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70

71 Abstract:

72 Anthropogenic activities are increasing nutrient inputs to ecosystems worldwide, with 

73 consequences for global carbon and nutrient cycles. Recent meta-analyses show that 

74 aboveground primary production is often co-limited by multiple nutrients, however little is 

75 known about how root production responds to changes in nutrient availability. At twenty-nine 

76 grassland sites on four continents, we quantified shallow root biomass responses to nitrogen (N), 

77 phosphorus (P) and potassium plus micronutrient enrichment and compared below- and 

78 aboveground responses. We hypothesized that optimal allocation theory would predict context 

79 dependence in root biomass responses to nutrient enrichment, given variation among sites in the 

80 resources limiting to plant growth (specifically light versus nutrients). Consistent with the 

81 predictions of optimal allocation theory, the proportion of total biomass belowground declined 

82 with N or P addition, due to increased biomass aboveground (for N and P) and decreased 

83 biomass belowground (N, particularly in sites with low canopy light penetration). Absolute root 

84 biomass increased with N addition where light was abundant at the soil surface, but declined in 

85 sites where the grassland canopy intercepted a large proportion of incoming light. These results 

86 demonstrate that belowground responses to changes in resource supply can differ strongly from 

87 aboveground responses, which could significantly modify predictions of future rates of nutrient 

88 cycling and carbon sequestration. Our results also highlight how optimal allocation theory 

89 developed for individual plants may help predict belowground biomass responses to nutrient 

90 enrichment at the ecosystem scale across wide climatic and environmental gradients.

91

Page 5 of 36 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5

92 Keywords: belowground biomass, fertilization, nitrogen, Nutrient Network, optimal allocation, 

93 phosphorus, roots

94 Manuscript highlights

95 • Both N and P addition reduced the proportion of total biomass in shallow roots

96 • N addition decreased roots most where there was low light beneath the canopy

97 • These results show plant allocation to roots vs shoots depends on limiting resources

98

99 Introduction

100 Grasslands and other herbaceous plant communities cover 20 - 40% of the terrestrial land 

101 surface (Leith, 1978), provide critical ecosystem services such as rangeland forage, and play an 

102 important role in the global carbon (C) cycle, with grassland soils containing up to 30% of the 

103 world’s soil C (Anderson, 1991). Across the world's biomes, grasslands have some of the highest 

104 fractions of total biomass as roots (Poorter and others, 2012). There is large variation in 

105 partitioning of biomass and productivity across sites, however; for instance, Sims and Singh 

106 (1978) estimated between 24% and 87% of net primary production was belowground across ten 

107 North American grassland sites, and Hui and Jackson (2006) found similar levels of variation 

108 across grasslands worldwide (40-86%). This variation in the proportion of growth allocated 

109 belowground is important not only for regional estimates of primary production and C 

110 sequestration (Scurlock & Hall, 1998, Mokany and others, 2006) but also for understanding 

111 ecosystem responses to global change (Friedlingstein and others, 1999, Jackson and others, 

112 2000).  

113 Anthropogenic activities are increasing global nutrient availability, with effects on net 

114 primary production (Elser and others, 2007), plant allocation above- and belowground (Poorter 
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115 and others, 2012), and net ecosystem C balance (Mack and others, 2004). Fossil fuel combustion 

116 and agricultural intensification have doubled annual nitrogen (N) inputs into terrestrial 

117 ecosystems and have increased phosphorous (P) inputs more than fourfold (Falkowski and 

118 others, 2000). Shifts in C balance resulting from nutrient enrichment could depend on allocation 

119 above- versus belowground (Friedlingstein and others, 1999, Smithwick and others, 2014). High 

120 proportional allocation to root biomass increases the potential for ecosystem C sequestration 

121 because root-derived C is more likely to enter long-lasting soil organic C pools than C from 

122 aboveground tissues (Rasse and others, 2005), and roots can promote physical stabilization of 

123 soil organic matter via soil aggregate formation (Jastrow, 1996).

124 Optimal allocation theory, developed for individual plants, predicts that plant allocation 

125 belowground should depend on the identity of the most growth-limiting resource (Thornley, 

126 1972, Bloom and others, 1985, Wilson, 1988). Specifically, proportional root allocation should 

127 decline when plant growth is limited by aboveground resources (e.g. light) and increase when 

128 plant growth is limited by belowground resources such as water and nutrients (Gleeson & 

129 Tilman, 1992). A recent meta-analysis summarizing the results of nearly 800 experimental 

130 manipulations of resource availability found strong support for optimal allocation theory; the 

131 proportion of biomass allocated to roots was higher under water or nutrient limitation, and lower 

132 under light limitation (Poorter and others, 2012). Most of these studies were focused at the 

133 species level, and if there is significant interspecific variation in allocation responses to 

134 environmental change (Craine and others, 2003), then the predictions of optimal allocation 

135 theory might not explain community-level variation in root allocation. However, patterns 

136 observed across environmental gradients also support the hypothesis that community-level 

137 allocation to roots declines as belowground resources increase. For instance, proportional root 
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138 allocation in grasslands is inversely correlated with mean annual precipitation and is highest in 

139 xeric regions where water is the predominant factor limiting plant growth (Hui & Jackson, 2006, 

140 Mokany and others, 2006).

141 While many studies have evaluated how allocation responds to variation in individual 

142 environmental factors, few have evaluated how allocation responds when multiple factors change 

143 simultaneously. This is a critical knowledge gap because primary production is frequently co-

144 limited by multiple resources as opposed to single resources (Hooper & Johnson, 1999, Elser and 

145 others, 2007, Harpole and others, 2011, Fay and others, 2015) and ecosystem responses to 

146 multiple aspects of global change often deviate from predictions based on single factor 

147 experiments (Norby & Luo, 2004). The importance of community-scale biomass partitioning for 

148 understanding regional and global C budgets (Scurlock & Hall, 1998, Jackson and others, 2000, 

149 Smithwick and others, 2014) underscores the need for a framework that effectively predicts both 

150 the absolute quantities as well as proportion of biomass above- versus belowground, in response 

151 to global changes such as eutrophication. Further, while regional and global estimates of total net 

152 primary production generally rely on modeled estimates of root allocation (Friedlingstein and 

153 others, 1999, Woodward & Osborne, 2000, Gill and others, 2002, Michaletz and others, 2014), 

154 these estimates are rarely validated because continental and global relationships between 

155 biomass allocation and climate and soil variables remain poorly characterized (Smithwick and 

156 others, 2014).

157 To evaluate how community-scale root biomass production and allocation respond to 

158 local experimental nutrient enrichment across environmental gradients, we leveraged a global 

159 network of grassland sites where nutrient availability was manipulated using common protocols, 

160 the Nutrient Network (Borer and others, 2014a). By using this experimental network that spans a 
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161 broad range of climates and grassland soils, we characterized both global trends in allocation 

162 patterns in response to eutrophication as well as regional contingencies in this response. Prior 

163 efforts from this network have demonstrated that aboveground primary production across these 

164 sites is frequently co-limited by multiple nutrients (Fay and others, 2015), and that the impact of 

165 soil nutrients on species richness depends on light limitation (Borer and others, 2014b); however 

166 belowground biomass responses to multiple nutrient enrichment have not yet been evaluated. 

167 Here we refer to “biomass allocation” as reflecting static pools of biomass, distinct from 

168 efforts aimed at identifying the dynamic partitioning of new photosynthates (sensu Poorter and 

169 others, 2012, also discussed in Reich 2002, and alternatively referred to as "biomass distribution 

170 in Reich and others, 2014). We focus on root responses near the soil surface (top 10 cm), because 

171 80-90% of root biomass in grasslands is concentrated near the surface, in the top 30 cm (Jackson 

172 and others, 1996). Surface roots play a disproportionate role in nutrient acquisition because the 

173 greatest concentrations of N, P, and K are found high in soil profiles (Sposito, 1989, Jobbagy & 

174 Jackson, 2001), and both experimental and anthropogenic nutrient inputs occur at the soil 

175 surface. Furthermore, grasslands store the greatest proportion of soil C near the soil surface 

176 (Jobbagy & Jackson, 2000), contributing to greater microbial biomass (Blume and others, 2002, 

177 Eilers and others, 2012) and fueling greater microbial activity in surface versus subsurface soils. 

178 Hence, C pools with potential for high turnover and release to the atmosphere are likely most 

179 sensitive to fertilization at shallow depths. Accordingly, a meta-analysis of 257 studies across a 

180 variety of ecosystems found that N addition tended to reduce carbon stocks in shallow but not 

181 deep soil layers, correlated with a decline in root allocation in shallow soil layers (Lu and others 

182 2011).

Page 9 of 36 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9

183 Across the Nutrient Network sites, we hypothesized that 1) absolute belowground 

184 biomass would respond positively and synergistically to the addition of multiple nutrients, 

185 consistent with patterns of multiple nutrient limitation of aboveground plant biomass observed 

186 across these sites (Fay and others, 2015). We expected that relative biomass allocation to roots 

187 (root biomass as a proportion of total biomass) would 2) decline with increasing light limitation 

188 (associated with low light availability below the grassland canopy, e.g. Gleeson & Tilman, 

189 1992), 3) increase with increasing water limitation (in more arid sites, e.g. Hui & Jackson, 2006), 

190 and 4) decrease with nutrient enrichment particularly when multiple nutrients are added together 

191 (Yuan & Chen, 2012), as predicted by optimal allocation theory. Finally, we expected that 5) 

192 there might be statistical interactions among the factors predicting belowground biomass and 

193 allocation, due to the importance of environmental context in determining community responses 

194 to resource enrichment (Cleland & Harpole, 2010). Specifically, we expected that root biomass 

195 responses to nutrient enrichment would be constrained in sites where plant growth was limited 

196 by water (more arid sites), and that root biomass might even decline with nutrient addition at 

197 sites where there is strong competition for light, in favor of increased allocation to aboveground 

198 biomass.

199

200 Methods

201 This research was conducted within the Nutrient Network, a globally replicated network 

202 of sites manipulating nutrients (nitrogen – N, phosphorus – P, and potassium plus 

203 micronutrients– Kµ) and vertebrate herbivore exclusion (Borer and others, 2014a). The 

204 micronutrients were only added in year one, and included Ca, Mg, B, Cu, Fe, Mn, Mo, and Zn. 

205 For the effort described here, we analyzed data from 29 sites where the experimental treatments 
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206 had been applied for 3-5 years. At most sites plots were arranged in three blocks, each block 

207 containing the ten focal treatments: control unfenced & unfertilized, +N, +P, + Kµ, +NP, +NKµ, 

208 + PKµ, +NPKµ, fenced & unfertilized, and fenced +NPKµ. At each site, 30 plots (each 5 x 5 m) 

209 were sampled, except where noted in Supplementary Material, resulting in 874 plots sampled in 

210 total. For this manuscript, only data from the factorial nutrient addition treatments were analyzed 

211 (i.e. all fenced plots were excluded). The sites span four continents and, more importantly, wide 

212 environmental gradients in mean annual precipitation (274-2314 mm/year, summarized in Table 

213 S1). All sites are dominated by herbaceous vegetation but vary in the relative abundance of 

214 graminoids versus other functional types (Table S1). Vegetation types included, for instance, 

215 alpine meadows, prairie, pasture, savannah, and steppe, but we refer to these sites as grasslands 

216 for brevity.

217 Above- and belowground biomass were collected at the time of peak biomass in either 

218 2011 (Northern Hemisphere) or early 2012 (Southern Hemisphere). According to Nutrient 

219 Network protocols (Borer and others, 2014a), aboveground biomass was destructively harvested 

220 in two 1 m x 0.1 m strips per experimental plot, sorted to separate the current year’s production 

221 from litter, dried to constant mass, and weighed to the nearest 0.01 g. Immediately following the 

222 aboveground biomass harvest, five soil cores were taken to a depth of 10 cm in the harvest area. 

223 Root cores were collected using standard corers or sharpened PVC tubes with an inside diameter 

224 of 2.5 cm, for a total ground area of 24.5 cm2. Exceptions to this protocol are noted in the 

225 Supplementary Material. All cores from each plot were combined in one sealed plastic bag, 

226 packed into coolers with cold packs, and sent via next day air to a central processing lab (USGS 

227 at Corvallis, Oregon, USA).
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228 Total soil weights for each bulked sample were recorded, and a homogenized subsample 

229 comprising 1/5th of the total soil weight (20-150 grams) was weighed and sent to the University 

230 of California, San Diego for root extraction. Soil sub-samples were kept cool with icepacks 

231 throughout transit and refrigerated while in the lab until processing.

232 Live root biomass was estimated using a modification of the standard Long Term 

233 Ecological Research method for measuring standing fine root biomass in soil cores (Bledsoe and 

234 others, 1999). Soil subsamples were immersed in water; live roots were light in color and floated 

235 to the surface, while dead roots and organic matter were darker in color. Live roots were 

236 extracted with tweezers, rinsed to remove residual mineral soil, dried to a constant mass, and 

237 weighed to the nearest 0.001 g. Above- and belowground (to 10 cm) biomass estimates were 

238 expressed on a common scale (g/m2). Our key metric of proportional biomass allocation is the 

239 root mass fraction (RMF) following the method in Reich (2002). The RMF was calculated as the 

240 root biomass divided by the sum of root and aboveground live biomass on an equal area basis. 

241 Detailed methods are provided in Supplementary Material.

242 Our estimates of belowground biomass are based on one-time destructive harvests at the 

243 time of peak biomass; while this reflects a reasonable estimate of aboveground production, this is 

244 an underestimate of belowground production (Gill and others, 2002). Hence, we proceed with the 

245 caveat that this effort documents comparable patterns of shallow root biomass and allocation 

246 across plots and sites, but additional estimates of root turnover and deep root biomass would be 

247 needed to estimate total belowground production and allocation of net primary production. 

248 However, a survey of published and unpublished data on the distribution of root biomass at our 

249 sites shows that the majority of root biomass is captured by shallow root sampling efforts, such 

250 as ours (Table S2).
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251 We assembled site-level metrics of water limitation and light availability at the soil 

252 surface, for inclusion as co-variates in our analyses. We extracted measures of the Global Aridity 

253 Index (CGIAR-CSI Global-Aridity and Global-PET Database, Zomer and others, 2008), based 

254 on data from the WorldClim database (Hijmans and others, 2005). Hereafter referred to as GAI, 

255 this index is calculated as mean annual precipitation divided by mean annual potential 

256 evapotranspiration, and hence accounts for both precipitation inputs and soil water loss due to 

257 high temperature, solar radiation, and wind. Low GAI indicates more arid sites with low soil 

258 water availability (low inputs and/or high rates of water loss). Using a linear multi-sensor light 

259 meter, we measured the proportional decrease in photosynthetically active radiation (PAR) from 

260 above the canopy to below the canopy as a proxy of light limitation. The proportion of PAR 

261 reaching the soil surface was calculated as the average of two PAR measurements taken at the 

262 soil surface perpendicular to one another in a 1 m2 undisturbed subplot, divided by PAR 

263 measured above the canopy immediately afterwards, under full light conditions. We averaged the 

264 proportion of PAR reaching the soil surface across all years of measurement in the control plots 

265 from each site (unfenced, unfertilized) as a site-level metric of the degree of light-limitation. This 

266 metric is abbreviated hereafter as "light". Resource depletion is the key mechanism by which 

267 plants compete with neighbors (Goldberg 1990), and hence we use "light" is a proxy for 

268 community-level light depletion.

269 The fractions of the community comprised by graminoids and by perennial species were 

270 calculated as two additional site-level metrics of species composition, based on visual percent 

271 cover estimates collected in 1 x 1 m plots adjacent to the biomass harvests described above. 

272 These values were calculated only from control plots at each site (unfenced, unfertilized).

273
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274 Statistical analysis

275 Data analysis was performed in R version 3.3.3 (R Core Team, 2017). Pearson 

276 correlations were performed to evaluate associations among site-level parameters: aridity, light, 

277 live aboveground biomass (AGB), live belowground root biomass to 10 cm depth (BGB), RMF, 

278 graminoid fraction, and perennial fraction. Each data point in the correlation analysis was a site-

279 level mean for each parameter, calculated for the control plots only.

280 Examination of the BGB data with Quantile-Quantile plots showed these data were 

281 lognormally distributed (Figure S2), as is common with ecological datasets involving measures 

282 of growth (Bolker, 2008), and hence the BGB data were natural-log transformed prior to 

283 analysis. The RMF data were continuous proportions bounded by 0 and 1 and, as expected, 

284 initial inspection with Quantile-Quantile plots indicated the data were non-normally distributed 

285 (Figure S3). Following the recommendation of Warton and Hui (2011) the RMF data were logit 

286 transformed. After transformation, BGB and RMF had normally distributed errors and were 

287 analyzed with a general linear mixed model using the lme call in the package nlme (Pinheiro and 

288 others, 2013).

289 To evaluate the responses of BGB and RMF to the addition of individual nutrients and 

290 their combinations, N, P and Kµ were each included as factorial fixed factors, site was treated as 

291 a random factor, and light and aridity were included as site-level covariates. As described above, 

292 our metric of light availability was based on site-level mean light penetration of the grassland 

293 canopy only in control plots, and hence was independent from aboveground biomass responses 

294 to nutrient enrichment (and resulting effects on light penetration through the canopy). 

295 Significance for each factor was evaluated with Type II Wald chi-square tests using the Anova 
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296 function in the car package (Fox & Weisberg, 2011). Supplementary Information contains the R 

297 code for all tests.

298

299 Results

300 We found wide variation across sites in root biomass (BGB, 60-1675 g/m2) and 

301 proportional allocation of biomass to roots from 0-10 cm depth (RMF, 7-90%), as summarized in 

302 Table S1 in Supplementary Material. When considering mean values in control plots (unfenced, 

303 unfertilized) at each of the 29 sites across four continents, there were a number of correlations 

304 among response and predictor variables (correlation coefficients in Table 1). Aridity (GAI ) was 

305 positively correlated with the proportion of perennial cover (p = 0.03, meaning annuals were 

306 more common in drier sites). At the site level, the proportion of PAR reaching the soil surface 

307 (light) was negatively correlated with AGB (p = 0.001), but was not associated with community 

308 composition (proportion of graminoid or perennial cover in control plots). AGB and BGB were 

309 not correlated, however both variables were positively correlated with RMF (as expected, 

310 because AGB and BGB are used in the calculation of RMF). There was low RMF in sites with 

311 low light beneath the grass canopy (p = 0.02, as expected, because of the negative correlation 

312 between AGB and RMF), but RMF was not correlated with GAI or community composition. 

313 When analyzing the full data set (treatment plots as well as controls), both light and GAI 

314 were significant site-level covariates in the analysis (statistics in Table 2, parameter estimates for 

315 significant factors in in Figure 1). GAI and light were both positive predictors of BGB, while 

316 only light was a significant predictor of RMF. 

317 Previously, a synergistic increase in aboveground biomass with N and P addition was 

318 observed across the Nutrient Network sites (i.e. significant N x P interaction, Fay and others 
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319 2015). In contrast, N, P, and Kµ each had an overall negative effect on BGB (parameter estimates 

320 for all terms shown in Table 2 and Figure S4). Only N addition had a statistically significant 

321 effect on BGB with the response characterized by a N x light interaction (Table 2); in sites with 

322 high light at the soil surface, N addition increased root biomass, but in sites where light 

323 competition likely limited growth (low light at the soil surface), N addition reduced root biomass 

324 (Figure 2).

325 Mean values calculated across sites for RMF in each of the Nutrient Network treatments 

326 are shown in Figure 3. Addition of N and P each significantly reduced RMF, with no interaction. 

327 As with BGB, there was a significant N x light interaction, where the reduction in RMF with N 

328 addition was greatest in sites where a lower proportion of incoming light reached the soil surface 

329 under control conditions (statistics in Table 2, significant parameter estimates in Figure 1).

330

331 Discussion

332 Across grasslands on four continents, N enrichment quickly (within 3-5 years) influenced 

333 community belowground biomass and allocation, and light availability at ground level was a key 

334 predictor of the response of belowground biomass allocation to N addition, despite significant 

335 variation among sites in plant community composition, climate, and soils. Interestingly, no other 

336 nutrient treatment positively affected absolute root biomass, and nutrient enrichment tended to 

337 lower proportional biomass allocation to roots. The findings of this analysis are consistent with 

338 the predictions of optimal allocation theory, demonstrating that allocation patterns predicted for 

339 individual plants scale to the community level, with total belowground allocation jointly 

340 influenced by nutrient enrichment and light-limitation predictably across wide climatic and 

341 environmental gradients. 
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342

343 Variation in root biomass and root mass fraction across sites

344 Similar to prior regional studies (i.e. Sims & Singh, 1978, Scurlock and others, 2002, Hui 

345 & Jackson, 2006), this global study documents wide variation across sites in plant allocation to 

346 belowground biomass. Based on prior syntheses we expected that root biomass and allocation 

347 would vary with soil water supply (Hui & Jackson, 2006, Mokany and others, 2006, but see 

348 Yang and others, 2009, Reich and others, 2014). Root biomass increased with increasing soil 

349 water availability (high GAI), but the relationship with RMF was only marginally significant. 

350 While most root production in grasslands occurs in shallow soil layers (Jackson and others, 

351 1996), total belowground allocation was under-sampled in this study since we restricted our 

352 sampling to the top 10 cm of soil, possibly contributing to the lack of a relationship between site 

353 aridity and RMF. Under-sampling may have been relatively greater in dry sites; a global analysis 

354 of rooting depths found that arid sites were more likely to have a greater proportion of roots 

355 found at deeper depths (Schenk & Jackson, 2002).

356 Past studies have found that variation among species could contribute to variation in the 

357 proportion of biomass allocated belowground (Craine and others, 2003). For instance, eudicots 

358 had higher fractional allocation aboveground compared with monocots in a comprehensive meta-

359 analysis (Poorter and others, 2012), and perennial species in some systems allocate more to roots 

360 than annuals (Reynolds & D’Antonio, 1996). Functional composition of the grasslands in this 

361 study varied widely; however, neither the fraction of perennial species nor the fraction of 

362 graminoids present in control plots was correlated with RMF, suggesting these coarse metrics of 

363 community composition did not contribute in a predictable way to the variation in RMF observed 

364 across sites.
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365 Across the wide range of site conditions, canopy light depletion was the aspect of 

366 environmental context most important for predicting variation in RMF; we observed higher 

367 proportional allocation aboveground (low RMF) in sites with low light availability beneath the 

368 grassland canopy. This effect was driven by AGB, which was negatively correlated with RMF 

369 (BGB and AGB were not correlated). This pattern is consistent with a shift from light limitation 

370 in highly productive sites to limitation by belowground resources (nutrients, water) in low-

371 productivity sites (Gleeson & Tilman 1992), thus providing a new empirical lens into the 

372 context-dependence of root allocation. 

373

374 Root biomass responses to nutrient addition

375 Across the Nutrient Network sites, aboveground net primary production (estimated by 

376 peak aboveground live biomass) responded positively and synergistically to the additions of N 

377 and P in approximately 75% of the sites examined (Fay and others 2015), and hence we expected 

378 that while absolute root biomass (BGB) would also increase in response to additions of these 

379 nutrients, root biomass as a fraction of total biomass (RMF) would decline with nutrient 

380 addition. Instead, our analysis shows an average decline in BGB with N addition, although the 

381 direction and magnitude of the BGB response depended on light availability (N x light 

382 interaction), with the greatest declines in BGB observed at sites with lower average light 

383 availability beneath the grassland canopy. These results are still consistent with the expectations 

384 of optimal allocation theory, whereby plants would be expected to allocate to roots when 

385 limitation by aboveground ground resources (e.g. light) is small relative to limitation by 

386 belowground resources (nutrients). Importantly, increasing nutrient supply reduced the absolute 
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387 biomass of shallow roots, with important implications for carbon and nutrient cycling in 

388 grasslands (Sposito, 1989, Jobbagy & Jackson, 2001).

389 While other recent experiments in both temperate (Bardgett and others, 2009) and semi-

390 arid (Zeng and others, 2010) grasslands have documented declining root biomass in response to 

391 N addition, our findings are in direct contrast to recent meta-analyses finding no response (Liu & 

392 Greaver, 2010), or positive responses of fine root biomass to N addition (Xia & Wang, 2008). 

393 Some of this variation may reflect different expectations for effects of fertilization on standing 

394 pools of biomass versus on productivity. Nadelhoffer and others (1985) showed that forest 

395 communities with high rates of N mineralization (high N supply) had low standing pools of fine 

396 root biomass, but high rates of annual root production, due to higher rates of root turnover in the 

397 more fertile sites. A recent meta-analysis of fine root productivity based on root ingrowth cores 

398 found positive and synergistic influences of N and P addition on fine root production (Yuan & 

399 Chen, 2012). Because their root production responses were smaller in magnitude than the 

400 response of aboveground productivity, their anaysis found lower proportional allocation 

401 belowground with N and P addition. Therefore, while we document an average decline in 

402 standing root biomass with N addition dependent on light, we recognize this is a static 

403 measurement, and that additional measures of root longevity and turnover would be required to 

404 predict the responses of ecosystem productivity across these sites.

405 Our results show that variation in root biomass response to N addition (but not P or K) 

406 was predictable based on light-limitation at the site level. This finding is consistent with prior 

407 studies demonstrating that light becomes increasingly limiting to growth as nutrient limitation is 

408 alleviated through fertilization (Hautier and others, 2009). It also demonstrates how community 

409 and ecosystem responses to nutrients are context dependent. Other studies within the Nutrient 
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410 Network have also highlighted the role of context-dependence; for instance, Borer and others 

411 (2014b) found greater diversity loss with nutrient enrichment at sites with low light penetration 

412 below the canopy, and Fay and others (2015) found that aboveground biomass did not respond to 

413 nutrient addition in 25% of the sites included in their analysis, which they suggested was 

414 potentially due to water-limitation.

415

416 Root mass fraction response to nutrient addition

417 When considering relative root biomass allocation (RMF), our results were consistent 

418 with the predictions of optimal allocation theory (Thornley, 1972, Wilson, 1988), with additions 

419 of both N and P reducing RMF. As with BGB, there was an interaction between N and Light, 

420 where the greatest reduction in RMF with N addition occurred in sites with low light penetration 

421 through the canopy. Because there was not a significant impact of P addition on BGB we infer 

422 that the reduction in RMF with P addition was caused by an increase in aboveground biomass 

423 (Fay and others, 2015). Together these results suggest that the predictions of optimal allocation 

424 theory with respect to N limitation are robust across wide environmental gradients, but 

425 interestingly, that allocation responses to P limitation are not as strong. Given the high – and 

426 increasing – rates of N and P fertilization of Earth’s ecosystems (Falkowski and others, 2000), 

427 the mechanisms underlying these differences are worthy of further investigation.

428

429 Potential mechanisms underlying belowground responses to nutrient enrichment

430 In addition to the plastic allocation responses already discussed, allocation to roots, stem 

431 and leaves can also vary with the size of an individual according to allometric scaling theory 

432 (Weiner 2004). An analysis of a global forest biomass dataset found intraspecific variation in 
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433 allocation along environmental gradients consistent with optimal allocation theory, but not 

434 intraspecific variation in allocation, and suggested that allometric changes with individual plant 

435 size could be responsible for unexplained variation in allocation (McCarthy and Enquist 2007). 

436 With respect to our analysis, allometric scaling rules associated with increasing plant size could 

437 potentially explain the proportional decline in RMF with N enrichment, but could not explain the 

438 absolute decline in root biomass.

439 Shifts in species diversity and composition could also alter community-level allocation of 

440 belowground biomass as a result of nutrient enrichment, particularly at the multi-year timescales 

441 considered in this study (Olff, 1992, Dybzinski & McNickle, 2013, Mueller and others, 2013). 

442 Species with high root allocation tend to grow slowly but are often competitively dominant 

443 (Gurevitch, and others, 1990, Aerts and others, 1991), particularly under low resource supply, 

444 due to their ability to draw down levels of soil water and nutrients (Tilman & Wedin, 1991). 

445 With nutrient enrichment and a shift towards light limitation, species with lower allocation to 

446 roots but a capacity for faster aboveground growth are likely to shade and competitively suppress 

447 slower growing, lower-statured species (Grime and others, 1991). 

448 Nutrient enrichment often reduces species richness (Suding and others, 2005, Bobbink 

449 and others, 2010). Across the Nutrient Network, local loss of species diversity in response to N 

450 addition was increased by light-limitation (Borer and others, 2014b), and individual species 

451 responses to nutrient enrichment were predictable based on a trade-off in growth-defense 

452 strategy (Lind and others, 2013). This suggests that species composition shifts contributed to the 

453 belowground biomass and allocation responses to N enrichment and light-limitation documented 

454 here, but without monocultures to supplement our naturally assembled diverse communities, it is 

455 not possible to quantify the relative contribution of intra-specific (plastic) versus inter-specific 
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456 responses to the observed shifts in allocation at the community level. Future work should aim to 

457 evaluate the influence of shifting species composition in community-level biomass allocation 

458 and resulting feedbacks to ecosystem function.

459

460 Conclusions: ramifications for understanding ecosystem responses to global change

461 Ecosystem responses to global environmental change have the potential to either dampen 

462 or intensify the magnitude of future climate change through C-cycle feedbacks (Field and others, 

463 2007). Despite the importance of grasslands to the terrestrial C sink (Scurlock & Hall, 1998, 

464 Follett & Reed, 2010), belowground responses to environmental changes are often not 

465 considered in synthesis efforts (e.g. Elser and others, 2007, LeBauer & Treseder, 2007, Lee and 

466 others, 2010). Recent database efforts are aiming to address this need, for instance with the 

467 creation of the Fine Root Ecology Database (Iversen and others, 2017). This study demonstrates 

468 that global changes interact with the local environment to influence allocation above- versus 

469 belowground, that shallow roots respond in predictable ways to globally pervasive changes, and 

470 that measurements of allocation, root production, and turnover will be necessary to accurately 

471 predict the ramifications for ecosystem-level processes.

472

473 Supplementary Material

474 Supplementary material includes additional methods, tables, detailed statistical analyses and R 

475 code, as well as a table of author contributions.

476
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687 Table 1. Correlations among site-level values of aridity (GAI, see Methods), the proportion of 

688 photosynthetically-active radiation passing through the grassland canopy to reach the soil surface 

689 (Light), the proportion of community cover comprised by graminoids/monocots (gram.frac), the 

690 proportion of community cover comprised by perennial species (per.frac), the average root mass 

691 fraction (RMF), live aboveground biomass (AGB) and belowground biomass (BGB). Site-level 

692 mean values were used in this analysis, for control plots only (unfenced, unfertilized). Values are 

693 Pearson correlation coefficients with significant values in bold.  Asterisks indicate level of 

694 statistical significance (*=p<0.05, **=p<0.01, ***p<0.001).

695
Aridity Light gram.frac per.frac RMF ABG

Light -0.16
gram.frac 0.05 -0.14
per.frac 0.40 * -0.24 0.35
RMF 0.18 0.43 * 0.01 0.01
AGB 0.17 -0.57 ** -0.02 0.32 -0.61 ***
BGB 0.28 -0.14 0.19 0.15 0.70 *** -0.07

696
697

Page 33 of 36 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

33

698 Table 2.  Analysis of deviance table (Type II tests) showing the regression parameter estimate 

699 (Est), χ2 test statistic and p-value for each term in the mixed effects models described in the 

700 Methods. This analysis evaluated how factorial nitrogen (N), phosphorus (P) and potassium plus 

701 micronutrient (Kµ) enrichment influenced the proportion of biomass allocated to roots (RMF), 

702 and root biomass (g/m2). Aridity and light (mean proportion of PAR reaching the soil surface) 

703 were included as site-level covariates, including their interactions with experimental treatments. 

704 Significant terms highlighted in bold.

705

RMF root biomass (g/m2)
Model term Est χ2 p Est χ2 p
Light         2.09 13.3 <0.001  0.28 1.43    0.23
Aridity          0.66 2.55    0.11 0.61 6.03 0.014 
N             -0.38  26.31 <0.001 -0.53 2.11 0.15
P             -0.05 6.96    0.008  -0.07 0.69 0.41
Kµ             0.11 0.84    0.36   -0.21 0.04 0.84
Light:N        0.45 4.89 0.03  0.63 8.66 0.0032
Light:P        0.24 1.45    0.23 0.25 0.02 0.88
N:P           -0.27 0.01 0.98 0.36 0.03 0.86
Light:Kµ     -0.12 0.19 0.66 0.07 0.02 0.90
N:Kµ          -0.15 0.84 0.36 0.34 0.08 0.77
P:Kµ          -0.27 0.00    0.95 0.12 0.46 0.50
N:Aridity         -0.16 0.24    0.62 0.13 0.07 0.79
P:Aridity        -0.32 0.00 0.96 -0.05 0.44 0.51
Kµ:Aridity        -0.17 0.46    0.50     0.15 0.21 0.65
Light:N:P     -0.19 0.42   0.52 -0.33 0.68 0.41
Light:N:Kµ    0.23 0.16    0.70    0.03 0.06 0.81
Light:P:Kµ     0.25 0.19    0.66   -0.17 0.13 0.72
N:P:Kµ         0.26 2.65    0.10 -0.33  2.45 0.12
N:P:Aridity        0.59 1.81    0.18   -0.05 0.12 0.73
N:Kµ:Aridity     0.15 0.70  0.40    -0.25 2.25 0.13
P:Kµ:Aridity       0.37 0.08    0.77     0.05 0.04 0.85   
Light:N:P:Kµ  -0.14 0.03 0.86  0.09 0.00 0.95   
N:P:Kµ:Aridity  -0.63 2.42    0.12   -0.02 0.02 0.89

706
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707 Figure 1. Mean parameter estimates and confidence intervals (thin and thick lines indicate 95% 

708 and 50% confidence intervals, respectively) for fixed effects in models evaluating the response 

709 of root mass fraction (RMF, in green) and root biomass (BGB, in black) to experimental addition 

710 of multiple nutrients, including nitrogen (N) and phosphorus (P). Average light availability at the 

711 soil surface in control plots and aridity (Global Aridity Index, see Methods) were included as 

712 site-level covariates. Only statistically significant parameter estimates from Table 2 are displayed 

713 (note the main effect of light on BGB is not significant, but is displayed because of the 

714 significant light:N interaction). 

715

716

717
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718 Figure 2. The root biomass response to N addition depended on site-level light limitation. 

719 Fractional light availability (light) is the proportion of photosynthetically active radiation passing 

720 through the grassland canopy. The natural-log response ratio of root biomass to N addition (LRR 

721 N addition) is equivalent to the average ln-root biomass (g/m2) in plots without N addition 

722 subtracted from the average ln-root biomass (g/m2) in N addition plots. The grey line indicates 

723 LRR=0 or no difference in root biomass between ambient and N enriched plots. Negative values 

724 indicate a decline in root biomass in plots with N addition compared to plots without N addition. 

725 Black trend line shows the best linear fit, indicating that N addition increased root biomass only 

726 where abundant light passed through the canopy. Data labels indicate site names as in Table S1.

727
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730 Figure 3. Mean root mass fraction (RMF) in each of experimental nutrient addition treatments, 

731 including nitrogen (N), phosphorus (P) or potassium plus micronutrients (Kµ), singly and in 

732 combination. Means are averages of plot level data across all sites, error bars indicate one 

733 standard error of the mean. Addition of N and P both resulted in a significant reduction of RMF 

734 (N and P as main effects, without significant interactions).
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