

πi = P (q1 = Si) 1 ≤ i ≤ N.

Given the above parameters, an HMM-based system operates as follows:

1. Set t = 1 and choose an initial state q1 = Si according to π, and generate

o1 according to B.

2. Transit to a new state qt+1 according to A, set t = t + 1 and generate ot

according to B.

3. Repeat the previous step till termination, t = T .

This results in an observation sequence O = o1o2 · · · oT , with an underlying

state sequence Q = q1q2 · · · qT . From the above description, it is clear that an

HMM is completely specified by the probability measures. The notation

λ = (A,B, π) (2.1)

is used to denote the complete parameter set of the HMM, or equivalently, the

“model”.

9



Chapter 2. Hidden Markov Models

2.1.1 The Three Basic Problems for HMMs

In order to use the HMM as described above in applications of practical inter-

est, three fundamental problems must be solved.

Problem 1: How to efficiently compute the probability of a given observation se-

quence, given the model?

Problem 2: How to choose the optimal state sequence corresponding to the given

observation sequence, given the model?

Problem 3: How to adjust the model parameters to maximize probability of the

given observation sequence?

Effective solutions with formal mathematical foundations exist for each of these

problems, and are described below.

Problem 1 - The Evaluation Problem

Under the assumption that observations are statistically independent, the

probability of an observation sequence O for a given state sequence Q is

P (O|Q, λ) = bq1(o1) · bq2(o2) · · · bqT (oT ). (2.2)

10



Chapter 2. Hidden Markov Models

The probability of the state sequence is given by

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT . (2.3)

The joint probability of O and Q is the product of the above two terms.

P (O,Q|λ) = P (O|Q, λ)P (Q|λ). (2.4)

The probability of O given the model can be obtained by summing the joint

probability over all possible state sequences.

P (O|λ) =
∑
allQ

P (O|Q, λ)P (Q|λ) (2.5)

=
∑

q1,q2,··· ,qT

πq1bq1(o1)aq1q2bq2(o2) · · · aqT−1qT bqT (oT ) (2.6)

Naively computing P (O|λ) according to this equation requires 2T ·NT compu-

tations, but with the use of the forward-backward procedure [4] described below,

this computation can be solved at O(N2T ) complexity.

First, the forward variable αt(i) is defined as the joint probability of the partial

observation sequence from time 1 to time t and the state Si at time t, i.e.,

αt(i) = P (o1o2 · · · ot, qt = Si|λ).

11



Chapter 2. Hidden Markov Models

The value of αt(i) can be solved for inductively, as follows:

(i) Initialization:

α1(i) = πibi(o1), 1 ≤ i ≤ N. (2.7)

(ii) Induction:

αt+1(j) =

[ N∑
i=1

αt(i)aij

]
bj(ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (2.8)

(iii) Termination:

P (O|λ) =
N∑
i=1

αT (i). (2.9)

Thus, the evaluation problem is solved using the forward variable. At this

point, we also define the backward variable βti as the probability of the partial

observation sequence from time t+ 1 to time T and the state Si at time t, i.e.,

βt(i) = P (ot+1ot+2 · · · oT |qt = Si, λ).

While the backward variable is not used in the solution of this problem, we use

it in the following problems. The value of βt(i) can also be solved for inductively,

as follows:

12
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(i) Initialization:

αT (i) = 1 1 ≤ i ≤ N. (2.10)

(ii) Induction:

βt(i) =
N∑
j=1

aijbj(ot+1)βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N. (2.11)

Problem 2 - The Decoding Problem

Here, the task is to solve for the optimal state sequence under a given opti-

mality criterion. There are several possible reasonable criteria for decoding; we

detail solutions for two commonly used criteria.

Criterion 1 Choose states which are most individually most likely, i.e.,

qt = argmax
Si

P (qt = Si|O, λ).

To solve this problem, we define the occupancy probability γt(i) as the probability

of being in state Si and time t, given the observation sequence and the model.

γt(i) = P (qt = Si|O, λ) (2.12)
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This can be expressed in terms of the forward and backward variables as

γt(i) =
αt(i)βt(i)

P (O|λ)
=

αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(2.13)

since αt(i) measures probability of both the observation sequence from time point 1

through t and the state Si at t, while βt(i) measures probability of the observation

sequence from time point t+ 1 through T . Due to the normalization factor, γt(i)

can be interpreted as a probability measure, i.e.,
∑N

i=1 γt(i) = 1 ∀t, and the

optimal state sequence is simply the sequence of individually most likely states,

qt = argmax
Si

γt(i), 1 ≤ t ≤ T. (2.14)

Criterion 2 Choose states which result in the single most likely state sequence,

i.e.,

Q∗ = argmax
Q

P (Q,O|λ).

The Viterbi algorithm [11] is a dynamic programming method that is widely

used to solve this problem, with O(N2T ) complexity. We first define δt(i) as the

highest probability along the single path at time t, which accounts for the first t
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observations and ends with state Si, i.e.,

δt(i) = max
q1,q2,··· ,qt−1

P (q1q2 · · · qt−1, qt = i, o1o2 · · · ot|λ). (2.15)

By induction, we obtain δt+1(j) as

δt+1(j) = [max
i
δt(i)aij] · bj(ot+1). (2.16)

To retrieve the most likely state sequence, we keep track of the arguments that

maximize (2.16) at each t and j. This is done via a trellis, denoted by ψt(j), as

follows:

(i) Initialization:

δ1(i) = πibi(o1) 1 ≤ i ≤ N. (2.17)

ψ1(i) = 0. (2.18)

(ii) Recursion:

δt(j) = [ max
1≤i≤N

δt−1(i)aij] · bj(ot+1), 1 ≤ i ≤ N, 2 ≤ t ≤ T (2.19)

ψt(j) = [argmax
1≤i≤N

δt−1(i)aij], 1 ≤ i ≤ N, 2 ≤ t ≤ T (2.20)
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(iii) Termination:

P ∗ = [ max
1≤i≤N

δt(i)] (2.21)

q∗T = [argmax
1≤i≤N

δt(i)]. (2.22)

(iv) State sequence backtracking:

q∗t = ψ∗t+1(q∗t+1), t = T − 1, T − 2, · · · , 1 (2.23)

Problem 3 - The Training Problem

The problem of parameter estimation is the most difficult of the three problems

- there are no known analytical solutions and no algorithm that guarantees opti-

mality in estimation of the model parameters given a finite observation sequence.

As a result, popular training techniques update parameters such that P (O|λ) is

maximized locally, using techniques such as gradient descent [8] or expectation-

maximization(EM) [12]. Here, we discuss the Baum-Welch algorithm [5], which is

an implementation of EM. (Extensive discussions on the Baum-Welch algorithm

can be found in [13].) First, we define ξt(i, j), the probability of being in states

Si and Sj at times t and t + 1 respectively, given the model and the observation
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sequence.

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ) (2.24)

This can be rewritten in terms of the forward-backward variables as

ξt(i, j) =
αt(i)aijbj(Ot)βt+1(j)

P (O|λ)
=

αt(i)aijbj(Ot)βt+1(j)∑N
i,j=1 αt(i)aijbj(Ot)βt+1(j)

. (2.25)

From the definition of γt(i), we can relate γt(i) and ξt(i, j) as follows:

γt(i) =
N∑
j=1

ξt(i, j) (2.26)

We denote the current model parameters by λ = (A,B, π) and the re-esimated

model parameters by λ′ = (A′, B′, π′). Baum’s auxiliary function is then defined

as

Q(λ, λ′) =
∑
Q

P (O,Q|λ) logP (O,Q|λ′). (2.27)

It has been proven that maximization of Q(λ, λ′) leads to an increased likelihood,

i.e.,

max
λ′
Q(λ, λ′) =⇒ P (O|λ′) > P (O|λ), (2.28)

resulting in the likelihood eventually converging to a critical point through re-

peated applications.
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2.2 Two-dimensional Hidden Markov Models

A natural progression would be to leverage the ability of 1D HMMs to ef-

fectively model the behavior of one-dimensional signals, and extend to two di-

mensions (i.e., model spatial behavior). The Markov random field (MRF) is

the 2D counterpart of the 1D Markov chain, where the notion of time-based

ordering is replaced by the concept of spatial neighborhood. We consider a com-

monly used subclass of MRF, a first order Markov mesh random field (MMRF),

where the neighborhood of a node is defined as the set of nodes which are hor-

izontally and vertically adjacent to it. The concept of past, present and fu-

ture which are used in Markov chains can now be reintroduced to MMRFs. If

Q = {qx,y, x = 1, 2, · · · , X, y = 1, 2, · · · , Y } is an X × Y array of states and

Qx,y = {qm,n,m < x orn < y} represents the set of states to the left or above qx,y,

the first order MMRF can be defined by the following property:

P (qx,y|Qx,y) = P (qx,y|qx,y−1, qx−1,y). (2.29)

With this definition, we can apply the idea of hidden states and observable

emissions to the MMRF (see Fig. 2.2) as we did with Markov chains, and develop

algorithms for the fundamental optimization problems for 2D HMMs. However,

though the described algorithms are computationally efficient for the 1D case,
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Figure 2.2: A two-dimensional hidden Markov model build on a first order
Markov mesh random field.

directly extending them to 2D leads to an exponential increase in complexity

and is intractable in most practical applications. There has been considerable

interest in developing algorithms that approximate the performance of 2D HMMs

at a lower complexity. Since the properties of 1D HMMs are well understood,

most approaches approximate 2D HMMs with one [14] or more [15, 16, 17] 1D

HMMs. The Path Constrained Variable State Viterbi (PCVSV) [14] limits the

Viterbi search space, considering only the K state sequences having the highest

observation probability. A suitable value of K is selected under the trade-off be-

tween complexity and accuracy. The Pseudo 2D HMM [15] consists of a set of

“super” states, assumed to be Markovian, which subsume a set of simple Marko-

vian states. The turbo-HMM (T-HMM) [16] assumes separability of horizontal
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and vertical dependencies, and decodes the HMM separately as rows and columns

that “communicate”. The Conditional Iterative Decoding (CID) [17] algorithm

builds on the idea of T-HMMs, removing the requirement for horizontal-vertical

separability at the cost of increased computation time. The T-HMM approxi-

mation has been shown [16] to outperform related algorithms while maintaining

low run time, and is used for training and decoding 2D HMMs throughout this

dissertation.

2.2.1 Turbo Hidden Markov Models

The turbo hidden Markov model was introduced in [16] and consists of hori-

zontal and vertical 1D HMMs that are decoded separately but “communicate” in

a manner similar to decoding of turbo codes. Given an X × Y two-dimensional

sequence of states Q = {qx,y, x = 1, 2, · · · , X, y = 1, 2, · · · , Y }, a set of observa-

tions O = {ox,y, x = 1, 2, · · · , X, y = 1, 2, · · · , Y }, and model parameters λ, the

joint likelihood of the 2D HMM can be written as

P (O,Q|λ) = P (O|Q, λ)P (Q|λ) (2.30)

=
∏
x,y

P (ox,y|qx,y, λ)P (qx,y|qx,y−1, qx−1,y, λ) (2.31)
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The key assumption in the derivation of the T-HMM is that of separability, i.e.,

that the transition probability P (qx,y|qx,y−1, qx−1,y) can be decomposed into the

product of horizontal and vertical components. (For the sake of simplicity, λ is

not explicitly included in this discussion hereafter.)

P (qx,y|qx,y−1, qx−1,y) ∝ P (qx,y|qx,y−1)P (qx,y|qx−1,y) (2.32)

Let the observations of row x and column y be denoted by oHx and oVy respectively,

and the corresponding state sequences by qHx and qVy , where the superscripts H

and V denote horizontal and vertical directions, respectively. In the T-HMM

approximation, the joint likelihood is derived as

P (O,Q|λ) ≈
∏
x

[
P (oHx , q

H
x )
∏
y

P (qx,y|oVy )

]
(2.33)

≈
∏
y

[
P (oVy , q

V
y )
∏
x

P (qx,y|oHx )

]
. (2.34)

Alternating horizontal and vertical passes are applied while decoding the 2D

HMM. Each row is represented by a 1D HMM during a horizontal pass, and each

column by a 1D HMM during a vertical pass (see Fig. 2.3). During the horizontal

pass, a modified version of the forwards-backwards algorithm is applied to each

row, and to each column in a vertical pass. Posterior probabilities obtained from
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Figure 2.3: Turbo decoding of a 2D HMM, where alternating horizontal and
vertical passes consist of separately decoded rows and columns that induce
priors on each other.
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horizontal passes are incorporated as prior probabilities on vertical passes and vice-

versa. Optimal state sequences are estimated via delayed decisions on posterior

probabilities at each node, rather than a greedy “winner-take-all” scheme. The

iterations are repeated until vertical and horizontal passes converge to a required

degree of agreement.

The T-HMM framework allows us to utilize the efficient algorithms from 1D

HMMs for both learning [18] and inference [16] problems. The computational

complexity of decoding is O(XYN2), where XY is the number of all nodes and

N , the number of states. In practice, the algorithm can be further accelerated

using a parallel implementation.
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Chapter 3

Simultaneous Segmentation and

Classification of Cells in

Multi-marker Images

Automated segmentation and classification of cells are basic tasks in bio-medical

image processing, and form the vital initial steps in single cell analysis. We begin

this chapter with a discussion on related methods in literature. Then, we describe

a novel probabilistic approach to simultaneously classify and segment multiple

cells of different classes in a multi-variate setting. The algorithm is designed to

handle various challenging aspects of microscopy images. Finally, the performance

of the proposed approach is demonstrated on a challenging microscopy dataset.
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Experiments show, both quantitatively and qualitatively, that the proposed ap-

proach effectively segments and classifies cells, outperforming related techniques.

We conclude the chapter with a short closing discussion.

3.1 Introduction

Multi-variate analysis is an active area of research in bioinformatics, with

applications in sub-fields as diverse as genetic studies [19], hyperspectral imag-

ing [20] and analysis of microscopy data [21]. Multi-variate methods offer many

advantages over traditional methods. Jointly analyzing data provided by several

markers can provide insight into correlation between phenotypes. Further, while

traditional univariate methods require specialized markers for each class, multi-

variate methods can target multiple classes via different combinations of a small

number of probes. It is also possible to discover new classes without explicitly

probing for them. Finally, as multi-variate methods take into account the re-

sponse of multiple markers, they may be more robust to variations that may be

encountered over large volumes of data.

The computational molecular phenotyping [21] modality in the RC1 dataset

is an example of a multi-marker microscopy modality. The six intensity images

(each obtained using a different micromolecular marker) can be interpreted as

a single six-channel image, in which each cell class can be characterized by its
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multidimensional micromolecular “signature”. For the purpose of visualization,

the intensity images may be taken three at a time as pseudocolor images (see

Fig. 3.1). Segmentation and classification of CMP is a critical step in the analysis

of RC1 since cell types, their molecular phenotypes and their response to stimuli

form an important source of supplementary information to neuronal connectivity

data.

Due to the nature of the imaging system, CMP images are often noisy and

contain artefacts. Fig. 3.2 highlights some challenging aspects of the data. These

include sudden spurious absence or presence (Fig. 3.2 (a)) of a marker within a

cell, existence of sub-cellular bodies which are resistant to staining (Fig. 3.2 (b)),

cell classes that are difficult to detect due to low background contrast (Fig. 3.2

(c)) and large changes in intra-class feature variance across classes (Fig. 3.2 (d-e)).

The proposed segmentation algorithm addresses these issues in its formulation.

3.1.1 Related Work

An early approach to segmentation of cells in microscopy images, which still

remains popular, is histogram-based intensity thresholding [22]. Several improve-

ments of the basic algorithm have been suggested [23, 24], which address the issue

of illumination variation common in microscopy images. The natural extension

of thresholding to multi-channel data would involve processing each channel indi-
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Figure 3.1: (a) CMP data (from the RC1 connectome) consisting of 6 chan-
nels, each corresponding to a unique marker (b) RGB visualization CMP data
channels taken three at a time.
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vidually and combining the resulting quantized data. However, such approaches

ignore relations between different channels, which may provide important infor-

mation for the segmentation task.

A popular method used for the segmentation of multi-variate images is the

mean shift [25] algorithm. In this method, spatial coordinates are used in con-

junction with feature vectors to determine local clusters, using user-defined spatial

and feature bandwidths and minimum segment size parameters. However, in our

experiments, we found that there is often no set of parameters that results in ac-

curate segmentation over the large range of cell sizes and class variances present

in CMP data.

There have been several papers that use random field formulations for classi-

fication and segmentation of objects. A superpixel-based technique was proposed

in [26], in which a support vector machine (SVM)-based classifier is constructed

on the histogram of local features and a conditional random field (CRF) is used

to refine classification. In [27], a random forest classifier is used with hierarchical

CRF to segment and classify images at multiple scales. The authors of [28] use

a global bag of features model to combine top-down and bottom-up potentials

to solve to segment multiple classes of objects. The drawback of the described

methods is that they are not equipped to handle problems frequently occurring

in microscopy data, such as varying contrasts and imaging artifacts.
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In the method described below, we address the challenges presented by the

data. In our design, superpixels are first extracted from the input vector-valued

image, and a 2D hidden Markov model (HMM) is set up on the superpixel graph.

HMM emission probabilities are used to ensure high confidence in local class

selection based on superpixel feature vectors. Spatial consistency of labels is

enforced by proper choice of transition probabilities, which are conditioned on the

feature vectors of neighboring superpixels at each location. Optimal superpixel-

level class labels are inferred using the HMM. Finally, contiguous regions with the

same label are aggregated to obtain global multiple object segmentation.

3.2 Proposed Method

For data consisting of N cell types, we consider an M -class classification prob-

lem, where M = N + 1 (the additional “non-cell” class provides for background

points in the image which lie between cells). We operate in the D-dimensional vec-

tor space, where D is the number of channels in the multi-marker image. Directly

predicting the class label of each superpixel from its feature vector often results in

incorrect labeling due to imaging artifacts or noise, or when even the label with

the highest posterior probability has low confidence. Utilizing information from

adjacent superpixels can help overcome this problem as there is typically a high

probability of label agreement between neighboring regions. The trade-off be-
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tween maintaining spatial label consistency and ensuring local selection of classes

having high likelihood can be naturally modeled by embedding the system in a

2D HMM. The confidence of local classification in each superpixel is quantified

by the emission probabilities of the HMM, while label coherence across neigh-

boring superpixels is maintained by its transition probabilities. The parameters

implementing are learned in a principled manner from training data. Finally,

contiguous groups of superpixels bearing the same label are aggregated to obtain

cell segmentation. We note that though we provide experimental results on CMP

data, the method can easily be applied to a wide variety of multivariate datasets

as the formulation is general and system parameters are automatically learned

from data.

3.2.1 Superpixel Extraction

Rather than pixels, we use superpixels as our atomic unit. This offers two

major advantages over a sliding window approach: (i) we exploit redundancies in

neighboring pixels to achieve a significant reduction in the number of computations

(ii) local region statistics are calculated on a meaningful neighborhood rather than

a window of fixed size. The major drawback of superpixel approaches is that the

final segmentation result relies on the preservation of true boundaries in the initial

oversegmentation. We mitigate this issue by using SLIC (Simple Linear Iterative
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Figure 3.2: Challenges in segmenting CMP images (a) Molecular marker arti-
fact (b) “Hole” inside a cell (c) Cell having low contrast with background (d-e)
Change in intra-cell feature variance - low variance in (d), high variance in (e)
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Clustering) [29] a state-of-the-art superpixel generation algorithm which has high

boundary recall. We use the readily available implementation provided in [30]

for convenience. SLIC superpixels are computed on the vector-valued, i.e. multi-

channel, input image, and with the spatial regularization set to 1 to ensure a

regular lattice structure in the extracted oversegmentation.

3.2.2 Constructing the HMM

We construct a 2D HMM over a first order Markov mesh random field of size

X × Y , where X and Y are, respectively, the number of superpixels per row and

column of the oversegmentation. Each superpixel S corresponds to a node at

location (x, y) in the 2D HMM, and is denoted by Sx,y. Each state q of the HMM

corresponds to one of M classes {ωm,m = 1, 2, . . .M}. Our aim is to find the

optimal state sequence, Q∗ = {q∗x,y, x = 1, 2, . . . X, y = 1, 2, . . . Y }, and hence,

segment the image. Training and testing of the HMM are performed under the

turbo-HMM approximation.

3.2.3 Local Class Probabilities

Some classes are tightly packed in feature space (Fig. 3.2 (d)) while other

classes have feature vectors that are more spread out (Fig. 3.2 (e)). In order to

account for the difference in intra-class variance across classes while maintaining
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low complexity, we employ a Bayesian quadratic discriminant analysis (QDA)

classifier. The QDA model has the additional benefit of benefit of being robust to

occasional outliers in training data. Class likelihood functions for each class ωm

at pixel pk are calculated from it’s D-dimensional multi-channel feature vector fk:

p(fk|ωm) =
exp{−1

2
(fk − µm)TΣm

−1(fk − µm)}
(2π)

D
2 |Σm|

1
2

(3.1)

The emission probability bmx,y at each superpixel is obtained by combining contri-

butions from its constituent pixels, by taking the geometric mean of all pixel-level

likelihoods. In practice, bmx,y is computed by taking the exponential of average log-

likelihood within the superpixel, to improve numerical stability. In this model, the

emission probability bmx,y represents the probability of superpixel Sx,y being emitted

by class ωm, without taking neighborhood information into consideration.

bmx,y =

[ ∏
pk∈Sx,y

p(fk|ωm)

] 1

|Sx,y| (3.2)

3.2.4 Neighborhood Label Consistency

Each element of the transition probability matrix am′,m, gives the probability

of moving to state m′ from state m. The elements of the transition probability

matrix remain constant throughout the graph in the standard HMM paradigm.
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However, in this work, we allow flexibility in the transition probabilities by defining

a spatially varying matrix, conditioned on local feature characteristics at each

node. Under this model, the individual transition probabilities can be vary based

on similarity or dissimilarity of local regions, encouraging these regions to take on

the same or different labels respectively.

aHm′,m(x, y) =



CS
m m′ = m

CB
m m′ = M

1

βm′,m
exp

(
−

RH
x,y

βm′,m

)
otherwise

(3.3)

where RH
x,y =

1

1 +KH
x,y

and KH
x,y is the symmetric Kullback-Leibler (KL) di-

vergence between the D-dimensional histogram of superpixel Sx,y, given by hx,y,

and that of its horizontally neighboring superpixel, Sx+1,y, given by hx+1,y.

KH
x,y =

∑
i

hx,y(i) log
hx,y(i)

hx+1,y(i)
+
∑
i

hx+1,y(i) log
hx+1,y(i)

hx,y(i)
(3.4)

CS
m represents the probability of self transition for each class ωm. A high value of

CS indicates a higher probability of neighboring pixels taking on the same label.

CB
m represents the probability of transitioning from class ωm to the background.
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This model favors state transitions (i.e., cell label changes) across neighboring

superpixels with abrupt changes in their histograms, as quantified by the expo-

nential distribution with parameter βm′,m. We define a unique parameter βm′,m

for each pair of classes {ωm, ω′m} to account for the variation in contrast between

different pairs of classes.

We use a model similar to (3.3) for the transition probability matrix in the

vertical direction. Since cellular microscopy images typically do not exhibit di-

rectionality along the coordinate axes, we make the simplifying (but removable)

assumption that the parameters of the transition probability matrix, {CS
m}, {CB

m}

and {βm′,m}, are identical in the vertical and horizontal 1D HMMs.

3.2.5 Parameter Estimation

We employ a supervised learning scheme for the estimation of the the parame-

ters relating to emission probability. The class-specific parameters of the Gaussian

likelihood functions, {µm} and {Σm}, are estimated from labeled data.

The parameters of the transition probability matrix are learned using the

Baum-Welch algorithm [5]. Re-estimation formulas for the parameters are derived

by maximizing Baum’s auxiliary function, given by:

Q(λ, λ′) =
∑
Q

P (Q, I, SSP |λ) logP (Q, I, SSP |λ′) (3.5)
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with respect to λ′, where λ denotes the current estimate of HMM parameters,

λ′ the model re-estimate and Q, a sequence of states Q = {qx,y}. I denotes the

input image and SSP , its superpixel oversegmentation.

During the E-step, the modified forward-backward algorithm of the T-HMM is

used to estimate the occupancy probabilities (3.6) and ancillary training variables

(3.7) in the horizontal and vertical directions.

γH,τx,y = P (qHx,y = τ |I, SSP , λ)

γV,τx,y = P (qVx,y = τ |I, SSP , λ)

(3.6)

ξHx,y(m
′,m) = P (qx+1,y = m′, qx,y = m|λ)

ξVx,y(m
′,m) = P (qx,y+1 = m′, qx,y = m|λ)

(3.7)

During the M-step, Q(λ, λ′) is maximized with respect to each parameter to

obtain the following re-estimation formulas:

ĈS
m =

∑
x,y

[
ξHx,y(m,m) + ξVx,y(m,m)

]
∑
x,y

[
γHx,y(m,m) + γVx,y(m,m)

] (3.8)
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ĈB
m =

∑
x,y

[
ξHx,y(M,m) + ξVx,y(M,m)

]
∑
x,y

[
γHx,y(M,m) + γVx,y(M,m)

] (3.9)

β̂m′,m =

∑
x,y

[
ξHx,y(m

′,m) RH
x,y + ξVx,y(m

′,m) RV
x,y

]
∑
x,y

[
ξHx,y(m

′,m) + ξVx,y(m
′,m)

] (3.10)

Transition probability matrices are uniformly initialized, and parameters are re-

estimated using iterative passes of the Baum-Welch algorithm until the likelihood

of the training set converges. The optimal label sequence is inferred using the

decoding procedure with modified forward-backward iterations [16].

3.2.6 Obtaining Segmentation

The final segmentation results are obtained by aggregating contiguous super-

pixels having the same label. This may lead to cells of the same class being

clumped together. In this case, cells are separated using the method described

in [31].

3.3 Experimental Results

We compare our method with two well known algorithms - mean shift segmen-

tation [25] and the algorithm proposed by Fulkerson, Vedaldi and Soatto (FVS)

37



Chapter 3. Simultaneous Segmentation and Classification of Cells in
Multi-marker Images

in [26] in terms of the results obtained on CMP data. The optimal parameters

for mean shift were found to be (hs, hr,M) = (20, 8, 5000). We use 4-fold cross

validation to train and test FVS as well as the proposed method. While running

FVS, we set K = 25 as increasing beyond this value resulted in overfitting the

data. SLIC was used to produce superpixels with an average size of 250 pixels

for the proposed method. Segmentation results were obtained by aggregating

contiguous superpixels having the same label. For fair comparison, we apply the

clump separation algorithm to the two competing methods as well.

The accuracy of segmentation is measured by comparing with ground truth.

Using magnitude of pixel overlap, each ground truth cell is associated with at

most one cell in the segmentation output. F-measure (F) is used as a measure of

similarity between each ground truth cell (Sgt) and its corresponding segmented

cell (Sseg).

F =
2|Sseg ∩ Sgt|
|Sseg|+ |Sgt|

(3.11)

where |·| denotes number of pixels. The area (in pixels) of each cell in the ground

truth is used to weight the corresponding F-measure in calculation of F-measure

statistics. The weighted mean and standard deviation of the F-measure across all

cells is used to compare the accuracy of segmentation results obtained from the

three methods.

Classification accuracy is evaluated at the pixel level. The label of each su-
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Method
Mean ± Std Classification Running
of F-measure Accuracy Time (s)

Mean shift [25] 0.7424± 0.1793 - 30.51
FVS [26] 0.8093± 0.1515 77.04% 21.30
Proposed 0.8372± 0.1305 85.97% 23.04

Table 3.1: Comparison of results on CMP data from the RC1 connectome.
Classification accuracy is not reported for mean shift segmentation as the al-
gorithm does not directly provide classification output.

perpixel is assigned to all the pixels within it. The resulting pixel-level labeling

is compared with ground truth labeling. Accuracy is calculated as the percentage

of pixels that are correctly classified.

Numerical results comparing the performance of the proposed approach to

related methods are provided in Table 3.1, along with average run time for a

1024×1024 pixel region for each method. We observe significant improvement

over the competing methods in both segmentation and classification accuracy.

Visual results on some example cells, along with the corresponding F-measure

of each segmentation, are presented in Fig. 3.3. The proposed approach demon-

strates the ability to handle challenging scenarios such as the presence of “holes”

within cells (see Fig. 3.3 (a)), having large intra-cell variance (see Fig. 3.3 (b))

and cells having low contrast with background and surrounding cells (see Fig. 3.3

(e)), whereas competing methods are unable to accurately capture cell boundaries

in these cases.
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Figure 3.3: Examples of segmentation results showing challenging as well as
easy cases. Each column (a) - (g) shows results on a specific cell. The first row
shows the ground truth segmentation, with the boundary outlined in white.
The second, third and fourth rows show results obtained from mean shift seg-
mentation, FVS and the proposed method respectively, along with the F-mea-
sure F of the resulting segmentation. (An F-measure of 0 indicates a missed
detection.) To visualize each result, we choose the three channels exhibiting
the highest contrast between the given cell and background.
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3.4 Conclusion

In this chapter, we describe a novel probabilistic algorithm for simultaneous

segmentation and classification of cells in multi-marker images. Costs associated

with neighborhood label coherence and local class membership probabilities are

embedded in a 2D HMM framework. The T-HMM approximation is used to learn

parameters of the HMM and to infer the optimal solution. We provide experimen-

tal validation on cellular microscopy data. The proposed method overcomes some

of the main pitfalls of segmentation of such challenging data. As a result, we ob-

serve in significant gains over competing methods in terms of both segmentation

performance and classification accuracy.
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Chapter 4

Deformable Registration of

Multimodal Images

Robust registration of unimodal and multimodal images is a key task in biomed-

ical image analysis, and is often utilized as an initial step on which subsequent

analysis techniques critically depend. In this chapter, we first present an overview

of related work in biomedical image registration, ranging from early work to recent

techniques. The next section describes a method for deformable registration with

a generic theoretical formulation, where the underlying framework is applicable

to a broad spectrum of problems in the domain. The method is first derived for

unimodal data and then extended to the multimodal, multi-channel setting. We

also describe an edge-adaptive constraint which allows for variation in degree of
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smoothness across the image. We provide experimental evaluation of the pro-

posed algorithm, for unimodal registration of MRI data as well as multimodal

registration of connectome data, in comparison with state-of-the-art deformable

registration techniques in literature. Finally, we provide concluding remarks.

4.1 Introduction

Image registration, which aims at accurately aligning structures or regions

across related images, is an important problem in biomedical image computing,

and is an active area of current research. Image registration is used in a variety

of applications in biomedical image analysis. Assessing the efficacy of treatments

often requires registration in order to accurately compare pre-treatment and post-

treatment scans. Atlas-based methods, which analyze subject data in comparison

to one or more standard models, critically depend on accurate registration. Of-

ten, different types of information, eg., structural and functional, can be extracted

from different image modalities, and registering these multimodal images is an im-

portant step in combining the complementary sources of information. Alignment

of structures across temporal or depth-based volumes are important in time-lapse

and 3D network reconstruction. Hence, accurate automated deformable registra-

tion is the need of the hour.
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4.2 Background and Related Work

Registration is a classic problem in biomedical image analysis and has been

widely studied over the past three decades. Early research in unimodal registration

focused on rigid alignment[32, 33]. Due to the nature of the unimodal regstration

problem, the sum of squared differences (SSD) [34, 35, 36] and the mean squared

difference (MSD) [37, 38] of image intensities have been widely and successfully

used to measure data similarity.

Early work on multimodal registration used intensity levels [39] and joint en-

tropy [40] as the measure of information across modalities. Mutual information

(MI), which measures the statistical dependence of two random variables, was

proposed in [41, 42] and [43] for rigid alignment problems and quickly gained pop-

ularity as a measure of similarity for both rigid and deformable registration, and in

both unimodal and multimodal settings. (A survey of various MI-based method-

ologies for medical image registration is available in [44].) In [45], a deformable

registration technique was introduced which uses both a global affine transforma-

tion and local transformations, with MI as a measure of information. The local

transformations are modeled with Free Form Deformations (FFD) on a non-rigid

lattice of control points using cubic B-splines for interpolation. Several subse-

quent papers leveraged FFDs, extending their use to multimodal data [46], [47]

and using variants of MI (such as Conditional MI (CMI) in [48] and Normalized
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MI (NMI) in [49]). In [50] and subsequently [51], dense deformable registration is

performed by modeling it as a minimal cost graph problem on a Markov random

field (MRF) built upon the FFD framework. Smoothness constraints are imposed

through connectivity of nodes and labels correspond to deformations. For the

multimodal case, MI (or a variant of MI) is used as the matching criterion.

A significant drawback of these techniques lies in the estimation of the joint

histogram between modalities where one or both of the modalities proffers multiple

channels of information. A natural extension of MI-based approaches to include

data with multiple channels (e.g., RGB data) would be to use multivariate MI.

However, the complexity of populating higher dimensional joint histograms grows

exponentially with the number of channels, and these methods quickly become

impractical for multichannel modalities. Further, inadequate population of such

high dimensional histograms due to sparse availability of data could lead to inac-

curacies in the inferred deformation.

Some notable prior research has been devoted to the problems associated with

estimation of multivariate MI. A simplifying approximation of the general mul-

tivariate MI was proposed as a similarity measure in [52]. In [53], an entropic

graph-based implementation was used to estimate α-MI of multiple channels.

The concept of self-similarity was introduced as a means for multimodal reg-

istration in two recent papers, [54] and [55], which introduce the modality inde-
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pendent neighborhood descriptor (MIND) and the self-similarity context (SSC)

descriptor respectively. These descriptors exploit local structural similarities be-

tween multimodal image pairs and are calculated on a defined spatial search region

in each modality. SSD is used as a measure of distance between descriptors, and

final deformation is estimated using Gauss-Newton optimization. These meth-

ods, however, rely on significant anatomical similarity between images of the two

modalities, which may often be absent, as in the case of connectome [2] data. In

addition, they require modification to be used with multi-channel inputs.

In this chapter, we propose a novel probabilistic framework, based on the 2D

hidden Markov model (2D HMM), to capture the deformation between pairs of

images. The HMM is tailored to capture spatial transformations across images

via state transitions, and modality-specific data costs via emission probabilities.

The method is derived for the unimodal setting (where simpler matching metrics

may be used) as well as the multimodal setting, where different modalities may

provide very different representation for a given class of objects, necessitating the

use of advanced similarity measures. We also introduce a local edge-adaptive

constraint to allow for varying degrees of smoothness between object boundaries

and homogeneous regions. The parameters of the described method are estimated

in a principled manner from training data via maximum likelihood learning, and

the deformation is subsequently estimated using an efficient dynamic programming
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algorithm.

4.3 Proposed Approach

Our aim is to find the deformation that best explains the relation between

one image (the “source”) and a second image, from the same or different modal-

ity (the “target”). We propose a probabilistic method that estimates the global

deformation with a set of local deformations. There is a clear trade-off between

flexibility in local deformations so that high accuracy is achieved in discerning the

true structural relationship between the source and the target, and the need to

impose global coherence and avoid highly “non-smooth” deformations. Moreover,

every local transformation results in a mapping between the two modalities and

there must be a way to measure and maximize the goodness of this match within

the constraints of the deformation framework.

Translation consistency in neighborhoods and cross-modality matching costs

are embedded into a 2D HMM built on a first order Markov mesh random field

(MMRF). Local translations are “hidden” and their impact is felt through the

corresponding data matching costs. The parameters of these data matching costs

are data dependent, and are learned from source-target pairs of training images.

In addition, the degree of smoothness of the optimal deformation can differ con-

siderably across different types of data, and hence the training images are also
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Figure 4.1: Mapping feature vector Sx,y at point (x, y) in the source image to
a feature vector Tx+τx,y+τy at point (x + τx, y + τy) in the target image using
a translation τ .

utilized in learning smoothness parameters.

4.3.1 Data Similarity Measure

The probability of matching a feature vector in the source image to a feature

vector in the target image is captured by the emission probabilities of the HMM.

In our design, each state, q, of the HMM corresponds to a specific, unique

translation τ relating the source and target, and whose components are τx and

τy in the x- and y-directions, respectively. A state with translation τ maps a

point (x, y) in the source to (x+ τx, y+ τy) in the target. Therefore, the emission

probability bτx,y represents the probability of matching the source feature vector

48



Chapter 4. Deformable Registration of Multimodal Images

at (x, y), given by Sx,y, to the target feature vector at the given translation, given

by Tx′,y′ . (see Fig. 4.1.)

bτx,y = P (Tx′,y′ |Sx,y) (4.1)

This probability can be modeled in various ways in single modality problems,

for example, using a simple similarity metric such as sum of absolute differences in

intensity or correlation on patches from source and target images. In our experi-

ments, we use an term based on SSD of intensities to model emission probability.

bτx,y =
1√

2πσSSD
exp

{
−

ετx,y
2σ2

SSD

}
(4.2)

where ετx,y is the sum of squared differences in sliding windows of size (2W +

1)× (2W + 1) centered at the points of interest in the source and target images.

ετx,y =
W∑

xw,yw=−W

(
Sx+xw,y+yw −Tx′+xw,y′+yw

)2
(4.3)

4.3.2 Extending to Multimodal Data

Since different modalities may vary greatly in the way they represent objects

from the same class, we cannot directly apply intensity-based similarity measures

for registration of multimodal data. Instead, we assume that the feature vectors
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of the source and target images at specific locations are not directly related, but

rather, related only through the object type at the corresponding locations in

the underlying “true” arrangement. In other words, the source feature vector,

the underlying object type at the corresponding location in the source (ωSx,y), the

underlying object type at the location after translation in the target (ωTx′,y′) and

the target feature vector form a Markov chain.

Sx,y ←→ ωSx,y ←→ ωTx′,y′ ←→ Tx′,y′ (4.4)

In our model, the underlying object types and their spatial relations are hidden,

information from them can only be extracted from the observable features in the

images from each modality.

We learn the distribution of the source feature vectors, and rather than making

a hard decision on object type at each node, we obtain its posterior probability.

Thus, for an M class problem, we learn P (ωm|Sx,y) for each class m ∈ {1, 2, . . .M}

at every node. Applying the law of total probability to (4.1) under the Markov

assumption (4.4) results in:

bτx,y =
M∑
m=1

P (ωm|Sx,y)P (Tx′,y′ |ωm) (4.5)
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Since linear combinations of Gaussians can approximate arbitrarily shaped densi-

ties, we use a mixture of K Gaussians to model P (Tx′,y′ |ωm) for each object class

ωm.

P (Tx′,y′ |ωm) =
K∑
k=1

wkmP (Tx′,y′ |ωkm) (4.6)

where mixture component weights must satisfy the constraint:

K∑
k=1

wkm = 1 ∀m ∈ {1, 2, . . .M} (4.7)

Each individual component density is a Gaussian having dimensionality D, equal

to that of the target feature space.

P (Tx′,y′ |ωkm) =

exp{−1
2
(Tx′,y′ − µkm)

T
Σk
m
−1

(Tx′,y′ − µkm)}
(2π)

D
2 |Σk

m|
1
2

(4.8)

where µkm and Σk
m are the mean and covariance of the Gaussian respectively.

4.3.3 Deformation Smoothness Model

Each state of the HMM corresponds to a translation τ relating the source

and target. The translations of neighboring nodes are correlated as quantified

by the transition probabilities of the HMM (see Fig. 4.2). Equivalently, in an
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Figure 4.2: Neighboring translations are correlated.

HMM constructed over a first order Markov mesh random field, the state of a

node depends on the state of its adjacent neighbors in the horizontal and vertical

directions. While an arbitrary transition probability matrix may be used, we

introduce some assumptions in order to reduce the number of free parameters in

the system. These are outlined below.

Assuming a stationary HMM, the transition probabilities of the horizontal and

vertical 1D HMMs are given by

aH(τ, τ ′) = P (qx,y = τ ′|qx,y−1 = τ)
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and

aV (τ, τ ′) = P (qx,y = τ ′|qx−1,y = τ)

respectively. In the case of cellular microscopy images, we make the simplifying

assumption that parameters of horizontal and vertical HMMs are identical as these

images typically do not exhibit directionality along coordinate axes (as is often

the case in faces [18], man-made scenes, and certain natural images):

aV (τ, τ ′) = aH(τ, τ ′) = a(τ, τ ′) (4.9)

We also impose shift invariance so that probability of moving from one state to

another only depends on the difference in the corresponding translations:

a(τ, τ ′) = a(τ ′ − τ) = a(δτ) (4.10)

where δτ = [δτx δτy]
T and δτx and δτy are, respectively, the horizontal and

vertical components of the difference in translations.

Further, we restrict ourselves to parametric transition probabilities to increase

robustness. For a Gaussian model with a covariance matrix Σ, the general ex-

pression is

a(δτ) ∝ exp

{
−1

2
(δτ)TΣ−1(δτ)

}
(4.11)
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Noting again the lack of consistent directionality in microscopy data, we simplify

to an isotropic model with a single variance parameter σ2.

Σ =

σ2 0

0 σ2


Incorporating the isotropic model into (4.11) results in a simplified expression

for transition probability, given below.

a(δτ) ∝ exp

{
−1

2

(
δτ 2
x + δτ 2

y

σ2

)}
(4.12)

4.3.4 Edge-adaptive Smoothness Constraint

For data consisting of multiple objects, large translations occur more fre-

quently near object boundaries than well inside object. Similar behavior is noticed

while computing optical flow in images with multiple objects, and has been ad-

dressed by including an structure-adaptive regularization constraint in the cost

function [56, 57]. We model this variation in smoothness by introducing a spa-

tially varying transition matrix, parametrized by two Gaussians. The transition

probability matrix at each point is calculated using local “edgeness” at that point.

To calculate the edgeness at a given point (x, y), we consider the set of all

estimated object labels in a window centered at that point. By normalizing the
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histogram of all unique labels l in the window, we obtain [P (l)], the local label

probability vector. The label entropy around the point (x, y) is given by

Hx,y = −
∑
l

P (l) log2 P (l) (4.13)

The label entropy in each window measures label uncertainty in the window

and is used to estimate edgeness. We thus quantify edgeness E at (x, y) as

Ex,y = 1− e−Hx,y (4.14)

Note that this measure of edgeness approaches zero at low entropy, and ap-

proaches one at high entropy. The transition matrix at each point is modeled as

a linear combination of two Gaussian-parametrized matrices.

ax,y(δτ) = Ex,y aE(δτ) + (1− Ex,y) aI(δτ) (4.15)

where aE(δτ) denotes the transition matrix for points on cell edges and aI(δτ),

that of interior points.

aE(δτ) ∝ exp

{
−1

2

(
δτ 2
x + δτ 2

y

σ2
E

)}
(4.16)

55



Chapter 4. Deformable Registration of Multimodal Images

aI(δτ) ∝ exp

{
−1

2

(
δτ 2
x + δτ 2

y

σ2
I

)}
(4.17)

Hence, we allow for flexibility in the transition probability matrix according

to the edgeness of the point in question.

4.3.5 Estimation of Deformation Field

We infer the optimal state sequence using the Viterbi algorithm with the mod-

ified forward-backward iterations described in [16].

4.3.6 Parameter Estimation

Baum-Welch Training

The parameters of the HMM are estimated in an unsupervised manner from

source-target image pairs. In the Baum-Welch algorithm ([5, 13]). Re-estimation

formulas for these parameters are derived by maximizing Baum’s auxiliary func-

tion, given by

Q(λ, λ′) =
∑
Q

P (Q,S, T |λ) logP (Q,S, T |λ′) (4.18)

with respect to λ′, where λ denotes the current estimate of HMM parameters, λ′

the model re-estimate and Q, a sequence of states Q = {qx,y, x = 1, 2, . . . X, y =
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1, 2, . . . Y }. S and T denote corresponding source and target images.

During the expectation step, we estimate the occupancy probabilities of the

horizontal and vertical 1D HMMs,

γH,τx,y = P (qHx,y = τ |S, T, λ)

γV,τx,y = P (qVx,y = τ |S, T, λ)

and the overall occupancy probability

γτx,y =
γH,τx,y + γV,τx,y

2

We also estimate the ancillary training variables,

ξHx,y(τ, τ + δτ) = P (qx,y+1 = τ + δτ, qx,y = τ |S, T, λ)

ξVx,y(τ, τ + δτ) = P (qx+1,y = τ + δτ, qx,y = τ |S, T, λ)

During the maximization-step, we maximize Baum’s auxiliary function with

respect to each parameter to derive re-estimation formulas.

For the SSD-based metric, there is only one emission parameter, σSSD, whose

re-estimation equation is given by

σ̂2
SSD =

∑
x,y,τ

γτx,y ε
τ
x,y∑

x,y,τ

γτx,y
(4.19)
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To update emission parameters for the multimodal case, we must first use the

updated variables from the expectation step to calculate the per-component pos-

terior probability at each node, given by

φτ,kx,y,m =
P (ωm|Sx,y) wkm P (Tx′,y′ |ωkm)

M∑
m=1

P (ωm|Sx,y)
K∑
k=1

wkm P (Tx′,y′ |ωkm)

(4.20)

where x′ = x+ τx and y′ = y + τy.

Emission parameters are re-estimated using the following update equations:

ŵkm =

∑
x,y,τ

γτx,y φ
τ,k
x,y,m∑

x,y,τ,k

γτx,y φ
τ,k
x,y,m

(4.21)

µ̂km =

∑
x,y,τ

γτx,y φ
τ,k
x,y,m Tx′,y′∑

x,y,τ

γτx,y φ
τ,k
x,y,m

(4.22)

Σ̂k
m =

∑
x,y,τ

γτ,kx,y φ
τ,k
x,y,m (Tx′,y′ − µ̂km)(Tx′,y′ − µ̂km)

T

∑
x,y,τ

γτ,kx,y φ
τ,k
x,y,m

(4.23)

For transition probability matrices parameterized by a single Gaussian, the

update equation is given by:

σ̂2 =

∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)] [δτ ]2∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)]
(4.24)
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For edge-adaptive transition probabilities, the update equations are given by:

σ̂2
E =

∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)]

( Ex,y
ax,y(δτ)

)
[δτ ]2

∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)]

( Ex,y
ax,y(δτ)

) (4.25)

σ̂2
I =

∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)]

(1− Ex,y
ax,y(δτ)

)
[δτ ]2

∑
x,y,τ,δτ

[ξHx,y(τ, τ
′) + ξVx,y(τ, τ

′)]

(1− Ex,y
ax,y(δτ)

) (4.26)

Transition matrices are initialized uniformly. Parameters relating to emission

probabilities may be initialized either by learning the data from the target fea-

ture vectors independently of the source image, or by performing rigid matching

between the source and the target to estimate the parameters. While training mul-

tiple Gaussians per cell class, we perform standard Expectation-Maximization for

Gaussian mixture models (EM-GMM) on each class to learn parameters of each

desired component, and use these for initialization. P (ωm|Sx,y) is learned by ap-

plying EM-GMM on the source modality.
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4.3.7 Complexity

The complexity of training and decoding under the T-HMM approximation is

O(N2XY ), where N is the number of states of the HMM and XY is the number

of nodes in the HMM. N , in turn, is proportional to ∆2, where ∆ is the maximum

translation allowed per direction. The complexity of algorithm is henceO(∆4XY ).

In order to reduce complexity, we employ a multi-resolution coarse-to-fine

scheme, approximating a group of 4 nodes at each resolution with a single node

at the nearest coarser resolution. For The complexity at each level is O(n2XLYL),

where L is the index of each level, taking values from 1 (the finest level) to

Lmax (the coarsest level), n is the number of states at each level of resolution (a

constant), and XLYL is the number of nodes at the given level. Therefore,

XLYL =
XY

4(L−1)
.

The total complexity considering all levels is O(n2XY ([
Lmax∑
L=1

4−(L−1)]). Since

[
Lmax∑
L=1

4−(L−1)] ≈ 1.33, the complexity of the hierarchical approach is O(n2XY ),

independent of ∆.
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4.4 Experimental Results

We present the performance of the proposed approach on two biomedical image

datasets. To evaluate registration quality, we generated automated segmentations

by warping the source image segmentations using the transformation obtained

from each method. The resulting automated segmentation (Strans) was com-

pared to the manual target segmentation (T ) using the Dice similarity measure

(DSC) [58] as a measure of overlap.

DSC =
2|Strans ∩ T |
|Strans|+ |T |

(4.27)

where |•| denotes cardinality in terms of number of pixels.

To check the statistical significance of improvement in results, we obtained p-

values by performing two-sided Wilcoxon tests [59] on DSC values obtained using

the proposed approach paired with DSC values from each competing method. A

value of p < 0.05 was considered to indicate statistical significance.

4.4.1 Multi-subject Brain Data

The MR brain data sets were provided by the Center for Morphometric Analy-

sis at Massachusetts General Hospital and are available at the Neuroimaging Infor-

matics Tools and Resources Clearinghouse (https://www.nitrc.org/projects/ibsr/).
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The dataset consists of MR brain images of resolution 256 × 256 × 128, along with

manual expert segmentations of white and grey matter, for 16 subjects. For each

subject, the T1-weighted volumetric images have been positionally normalized

into the Talairach orientation (rotation only). We randomly select one subject as

the target and register images from each of the other 15 subjects to the selected

target image.

We compare the performance of the proposed method with that of two self-

similarity based registration approaches - MIND [54] and SSC [55] - as well as

dense (iconic) registration based on discrete optimization, DROP [51]. For DROP,

SSD was used as a measure of similarity since it resulted in the highest DSC

values, and the weighting factor λ was empirically found to be 0.01. The optimal

regularization term α for MIND and SSC was found to be 0.1. We used three

levels of resolution for all methods to compare performance.

The quantitative results on the IBSR dataset are presented in Table 4.1. In

addition, visual results are shown in Fig. 4.3 and Fig. 4.4. We observe that

the proposed approach shows statistically significant improvement over related

approaches, for both grey matter and white matter.
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Method Mean Median Std Dev p-value

Grey Matter

MIND [54] 0.7469 0.7358 0.0276 7 · 10−3

SSC [55] 0.7513 0.7493 0.0263 3 · 10−2

DROP [51] 0.7192 0.7350 0.0808 1 · 10−2

Proposed Method 0.7756 0.7788 0.0244 −
White Matter

MIND [54] 0.7213 0.7233 0.0285 3 · 10−4

SSC [55] 0.7203 0.7240 0.0265 1 · 10−4

DROP [51] 0.6589 0.6727 0.0773 8 · 10−5

Proposed Method 0.7612 0.7645 0.0194 −

Table 4.1: Performance comparison of single-channel registration methods mul-
ti-subject brain MRI data, measured by DSC of grey and white matter between
subjects after warping.

Figure 4.3: Visual results on multi-subject MRI data. Results are shown as a
checkerboard, where neighboring tiles come from different subjects. (a) Source–
target pair before registration (b-e) After registration using (b) MIND (c) SSC
(d) DROP and (e) Proposed method
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Figure 4.4: Visual results on multi-subject MRI data. Results are shown as a
checkerboard, where neighboring tiles come from different subjects. (a) Source–
target pair before registration (b-e) After registration using (b) MIND (c) SSC
(d) DROP and (e) Proposed method

4.4.2 Rabbit Retinal Connectome Data

We focus our attention on the capstone region of the RC1 dataset. We compare

our method with CAMIR [52] embedded in the FFD [45] framework, the α-MI-

based approach outlined in [53], MIND [54] and SSC [55]. The optimal value of

parameters for the α-MI approach were empirically found to be α = 0.99 and k = 7

respectively. The feature vector for the target image in the proposed approach is

the average pixel intensity in a 5×5 neighborhood. The hyper-parameters used

for this dataset are M = 7 and K = 2. Three levels of resolution were used for

all approaches.

Quantitative results on the RC1 connectome dataset are presented in Ta-

ble 4.4.2. Visual results are shown in Figs. 4.5 to 4.8. We see the proposed

method performs well in both easy as well as challenging scenarios. The most im-

provement over competing methods is observed when there is a large deformation

between modalities. One explanation for this is that our approach can account
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Method Mean Std Dev Median p-value

MIND [54] 0.7661 0.1547 0.7896 3.9 · 10−3

SSC [55] 0.7682 0.1536 0.7927 6.4 · 10−3

α-MI [53] 0.7708 0.1436 0.7863 1.1 · 10−3

CAMIR [52] 0.7810 0.1495 0.7924 5.2 · 10−3

Proposed Method 0.8185 0.1338 0.8345 −

Table 4.2: Performance comparison of multi-channel registration methods on
connectome data, measured by DSC of between ATEM images and warped
CMP images.

for large deformations during the training phase, by iteratively optimizing emis-

sion and transition parameters. Relatively easy scenarios are shown in Figs. 4.5

and 4.6. Examples of cells with large changes across modalities can be seen in

Figs. 4.7 and 4.8. We observe that the proposed approach shows both quantitative

and qualitative improvement of registration accuracy in comparison to competing

approaches.

4.5 Conclusion

We have presented a novel approach for registration of unimodal as well as mul-

timodal image data, with the deformation system embedded in the probabilistic

framework of a 2D HMM and solved using the T-HMM approximation. The for-

mulation is general and different types of transformation models may be used. For

registration of images with multiple objects, we allow flexibility in the smoothness
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Figure 4.5: Visual results on a relatively easy cell. (a) RGB visualization of
3 CMP channels, with ground truth of the cell of interest outlined in yellow
(b) RGB visualization of the remaining 3 CMP channels, with outlined ground
truth (c) ATEM image corresponding to the same region, with ground truth
overlaid in red (d-h) ATEM image with results from various registration meth-
ods overlaid in reg, along with the corresponding DSC. (d) MIND (e) SSC (f)
α-MI (g) CAMIR (h) Proposed method
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Figure 4.6: Visual results on a relatively easy cell. (a) RGB visualization of
3 CMP channels, with ground truth of the cell of interest outlined in yellow
(b) RGB visualization of the remaining 3 CMP channels, with outlined ground
truth (c) ATEM image corresponding to the same region, with ground truth
overlaid in red (d-h) ATEM image with results from various registration meth-
ods overlaid in reg, along with the corresponding DSC. (d) MIND (e) SSC (f)
α-MI (g) CAMIR (h) Proposed method
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Figure 4.7: Visual results on a challenging cell. (a) RGB visualization of 3 CMP
channels, with ground truth of the cell of interest outlined in yellow (b) RGB
visualization of the remaining 3 CMP channels, with outlined ground truth (c)
ATEM image corresponding to the same region, with ground truth overlaid in
red (d-h) ATEM image with results from various registration methods overlaid
in reg, along with the corresponding DSC. (d) MIND (e) SSC (f) α-MI (g)
CAMIR (h) Proposed method
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Figure 4.8: Visual results on a challenging cell. (a) RGB visualization of 3 CMP
channels, with ground truth of the cell of interest outlined in yellow (b) RGB
visualization of the remaining 3 CMP channels, with outlined ground truth (c)
ATEM image corresponding to the same region, with ground truth overlaid in
red (d-h) ATEM image with results from various registration methods overlaid
in reg, along with the corresponding DSC. (d) MIND (e) SSC (f) α-MI (g)
CAMIR (h) Proposed method
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of the transformation by allowing local adaptation in the transition probability

matrix. Multi-channel input data, if available, is utilized in an efficient manner by

incorporating it into the emission probabilities of the HMM. Further, we use an

efficient approximation to train and decode the T-HMM at reduced complexity.

The results of our method show substantial gains over state-of-the-art deformable

registration techniques on both intra-modal and inter-modal problems.
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Chapter 5

Segmentation and Tracking of

Cells through Multimodal Label

Transfer

Automated segmentation of electron microcope (EM) images is a challenging prob-

lem, but the presence of related images of a different modality can be a valuable

resource. The chapter begins with a discussion on related methods in literature.

Then, we describe a method to effectively utilize the complementary information in

ATEM segmentation, using a multi-step approach. Each segmented cell boundary

is then used to initialize a tracking algorithm through the ATEM stack. Com-

bined with the CMP segmentation, this method forms a completely automated
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system for segmentation, classification and tracking of the connectome data. We

then provide experimental results for both segmentation and tracking of ATEM

images, followed by concluding remarks.

5.1 Introduction

A central task in connectome analysis is building the underlying network of

connections from EM image data, which relies on accurate segmentation of elec-

tron microscopy images. Segmentation of cells in the ATEM images in RC1 is

particularly difficult, due to considerable variation in appearance of cells, clut-

tered background, and, in some cases, low contrast between cell interiors and

boundaries. On the other hand, cells in the CMP image can be segmented and

classified by performing multivariate analysis on 6 layers taken together, as de-

scribed in Chapter 3. This observation led us to explore methods that utilize the

information, available from the CMP modality, to achieve reliable EM segmenta-

tion.

5.1.1 Related work

In the recent past, there has been considerable interest in developing reliable

segmentation algorithms for electron microscope (EM) images [60, 61, 62, 63, 64,
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Figure 5.1: An example of a region in an ATEM image. We observe considerable
variation in appearance within and across cells, low contrast between cells and
cell boundaries and background clutter.
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65]. In [60], membrane detection is performed using a random forest classifier

followed by gap completion. A neural network approach to predict membranes is

described in [62]. In [61] and [63], the authors use support vector machines (SVMs)

to learn shape-based and context-based features respectively, which are used to

segment mitochondria in EM images. Recently introduced methods have used

hierarchical clustering with active learning [64] and merge trees [65] to perform EM

segmentation. However, most existing EM segmentation algorithms are unable to

reliably segment ATEM images from RC1 due to the variation in cell appearance

through the image and lack of a clearly defined membrane in some cells. Further,

due to background clutter and variation of cell characteristics through the image,

traditional region-based segmentation approaches such as graph cuts [66, 67, 68]

require careful initialization on each cell to perform well on such data.

Since the CMP data is available as an additional source of information, an

alternative approach is to apply multimodal registration to deform CMP seg-

ments to the corresponding region in the ATEM modality. There are many recent

methods that aim at solving the multimodal alignment problem, as discussed in

Chapter 4. The drawback of using such methods is that they attempt to opti-

mize a criterion that measures the quality of the mapping itself, which may be

mismatched with our ultimate objective of optimal ATEM segmentation.

In this chapter, we propose a multi-stage technique for segmentation of ATEM
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images. Information from automatically labeled and segmented CMP images is

transferred to corresponding ATEM images by finding the optimal mapping be-

tween the two images. The initial contours obtained in the ATEM image as a

result of this mapping are then further processed to get improved segmentation.

The described system has the added advantage of transferring cell type informa-

tion (which is difficult to determine using ATEM images alone) to each segment.

Further, obtained cell segmentations are used to initialize tracking through the

ATEM stack, resulting in an automated system for network reconstruction within

the connectome.

5.2 Proposed Method

The proposed method aims at segmenting cells in ATEM images by leveraging

information transferred from CMP to ATEM. We use a multi-stage technique to

perform segmentation. The first step involves segmenting and labeling cells in

CMP using a superpixel grid. Supersegmentation is then applied to the ATEM

image, and a 2D HMM is used to find the optimal mapping between the two

images. The cell segmentations are then transferred from CMP to ATEM, and an

HMM-based contour refinement method is used to further improve the quality of

segmentation. Each individual cell is then tracked through the ATEM stack using

the refined controur as initialization.
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5.2.1 CMP Segmentation

Th multi-marker classification and segmentation procedure outlined in Chap-

ter 3 is used to initialize the ATEM segmentation algorithm.

5.2.2 Multimodal Segmentation Transfer

Cell segmentations from the CMP image are transferred to the ATEM image

using a 2D HMM framework built on a superpixel lattice. We oversegment the

ATEM image using SLIC superpixels, in a similar setting to that used for CMP

oversegmentation.

We construct a 2D HMM over a first order Markov mesh random field of size

X × Y , where X and Y are, respectively, the number of superpixels per row and

column in the CMP image. Each superpixel in the CMP image corresponds to a

node at a location (x, y) in the 2D HMM, and is denoted by Cx,y. The label of

Cx,y is denoted by ωx,y. Similarly, Ax,y denotes a superpixel at a location (x, y)

in the ATEM superpixel lattice.

Each state q of the 2D HMM corresponds to a unique mapping ∆ from a

superpixel Cx,y in CMP to Ax+∆x,y+∆y in ATEM. Our aim is to find the optimal

state sequence, Q∗ = {q∗x,y, x = 1, 2, . . . X, y = 1, 2, . . . Y }, which describes a

deformation of the superpixel lattice. This deformation is used to map labels

from superpixels in CMP to superpixels in ATEM.
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Figure 5.2: Mapping a label from a SLIC superpixel in CMP to a SLIC super-
pixel in ATEM, using a mapping ∆.

Data Matching Costs

The cost of matching a superpixel from the CMP image to a superpixel from

the ATEM is captured by the emission probabilities of the 2D HMM. The emission

probability b∆
x,y represents the probability of matching Cx,y to Ax+∆x,y+∆y (see

Fig5.2).

b∆
x,y = P (Ax+∆x,y+∆y |Cx,y) (5.1)

We extract two features from every superpixel Ax,y in the ATEM image, the

average and median intensity in the superpixel, and combine them into a single

feature vector fx,y. Given the label ωx,y from Cx,y, emission probability can be
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rewritten as

b∆
x,y = P (fx+∆x,y+∆y |ωx,y) (5.2)

We model P (fx+∆x,y+∆y |ωm) for the class ωm with a mixture of K Gaussians.

P (fx+∆x,y+∆y |ωx,y) =
K∑
k=1

wkmP (fx+∆x,y+∆y |ωkx,y) (5.3)

where the set of mixture component weights for each class must satisfy
K∑
k=1

wkm =

1 ∀m ∈ {1, 2, . . .M}. Each individual component density is a Gaussian of dimen-

sion 2.

P (fx+∆x,y+∆y |ωkm) =

exp{−1
2
(fx+∆x,y+∆y − µk

m)
T
Σk
m
−1

(fx+∆x,y+∆y − µk
m)}

(2π)|Σk
m|

1
2

(5.4)

where µk
m and Σk

m are the mean and covariance, respectively.

Neighborhood Consistency

Consistency between translations of neighboring superpixels is ensured by the

transition probabilities of the 2D HMM. The neighborhood consistency measure

from 4 is adapted for use in this application. In contrast to previous chapter

(where the 2D HMM was set up on the regular source image grid), the grid in

this approach is set up on the superpixel lattice. In order to account for the

78



Chapter 5. Segmentation and Tracking of Cells through Multimodal Label
Transfer

irregularity of the grid, we define a spatially varying transition probability matrix

which depends on the centroids of superpixels in both images.

A state corresponding to a mapping ∆ maps the superpixel Cx,y in CMP to

Ax+∆x,y+∆y in ATEM. Let D∆
x,y be a 2D vector representing the distance between

the centroids of superpixels Cx,y and Ax+∆x,y+∆y . Each element of the horizontal

transition probability matrix, aH∆′,∆(x, y), represents the probability of moving

from state ∆ at a location (x−1, y) to the state ∆′ at (x, y) in the 2D HMM, and

is modeled by a Gaussian given by

aH∆′,∆(x, y) ∝ exp

{
−1

2

(‖D∆′
x,y −D∆

x−1,y‖2

σ2

)}
(5.5)

where ‖·‖ denotes Euclidean distance. This model ensures smoothness in

the resulting deformation by encouraging neighboring superpixels to take simi-

lar translations. Since cellular microscopy images do not typically exhibit differ-

ent behavior in different directions, we assume a similar model for the vertical

transition probability matrix.

Parameter Estimation and Inference

The parameters of the 2D HMM are learned using Baum-Welch training [5],

and the optimal state sequence is inferred using the Viterbi decoding algorithm

with modified forward-backward iterations, as described in [18].
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Figure 5.3: (a) Construction of a deformable trellis around the initial contour.
The black curve is the initial contour, the dashed lines are the constructed
normals, and each black dot corresponds to a state. (b) An example of an
estimated contour (in red) obtained by joining a given sequence of states (red
dots).

5.2.3 Contour Refinement

We apply a basic version of the tracking algorithm from [69] to refine the

obtained segmentation. Each segmented cell is taken individually, and an initial

contour is set up on perimeter of the cell. Nodes for the HMM are initialized

by sampling points at constant spacing along this contour, resulting in Nφ total

nodes. A normal line is constructed at each node, and Nψ equally spaced points

(each corresponding to a state) are placed symmetrically along the normal (see

Fig.5.3(a)), resulting in a deformable trellis. A given sequence of states, Q =

{qφ, φ = 1, 2, . . . Nφ}, corresponds to a path through the trellis, which forms a

contour (see Fig.5.3(b)). Our aim is to estimate the optimal cell boundary by
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deforming the initial contour.

Emission Probability

The emission probabilities of the HMM represent the cost of the contour pass-

ing through a given point on the trellis. We extract three features to measure

the emission probability bψφ for a state ψ at a location φ on the contour - one

region-based feature which captures local object characteristics around the point

of interest and two edge features which involve the first and second order average

gradients along the normal line. The three features are concatenated into a single

feature vector fψφ , and the emission probability is modeled with a 3-dimensional

Gaussian with mean µc and variance Σc.

bψφ =
exp{−1

2
(fψφ − µc)

T
Σc
−1(fψφ − µc)}

(2π)
3
2 |Σc|

1
2

(5.6)

Transition Probability

The transition probabilities of the HMM ensure smoothness in the estimated

contour, and are modeled with a tilted Gibbs distribution. Each element of the

transition probability matrix, aψ′,ψ, is the probability of moving to state ψ′ from
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state ψ, and is given by

aψ′,ψ ∝ exp

{
−(ψ − ψ′)2

2θ2
1

}
· exp

{
−(ψ′ − ψ0)2

2θ2
2

}
(5.7)

where ψ0 is the middle state, which corresponds to the initial contour. The

term containing θ1 ensures consistency between consecutive points on the con-

tour, whereas the term containing θ2 penalizes large deviations from the initial

contour.

Parameter Estimation and Inference

The emission parameters for the HMM used for contour refinement are learned

using a support vector machine (SVM) [70] on labeled training data. Transition

parameters are trained using maximum likelihood (Baum-Welch) on the training

dataset. The optimal sequence is inferred using the Viterbi algorithm, and the

resulting contour forms the refined segmentation boundary of the cell.

5.2.4 Cell Tracking

We note that the method described in Section 5.2.3 relies on SVM-based pa-

rameter estimation. Therefore, for successful tracking using this algorithm, the

data must satisfy one of two conditions: (i) the intensity profile of cells must

remain fairly similar while traversing the stack or (ii) there must be extensive
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ground truth available for all frames. Since manual annotation is tedious for large

volumes of data and appearance of ATEM images varies considerably from frame

to frame, we cannot use the described algorithm directly, and instead use the

variant described in [71] for tracking. The contour from the first frame of ATEM

is used to initialize the tracking, and the final contour from each frame is used as

initial contour in the following frame, with HMM parameters updated after each

iteration of deformation. As this is a topology aware algorithm, it has the ability

to handle splits and merges of cells, as well as large displacement between layers.

This is particularly useful in case of skipped or damaged slices, which are common

in the RC1 data.

5.3 Experimental Validation

5.3.1 ATEM Segmentation

We test the performance of several methods on images obtained from the

RC1 connectome [2]. The test data consists of 85 total cells in the first frame. To

evaluate the accuracy of segmentation of each method, we compare the result with

manually guided expert annotated ground truth. Segmented cells are optimally

matched with ground truth cells using magnitude of overlap. The F-measure F

is used as a measure of similarity between each ground truth cell (SGT ) and its
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Figure 5.4: (Best in color) Visual results of cell segmentation in a challenging
scenario. (a) Region of interest in the ATEM image (b) Ground truth of the
cell overlaid in red (c-i) Image with overlaid segmentation results from (c)
membrane detection method (Kaynig et al.) (d) DROP (e) α-MI (f) MIND
(g) SSC (h) Graph cuts (i) HMM-based multimodal fusion (j) the proposed
approach

corresponding segmentation (SSEG).

F =
2 · PR ·RC
PR +RC

(5.8)

where the precision PR is given by PR = |SGT ∩ SSEG|
|SSEG|

and recall RC is given

by RC = |SGT ∩ SSEG|
|SGT |

. The operator |·| denotes number of pixels. The area (in

pixels) of each ground truth cell is used as weight in the calculation of F-measure

statistics.

We compare the performance of the proposed approach with related approaches

that fall in two categories, direct segmentation methods and segmentation trans-
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fer via multimodal registration. The methods are listed below along with their

respective optimal setting (each empirically found).

Direct ATEM Segmentation Methods: (i) Membrane detection using random

forest classification followed by gap completion [60] with manually selected cells

(since only contours are detected) (ii) Graph cut segmentation [66] in a multiple

object setting, with parameters learned via manual seeding of a small subset of

cells.

Label transfer-based Methods: (i) Graph cut segmentation [66], seeded with

the results of CMP segmentation (ii) DROP [51], with λ = 0.1 (iii) α-MI-based

registration [53], with α = 0.99 and k = 7 (iv) MIND [54], with α = 0.1 (v)

SSC [55], with α = 0.1 (vi) Our recent approach for multimodal fusion [72] (vii)

the proposed method.

A comparison of quantitative results is provided in Table 5.1. We see that the

proposed approach shows considerable improvement over competing methods in

terms of segmentation accuracy. Visual results for a challenging scenario (touching

cells without a well-defined membrane separating them) are shown in Fig. 5.4. We

observe that direct EM segmentation methods are unable to separate the cell of

interest from the visually similar adjoining cell, while registration-based methods

utilize the label information from CMP to mitigate this problem. The additional

contour refinement step of the proposed method results in further improved cell
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Method Mean Std Dev

Membrane detection [60] 0.7016 0.2732
Graph Cuts [66] (automatic) 0.6765 0.2889
DROP [51] 0.7412 0.1674
α-MI [53] 0.7288 0.1620
MIND [54] 0.7537 0.1688
SSC [55] 0.7523 0.1696
Graph Cuts [66] (seeded from CMP) 0.7808 0.2014
Multimodal fusion [72] 0.7978 0.1480
Proposed method 0.8651 0.1287

Table 5.1: F-measure statistics of segmentation results from various methods.

Method Mean Std Dev

Chan-Vese Algorithm [73] 0.8802 0.1439
HMM-based Tracking 0.9268 0.0604

Table 5.2: F-measure statistics comparison for tracking.

segmentation.

5.3.2 ATEM Cell Tracking

We compare the results of our algorithm with a level set tracking algorithm [73],

initialized with the refined segmentation obtained in our segmentation refinement

step. F-measure statistics of both methods on 10 cells over 10 frames against

manually annotated ground truth are reported in Table 5.2. The proposed algo-

rithm is observed to outperform the level set-based method in tracking. We note

that the tracking algorithm [71] was developed for use with manual initialization.
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Figure 5.5: Tracking results on an ATEM sequence. The first row shows ground
truth, the second row shows results of Chan-Vese tracking, and the third row
shows results of the HMM-based tracking algorithm.

However, we have demonstrated how it may be adapted for use with automated

initialization.

5.4 Conclusion

This chapter presents a novel approach to segment and track objects in a

multimodal setting, where information from a supplementary source is used to

facilitate the segmentation of a challenging dataset. The labels from segmented

cells in light microscopy images are transferred to electron micrographs using a

2D HMM-based mechanism built over a superpixel lattice. The obtained cell

segmentations are refined using a HMM-based contour refinement technique. The
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refined cell boundaries are then used to initialize a closed-contour cell tracking

mechanism. Experimental results show the capability of the proposed approach

to effectively segment and track cells in ATEM images.
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Chapter 6

Conclusions and Future Work

In this dissertation, we focus on developing techniques for the automated analysis

of biomedical data, with an emphasis on multimodal microscopy data.

In Chapter 3 we describe an algorithm to simultaneously segment and clas-

sify cells of multiple classes in a multi-marker image, using a superpixel grid

and HMM-based optimization. In Chapter 4 a multi-modal, multi-channel de-

formable registration framework in introduced, wherein modality specific costs

and smoothness constraints are quantified by the parameters of a 2D HMM. With

the knowledge that standard EM segmentation algorithms are unable to perform

well on the described ATEM data, Chapter 5 introduces a multi-stage label trans-

fer based segmentation system for ATEM. Following segmentation in the first

frame, tracking of the cell through the stack is also performed.
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To the best of our knowledge, this is the first attempt at developing algo-

rithms for the comprehensive automated reconstruction of a multi-modal biologi-

cal dataset.

6.1 Future Work

We suggest a few possible future directions, both from a broad point of view

as well as specific to the methods described in previous chapters.

The most widely used paradigm in microscopic data analysis separates com-

puter vision tasks such as image segmentation and registration from the down-

stream statistical analysis. It is conceivable that integrating statistical tools at

the image analysis stage could lead to improved performance. (For example, ex-

plicitly considering the subclass attributes discovered [2] in CMP data could lead

to improved cell segmentation).

Multimodal image acquisition is very common in biomedical image analysis,

and often, a specific task is much easier to perform on one modality than the

other(s). It will be interesting to explore how domain adaptation could be applied

in such cases to leverage the knowledge for challenging datasets.

With respect to the methods described in this dissertation, we propose a few

extensions that could improve upon obtained results. A multi-channel extension

of the contour refinement algorithm can be designed to correct superpixel-induced
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errors in CMP segmentation. Cells can be tracked until the next CMP layer is

reached, and the data in the CMP image can be used to check and correct for the

accuracy of the tracked sequence. If necessary, another cell track could be run in

the reverse direction to correct errors.

Another possible area of work is how to deal with cells or regions of low

confidence in algorithm output. This would entail computing a local uncertainty

score along with the result. We may choose to exclude regions of low confidence

from further statistical analysis, or use an active learning framework with expert

input.

Finally, while the algorithms in this dissertation focus on 2D-HMMs, it would

be interesting to see how the ideas presented here could be extended to higher

dimensional data.
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