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Executive Summary 

Improving the sustainability of pavement operations requires that steps be developed to reduce 
the environmental impact of construction, maintenance, and use of network. An important 
component of the network’s usage is the energy exerted by vehicles. Part of this energy is 
consumed by losses within the vehicle and due to pavement surface roughness. Another portion 
is due to structural properties of the pavement itself. Therefore, if the selection of pavement 
structures is to be guided by sustainability, the influence of the pavement structure on energy 
consumption should be adequately reflected in the pavement-design decision process. 

The energy dissipated in pavements depends on the characteristics of the pavements in general, 
and on their rate dependence in particular. These properties depend on temperature and 
“damage.” Thus, the energy a traversing vehicle dissipates due to the structure of the pavement 
depends on the time of day, the season, and the condition (damage) of the pavement. Moreover, 
the vehicle fleet includes a range of wheel sizes and axle loads. As a result, estimating the 
lifetime energy dissipated in a pavement structure requires multiple analyses. Specifically, 
CalME, the pavement design software employed by Caltrans, requires a few thousand such 
simulations per design, and each project requires the evaluation of a few design alternatives. 
Therefore, a pavement design process that incorporates sustainability requires the balancing of 
two opposing needs. The first requirement is the need to obtain a reasonably accurate estimate of 
the dissipated energy. The second requirement is high numerical efficiency so that incorporating 
this consideration is feasible. 

The tBeam software is designed to meet the above challenges. In particular, tBeam employs a 
one-dimensional finite-element-based solution of a wheel traveling at a constant velocity on a 
viscoelastic beam-foundation system. The one-dimensional approach is essential in order to meet 
the efficiency requirement. Yet, it is not sufficient. Fortunately, a reduction of a few orders of 
magnitude in the numerical efforts is obtained by formulating the model relative to a moving 
coordinate system attached to the wheel. Thanks to this strategy it is feasible to employ tBeam 
for pavement sustainability analysis. 

The one-dimensional solution is, by nature, an approximation to the three-dimensional world. 
This approximation can be improved by incorporating a “correction factor,” which is based on 
comparisons with pavement simulations accounting for the double curvature observed in loaded 
pavements. In this report, prediction disparity for a single structure is studied. The results show a 
clear trend where the correction factor decreases with rising temperature and increases with 
higher velocity. Unfortunately, the present study was insufficient to establish a law for the 
correction factor, even for the single case studied. The correction factor ranged from about 1.25 
at low temperature and high velocity to about 0.6 for high temperature and low velocity. 

This report contains three components. The first part presents the underling theory for tBeam, 
and the details of the implementation. The second part of this report presents closed form 
solutions for specialized pavement-foundation systems. The third component of the report 
presents some of the validation simulations undertaken to demonstrate the performance of 
tBeam, including comparisons with closed form solutions provided in this report. This 
component also includes comparisons with results obtained for a single viscoelastic plate-
foundation system, which are used to develop guidelines for the correction factor noted above.  

Finally, this report contains recommendations for further development of tBeam.
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1 Introduction 
Improving the sustainability of pavement operations requires that steps be developed to reduce 
the environmental impact of construction, maintenance, and use of the network. An important 
component of the network’s usage is the energy exerted by vehicles. Part of this energy is 
consumed by losses within the vehicle and due to pavement surface roughness. Another portion 
is due to structural properties of the pavement itself. Therefore, if the selection of pavement 
structures is to be guided by sustainability, the influence of the pavement structure on energy 
consumption should be adequately reflected in the pavement-design decision process. 

The energy dissipated in pavements depends on the characteristics of the pavements in general, 
and on their rate dependence in particular. These properties depend on temperature and 
“damage.” Thus, the energy a traversing vehicle dissipates due to the structure of the pavement 
depends on the time of day, the season, and the condition (damage) of the pavement. Moreover, 
the vehicle fleet includes a range of wheel sizes and axle loads. As a result, estimating the 
lifetime energy dissipated in a pavement structure requires multiple analyses. Specifically, 
CalME, the pavement design software employed by Caltrans, requires a few thousand such 
simulations per design, and each project requires the evaluation of a few design alternatives. 
Therefore, the pavement analysis software must deliver accurate prediction of the dissipated 
energy while achieving high numerical efficiency. 

The UC Davis Pavement Research Center previously undertook a study to estimate the energy 
dissipated in pavements. This study considered three different simulation approaches: 

1. Three-dimensional solid finite element simulations. 
2. Axisymmetric hybrid method (finite elements in the axial direction and a series expansion in 

the radial direction). 
3. A load moving on a viscoelastic Euler beam suspended on a Winkler foundation employing 

the formulation developed in Kelly [1962]. 

The first approach meets accuracy requirements, but it is far too computationally intensive for 
the current needs. The second approach is restricted by the axisymmetric assumption, which is 
not suitable for the problem of a wheel rolling on a pavement. Following Kelly [1962], the third 
approach offers a highly efficient numerical model that results from formulating the wheel-beam 
problem relative to an observer attached to the moving wheel. This approach substitutes the time 
derivative with a spatial derivative (see Section 2), which enables achieving the steady-state 
solution in one step. Unfortunately, Kelly [1962] (and the implementation noted above) 
employed the Bernoulli-Euler beam theory that neglects shear deformation, an important 
deformation mechanism for asphalt-concrete pavements at elevated temperatures. Consequently, 
simulations may result in poor estimation of the dissipated energy. Thus, all three approaches fall 
short. 

This report provides the theoretical background and validation simulations for the tBeam 
software that provides a computationally efficient approach for estimating the energy dissipated 
in pavements traversed by vehicles moving at a constant velocity. In particular, to achieve 
numerical efficiency, tBeam adopts the beam model viewed by an observer attached to the 
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moving wheel as proposed by Kelly [1962]. However, tBeam substitutes the shear deformable 
Timoshenko beam for the Bernoulli-Euler beam employed in option 3 above.  

The balance equations for a Timoshenko beam suspended on a viscoelastic Winkler foundation 
are presented in Section 2. tBeam is finite element based, and the details of this formulation are 
provided in Section 3. tBeam offer two loading options, which are described in Section 4. 
Preparing for the validation effort, a number of special-case closed form solutions are presented 
in Section 5. Next, simulations demonstrating tBeam are provided in Section 6. These 
simulations include comparison with closed-form solutions and with simulations employing plate 
elements to represent the beam. Additionally, Section 6 also includes comparisons with 
simulations where a pavement is modeled as two-dimensional plates on a Winkler foundation. 
These simulations are used to establish a “correction factor” relating the one-dimensional beam 
representation to the three-dimensional world. Lastly, concluding remarks, including 
recommendations for follow-up studies, are offered in Section 7. 
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2 Timoshenko Beam Resting on a Winkler Foundation 
tBeam employs a multilayered linear viscoelastic Timoshenko beam resting on a linear 
viscoelastic Winkler foundation. This section presents the strong form of the balance of 
momentum equations. The presentation is confined to the realm of small deformations, and in-
plane effects are ignored. 

This section is organized as follows. First, Section 2.1 presents the kinematic assumptions for the 
Timoshenko beam relative to an inertial (fixed) coordinate system. Kelly [1962] proposed an 
efficient approach to represent the steady-state beam deflections where the formulation is relative 
to a coordinate system attached to the rolling wheel. Second, the moving coordinate system is 
introduced in Section 2.2. Third, Section 2.3 presents the formulation for a purely elastic system 
where the beam model consists of a single layer. Next, in Section 2.4, the model is extended to 
linear viscoelastic material response (beam and Winkler foundation). Finally, Section 2.5 extends 
the beam model to include multiple layers. 

2.1 Timoshenko Beam Kinematics 

The Timoshenko beam (see Timoshenko [1921, 1922]) extends the Bernoulli-Euler beam model 
(see, e.g., Kelly [1962]), which allows no shear deformation, to permit restricted shear 
deformation. In particular, the following two assumptions are introduced: 

1. A plane normal to the mid-surface in the reference configuration remains a plane, but it is not 
necessarily normal to the mid surface. 

2. The length of a fiber normal to the mid surface remains unchanged throughout the 
deformation. 

These assumptions are expressed in the following restricted displacement field allowed by the 
Timoshenko beam theory: 

  𝑈𝑈𝑋𝑋(𝑋𝑋,𝑌𝑌,𝑍𝑍, 𝑡𝑡) = −𝑌𝑌𝑌𝑌(𝑋𝑋, 𝑡𝑡), 𝑈𝑈𝑌𝑌(𝑋𝑋,𝑌𝑌,𝑍𝑍, 𝑡𝑡) = 𝑤𝑤(𝑋𝑋), and 𝑈𝑈𝑍𝑍(𝑋𝑋,𝑌𝑌,𝑍𝑍, 𝑡𝑡) = 0. (2.1) 

In Equations (2.1), the vector (𝑋𝑋,𝑌𝑌,𝑍𝑍, 𝑡𝑡) represents the position of points in the beam relative to 
an inertial right-handed Cartesian coordinate system, X, at time = 𝑡𝑡. In particular, the coordinate 
system is chosen so that the 𝑋𝑋 coordinate is aligned with the axial direction of the beam, with the 
wheel moving in the positive direction; the 𝑌𝑌 coordinate is in the direction of the normal to the 
mid-surface, with the origin at the mid-surface and the positive in the upwards direction; and the 
𝑍𝑍 coordinate is normal to both the 𝑋𝑋 and 𝑌𝑌 coordinates. Also in Equation (2.1), (𝑈𝑈𝑋𝑋,𝑈𝑈𝑌𝑌,𝑈𝑈𝑍𝑍) are 
the components of the displacement vector; 𝑌𝑌(𝑋𝑋) is the angle of rotation about the 𝑍𝑍 axis of the 
normal to the mid-surface (it depends only on the 𝑋𝑋 coordinate); and 𝑤𝑤 is the displacement of the 
mid-surface in the Y-direction, which will henceforward be referred to as the transverse 
direction. It follows from the above assumptions that the Timoshenko beam model introduces the 
following shear strain: 

 𝛾𝛾(𝑋𝑋) ≔ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋
− 𝑌𝑌 (2.2)  
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2.2 Moving Coordinate System 

Kelly [1962] noticed that an observer attached to a rolling wheel moving at a constant velocity 
perceives a constant deformation state. This observation led him to formulate the balance of 
momentum relative to a moving coordinate system, an approach that results in substituting 
spatial derivative for time derivative. A direct consequence of this approach is that the steady 
state solution for the entire beam is obtained in one step, thus bypassing the need for time 
integration and achieving significant computation advantage. Therefore, this approach is 
implement in tBeam as described below. 

Let x denote a second right handed Cartesian coordinate system attached to the rolling wheel so 
that: 

 𝑥𝑥 = 𝑋𝑋 − 𝑣𝑣𝑡𝑡, 𝑦𝑦 = 𝑌𝑌, and 𝑧𝑧 = 𝑍𝑍. (2.3) 

In Equations (2.3), 𝑣𝑣 is the velocity of the wheel (assumed to be constant). It follows from the 
definition of the moving coordinate system that the following relations exist between derivatives: 

  𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝑋𝑋

  and  𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑣𝑣 𝜕𝜕
𝜕𝜕𝜕𝜕

. (2.4) 

The second of Equations (2.4) provides the means for replacing time derivatives with spatial 
derivatives. Taking advantage of this relationship enables bypassing time integration altogether 
(for a steady state analysis), which is pivotal for achieving high numerical efficiency. 

2.3 An Elastic Timoshenko Beam on an Elastic Winkler Foundation 

The governing equations of motion for an elastic Timoshenko beam on an elastic Winkler 
foundation, relative to the inertial coordinate system X, is given by: 

 𝜌𝜌𝜌𝜌 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝑞𝑞(𝑋𝑋, 𝑡𝑡) + 𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋

 (2.5) 

and 

 𝜌𝜌𝜌𝜌 𝜕𝜕
2𝜑𝜑
𝜕𝜕𝜕𝜕2

= 𝜕𝜕𝑀𝑀
𝜕𝜕𝑋𝑋

+ 𝑄𝑄 (2.6) 

In Equations (2.5) and (2.6), 𝜌𝜌 is the mass density; 𝜌𝜌 is the area of the cross section of the beam; 
𝑤𝑤(𝑋𝑋, 𝑡𝑡) is the transverse displacement; 𝑞𝑞(𝑋𝑋, 𝑡𝑡) is a distributed transverse load per unit length; 
𝑞𝑞𝑓𝑓(𝑋𝑋, 𝑡𝑡) is the force exerted on the beam by the Winkler foundation; 𝑄𝑄 is the shear resultant 
force; 𝑀𝑀 is the bending moment; and I is the second moment of the Area. 

Completing the description requires providing constitutive laws for 𝑄𝑄, 𝑀𝑀, and 𝑞𝑞𝑓𝑓, which for the 
case of a linear elastic beam and Winkler foundation are given by: 

 𝑄𝑄 = 𝐺𝐺𝜌𝜌𝑠𝑠𝛾𝛾, 𝑀𝑀 = 𝐸𝐸𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝑋𝑋

, and 𝑞𝑞𝑓𝑓 = 𝐾𝐾𝑤𝑤 (2.7) 
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In Equations (2.7), 𝐺𝐺 is the shear modulus of the beam; 𝜌𝜌𝑠𝑠: = 𝑘𝑘𝜌𝜌 is the effective area of the 
beam’s cross section, with 𝑘𝑘 the Timoshenko shear coefficient, typically for rectangular sections 
𝑘𝑘 = 5/6; 𝐸𝐸 is the elastic modulus of the beam; and 𝐾𝐾 is the stiffness of the Winkler foundation 
(per unit length). 

Remark: The shear and elastic moduli are related through the following relationship: 𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈), 

where 𝜈𝜈 is Poisson’s ratio. It serves the validation effort to keep 𝐸𝐸 and 𝐺𝐺 independent of each 
other, which will be followed herein.♦    

It was observed in Section 2.2 that enhanced computational efficiency could be attained if the 
formulation is recast relative to a moving coordinate system attached to the rolling wheel. (A 
constant velocity is assumed.) Applying Equations (2.4) to Equations (2.5) and (2.6) yields: 

  𝜌𝜌𝜌𝜌𝑣𝑣2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝑞𝑞(𝑥𝑥, 𝑡𝑡) + 𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2.8) 

and 

 𝜌𝜌𝑣𝑣2𝜌𝜌 𝜕𝜕
2𝜑𝜑
𝜕𝜕𝜕𝜕2

= 𝜕𝜕𝑀𝑀
𝜕𝜕𝜕𝜕

+ 𝑄𝑄 (2.9) 

An examination of Equations (2.8) and (2.9) shows that only the inertia terms in both equations 
changed, introducing the square of the velocity and replacing time derivative with spatial 
derivative. Additionally, the spatial derivatives are now relative to the moving coordinate 
system. The constitutive equations (Equations (2.7)) remain unchanged except that the spatial 
derivatives are relative to the moving coordinate system. This last observation is valid only for 
the rate independent models such as the linear elastic model considered in this section (see 
Section 2.4). 

2.4 A Viscoelastic Timoshenko Beam on a Viscoelastic Winkler 
Foundation 

The purely (linear) elastic model presented in Section 2.3 is now extended linear viscoelasticity. 
In particular, the Timoshenko beam model consists of three “independent” components: bending, 
shear, and Winkler foundation. Each of these components is independently replaced with a 
generalized Maxwell model consisting of the following elements in parallel: 

1. A linear  “spring” (providing a purely elastic response). 
2. A number of linear Maxwell elements (each consisting of a spring in sequence with a 

dashpot). 
3. A linear dashpot. 

In a one-dimensional setup, this viscoelastic model is mathematically represented by: 

 𝜎𝜎 = 𝐸𝐸𝐸𝐸 + 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∑ 𝜎𝜎𝑖𝑖𝑀𝑀𝑛𝑛
𝑖𝑖=1  (2.10) 
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In Equation (2.10), 𝜎𝜎 is the stress; 𝐸𝐸 is the stiffness of the elastic spring; 𝐸𝐸 is the (total) axial 
strain; 𝜂𝜂 is the viscosity of the “stand-alone” dashpot; n is the number of Maxwell elements; and 
𝜎𝜎𝑖𝑖𝑀𝑀 is the stress in the ith Maxwell element, which is given by: 

  𝜎𝜎𝑖𝑖𝑀𝑀 = 𝐸𝐸𝑖𝑖(𝐸𝐸 − 𝜀𝜀𝑖𝑖𝑀𝑀) = 𝜂𝜂𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖

𝑀𝑀

𝜕𝜕𝜕𝜕
. (2.11) 

In Equation (2.11), 𝐸𝐸𝑖𝑖 and 𝜂𝜂𝑖𝑖 are the “spring” and “dashpot” properties comprising the ith 
Maxwell element, respectively; 𝜀𝜀𝑖𝑖𝑀𝑀 is the viscous strain in the ith Maxwell element, which is 
introduced here as an internal variable. Equation (2.11) reflects the fact that the spring and 
dashpot are thought of as being in sequence; hence, the stress in them is equal. It is often 
convenient to work with the characteristic period of the Maxwell element, which is defined by: 

 𝜏𝜏𝑖𝑖: = 𝜂𝜂𝑖𝑖
𝐸𝐸𝑖𝑖

. (2.12) 

The representation of the Maxwell elements introduced the internal variables 𝜀𝜀𝑖𝑖𝑀𝑀. Thus, in order 
to proceed, a relation is needed to evaluate the internal variables. The second equality in 
Equation (2.11) provides the needed relationship, which can be casted as a rate equation for 𝜀𝜀𝑖𝑖𝑀𝑀, 
as follows: 

 𝜕𝜕𝜕𝜕𝑖𝑖
𝑀𝑀

𝜕𝜕𝜕𝜕
= 𝜖𝜖−𝜕𝜕𝑖𝑖

𝑀𝑀

𝜏𝜏𝑖𝑖
. (2.13) 

Equation (2.13) takes advantage of the definition of the characteristic time (Equation (2.12)). 

An examination of Equations (2.10) and (2.11) reveals that they contain time derivatives, which 
in the moving coordinate system, thanks to Equation (2.4), can be expressed in terms of spatial 
derivatives. Accordingly, Equations (2.10) and (2.11) can be respectively rewritten as: 

  𝜎𝜎 = 𝐸𝐸𝐸𝐸 − 𝜂𝜂𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∑ 𝜎𝜎𝑖𝑖𝑀𝑀𝑛𝑛
𝑖𝑖=1  (2.14) 

and 

 𝜎𝜎𝑖𝑖𝑀𝑀 = 𝐸𝐸𝑖𝑖(𝐸𝐸 − 𝜀𝜀𝑖𝑖𝑀𝑀) = −𝐸𝐸𝑖𝑖𝜏𝜏𝑖𝑖𝑣𝑣
𝜕𝜕𝜕𝜕𝑖𝑖

𝑀𝑀

𝜕𝜕𝜕𝜕
. (2.15) 

𝜀𝜀𝑖𝑖𝑀𝑀 appearing in Equation (2.15) is an internal variable, associated with the ith Maxwell element. 
Its physical interpretation is the portion of the total strain due to the elongation of the dashpot 
component of the Maxwell element. In other words, as implicitly stated by Equation (2.15), the 
total strain admits an additive decomposition into elastic and viscous strains (i.e., 𝐸𝐸 = 𝜀𝜀𝑖𝑖𝑒𝑒 + 𝜀𝜀𝑖𝑖𝑀𝑀), 
and the elastic strain, 𝜀𝜀𝑖𝑖𝑒𝑒(𝐸𝐸, 𝐸𝐸𝑒𝑒𝑖𝑖

𝑀𝑀), is taken as the dependent variable. Equation (2.14) also took 
advantage of the characteristic time, which is defined by Equation (2.12). Finally, the internal 
variables 𝜀𝜀𝑖𝑖𝑀𝑀 are determined, in an analogous way to Equation (2.13) through the following 
relation: 

 𝜕𝜕𝜕𝜕𝑖𝑖
𝑀𝑀

𝜕𝜕𝜕𝜕
= − 𝜖𝜖−𝜕𝜕𝑖𝑖

𝑀𝑀

𝜏𝜏𝑖𝑖𝑣𝑣
. (2.16) 
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Examining the elastic constitutive laws expressed by Equations (2.7) reveals that all three 
(bending, shear, and foundation) are essentially one-dimensional laws, and the one-dimensional 
constitutive model derived in this section is directly applicable with the appropriate strain 
measure, which for the three cases is given by: 

1. Bending: 𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

. 
2. Shear: 𝜌𝜌𝑠𝑠𝛾𝛾. 
3. Winkler foundation: 𝑤𝑤. 

For example, the constitutive equation for bending, in the inertial coordinate system, is given by: 

 𝑀𝑀 = 𝐸𝐸𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

+ 𝜂𝜂𝜌𝜌 𝜕𝜕
2𝜑𝜑

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
+ ∑ 𝐸𝐸𝑖𝑖𝜌𝜌 �

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑖𝑖𝑀𝑀�𝑛𝑛

𝑖𝑖=1 . (2.17) 

Alternatively, in the moving coordinate system, it is given by: 

 𝑀𝑀 = 𝐸𝐸𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
− 𝑣𝑣𝜂𝜂𝜌𝜌 𝜕𝜕

2𝜑𝜑
𝜕𝜕𝜕𝜕2

+ 𝜌𝜌 ∑ 𝐸𝐸𝑖𝑖
𝜕𝜕𝜅𝜅𝑖𝑖

𝑀𝑀

𝜕𝜕𝜕𝜕
�𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑖𝑖𝑀𝑀�𝑛𝑛

𝑖𝑖=1 . (2.18) 

In Equations (2.17) and (2.18), 𝜅𝜅𝑖𝑖𝑀𝑀 is the internal variable associated with the ith Maxwell 
element. The last term in Equation (2.18) retains the form used in Equation (2.17) rather than the 
alternative form for the constitutive form on the Maxwell element (i.e., in terms of the stress on 
the dashpot). This choice is made because the internal variable is directly accessible, and using 
this form avoids introducing higher derivatives.   

2.5 A Multilayered Viscoelastic Timoshenko Beam on a Viscoelastic 
Winkler Foundation 

The balance equations, for a multilayered beam resting on a Winkler foundation, relative to the 
inertial coordinate system X, are given by: 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝑞𝑞(𝑋𝑋, 𝑡𝑡) + 𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋
 (2.19) 

and 

 𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 = 𝜕𝜕𝑀𝑀

𝜕𝜕𝑋𝑋
+ 𝑄𝑄 (2.20) 

In Equations (2.19) and (2.20), 𝑛𝑛𝑛𝑛 represents the number of layers comprising the beam, and 𝜌𝜌𝑛𝑛, 
𝜌𝜌𝑛𝑛, and 𝜌𝜌𝑛𝑛 are the mass density, area, and second area moment for the nth layer, respectively.  

tBeam is formulated relative to a moving coordinate system, x, moving at a constant velocity 𝑣𝑣. 
In this moving coordinate system, the balance equations are given by: 

 𝑣𝑣2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝑞𝑞(𝑥𝑥, 𝑡𝑡) + 𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 (2.21) 

and 
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 𝑣𝑣2 𝜕𝜕
2𝜑𝜑
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 = 𝜕𝜕𝑀𝑀

𝜕𝜕𝜕𝜕
+ 𝑄𝑄 (2.22) 

The resultants 𝑀𝑀, 𝑄𝑄, and 𝑞𝑞𝑓𝑓, relative to the inertial coordinate system X, are respectively given 
by: 

 𝑀𝑀 = ∑ �𝐸𝐸𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕

+ 𝜂𝜂𝐵𝐵𝜌𝜌 𝜕𝜕
2𝜑𝜑

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�
𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 + ∑ �𝜌𝜌𝑛𝑛 ∑ 𝐸𝐸𝑛𝑛𝑖𝑖 �

𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑛𝑛𝑖𝑖𝑀𝑀�

𝑛𝑛𝐵𝐵,𝑛𝑛
𝑖𝑖=1 �𝑛𝑛𝑛𝑛

𝑛𝑛=1 , (2.23) 

 𝑄𝑄 = ∑ �𝐺𝐺𝜌𝜌𝑠𝑠𝛾𝛾 + 𝜂𝜂𝑆𝑆𝜌𝜌𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 + ∑ �𝜌𝜌𝑠𝑠𝑛𝑛 ∑ 𝐺𝐺𝑛𝑛𝑖𝑖(𝛾𝛾 − 𝛾𝛾𝑛𝑛𝑖𝑖𝑀𝑀)𝑛𝑛𝑆𝑆,𝑛𝑛

𝑖𝑖=1 �𝑛𝑛𝑛𝑛
𝑛𝑛=1 , (2.24) 

and 

 𝑞𝑞𝑓𝑓 = 𝐾𝐾𝑤𝑤 + 𝜂𝜂𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∑ 𝐾𝐾𝑖𝑖𝑀𝑀(𝑤𝑤 − 𝑤𝑤𝑖𝑖𝑀𝑀)𝑛𝑛𝑛𝑛
𝑖𝑖=1 . (2.25) 

In Equations (2.23) to (2.25), 𝑛𝑛𝑛𝑛,𝑛𝑛 and 𝑛𝑛𝑛𝑛,𝑛𝑛 are the numbers of bending and shear Maxwell 
elements for the nth layer; 𝑛𝑛𝑛𝑛 is the number of Maxwell elements used for the foundation; (𝐸𝐸𝜌𝜌)𝑛𝑛 
is the product of the modulus and second moment of the area for the nth layer (stand-alone 
spring); (𝜂𝜂𝐵𝐵𝜌𝜌)𝑛𝑛 is the product of the bending-viscosity and second moment of the area for the nth 
layer (stand-alone dashpot); 𝐸𝐸𝑛𝑛𝑖𝑖 is the modulus associated with the ith bending Maxwell element 
of the nth layer; 𝜅𝜅𝑛𝑛𝑖𝑖𝑀𝑀  is the internal variable corresponding to the ith bending Maxwell element of 
the nth layer; (𝐺𝐺𝜌𝜌𝑠𝑠)𝑛𝑛 is the product of the shear modulus and effective area for the nth layer 
(stand-alone spring); (𝜂𝜂𝑆𝑆𝜌𝜌)𝑛𝑛 is the product of the shear-viscosity and second moment of the area 
for the nth layer (stand-alone dashpot); 𝐺𝐺𝑛𝑛𝑖𝑖 is the shear modulus associated with the ith shear 
Maxwell element of the nth layer; 𝛾𝛾𝑛𝑛𝑖𝑖𝑀𝑀 is the internal variable corresponding to the ith shear 
Maxwell element of the nth layer; 𝐾𝐾 is the elastic stiffness of the foundation (stand-alone spring); 
𝜂𝜂𝑓𝑓 is the viscosity of the foundation stand-alone dashpot; 𝐾𝐾𝑖𝑖𝑀𝑀 is the stiffness of the ith foundation 
Maxwell element; and 𝑤𝑤𝑖𝑖𝑀𝑀 is the internal variable associated with the ith foundation Maxwell 
element. 

The constitutive Equations (2.23) through (2.25) are relative to the inertial coordinate system X. 
Their counterparts relative to a moving coordinate system, x, moving at a constant velocity 𝑣𝑣 are 
given by: 

 𝑀𝑀 = ∑ �𝐸𝐸𝜌𝜌 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
− 𝑣𝑣𝜂𝜂𝐵𝐵𝜌𝜌 𝜕𝜕

2𝜑𝜑
𝜕𝜕𝜕𝜕2

�
𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝑣𝑣 ∑ �𝜌𝜌 ∑ �𝜂𝜂𝐵𝐵𝑀𝑀 𝜕𝜕𝜅𝜅𝑀𝑀

𝜕𝜕𝜕𝜕
�
𝑖𝑖

𝑛𝑛𝐵𝐵,𝑛𝑛
𝑖𝑖=1 �

𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 , (2.26) 

 𝑄𝑄 = ∑ �𝐺𝐺𝜌𝜌𝑠𝑠𝛾𝛾 − 𝑣𝑣𝜂𝜂𝑆𝑆𝜌𝜌𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝑣𝑣 ∑ �𝜌𝜌𝑠𝑠𝑛𝑛 ∑ �𝜂𝜂𝑆𝑆𝑀𝑀 𝜕𝜕𝜕𝜕𝑀𝑀

𝜕𝜕𝜕𝜕
�
𝑖𝑖

𝑛𝑛𝑆𝑆,𝑛𝑛
𝑖𝑖=1 �

𝑛𝑛

𝑛𝑛𝑛𝑛
𝑛𝑛=1 , (2.27) 

and 

 𝑞𝑞𝑓𝑓 = 𝐾𝐾𝑤𝑤 − 𝑣𝑣𝜂𝜂𝑓𝑓 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣 ∑ �𝜂𝜂𝑓𝑓𝑀𝑀 𝜕𝜕𝜕𝜕𝑀𝑀

𝜕𝜕𝜕𝜕
�
𝑖𝑖

𝑛𝑛𝑛𝑛
𝑖𝑖=1 . (2.28) 
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The last term in each of Equations (2.26) through (2.28) is associated with the Maxwell elements 
of the bending, shear, and foundation, respectively. The representation is in terms of the stress 
acting on the respective dashpots, which in the inertial coordinate system is expressed in terms of 
the strain rate and in the moving coordinate system in terms of the velocity and the spatial 
derivative, as desired for the approach pursued in tBeam. 
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3 The Weak Form of the Timoshenko Beam on Winkler 
Foundation Equations and Their Finite Element 
Approximation 

tBeam is finite element based. Accordingly, it is derived from the weak form of the momentum 
equations, where the equations are enforced only in an integral sense relative to weight functions 
(see, e.g., Hughes [1987]). The weak form is presented in Section 3.1. Details of the finite 
element approximation are provided in Section 3.2. tBeam employs a Gaussian quadrature to 
integrate the balance of momentum equations, a topic covered in Section 3.3. Finally, addressing 
internal variables in a moving coordinate system is presented in Section 3.4. 

3.1 The Weak Form 

The strong form (i.e., enforced point wise) of the balance of momentum equations for a 
Timoshenko beam on a Winkler foundation is presented in Section 2. The weak form counterpart 
(i.e., enforced only in an integral sense) that constitutes the basis for the finite element 
approximation employed in tBeam is presented herein. Specifically, the weak counterpart to 
Equations (2.19) and (2.20), the balance equations in the moving coordinate system, are, 
respectively, given by: 

 ∫𝜃𝜃𝜕𝜕 �𝑣𝑣2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝑞𝑞(𝑥𝑥, 𝑡𝑡) + 𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑥𝑥 = 0 (3.1) 

and 

 ∫𝜃𝜃𝜑𝜑 �𝑣𝑣2
𝜕𝜕2𝜑𝜑
𝜕𝜕𝜕𝜕2

∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 − 𝜕𝜕𝑀𝑀

𝜕𝜕𝜕𝜕
− 𝑄𝑄�𝑑𝑑𝑥𝑥 = 0 (3.2) 

The integrals appearing in Equations (3.1) and (3.2) are over the domain of the beam. 
Additionally, 𝜃𝜃𝜕𝜕, and 𝜃𝜃𝜑𝜑 appearing in Equation (3.1) and (3.2) are weight functions, or 
variations, representing allowable transverse displacement (𝜃𝜃𝜕𝜕) and rotations (𝜃𝜃𝜑𝜑), such that they 
vanish at the end points.  

An examination of the constitutive laws for the moment, 𝑀𝑀, and shear, 𝑄𝑄, resultants shows that 
they include spatial derivatives of the transverse displacement, 𝑤𝑤, and rotation, 𝑌𝑌, respectively. 
Therefore, in order to reduce continuity requirements on the space of admissible displacements 
(𝑤𝑤, 𝑌𝑌), Equations (3.1) and (3.2) are integrated by parts as follows: 

 ∫ 𝜕𝜕𝜃𝜃𝑤𝑤
𝜕𝜕𝜕𝜕

�𝑄𝑄 − 𝑣𝑣2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 � 𝑑𝑑𝑥𝑥 + ∫𝜃𝜃𝜕𝜕 �𝑞𝑞𝑓𝑓(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞(𝑥𝑥, 𝑡𝑡)� 𝑑𝑑𝑥𝑥 = 0 (3.3) 

and 

 ∫
𝜕𝜕𝜃𝜃𝜑𝜑
𝜕𝜕𝜕𝜕

�𝑀𝑀 − 𝑣𝑣2 𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
∑ (𝜌𝜌𝜌𝜌)𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛=1 � 𝑑𝑑𝑥𝑥 − ∫𝜃𝜃𝜑𝜑(𝑄𝑄)𝑑𝑑𝑥𝑥 = 0 (3.4) 
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3.2 The Finite Element Approximation 

The finite element approximation of Equations (3.3) and (3.4) is obtained by introducing base 
functions. The geometry and state variables (e.g., displacement, velocity, and acceleration) are 
approximated by: 

 𝑦𝑦 = 𝑁𝑁𝐼𝐼𝑌𝑌𝐼𝐼 (3.5) 

In Equation (3.5), 𝑦𝑦 represents any interpolated quantity (e.g., displacement); 𝑁𝑁𝐼𝐼 is the shape 
function associated with the Ith node; 𝑌𝑌𝐼𝐼 is the value of the interpolated quantity evaluated at 
node 𝜌𝜌; and summation over 𝜌𝜌 is implied. Employing the same approximation for the geometry 
and state variables is termed isoparametric formulation. 

tBeam employs three-node beam elements, whose shape functions are given by: 

 𝑁𝑁1 = 1
2
𝜉𝜉(𝜉𝜉 − 1), 𝑁𝑁2 = 1 − 𝜉𝜉2, and 𝑁𝑁3 = 1

2
𝜉𝜉(𝜉𝜉 + 1). (3.6) 

In Equations (3.6), 𝜉𝜉 ∈ [−1,1] is the element’s natural coordinate, and the N1, N2, and N3 
nodes’ natural coordinates are −1, 0, and 1, respectively. Figure 3.1 depicts the three shape 
functions versus the natural coordinate. Note that although the nodes are equally spaced in the 
natural space, they need not be so in the physical space. The only restriction is that the middle 
node is between the two end nodes. A common restriction on the shape functions is that they 
obey the partition of unity (i.e., summation of the values of the shape functions at any point 
within the element domain is one). A simple verification shows that indeed the three shape 
functions sum to one at every point within the element. 

   

 Figure 3.1: Shape functions. 

The momentum equations and constitutive laws employ spatial derivations, which in the finite 
element context are given by: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑁𝑁𝐼𝐼
𝜕𝜕𝜕𝜕
𝑌𝑌𝐼𝐼=

𝜕𝜕𝑁𝑁𝐼𝐼
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑌𝑌𝐼𝐼 (3.7) 

The last expression in Equation (3.7) includes 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, introduced by the chain rule. 
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The finite element approximation commences with the division of the domain into non-
overlapping subdomains, whose union is an approximation of the total domain. (The 
approximation is exact for the one-dimensional case considered here.) Within each subdomain, 
termed element, the balance of momentum equations are applied, with the geometry and state 
variables approximated by Equation (3.5). (The use of the same shape functions for the geometry 
and weight functions, 𝜃𝜃𝜕𝜕 and 𝜃𝜃𝜑𝜑, is termed the Bobnov-Galerkin approach (see, e.g., Hughes 
[1987])). By introducing the approximation, the problem is converted from solving differential 
equations to solving algebraic equations, which are obtained by assembling the element arrays. 
Details of the finite element assembly process can be found in finite element textbooks (see, e.g., 
Hughes [1987]). 

3.3 Numerical Integration 

The weak form of the balance of momentum equations requires integration. tBeam employs a 
Gaussian quadrature approximation (see, e.g., Hughes [1987]), given by: 

 ∫ 𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 = ∫ 𝑛𝑛(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝜉𝜉1

−1 ≈ ∑ �𝑊𝑊𝑛𝑛 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐼𝐼

𝑛𝑛
𝐼𝐼=1  (3.8) 

In Equation (3.8), 𝑛𝑛(𝑥𝑥) is a function defined over the interval 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]; 𝑛𝑛 is the number of 
integration points; 𝑊𝑊𝐼𝐼 are integration weights obeying the restriction: ∑ 𝑊𝑊𝐼𝐼 = 2𝑛𝑛

𝐼𝐼=1 ; and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the 
Jacobian of the transformation (physical to natural coordinates).  

Remark: Recall that the element’s natural space is also defined on the interval 𝜉𝜉 ∈ [−1,1]. This 
choice is intentional. It is made in order to facilitate Gaussian quadrature. ♦ 

As noted in Section 3.2, tBeam employs quadratic shape functions. Conventionally, when 
employing quadratic shape function, the balance equations are integrated using a three-point 
quadrature, also referred to as full integration for this case. Unfortunately, for the Timoshenko 
beam, employing full integration gives rise to shear locking, where energy is diverted from 
bending to shear modes. This problem arises in modeling thin beams, and it is manifested by the 
need to use very fine meshes to obtain converged solutions (see e.g., Hughes [1987]). A simple 
remedy to this problem is the use of selective reduced integration where the bending terms are 
integrated using a three-point quadrature, and the shear terms are integrated using a two-point 
quadrature (see e.g., Hughes [1987]). The weights and natural coordinates of the integration 
points are summarized in Table 3.1. 

 Table 3:1 Gaussian Quadrature: location and weights. 

Point # 2-point 3-point 

 𝜉𝜉 W 𝜉𝜉 W 

1 −√3 3⁄  1.0 −√0.6 5 9⁄  

2 √3 3⁄  1.0 0 8 9⁄  

3   √0.6 5 9⁄  
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3.4 Maxwell Elements in Moving Coordinate Systems 

The generalized Maxwell element constitutive model employed in tBeam (see Equations (2.26) 
through (2.28)) employs internal variables, one per each Maxwell element. When the 
representation is relative to an inertial coordinate system, the rate equation used to update 
internal variables can be numerically integrated in time using methods such as the backward 
Euler scheme (see, e.g., Hughes [1987]). Finite element approximations accommodate internal 
variables by storing history terms at integration (Gauss) point and updating them using rate 
equations such as Equation (2.13). 

tBeam is formulated relative to a moving coordinate system. As shown Section 2, this 
transformation avoids the need for time integration, which facilitates a very efficient numerical 
analysis. However, by removing the time dimension it also renders the history-variables strategy 
unusable. It is instructive to examine rate equation (2.16), rate Equation (2.13) transformed to the 
moving coordinate system, which after rearranging takes the following form: 

 𝜀𝜀𝑀𝑀 − 𝜏𝜏𝑣𝑣 𝜕𝜕𝜕𝜕𝑀𝑀

𝜕𝜕𝜕𝜕
= 𝐸𝐸. (3.9) 

Equation (3.9) addresses a generic Maxwell element, and so the sub-index, designating the 
Maxwell element number, was removed. Introducing the first-order approximation for the spatial 
derivative, the analog to the Backward Euler scheme in time, Equation (3.9) can be 
approximated by: 

 𝜀𝜀𝑧𝑧𝑀𝑀 − 𝜏𝜏𝑣𝑣 𝜕𝜕𝑧𝑧+Δ𝐿𝐿
𝑀𝑀 −𝜕𝜕𝑧𝑧𝑀𝑀

Δ𝑛𝑛
= 𝐸𝐸𝑧𝑧. (3.10) 

In Equation (3.10) the subscript designate the point along the beam the rate equation is applied, 
and Δ𝑛𝑛 is a length increment. After further regrouping, the following update formula for the 
internal variable is arrived at: 

 𝜀𝜀𝑧𝑧𝑀𝑀 = 𝜏𝜏𝑣𝑣𝜕𝜕𝑧𝑧+Δ𝐿𝐿
𝑀𝑀 +Δ𝑛𝑛𝜖𝜖𝑧𝑧
𝜏𝜏𝑣𝑣+Δ𝑛𝑛

. (3.11) 

Equation (3.11) reveals that, in the moving coordinate system, the history for the internal 
variables is found downstream (i.e., in the direction the wheel is moving in). This observation 
can be understood on physical grounds as follows. The state at the current point 𝑧𝑧 Δ𝑡𝑡 time ago, is 
the same as the current state at the point located at 𝑧𝑧 + 𝑣𝑣Δ𝑡𝑡. In other words, looking back in time 
the inertial coordinate system is replaced, in the moving coordinate system, by looking 
downstream. 

Equation (3.11) provides insights into the algorithmic approach pursued when the equations of 
motion are viewed from the perspective of an observer attached to the moving wheel. A closer 
examination shows that it corresponds to applying the finite element spatial approximation to 
Equation (3.9) in the case of a (linear) two-node element, where Δ𝑛𝑛 is the length of the element. 
In other words, the look downstream approach naturally presents itself when the finite element 
spatial approximation is applied to Equation (3.9). 
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The tBeam implementation takes the “looking downstream” approach to the three-node 
Timoshenko beam element. The implementation introduces a global degree-of-freedom for each 
Maxwell element, and enforces the finite element approximation to Equation (3.9) at the two 
upstream nodes (i.e., the nodes closer to where the wheel comes from; in the tBeam 
implementation these are the two nodes with the smaller x-coordinate values; velocity is 
assumed to be positive). This equation is given by: 

 𝑁𝑁𝐼𝐼𝜀𝜀𝐼𝐼𝑀𝑀 − 𝜏𝜏𝑣𝑣 𝜕𝜕𝑁𝑁𝐼𝐼
𝜕𝜕𝜕𝜕
𝜀𝜀𝐼𝐼𝑀𝑀 = 𝑁𝑁𝐼𝐼𝐸𝐸𝐼𝐼. (3.12) 

(Recall that repeated indices imply summation; in this case, over the three nodes.) The tBeam 
implementation makes the values of the internal variable at the two upstream nodes depend on 
the total strain and on the value of the internal variable at the downstream node, a restriction that 
is added as an explicit equation to the global stiffness matrix. As long as the element considered 
has a downstream neighbor, this approach works. The next element will express the internal 
variable at its upstream node, which is shared with its upstream neighboring element, to the total 
strain and the internal variable at its downstream most node. This process breaks down when it 
comes to the last element in the downstream direction, which is left without any “stiffness” for 
the added degree-of-freedom at the last node! Fortunately, if the last downstream node is taken 
far enough ahead of the load, the internal variable there is not affected by the load; it can be fixed 
as a boundary condition, and the value set to zero. Thus, for the tBeam results to be accurate, the 
last downstream node must be at a sufficient distance ahead of the load to justify this 
assumption.  

Remarks: 

1. In the tBeam implementation, the mesh is constructed to be symmetric about the location of 
the wheel (taken to coincide with x = 0), and the length in each direction is user defined. 
tBeam also automatically fixes all the degrees-of-freedom added for the internal variables at 
the downstream most node. A consequence of this implementation is that tBeam requires that 
the velocity be greater than zero. 

2. The strategy adopted for tBeam of adding degrees-of-freedom creates an implicit dependency 
that renders the internal variable at a given node dependent on what its value is downstream. 
It is possible, albeit very cumbersome, to avoid adding the degrees-of-freedom and 
constructing an explicit dependency on the values of the internal variables at all nodes 
downstream of the node under consideration. Such an implementation would reduce, 
potentially significantly, the number of equations solved. However, the reduced system will 
be both complex to construct and result in a full stiffness matrix, which would considerably 
slow down the solution. Given that tBeam employs a one-dimensional model, it was judged 
that adopting the strategy of adding degrees-of-freedom leads to superior numerical 
efficiency. ♦ 
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4 Analysis Options 
tBeam can be used to determine the deflection bowl and dissipated energy for multilayer 
viscoelastic Timoshenko beams resting on viscoelastic Winkler foundations. Two types of 
loadings can be applied. Under the first option, a uniformly distributed force per unit length is 
applied as described in Section 4.1. The second option, discussed in Section 4.2, considers a 
vertical force applied to a rolling rigid wheel. 

4.1 Uniformly Distributed Force Per Unit Length 

Applying a uniformly distributed force per unit length to a segment at the center of the beam is 
the simpler of the two solution strategies supported by tBeam. The user specifies the length, 
magnitude, and (constant) velocity of the force. The force is applied to the center of the beam’s 
finite element model, and a profile solver is applied to solve the linear system of equation 
resulting from the assembly of the element stiffness matrices and right-hand-side (load) vector 
(see, e.g., Taylor [1985]).  

4.2 Rolling Rigid Wheel  

tBeam offers the ability to simulate the response of pavements to rolling rigid wheels of (user-
specified) radius, 𝑅𝑅, subjected to a user-specified vertical force, 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕. In this case, the task is 
complicated by the fact that the tire-pavement contact zone depends on properties of the system 
(e.g., velocity, 𝑅𝑅, 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕, and material properties), which requires the solution of a two-body 
contact problem. 

tBeam is set up within the realm of small deformations, which permits the use of a node-on-node 
contact algorithm. This contact resolution strategy is discussed in Section 4.2.1. The basic step 
within this strategy consists of imposing the vertical position of the wheel (i.e., how far it moved 
down) and determining the applied nodal forces required to prevent penetration. The sum of 
these forces (i.e., the force transmitted from the wheel to the pavement) will not, in general, 
equal the externally applied load. The strategy employed in tBeam to position the wheel so that 
the contact force equals the external force is described in Section 4.2.2. Finally, Section 4.2.3 
provides the details of how the wheel-pavement contact is implemented in tBeam. 

4.2.1 Node-on-Node Contact Strategy 

tBeam is setup within the realm of small deformations, which permits the use of a node-on-node 
contact algorithm (see, e.g., Hughes et al. [1976]). The underlying idea of this approach is that 
nodes on the surface of body A are paired with nodes on the surface of body B. Each node-pair is 
connected with a node-on-node contact element. The contact elements are stiff springs that are 
activated when the dot product of the vector from node A to node B with a specified vector 
(vertical in tBeam) changes sign. Otherwise, the spring remains inactive (i.e., no contact force is 
applied between the two nodes). When penetration is detected, the forces exerted by the springs 
act to reduce the penetration. This problem is nonlinear, and requires an iterative solution 
strategy. tBeam employs a Newton iteration. Thus, this solution strategy is more computationally 
intensive than that required to solve for the loading described in Section 4.1, which requires only 
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one solution of the system of algebraic equations generated by the finite element model. (A 
profile solver is used to solve the system of equations (see, e.g., Taylor [1985]).)  

Remark: The solution strategy described above is known as a penalty method. In theory, the 
higher the value assigned to the stiffness of the node-on-node contact elements, the better the no-
penetration constraint is enforced. In practice, however, assigning a stiffness that is too large 
may cause numerical problems because it results in a stiff system of equations (i.e., large ratio 
between the eigenvalues of the stiffness matrix). Conversely, choosing a value that is too low 
results in excessive penetration. The general guideline, for contact of two elastic bodies, is to 
choose a stiffness that is of the order of the elastic moduli of the bodies. In tBeam, one of the 
bodies (the wheel) is rigid, so the relevant moduli is that of the pavement. However, the 
pavement is not elastic, and some judgment should be used. In the examples provided in Section 
6, values ranging from 10 to 100 times the effective stiffness were used.♦ 

As noted above, node-on-node contact elements introduce stiff “springs” between the pairs of 
nodes. These springs require a law relating the penetration to the force applied to counter it. 
tBeam employs the following nonlinear force-penetration law: 

 𝑓𝑓 = 𝐾𝐾 � 𝜖𝜖
𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟

�
𝑝𝑝−1

. (4.1) 

In Equation (4.1), 𝑓𝑓 is the force applied to counter the penetration; K is a user specified stiffness 
value; 𝑛𝑛𝑟𝑟𝑒𝑒𝑓𝑓 is a user specified reference length1; 𝑝𝑝 is a user specified power; and 𝐸𝐸 is the “length” 
of the penetration. The examples in Section 6 employ 𝑝𝑝 = 2, which leads to a linear force-
penetration law. 

4.2.2 Determining the Vertical Position of the Rigid Wheel 

The description thus far explained the setting of the contact problem. To determine the 
penetration requires knowing the vertical position of the wheel, which is unknown. What is 
known is the force applied to the wheel and the wheel’s radius. Determining the vertical position 
of the rigid wheel requires enforcing the following identity: 

 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛 (𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 ) = 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕. (4.2) 

In Equation (4.2), 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛  is the sum of the forces in the all contact elements in the nth iteration2 
(when the wheel center is positioned at (0,𝑅𝑅 − 𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 )); 𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛  is the distance the wheel moved 
down; and 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 is the external vertical force applied to the wheel. Using a Newton iteration to 
solve Equation (4.2) leads to: 

 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛 (𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 ) + 𝐾𝐾𝑛𝑛Δ𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 = 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕. (4.3) 
 

1 For tBeam, it is recommended that 𝑛𝑛𝑟𝑟𝑒𝑒𝑓𝑓 be taken as the length of the beam elements connected 
to the node on the pavement side of the contact problem. 
2 The iteration is associated with the solution of Equation (4.1). Each such iteration requires the 
iterative contact resolution iteration discussed above, which is the iteration within the global 
iteration. 
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In Equation (4.3), 𝐾𝐾𝑛𝑛 is the tangent stiffness, defined below, and Δ𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛  is the increment in the 
vertical position of the rigid wheel. A closed form solution to determine 𝐾𝐾𝑛𝑛 is not readily 
available. Therefore, tBeam resorts to approximating it numerically. To this end, the wheel is 
first position at (0,𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 −  𝛿𝛿), and the contact problem is solved to obtain 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛 (𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 − 𝛿𝛿). Here 𝛿𝛿 
is a small (positive) increment automatically set by tBeam. Note that this solution requires a 
number of iterations. Next, the wheel is repositioned to (0,𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 ), and 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛 (𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 ) is obtained, 
again requiring a number of finite element solutions. The stiffness, 𝐾𝐾𝑛𝑛, is then approximated by: 

 𝐾𝐾𝑛𝑛 ≈ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖 (𝜕𝜕𝑟𝑟𝑤𝑤𝑖𝑖 −𝛿𝛿)−𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖 (𝜕𝜕𝑟𝑟𝑤𝑤𝑖𝑖 )
𝛿𝛿

. (4.4) 

The increment in the vertical position of the rigid wheel is given by: 

 Δ𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 = (𝐾𝐾𝑛𝑛)−1�𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 − 𝑛𝑛𝑖𝑖𝑛𝑛𝜕𝜕𝑛𝑛 (𝑤𝑤𝑟𝑟𝜕𝜕𝑛𝑛 )�. (4.5) 

Note that each formation of 𝐾𝐾𝑛𝑛 requires performing the finite element analysis a number of 
times, consequently making this type of analysis considerably more computationally intensive 
than analyzing the loading described in Section 4.1. 

4.2.3 tBeam Implementation 

The solution in tBeam begins by setting up nodes on the bottom half of the circumference of the 
wheel.3 The wheel is position so that its center is located at (0,𝑅𝑅).4 The wheel’s nodes are 
positions so that they are directly above beam nodes, and all their degrees-of-freedom are fixed. 
Next, following the contact approach prescribed above, the corresponding nodes are connected 
with node-on-node contact elements. These node-on-node contact elements are activated only 
when the current y-coordinate of the rigid-wheel node falls bellow that of the corresponding 
beam node (indicating that the rigid wheel penetrated the pavement). When the rigid-wheel node 
remains above the beam node, no penetration takes place, and the force in the node-on-node 
contact element is set to zero. 

Finally, the above iterative solution for Equation (4.3) requires a starting point. The closer the 
initial guess of 𝑤𝑤𝑟𝑟𝜕𝜕0  is to the final value, the less iterations are required. Thus, a good strategy to 
guess the value of 𝑤𝑤𝑟𝑟𝜕𝜕0  is needed. In tBeam, the initial guess is obtained by applying 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 as a 
point load at 𝑥𝑥 = 0. However, if a previous solution was performed (i.e., a different case was 
studied using the same beam), than the last solution is taken as the initial solution. This approach 
saves a few iterations, thus reducing the computational effort in solving subsequent cases. Since 
CalME is expected to run a few thousand simulations for the pavement, the gain is not 
insignificant relative to the overall analysis time. 
  

 
3 The upper part of the rigid wheel need not be represented as they face away from the pavement, 
which precludes the possibility of them being in contact with the pavement. 
4 Recall that the tBeam solution is relative to a moving coordinate system, where the wheel is 
always positioned at 𝑥𝑥 = 0. 
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5 Closed Form Solutions of Single-Layered Timoshenko 
Beam Resting on Winkler Foundation 

As part of the tBeam validation effort, presented in Section 6, predicted results are compared 
with closed-form solutions for a single-layered Timoshenko beam resting on a Winkler 
foundation. In this section, a number of different combinations of material models for the beam 
and foundation are examined, and closed-form solutions are developed. For some of the 
solutions, expressions are developed for the horizontal force needed to sustain the forward 
motion of the wheel at the specified (constant) velocity. The ratio of the horizontal force to the 
applied vertical force is defined as a rolling friction coefficient. 

An elastic beam-foundation system is considered in Section 5.1. A rigid wheel moving at a 
constant velocity loads the beam. There is no dissipation in this case, yet the solution is complex. 
To simplify the solution, the case where the beam is rigid in bending (i.e., 𝐸𝐸𝜌𝜌 → ∞) is considered 
in Section 5.2. Henceforward, this special beam is referred to as a shear beam. tBeam is 
developed to enable efficient predictions of energy dissipated in the pavement structure. 
Exploration of this aspect begins in Section 5.3 where the elastic foundation material employed 
in Section 5.2 is replaced with a Kelvin-Voigt linear viscoelastic material. Next, in Section 5.4, 
the Kelvin-Voigt foundation is replaced with a Maxwell foundation. Viscoelasticity of the beam 
is introduced in Section 5.5, where the elastic shear model is replaced with a Maxwell linear 
viscoelastic response, sharing the same characteristic period as the foundation. Finally Section 
5.6 provides the solution of a viscoelastic (Maxwell) beam-foundation system subjected to a 
uniformly distributed pressure. 

5.1 Elastic Beam on Elastic Foundation; Roller Indentation 

The pair of second order balance equations governing the Timoshenko beam resting on a 
Winkler foundation, Equations (2.5) and (2.6), can be replaced by a single fourth order equation. 
For the case of a linear elastic beam, the governing equation, in the moving coordinate system 
and ignoring inertia, is given by: 

 𝜕𝜕4𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕4

= 1
𝐸𝐸𝐼𝐼
𝑝𝑝 − 1

𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

. (5.1) 

An elastic foundation is incorporated into the system by replacing 𝑝𝑝 by 𝑝𝑝 − 𝐾𝐾𝑤𝑤, which leads to: 

 𝜕𝜕4𝜕𝜕
𝜕𝜕𝜕𝜕4

= 1
𝐸𝐸𝐼𝐼

(𝑝𝑝 − 𝐾𝐾𝑤𝑤) − 1
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2(𝑝𝑝−𝐾𝐾𝜕𝜕)
𝜕𝜕𝜕𝜕2

. (5.2) 

Regrouping terms in Equation (5.2) leads to: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
4𝜕𝜕
𝜕𝜕𝜕𝜕4

− 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐾𝐾𝑤𝑤 = 𝑝𝑝 − 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

. (5.3) 

When the elastic beam-foundation is subjected to a rolling rigid wheel at 𝑥𝑥 = 0, the contact area 
and deformation pattern are symmetric about the origin. Let the closed interval 𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎] 
designate the contact area, and Δ designate the indentation. In this case, in the contact area the 
transverse displacement, 𝑤𝑤(𝑥𝑥), satisfies the following restrictions: 
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 𝑤𝑤(𝑥𝑥) = 𝜕𝜕2

2𝑅𝑅
− Δ, 𝜕𝜕𝜕𝜕(𝜕𝜕)

𝜕𝜕𝜕𝜕
= 𝜕𝜕

𝑅𝑅
, and 𝜕𝜕

2𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕2

= 1
𝑅𝑅
 (5.4) 

Outside the contact area, 𝑝𝑝 = 0, so that Equation (5.3) is reduced to: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
4𝜕𝜕
𝜕𝜕𝜕𝜕4

− 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐾𝐾𝑤𝑤 = 0. (5.5) 

Let 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

 and 𝛽𝛽4 ≔ 𝐾𝐾
𝐸𝐸𝐼𝐼

. Substituting these definitions into Equation (5.5) leads to: 

 𝜕𝜕4𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕4

− 𝛼𝛼2 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝛽𝛽4𝑤𝑤 = 0. (5.6) 

Equation (5.6) is a homogenous fourth order differential equation whose solution takes the form 
𝑤𝑤(𝑥𝑥) = 𝑒𝑒𝜆𝜆𝜕𝜕. Thus, finding a solution to Equation (5.6), outside the contact zone, is reduced to 
solving the following fourth-order characteristic polynomial: 

 𝜆𝜆4 − 𝛼𝛼2𝜆𝜆2 + 𝛽𝛽4 = 0. (5.7) 

The solution of Equation (5.7) is given by: 

 𝜆𝜆2 = 𝛼𝛼2

2
�1 ± �1 − 4𝛽𝛽4

𝛼𝛼4
�. (5.8) 

It follows from Equation (5.8) that the solution depends on the magnitude of the quotient: 

 4𝛽𝛽4

𝛼𝛼4
= 4𝐾𝐾

𝐸𝐸𝐼𝐼
�𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾
�
2

= (2𝐺𝐺𝐴𝐴𝑠𝑠)2

𝐾𝐾𝐸𝐸𝐼𝐼
 (5.9) 

In particular the following three solution types are possible: 

Case (i): beam strong in shear  

This case corresponds to (2𝐺𝐺𝐴𝐴𝑠𝑠)2

𝐾𝐾𝐸𝐸𝐼𝐼
> 1, which leads to: 

 𝜆𝜆2 = 𝛼𝛼2

2
�1 ± 𝑖𝑖�4𝛽𝛽4

𝛼𝛼4
− 1�. (5.10) 

Thus, the four roots are given by: 

 

𝜆𝜆1 = 𝛼𝛼
√2
𝜌𝜌
1
2𝑒𝑒𝑖𝑖𝑖𝑖 2⁄ = 𝛼𝛼1 + 𝑖𝑖𝛽𝛽1

𝜆𝜆2 = 𝛼𝛼
√2
𝜌𝜌
1
2𝑒𝑒−𝑖𝑖𝑖𝑖 2⁄ = 𝛼𝛼1 − 𝑖𝑖𝛽𝛽1

𝜆𝜆3 = 𝛼𝛼
√2
𝜌𝜌
1
2𝑒𝑒𝑖𝑖(𝜋𝜋−𝑖𝑖) 2⁄ = −𝛼𝛼1 + 𝑖𝑖𝛽𝛽1

𝜆𝜆3 = 𝛼𝛼
√2
𝜌𝜌
1
2𝑒𝑒−𝑖𝑖(𝜋𝜋−𝑖𝑖) 2⁄ = −𝛼𝛼1 − 𝑖𝑖𝛽𝛽1

. (5.11) 

The transverse displacement is given by: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌𝑒𝑒𝛼𝛼1𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽1𝑥𝑥) + 𝑛𝑛𝑒𝑒𝛼𝛼1𝜕𝜕𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽1𝑥𝑥) + 𝐶𝐶𝑒𝑒−𝛼𝛼1𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽1𝑥𝑥) + 𝐷𝐷𝑒𝑒−𝛼𝛼1𝜕𝜕𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽1𝑥𝑥). (5.12) 
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In Equation (5.12) A, B, C, and D are constants to be determined. 

 

Case (ii): beam weak in shear 

The second possible solution occurs when (2𝐺𝐺𝐴𝐴𝑠𝑠)2

𝐾𝐾𝐸𝐸𝐼𝐼
< 1. This is the case of a beam weak in shear. 

In this case, the two solutions for 𝜆𝜆2 are both positive, resulting in four real roots: 

 

𝜆𝜆1 = 𝛼𝛼
√2
�1 + �1 − 4𝛽𝛽4

𝛼𝛼4
�
1
2�

1
2

=:𝛼𝛼2

𝜆𝜆2 = − 𝛼𝛼
√2
�1 + �1 − 4𝛽𝛽4

𝛼𝛼4
�
1
2�

1
2

=:−𝛼𝛼2

𝜆𝜆3 = 𝛼𝛼
√2
�1 − �1 − 4𝛽𝛽4

𝛼𝛼4
�
1
2�

1
2

=:𝛽𝛽2

𝜆𝜆3 = − 𝛼𝛼
√2
�1 − �1 − 4𝛽𝛽4

𝛼𝛼4
�
1
2�

1
2

=:−𝛽𝛽2

, (5.13) 

and the transverse displacement is given by: 

 𝑤𝑤(𝑋𝑋) = 𝜌𝜌𝑒𝑒𝛼𝛼2𝜕𝜕 + 𝑛𝑛𝑒𝑒−𝛼𝛼2𝜕𝜕 + 𝐶𝐶𝑒𝑒𝛽𝛽2𝜕𝜕 + 𝐷𝐷𝑒𝑒−𝛽𝛽2𝜕𝜕. (5.14) 

Case (iii): (𝟐𝟐𝟐𝟐𝑨𝑨𝒔𝒔)𝟐𝟐

𝑲𝑲𝑲𝑲𝑲𝑲
= 𝟎𝟎. 

In this case, the roots are 𝜆𝜆 = ± 𝛼𝛼
√2

, each repeated twice. The transverse displacement is given 
by: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌𝑒𝑒
𝛼𝛼𝛼𝛼
√2 + 𝑛𝑛𝑋𝑋𝑒𝑒

𝛼𝛼𝛼𝛼
√2 + 𝐶𝐶𝑒𝑒

−𝛼𝛼𝛼𝛼
√2 + 𝐷𝐷𝑋𝑋𝑒𝑒

−𝛼𝛼𝛼𝛼
√2 . (5.15) 

In the contact region, 𝑥𝑥 ∈ [−𝑎𝑎, 𝑎𝑎], in view of Equation (5.4), the balance of momentum, 
Equation (5.3), is reduced to: 

 𝐾𝐾 �𝜕𝜕
2

𝑅𝑅
− Δ� − 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾
𝑅𝑅

= 𝑝𝑝 − 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

. (5.16) 

Let 𝛾𝛾12 ≔
𝐺𝐺𝐴𝐴𝑠𝑠
𝐸𝐸𝐼𝐼

. Substituting 𝛾𝛾12 into Equation (5.16) results in: 

 𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

− 𝑝𝑝 = 𝐾𝐾
𝑅𝑅
− 𝛾𝛾12𝐾𝐾 �

𝜕𝜕2

𝑅𝑅
− Δ�. (5.17) 

The complementary solution to equation (5.17), in the interval 𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎], is given by: 
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 𝑝𝑝(𝑥𝑥) = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑥𝑥) + 𝑛𝑛𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛾𝛾1𝑥𝑥). (5.18) 

In Equation (5.18), E and F are constants to be determined. The particular solution to Equation 
(5.17) is given by: 

 𝑝𝑝(𝑋𝑋) = −𝐾𝐾Δ + 𝐾𝐾𝜕𝜕2

2𝑅𝑅
. (5.19) 

The above solution expresses the contact zone 𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎] in terms of the indentation Δ. Once 
the contact zone is known, the next step is to determine the pressure distribution in the contact 
zone, noting that the pressure distribution, for the elastic case, is symmetric about the origin. 
Once the contact pressure, 𝑝𝑝(𝑥𝑥), is determined, it can be integrated to obtain the applied force 
required to impose the prescribed indentation, Δ. 

Thanks to the symmetry of the solution about the origin, for a prescribed Δ, the task at hand 
consists of the following three steps:  

1. Compute the contact half-length, 𝑎𝑎.  
2. Determine the pressure distribution in the contact area.  
3. Integrate the contact pressure to determine the applied load 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕.  

Taking advantage of the symmetry of the solution, for each of the three types of beam identified 
above, there are four unknowns: the contact length, 𝑎𝑎; two constants in the solution of 𝑤𝑤; and 
one constant in the solution of 𝑝𝑝. These four unknowns are determined by imposing continuity 
conditions across the interface at 𝑥𝑥 = 𝑎𝑎. 

The first step towards developing the required continuity equations is to integrate both sides of 
Equation (5.3) from 𝑥𝑥 = 𝑎𝑎 − 𝜀𝜀 to 𝑥𝑥 = 𝑎𝑎 + 𝜀𝜀, which yields: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
3Δ𝜕𝜕
𝜕𝜕𝜕𝜕3

− 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾 𝜕𝜕Δ𝜕𝜕
𝜕𝜕𝜕𝜕

+ 0 = 0 − 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕Δ𝑝𝑝
𝜕𝜕𝜕𝜕

. (5.20) 

In Equation (5.20), the zero terms come from the assumptions of continuity of 𝑤𝑤 and no point 
load in 𝑝𝑝 at 𝑥𝑥 = 𝑎𝑎. Additionally, in Equation (5.20) the terms Δ𝑤𝑤 and Δ𝑝𝑝 are defined by the 
following formula: 

 Δ𝑓𝑓 ≔ lim
𝜕𝜕→0

∫ 𝜕𝜕𝑓𝑓(𝜕𝜕)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑥𝑥𝑎𝑎+𝜕𝜕
𝑎𝑎−𝜕𝜕 = lim

𝜕𝜕→0
[𝑓𝑓(𝑎𝑎 + 𝜀𝜀) − 𝑓𝑓(𝑎𝑎 − 𝜀𝜀)]. (5.21) 

Multiplying both sides of Equation (5.20) by 𝑥𝑥 − 𝑎𝑎 and integrating by parts results in: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
2Δ𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾Δ𝑤𝑤 = − 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

Δ𝑝𝑝. (5.22) 

A further multiplication by (𝑥𝑥 − 𝑎𝑎)2 and integrating by parts yields: 𝜕𝜕Δ𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, leading to the 
following four continuity conditions: 

 Δ𝑤𝑤 = 0, 𝜕𝜕Δ𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, Δ𝑝𝑝 = 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2Δ𝜕𝜕
𝜕𝜕𝜕𝜕2

, and 𝜕𝜕Δ𝑝𝑝
𝜕𝜕𝜕𝜕

= 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕3Δ𝜕𝜕
𝜕𝜕𝜕𝜕3

 (5.23) 
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The four unknowns are determined through the imposition of these four continuity conditions. 

To demonstrate the solution strategy developed above, consider the case of a beam weak in 
shear. Equation (5.14) in the semi-open interval 𝑥𝑥 ∈ [𝑎𝑎,∞), and the addition of Equations (5.18) 
and (5.19) in the interval 𝑥𝑥 ∈ [0,𝑎𝑎], reduce to: 

 𝑤𝑤(𝑥𝑥) = 𝑛𝑛𝑒𝑒−𝛼𝛼2(𝜕𝜕−𝑎𝑎) + 𝐷𝐷𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) and 𝑝𝑝(𝑥𝑥) = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑥𝑥) − 𝐾𝐾Δ + 𝐾𝐾𝜕𝜕2

2𝑅𝑅
, (5.24) 

respectively. Continuity condition of 𝑤𝑤 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 at 𝑥𝑥 = 𝑎𝑎 are given by: 

 𝑛𝑛 + 𝐷𝐷 = −Δ + 𝑎𝑎2

2𝑅𝑅
  and  −𝛼𝛼2𝑛𝑛 − 𝛽𝛽2𝐷𝐷 = 𝑎𝑎

𝑅𝑅
. (5.25) 

Equations (5.25) can be used to determine 𝑛𝑛 and 𝐷𝐷: 

 𝑛𝑛 = −1
𝛼𝛼2−𝛽𝛽2

�𝑎𝑎
𝑅𝑅
− 𝛽𝛽2Δ + 𝛽𝛽2

𝑎𝑎2

2𝑅𝑅
� and 𝐷𝐷 = 1

𝛼𝛼2−𝛽𝛽2
�𝑎𝑎
𝑅𝑅
− 𝛼𝛼2Δ + 𝛼𝛼2

𝑎𝑎2

2𝑅𝑅
�.  (5.26) 

The jump in 𝑝𝑝 at 𝑥𝑥 = 𝑎𝑎 is Δ𝑝𝑝 = 𝑝𝑝+ − 𝑝𝑝−, where 𝑝𝑝+ = 0. Similarly, 𝜕𝜕
2Δ𝜕𝜕
𝜕𝜕𝜕𝜕2 

= �𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2 
�
+
− �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝜕𝜕2 

�
−

. 

Thus, Δ𝑝𝑝 = 𝐺𝐺𝜌𝜌𝑠𝑠  𝜕𝜕
2Δ𝜕𝜕
𝜕𝜕𝜕𝜕2 

 becomes: 

 −�𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑎𝑎) − 𝐾𝐾Δ + 𝐾𝐾𝑎𝑎2

2𝑅𝑅
� = −𝐺𝐺𝜌𝜌𝑠𝑠 �𝛼𝛼22𝑛𝑛 + 𝛽𝛽22𝐷𝐷 − 1

𝑅𝑅
� (5.27) 

Carrying out the same process for 𝜕𝜕p
𝜕𝜕𝜕𝜕

 and 𝜕𝜕
3𝜕𝜕
𝜕𝜕𝜕𝜕3

 leads to: 

 −�𝐸𝐸𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) + 𝐾𝐾𝑎𝑎
𝑅𝑅
� = −𝐺𝐺𝜌𝜌𝑠𝑠(𝛼𝛼23𝑛𝑛 + 𝛽𝛽23𝐷𝐷). (5.28) 

Dividing Equation (5.27) and (5.28) by 𝐾𝐾𝑅𝑅 leads to 

 −�𝐸𝐸�𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑎𝑎) − Δ
𝑅𝑅

+ 𝑎𝑎2

2𝑅𝑅2
� = −𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾𝑅𝑅
�𝛼𝛼22𝑛𝑛 + 𝛽𝛽22𝐷𝐷 − 1

𝑅𝑅
�, (5.29) 

and 

 −�𝐸𝐸�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) + 𝑎𝑎
𝑅𝑅2
� = −𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾𝑅𝑅
(𝛼𝛼23𝑛𝑛 + 𝛽𝛽23𝐷𝐷), (5.30) 

respectively. In Equations (5.29) and (5.30), 𝐸𝐸�: = 𝐸𝐸
𝐾𝐾𝑅𝑅

. From these two equations, the following 
two expressions are obtained for 𝐸𝐸�: 

 
𝐸𝐸�𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑎𝑎) = Δ

𝑅𝑅
− 𝑎𝑎2

2𝑅𝑅2
+ 𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾𝑅𝑅
�𝛼𝛼22𝑛𝑛 + 𝛽𝛽22𝐷𝐷 − 1

𝑅𝑅
�

𝐸𝐸�𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) = − 𝑎𝑎
𝑅𝑅2

Δ
𝑅𝑅

+ 𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾𝑅𝑅

(𝛼𝛼23𝑛𝑛 + 𝛽𝛽23𝐷𝐷)
 (5.31) 
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Eliminating 𝐸𝐸� from these equations results in a single equation for 𝑎𝑎: 

 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) = 1
𝜕𝜕1

𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾𝐾𝐾 �𝛼𝛼2

3𝐵𝐵+𝛽𝛽23𝐷𝐷�−
𝑎𝑎
𝐾𝐾2

𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾𝐾𝐾 �𝛼𝛼2

2𝐵𝐵+𝛽𝛽22𝐷𝐷−
1
𝐾𝐾�+

Δ
𝐾𝐾−

𝑎𝑎2

2𝐾𝐾2

. (5.32) 

Substituting the definition 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

 yields: 

 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) = 1
𝜕𝜕1

𝛼𝛼23𝐵𝐵+𝛽𝛽23𝐷𝐷−𝛼𝛼2
𝑎𝑎
𝐾𝐾

𝛼𝛼22𝐵𝐵+𝛽𝛽22𝐷𝐷−
1
𝐾𝐾+𝛼𝛼

2Δ−𝛼𝛼2 𝑎𝑎2

2𝐾𝐾2

. (5.33) 

Equation (5.33) expresses 𝑎𝑎 in terms of Δ. However, because 𝑛𝑛 and 𝐷𝐷 are linear in Δ, it is more 
convenient to view it as expressing Δ in terms of a specified 𝑎𝑎. To this end, Equation (5.26) can 
be used to eliminate 𝑛𝑛 and 𝐷𝐷 from Equation (5.33), resulting in: 

 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) = 1
𝜕𝜕1

𝛼𝛼2𝛽𝛽2(𝛼𝛼2+𝛽𝛽2)�Δ− 𝑎𝑎2

2𝐾𝐾2
�−�𝛼𝛼22+𝛼𝛼2𝛽𝛽2+𝛽𝛽22+𝛼𝛼2�

𝑎𝑎
𝐾𝐾

(𝛼𝛼2𝛽𝛽2+𝛼𝛼2)�Δ− 𝑎𝑎2

2𝐾𝐾2
�−(𝛼𝛼2+𝛽𝛽2)𝑎𝑎𝐾𝐾−

1
𝐾𝐾

. (5.34) 

Rewriting Equation (5.34) to express Δ in terms of 𝑎𝑎, after some rearrangements, gives: 

 Δ =
�(𝛼𝛼2+𝛽𝛽2)𝜕𝜕1𝜕𝜕𝑎𝑎𝑛𝑛ℎ(𝜕𝜕1𝑎𝑎)−�𝛼𝛼22+𝛼𝛼2𝛽𝛽2+𝛽𝛽22+𝛼𝛼2��

𝑎𝑎
𝐾𝐾

𝜁𝜁
+ 𝑎𝑎2

2𝑅𝑅
− 𝜕𝜕1𝜕𝜕𝑎𝑎𝑛𝑛ℎ(𝜕𝜕1𝑎𝑎)

𝑅𝑅𝜁𝜁
. (5.35) 

In Equation (5.35), 𝜁𝜁 ≔ (𝛼𝛼2𝛽𝛽2 + 𝛼𝛼2)𝛾𝛾1𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝛾𝛾1𝑎𝑎) − 𝛼𝛼2𝛽𝛽2(𝛼𝛼2 + 𝛽𝛽2). Substituting Equation 
(5.35) into the first of Equations (5.31) and taking advantage of Equation (5.26) yields: 

 𝐸𝐸�𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝛾𝛾1𝑎𝑎) = �1 + 𝛼𝛼2𝛽𝛽2
𝛼𝛼2

� �Δ
𝑅𝑅
− 𝑎𝑎2

2𝑅𝑅2
� − 𝛼𝛼2+𝛽𝛽2

𝛼𝛼2𝑅𝑅
a
𝑅𝑅
− 1

𝛼𝛼2𝑅𝑅2
 (5.36) 

Substituting Equation (5.36) into the pressure distribution expression, Equation (5.24b), yields: 

 𝑝𝑝(𝑥𝑥) = ��1 + 𝛼𝛼2𝛽𝛽2
𝛼𝛼2

� �Δ
𝑅𝑅
− 𝑎𝑎2

2𝑅𝑅2
� − 𝛼𝛼2+𝛽𝛽2

𝛼𝛼2𝑅𝑅
a
𝑅𝑅
− 1

𝛼𝛼2𝑅𝑅2
� 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜕𝜕1𝜕𝜕)
𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝜕𝜕1𝑎𝑎) −

Δ
𝑅𝑅

+ 𝜕𝜕2

2𝑅𝑅2
. (5.37) 

Equation (5.37) reveals that 𝑝𝑝(𝑎𝑎) ≠ 0. 

Finally, the total applied force, 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕, that is required to for a contact zone 𝑥𝑥 ∈ [−𝑎𝑎, 𝑎𝑎], where 𝑎𝑎 is 
a specified value, is obtained by the integral 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 = −2∫ 𝑝𝑝𝑑𝑑𝑋𝑋𝑎𝑎

0 , which yields: 

 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 = 2 �𝛼𝛼2+𝛽𝛽2
𝛼𝛼2𝑅𝑅

a
𝑅𝑅

+ 1
𝛼𝛼2𝑅𝑅2

− �1 + 𝛼𝛼2𝛽𝛽2
𝛼𝛼2

� �Δ
𝑅𝑅
− 𝑎𝑎2

2𝑅𝑅2
�� 𝜕𝜕𝑎𝑎𝑛𝑛ℎ(𝜕𝜕1𝑎𝑎)1

𝜕𝜕1
+ 2 �Δa

𝑅𝑅
− 𝑎𝑎3

6𝑅𝑅2
�. (5.38) 

5.2 Elastic Shear Beam on Elastic Foundation; Roller Indentation 

The solution derived in Section 5.1 for a beam weak in shear can be further simplified by setting 
𝐸𝐸𝜌𝜌 → ∞. In this case the governing equation, ignoring inertia, is given by: 
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  𝜕𝜕4𝜕𝜕
𝜕𝜕𝜕𝜕4

= − 1
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

 (5.39) 

When the beam is resting on an elastic Winkler foundation, 𝑝𝑝 is replaced by 𝑝𝑝 − 𝐾𝐾𝑣𝑣, leading to: 

 𝜕𝜕4𝜕𝜕
𝜕𝜕𝜕𝜕4

− 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

= − 1
𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

 (5.40) 

Integrating Equation (5.40) twice leads to: 

  𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

𝑤𝑤 = − 1
𝐺𝐺𝐴𝐴𝑠𝑠

𝑝𝑝 (5.41) 

The constants of integration vanish from Equation (5.40) because the beam is assumed to be 
infinitely long. 

When subjected to a rigid wheel of radius 𝑅𝑅, the beam-wheel contact zone is the interval 𝑥𝑥 ∈
[−𝑎𝑎,𝑎𝑎], where the symmetry about the origin holds only for the elastic case. Let 𝑐𝑐 designate the 
point on the deformed surface, closest to 𝑎𝑎, where the transverse displacement 𝑤𝑤 = 0. Denote 
the angle between the normal to the reference (i.e., prior to deformation) surface at 𝑥𝑥 = 0 and the 
line connecting points 𝑐𝑐 and the center of the wheel as θ. The maximum transverse deflection, Δ, 
and the point 𝑐𝑐 are related to θ and 𝑅𝑅 through: Δ = 𝑅𝑅(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃) and 𝑐𝑐 = 𝑅𝑅𝑐𝑐𝑖𝑖𝑛𝑛𝜃𝜃. Equipped with 
these geometrical relations, the transverse displacement in the contact zone can be expressed as:  

 𝑤𝑤(𝑥𝑥) = −Δ�1 − 𝜕𝜕2

𝑐𝑐2
� (5.42) 

Furthermore, if Δ ≪ 𝑅𝑅 then 𝑐𝑐 is given in terms of Δ as: 

 𝑐𝑐2 = 2𝑅𝑅Δ. (5.43) 

Substituting Equation (5.43) into Equation (5.42) yields: 

 𝑤𝑤(𝑥𝑥) = −Δ�1 − 𝜕𝜕2

2𝑅𝑅Δ
�, 𝜕𝜕𝜕𝜕(𝜕𝜕)

𝜕𝜕𝜕𝜕
= x

𝑅𝑅
, 𝜕𝜕

2𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕2

= 1
𝑅𝑅
, and 𝜕𝜕

3𝜕𝜕(𝜕𝜕)
𝜕𝜕𝜕𝜕3

= 0. (5.44) 

Remark: Identifying the curvature, 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

, with 1
𝑅𝑅
 is valid only for the case where Δ ≪ 𝑅𝑅.♦ 

Beyond the contact area (i.e., 𝑥𝑥 ∈ [𝑎𝑎,∞)) 𝑝𝑝 = 0, and the Equation (5.41) reduces to: 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝛼𝛼2𝑤𝑤 = 0 (5.45) 

In Equation (5.45) 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

. The solution to Equation (5.45) can be written as: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌𝑒𝑒−𝛼𝛼(𝜕𝜕−𝑎𝑎). (5.46) 

The constant term in the exponential, 𝛼𝛼𝑎𝑎, in Equation (5.46) is introduced in order to simplify 
the subsequent development. It amounts to a redefinition of the constant 𝜌𝜌. Equation (5.46) 
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contains two unknowns: 𝜌𝜌 and 𝑎𝑎, which, in the absence of a point load at 𝑥𝑥 = 𝑎𝑎, can be 
determined by imposing continuity of 𝑤𝑤 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 at 𝑥𝑥 = 𝑎𝑎 to obtain: 

 𝑤𝑤(𝑎𝑎) = −Δ�1 − 𝑎𝑎2

𝑐𝑐2
� = 𝜌𝜌 and 𝜕𝜕𝜕𝜕(𝑎𝑎)

𝜕𝜕𝜕𝜕
= 2𝑎𝑎Δ

𝑐𝑐2
= −𝛼𝛼𝜌𝜌. (5.47) 

Eliminating 𝜌𝜌 From Equations (5.47) gives: 

 Δ �1 − 𝑎𝑎2

𝑐𝑐2
� = 2𝑎𝑎Δ

𝛼𝛼𝑐𝑐2
. (5.48) 

Equation (5.48) leads to the following equation for 𝑎𝑎
𝑐𝑐
: 

 𝑎𝑎2

𝑐𝑐2
+ 2𝑎𝑎

𝑐𝑐
1
𝛼𝛼𝑐𝑐
− 1 = 0. (5.49) 

The solution to Equation (5.49) is given by (only the positive root is considered because 𝑎𝑎 ≥ 0): 

 𝑎𝑎
𝑐𝑐

= − 1
𝛼𝛼𝑐𝑐

+ �1 + 1
𝑎𝑎2𝑐𝑐2

. (5.50) 

Rewriting Equation (5.50) in terms of Δ and 𝑅𝑅 gives: 

 𝑎𝑎
𝑅𝑅

= − 1
𝛼𝛼𝑅𝑅

+ 1
𝛼𝛼𝑅𝑅
�1 + 2𝑎𝑎2𝑅𝑅2 Δ

𝑅𝑅
. (5.51) 

If Δ ≪ 𝑅𝑅 Equation (5.51) can be approximated by: 

 𝑎𝑎
𝑅𝑅

= 𝛼𝛼𝑅𝑅 Δ
𝑅𝑅
− 1

2
𝑎𝑎3𝑅𝑅3 �Δ

𝑅𝑅
�
2
. (5.52) 

In the contact zone the pressure can be determined by substituting Equation (5.42) into Equation 
(5.40), which results in: 

 𝑝𝑝(𝑥𝑥) = −𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
− 𝐾𝐾Δ�1 − 𝜕𝜕2

𝑐𝑐2
� ≈ −𝐺𝐺𝐴𝐴𝑠𝑠

𝑅𝑅
�1 + 𝛼𝛼2ΔR − 𝛼𝛼2𝜕𝜕2

2
�. (5.53) 

The approximation in Equation (5.53) is valid only when if Δ ≪ 𝑅𝑅, in which case 𝑐𝑐2 is 
approximated by Equation (5.43). Equation (5.53) reveals that 𝑝𝑝(𝑎𝑎) ≠ 0. It is given by: 

 𝑝𝑝(𝑎𝑎) ≈ −𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅

(1 + 2𝛼𝛼2ΔR). (5.54) 

An examination of Equations (5.52) and (5.54) reveals that as Δ → 0, the contact zone a → 0 but 
𝑝𝑝 does not. This unexpected result is due to the fact that 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
≈ 1

𝑅𝑅
 and so does not vanish as a → 0. 

The applied load is given by: 

 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 = −2∫ 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 ≈ 2𝑎𝑎 𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
�1 + 𝛼𝛼2ΔR − 𝛼𝛼2𝑎𝑎2

6
�𝑎𝑎

0 .  (5.55) 
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Substituting Equation (5.52) into Equation (5.55) yields: 

 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 = 4𝐺𝐺𝐴𝐴𝑠𝑠
3𝛼𝛼𝑅𝑅

�√1 + 𝛼𝛼2ΔR − 1��1 + 𝛼𝛼2ΔR + 2√1 + 𝛼𝛼2ΔR�. (5.56) 

It is evident from Equation (5.55) and Equation (5.56) that although 𝑝𝑝 ↛ 0 as a → 0, 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 → 0. 

5.3 Elastic Shear Bean on a Kelvin-Voigt Foundation; Roller 
Indentation 

The elastic foundation considered in Section 5.2 is now replaced with a viscoelastic Kelvin-
Voigt foundation so that the (foundation’s) reaction 𝐾𝐾𝑤𝑤 is now replaced by 𝐾𝐾 �𝑤𝑤 + 𝜏𝜏 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�, where 

𝜏𝜏 is the characteristic time of the foundation material. In this case, the governing equation 
replacing Equation (5.41) is given by: 

 −𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐾𝐾 �𝑤𝑤 − 𝜏𝜏𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑝𝑝(𝑥𝑥) (5.57) 

Note that Equation (5.57) is set relative to the moving coordinate system (see Section 2.2), and 
that inertia is ignored. Further note that if either 𝑣𝑣 → 0 or 𝜏𝜏 → 0, the problem is reduced to the 
elastic case considered in Section 5.2. 

For the case considered in this section, symmetry of the solution about the origin can no longer 
be assumed. The contact region is now taken as the interval 𝑥𝑥 ∈ [−𝑏𝑏, 𝑎𝑎]. The expression for the 
transverse displacement in the contact region, however, remains as in Section 5.2 and is given by 
Equation (5.44). 

Outside the contact zone, the pressure is zero, and Equation (5.57) reduces to: 

 −𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐾𝐾 �𝑤𝑤 + 𝜏𝜏𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 0. (5.58) 

Define 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

. With this definition Equation (5.58) can be rewritten as: 

 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝛼𝛼2𝑣𝑣𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝛼𝛼2𝑤𝑤 = 0 (5.59) 

The solution to Equation (5.59) is of the form 𝑤𝑤 = 𝑒𝑒𝜆𝜆𝜕𝜕, which leads to the following 
characteristic equation: 

 𝜆𝜆2 + 𝛼𝛼2𝑣𝑣𝜏𝜏𝜆𝜆 − 𝛼𝛼2 = 0. (5.60) 

The solutions to Equation (5.60) is given by: 

 
𝜆𝜆1 = 1

2
�𝛼𝛼2𝑣𝑣𝜏𝜏 + √𝛼𝛼4𝑣𝑣2𝜏𝜏2 + 4𝛼𝛼2� = 𝛼𝛼2𝑣𝑣𝜏𝜏

2
�1 + �1 + 4

𝛼𝛼2𝑣𝑣2𝜏𝜏2
�

𝜆𝜆2 = 1
2
�−𝛼𝛼2𝑣𝑣𝜏𝜏 − √𝛼𝛼4𝑣𝑣2𝜏𝜏2 + 4𝛼𝛼2� = 𝛼𝛼2𝑣𝑣𝜏𝜏

2
�−1 + �1 + 4

𝛼𝛼2𝑣𝑣2𝜏𝜏2
�

 (5.61) 
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In Equation (5.61), 𝜆𝜆1 < 0, 𝜆𝜆2 > 0, and |𝜆𝜆1| > 𝜆𝜆2. Thus, the solution for the 𝑤𝑤 outside the 
contact zone is given by: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌𝑒𝑒𝜆𝜆1(𝜕𝜕−𝑎𝑎) 𝑎𝑎 ≤ 𝑥𝑥 ≤ ∞
𝑤𝑤(𝑥𝑥) = 𝑛𝑛𝑒𝑒𝜆𝜆2(𝜕𝜕+𝑏𝑏) ∞ ≤ 𝑥𝑥 ≤ −𝑏𝑏

 (5.62) 

In Equations (5.62) the addition of –𝑎𝑎 and 𝑏𝑏 in the exponential amounts to reparameterizing of 
the constants 𝜌𝜌 and 𝑛𝑛. They are introduced in order to simplify imposing continuity conditions in 
the subsequent development. 

Within the contact zone, 𝑤𝑤(𝑥𝑥) is given by Equation (5.44). Assuming that 𝑤𝑤 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 are 
continuous at 𝑥𝑥 = 𝑎𝑎 and 𝑥𝑥 = −𝑏𝑏 (i.e., there are no point loads at the ends of the contact zone), 
the following expressions for 𝑤𝑤 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 at points 𝑎𝑎 and – 𝑏𝑏 are obtained: 

 
𝑤𝑤(𝑎𝑎) = −Δ + 𝑎𝑎2

2𝑅𝑅
= 𝜌𝜌 𝑎𝑎𝑛𝑛𝑑𝑑 𝜕𝜕𝜕𝜕(𝑎𝑎)

𝜕𝜕𝜕𝜕
= 𝑎𝑎

𝑅𝑅
= 𝜆𝜆1𝜌𝜌

𝑤𝑤(−𝑏𝑏) = −Δ + 𝑏𝑏2

2𝑅𝑅
= 𝑛𝑛 𝑎𝑎𝑛𝑛𝑑𝑑 𝜕𝜕𝜕𝜕(−𝑏𝑏)

𝜕𝜕𝜕𝜕
= − 𝑏𝑏

𝑅𝑅
= 𝜆𝜆2𝑛𝑛

 (5.63) 

Equations (5.63) lead, after some manipulations, to the solution: 

 

𝑎𝑎
𝑅𝑅

= 1
𝜆𝜆1𝑅𝑅

�−1 + �1 + 2𝜆𝜆12𝑅𝑅2
Δ
𝑅𝑅
�

𝑏𝑏
𝑅𝑅

= 1
𝜆𝜆2𝑅𝑅

�−1 + �1 + 2𝜆𝜆22𝑅𝑅2
Δ
𝑅𝑅
�

 (5.64) 

Note that as Δ → 0, a → 0 and b → 0. Furthermore, 𝑏𝑏 ≤ 𝑎𝑎 when Δ ≠ 0. Finally, using Equations 
(5.63), values of the constants 𝜌𝜌 and 𝑛𝑛 are given by: 

 

𝐴𝐴
𝑅𝑅

= 1
𝜆𝜆12𝑅𝑅2

�1 −�1 + 2𝜆𝜆12𝑅𝑅2
Δ
𝑅𝑅
� ≈ −Δ

𝑅𝑅
+ 1

2
𝜆𝜆12𝑅𝑅2

Δ2

𝑅𝑅2

𝐵𝐵
𝑅𝑅

= 1
𝜆𝜆22𝑅𝑅2

�1 −�1 + 2𝜆𝜆22𝑅𝑅2
Δ
𝑅𝑅
� ≈ −Δ

𝑅𝑅
+ 1

2
𝜆𝜆22𝑅𝑅2

Δ2

𝑅𝑅2

 (5.65) 

Equations (5.65) demonstrate that as the indentation proceeds, 𝜌𝜌 and 𝑛𝑛 start with the same value. 
As the indentation, Δ, increases, the value of |𝑛𝑛| increases more rapidly than that of |𝜌𝜌|. 

The pressure within the contact zone is given by: 

 𝑝𝑝(𝑥𝑥) = −𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐾𝐾𝑤𝑤 − 𝐾𝐾𝑣𝑣𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. (5.66) 

Substituting the displacement field within the contact zone, given by Equations (5.44), into 
Equation (5.66) yields: 
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 𝑝𝑝(𝑥𝑥) = −𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
− 𝐾𝐾Δ + 𝐾𝐾 𝜕𝜕2

2𝑅𝑅
− 𝐾𝐾𝑣𝑣𝜏𝜏 𝜕𝜕

𝑅𝑅
. (5.67) 

The total applied force is given by: 

 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕 = −�∫ 𝑝𝑝𝑑𝑑𝑥𝑥 = 𝐾𝐾𝑅𝑅 � 1
𝛼𝛼2𝑅𝑅2

+ Δ
𝑅𝑅
� (𝑎𝑎 + 𝑏𝑏)𝑎𝑎

−𝑏𝑏 − 𝑎𝑎3+𝑏𝑏3

6𝑅𝑅2
+ 𝑣𝑣𝜏𝜏

2
𝑎𝑎2−𝑏𝑏2

𝑅𝑅
�. (5.68) 

The asymmetry of the pressure distribution, due to viscosity, gives rise to a horizontal force, 
which is denoted here by 𝐻𝐻. The simplest way to calculate 𝐻𝐻 is through work balance 
consideration. In particular, the rate of work done by the horizontal force is 𝐻𝐻𝑣𝑣, and the rate of 
work done by the vertical work is given by: ∫ −𝑝𝑝(𝑥𝑥)𝑎𝑎

−𝑏𝑏 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑥𝑥. Equating the two rates of work 

expressions, and in view of Equation (5.44), leads to the following expression for the horizontal 
force: 

 𝐻𝐻 = −∫ 𝑝𝑝(𝑥𝑥)𝑎𝑎
−𝑏𝑏

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑥𝑥 = −∫ 𝑝𝑝(𝑥𝑥)𝑎𝑎

−𝑏𝑏
𝜕𝜕
𝑅𝑅
𝑑𝑑𝑥𝑥. (5.69) 

Substituting Equation (5.67) into Equation (5.69) leads to the following expression for the 
horizontal force: 

 𝐻𝐻 = 𝐾𝐾
2
�� 1
𝛼𝛼2𝑅𝑅2

+ Δ
𝑅𝑅
� (𝑎𝑎2 − 𝑏𝑏2) − 1

4𝑅𝑅2
(𝑎𝑎4 − 𝑏𝑏4) + 2𝑣𝑣𝜏𝜏

3𝑅𝑅2
(𝑎𝑎3 + 𝑏𝑏3)�. (5.70) 

This result depends separately on Δ and 𝑣𝑣𝜏𝜏. However, Equation (5.70) reveals that as 𝑣𝑣𝜏𝜏 → 0, 
𝑎𝑎 → 𝑏𝑏 and 𝐻𝐻 → 0. 

Finally, the result for the vertical and horizontal forces can be used to define a rolling friction 
resistance factor, 𝜇𝜇, that is obtained from the relation: 𝐻𝐻 = 𝜇𝜇𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕. Substituting Equation (5.68) 
and (5.70) yields the rolling friction resistance factor: 

 𝜇𝜇 = 𝑎𝑎−𝑏𝑏
2𝑅𝑅

� 1
𝛼𝛼2𝐾𝐾2

+Δ𝐾𝐾−
1

4𝐾𝐾2
�𝑎𝑎2+𝑏𝑏2�+2𝑣𝑣𝑣𝑣�𝑎𝑎3+𝑏𝑏3�

3𝐾𝐾2�𝑎𝑎2−𝑏𝑏2�
�

� 1
𝛼𝛼2𝐾𝐾2

+Δ𝐾𝐾−
1

6𝐾𝐾2
(𝑎𝑎2−𝑎𝑎𝑏𝑏+𝑏𝑏2)+ 𝑣𝑣𝑣𝑣

2𝐾𝐾2
(𝑎𝑎−𝑏𝑏)�

. (5.71) 

5.4 Elastic Shear Beam on Maxwell Foundation; Roller Indentation 

In a one-dimensional setup, the Maxwell model relation between the stress, 𝜎𝜎, and strain, 𝜀𝜀, is 
given by: 

 𝐸𝐸 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜏𝜏
. (5.72) 

In Equation (5.72), 𝜏𝜏 is the characteristic time of the Maxwell element, and 𝐸𝐸 is the 
instantaneous elastic stiffness of the Maxwell element. When transformed to a moving 
coordinate system, traveling at a constant velocity, 𝑣𝑣, Equation (5.72) takes the form: 

 𝐸𝐸 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝑣𝑣𝜏𝜏
 (5.73) 
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When this model is applied to represent the foundation’s response, then Equation (5.41), 
representing an elastic beam weak in shear resting on an elastic foundation, becomes: 

 −𝑣𝑣𝜏𝜏𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

+ 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑣𝑣𝜏𝜏𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑣𝑣𝜏𝜏 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
− 𝑝𝑝 (5.74) 

As in Section 5.3, the contact zone is defined as the interval 𝑥𝑥 ∈ [−𝑏𝑏,𝑎𝑎], where 𝑎𝑎 and 𝑏𝑏 are 
unknown to be determined by the solution. Outside the contact zone 𝑝𝑝 = 0, so that equation 
(5.74) is reduced to: 

 −𝑣𝑣𝜏𝜏𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

+ 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝑣𝑣𝜏𝜏𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. (5.75) 

As in previous sections, let 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

, and define 𝑐𝑐 ≔ 1
𝑣𝑣𝜏𝜏

. Equation (5.75) can be rewritten as: 

 𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

− 𝑐𝑐 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

− 𝛼𝛼2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. (5.76) 

The solution to Equation (5.76) is of the form 𝑤𝑤 = 𝑒𝑒𝜆𝜆𝜕𝜕, which gives rise to the following 
characteristic equation: 𝜆𝜆3 − 𝑐𝑐𝜆𝜆2−𝛼𝛼2𝜆𝜆 = 0. This equation has the following three roots: 

 𝜆𝜆1 = 0, 𝜆𝜆2 = 𝑠𝑠
2

+ �𝑠𝑠2

4
+ 𝛼𝛼2 =:𝛼𝛼1, and 𝜆𝜆3 = 𝑠𝑠

2
− �𝑠𝑠2

4
+ 𝛼𝛼2 =:−𝛼𝛼2 (5.77) 

Thus, in the interval 𝑥𝑥 ∈ (−∞, 𝑏𝑏], the solution is given by: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌 + 𝑛𝑛𝑒𝑒𝛼𝛼1(𝜕𝜕+𝑏𝑏), (5.78) 

and in the interval 𝑥𝑥 ∈ [𝑎𝑎,∞) the solution is given by: 

 𝑤𝑤(𝑥𝑥) = 𝐶𝐶𝑒𝑒−𝛼𝛼2(𝜕𝜕−𝑎𝑎). (5.79) 

The unknowns 𝑎𝑎 and 𝑏𝑏 appearing in the exponentials in Equations (5.78) and (5.79) amount to 
reparameterizing of the constants 𝑛𝑛 and 𝐶𝐶. They are included to simplify imposing continuity 
conditions in the pursuant development.  

In the contact zone, 𝑥𝑥 ∈ [−𝑏𝑏,𝑎𝑎], Equation (5.74) can be rewritten as: 

 𝐺𝐺𝜌𝜌𝑠𝑠 �−
𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

+ 𝑐𝑐 𝜕𝜕
2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝛼𝛼2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
− 𝑐𝑐𝑝𝑝. (5.80) 

The derivatives of the transverse displacement, 𝑤𝑤, are given by Equation (5.44). The 
homogenous complimentary solution is 𝑝𝑝(𝑥𝑥) = 𝐷𝐷𝑒𝑒𝑠𝑠𝜕𝜕, and the particular solution takes the form: 
𝑝𝑝 = −𝐺𝐺𝜌𝜌𝑠𝑠

1
𝑅𝑅
− 1

𝑠𝑠
𝐾𝐾 𝜕𝜕

𝑅𝑅
− 1

𝑠𝑠2
𝐾𝐾 1

𝑅𝑅
. Thus, the equation for 𝑝𝑝(𝑥𝑥) in the contact area is given by: 

 𝑝𝑝(𝑥𝑥) = 𝐷𝐷𝑒𝑒𝑠𝑠(𝜕𝜕−𝑎𝑎) − 𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
�1 + 𝛼𝛼2

𝑠𝑠2
+ 𝛼𝛼2𝜕𝜕

𝑠𝑠
�. (5.81) 
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For the interval 𝑥𝑥 ∈ [𝑎𝑎,∞) 𝑤𝑤 is given by Equation (5.79), with 𝑤𝑤(𝑎𝑎) = −Δ + 𝑎𝑎2

2𝑅𝑅
 and 𝜕𝜕𝜕𝜕(𝑎𝑎)

𝜕𝜕𝜕𝜕
= 𝑎𝑎

𝑅𝑅
. 

Thus, 𝐶𝐶 = −Δ + 𝑎𝑎2

2𝑅𝑅
, and 𝑎𝑎 is given by: 

 𝑎𝑎 = − 1
𝛼𝛼2

+ �
1
𝛼𝛼22

+ 2𝑅𝑅Δ (5.82) 

Next, behind the moving wheel, 𝑥𝑥 ∈ (−∞, 𝑏𝑏), the transverse displacement is given by Equation 
(5.78), so that at 𝑥𝑥 = −𝑏𝑏 

 𝑤𝑤(−𝑏𝑏) = −Δ + 𝑏𝑏2

2𝑅𝑅
= 𝜌𝜌 + 𝑛𝑛 and  𝜕𝜕𝜕𝜕(−𝑏𝑏)

𝜕𝜕𝜕𝜕
= − 𝑏𝑏

𝑅𝑅
= 𝛼𝛼1𝑛𝑛. (5.83) 

Using Equations (5.83) 𝜌𝜌 and 𝑛𝑛 can be expressed in terms of Δ and 𝑏𝑏 as: 

 𝑛𝑛 = − 𝑏𝑏
𝛼𝛼1𝑅𝑅

  and  𝜌𝜌 = −Δ + 𝑏𝑏2

2𝑅𝑅
�1 + 2

𝛼𝛼1𝑏𝑏
�. (5.84) 

To determine 𝑏𝑏, recall that the pressure within the contact zone is given by Equation (5.81), and 
consider the jump conditions at the ends of the contact zone, under the assumption that 𝑤𝑤 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 

are both continuous at both ends. (These assumptions preclude point loads at the ends of the 
contact zone.) The equation governing the motion in the contact zone is given by Equation 
(5.74). Integrating Equation (5.74) across the jump at 𝑥𝑥 = 𝑎𝑎 (in a manner analogous to the 
integration of Equation (5.21)) and taking the limit as 𝜀𝜀 → 0 leads to: 

 −𝑣𝑣𝜏𝜏𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝜏𝜏𝐾𝐾Δ𝑤𝑤 = Δ𝑝𝑝 − 0. (5.85) 

The last zero in Equation (5.85) is because a point load at 𝑥𝑥 = 𝑎𝑎 is not allowed. It follows from 
Equation (5.85) and the continuity assumptions that: 

 Δ𝑝𝑝 = − 𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

. (5.86) 

Recalling that on the contact side of point 𝑎𝑎, 𝜕𝜕
2(𝑎𝑎−)
𝜕𝜕𝜕𝜕2

= 1
𝑅𝑅
, while just outside the contact zone 

𝜕𝜕2�𝑎𝑎+�
𝜕𝜕𝜕𝜕2

= 𝛼𝛼22𝐶𝐶, the following result is obtained for the pressure just inside the contact zone: 

 𝑝𝑝(𝑎𝑎−) = −𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅

(1 + 𝛼𝛼2𝑎𝑎). (5.87) 

Arriving at Equation (5.87) took advantage of the known result: 𝑝𝑝(𝑎𝑎+) = 0. Following a similar 
procedure at 𝑥𝑥 = −𝑏𝑏 results in: 

 𝑝𝑝(−𝑏𝑏+) = −𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅

(1 + 𝛼𝛼1𝑏𝑏) (5.88) 

Substituting Equations (5.86) into Equation (5.80) gives: 
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 𝐷𝐷 = 𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
�𝛼𝛼

2

𝑠𝑠2
+ 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑎𝑎 − 𝛼𝛼2

𝑠𝑠
𝑐𝑐𝑎𝑎� (5.89) 

The boundary condition at 𝑥𝑥 = −𝑏𝑏 provides the defining equation for the unknown 𝑏𝑏, given by: 

 �𝛼𝛼
2

𝑠𝑠2
− 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑏𝑏 − 𝛼𝛼1

𝑠𝑠
𝑐𝑐𝑏𝑏� 𝑒𝑒𝑠𝑠𝑏𝑏 = �𝛼𝛼

2

𝑠𝑠2
+ 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑎𝑎 − 𝛼𝛼2

𝑠𝑠
𝑐𝑐𝑎𝑎� 𝑒𝑒−𝑠𝑠𝑎𝑎 (5.90) 

Note that a → 0 as Δ → 0, which leads to b = 0. Once b is determined, the constants 𝜌𝜌, 𝑛𝑛, and 𝐶𝐶 
can be obtained, determining the deformed shape of the beam. 

Remark: The value of 𝜌𝜌 shows the permanent displacement after the passage of the wheel.♦ 

The above derivation determines the displacement field for a given prescribed indentation. To 
determine the applied force, 𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕, the expression for the pressure, Equation (5.80), is integrated 
over the contact zone to obtain: 

 𝑠𝑠𝑅𝑅𝑛𝑛𝑟𝑟𝛼𝛼𝑖𝑖
𝐺𝐺𝐴𝐴𝑠𝑠

= �𝛼𝛼
2

𝑠𝑠2
+ 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑎𝑎 − 𝛼𝛼2

𝑠𝑠
𝑐𝑐𝑎𝑎� �𝑒𝑒−𝑠𝑠(𝑎𝑎+𝑏𝑏) − 1� − �1 + 𝛼𝛼2

𝑠𝑠2
� 𝑐𝑐(𝑎𝑎 + 𝑏𝑏) − 𝛼𝛼2

𝑠𝑠2
(𝑎𝑎2 − 𝑏𝑏2) (5.91) 

Finally, the horizontal force, 𝐻𝐻, caused by the non-symmetry of the pressure distribution can be 
calculated by equating the rate of work it does with the rate of work done by the applied vertical 
force. Accordingly, 𝐻𝐻 can be obtained by substituting into Equation (5.68) the expression 
obtained for the vertical force, Equation (5.91), to obtain: 

 𝑠𝑠𝑅𝑅𝑠𝑠
𝐺𝐺𝐴𝐴𝑠𝑠

= −𝜁𝜁 �𝑐𝑐𝑎𝑎 − 1 + 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑎𝑎𝑒𝑒−𝑠𝑠(𝑎𝑎+𝑏𝑏)� − ��1 + 𝛼𝛼2

𝑠𝑠2
� 𝑠𝑠

2

2
(𝑎𝑎2 − 𝑏𝑏2) + 𝛼𝛼2

𝑠𝑠2
�𝑎𝑎3−𝑏𝑏3�

3
� (5.92) 

In Equation (5.92), 𝜁𝜁 = 𝛼𝛼2

𝑠𝑠2
+ 𝛼𝛼2

𝑠𝑠2
𝑐𝑐𝑎𝑎 − 𝛼𝛼2

𝑠𝑠
𝑐𝑐𝑎𝑎. As in Section 5.3, 𝐻𝐻 depends separately on the 

indentation, Δ, and on the characteristic length 𝑣𝑣𝜏𝜏. Note that when 𝑣𝑣𝜏𝜏 → 0, then 𝑎𝑎 → 𝑏𝑏, and 
consequently 𝐻𝐻 → 0. Finally, the result for the vertical and horizontal forces can be used to 
define a rolling friction resistance factor, 𝜇𝜇, that is obtained from the relation: 𝐻𝐻 = 𝜇𝜇𝑛𝑛𝑒𝑒𝜕𝜕𝜕𝜕.  

5.5 Maxwell Shear Beam on Maxwell Foundation; Roller Indentation 

The response for a Maxwell element is described by Equation (5.72). Applying this law to the 
case of a beam weak in shear where the beam and foundation are each represented by a single 
Maxwell element that share the same characteristic period is given, in the moving coordinate 
system, by:  

 𝑣𝑣𝜏𝜏 �𝐺𝐺𝜌𝜌𝑠𝑠
𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

− 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = 𝑝𝑝 − 𝑣𝑣𝜏𝜏 𝜕𝜕𝑝𝑝

𝜕𝜕𝜕𝜕
. (5.93) 

As in previous sections, let 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

, and define 𝑐𝑐 ≔ 1
𝑣𝑣𝜏𝜏

. Equation (5.93) can be rewritten as: 

 𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

− 𝛼𝛼2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝐺𝐺𝐴𝐴𝑠𝑠

�𝑐𝑐𝑝𝑝 − 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
� (5.94) 
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Outside the contact zone, a solution of the form 𝑤𝑤 = 𝑒𝑒𝜆𝜆𝜕𝜕 leads to the following characteristic 
polynomial: 

 𝜆𝜆(𝜆𝜆2 − 𝛼𝛼2) = 0. (5.95) 

The roots are: 𝜆𝜆 = 0, and 𝜆𝜆 = ±𝛼𝛼. Thus, behind the wheel, 𝑥𝑥 ∈ (−∞,−𝑏𝑏], the transverse 
displacement is given by: 

 𝑤𝑤(𝑥𝑥) = 𝜌𝜌+𝑛𝑛𝑒𝑒𝛼𝛼(𝜕𝜕+𝑏𝑏). (5.96) 

In front of the wheel, 𝑥𝑥 ∈ [𝑎𝑎,∞), the solution is given by: 

  𝑤𝑤(𝑥𝑥) = 𝐶𝐶𝑒𝑒−𝛼𝛼(𝜕𝜕−𝑎𝑎). (5.97) 

In the contact zone, the pressure is determined by using Equation (5.94). (Recall that the 
deformation there is prescribed; Δ is taken as given.) The complementary homogeneous solution 
is given by: 

 𝑝𝑝ℎ(𝑥𝑥) =  𝐺𝐺𝜌𝜌𝑠𝑠𝐷𝐷𝑒𝑒𝑠𝑠(𝜕𝜕−𝑎𝑎). (5.98) 

In Equation (5.98), 𝐷𝐷 is a constant to be determined along with 𝜌𝜌, 𝑛𝑛, and 𝐶𝐶. Since 𝜕𝜕
3𝜕𝜕
𝜕𝜕𝜕𝜕3

= 0 in the 
contact zone, Equation (5.94) becomes: 

 𝑐𝑐𝑝𝑝 − 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

= −𝐺𝐺𝜌𝜌𝑠𝑠𝛼𝛼2
𝜕𝜕
𝑅𝑅
 (5.99) 

The particular solution to equation (5.99) is given by: 

 𝑝𝑝𝑝𝑝(𝑥𝑥) =  −  𝐺𝐺𝐴𝐴𝑠𝑠
𝑠𝑠

𝛼𝛼2

𝑅𝑅
�𝑥𝑥 + 1

𝑠𝑠
�. (5.100) 

Thus, the pressure distribution in the contact area is give by: 

 𝑝𝑝(𝑥𝑥) = 𝑝𝑝ℎ(𝑥𝑥) + 𝑝𝑝𝑝𝑝(𝑥𝑥) = 𝐺𝐺𝜌𝜌𝑠𝑠 �𝐷𝐷𝑒𝑒𝑠𝑠(𝜕𝜕−𝑎𝑎) − 𝛼𝛼2

𝑠𝑠
𝜕𝜕
𝑅𝑅
− 𝛼𝛼2

𝑠𝑠2
1
𝑅𝑅
�. (5.101) 

Assuming continuity of 𝑤𝑤 at 𝑥𝑥 = 𝑎𝑎, and in view of Equation (5.97) and the prescribed 
displacement on the inner side of the contact zone (see Equation (5.42)), 𝑎𝑎 and 𝐶𝐶 are given by: 

 𝐶𝐶 = − 𝑎𝑎
𝛼𝛼𝑅𝑅

 and 𝑎𝑎 = − 1
𝛼𝛼

+ � 1
𝛼𝛼2

+ 2𝑅𝑅Δ. (5.102) 

Behind the wheel, 𝑥𝑥 ∈ (−∞,−𝑏𝑏], the transverse displacement is given by Equation (5.96), which 
when combined with the known transverse displacement and its first derivative at 𝑥𝑥 = −𝑏𝑏 leads 
to: 

 𝜌𝜌 = −Δ + 𝑏𝑏2

2𝑅𝑅
�1 + 2

𝛼𝛼𝑏𝑏
� and 𝑛𝑛 = − 𝑏𝑏

𝛼𝛼𝑅𝑅
. (5.103) 
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Note that in Equation (5.103), 𝑏𝑏 is unknown. It is determined by equating the expression for the 
pressure, given by Equation (5.101), with the pressure jump at 𝑥𝑥 = 𝑎𝑎. The expression for the 
pressure jump is obtained by integrating Equation (5.99), which, under the assumption of no 
point load at 𝑥𝑥 = 𝑎𝑎, yields: 

 −Δ𝑝𝑝 = 𝐺𝐺𝜌𝜌𝑠𝑠 �
∂2Δw
∂x2

− 𝛼𝛼2Δw�. (5.104) 

Equating the pressure jump, Equation (5.104), with the pressure, Equation (5.101), at 𝑥𝑥 = 𝑎𝑎− 
(i.e., just inside the contact zone), with the help of Equations (5.97) and (5.42) and their 
derivatives, leads to: 

 𝐷𝐷 = 1
𝑅𝑅
�𝛼𝛼

2

𝑠𝑠
𝑎𝑎 + 𝛼𝛼2

𝑠𝑠2
− 𝛼𝛼𝑎𝑎 − 1�. (5.105) 

Substituting Equation (5.105) into Equation (5.101) yields the following expression for the 
pressure distribution: 

 𝑝𝑝(𝑥𝑥) = 𝐺𝐺𝐴𝐴𝑠𝑠
𝑅𝑅
��1 + 𝛼𝛼𝑎𝑎 − 𝛼𝛼2𝑎𝑎

𝑠𝑠
− 𝛼𝛼2

𝑠𝑠2
� 𝑒𝑒𝑠𝑠(𝜕𝜕−𝑎𝑎) − 𝛼𝛼2

𝑠𝑠
𝑥𝑥 − 𝛼𝛼2

𝑠𝑠2
�. (5.106) 

Evaluating Equation (5.106) at 𝑥𝑥 = −𝑏𝑏, and equating it with the pressure jump at that location, 
leads to the following equation for b: 

 �1 + 𝛼𝛼𝑎𝑎 − 𝛼𝛼2𝑎𝑎
𝑠𝑠
− 𝛼𝛼2

𝑠𝑠2
� 𝑒𝑒−𝑠𝑠(𝑎𝑎+𝑏𝑏) + �𝛼𝛼

2

𝑠𝑠
+ 𝛼𝛼� 𝑏𝑏 = 𝛼𝛼2

𝑠𝑠2
− 1. (5.107) 

Once all the parameters are determined, the pressure can be integrated over the contact zone to 
obtain the total vertical force. Finally, the horizontal force and friction coefficient can be 
deduced from the energy balance. 

5.6 Maxwell Beam on Maxwell Foundation; Specified Load 

The previous five subsections addressed the response of Timoshenko beams on Winkler 
foundations for different material models and when subjected to a rolling rigid wheel moving at 
a constant velocity. This section considers the response when the beam-foundation system is 
loaded by a uniform load per unit length, 𝑝𝑝0, applied to the center segment of the beam, 𝑥𝑥 ∈
[−𝑎𝑎,𝑎𝑎]. Additionally, a Maxwell element material response is considered for the bending, shear, 
and foundation responses. 

The governing equation for an elastic beam-foundation, relative to a moving coordinate system, 
is given by Equation (5.3), which can be recast into an operator form as: 

 �𝐸𝐸𝜌𝜌 𝜕𝜕4

𝜕𝜕𝜕𝜕4
− 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾 𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝐾𝐾�𝑤𝑤 = �1 − 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2

𝜕𝜕𝜕𝜕2
� 𝑝𝑝. (5.108) 

Similarly, the stress-strain relation for a one-dimensional Maxwell element, relative to a moving 
coordinate system, which is given by Equation (5.73), can be recast into the following operator 
form: 
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 �𝐸𝐸 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜀𝜀 = � 𝜕𝜕

𝜕𝜕𝜕𝜕
− 1

𝜏𝜏𝑣𝑣
� 𝜎𝜎. (5.109) 

Combining the equations leads to the governing equation for a viscoelastic beam-foundation 
system where all three responses (i.e., bending, shear, and foundation) are represented by 
Maxwell elements with the same characteristic period (i.e., 𝜏𝜏𝑏𝑏 = 𝜏𝜏𝑠𝑠 = 𝜏𝜏𝑓𝑓 = 𝜏𝜏): 

 𝐸𝐸𝜌𝜌 𝜕𝜕
5𝜕𝜕
𝜕𝜕𝜕𝜕5

− 𝐸𝐸𝐼𝐼
𝐺𝐺𝐴𝐴𝑠𝑠

𝐾𝐾 𝜕𝜕3𝜕𝜕
𝜕𝜕𝜕𝜕3

+ 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕
− 𝑝𝑝

𝜏𝜏𝑣𝑣
− 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠
�𝜕𝜕

3𝑝𝑝
𝜕𝜕𝜕𝜕3

− 1
𝜏𝜏𝑣𝑣

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

�. (5.110) 

Equation (5.110) can be split into two parts where 𝑤𝑤 = 𝑤𝑤𝑒𝑒 + 𝑤𝑤𝑣𝑣. 𝑤𝑤𝑒𝑒(𝑥𝑥) is the elastic solution 
obtained by solving the following equation: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
4𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕5
− 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾 𝜕𝜕2𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕2
+ 𝐾𝐾𝑤𝑤𝑒𝑒 = 𝑝𝑝 − 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

. (5.111) 

Note that to arrive at Equation (5.111) required integrating Equation (5.110). 𝑤𝑤𝑣𝑣(𝑥𝑥) is the 
viscous solution obtained by solving the following equation: 

 𝐸𝐸𝜌𝜌 𝜕𝜕
5𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕5
− 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠
𝐾𝐾 𝜕𝜕3𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕3
+ 𝐾𝐾 𝜕𝜕𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕
= − 1

𝜏𝜏𝑣𝑣
�𝑝𝑝 − 𝐸𝐸𝐼𝐼

𝐺𝐺𝐴𝐴𝑠𝑠

𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

�. (5.112) 

Define 𝛼𝛼2 ≔ 𝐾𝐾
𝐺𝐺𝐴𝐴𝑠𝑠

 and 𝛽𝛽4 ≔ 𝐾𝐾
𝐸𝐸𝐼𝐼

. Substituting these definitions into Equations (5.111) and (5.112) 
yields: 

 𝜕𝜕4𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕5
− 𝛼𝛼2 𝜕𝜕

2𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕2
+ 𝛽𝛽4𝑤𝑤𝑒𝑒 = 1

𝐸𝐸𝐼𝐼
�𝑝𝑝 − 𝛼𝛼2

𝛽𝛽4
𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

� (5.113) 

and 

 𝜕𝜕5𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕5
− 𝛼𝛼2 𝜕𝜕

3𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕3
+ 𝛽𝛽4 𝜕𝜕𝜕𝜕

𝑣𝑣

𝜕𝜕𝜕𝜕
= − 1

𝜏𝜏𝑣𝑣𝐸𝐸𝐼𝐼
�𝑝𝑝 − 𝛼𝛼2

𝛽𝛽4
𝜕𝜕2𝑝𝑝
𝜕𝜕𝜕𝜕2

�, (5.114) 

respectively. 

5.6.1 Solution for 𝒘𝒘𝒆𝒆 

For the loading assumption considered here, the particular solution to Equation (5.113) is 
𝑝𝑝0
𝐸𝐸𝐼𝐼𝛽𝛽4

=  𝑝𝑝0
𝐾𝐾

. The complimentary homogenous solution is in the form 𝑤𝑤𝑒𝑒 = 𝑒𝑒𝜆𝜆𝜕𝜕 , which results 

in the following characteristic polynomial: 

  𝜆𝜆4 − 𝛼𝛼2𝜆𝜆2 + 𝛽𝛽4 = 0. (5.115) 

The four roots of Equation (5.115) are: 
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𝜆𝜆1 = + 𝛼𝛼

2
�1 + �1 − 4𝛽𝛽4

𝛼𝛼4
=: +𝛼𝛼2 𝜆𝜆2 = −𝛼𝛼

2
�1 + �1 − 4𝛽𝛽4

𝛼𝛼4
=:−𝛼𝛼2

𝜆𝜆3 = + 𝛼𝛼
2
�1 −�1 − 4𝛽𝛽4

𝛼𝛼4
=: +𝛽𝛽2 𝜆𝜆4 = −𝛼𝛼
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 (5.116) 

The solution behind, under, and in front of the load, when 4𝛽𝛽
4

𝛼𝛼4
< 1 (i.e., for a beam weak in 

shear), is given by: 

 
𝑤𝑤𝑒𝑒(𝑥𝑥) = 𝑛𝑛1𝑒𝑒𝛼𝛼2(𝜕𝜕+𝑎𝑎)+𝐶𝐶1𝑒𝑒𝛽𝛽2(𝜕𝜕+𝑎𝑎) 𝑥𝑥 ∈ (−∞,−𝑎𝑎]

𝑤𝑤𝑒𝑒(𝑥𝑥) = 𝐸𝐸1𝑒𝑒𝛼𝛼2(𝜕𝜕+𝑎𝑎)+𝑛𝑛1𝑒𝑒𝛽𝛽2(𝜕𝜕+𝑎𝑎)+𝐺𝐺1𝑒𝑒−∝2(𝜕𝜕−𝑎𝑎)+𝐻𝐻1𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) + 𝑝𝑝0
𝐾𝐾

𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎]

𝑤𝑤𝑒𝑒(𝑥𝑥) = 𝜌𝜌1𝑒𝑒−𝛼𝛼2(𝜕𝜕−𝑎𝑎)+𝐽𝐽1𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) 𝑥𝑥 ∈ [𝑥𝑥,∞]
(5.117) 

The elastic solution is symmetric about the origin, 𝑥𝑥 = 0. Taking advantage of this observation, 
and using the symmetry of the hyperbolic cosine, the solution can be recast as: 

 
𝑤𝑤𝑒𝑒(𝑥𝑥) = 2𝐺𝐺1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(∝2 𝑥𝑥) + 2𝐻𝐻1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(𝛽𝛽2𝑥𝑥) + 𝑝𝑝0

𝐾𝐾
𝑥𝑥 ∈ [−𝑎𝑎, 𝑎𝑎]

𝑤𝑤𝑒𝑒(𝑥𝑥) = 𝜌𝜌1𝑒𝑒−𝛼𝛼2(𝜕𝜕−𝑎𝑎)+𝐽𝐽1𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) 𝑥𝑥 ∈ [𝑎𝑎,∞]
 (5.118) 

The four unknowns can be determined by enforcing continuity of 𝑤𝑤𝑒𝑒 and its first three 
derivatives at 𝑥𝑥 = 𝑎𝑎. These continuity conditions are: 

 

𝑤𝑤𝑒𝑒(𝑎𝑎) = 2𝐺𝐺1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(∝2 𝑎𝑎) + 2𝐻𝐻1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(𝛽𝛽2𝑎𝑎) + 𝑝𝑝0
𝐾𝐾

= 𝜌𝜌1 + 𝐽𝐽1
𝜕𝜕𝑤𝑤𝑒𝑒(𝑎𝑎)
𝜕𝜕𝜕𝜕

= 2 ∝2 𝐺𝐺1𝑛𝑛𝑖𝑖𝑛𝑛ℎ(∝2 𝑎𝑎) + 2𝛽𝛽2𝐻𝐻1𝑛𝑛𝑖𝑖𝑛𝑛ℎ(∝2 𝑎𝑎) = −∝2 𝜌𝜌1 − 𝛽𝛽2𝐽𝐽1
𝜕𝜕2𝑤𝑤𝑒𝑒(𝑎𝑎)
𝜕𝜕𝜕𝜕2

= 2𝛼𝛼22𝐺𝐺1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(∝2 𝑎𝑎) + 2𝛽𝛽22𝐻𝐻1𝐶𝐶𝑐𝑐𝑐𝑐ℎ(∝2 𝑎𝑎) = 𝛼𝛼22𝜌𝜌1 + 𝛽𝛽22𝐽𝐽1
𝜕𝜕3𝑤𝑤𝑒𝑒(𝑎𝑎)
𝜕𝜕𝜕𝜕3

= 2𝛼𝛼23𝐺𝐺1𝑛𝑛𝑖𝑖𝑛𝑛ℎ(∝2 𝑎𝑎) + 2𝛽𝛽23𝐻𝐻1𝑛𝑛𝑖𝑖𝑛𝑛ℎ(∝2 𝑎𝑎) = −𝛼𝛼23𝜌𝜌1 − 𝛽𝛽23𝐽𝐽1

 (5.119) 

This system of four equations can be readily solved for the four constants required in order to 
determine 𝑤𝑤𝑒𝑒. 

5.6.2 Solution for 𝒘𝒘𝒗𝒗 

The complimentary homogenous solution is given by: 𝑤𝑤𝑣𝑣 = 𝑒𝑒𝜆𝜆𝜕𝜕 , which leads to the following 
characteristic equation: 

 𝜆𝜆(𝜆𝜆4 − 𝛼𝛼2𝜆𝜆 + 𝛽𝛽4) = 0. (5.120) 

The roots for this equation are 𝜆𝜆 = 0, and  
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𝜆𝜆1 = + 𝛼𝛼

√2
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=: +𝛼𝛼2 𝜆𝜆2 = − 𝛼𝛼

√2
�1 + �1 − 4𝛽𝛽4

𝛼𝛼4
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𝜆𝜆3 = + 𝛼𝛼
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�1 −�1 − 4𝛽𝛽4

𝛼𝛼4
=: +𝛽𝛽2 𝜆𝜆4 = − 𝛼𝛼

√2
�1 −�1 − 4𝛽𝛽4

𝛼𝛼4
=:−𝛽𝛽2

 (5.121) 

The solution for 𝑤𝑤𝑣𝑣, when the beam-foundation system is subjected to a constant load applied to 
the interval 𝑥𝑥 ∈ [−𝑎𝑎,𝑎𝑎], is given by: 

 
𝑤𝑤𝑣𝑣 = 𝜌𝜌 + 𝑛𝑛𝑒𝑒𝛼𝛼2(𝜕𝜕+𝑎𝑎) + 𝐶𝐶𝑒𝑒𝛽𝛽2(𝜕𝜕+𝑎𝑎) 𝑥𝑥 ∈ (−∞,−𝑎𝑎]

𝑤𝑤𝑣𝑣 = 𝐷𝐷 + 𝐸𝐸𝑒𝑒𝛼𝛼2(𝜕𝜕+𝑎𝑎) + 𝑛𝑛𝑒𝑒𝛽𝛽2(𝜕𝜕+𝑎𝑎) + 𝐺𝐺𝑒𝑒−∝2(𝜕𝜕−𝑎𝑎) + 𝐻𝐻𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) + �̅�𝑝𝑥𝑥 𝑥𝑥 ∈ [−𝑎𝑎, 𝑎𝑎]
𝑤𝑤𝑣𝑣 = 𝜌𝜌𝑒𝑒−𝛼𝛼2(𝜕𝜕−𝑎𝑎) + 𝐽𝐽𝑒𝑒−𝛽𝛽2(𝜕𝜕−𝑎𝑎) 𝑥𝑥 ∈ [𝑎𝑎,∞]

(5.122) 

�̅�𝑝 appearing in Equation (5.122) is defined as �̅�𝑝 ≔ 𝑝𝑝0
𝑣𝑣𝜏𝜏𝐾𝐾

. Ten unknowns appear in Equations 
(5.122) that must be determined to compete the solution. They can be obtained by imposing 
continuity of 𝑤𝑤𝑣𝑣and its first four derivatives at 𝑥𝑥 = −𝑎𝑎 and 𝑥𝑥 = 𝑎𝑎. (Recall that the governing 
equation, Equation (5.114), is fifth order.) The ten equations, cast in matrix form, are given by: 

(5.123) 
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6 Validation Simulations 
This section presents numerical simulations that are used to validate tBeam, demonstrate its 
performance, and explore a beam-to-plate correction factor. tBeam validation is achieved by 
comparing simulation results with analytical solutions, which are detailed in Section 5. The 
validation commences with the exploration of an elastic shear beam-foundation system subjected 
to a uniform load (see Section 6.1). Second, the same beam is subjected to a rolling rigid wheel 
(in Section 6.2). All examples studied in this report consider loads moving at constant velocities. 
The velocity is not reported for the elastic cases, Sections 6.1 and 6.2, because the results are 
independent of the velocity (inertia is ignored in Sections 6.1 through 6.5). 

The validation proceeds with the evaluation of viscoelastic (shear) beam-foundation 
combinations. First, an elastic beam resting on a Kelvin-Voigt foundation is studied in Section 
6.3. Next, the Kelvin-Voigt foundation is replaced with a Maxwell foundation in Section 6.4. 
The validation is concluded, in Section 6.5, with the examination of a Maxwell shear beam 
resting on a Maxwell Winkler foundation, sharing the same characteristic period. Examples 6.3 
through 6.5 consider a rigid wheel loading. 

Section 6.6 is used to demonstrate the application of tBeam to study energy dissipation and 
deflection bowls in realistic pavements. A pavement section designated by the UC Davis 
Pavement Research Center as PH07 is used for this purpose. A limitation of tBeam is that it 
employs a one-dimensional beam model to represent a three-dimensional state. This 
approximation is mandated by the need for highly efficient computations. To compensate for its 
limitation, the model can be calibrated with a correction factor that can be obtained by 
comparing the results with more realistic simulations of the three-dimensional pavement 
structures. As a first step to achieve this goal, Section 6.7 compares tBeam simulations results 
with those obtained for a two-dimensional plate resting on a Winkler foundation representation. 

6.1 Uniform Load on an Elastic Shear Beam-Foundation System 

A uniform pressure per unit length is applied to an elastic beam weak in shear resting on an 
elastic Winkler foundation. The beam’s height is 0.2m, and its width is 1m. The beam’s material 
properties are 𝐸𝐸𝜌𝜌 → ∞, and 𝐺𝐺𝜌𝜌𝑠𝑠 = 166.66667N; the stiffness of the Winkler foundation is 
166.66667 N/m; and the load 𝑝𝑝 = −10 𝑁𝑁/𝑚𝑚 is applied to the center 1m portion of the beam. 

The tBeam solution is compared with an analytical solution obtained in Section 5. There are two 
important distinctions between the two solutions. The analytical solution is based on a beam that 
extends to infinity in either direction, whereas tBeam employs a finite length beam, which in this 
example extends 20m from the center in each direction. (The load is centered on the beam.) The 
second difference between the two solutions is that the value 𝐸𝐸𝜌𝜌 = 6.66667𝐸𝐸 + 5𝑁𝑁𝑚𝑚2 is used 
for the tBeam analysis. 

tBeam is finite element-based, employing three-node Timoshenko beam elements. The mesh is 
generated by tBeam as based on the following user input. The beam is to extend 20m in each 
direction. The center portion of the beam, extending 1m in each direction, from the beam’s 
center, is meshed by 200 elements, with the nodes equally spaced. The exterior segments 
extending 19m in each direction are mesh by 100 elements with a non-uniform node distribution 
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done so that intervals between nodes increases as they are further from the center. (Node 
placement is automatically controlled by tBeam.) 

Figure 6.1 shows the distribution of the transverse displacement for the analytical and tBeam 
solutions. As is evident, a perfect match is obtained. Due to the symmetry of the solution no 
energy is dissipated in this example. 

 

 

Figure 6.1: Transverse displacement elastic shear beam-foundation system. Uniform load. 

 

6.2 Rigid Wheel on an Elastic Shear Beam-Foundation System 

The elastic beam-foundation system considered in the previous example is now subjected to a 
rolling rigid wheel supporting a vertical force of 10N pointing downwards. The transverse 
displacement obtained for the analytical solution and tBeam analysis is shown in Figure 6.2. As 
in the previous example, Section 6.1, the two solutions are practically indistinguishable. No 
energy is dissipated in this example. 

It is also of interest to examine the performance of the contact algorithm. To this end, a close-up 
view of the wheel-beam system is shown in Figure 6.3. As can be seen, no noticeable penetration 
is visible. The contact properties used in this example are: 𝐾𝐾 = 1.0MN/m, 𝑝𝑝 = 2, and 𝑛𝑛𝑟𝑟𝑒𝑒𝑓𝑓 =
0.002m (see Equation 4.1). 



Symplectic Engineering Corporation 
 

 39 

 

 

Figure 6.2: Transverse displacement elastic shear beam-foundation system. Rigid wheel. 

 

Figure 6.3: Close-up view of the contact zone. Elastic system. 
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6.3 Rolling Rigid Wheel on an Elastic Shear Beam Resting on a 
Viscoelastic, Kelvin-Voigt, Foundation 

The wheel-beam-foundation system examined in Section 6.2 is reexamined, with the foundation 
replaced by a Kelvin-Voigt material (see Section 5.3). The spring associated with the foundation 
is retained, and a dashpot is added in parallel with it to form the Kelvin-Voigt material. The 
characteristic period for the foundation material is chosen to be 0.1 seconds. The transverse 
displacement obtained for both analytic and tBeam solutions are shown in Figure 6.3. As in 
previous sections, the two solutions are indistinguishable. 

Figure 6.3 clearly shows that the solution is not symmetric about the center of the beam. This 
asymmetry results in energy dissipation, which in this case is computed to be 0.142J/m.5 Figure 
6.4 shows a close view of the wheel-pavement contact zone, where no visible penetration is 
observed. (Contact properties are the same as those used in Section 6.2.) 

Section 5.3 introduced the rolling friction resistance, 𝜇𝜇. The applied vertical force in this case is 
10N. It follows from the definition of the horizontal force, Equation (5.66), that it is equal to the 
dissipated energy per unit length. Thus, in this example, 𝜇𝜇 = 0.0142. 

 

Figure 6.4: Transverse displacement for an elastic shear beam resting on Kelvin-Voigt 
foundation. Rigid wheel. 

 
5 The energy dissipated is computed by multiplying the applied (nodal) contact forces by the 
slope at that node and summing over all the nodes in contact. 
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Figure 6.5: Close-up view of the contact zone. Kelvin-Voigt Foundation. 

6.4 Rolling Rigid Wheel on an Elastic Shear Beam Resting on a 
Viscoelastic, Maxwell, Foundation 

The wheel-pavement system considered in Section 6.3 is reexamined; this time with the 
foundation represented as a single Maxwell element. The spring and characteristic period for the 
Maxwell element have the same properties as those used for the Kelvin-Voigt model in Section 
6.3 (i.e., 𝐾𝐾 = 166.66667𝑁𝑁/𝑚𝑚2, and 𝜏𝜏 = 0.1 seconds). 

The transverse displacement distributions obtained for the analytic (see Section 5.4) and tBeam 
solutions are shown in Figure 6.6. This time the tBeam solution does not coincide with the 
analytical solution. It is, in fact, showing the influence of the finite length of the modeled beam, 
evident by the curving of the transverse displacement line at both ends of the tBeam solution 
(L = 20m), an effect that diminishes as the length of the beam is extended. (Recall that the 
analytical solution assumes a beam that extends to infinity in both directions.) 

The elastic bending stiffness of the tBeam model is another factor influencing the closeness of 
the solution to the analytical solution. Specifically, whereas the analytical solution assumes that 
𝐸𝐸𝜌𝜌 → ∞, tBeam employs a finite value. As is shown in Figure 6.7, employing a value that 
resulted in near perfect match, 𝐸𝐸 = 108𝑁𝑁/𝑚𝑚2, in previous examples did not results in the 
solutions coinciding in the contact zone in the current example. 

As Figure 6.7 shows, even extending the length of the modeled beam to 100m in each direction, 
marked as L = 100, does not result in the tBeam and analytical solutions coinciding. However, if 
the bending stiffness is increased, the tBeam solution gets closer to the analytic solution. This is 
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demonstrated in Figures 6.6 and 6.7 by the curves for a stiffer in bending beam (𝐸𝐸 = 1012𝑁𝑁/𝑚𝑚2, 
L = 100m). 

 

Figure 6.6: Transverse displacement for an elastic shear beam resting on Maxwell foundation. 
Rigid wheel. 
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Figure 6.7: Close-up view of the contact zone. Maxwell Foundation. 

It is interesting to consider the effect of extending the length of the beam, and increasing the 
bending stiffness on the dissipated energy. Table 6.1 summarizes the dissipated energy for the 
cases examined. Fortunately, the dissipated energy is practically unaffected by the end effects, or 
the bending stiffness.  

Table 6.1: Dissipated Energy per unit length. Elastic shear beam, Maxwell foundation. 

L (m) 𝐸𝐸(𝑁𝑁/𝑚𝑚2) Dissipated Energy (J/m) 
20 1.0E+8 0.122746 
50 1.0E+8 0.122744 
100 1.0E+8 0.122703 
100 1.0E+12 0.122098 

Finally, the horizontal force required to sustain the forward motion is obtained by energy balance 
(see Section 5). It follows from Equation (5.66) that the magnitude of the horizontal force is the 
same as that of the dissipated energy per unit length. Thus, in view of the magnitude of the 
applied vertical force, 10N, the value of the rolling friction resistance is 𝜇𝜇 ≈ 0.0122. 
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6.5 Rolling Rigid Wheel on a Viscoelastic, Maxwell, Shear Beam-
Foundation System 

The wheel-pavement system studied in Section 6.4 is enhanced to incorporate viscoelastic 
response of the shear beam. The model considered contains a single Maxwell element for the 
shear response of the beam that is chosen to have the same characteristic period as that of the 
Maxwell element modeling the foundation. The analytic solution for this case is provided in 
Section 5.5. The properties used for the shear Maxwell element are: 𝐸𝐸 = 166.66667𝑁𝑁/𝑚𝑚2 and 
𝜏𝜏 = 0.1 seconds. 

Figure 6.8 shows the transverse displacement along the beam. As can be seen, the tBeam and 
analytic solutions coincide. A close-up view of the contact area is shown in Figure 6.9. The two 
solutions are indistinguishable also at this scale, and no penetration (wheel-pavement) is visible. 

The dissipation computed by tBeam for the applied load of 10N is 0.265767 J/m. Thus, the 
horizontal force required to maintain the forward motion at 25MPH is 0.265767N, and the 
rolling friction resistance is 𝜇𝜇 ≈ 0.0266. 

 

 

Figure 6.8: Distribution of the transverse displacement along the beam. Maxwell shear beam 
resting on a Maxwell foundation. Rigid wheel. 
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Figure 6.9: Close-up view of the contact area. Maxwell shear beam resting on a Maxwell 
Foundation. Rigid wheel. 

6.6 PH07 Pavement Simulations 

The previous simulations, Sections 6.1 through 6.6, were used to validate tBeam. In this section, 
tBeam is applied to predict the deflection bowl and dissipated energy for a pavement that is 
designated by the UC Davis Pavement Research center as PH07. The layering for this pavement 
is provided in Table 6.2. Elastic properties and mass density for the upper three layers are given 
in Table 6.3. The width of the tBeam model is taken as 1m. This arbitrary beam width is chosen 
because it is convenient. This issue is further addressed in Section 6.7. Also, note that for 
uniformly applied pressure, the loading considered here, the transverse displacement and 
dissipated energy scale linearly with the width. 

Maxwell elements (bending and shear) for the top (AC) layer, at the reference temperature of 
20°C, are listed in Table 6.4. Scaling factors, used to obtain characteristic periods at different 
temperatures, are contained in Table 6.5. These scaling factors are uniform (i.e., applied to all 
Maxwell element, both bending and shear). Finally, the stiffness of the elastic Winkler 
foundation is 𝐾𝐾 = 3.11 108N/m. 
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Table 6.2: Pavement section. 

Layer Thickness (m) 
AC 0.152 
AB 0.3429 

ASB 0.279 
Foundation ∞ 

Table 6.3: Layers’ Elastic properties and mass density for the upper three layers. 

Layer E (𝐾𝐾𝐾𝐾 𝑚𝑚2⁄ ) G (𝐾𝐾𝐾𝐾 𝑚𝑚2⁄ ) Mass Density (𝐾𝐾𝐾𝐾 𝑚𝑚3⁄ ) 
AC 2.40E+7 9.00E+6 2304 
AB 5.53E+8 1.98E+8 1986 

ASB 5.55E+8 1.98E+8 1986 

Table 6.4: AC layer’s Maxwell elements properties at the reference temperature (20°C). 

# E (𝑁𝑁 𝑚𝑚2⁄ ) τ (seconds) G (𝑁𝑁 𝑚𝑚2⁄ ) τ (seconds) 
1 4.7700E+08 5.0E+1 1.7700E+8 5.0E+1 
2 9.5800E+09 5.0E+0 3.5500E+8 5.0E+0 
3 5.6379E+10 5.0E-1 2.0880E+9 5.0E-1 
4 1.2538E+11 5.0E-2 4.6440E+9 5.0E-2 
5 1.3877E+11 5.0E-3 5.1390E+9 5.0E-3 
6 6.9950E+10 5.0E-4 2.5910E+9 5.0E-4 
7 8.6600E+10 5.0E-5 3.2080E+9 5.0E-5 

Table 6.5: Scaling (for temperature) factors applied to the characteristic periods. 

Temperature (°C) Scaling Factor 
17.1 1.461537636 
20.0 1.000000000 
27.1 0.224249733 
37.1 0.047461069 

The load consists of a single wheel, and it is applied as a uniform pressure per unit length,  
𝑝𝑝 = 1.54 105N/m, to the center 0.13m of the beam (i.e., −0.065 ≤ 𝑥𝑥 ≤ 0.065). The wheel is 
moving at either 𝑣𝑣 = 11.176m/second (25MPH), or 𝑣𝑣 = 25.5872m/second (55MPH). Figures 
6.10 and 6.11 show the transverse displacement for the center 20m of the beam for  
𝑣𝑣 = 11.176m/second and 𝑣𝑣 = 25.5872m/second, respectively. (The tBeam model extends in 
each direction 20m from the center.) As expected, the transverse displacement increases with 
temperature, and decreases with increased velocity. Figure 6.12 shows the dissipated energy per 
unit length for the eight cases evaluated. 
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Figure 6.10: Transverse Displacement at 𝑣𝑣 = 11.176m/second. 

 

Figure 6.11: Transverse Displacement at 𝑣𝑣 = 25.5872m/second. 
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Figure 6.12: Dissipated energy per unit length as a function of temperature. 

6.7 Comparison With Plate Analysis 

It was noted in the previous example that there is no basis for the choice of the width of the 
beam. Moreover, the beam model does not account for the double-curvature response of 
pavements. The objective of this example is to provide a comparison of the beam solution with 
that of the three-dimensional structure. To this end, a plate model is employed. The plate model 
is based on the Reissner-Mindlin plate theory and employs the S1 four-node quadrilateral plate 
formulation (see, e.g., Hughes [1987]). The plate model implementation is designed to represent 
a single viscoelastic layer resting on a viscoelastic (generalized Maxwell) Winkler foundation. 
The plate implementation is formulated relative to the inertial coordinate system, and so the load 
is dragged along the pavement, requiring time integration. Additionally, as the load is coming on 
the pavement, it causes oscillations of pavement that influence the predicted response. To 
mitigate these oscillations, light viscosity is added to the foundation. 

The properties of the surface layer are the same as those employed for AC layer in Section 6.6. 
The elastic property of the Winker foundation is the same as that used in Section 6.6. Three 
Maxwell elements are added to the foundation. Their properties are listed in Table 6.6, and the 
scaling factors given in Table 6.5 to correct for temperature are applied to the foundation 
Maxwell elements as well. This scaling is used in order to maintain the light damping for 
simulations at all temperatures. 
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Table 6.6: Foundation Maxwell elements properties at the reference temperature (20°C). 

# K (𝑁𝑁 𝑚𝑚⁄ ) τ (seconds) 
1 9.0E+6 1.0E+0 
2 9.0E+9 1.0E-1 
3 9.0E+6 1.0E-2 

This example proceeds in two steps. First, tBeam solutions are compared with the plate solution, 
where the plate is used to model a 1m wide beam and the rotations about the x-axis are fixed in 
order to closely represent the beam theory. Second, the plate model is used to represent a 
pavement structure that is 7m wide. (Using symmetry about the x-axis, only the part of the 
pavement corresponding to the positive y-axis is modeled.) In the axial direction (i.e., direction 
of motion), the pavement model extends 5m in each direction from the center. The load is moved 
from 𝑥𝑥 = −5.065m to 𝑥𝑥 = 0m in five thousand time steps, whose size depends on the velocity 
of the wheel. Two velocities are considered: 𝑣𝑣 = 11.176m/second (25MPH) and 
𝑣𝑣 25.5872m/second (55MPH). Additionally, the analyses are repeated at three temperatures: 
17.1°C, 27.1°C, and 37.1°C. 

The deflection bowls at the three temperatures considered are shown in Figures (6.13-6.15) 
(25MPH) and (6.16-6.18)(55MPH). They follow the expected trend of increasing transverse 
deflection with rising temperature, and lower velocity. It is evident, however, that the plate 
model representing the bar and tBeam do not coincide, with the difference being considerably 
smaller for the higher velocity. This difference is likely due to two sources. First, the constitutive 
model for the plate is not identical to that for the bar. Specifically, the plate model introduces 
certain couplings that are not present in the beam model. Even in the restricted case of linear 
elastic response, the difference vanishes only for zero Poisson’s ratio. Second, tBeam employs 
quadratic elements, whereas the plate model employs bi-linear elements. This approximation 
difference results in more elements required for the plate model to achieve the same accuracy. 
However, the two-dimensional memory requirement (the model used about half a million 
degrees of freedom) restricted the mesh size employed. 

The purpose of the one-dimensional (bar) analysis with plate elements was to enable comparison 
with the two-dimensional (plate) analysis when using identical formulations. Examining the 
results shows that the two-dimensional results in significantly lower transverse displacement, 
especially at lower temperatures and higher velocities. This result is attributed to two reasons: 
the arbitrary unit width of the one-dimensional model and the double-curvature effect present in 
the two-dimensional analysis. 
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Figure 6.13: Transverse Displacement at 𝑣𝑣 = 11.176m/second, T=17.1°C. 
 

 

Figure 6.14: Transverse Displacement at 𝑣𝑣 = 11.176m/second, T=27.1°C. 
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Figure 6.15: Transverse Displacement at 𝑣𝑣 = 11.176m/second, T=37.1°C. 

 

 

Figure 6.16: Transverse Displacement at 𝑣𝑣 = 25.5872m/second, T=17.1°C. 
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Figure 6.17: Transverse Displacement at 𝑣𝑣 = 25.5872m/second, T=27.1°C. 

 

 

Figure 6.18: Transverse Displacement at 𝑣𝑣 = 25.5872m/second, T=37.1°C. 



Symplectic Engineering Corporation 
 

 53 

The dissipated energy vs. temperature for the two velocities studied is shown in Figures (6.19) 
(𝑣𝑣 = 11.176m/second) and (6.20) (𝑣𝑣 = 25.5872m/second). The results show that the dissipated 
energy increases with rising temperature and decreases with increased velocity. This outcome is 
consistent with physical observations. The results also show that tBeam dissipated more energy 
than either of the plate analyses. The relationship between the one- and two-dimensional 
analyses is not consistent. At the lower velocity, the two-dimensional analysis dissipated more 
energy, whereas at the higher velocity the one-dimensional analysis dissipated more energy. This 
result is best viewed by examining the ratio of dissipated energy for one- to two-dimensional 
analyses, shown in Figure 6.21. The results show a clear trend of increased ratio with reduced 
velocity and increased temperature. However, more analysis is needed in order to arrive at a 
correction factor, even restricted to this case. 

 

Figure 6.19: Dissipated energy vs. temperature (𝑣𝑣 = 11.176m/second). 
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Figure 6.20: Dissipated energy vs. temperature (𝑣𝑣 = 25.587m/second). 

 

Figure 6.21: Ratio of dissipated energy for plate models (1D/2D). 
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7 Conclusions and Future Work 
This report presents the theoretical background for tBeam, a program for the analysis of 
deflection bowls and energy dissipated in viscoelastic pavement structures. tBeam is finite-
element-based and employs a one-dimensional multilayered linear viscoelastic Timoshenko 
beam model resting on a linear viscoelastic Winkler foundation. Both the beam (shear and 
bending components) and foundation are modeled by generalized Maxwell element 
representations. 

This report also presents a number of closed-form analytical solutions for a number of 
combinations of material models of a beam weak in shear resting on Winkler foundation. These 
analytical solutions are then used for the tBeam validation effort, which is also contained in this 
report. Additionally, an example of the application of tBeam to a realistic pavement section is 
provided. 

A shortcoming of the use of a one-dimensional model is that it cannot capture the double-
curvature effect present in real pavements. Applying a correction factor to the tBeam results can 
mitigate this shortcoming. To this end, tBeam results are compared with those obtained for a 
plate model of a simple pavement structure. The results establish a clear trend where the 
correction factor decreases with temperature and increases with wheel velocity. Unfortunately, 
the current study is insufficient to establish a clear law to determine the correction factor, even 
when limited to the case studied, and further analysis is need. 

In running validation examples, a problem was encountered with the representation of the 
“stand-alone” dashpot in the beam (shear and bending components). This problem is related to 
the appearance of a higher order derivative coupled with multiplication by the negative of the 
velocity (see the transformation from Equation (2.10) to Equation (2.14)). Fortunately, a simple 
workaround is readily available in the form of adding a Maxwell element with a stiff spring, and 
characteristic period such that the desired dashpot viscosity is obtained. 

As pointed out in the introduction, numerical efficiency is critical for the integration of tBeam 
with pavement sustainability analysis software. This need mandates that, within the confines of 
this application, applying the load as a uniformly distributed pressure is preferable to the 
simulation of the rigid wheel-pavement contact. Moreover, because the indentation is very small 
relative to the radius of the wheel, the resulting contact area is only a fraction of the real contact 
area, which also favors applying the load as a uniformly distributed pressure. 

Finally, the following future undertakings are suggested: 

• A relation between the tBeam predicted energy dissipation and the predicted energy 
dissipation when accounting for the three-dimensional nature of the pavement system could 
be determined. In essence, this study would be an expanded version of the example provided 
in Section 6.6. The outcome of this study will be a function to correlate tBeam predictions 
with three-dimensional response for a range of pavement structures, loading, temperatures, 
and vehicle velocities. 

• Applying the load as a uniformly distributed pressure over a specified contact area can be 
easily changed to account for non-uniform distribution. This change would require the user to 
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input the details of the distribution, but otherwise it will have no impact on the numerical 
effort. 

• A deformable wheel can replace the rigid wheel model employed by tBeam. In this case, a 
beam model will be used to represent the steel-reinforced rubber tire and the internal pressure 
will be applied as a “follower pressure” (i.e., the pressure would remain normal to the beam). 
This enhancement will result in a more realistic prediction of the contact area. Unfortunately, 
it will add to the numerical cost of the analysis. Therefore, such an enhancement would 
primarily benefit pavement research. 

• tBeam can be enhanced to better account for the three-dimensional response of pavements. 
This enhancement would employ a formulation based on the shear deformable Reissner-
Mindlin plate theory. To maintain efficiency, it too will be formulated relative to a moving 
coordinate system. Additionally, it would employ a regular finite element representation in 
the direction of motion (same as tBeam), and a prescribed shape function in the (in-plane) 
normal direction. Such an approach would be almost as efficient as tBeam, yet account for 
the double curvature nature of the response. This tool would benefit both pavement research 
and sustainability analysis. 
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