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Abstract

Computing modular forms for the Weil representation
by
Brandon Williams
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Richard Borcherds, Chair

We describe an algorithm to compute bases of modular forms with rational coefficients for
the Weil representation associated to an even lattice. In large enough weights the forms
we construct are zero-values of Jacobi forms of rational index, while in smaller weights our
construction uses the theory of mock modular forms. The main application is in computing

automorphic products.
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Chapter 1
Introduction

This thesis contains some constructions of vector-valued modular forms with rational Fourier
coefficients for the Weil representation attached to an even lattice, or equivalently an integral
quadratic form ). The Weil representation describes the behavior of a number of interesting
functions under the modular group, including: theta functions of even lattices, half-integer
weight modular forms satisfying the Kohnen plus-space condition, Dedekind’s eta function
and the generating series of partition numbers (as in section 3.2 of [19]), indefinite theta
functions and mock modular forms in the sense of [75], and the input functions into the
Borcherds and Kudla-Millson theta lifts (see e.g. [16]).

The application we will generally have in mind is the construction of Borcherds products.
This began in [3] with the construction of meromorphic, orthogonal modular forms with
Heegner divisors that have product expansions in which the exponents are themselves Fourier
coefficients of modular forms of half-integral weight. A simple example is the weight zero

meromorphic modular form of level one with a character,
j(T)l/S _ q71/3(1 . q)7248(1 . q2)26752(1 . q3>74096248 %

where j(7) is the j-invariant, in which the exponent of (1 — ¢") is the coefficient of ¢" in

the weight 1/2, level 4 modular form with a pole at oo below:
F(1) = ¢~ — 248¢ + 26752¢* — 85995¢° + 1707264¢° — 4096248¢° + O(¢*?).

This construction was generalized and clarified in the subsequent paper [4]; from the point

of view of [4], the “input functions” F(7) should be thought of as modular forms for a Weil
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representation with singularities at cusps. In addition to direct applications to modular forms
(the existence of modular forms with prescribed divisors can be used to determine generators
and relations for algebras of modular forms, as in [26], [27], for example), Borcherds products
have found important applications to the theory of Kac-Moody algebras through the work
of Borcherds, and Gritsenko-Nikulin (for example, [34], [35]) and Scheithauer (for example,
[55], [56]) and the moduli theory of K3 surfaces (for example, [36]) as well as other fields,
and are therefore of wide interest.

The spaces of modular forms for Weil representations have good arithmetic properties
that are not shared by general representations of SLy(Z). A fundamental result is that
the Weil representation of an even lattice of level N € N factors through a double-cover of
SLy(Z/NZ), so the theory of Hecke operators and newforms implies that in every weight
there is a basis of modular forms for the Weil representation whose Fourier coefficients are
algebraic integers. In fact, it was shown by McGraw [45] that one can always find a basis
whose Fourier coefficients are rational, resolving a conjecture of Borcherds [5].

It turns out that one can construct such a rational basis of modular forms by setting z = 0
in Jacobi Eisenstein series of varying index. The Fourier coefficients of the Jacobi Eisenstein
series can be calculated very quickly so the results here may be useful for computations
involving Borcherds products. (Some examples in this direction are given in sections 3.6 and
5.9 and the appendices.)

The organization of this thesis is as follows:

Chapter 2 reviews some of the theory of even lattices, Weil representations, modular
forms, Jacobi forms and Borcherds products. An important distinction is the focus on
Jacobi forms of rational index; there are well-known examples of Jacobi forms of half-integer
index (including the classical theta functions), but more general indices seem to have been
mostly ignored in the literature.

Chapters 3 through 6 are essentially the papers [68],[69],[70],[72] with minor changes that
improve continuity and that may add details to some of the proofs and examples. In chapter
3 we define Poincaré square series, which are vector-valued modular forms whose Petersson
inner product with a cusp form g gives a special value of the symmetric square L-function
attached to g. We prove that in weights & > 5/2, these modular forms have rational Fourier
coefficients and contain all cusp forms within their span, and give a formula to compute them

based on the Jacobi Eisenstein series. The resulting formula is a short sum over coefficients of
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Eisenstein series and is therefore no harder to compute than the Eisenstein series itself. We
describe how to compute the nontrivial part of these Eisenstein series (the local L-functions)
using p-adic generating functions in the sense of [23] (in particular, we unravel the work of
[23] to give an algorithm that is also valid at the prime p = 2); the results appear in sections
3.3 and 3.8 and are rather messy, but much faster than computing the local L-functions
naively.

Chapter 4 describes the behavior of the formula of Bruinier and Kuss for the vector-
valued Eisenstein series in weights k& € {1,3/2,2}. These are generally mock modular forms
and we require the calculations of chapter 3 to determine their shadows. This motivates
chapter 5, which works out the Fourier coefficients of Poincaré square series in weights 3/2
and 2 via holomorphic projection. These are still rational, and in weight 2 they are still
enough to produce cusp forms; while this does not seem to be true in weight 3/2.

Chapter 6 observes that many of the relations known to hold among Hurwitz class num-
bers are special cases of the main result of chapter 5 applied to certain two-dimensional
lattices and the smallest possible index, and derives some relations that may be new.

Finally, chapter 7 gives analogous results in “antisymmetric” weights; that is, where
the lattice signature (b*,b~) and weight k are related by 2k + b* — b~ = 2(4) instead of
2k + bt — b~ = 0(4); in this case, we can use the first development coefficients of Jacobi
Eisenstein series to span all cusp forms, instead of the zero-values.

In the appendices we compute tables of paramodular and Hermitian modular forms that

are Borcherds products, as applications of the algorithm of chapter 3.



Chapter 2

Background

2.1 Lattices

In this section we review some standard results on lattices and discriminant forms. The main

reference for this material was [50].

Definition 1. Let V be a finite-dimensional (real) vector space with nondegenerate sym-
metric bilinear form (—, —).

(i) A lattice in V is a discrete subgroup A C V' such that spang(A) = V.

(ii) A is even if (v,v) € 2Z for all v € A.

(iii) Let A be an even lattice. The dual lattice is the subgroup

N:{weV:@uwezmmmveA}gV
We call A unimodular if A’ = A.

Any lattice A is torsion-free (as a subgroup of a vector space). Since it is discrete,
it must be finitely generated over Z: if ey,...,exy € A are any elements that span V' then
A/spany(eq, ..., en) is discrete and compact and therefore finite, so A is generated by e, ..., ex
and that finite set. The structure theorem for finitely-generated abelian groups implies that
A= 7" is free of rank n = dim V.

In this way one can always assume without loss of generality that V = R™ and A = Z",

with bilinear form given by some symmetric matrix S with integer entries and even diagonal:

(v, w) = v Sw.
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The dual lattice of A is then A’ = S™17Z".
It is sometimes more convenient to work with the associated quadratic form Q(x) =

5(z, ). This determines (—, —) completely through the polarization identity:

(r+y,z+y —(z
2

(z,y) = D WY a4 y) - Q) - Qy), wy e V.

Evenness of the lattice A is equivalent to Q(z) € Z for all z € A. In particular, the form
Q:N—Q
induces a well-defined quadratic form on the quotient group (which we also denote Q):
Q:N/AN— Q/Z, rmodA — Q(x)modl;
indeed, if 2,y € A" are elements with x — y € A then polarization implies

Qz) —Qy) =Q(x —y) +{z —y,y) € Z+ (A, A) CZ.
Therefore we attach to A a discriminant form:

Definition 2. A discriminant form (A, Q) is a finite abelian group A together with a
nondegenerate quadratic form @ : A — Q/Z, i.e. a function with the properties

(i) Q(A\x) = N2Q(x) for all A € Z and z € A;

(ii) (x,y) = Q(x +y) — Q(x) — Q(y) is a nondegenerate bilinear form.

The setting of discriminant forms provides a convenient structure for our work on modular

forms. In some sense it is no more general than the study of lattices:

Lemma 3. (i) Let (A, Q) be a discriminant form. Then there is an even lattice (A, (—, —))
and an isomorphism ¢ : N'JN — A of discriminant forms; i.e. an isomorphism of groups
with

Qolx +4) = 3(r,2) + 2

for all x € N.
(ii) Suppose A1, Ay are two even lattices that induce isomorphic same discriminant form
(A, Q). Then there are even unimodular lattices Uy, Us such that Uy @ Ay =2 Us @ A,.
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Here & denotes the orthogonal direct sum of lattices: in particular, we add the quadratic

forms i.e.

Qrien, = Qa, +Qa,-

Proof. (i) See [65], theorem 6.
(ii) See [50], theorem 1.3.1. O

Any even unimodular lattice has signature (b™,b7) constrained by b* — b~ € 8Z. This

means that every discriminant form (A, @) has a well-defined signature
sig(4) = sig(4, Q) € /52,

defined by sig(A) = bt — b~ if A is any even lattice of signature (b*,b”) with discriminant
form isomorphic to (4, Q). It is interesting to point out that this signature can be computed

intrinsically in terms of the Gauss sum of (A, Q):

Proposition 4 (Milgram’s formula). Let (A, Q) be a discriminant form; then

e(ésig(/l)) = ﬁ mZAe(Q(:c))
Here e(t) = ™ for t € C/Z.

Proof. See [49], appendix 4. O

2.2 Schrodinger representations and the Weil

representation

Let (A, Q) be a fixed discriminant form.

There is a natural 2-cocycle (the determinant form)
W((%; 1), (22, Z/z)) = T1Y2 — T2U1
which determines a nontrivial cohomology class [w] € H?(R? R). (The cocycle condition

w(vy + vg,v3) + w(v, v2) = w(vy, va + v3) + w(ve, v3), V1, s, v3 € R?
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follows easily from multilinearity of the determinant.) The central extension of R? associated

to |w] is called the continuous Heisenberg group: explicitly
Hr = R? 3, R,
which has underlying set R? x R and group operation
(v1,t1) - (v2,t2) = (V1 + v, b1 + to + w(vy, v2)).

We define the integer Heisenberg group H to be the subgroup of Hgr of tuples with
integer entries.

There is an action of Hg on L?(R) which is well-known from physics: the continuous
Heisenberg group is related to the group generated by the exponentiated position and mo-
mentum operators and this action is their effect on wavefunctions. (Some details do not quite
work here as the latter group is the extension by the cocycle § rather than w.) This is known
classically as the Schrodinger representation of Hgr. One would like to replace this by
an action of the integer Heisenberg group on the group algebra C[A], i.e. the complex vector
space generated by basis objects e, v € A together with the scalar product that makes e,
v € A an orthonormal basis. (The group algebra is the analogue of L*(R) after interpreting
elements f = > f(v)e, as functions f : A — C.) The fact that one cannot divide by two
in Q/Z makes direct approaches somewhat complicated.

It seems necessary to use the fact that A is supplied with a quadratic form () and not
merely a bilinear form (—, —). For every § € A one can use Q(f3) to “divide by two” and
define a variant o of the Schrodinger representation. The family of representations (o) e

can then be used to mimic the construction over R in an elementary way.
Proposition 5. Let 5 € A. Then
o : H — GL C[A],
750 1, t)e, = e((B,7) + (£ = M)Q(B) ey xs
18 @ unitary representation.

Proof. This is proved by direct computation: for any tuples (A1, i1, 1), (A2, o, t2) € H and
any v € A,
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os(A1, fi1, t1)os( A2, p2, t2)e,
= e(m(ﬁ,w + (t2 — >\2N2)Q(»3)>05()\1»#1, t1)ey—aip
= e(pa(B,7) + (8.7 = XaB) + (t2 = Dtz & 1 = Mp)QB) ) - r 1,

while

08(M + Ao, 11 + po, ty 4 to + Ao — Aopn e,

= e((,ul + 12)(B,7) + (t1 +t2 — Aptr — Aot — 2)\2/~01)Q(5)> Cy—(A1+A2)B;

which are equal. op is unitary as one can check on the elements of the form (A, 0,0), (0, x,0)
and (0,0,t) which generate H. O

Lemma 6. No nontrivial subgroups of C[A] are invariant under all Schrdodinger representa-

tions og simultaneously.

The representations o are by themselves not generally irreducible; for example, oy is

always trivial. This lemma is a reasonable substitute.

Proof. 1t will be helpful to interpret elements of C[A] as functions A — C; the function f
corresponding to Y f(7)e,. The scalar product is then the usual L?-product.

Suppose V' C C[A4] is a nonzero subspace that is invariant under all o, and suppose
g € C[A] is orthogonal to all of V. Tt follows that for any 6 € A and any f € V,

-3 (= (8.))(03(0.1,0)£.7)

—Z (8.7 = 9)F()9(7)
=f<>g<>.

Applying this to o5(1,0,0)f instead of f we obtain f(6 — 5)g(d) = 0 for all §, 5 € A; since
f can be taken nonzero, it follows that g = 0 and therefore V' = C[A]. O

The classical Schrédinger representation can be used to construct the (projective) Weil

representation of SLy on L?(R) as in [67]. We can use a similar argument to construct the
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(projective) Weil representation of SLy(Z) on C[A] out of the representations oz. (This is
far easier than the situation of [67].) Recall that there is a natural action of SLs(Z) on H

from the right (given by ignoring the final component and matrix multiplication):

a b
(A, t) - ( d) = (a4 cp, bA + dp, t).

C

0 —1 11
In particular, letting S = (1 0 > and T = (0 1) be the familiar generators of SLy(Z)

we find

(>\7:u7t) S = (Ma_)Ut)a (A7u7t> T = (A7A+M7t)

Lemma 7. For any M € SLy(Z), the twisted Schrédinger representations

o5 (Q) = 0s(¢C- M), (= pnt)eH

are simultaneously equivalent to og; that is, there is an operator p(M) € GL C[A] such that

p(M) " os(Q)p(M) = a5(C - M)
for all ( € H and all 5 € A.
Proof. This is a finite analogue of the Stone-von Neumann theorem. It is enough to prove
this claim for the standard generators M = S, T
(i) Let M = T. Then p(T) to5(0, 1, 0)p(T) = 05(0, i, 0) is equivalent to T acting diagonally,
i.e. p(T)ey, = u(y)e, for some u(y) € C*. We need to check the claim under g = (A, 0,0);

i.e. we need to solve
u(y = AB) Muly) = (F5(0 A, 0)es. ,as) = e(A(B.7) = A2Q(B) ).

We can write A(3,7) — AN2Q(8) = Q(7) — Q(y— A3) and therefore take p(M)e, = e (Q(7)) ¢,
(i) Replacing o by ag has the effect of swapping the translation operators oz(A,0,0)
with the modulation operators o3(0, 1, 0); it is well-known that the discrete Fourier transform

has the same property so we are led to try
1
pS)e = —=> e~ (1.0))es
V2

Indeed the convolution theorem implies p(S)o5()p(S) = o5(¢ - S). O
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Schur’s lemma implies that the equation

¢_105(C)¢ =og(Q)forallfe A, (€H

forces ¢ € GLC[A] to be scalar: indeed if A is an eigenvalue of ¢ then ker(¢ — Aid) is
simultaneously invariant and nonzero so ker(¢ — Aid) = C[A] and ¢ = A. It follows from

this that p determines a projective representation, i.e. a homomorphism
p:SLy(Z) — PGLC[A] = GLCIA]/C*, M — p(M)modC*.

The extent to which p fails to be a true representation can be measured on the generators
S, T. Recall that SLy(Z) is presented by the relations S* = id, S? = (ST')3. Fourier inversion
implies p(S)%e, = e_,. On the other hand

(B(S)p(T))e,
- \/I{W > e(Q(v) — (7,01) + Q(01) = (01,05) + Q(ds) — (52,53>>%3
01,

02,03€A

1
\/W Z e<Q(7 - 51 + 62) - <’Y + (53, (52>>853
01,62,63

:552}@@»e7
01
=e <ésig(A)) ¢,

where in the last line we used Milgram’s formula.

In particular, we can find representatives p(S),p(T) such that p(S)* = id and p(S)? =
(p(S)p(T))? exactly when sig(A) is even, by choosing the different representatives p(T) =
p(T) as above and

1, _
p(S) = e( — gsig(4) ) p(9):
but if sig(A) is odd then we can only solve this problem over the double cover Mps(Z)
presented by generators S, T with S? = (ST)3, S® = I instead. Traditionally Mpy(Z) is the

b
metaplectic group of pairs (M, ¢) with M = (a d) € SLy(7Z) and a holomorphic branch
c

¢(7) of Vet + d on the upper half-plane H. This is summarized in the proposition below:
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Proposition 8. There is a unitary representation p : Mpy(Z) — GL C[A] which is given on

s=((5 ) =)

p(S)e, = ﬁe( - Ssia(4)) Z( (5.7 )es,

p(T)ey = e(@(v)) .

If sig(A) is even then p factors through SLo(7Z). Moreover if sig(A) = 0 mod 4 then p factors
through PSLy(Z).

the standard generators

Proof. This follows from the previous considerations after multiplying by the necessary

scalars. It is easy to see that p(S) and p(T') are unitary. O

Remark 9. The construction via Schrodinger representations suggests the following com-
putation. Suppose N € N is the smallest integer such that NQ(vy) € Z for all v € A (i.e.
the level of (A,Q)). By polarization it follows that N (v, ) € Z for all 7,3 € A. There-
fore, if M € SLs(Z) comes from the principal congruence subgroup of level N, i.e.

b
M = (a d) with a,d = 1, b,c = 0 mod N, then 05(C~M) _ ‘76(0 for all B € A and
c

¢ € H. By our form of Schur’s lemma, p(M) is a scalar. In particular, since theta functions
are modular forms for p (see the next section), we obtain a simple proof that the theta func-
tion of a positive-definite lattice of level N is a modular form of level N (and some multiplier
system). Actually, p factors through a double-cover of SLy(Z/NZ) but this argument does

not seem to yield that as easily.

The Weil representations (both the classical form and the finite analogue described above)
are of considerable interest and therefore closed formulas for p(M) for arbitrary M € Mpy(Z)
have been given. Here the papers [56] (especially section 4) and [63] are worth mentioning.
We follow Bruinier and Kuss [18] and rely instead on a formula of Shintani [60] which will

be important in later chapters.
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a

b
Proposition 10. Let M = (< d) Vet +d) € Mpa(Z) where the branch of the square

c
root satisfies re[ct +d] > 0 for T € H. Denote by p(M)s, the components

p(M)py = (p(M)ey, eg).
(i) If ¢ =0, then
p(M)s., = o gia(A) (s (d) — 1) + abQ(S) )33

(i1) If ¢ # 0, then let A be an even lattice of signature (b*,b™) with discriminant form (A, Q);
then

B 1 sgn(c) .
p(M)gq = P |A|e<— < 81g(A)>><

S ( Qv+ ) — <%v+ﬁ>+dQ<v)>‘

C

vEA/cA

Here, ¢ is the Kronecker delta: dgq, = 1 if 8 = a7y and 0 otherwise.

2.3 The dual Weil representation

Fix a discriminant form (A, Q).

At most points in this work we will be more interested in the dual p* of the Weil repre-
sentation of (A, @), rather than p itself. As a unitary representation, p* is obtained from p
essentially by taking complex conjugates. However we want to mention here that there are

also less obvious relations between p and p*. To clarify notation we specify pg = p.

Remark 11. The dual Weil representation of (A, Q) is exactly the Weil representation of
(Aa _Q)

Proof. 1t is easy to see that —@) is a valid QQ/Z-valued nondegenerate quadratic form on A

just as @ is, of signature
sig(A, —Q) = —sig(A, Q) mod 8.

Taking conjugates in the formulas

,0Q(T)2»Y = e(Q(7)> €y,
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palS)e, = T e~ Ssig(4) > e~ 6 e

shows that pp(T') = p_q(T) and pj(S) = p_q(S); since S and T' are generators this implies
that pf, = p_q everywhere. O]

Remark 12. There is an involution ~ of Mpy(Z) given by
S=5"1Y T=1"

This is well-defined because it respects the relations:

(ST)S _ (S—lT—l)?) — S—1<ST)—BS _ S—ls—QS _ 8_2 _ 5,2
and
S8 = (S5 =1.

P

One can work out that the action in general is (M, ¢) = (M, ¢), where

as one can check on the generators M = S, T as usual.

2.4 Modular forms

Fix a discriminant form (A, Q).

Definition 13. Let k € 1Z. A modular form of weight % for the (dual) Weil represen-
tation of (A, Q) is a holomorphic function f : H — C[A] with the following properties:
(i) f transforms under the action of Mps(Z) by

FM 1) = (cT +d)*p" (M) f(7), M € Mpy(Z).
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(If £ is half-integer then the branch of the square root is prescribed by M as an element of
Mp»(Z).)
(ii) f is holomorphic in oo; i.e. if we expand f as a Fourier series,

F@ =Y cn)qe, g=e"",

YEA nEZ-Q(v)

then all coefficients ¢(n, ) for n < 0 are zero.

It is convenient to use Petersson’s slash notation

fl M= (cr+d)*p(M)f(r), M eT =Mp,y(Z),

k,p*

where condition (i) can be abbreviated as f|j M = f.

The existence of such a Fourier expansion (in particular the condition n € Z — Q(v))
follows from f(7+1) = p*(T) f(7). We denote the vector space of modular forms by M;(p*),
and the subspace of cusp forms (which are modular forms for which ¢(0,v) = 0 for all
7, since we are dealing with the full modular group) is denoted Si(p*). Both spaces are
finite-dimensional and for & > 2 their dimensions can be calculated using the Riemann-Roch

formula. For several reasons we will only consider modular forms of weights k satisfying
2k + sig(A) = 0mod 4

(e.g. in the case of classical scalar-valued modular forms, where () is unimodular, we consider
only k € 2Z); in this case, an explicit Riemann-Roch calculation that is well-adapted to
computation was given by Bruinier in section 2 of [13]. (The formula below is slightly

modified from [13] but essentially the same.)

Proposition 14. Let G(a, A) denote the Gauss sum

G(a,A) = Ze(a@(v)), a €7,

YEA

and denote by B the sawtooth function
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i.e. B(x) =x—1/2 for 0 < x < 1, extended to be 1-periodic with B(x) = 0 for z € Z.

Additionally define
B =S BQM), B=3 B@QM).
vyEA ;»YG:})

Let d = #(A/ £ I) denote the number of pairs £+ and let

ay=H{y€A: Q(v) €L}/ £1

denote the number of pairs £~ with Q(y) € Z. Then

dim My (p*) = %
1 2k + sig(A)
. |A‘e< - >re[G(—2,A)]
1 4k + 3sig(A) — 10
e [e( o )(G(—1,A) +G(3,A))
T gy — Bl — Bg

2 )
and dim Si(p*) = dim My (p*) — ay.

This formula tends to fail in weight k& < 2, where it (like most formulas) instead produces
the “Euler characteristic” dim My (p*)—dim Sa_x(p). Ehlen and Skoruppa [30] have described

an algorithm that computes dimensions in weight & = 2 and k£ = 3/2 that in practice seems

quite efficient, relying on the known structure for My(p*) (which consists of constant Weil

invariants) and M 2(p*) (where the components are theta series and related oldforms by the

Serre-Stark theorem [58], and which was computed more precisely in [61]).

The inner product structure is important:

Definition 15. The Petersson scalar product on Si(p*) is

(f.9) = / (Fr),g(r)F 2 dady, 7= +iy.
SLy(Z)\H

(This is well-defined because (f(7), g(7))y*?dzdy is invariant under Mpy(Z).) Recall that

(—, —) is the scalar product on C[A].
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This gives numerous ways to define cusp forms indirectly: there are natural functionals
on cusp forms such as extraction of Fourier coefficients or evaluation at points on H. In

weight k£ > 5/2, the Poincaré series

Puna() = 30 (')
oy (T) Z ) q ¢y k’pM
MeT o\
1 . ar
— 52(67’ + d)fke%rmﬁp*(]\/[)flew
c,d

where T, is the subgroup of I’ generated by T and Z = §2 = (ST)3, and ¢, d run through
all pairs of coprime integers, are up to scalar multiple the cusp forms that extract Fourier

coeflicients:

o

Proposition 16. For any cusp form f(7)=3__ c(n,7)q"e, € Sk(p*),
I'(k-1)
(4mn)h-t

It follows easily that the Poincaré series P ,, , span Sk(p*) as (n,~) runs through all valid

(fs Prny) = c(n,7)-

indices n € Z + Q(), as any cusp form orthogonal to all of them must be identically zero.

Proof. This is an argument due to Rankin: an expression of the form |, SLo(Z)\H > MeTa\F can
be formally replaced by the integral ffoo\H’ which is an integral over the rectangle —1/2 <
x < 1/2and 0 < y < oo and therefore may be easier to compute. The absolute convergence
W’ which
itself follows from the integral criterion and [ 12)5 s drdy =27 [[Fr 732 dr < cc.

x24y2>1 (x2+4y
By Rankin’s method we find

(f. Pons) /F .

of all expressions involved can be reduced to the convergence of Z(mm) £(0,0)

. M(7),q"e, M(T)>yk*2 dx dy
P k.p

MeTo\I

:/ / ZZ B)¢es,q e, )y k=2 qy da

—1/2 JEQ BeA

1/2 o o y

= >, < / e2mil=me dy / e2militmy k-2

jGZ—I—Q('\/) 71/2 0
o [t

0

'k -1

_ DD ). )

 (4mn)k-1
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The Poincaré series were studied in [12] where expressions for their Fourier coefficients are
given, but these expressions are rather unwieldy. Everything simplifies considerably when

B € A satisfies Q(f) = 0 and n = 0: we obtain the Eisenstein series

Ews(t)= Y ¢

MeTo\T

M

k,p

(where eg is interpreted as a constant function). For f = 0 the series Ej has rational
Fourier coefficients that were given explicitly in [18]. More generally, a recent preprint of
Schwagenscheidt shows that all Ej g have rational Fourier coefficients and gives a formula
to compute them directly. The functional characterization of Poincaré series remains true
in some sense: the integral (f, Ey 3) converges for every cusp form f € Si(p*) and has value
zero. However we will never need the series Ej 3 for any 8 # 0 so we will not consider this
further.

Another class of modular forms is worth mentioning:

Definition 17. Suppose (A, Q) is the discriminant form of a positive-definite lattice A. The

theta function of A is
Ip(T) = Z ?@e, 4.

zeN

If A has dimension e then ¥, is a weight e/2 modular form for the Weil representation of
(A, Q). (The transformation under 7" is clear, and the transformation under S follows from
the Poisson summation formula.) Every discriminant form arises from a positive-definite
lattice (and this can be proved algorithmically, essentially by repeatedly replacing negative-
norm vectors by their complement in an E8-lattice; see algorithm 2.3 of [53]), so one can
always construct modular forms in certain weights by theta functions. There are gener-
alizations of ¥, to include homogeneous polynomials which are harmonic under (); these
generalizations will produce cusp forms, while 9, as defined above always has a constant
term. Also, theta functions can be used to construct modular forms in weights where Eisen-

stein and Poincaré series do not converge.
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2.5 Jacobi forms

Jacobi forms are functions of two variables (7, z), with 7 € H and z € C, which generalize
both modular forms and elliptic functions. Most of the basic theory is due to Eichler and
Zagier [31]. Here the group of transformations is the Jacobi group, which is the semidirect

product of Mpy(7Z) by its right-action on the integer Heisenberg group:
J =H x Mps(Z).

One can identify J as a parabolic subgroup of Mp,(Z) (the metaplectic cover of the sym-
plectic group Sp4(Z)) through the embedding

()\ t(” ’ ) —
Y /’I/7 Y c d
under which the branch ¢(7) of ver + d is sent to

(7 2)) o

By restricting the action of Spys(Z) on the Siegel upper half-space Hy we obtain the action

of J on H x C:
a b at+b M+ z+
At . = _
<,,u,,<c d>> (7. 2) (c7’—|—d7 et +d )

Suppose p : J — GL(V) is a representation of 7 whose kernel has finite index. A Jacobi

ap — bA
t

cp — dA
1

S o > 9
o O = O
O QU T o

form of weight £ € %Z and index m € Q¢ for p is a holomorphic function ® : H x C — V'

satisfying the following properties:

b
(i) For any M = (a ) € Mpy(Z),
c d
atr+b 2z B L [ mcz? .
<c7'—|—d’ c7’—|—d) = (er+d) e(m‘—i—d)p(M)(D(T’ 2);

(i) For any ¢ = (A, u,t) € H,

O(r,z+ AT+ p) = e< — mAT —2mAz — m( A+ t))p(()(I)(T, 2);
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(iii) If we write out the Fourier series of ¢ as

O(7,2) = Zv(n, r)q"¢", q =T, (= e
with coefficient vectors v(n,r) € V, then v(n,r) = 0 whenever n < r%/4m.

The Jacobi forms we will consider transform under representations pj which arise as
semidirect products of the dual Schrodinger representations o by the dual Weil representa-
tion p*:

g5+ T — GLCIA], p5(¢, M) = " (M)3(C).
(These are well-defined because p*(M)~'o5(¢)p*(M) = o5(¢ - M).) Jacobi forms for ps can

be written out as

B(r,2) =) Y cln.r)q"Cey,

YEA n,reQ
with the transformation laws resulting in some important restrictions:

(i) The transformation under ¢ = (0,0,1) € H gives
O(7,2) = e(=mt)r3(0,0,)0(7, 2) = e(HQ(B) — m) ) (7, 2),

so there are no nonzero Jacobi forms unless m € Z — Q(f5).
(ii) The transformation under 7" implies that ¢(n,r,v) = 0 unless n € Z — Q() (the same
restriction as we have for modular forms).

(iii) The transformation under ¢ = (0,1,0) gives

Z Z c(n,r,v)e(r)q"¢"e, = (1,2 + 1)

YEAn,reQ

=05(0,1,0)®(7, 2)

=2 e (8.) Xelnrice,

’yEA n,r

so ¢(n,r,y) =0 unless r € Z — (B3,7).
(iv) The transformation under Z = S? restricts the weight to 2k + sig(A) € 2Z. As before

we will generally only consider weights that satisfy

2k +sig(A) € 47



CHAPTER 2. BACKGROUND 20

as the ep-component of any Jacobi form will otherwise vanish identically. In this case the

transformation under Z forces
c(n,r,v) = c(n, —r,—v) for all n,r,~.
(v) The transformation under ¢ = (\,0,0) implies

> el g ey = 07, 2 + A7)

n?’r?’y

_ q*mvg”mag@, 0,0)®(r, 2)

n—m 2 rT—2z2Mm
= Z C(TL,T, 7)q A C 2 Ae’y—)\ﬁ

n,ryy

and therefore
c(n,r,7) = c(n+rX+mAr+2m\ v+ \B) for all A € Z.

Note that in general the coefficient of c(n,r,v) does not only depend on 4mn — r? (unless
f = 0), unlike the scalar-valued result of Eichler and Zagier [31].
As before, it is convenient to use Petersson’s slash notation: we write

o (M)

k,m,pgp

em(z + AT+ u)2> "

= (cr +d) e (m/\27' +2mAz +mAu+ 1) - cT +d

at +b z+>\7+u>]

% pZ}(C,M)_l [(I)(cr—l—d7 ct +d

such that the transformation law of Jacobi forms can be summarized as

of (M=o
k,m,p;}
for all (¢, M) € J.

Our main use of Jacobi forms will be as a means of constructing modular forms: if (7, z)
is a Jacobi form of weight k and index m for pg then its zero-value ®(,0) is easily seen to

be a modular form of the same weight k for the Weil representation.
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2.6 Borcherds lifts

This section is meant to give an introduction to or review of the singular theta correspondence
of [4] which produces orthogonal modular forms with known divisors and modular product
expansions. At several points the references [4] and [12] are quite technical, so we will only
state the general idea of the results and omit many details .

Suppose A C V is an even lattice of signature (b*,b7). We define the Grassmannian
of A to be the set Gr(A) of all positive-definite subspaces of V' of maximal dimension b.
Gr(A) receives the structure of a smooth manifold in the usual way: after identifying elements
W € Gr(A) with the orthogonal projection 7y to W, it is a differentiable submanifold of
the vector space End (V). In particular, it makes sense to speak of real-analytic functions on
Gr(A).

Let (A, Q) be the attached discriminant form to A. The Siegel theta function of A is
the function

O :H x Gr(A) — C[A],

O(r,v) = Z e[TQ(xU) +TQ(zy1) | Crins

xeN
where for a subspace v € Gr(A) and element € V' we let z, and z,. denote the orthogonal

projections of x onto v and v*. This satisfies the usual theta transformation formula:

a

Proposition 18. For any M = (
c

2) € MPQ(Z),

O(M - 7,v) = (et + d)* *(c7 + d)* p(M)O(T,v).
Proof. This follows from the Poisson summation formula. See [4], theorem 4.1. O

Definition 19. Let F(7) be a real-analytic function on H with the property that ¢ F(7)
is bounded at oo for some N € N, and assume F' transforms as a modular form of weight
(b™ — b7)/2 for the Weil representation (not its duall):

F(M-7) = (et +d) P I2p(MYF(1), M e Mp,y(Z).

The theta lift of F' is the regularized integral

reg

D (v: F) = / (F(r), (7, 0))y" 2 de dy.
SLp(Z)\H
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The notation ["“ should be understood as follows. For a suitable function f(7) that is

invariant under SLy(Z), we set
/ F(r)y2dedy = CTSZO[ lim [ f(r)y=*2dzdy],
h—o0 F

where
Fr={r=x+iyeH: -1/2<2<1/2, y<h, :1:2—{—y221}

is the fundamental domain truncated above by y = h, and CTs_, denotes the constant term
in the Laurent series in the variable s centered at 0.

Suppose o € O(A) is any lattice automorphism, i.e. ¢ € GL(V) preserves (—, —) and
maps A into itself. For any x € A" and y € A we find

(o(x),y) = (x,07(y)) € (N, A) C Z,

so o preserves A’; in particular, it induces an automorphism of the discriminant form (A, Q)

and therefore an action on C[A]:
O CpipA = Coptn, T E A/.

For any subspace v € Gr(A) and x € A, we find o(2,) = 0(2)s(); therefore, o acts on the
Siegel theta function © by

ot [O(ra)] = 3 e[rQe(r.) + TQ(o(@,)) | erin = O(r,0),

zeN

ie. O(1,0(v)) = 0O(7,v). Therefore,
reg
Ba(o(0).0F) = [ F(7),08(r,0))y" 1+ dndy = B0, F),

as one can check this equation rigorously for large enough s and then apply unique analytic
continuation.

In particular, ®,(v, F') is invariant under the subgroup of O(M) that fixes F. The
singularities of @, (v, F') were worked out in section 6 of [4]: they are supported on rational
quadratic divisors

={veGr(A): v LA}
with vectors A € A for which Q(\) <0
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Suppose A has signature (2, b7); for simplicity, we assume that the underlying vector space

0 0 1
is R2t" and that A = Z2t* with a block Gram matrix |0 S 0| for some Lorentzian
1 0 O

matrix S. Then Gr(A) is a complex manifold (in fact, a Hermitian symmetric space of
type IV in Cartan’s classification): namely, after fixing a continuous orientation on Gr(A),
associating an oriented orthonormal basis (z,y) of v € Gr(A) to the span of x + iy identifies

P2+b7

Gr(A) with the set of norm-zero lines in C . The choice of orientation is equivalent to a

choice of positive cone C of S, i.e. a component of those vectors y € R?” with y”Sy > 0.

We define the orthogonal upper half-space
Hs={z=2+iycC” : yecC}.
This embeds into Gr(A) via
Hg — Gr(A), z+— Span(—%zTSz, z,1),

and so we get an action of O (A) on Hg as follows: M - z = w if and only if

—%ZTSZ —%wTSw
M z = j(M;z2) w
1 1

for some j(M;z) € C*. It is easy to see that j(M; z) defines a cocycle; we choose it to be the
factor of automorphy and we define orthogonal modular forms as holomorphic functions

satisfying the usual transformations:
U(M - 2) = x(M)j(M; 2)°0(z), M € O*(A)

for some character x and some k € Z, together with a growth condition (which is redundant
for b= > 3 by Koecher’s principle). Note that the full group O(A) will generally not preserve
the positive cone; the subgroup OT(A) consists exactly of those transformations that do

preserve it. The main theorem is then:

Proposition 20. Suppose

S22 cnaly

YEA neZ+Q(y
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is a nearly-holomorphic modular form (i.e. holomorphic on H and finite order in oo) of
weight % for the Weil representation of A. Then there is a meromorphic orthogonal
. c(0,0 . .
modular form Vg of weight % and some unitary character for the subgroup O (A; F) of
transformations that preserve F. Its divisor is supported on rational quadratic divisors A*

(with A € A, Q(\) < 0) with

ord(¥p; A1) = Z c(Q(zN), zA).
T€R>0
xAEN

The divisors \* divide Hg into Weyl chambers; and on each Weyl chamber whose closure

contains the norm-zero vector (1,0,0) € A, W is given by the product

We(s) = elpW)'s2) [ (1-ei7s9)

AeS—1zb™
ATSW>0

where p(W) is the Weyl vector of W (see [4], 10.4).

Proof sketch. Let W be a Weyl chamber. Interpret z € W as v € Gr(A) and define Vp(2)
by the product above. Then the regularized theta integral ®,(v; F') as calculated in sections
6,7,9,10,13 of [4] is

c(0,0) <F’(1) + log(2my”'Sy) ) .

1
_Z(I)A(U;F> :10g|\IjF(Z>’+ 2 2

This is invariant under O*(A; F'), so it remains invariant after exponentiating:
exp ( - i@/\(U, F)) = const x |Ux(2)|(yF Sy) 0/,
Since f(z) =y’ Sy transforms under O (A) by
FOM - z) = [5(M:2)[ 7 f(2),
it follows that
Wp(M - 2)| = [j(M; 2)| 002 (2)], M € O (A; ).

Therefore W (M - 2) = j(M; 2)0/2x (M)W (z) for some unitary character x. O
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2.7 The obstruction principle

To summarize the previous section, the input objects into Borcherds lifts are nearly-
holomorphic modular forms of negative (or at least small) weight, which are functions
that are holomorphic on H and transform like modular forms but are allowed to have a pole
of finite order in oo (i.e. their Fourier series may have principal parts). In order to un-

derstand the possible divisors and weights of automorphic products we need to understand

Z Z 7)q" e, + ¢(0,0)eq

YEA neZ+Q(y
n<0

which principal parts

extend to nearly-holomorphic modular forms. Borcherds gave an answer to this in [5]:

Proposition 21. A principal part

Z Z c(n,v)q" ey + ¢(0,0)eg

YEA neZ+Q(y)
n<0

with c¢(n,vy) = c(n,—y) extends to a nearly-holomorphic modular form of weight 2 — k for
the Weil representation if and only if

¢(0,0)a(0,0) + Z (=n,7) =0

YEA neZ+Q(y
n<0

for all holomorphic modular forms of weight k for the dual of the Weil representation that

a(0,0)eo + Y Z Y)q"e,.

YEA neZ—Q(y
n>0

have the form

Proof. In [5] this is proved as an application of Serre duality. Also, Bruinier [12] has given a
different argument that constructs the nearly-holomorphic form explicitly from the shadows

of harmonic Maass-Poincaré series. ]

Example 22. Suppose we are in the scalar-valued case (i.e. we consider a unimodular

quadratic form) and the weight is & = 6. The only holomorphic modular form is

Eg(1) =1—504q — ...
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so by the obstruction principle we can find a nearly-holomorphic modular form of weight —4
that begins
F(r)=q ' +504 + ...

Of course F' must be

Es

A= g~ ' 4 504 + 73764q + 2695040¢% + ...

Remark 23. The obstruction principle also holds in the “reverse” direction: nearly-holomorphic
modular forms act as obstructions to the existence of modular forms of the dual weight, i.e.
they determine all linear coefficient relations that modular forms are forced to satisfy. In
other words, they determine all linear relations among Poincaré series. This interpretation

of the obstruction principle was made by Rhoades in [54].

2.8 Harmonic Maass forms

Harmonic Maass forms are a generalization of modular forms where the condition of holo-

morphy is weakened to annihilation under the weight-k hyperbolic Laplace operator

0? 0? 0
Apf(r) =9 <w + 8_yQ>f(T) - Qik?J%f(T)

which is invariant under the weight k action of SLy(R). Harmonic weak Maass forms are
similarly a generalization of nearly-holomorphic modular forms. There has been a lot of
interest in harmonic weak Maass forms since the work of Zwegers [75] which shows that
Ramanujan’s mock theta functions arise as holomorphic parts of such forms in the following
sense.

Any harmonic weak Maass form is given by a Fourier series

o0

f(r) = Z c(n,y)q", c(n,y) :/ F(r)e 2 n dr,
n=-—00 R/Z+iy
where ¢(n,y) are constrained by

ox?  Oy?

82

2min(z+iy)\ _ . 2min(z+iy)
} (c(n,y)e V) = zky[—ax + z—ay} (c(n,y)e V).
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This has linearly independent solutions c¢(n,y) = const and c¢(n,y) fl t~ked™t dt for

€ (0,00), and using the weak growth condition one can show that f has the form

(e 9]

F@) =Y aln)g"+ > bm)en(y)T", ¢ =€, g=e "7, y =Im(7),
n=—N

n=—N
where ¢, (y) = (4mn)~'y=* 3772 ((—k);(—4mny) 7 is a certain power series (in fact a poly-
nomial when k is a negative integer) that satisfies ¢'(y) — 4mné(y) = y~*. This is often
expressed in terms of Whittaker functions or incomplete Gamma functions ([10], section
6.3). We will generally work in weight 3/2 and express all Fourier series in terms of the
special function 3(z) = o= [~ u=*2e~"" du of [38].

The holomorphlc part is then Y 2 a(n)g". It transforms under SLy(Z) with a com-
plicated cocycle. On the other hand, the coefficients b(n) are easier to understand, as one

can see using the Bruinier-Funke operator [16]:

0
= 2iy"—f(7).
£1(r) = 20— f(7)
Differentiating the weight k£ transformation law of f shows that
at + b _
ef(5=) = (er+ e

ct+d
moreover, applying £ termwise to the Fourier series of f shows that
= ) b(n)g"
n=—N

so b(n) are coefficients of a weight 2—k nearly-holomorphic modular form, called the shadow

of Y>> yva(n)g™

There is an obvious generalization of harmonic weak Maass forms to vector-valued forms

([12], [16]). In this case, if f is a Maass form for a representation p then its shadow {f is a

modular form for the dual p*.

2.9 [L-functions

At several points we will need to consider the L-function

5 XD ZXD
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attached to the Dirichlet character mod |D|,

Xp(n) = <2>,

n

where D is a discriminant (i.e. D = 0,1 mod 4). It will be useful to recall the following
properties of Dirichlet L-functions.

(i) Let x be a Dirichlet character. Then L(s,x) converges absolutely in some half-plane
Rel[s] > s¢ and is given by an Euler product

Lis,x) = J] (= xp)™

p prime

there.

(ii) L(s,x) has a meromorphic extension to all C and satisfies the functional equation

p(s)eos (V15,00 = T o/ i — 5. %),

where f is the conductor of x, 7(x) = Zf:1 x(a)e?™/f is the Gauss sum of y, and

(iii) L(s,x) is never zero at s = 1, and is holomorphic there unless x is a trivial character,
in which case it has a simple pole.

(iv) The values L(1 —n,x), n € N are rational numbers, given by

B,
L(1—n,x) =— n’X’

where B, , € Q is a generalized Bernoulli number.

We refer to section 4 of [66] for these and other results on Dirichlet L-functions.
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Chapter 3
Poincaré square series

This chapter is taken from the paper [68].

3.1 Poincaré square series

Fix a discriminant form (A, @) and let p* denote the dual Weil representation.

Definition 24. Let § € A and m € Z — Q(f). The Poincaré square series Q) s is the

series

Qrmp = Z P x2m s

AEZ
Here, we set P00 to be the Eisenstein series Ej = Ej . In other words, Qs is the

unique modular form such that Q. , s — Ej is a cusp form and

> c(N*m, \B)
(fv Qk,m,ﬁ) 4m7r k—1 Z N\2k—2

A=1

for all cusp forms f(7) = Z%n c(n,v)q"e,.
The name “Poincaré square series” appears to be due to Ziegler in [74], where he refers

to a scalar-valued Siegel modular form with an analogous definition by that name.

Remark 25. The components of any cusp form [ = Znﬁ c(n,7)e, can be considered as
scalar-valued modular forms of higher level. Although the Ramanujan-Petersson conjecture

is still open in half-integer weight, nontrivial bounds on the growth of ¢(n, ) are known. For
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example, Bykovskii [21] gives the bound c(n,v) = O(n*/275/16+¢) for all n and any ¢ > 0.
This implies that the series

I(k—1) 9
Z(ﬁ P xemag) = Z WGO\ m, \B)
A0 A#£0
converges for k > 5/2. Since Si(p*) is finite-dimensional, the weak convergence of 3 o Prx2m,xs
actually implies its uniform convergence on compact subsets of H. On the other hand, the

estimate

Z ’ ( )\26”_:::2)‘ Ze—2ﬂm)\2ﬁ
CT

AEZ AEZ
z/ e—%mﬁﬁ dt
—00
d
=Ty )
2my

implies that as a triple series,

Qrm (T Z Z (et +d)” ( A2a7+b> *(M)fle)\g

)\EZ ged(c,d)=1 T +d

converges absolutely only when £ > 3.

Proposition 26. The span of all Poincaré square series Qimp, m € N, f € A'/A contains
all of Sk(p*).

Proof. Since Span(Qy.m ) is finite-dimensional, it is enough to find all Poincaré series as
weakly convergent infinite linear combinations of Q) ,,, 3. Mobius inversion implies the formal
identity

1
Pymp = 5 <Pk:,m,ﬁ + Pk,m,—,é’) Z p(d [Qk d2m,dB — Ek}

The series on the right converges (weakly) in Sy (p* ) because we can bound

L'(k—1)
~ (4 \2d?m)*~

(f Qk d?m,df ‘ = (Azdzm, )\dﬁ)‘ < C- d*9/8+€

for an appropriate constant C' and all cusp forms f(7) =3>__ >~ c(n,7)q"¢,, where we again
use the bound c(n, ) = O(nk/2-5/16%), O
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3.2 The Jacobi Eisenstein series

Fix a lattice A. Let J,, denote the subgroup of J that fixes the constant function eg under
the action |k, o5 . This is independent of 2 and it is the group generated by T, Z € I and
the elements of the form (0, u,t) € H in the Heisenberg group.

Definition 27. The Jacobi Eisenstein series twisted at § € A’ of weight k£ and index
meZ—Q(P) is
Bems(t2)= Y w| (M2,

MOeT\T B
It is clear that this is a Jacobi form of weight £ and index m for the representation pj. More

explicitly, we can write it in the form

EkmB(T z)

2mAz  cmz?
— —k 2 . * —1 % -1
_ §:CT+d A§€Zj (m (M -7)+ CT+d>p (M) o%(1,0,0) e

Remark 28. This series converges absolutely when k£ > 3. In that case the zero-value
Ejm p(7,0) is the Poincaré square series Q. 3(7), as one can see by swapping the order of

the sum over (¢, d) and the sum over .

Ejm s has a Fourier expansion of the form

Boslr= ¥ %Y dnrace,
YEN /A n€Z—Q(v) r€Z—(,B)
We will calculate its coefficients. The contribution from ¢ = 0 and d = £1 is
Z e(mx\QT + Qm)\z> ers-
AEZ
We denote the contribution from all other terms by '(n,r,~); so
Epmp(T,2) = Z (m)\z + 2m)\z) exg + Z Z Z "(n,7,7)q" (e,

AEZ YEN' /A n€Z—Q(v) reZ—

Write 7 = x + iy and z = u + iv. Then /(n,r,~) is given by the integral
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d(n,r,y)
2mA 2
/ / E E CT+d (m)\Q(M-T)—i- mas A >]><
ct+d cr+d
c#0 A
ged(e,d)=1

x e(—nt —r2)(p"(M)'o5(),0,0) " eg, ¢,) dz du

593D D W IIH / [(er +a)°

cA0 d(c)* A

2mAz cmz?

cr+d cr+d

xe(—n7—rz+m)\2(M~T)+ )] dudzx.

Here, the notation d(c)» implies that the sum is taken over representatives of (Z/cZ)™

The double integral simplifies to

2mAz cmz?
ct+d cr+d

)\2 d 00 1
= c’%(u) / Tk/ e< —nt —rz—m(cz — )\)2/(027')> dudz
¢ —00 0

by substituting 7 — d/c into .

00 1
/ / (c¢+d)_ke<—nT—rz+m)\2(M-T)~|— )dudx
oo J0

The inner integral over u is easiest to evaluate within the sum over A\. Namely,

/\EZZ,O(M),\BWe(mZ/\z) /01e< —rz— m(02’0+7)‘)2) du
= Zp(M)Alg,ye(am)\Z%M> /_1)\/:/Ce( —rz — mz2/7') du

AEZ

after substituting z + A/c into z. Note that

p(M)xs e
——bT)sgn(c
\/;(b b )sgn(c)

<am)\2 - 7")\>

— Z ( Qv+ AB) — (U‘f‘)\@,ﬂ‘i‘dQ(V)—i—amAZ—w\)
eI :

\/;(b* —b1)sgn(c)

el \/|A’/A|
S (aA [m + QB)] + Alafv, 8) = (8,7) — r] + aQ(v) — <vm>+dQ(7))

c

vEA/cA
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depends only on the remainder of A mod ¢, because m + Q(f) and r + (3,) are integers.

Continuing, we see that

e [ i

AEZ
\/;(b_ —b%)sgn(c)

e \/!A’/AI
aX*m + Q(B)] + Aa(v, B) — (B,v) — ] + aQ(v) — (v,7) + dQ(v)
< 3 e )

Cc

vEA/cA
NEZ/CL

X /_OO e<—rz—m22/r> du.

o0

The Gaussian integral is well-known:

/_OO e( —rz— m22/7'> du = e<r27/4m> \/7/2im.

[e.9]

We are left with
\/—(b —bt)sgn(c)
d(n,r, KC LM, Y, M, T ) X
(m.7.7) = NTZ || +b)/2 |A’/A| (8,m,7,m.7)

X / Tl/2 ke (T(r2/4m - n)) dz,

where K.(8,m,~,n,r) is a Kloosterman sum:

K.(B8,m,~,n,r)
= ; ;A <a)\2 m+ Q(B)] + Aalv, B) — <5,7>c— r] + aQ(v) — (v,y) +dQ(7) + dn>
NEZ/cZ

= 3 Y (4 @) + 28— (:8) ) + Q) — (031 + Q) 4]

vEA/cA d(c)*
\EZ/cZ

- Z Ze<—[ v+)\ﬁ—7)+m/\2—r)\+n}>.

veEN/cA d(c)*
AEZ/Z

(In the second equality we have replaced v and A by d-v and d - \.)
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The integral [~ 71/27Fe (T(r2/4m — n)) dz is 0 when r?/4m —n > 0, since the integral
is independent of y = Im(7) and tends to 0 as y — oo. When r?/4m —n < 0, we deform the

contour to a keyhole and use Hankel’s integral
1 1
- T _—8 d
T(s)  2mi }{6 T

2mi - (2mi(r?/4m — n))F3/2

/_Oo Tl/Q’ke<T(r2/4m - n)) dz = T = 1/2)

[e.9]

to conclude that

and therefore
/( ) (27Ti)k_1/2 (7’2/4m _ n)k—3/2 \/%(If —bT)sgn(c)
C n,r,’y = . _
2-T'(k—1/2)\/2im|A'/A] g || +b%)/2
(—i)Erk=1/2(4mn — r2)k=3/2 \/g(b:bﬂsgn(c)
" Tk~ 1/2)IV/A] 2 10

CikKC(ﬁ? m7 77 n7 T)

C_kKC(/87 m’ 77 n7 T)'

We can use
——b1)sgn(c —
\/g(b b")sg ()sgn(c)k(—Z)k _ (_1)(2k7b +bt)/4
and the fact that K.(8,m,vy,n,r) = K_.(8,m,7,n,r) to write this as
(= 1) @hb =+ Ah=1/2(fgy — p2Yk=3/2 2

d(n,r,y) = Rl K (B, m,y,n, ).
(n.7.) 22T (k — 1/2)/[A/A| ; (8,m,,m.)

Remark 29. Using the evaluation of the Ramanujan sum,

Z e(%N) = Z p(e/a)a,

d(c)* al(e,N)

where p is the Mobius function, it follows that

K. (B, m,vy,n,r)
=Y ule/aya-#{(@©.2) € ASL)/(€): Qu+A8—7) +mA —rA+n=0(c)}

ale

= 3" nlefayalc/a)x

ale

X #{(U,A) cADL)/(a): Qu+NB—7)+mA —rA+n= 0(0)}
= Y ple/a)a"N(a),
ale
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where we define
N(a) = #{(U,A) cABZ)/a(ABZ): Qu+ A8 —7) +mI\2 —rA+n= O(a)}

and we use the fact that this congruence depends only on the remainder of v and A mod a
(rather than c).

Remark 30. If we identify A = Z" and write Q(v) = 20" Sv with a symmetric integer

matrix S with even diagonal (its Gram matrix), then we can rewrite

Nm+Qu+A—7)—rA+n

—%—wT(S > )(6—
2777 \(s8)T 20m+Q(8))

: ~ ~ r ~ r r?
with 0 = (v,A) and ¥ = (v, —gpigEy) and @ =1+ 507557 8) — mragy- | herefore,

N(a) equals the representation number N;7(a) in the notation of [18]. The analysis there

)+ 7

N

does not seem to apply to this situation because ¥ has no reason to be in the dual lattice of
this larger quadratic form, and because n can be negative or even zero.

In the particular case 5 = 0, the coefficient ¢(n,r,v) does in fact occur as the coefficient
of

(7,%) = (n —r*/4m, (v,r/2m))

S 0
in the Eisenstein series Ej_1/20 attached to the lattice with Gram matrix (0 5 ) . This
m

can be seen as a case of the theta decomposition, which gives more generally an isomorphism
between Jacobi forms for a trivial action of the Heisenberg group and vector-valued modular
forms, and identifies Jacobi Eisenstein series with vector-valued Eisenstein series. Actually,
a form of theta decomposition appears to hold for arbitrary ; I hope to clarify this in a

future note.

Remark 31. We consider the Dirichlet series

o0

Lin,r7,s) = Z c K (B,m,y,n,r).

c=1

Since K, is ¢“™! times the convolution of p(a) and a=*N(a), it follows formally that

L(n,ry,s+e+1)=((s) " L(n,r,v,s+e),
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where we define
L(n,r,7y,s Z ¢ *N(e

(N(c), depending on n,r,~y, denotes the representation count modulo ¢ considered earlier.)
Since N(a) is multiplicative (for coprime aj,as, a pair (v, A) solves the congruence modulo
ajas if and only if it does so modulo both a; and as), L(n, 7,7, s) can be written as an Euler

product

L(n,r,7,s) HLnr’y, ) with L,(n,7,7v,s ZN pe.

pprime

The functions L,, are always rational functions in p~* and in particular they have a meromor-

phic extension to C; and it follows that ¢(n,r,7) is the value of the analytic continuation

of
(_1)(2k7b_+b+)/47rk71/2(4mn _ 702)/&73/2

L b ) b
2 2mE T (k — 1/2)C(5 — ) /| N /A mnn (77, 9)
at s=k+e/2—1.

3.3 Evaluation of Euler factors

In this section we review the calculation of Igusa zeta functions of quadratic polynomials due
to Cowan, Katz and White in [23] and apply it to calculate the Euler factors L,(n,r, v, k +
e/2 —1).

Definition 32. Let f € Z,[X;,..., X.] be a polynomial of e variables. The Igusa zeta

function of f at a prime p is the p-adic integral
Crg(fip3s) = . |f(2)|°dz, s€C.
In other words,
Crg(fip; s ZVO]({IB €Zy: |f(x)], = p_V}>p_VS

where Vol denotes the Haar measure on Z§ normalized such that Vol(Zg) = 1.
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Igusa proved [41] that ;,(f;p;s), which is a priori only a formal power series in p~*, is
in fact a rational function of p~®. In particular, it has a meromorphic continuation to all of
C.

Our interest in the Igusa zeta function is due to the identity of generating functions

]‘ _p (Ig f p’ —1/ 3+e)
- ZN

where Ny (p¥) denotes the number of solutions
Ny(p”) = #{13 € Z°/p"Z° : f(x) =0 mod p”}.

In particular,
L—p=* Gy (fipis —e— 1)

LP(”? T, Fy? 8) = 1 . p,s+e+1

for the polynomial of (e 4 1) variables
f,\)=Nm+Q+ A3 —7) —rA+n.
The calculation of (r,4(f;p;s) will be stated for quadratic polynomials in the form
i€Ng

where (); are unimodular quadratic forms, L is a linear form involving at most one variable,
and ¢ € Z,. The notation € implies that no two terms in this sum contain any variables
in common. To any quadratic polynomial g, there exists a polynomial f as above that is
“isospectral” to g at p, in the sense that Ng(p”) = N,(p¥) for all v € Ny. Consult section
4.9 of [23] for an algorithm to compute f. We will say that polynomials f as above are in

normal form.

Proposition 33. Let p be an odd prime. Let f(X) = @,cn, P'Qi(X) ® L(X) + ¢ be a Z,-
integral quadratic polynomial in normal form, and fir w € Ny such that QQ; = 0 for i > w.
Define

r; = rank(Q;) and d; = disc(Q;), i € Ny

and

= Z r; and dg = H di, j € No,

0<i<j 0<i<j
i= (2) = (2)
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and also define

Py = p20§i<j r(l’)7 ] € Np.

Define the auziliary functions I,(r,d)(s) by

((1 —p°7") p—1 . rodd, pla;

p—p~*°

_ r+1)/2 -
|:1 +ps(r+1)/2<ad( 1)( u >:| p—1 _pr_
p p—pF
. : rodd, pta;
) (ad(—l}i( +1)/2

I,(r,d)(s) =

[1 _pfr/z((—li:”dﬂ . [1 +p*sf7“/2<(‘1)”2d>} p—l_. reven, pla;

p p—p~*®

[1 —p /2 (_(—1)”22)} - [p—f’;fs +p /2 <—(‘11:/2d>] : reven, p{a,

\ p

a

where (5) is the quadratic reciprocity symbol on Z,. Then:
(i) If L=0and c=0, let r =}y, 1i; then

Iy(rw), dw)) e

Colfims) = ) +
0<v<w—1 Pw)
I(](I' w—1 7dw—1) —(w—1)s IO(rw 7dw) —ws 25—\ —
+[ ( )s S )p( 1)+ (w) ()p ‘(1_]72 )1‘
Pw-1) Pw)

(i) If L(z) = bz with b # 0 and v,(c) > v,(b), let A = v,(b); then
—As

IO(ruadV) —vs D p_1
Crolfipss) = Y iy B L~
0<v<A Pw) Py P—Pp

(i1i) If L =10 and c # 0, or if L(x) = bx with v,(b) > v,(c), let kK = v,(c); then

]C V(rV 7d’/ ) —vs 1 —KS
Crolfipss) = Y~ Wl povs = o,
0<v<k p(”) p(”+1)

Proof. This is theorem 2.1 of [23]. We have replaced the variable ¢ there by p~*. O]

Remark 34. Since the constant term here is never 0, we are always in either case (ii) or

case (iii). It follows that the only possible pole of (;4(f;p;s) is at s = —1, and therefore the
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only possible poles of L,(s) are at e or e + 1. Therefore, the value k + ¢/2 — 1 is not a pole
of L,, with the weights k = e/2+ 1 or k = e/2 + 2 as the only possible exceptions. In fact,
k = e/2+ 1 can occur as a pole but this is ultimately canceled out by the corresponding
Euler factor of ((k —e/2 — 1) in the denominator of ¢/(n,r,~), and k = e/2 + 2 never occurs
as a pole (as one can show by bounding IN). Case (i) will turn out to be useful to compute
the Poincaré square series in weights 3/2,2,5/2.

An easy, if unsatisfying, proof that e/2 + 2 could not occur as a pole is that the problem
can be avoided entirely by appending hyperbolic planes (or other unimodular lattices) to A,
which does not change the discriminant group and therefore does not change the coefficients

of Eim 3, but makes e arbitrarily large.

Remark 35. Identify A = Z" and Q(v) = 30" Sv where S is the Gram matrix. We will use
proposition 33 to calculate

1 —pkte/202¢, (fipk —e/2 —2)

Lp(nv 7, k + 6/2 - 1) = 1— p7k+e/2+2

for “generic” primes p - these are primes p # 2 at which
det(S), dim, or n:= d3d>(n—r?/4m)

have valuation 0. Here, dg and d, denote the denominators of 3 and -, respectively. Since

p 1 det(S), it follows that ds and d., are invertible mod p; so we can multiply the congruence
Nm+Qu+ A —7)—rA+n=0(p")
by d%di and replace dgd v + A\dgd, 3 — dgd,y by v to obtain
N(p”) = #{(v, A+ did2mN + Q(v) — d3d2rA + didin = 0 (p”)}.

Here, dym, d’n, dsd.r € Z. By completing the square and replacing A — dg% by \, we see
5

that

N(p”) = #{(v, A € (Z/p"Z)T : Qv) + démx\2 + d%di(n —7r%/4m) =0 (p”)}

- #{(v, N € (Z/p'Z) " v Sv + 245mA\® + 20 = 0 (pl’)}.
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The polynomial f(v,\) = vTSv + Qd%m)\2 + 2n is p-integral and in isospectral normal

form so proposition 33 (specifically, case (iii)) applies. The Igusa zeta function is

Qdﬁn@=5%44ﬁ@+LM%wm®)

For even e, this is

p2 ~1 D
Crg(fipi5) = 1+p""/2’1’8(—)}- P —176/2*1(—),
p/l p—p P

where D' = md3(—1)“/*"adet(S), and with some algebraic manipulation we find

1 —p~Gy(fsp;8)
1—ps
p—p*—pF(p-1) <1 + p—e/2—1—s <%> ) B p—e/2—1—s(p ) <%>
: (1-p=)(p—p~*)
p— plfs 4 pfsfe/271<p B plfs) <%,)
(I=p=)p—p)

1 D’
E—] - —5—6/2—1]
1—p“[+(p)p ’

and therefore

1 DN
Lok /2 =) = 5 [+ (5)0))

For odd e, it is

!/

_1 D _1
Cro(fipss) = 2 +p’(€“)/2(—> [1 S }
p—p P p—p

where D' = 2md%(—1)“*1/2det(S), and a similar calculation shows that

p

1—pCe(fims) 1 [1 B (D'> p*S*(eJrl)/?fl]
1 _ p—s 1 _ p—s—l

and therefore

1 D’ -
Lyl /2 = 1) = s [ 1= ()0,
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Proposition 36. Define the constant
(_1)(2k+b+—b*)/47rk—1/2<4mn _ T2)kz—3/2

2k=2mr—1T(k — 1/2)4/|det(.S)]
Define the set of “bad primes” to be
{2} U {p prime : p|det(S) or p|d%m or v,(n) # O}.
(i) If e is even, then define

D=7D. H p? = md%( 1)¥?*adet(S H p°.

bad p bad p

apm(n,r) =

For 4mn — 1% > 0,
“kte/241

L,(n,r,v,k+e/2—1)|.

c(n,r,y) = (1, 7) L(k — 1, xp) H [1 —p

C(2k —2) e L L=

(ii) If e is odd, then define

D=D". H p* = 2md3(—1)"/2det(S H P

bad p bad p

For 4mn — 1% > 0,

c(n, r ’)/) _ Oék,m(n, T) ) H [(1 _ pfk+e/2+1)Lp(n, oy, k+ 6/2 _ 1)]

L(k_ 1/27XD bad
Here, L(s, xp) and L(s, xp) denote the L-series

L(s, xp) = ic_s(€>a L(s, xp) = iC_S(g),

c=1 c=1

where (%) and (%) are the Kronecker symbols.

Proof. This follows immediately from the Euler products
D ~1 D ~1
L(S7XD> - H (1 - <_)p_s) ) L(S7XD) - H <1 - <_>p_s> )
p p p p

which are valid because D and D are discriminants (congruent to 0 or 1 mod 4) and therefore
<%) and ( ) define Dirichlet characters of @ modulo |D| resp. |D|. O

In particular, ¢(n,r,~) is always rational.
The factors L,(n,r,v,k + e/2 — 1) are easy to evaluate for bad primes p # 2 using
proposition 33. To calculate the factor at p = 2, we need a longer formula. This is postponed

to section 3.8.
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3.4 Poincaré square series of weight 5/2

An application of the Hecke trick shows that the Poincaré square series of weight 3 is still
the zero-value of the Jacobi Eisenstein series of weight 3. This result is not surprising and
the derivation is essentially the same as the weight 5/2 case below, so we omit the details.
However, the result in the case k = 5/2 is somewhat more complicated. I realized later that
this would be easier to derive using holomorphic projection as in chapter 5 later on but have

still included the original proof from [68] here.

Definition 37. For k = 5/2, we define the nonholomorphic Jacobi Eisenstein series of weight
5/2, twisted at f € A'/A, of index m € Z — Q(5), by

1
5/2.m(T)2,8) = 9 Z(CT +d) 7 ?er +d| 7% x

2mA\z cmz?
ct+d er+d

>p*(M)—1a;;(A, 0,0) o

This defines a holomorphic function of s in the half-plane Re[s] > 0.

We write the Fourier series of EZ 2.m.8 in the form
E;/27m7ﬁ(7-7 2, S) - Z C(”? 7758, y>qngre’7'
n,r,y

(Here, the coeflicients depend on y, since E J2.m,p 15 1Ot holomorphic in 7.) As before, the
contribution from ¢ =0 and d = +1 is

Z e(m)\zT + 2m)\z) (SVE

AEZ
We denote the contribution from all other terms by ' (n, 7,7, s, y), so

By mp(T,2,8) = Z e(TI’L/\2T + 2m)\z> exg + Z d(nyry 7y, s,9)q" ey
\EZ n,ryy

A derivation similar to section 3.2 gives

-(b~—b1)sgn(c)
Snrysy) =YV
sy Py )y 9y N g |c|e/2 /|A//A|

co+1iy
x / 72| e (7(r2/4m — ) ) da.

co+1y

e K (B, m, v, m,7) %
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Substituting 7 = y(t + i) in the integral yields

co+1iy
/ 37| e (T(r2/4m - n)) dz

—oo+1y

=y e (iy(r?4m —n)) /

—00

[e.e]

(t+40)2(t* +1)"%e <yt(r2/4m - n)) dt.

We use
\/;(b*fbﬂsgn(@sgn(c)fs,/z _ (_1)(57b—+b+)/4i5/2 _ (_1>(17b—+b+)/4\/;

and conclude that

/ (-t 2 f: 5/2—2s—e/2
C(n’r7 77 S?Z/) = [(y,T /4m_n, S) C_ Tes—e Kc</8’m’ f}/, n, 74)
2m[N'/A] £
(_1>(1+b+—b*)/4 ~
- I(y,r2/4m—n, S)L(nﬂ"a% 5/2+6/2+23),

V2m[A/A]

where I(y, N, s) denotes the integral

I(y,N,s)=1(2,y,N,s) = leseQ”Ny/ (t+4)72(t* + 1) *e(Nyt) dt,

—00

and

L(n,r,7,s ch m,y,n,r)

as before.

Remark 38. When r? # 4mn, we were able to express i(s) up to finitely many holomorphic

factors as and it follows that L(s) is holomorphic in 5/2 + /2. In particular,

1
L(s—e/2—1/2,xp)’
if 72 2 4mn, then the coefficient ¢/(n,r,~,0,y) is independent of y and given by

agm(n,r) 1—p
cl(n’ r) ’Y? 07 y) - y [
L(2,xp) bla;[p 1— (%)19—2

and c(n,r,7,0,y) = 0 if 4mn —r? < 0, just as for k > 3. This analysis does not apply when

—3/2+e/2

L,(n,r,v,3/2+ 6/2)] if 4mn —1* >0,

72 = 4mn and indeed L may have a (simple) pole in s = 5/2 + ¢/2 in that case.

We will study the coefficients ¢/(n,r,7,0,y) when 4mn = r?. The integral I(y,0,s) is

zero at s = 0, and its derivative there is

0

9 10.8) =y [ (4 i) log(t2 + 1) dt = -~
5ol J0 0. ==y [ i) s £ par = =7
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This cancels the possible pole of L(5/2 4 e/2 + 2s) at 0, and therefore we need to know the
residue of L(5/2 + ¢/2 + 2s) there. As before, L factors as

L(n,1,7,5/2+ e/2+25) = (25 +3/2 — ¢/2) ' L(n,r,7,3/2 + /2 + 25)

where L(s) has an Euler product

L(n,r,7v,s HLnr'y, ), with Ly(n,7,7v,s ZN pe,

pprime

and N(p) is the number of zeros of the polynomial f(v,\) = Qv+ A3 —7) +mA?> —rA+n
mod p”.

Remark 39. Identify A = Z" and Q(v) = 3v”Sv where S is the Gram matrix. We will
calculate L, when 4mn — r? = 0 for primes p dividing neither det(S) nor d%m. In this case,
it follows that

N(p”) = #{(v, A) € (Z/p"Z)*t - v Sv+2d5mA* =0 (p”)}.

We are in case (i) of proposition 33 and it follows that

Crg(fip3s) = [1 —p etV (%)} : [1 +p e/ (%)] = p_s)](jl__lp_%_e_l)

with D' = 2md?%(—1)“"/2det(S). After some algebraic manipulation, we find that

s _ (D —s—1—(e+1)/2
— DG fipss) ! (p)p
I—p= s (1 — (D) p—s—(e+1)/2)
(1= p==)(1 = (2 )prte2)
SO
1_< > —2—2s
L,(n,r,v,3/2+¢/242s) = b

_ me/2—3/2—2s _ (D C1-2s)
(1= pe/2=2-20)(1 — (L) pmi-)

This immediately implies the following lemma:

Lemma 40. In the situation treated in this section, define D = D’ - Hbadpp2,' then

~ L(2 1
Ln.ry.5/2-+ /2 + 25) = PR LXD) TT [ peaosatey 1y, 872 4 /2 4 25)]
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Notice that L(2s + 1, xp) is holomorphic in s = 0 unless D is a square, in which case it

is the Riemann zeta function with finitely many Euler factors missing.

Proposition 41. If 4mn —r? = 0, then d(n,7,7,0,y) = 0 unless D is a square, in which
case
( 1)(1—1—6+ b7)/4

d(n,r,v,0,y) = \/W —H [

Proof. Assume that D is a square. As s approaches Zero,

=3/, »(n, 7,7, (e+3)/2)].

lim c(n,7,7,5,9)

s
CUP 2 21 0, Res(Ltnr,5/2+ /24 29
= - ,0,8) - es( n,r,v,5/2+e 2+25;3:O>.
2NN Osls=0 v
We calculated 5
e B (T ) -
Jsls=0 (4,0;)
carlier. The residue of L(5/2 + ¢/2 + 2s) at 0 is

1
T oy 1—p2 )Ly (n,r,7,3/2 + ¢/2) | - Res(L(2s + 1, xp); s = 0),
o 1L ( JLy(n,7,7,3/2+ ¢/2)] - Res(L(2s + 1, xp); 5 = 0)

and using

L2s+1,xp) =C@2s+ 1) [ —p =7

p|D
and the fact that ((s) has residue 1 at s = 1, it follows that

Res(L(2s +1,xp)is = 0) = = [[(1 = p™).

We write

L) =@ [0 -t =T [Ja -,

p|D p|D
Since the “bad primes” are exactly the primes dividing D (by construction of D), we find
Res(i(n, r,Y,5/2+e/2+2s);s = 0)

3 |:(1 . pe/2—3/2)(1 o p—l
1—p2

)
- F Lp(n7r7773/2+6/2)]7
p|D

which gives the formula. m
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Let A,, denote the constant

—1)GHbr=bT)/4 g 1 — pe=3)/2)(1 — p~1
_ (=1 "H[( p ) —p")

An omIA/A| T 1—p2
Vv 2m|A /A oD p

such that ES, 5(7,2) + 519 is holomorphic, where ¢ is the theta function

I, 2) = Z Z A,q" (e,

YEA /A 4mn—r2=0
n€Z-Q(7)
rel— <’7a5>

Ly(n, .7, (e +3)/2)].

Even when D is not square, this becomes true after defining A,, = 0 for all n.

Lemma 42.

W(r,z) = Z Z Anq" (e,

YEAN /A dmn—r2=0
n€Z—Q(7)
re€Z— <’Y7ﬁ>

is a Jacobi form of weight 1/2 and index m for the representation Pj-

Proof. We give a proof relying on the transformation law of EZ 2m. g Denote by

1
E5/27m7ﬁ(7—7 Z) = E;/Zm,ﬁ(Tu 2, 0) + 519(7—7 Z)

b -
the holomorphic part of E 2.m.8" For any M = (a d) el
b 9. c

ar+b  z >_|c7'+d|219(a7'+b 2 )

SRmE\ecr ¥ d er +d Y ct+d cr+d

ar +b z
I L
52mB\ er + d et +d

mez? N\ .
= (e + d)5/2e<CT n d)p (M)ES/Q,m,,B<T7 2,0)

2 5/2 2
_ 5/2<mc,2)*ME _ (e +4d) (mcz>*M
(er-+ 0762 () a2 — T e () (i, 2.
In particular,
1 ar+b  z mez?
= d)*0 — d)*/* “(M)Y
y|CT+ | <CT—|—d7CT—|—d) (er +d) e(m—i—d)p( J(7:2)

2

B atr+b =z 5/2 (mcz ) .
_E5/2’m’ﬂ(m’cr+d) (cm +d)"e cr+d)’ (M)Es2m5(7: 2).

46
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ler+d]? _ (ct4d)?
Y

,—— —2ic(cT+d) and differentiating both sides of this equation

Using the identity

with respect to 7 leads to

mez?
ct +d

ar +b z
cr+d et +d

(c7'+d)219( > — (CT+d)5/2e<

which implies the modularity of ¥ under M. One can verify the transformation law under

)or (M)d(r, ) =0,
the Heisenberg group by a similar argument: for any A, u € Z we find

Es/2.m,8 (T, Z 4+ AT+ u) - 519(7, 24+ AT+ )
= EZ /o ms(T: 2 + AT + 11, 0)
= e = m(Wr + 22z 4 A0 )05\ 1.0) [ Byjoyn p(r.2) + 519(7, 2],
so differentiating with respect to 7 and multiplying both sides of this by 2iy? gives
Wz 4+ AT+ p) = e( — m(N*7T 4+ 2z + A,u))a}()\, w, 0)9(T, 2). O
We can now compute Qs/2,m 3. Let ¥(7) denote the zero-value 9(r,0).

Proposition 43. The Poincaré square series of weight 5/2 is

Qs5/2,m,8(T) = E5/2,m.5(7,0) + 439 ().

Proof. Using the modularity of E om.p and ¢, we find that Ejs/,,, 5(7,0) transforms under
T by

b
E5/2,m,6 <%, O) = p* (M) [(CT + d>5/2E5/27m”3<7', 0) — 2iC(CT + d)3/219<7'>i| .
Differentiating the equation 9(M - 7) = (et + d)Y?p*(M)9(7) gives the similar equation

9'(M - 1) = p*(M) [<cr )52 (r) + %C(CT + d)3/%9(7)] .

This implies that Es/m 5(7,0) 4 490'(7) is a modular form of weight 5/2.
Now we prove that it equals Q5/2,m,3 by showing that it satisfies the characterization of

(05/2,m,s With respect to the Petersson scalar product. First, we remark that Eg/zymﬁ(T, 0,0),
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although not holomorphic, satisfies that characterization: for any cusp form f(7) = > N > cln,

and any Re[s] > 0,
<f(7')7 B 5 m (T, 0, 3)>y1/2+28 dz dy

is invariant under I', and we integrate:

\[\ <f(T)7 E;/Q,m,ﬁ(Ta 07 5)>y1/2+28 dx dy
\H

= / / c(n,7)e,, exs)e ( (x +iy) —m\*(z — iy))z/l/ms dz dy
-1/2Jo

yEN /A /\eZ n

_ ( m, )\ﬂ)/ 6747rm)\2 y1/2+23 dy
0

I'3/2+2
- c(Am, AB) (47577”{)\2)3/;)23'

Taking the limit as s — 0, we get

, ['(3/2)
] EX 0 12425 0 dyy = Nm A\ ——L
) f\H<f(T)’ 5/2’mﬁ(7—’ )Y i ;C( " 6)(47Tm)\2)3/2

The difference

1
(Bsams(7,0) + 4t (7)) = Bija,,5(70,0) = 4t (7) + )

is orthogonal to all cusp forms, because: when we integrate against a Poincaré series
1 _ . _
Pojsnn () = 5 D (er +d)Fe(n(M - 7)) p" (M) (e,),
c,d

we find that

1
(430 + Py /QM)

/ / (V' (1), e(nt)e,)y 1/Qdydm%—/ / Jea )y~ ? dy da
—1/2Jo —1/2

o T(3/2) (1/2)
Z Oamn—r> An (42 + (2min) (47rn)3/2 + (47m)1/2>

reZ—(6,7)

=0,

7)q"
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r'(3/2) + ra/2)

G2 T @z = 0 for all n. Here, dy denotes the delta function dy =

since 4i - (2mwin)
1: N=0;

0: N#NO.
Finally, the fact that Es/g,, 5(7,0) + 4i0'(7) and Q5)2,m,3 both have constant term 1 - ¢o

implies that their difference is a cusp form that is orthogonal to all Poincaré series and

therefore zero. 0

Example 44. Consider the quadratic form with Gram matrix S = (—2) . The space of

weight 5/2 modular forms is 1-dimensional, spanned by the Eisenstein series
Bsjo(7) = (1 — 70q — 1204% — ...)eo n ( — 1014 — 4874 — 2504%/4 — ...)al/g.
The nonmodular Jacobi Eisenstein series of index 1 and weight 5/2 is
Bspoo(r2) = (14 (¢T3 = 16¢™" =16 = 16¢ + ¢)+
SR 3207 — 24— 320 + ¢ + ...)eo
+ ( L AgM P (—ACR S8 — 24— 8C — 4CP) + ...)91/2,
and setting z = 0, we find
Esjo10(7,0) = (1 46 — 120¢% — 240¢° — 454¢" — ...)e0+
+ ( —4gMt 48P/t — 196¢°/4 — 240414 — ...)em.
This differs from Ej5/5 by the theta derivative
( — 24q — 964" — ...>e0 n ( — 6gMt — 54gP — ...)zm — 4id (7).
For comparison, the Jacobi Eisenstein series of index 2 (which is a true Jacobi form) is
E5/2,270(7', Z)
_ (1 4 g(—10¢2 —16¢! — 18 — 16¢ — 10¢%)+
AT 160 — 1202 — 16¢1 — 34 — 16¢ — 12¢% — 16¢3 + ¢1) + - - )eo
+ (g4 (=2 =6 20)+
(2P S AC? - 14CT — 8 — 14C — 4C% — o) - )el/g,

and we see that Es(7,0) = Qs5/2.2(7) = E5/2(7) as predicted.
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3.5 Coefficient formula for Q) ,, 3

For convenience, the results of the previous sections are summarized here.

Proposition 45. Let k > 5/2. The coefficients c(n, ) of the Poincaré square series Qkm. g,
Qump(T) = Y > cn, ",
YEN /A nEZ—Q(V)
are given as follows:
(i) If n < 0, then c(n,~y) = 0.
(ii) If n = 0, then c¢(n,v) =1 if y =0 and c(n,vy) = 0 otherwise.
(#i) If n > 0, then

(_ 1)(2k—b*+b+)/47rk—1/2

en,7) =0+ 22k (k — 1/2)C(2k — 2)y/]det(S)]
_ o —kte/2+1
X Z (L(k?— 17XD) H [%LPO”L,T,’%I{?—’—@/Q_ 1)])

[r|<v4mn bad p
if e is even, and
(_1>(2k—b*+b+)/47rk—1/2
X
2k=2mk=1T(k — 1/2)+/|det(S)|
1
X ( [1— Rt/ (n, vy, k + e 2—1])
> (i L[tk ef2 =)

[r|<v4mn

c(n,y) = €52+ 0+

if e is odd. Here, for each r, we define the set of “bad primes” to be
{bad primes} = {2} U {pprime 0 pldimdet(S) or vy(d3d? (n — r?/4m)) # 0},

and we define
D = md%dg(—l)e/z“( 72 /4m)det(S H P
bad p
if e is even and
D = 2md3(—1 1))/ 2det (S H P
bad p
if e is odd; L(s,xp) and L(s,xp) denote the L-series

L(s,xp) = i <§>a_s, L(s,xp) = Z (%)a‘

a=1 a=1
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and L, is the L-series
Ly(s) = > N@ )p™,
where
N(p*) = #{(0,0) € ZH /P2 Qu+ A8 —7) +mA = rA+n =0 € Z/pZ].

Finally,

5 2: n=mM?for some A\ € Z, and v = \f3;

0: otherwise;
and €5/ = 0 unless k = 5/2 and D is a rational square, in which case

Z 24, - (_1)(5+b+—b—)/4 (1 _p(e—s)/z)(l —p_l)
IS =
o2 2m - det(.S) L—p—2

Ly(n, 7,7, (e +3) /2)].

r€Z—(v,8) badp

r2=4mn

Proof. For k > 5/2, since Qpmp(T) = Ekmp(7,0), we get the coefficients of Q. mp by
summing the coefficients of Ej ., s over r. ¢ accounts for the contribution from the term
Z e(m)\QT + Qm)\z> ers-
XEZ
When k = 5/2, €52 accounts for 4i times the derivative of the theta series

)= D > A, O

YEN /A dmn—r2=0
ne€Z—Q(y)
rel— <775>

3.6 Example: calculating an automorphic product

The notation in this section is taken from [4].

Since Qm,p can be calculated efficiently, we can automate the process of searching for
automorphic products. This method can handle arbitrary even lattices (with no restrictions
on the level or the dimension of the cusp space Sk(p*)).

Let A be an even lattice of signature (2,n). Recall that Borcherds’ singular theta corre-

spondence [4] sends a nearly-holomorphic modular form with integer coefficients

Fr)y =Y eln e,
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of weight & = 1 — n/2 for the Weil representation to a meromorphic automorphic form ¥

¢(0,0)

on the Grassmannian of A. The weight of ¥ is =5

, and W is holomorphic when ¢(n, ) is
nonnegative for all v and n < 0.

Automorphic products ¥ of singular weight n/2 — 1 are particularly interesting, since
in this case most of the Fourier coefficients of ¥ must vanish: the nonzero Fourier coefficients
correspond to vectors of norm zero.

Taking the scalar product on C[A] of nearly-holomorphic modular forms of weight k for
p and weight 2 — k for p* gives a scalar-valued (nearly-holomorphic) modular form of weight
2, or equivalently an invariant differential form on H, whose residue in co must be 0. This
implies that the constant term in the Fourier expansion must be zero. Also, the coefficients
c¢(n,~) of a nearly-holomorphic modular form must satisfy ¢(n,y) = ¢(n, —v) for all n and ~,
due to the transformation law under Z. As shown in [5] and [12], this is the only obstruction
forasum ) _, 27 c(n,7v)ey+¢(0,0)eq to occur as the principal part of a nearly-holomorphic
modular form.

The lattice Ay(—2)+ A;(—2)+ 11,1+ 11,1 produces an automorphic product of singular
weight. This product also arises through an Atkin-Lehner involution from an automorphic

product attached to the lattice Ay & Ay & I, @ I1;1(8), found by Scheithauer in [56].

Using the dimension formula (proposition 14) for the lattice A = Z? with Gram matrix
—4 0
, we find
0 —4

The Eisenstein series of weight 3 is

dim M;(p*) = 4, dim S3(p*) = 2.

Es 0,0)(T)

(1 — 24q — 164¢% — 192¢° — ...)e(om

< —1/2¢"% —73/2¢"/® — 145¢'7/8 — ) (e(1/4,0) + €(3/4,0) + €0,1/4) T €(0,3/4))
( — 1012 — 48¢%/% — 26047/ — ) (e(1/20) + €(0.1/2))

< 2¢"* — 52¢°/* — 146¢°/* — ) (e(1/a,3/4) + €(3/a,1/a) + €(1/4,1/2) T €(3/4,3/4))
(
(-

— 13¢%/% — 85¢"%/® — 192¢%"/% — ) (e(1/2,1/4) + €(1/2,3/2) + €1/4,1/2) + €(3/4,1/2))

+ o+ o+ o+ o+

44q — 964 — 288¢° — ) e(1/2.1/2)-
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We find two linearly independent cusp forms as differences between FE3 and particular

Poincaré square series: for example,

9
3 <Q3,1/8,(1/4,o) — E3>

= (q” 5 19¢%® —30¢"7/% + > (e(1/4,0) T €(3/4.0) = €(0,1/4) — €(0,3/4))

+ (6615/ ¥ —10q"/% — 4247 — ) (e(1/2,1/4) + ©(1/2,3/4) — €(1/4,1/2) — €(3/4,1/2))

n (8q1/2 — 48¢7% 1 72¢°% 1 > (e(1/2,0) — ¢(0,1/2))5

and

1
3 (Q3,1/4,(1/4,1/4) — Eg)

= <q1/4 — 6¢°/* 4 9¢°/* 4+ 10¢"3/* + > (e(1/4,1/4) F €(3/4,3/4) — €(1/4,3/4) — €(3/4,1/4))-

The other Eisenstein series I3 (1/21/2) can be easily computed by averaging FEs 0y over the
Schrodinger representation (as in the appendix), but Eisenstein series other than Ej o never
represent new obstructions so we do not need them.

We see that the sum

¢ 3 (e/a0) + €(3/2.0) + €0.1/4) + L0.3/4) + 2¢(00)

occurs as the principal part of a nearly-holomorphic modular form, and the corresponding
automorphic product has weight 1 (which is the singular weight for the lattice A@ I ;111
of signature (2,4)).

A brute-force way to calculate the nearly-holomorphic modular form F' is to search for

A - F among cusp forms of weight 11 for p. Since p is also the dual Weil representation
4 0
p* of the lattice with Gram matrix ( Nk we can use the same formulas for Poincaré

square series. This is somewhat messier since the cusp space is now 8-dimensional. Using
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the coeflicients

~1222146606526920765211168

o= 665492278281307137675 '
o — 814700552816424434236
L 1996476834843921413025
~95383641094234426568192
@2 = 133098455656261427535
77190276919058739618292
g =
’ 665492278281307137675
N 3816441333371605691531264
4=

1996476834843921413025

a calculation shows that

apEr10+ 1Qi11,0 + Q1120 + 3Q1130 + Q1140
A

(2 4 8¢ + 24¢% + 64¢% + 152¢* + ) ((00) — e(1/2.1/2))

F—

(q_1/8 + 3q7/8 + 11q15/8 + 28(]23/8 + ) (8(1/470) + ¢(3/4,0) + €(0,1/4) T 9(073/4))

+ o+

( —2¢%/% — 6¢"/% — 18¢1/8 — ) (e(1/a,1/2) T €(3/a,1/2) + €(1/2,1/2) + €(1/2,3/))-

Once enough coefficients have been calculated, it is not hard to identify these components:

the coefficients come from the weight —1 eta products

2n(27)?
! 72 = 24 8¢+ 24¢% + 64¢° + 152¢* + ...
n(r)
and )
77(7('/)22 _ q71/8 . 2q3/8 + 3q7/8 . 6q11/8 + 11q15/8 . 18q19/8 4+
n(r

We will calculate the automorphic product using theorem 13.3 of [4], following the pat-
tern of the examples of [29]. Fix the primitive isotropic vector z = (1,0,0,0,0,0) and
2" =(0,0,0,0,0,1) and the lattice K = A @ I1;;. We fix as positive cone the component
of positive-norm vectors containing those of the form (4, %,*,+). This is split into Weyl
chambers by the hyperplanes at with o € {#£(0,1/4,0,0),4(0,0,1/4,0)}. These are all

essentially the same so we will fix the Weyl chamber

W = {(21, 72,73, 14) : Ty, To, T3, Ty, 1174 — 205 — 223 >0} C K ® R.
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The Weyl vector attached to F and W is the isotropic vector
p=p(K,W,Fx)=1(1/4,1/8,1/8,1/4),

which can be calculated with theorem 10.4 of [4].

The product
> c(Q(N),A)

v.(2)=e((p.2)) T (1-e(r2)

AeK'’
(A\W)>0

has singular weight, and therefore its Fourier expansion has the form
v.(2)= Y a(A)e((A +p, Z>>
AEK'
(A W)>0
where a(\) = 0 unless A + p has norm 0. Since V,(w(Z)) = det(w)V,(w) for all elements of
the Weyl group w € G, we can write this as

V.(w(2) = 3 det(w) Y a()\)e((w()\ +p), Z>).

weG XK'
A+peW
(A\W)>0
As in [29], any such A must be a positive integer multiple of p; and in fact to be in K’ it
must be a multiple of 4p. Also, the only terms in the product that contribute to a(\) come
from other positive multiples of 4p; i.e.

e((p.2)) TT [1 —e(tamp. Z>)]C(O’4m”) = Y ae((r+0.2)).

m>0 AEK'

Here, ¢(0,4mp) =2 - (—1)™, so
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Note that the product on the right is an eta product

oL o] =2

m=1

so we can write this in the more indicative form

(o) I (a0 oo

3.7 Example: computing Petersson scalar products

One side effect of the computation of Poincaré square series is another way to compute the
Petersson scalar product of (vector-valued) cusp forms numerically. This is rather easy so
we will only give an example, rather than state a general theorem. Consider the weight 3

cusp form

o) = 3 eln,)d"e,

n7fy
_ <q1/6 42476 — 92413/6 4 26419/6 ) %
X (e(1/6,2/3) + €(1/3,5/6) T €(2/3,1/6) T €(5/6,1/3) — 2€(1/6,1/6) — 2€(5/6,5/6))
+ ( - 6q1/2 + 18(]3/2 + Oq5/2 — 12(_[7/2 — ) (6(1/270) + 3(071/2) — 26(1/271/2)),

which is the theta series with respect to a harmonic polynomial for the lattice with Gram

-4 -2
matrix ( . 4) . The component functions are
q"0 +2q7° = 22¢"/° + 260" + .. = n(7/3)°n(r)* + 3n(r)*n(37)°

and
—6¢? +18¢%2 +0¢°* — 124" + ... = —6n(7)3n(37)>.
To compute the Petersson scalar product (©,0), we write © as a linear combination of

Eisenstein series and Poincaré square series; for example,

© = E30 — Q3,1/6,(1/6,1/6)-
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It follows that

(©,0) = —(0,0Q3,1/6,1/6,1/6))
9 = c(A2/6,(A\/6,)/6
Z (A%/6,(A\/6,1/6))

~ T op2 — A4

_2[ a(A?/2) 6 Z G(AQ/Q)}

R M
A=1,5(6) A=3(6)

2\
where a(n) is the coefficient of n in n(7)3n(37)3. This series converges rather slowly but
summing the first 150 terms seems to give the value (0,0) ~ 0.24. We get far better
convergence for larger weights.

For scalar-valued forms (i.e. when the lattice A is unimodular), applying this method
to Hecke eigenforms gives the same result as a well-known method involving the symmetric

square L-function. For example, the discriminant

o0

A=q—24¢4+ .. = Zc(n)q” € Si2

n=1

can be written as

53678953

— 22I07 —E
304819200(Q12’1’0 12)

which gives the identity

131593691 i c(n?)

_223,3~7,7T11 n22 -’

(A 4)

This identity is equivalent to the case s = 22 of equation (29) of [73]:

i c(n)?  7-11-4%2.7%.((11)
n2  2.23.691-22!((22)

(A,4),

n=1

since

[\

(n?)

9
n22

Dﬂﬁg

> can

n=1 n=1

which can be proved directly using the fact that A is a Hecke eigenform.

3.8 Calculating the Euler factors at p =2

We will summarize the calculations of Appendix B in [23] as they apply to our situation.
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Proposition 46. Let f(X) = @, y, 2°Qi(X) ® L + ¢ be a Zy-integral quadratic polynomial
in normal form, and assume that all Q; are given by Q;(v) = v S;v for a symmetric (not

necessarily even) Zg-integral matriz S;. For any j € Ny, define

Qi = EB Qi, r(y =rank(Q), Py) = 22 0<i<; Tli) |
0<i<y
i=j (2)

Let w € Ny be such that QQ; =0 for alli > w. Then:
(1)) If L=0 and c =0, let r = ), rank(Q);); then the Igusa zeta function for f at 2 is

CIg(f; 2; 8)
— Z 2" I()(Q(y), Q(V+1)7 QV+2) +

0<vew—1 P®)
2—s(w—1) Q—ws
+|

]O(wa 7Qw 70)+
Pw-1) () =) P)

In(Q(w)s Q-1 0)] S(1=27)7h

(i1) If L(x) = bz for some b # 0 with va(b) = X and if vo(b) < va(c), then

27118

Co(f3208) = >

0<r<A—2 v

271/8 v 2*)\5 1
+ Z I(/)\ (Qu), Qu+1), Qir2) + o
max{0,A—2}<v<A P@) P

I(Qu), Qu+1), Qui2)+

(111) If L(z) = bz with b # 0 and va(c) < v9(b) < va(c) + 2, let k = va(c); then

2—VS

Cro(f;28) = )

0<v<A—2 (v)

2—1/8 . 1 s
+ Z ]c>\/2V (Qu), Qu1); Qui2) + 2755,
max{0,A\—2}<v<s P@) Px+1)

Ic/2” (Q(V)a Q(V+1)a Qu+2>

(iv) If L =0 or L(x) = bx with vy(b) > vy(c) + 2, let k = vo(c); then

Vs 1
I/ (Quy, Q1) Qui2) +
Pw) P(x+1)

271,

Cro(f32i8) = Y

0<v<k

Here, I°(Qo, Q1, Q2)(s) are helper functions that we describe below, and we set I,(Qq, Q1, Q2) =

I°(Qo, @1, Q2). Note that not every unimodular quadratic form @Q; over Z, can be written
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in the form Q;(v) = vT'S;v; but 2 - Q; can always be written in this form, and replacing f by
2 - f only multiplies (;,(f;2;5s) by 27°, so this does not lose generality.

Every unimodular quadratic form over Z, that has the form Q;(v) = v7S;v is equivalent
to a direct sum of at most two one-dimensional forms a - Sq(z) = ax?; at most one elliptic
plane Ell(x, y) = 222+ 2xy+2y?; and any number of hyperbolic planes Hyp(z, y) = 2xy. This
decomposition is not necessarily unique. It will be enough to fix one such decomposition.

The following proposition explains how to compute I°(Qo, Q1, Q2)(s).
Proposition 47. Define the function

- vo(a) > min(b, v);
Ig(a,b,v) = {2 o) = minld)
270203 .y (a) < min(b, v).

(Here, v2(0) = 00.) For a unimodular quadratic form Q of rank r, fix a decomposition into
hyperbolic planes, at most one elliptic plane and at most two square forms as above. Let
e = 1 if Q contains no elliptic plane and € = —1 otherwise. Define functions Hi(a,b,Q),
Hs(a,b,Q) and Hs(a,b,Q) as follows:
(i) If Q) contains no square forms, then

Hi(a,b,Q) = (1 —27")Ig(a, b, 1);

(a,b,Q) = ( ’"/25> . <Ig(a,b, 1) + 27"%cIg(a, b, 2));
3((1, b, Q) =0.

(ii) If Q contains one square form cx?, then
H(a,b,Q) = Ig(a,b,0) — 27"Ig(a, b, 1);
Hy(a,b,Q) = (1 —270"%e)Ig(a,b,0) — 27" Ig(a, b, 2)+
+ 2702 (Ig(a, b, 2) + Ig(a + ¢, b, 2));
Hz(a,b,Q) =27"(Ig(a + ¢,b,3) — Ig(a + ¢, b,2)).
(111) If Q contains two square forms cx?, dz* and c +d = 0(4), then
Hi(a,b,Q) =1Ig(a,b,0) — 27"Ig(a, b, 1);
Hy(a,b,Q) =1Ig(a,b,0) — 27" %elg(a, b, 1) + (272 — 27")Ig(a, b, 2);
(Cl b Q) ( ) c+d)/42 (Ig(av b7 3) - Ig(av b7 2))
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(i) If Q contains two square forms cx?®, dz® and c+d % 0(4), then

Hi(a,b,Q) =1g(a,b,0) — 27"Ig(a, b, 1);

Hy(a,0,Q) = (1 —27""22e)Ig(a,b,0) + 27%<(Ig(a, b, 1) + Ig(a + ¢, b,2))—
—27"Ig(a, b, 2);

Hs(a,b,Q) = —2"""1g(a,b,1) + 27" (Ig(a, b, 2) + Ig(a + ¢+ d, b, 3)).

Let e = 1 if Q1 contains no elliptic plane and €1 = —1 otherwise, and let r1 denote the

rank of Q1. Then I*(Qq, Q1,Q2) is given as follows:
(1) If both Q1 and Qo contain at least one square form, then

I3(Qo, Q1,Q2) = Hi(a, b, Qo).
(2) If Q1 contains no square forms but Qo contains at least one square form, then
12(Qo, Q1, Q2) = Ha(a, b, Qo).
(8) If both Q1 and Qs contain no square forms, then
I2(Qo, Q1, Q2) = Ha(a,b, Qo) + 27"/, Hy(a, b, Qo).
(4) If Q1 contains one square form cx?, and Qy contains no square forms, then
I3(Qo, @1, @) = Hi(a, b, Qo) + 27"V %e, (H(a,b, Qo) + Hs(a + 2¢,b, Qo).

(5) If Q1 contains two square forms cx? and dz* such that c+d = 0(4), and Qs contains no

square forms, then

I5(Qo, Q1,Q2) = Hi(a,b, Qo) + 27"/ Hz(a, b, Q).

(6) If Q1 contains two square forms cx® and dz* such that c+d % 0(4), and Qy contains no

square forms, then
15(Qo, Q1,Q2) = Hi(a,b,Qq) + 27?1 Hs(a + ¢, b, Qo).
Proof. In the notation of [23],

Tg(a, b, v) = Ig(z+¥72+2"22)



CHAPTER 3. POINCARE SQUARE SERIES 61

and

Hi(a,b,Q) = Tg (=" g(2))
and

Ha(a,b,Q) = T2+ g (2))
and

Hy(a,b,Q) = Tg (=" (Hq(2) - Hq(2))).

This calculation of I°(Qq, @1, Q>) is available in Appendix B of [23]. Finally, the calculation
of (14(f;2;s) is given in theorem 4.5 loc. cit. O
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Chapter 4

Vector-valued Eisenstein series of

small weight

This chapter is taken from the paper [70].

4.1 Introduction

In [18], Bruinier and Kuss give an expression for the Fourier coefficients of the Eisenstein
series Ey of weight k& > 5/2 for the Weil representation attached to a discriminant form.
These coefficients involve special values of L-functions and zero counts of polynomials modulo
prime powers, and they also make sense for k € {1,3/2,2}. Unfortunately, the g-series Ej
obtained in this way often fail to be modular forms. In particular, in weight & = 3/2 and
k = 2, the Eisenstein series may be a mock modular form that requires a real-analytic
correction in order to transform as a modular form. Many examples of this phenomenon
of the Eisenstein series are well-known (although perhaps less familiar in a vector-valued

setting). We will list a few examples of this:

Example 48. The Eisenstein series of weight 2 for a unimodular lattice A is the quasimod-

ular form

By (1) =1-24) o1(n)q" =1 —24q — 72¢° — 96¢° — 168¢"* — ...
n=1



CHAPTER 4. VECTOR-VALUED EISENSTEIN SERIES OF SMALL WEIGHT 63

where o1(n) = > djn @, Which transforms under the modular group by

2<a7+b

6
_ 2
c¢—{—d> = (et + d)*Ey(1) + 7m,c(c7'+d).

Example 49. The Eisenstein series of weight 3/2 for the quadratic form Qs(x) = z? is

essentially Zagier’s mock Eisenstein series:
Eyp(r) = (1 —6g—12¢% — 16¢° — ...>eo + ( 4t —12¢74 — 124 V4 ...)em,

in which the coefficient of ¢"/%¢,, 5 is —12 times the Hurwitz class number H(n). It transforms

under the modular group by

E3/2<ZZ:[2) = (e + d)3/2p*< (Z Z) ) [E3/2(r) — %\/g/d:j(T +1)7329(t) dt |,

where ¥ is the theta series

W(r) = Z q"2/4en/2.

nel

Example 50. In the Eisenstein series of weight 3/2 for the quadratic form Q3(z) = 622, the

components of ej/12, €512, ¢7/12 and eyq/12 are

( 3P/ AT/ T g 95/24 (g 119/2 _ g 143/24 _ ) ,

for v € {1/12,5/12,7/12,11/12}. We verified by computer that the coefficient of ¢g"~'/?*
above is (—1) times the degree of the n-th partition class polynomial considered by Bruinier
and Ono [19] for 1 < n < 750, which is not surprising in view of example 2 since this degree
also counts equivalence classes of certain binary quadratic forms. This Eisenstein series is

not a modular form.

Example 51. The Eisenstein series of weight 3/2 for the quadratic form Q4(z,y,z) =

2 is a mock modular form that is related to the functions considered by Bringmann

2+ y2 —Zz
and Lovejoy [8] in their work on overpartitions. More specifically, the component of ¢ g0

in E3/2 is

1 —2g—4¢> = 8¢° = 10¢* — ... = 1= > " [a(n)|q",
n=1
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where @(n) is the difference between the number of even-rank and odd-rank overpartitions
of n. Similarly, the M2-rank differences considered in [8] occur in the Eisenstein series of

weight 3/2 for the quadratic form Qs(z,y, 2) = 22% + 2y — 2%, whose ¢(0,0,0)-component is
1—2¢—4¢° —2¢* —8¢° — 8¢° — 8¢" — ...
as pointed out in [71].

Example 52. Unlike the previous examples, the Eisenstein series of weight 3/2 for the
quadratic form Qg(z,y,2) = —2% — y* — 2? is a true modular form; in fact, it is the theta
series for the cubic lattice and the Fourier coefficients of its ¢(g)-component count the
representations of integers as sums of three squares. From our point of view the differ-
ence between this and the previous examples is because (g has a relatively small number
of isotropic vectors modulo large powers of 2 (such that certain local L-functions will be

holomorphic).

Among negative-definite lattices of small dimension there are lots of examples where the
Eisenstein series equals the theta series. (Note that we find theta series for negative-definite
lattices instead of positive-definite because we consider the dual Weil representation p*.)
When the lattice is even-dimensional this immediately leads to formulas for representation
numbers in terms of twisted divisor sums. These formulas are of course well-known but
the vector-valued derivations of these formulas seem more natural than the usual derivation
as identities among scalar-valued forms of higher level. We give several examples of this
throughout this chapter.

In the last section we make some remarks about the case k = 1/2, where the formula of

[18] no longer makes sense and so the methods here break down.

4.2 The real-analytic Eisenstein series

Fix an even lattice A and let p* be the dual Weil representation on C[A’/A].

Definition 53. The real-analytic Eisenstein series of weight £ is

Ei(r,s) = Z (y°eo)|xM = % Z(CT—}—d)_klcT +d| 72 p (M) e,

MeT oo\ c,d
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c d
Mp,(Z) with bottom row (c,d); and the branch of (er + d)~* is determined by M as an

element of Mpo(Z) as usual.

a b
Here, (¢,d) runs through all pairs of coprime integers and M is any element ( ) €

This series converges absolutely and locally uniformly in the half-plane Re[s] > 1 — k/2
and defines a holomorphic function in s. For fixed s, it transforms under the metaplectic
group by

E (M T s) = (er + d)*p (M) EL(r, 5)

b
for any M = ¢ p € Mpo(Z). These series were considered by Bruinier and Kiihn [17]
c

in weight & > 2 who also give expressions for their Fourier expansions. (More generally
they consider the series obtained after replacing ey with ez for an element g € A’/A with
Q(B) € Z. We do not do this because it seems to make the formulas below considerably
more complicated, and because for many discriminant forms A’/A one can obtain the real-
analytic Eisenstein series associated to any 3 from the E (7, s) above by a simple “averaging”
argument as in section 3.8.)

The series E}(7,s) can be analytically extended beyond the half-plane Re[s] > 1 — k/2.
We will focus here on weights k& € {1,3/2,2}, in which the Fourier series is enough to give an
explicit analytic continuation to s = 0. First we work out an expression for the Fourier series
(in particular, our result below differs in appearance from [17] because we use a different

computation of the Euler factors). Writing

EkTS—eo—i-Z Z c(n,v,s,9)q" e,

yeN /An€Z-Q(v)

a computation analogous to section 1.2.3 of [12] using the exact formula for the coefficients
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p(M)g ., of the Weil representation cited there shows that

ooty
c(n,v,s,y) Z Z / (em 4+ d)*|er + d| **e(—n7) dz

40 de(Z/cL) ootiy

=y Z Z ovc_k_%e(n?d) /OOHy 77F 7|7 e(—n7) do

=1 de(Z/cZ)> —ootiy
\/%b —bt
 VIN/A]

where M is any element of Mp,(Z) whose bottom row is (¢, d). Here, L(n, v, s) is the L-series

ysi(n,’y,k+e/2+ 2s)1(k,y,n,s), (4.1)

L(n,v,s ZC s+e/2 Z P(M)O;ye<%l>

de(z]ez)”
_ Z DY ( — (1, 0) +dQ(y) — ”d>
C
vEA/cA
de(z)cz)>

_ZC SZ[ (¢/a)a (C/a)e,#{UGA/aA; Q(v—y)—{—nEO(moda)H

alc

= C(S - e)ilL(na Y S — 1)7

where L(n, 7, s) is

o0

L(n,v,s Za = H (Z “*N(p ): H L,(n,v,s)

pprime v=0 p prime

and N(p¥) is the number of zeros v € A/p”A of the quadratic polynomial Q(v — ) + n; and
I(k,y,n,s) is the integral

co+1y
I(k,y,n,s) = / T’k\ﬂ’%e(—nr) dx

—oo+1y

_ y1k25€27rny/ (t + Z—)fk(tQ + 1)*3e(—nyt) dt’ T = y(t + Z)

oo

Remark 54. Both the L-series term L(n, 7, s) and the integral term I(k,y,n, s) of (1) have

meromorphic continuations to all s € C. First we remark that the integral I(k,y,n,s) was
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considered by Gross and Zagier [37], section IV.3., where it was shown that for n # 0,
I(k,y,n,s) is a finite linear combination of K-Bessel functions (we will not need the exact

expression) and its value at s = 0 is given by

0: n < 0;
I(k,y,n,0) = (4.2)
(—QWi)knk_lﬁ :n>0;
if n # 0; and when n = 0,
ke h9s 1-p 9L (28+k—1)
I(k 0 — - k22 k—2s, 1—k—2s ) 4.3
( Y, >S> 7T( Z) ) F(S)F(S + k-) ( )
In particular, the zero value of the latter expression is
0: k # 1,
I(k,y,0,0) = 7
—im: k=1

The Euler factors Ly(n,7,s) = > - p "*N(p”) are known to be rational functions in
p~*® that can be calculated using the methods of [23] (as in sections 3.3 and 3.9). For generic
primes (primes p # 2 that do not divide |A’/A|, or the numerator or denominator of n if
n # 0) the result is that

Lp(nv’% S) = ,
1— (%)pe/Z—l—s

if e is even and

1_p617175 [1 + (%)p(e_lm_s} : n#0;

Lp(nv e 3) =
1_p€71723 .
(I-pe=1=)(1—pe=2s) °

n = 0;
if e is odd. Here, D' and D’ are defined by

D' = (—1)*|A'/A] and D' = 2nd2(—1)F"'?|A’/A].
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In particular, if we define D = D’- Hbadpp2 and D=1 Hbadpr, where the bad primes

are 2 and any prime dividing |A’/A| or n, then we get the meromorphic continuations

m [Toaap(X =) Lp(n, v, = 1) 0 n#0;
L(n,~,s) =

L(s—1—e/2 e—s . A,
é(s e/2/x>,:<>D Hbadp( )LP(S - 1) : n = Oa

if e is even and

%Hbadpllpep%[’ (n,"}/,s - 1) on 7& O;
E(n,%s) =

=) (1—pct2—29) ' N
25 1 e) Hbadp 1_pe+172s Lp(s - 1) . n = O,

if e is odd.

Remark 55. We denote by E}) the series

) =r¢o+ Z Zc n,7,0,y)q"e,.

yeN /A n>0

The formula (2) gives I(k,y,n,0) = (—2mi)*nF! 1 7 independently of y, and so Ex(7) is
holomorphic. When k > 2, this is just the zero—value Ek( ) = E;(7,0) and therefore Ej, is a

modular form. In small weights this tends to fail because the terms
lirré L(n, v, k+e/2+2s)I(k,y,n,s)
S—>

may have a pole of L canceling the zero of I for n < 0, resulting in nonzero (and often

nonholomorphic) contributions to E;(7,0).

Remark 56. Suppose the dimension e is even; then we can apply theorem 4.8 of [18] to
get a simpler coefficient formula. (The condition k = e/2 there is only necessary for their
computation of local L-factors, which we do not use.) It follows that the coefficient ¢(n, 0)

of ¢"ep in E, is

¢(n,0) =

Ve (— (2k+bT—b7)/4
(2m) (1) (n.xp) - [T [0 = )Ly, 0.k + /2~ 1)].

L(k.xo)v/INJA(R) T
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where gj_1(n, xp) is the twisted divisor sum
or1(n,xp) =) xp(n/d)d"
dln
and D’ = 4|A’/A|. For a fixed lattice A, the expression
I [0 = )Ly, 0,k + e/2 = 1)]
p|D’

above can always be worked out in closed form using the method of [23], although this can
be somewhat tedious (in particular the case p = 2, which was worked out explicitly in section
3.8.) Theorem 4.8 of [18] also gives an interpretation of the coefficients when e is odd but

this is more complicated.

4.3 Weight one

In weight 1, the L-series term is always holomorphic at s = 0. However, the zero-value
I(1,4,0,0) = —im

being nonzero means that Fj still needs a correction term. Setting s = 0 in the real-analytic

Eisenstein series gives

(—1)H YD/ L0, xp) "
VIN/A] L(1,xp)

X Z [ lim(1 — pe/z_l_zs)Lp(()» v.e/2+ 23)] vy

Ef(1,0)=F(1) —7

where D is the discriminant D = —4|A’/A| and the bad primes are the primes dividing D.
In particular, F; may differ from the true modular form Ej(7,0) by a constant. (Of course,
E{(7,0) may be identically zero.)

For two-dimensional negative-definite lattices, the corrected Eisenstein series E7(7,0) is
often a multiple of the theta series. This leads to identities relating representation numbers
of quadratic forms and divisor counts. Of course, such identities are well-known from the

theory of modular forms of higher level. The vector-valued proofs tend to be shorter since
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M;.(p*) is generally much smaller than the space of modular forms of higher-level in which
the individual components lie, so there is less algebra (although computing the local factors

takes some work). We give two examples here.

Example 57. Consider the quadratic form Q(z,y) = —2% — zy — y?, with |A’/A| = 3. The

L-function values are
7T\/§

2
L(0,v_19) ==, L(1,v_13) =
( » X 12) 37 ( » X 12) 6
and the local L-series are

14277 1

L2<Oa 073) = m» L3(O707$) - 1_—31,3

with
3
lim(1 — 27%)15(0,0,1 4 2s) = T lim (1 — 372%)L3(0,0,1+2s) =1,
Ss—

s—0

and therefore Ef(7,0) = E;(7) + ¢g. Since M;(p*) is one-dimensional, comparing constant
terms shows that
El(’T) + ¢ = 24).
Using remark 56, we find that the coefficient ¢(n,0) of ¢"¢¢ in Ej is
2m

c(n,0) = - 0o(n, X—12) X
(n,0) L(LX_m)-\/g o(n, x-12)
3/2: wy(n)even; |[2: n# (3a+ 2)3° for any a,b € Ny;
X .

0: vo(n) odd; 0: n=(3a+2)3" for some a,b € Ny;

S/ N\

vV Vv
local factor at 2 local factor at 3

- —12y7 J1i on# (Bat2)3%
_12[;( d >] 0: n=(3a+2)3.

This implies the identity
#{(a,b) € Z* : a* + ab+b* =n}
= 6¢ - (#{divisorsd =60+ lofn} — #{divisorsd = 6/ — 1ofn}>,

valid for n > 1, where € = 1 unless n has the form (3a + 2)3° for a,b € Ny, in which case
e=0.
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Example 58. Consider the quadratic form Q(z,y) = —z? — y?, with |[A//A| = 4 and
X_16 = X—4. The L-function values are
T
L(O,X_4) - ) L(17X—4) — Z;

~— |

and the only bad prime is 2 with Ly(0,0,s) = # and therefore

lim(1 — 2¢/27172)14(0,0,e/2 + 2s) = 1.

50
Therefore,
Ef(7,0) = Ey(7) + eo.
Since M;(p*) is one-dimensional, comparing constant terms gives Ey(7) + ¢g = 209(7).

By remark 56, the coefficient ¢(n,0) of ¢"¢y in Ej is

T 2. _74 %+ —1; _
L R TR i S )

local factor at 2
and therefore
—4
D) e 2= }:4 (_>
#{(ab) €Z: a4 =n > (5

—4. (#{divisorsd — 40 + 1ofn} — #{divisorsd = 4¢ + 30fn}>.

Remark 59. Experimentally one often finds that the weight 1 Eisenstein series attached to
a discriminant form equals a theta series even in cases where it is impossible to associate
a weight 1 theta series to the discriminant form in a meaningful sense; such relations are
almost certainly coincidence resulting from small cusp spaces in weight 1. For example, the

indefinite lattice with Gram matrix

2 -1 -1 -1

-1 2 -1 -1
S =

-1 -1 2 -1

-1 -1 -1 2

yields an Eisenstein series in which the component of ¢; is

2
Er(1,0) = 3 +4q 4+ 4¢> + 4¢* + 8¢7 + 4¢° + ...
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ie. % times the theta series of the quadratic form z? + zy + y?. However, the discriminant
form of S has signature 2 mod 8 and is therefore not represented by a negative-definite
lattice whose theta series has weight one.

On the other hand, replacing S by

-6 3 3 3

3 —6 3 3
38 =

3 3 —-6 3

3 3 3 -6

yields an Eisenstein series in which the component of eq is

) 34 4 68 . 4, 8
El(T,O)—2—7—§q+§q 9q4—§q7+

68 |,
¢+
54

with the surprising property that its coefficients have infinitely many sign changes; in par-
ticular, this example should make clear that E}(7,0) is not simply a theta series for every

lattice.

4.4 'Weight 3/2

In weight 3/2, the L-series term is

L(n,7,3/2+e/2 + 25)

L(1+2s (e—3)/2—2s
<C;;S+;<;-> [oaap “rmLp(n, 7, 1/2 + €/2+ 25) - n # 0;

¢(4s+1 1_p(e=3)/2—2s)(]_p—1—4s
D Ty 0 (0,7, 1/2 4 /24 25) =0

and it is holomorphic in s = 0 unless n = 0 or

D= -2md|N/A| T] »°
bad p

is a square. In these cases, L(n,,3/2 + /2 + 2s) has a simple pole with residue

3 . (1 _ pe/2—3/2—25)<1 _ p—l)
m
s—0 1— pfz

Lp(n> 77 1/2 + 6/2 + 23)
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if n # 0, and

3 ' (1 - pe/2—3/2—25)(1 - p—l)
Q_ﬂgbd il_rf(l) 1_p72 Lp(n7771/2+6/2+28)

ifn=0.

This pole cancels with the zero of I(k,y,n,s) at s = 0, whose derivative there is

d
ds

1 o0
I(k,y,n,s) = —16m(1 + 1)y~ Y2B(4x|nly), where B(z) = Tom / w3 e u,
s=0 T

as calculated in [38], section 2.2. This expression is also valid for n = 0, where it reduces to

d Cos 1995 L'(2s+1/2) 27
I(k.v.0.5) =2 372 & 9—1/2-2s, —1/2-2s _
oot Ry 0y 8) = 2m(=0"7o0] Y T(s)D(s+3/2) /i

a4
ds

(1+41).

Therefore, E} /2 (7,0) is a harmonic weak Maass form that is not generally holomorphic:

3( 1)(3+b+—b /4\/— Z H (e—3)/2
-1
TV ylA /A ~EN /A pl#(A’/A) 1 + p

Q(v)eZ

(0,7, 1/2+ ¢/2)e, )+

48(—1 (3+b+fb_)/4\/§ 1 _p(673)/2
+ (=1) — Z [5(4W|n|y) H R
V y| / | yEA'/A bad p p

n€Z—Q(v)
—2n|A//A|=0

Ly(n,7.1/2+ ¢/2)] a",

where —2n|A’/A| = O means that —2n|A’/A| should be a rational square. (In particular,

the real-analytic correction involves only exponents n < 0.)

Example 60. Zagier’s Eisenstein series [38] occurs as the Eisenstein series for the quadratic

form Q(z) = 2?. The underlying harmonic weak Maass form is

1—p! n
Eso(T) — Z Z B(4r|n|y) H Tp*le(n’% 1)q"e,

’YEA’/A neZ—Q(v) badp
—n=0 —

=1

J/

= Bypa(r) — = Y Bldn(n/2)%y)q "> e, ..
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(Here the representation numbers in L, (n,, 1) can be evaluated directly by Hensel’s lemma.)

The coefficient of ¢™/* in

Eyp(r) = (1 — 6 — 124* — 16¢° — ...>eo + ( 4Pt 12gT — 12904 — ...>e1/2

is —12 times the Hurwitz class number H(n). We obtain Zagier’s Eisenstein series in its usual

form by summing the components, replacing 7 by 47 and y by 4y, and dividing by —12.

Remark 61. We can use essentially the same argument as Hirzebruch and Zagier [38] to

derive the transformation law of the general Ej/. Write £3 »(7,0) in the form

E3)(7,0) = E3p0 + — Z Z (—4mny)q e,
\/_ ~EA'/AnEL <cg

with coefficients a(n,). Applying the &-operator & = y3/2 q of [16] to Ej,(,0) and using

d 1 1 d & _3/2 _ 1 _3 —

i B - = vq ] — = ,73/2 -y

dy[\/gﬂ(yﬂ 167 dy[/y voe 1677 €
shows that the “shadow”

9(r) =D an,y)g e,

77“

is a modular form of weight 1/2 for the representation p (not its dual!), and

E3o(7,0) = Eypo(r) =y 2 > Z (—4mny)q"e,
~EN /A nEZ—Q(y

_ - .-1/2 —3/2 —4mnuy . n
= 167Ty /1 ;u e q"e,du

1 oo
= —y_1/2/ w329 (2iuy — 1) du
167 1
/5
= FZ (v+7)"29(v) dv, v = 2iuy — 7.
T

—x+1y

a —b
—c d

a

b -
d> € Mpy(Z), defining M = ( > as in remark 6 and substi-

For any M = (
c
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tuting v = M-t gives

\/_' o rar 4+ b —3/2
d(v)d
167 (m’ +d * > (v) dv

d/c _ -3/2 .
:Q (aT—i—b at b) I - 1) dt
167 ct+d  —ct+d (ct — d)?

E§/2<M - T, O) — E3/2(M . ’7')

i d/c B
\l/ei(c + d)3/2/ (7 4+ 1)732p(M)V(t) dt

i d/c
e+ a2 n[2 [ i ai

Since E (M -7,0) = (er 4+ d)*/?p* (M) E?,,(1,0), we conclude that
3/2 P 3/2

Bsjo(M - 7) = (cr + d)**p* (M) [E3/2 Tor /d £)~3209(t) dt} . (4.4)

Remark 62. The transformation law above can be used to give an easier sufficient condition
for when Ej/, is actually a modular form. For example, one can show that M /s(p) = 0 for
the quadratic form Q(z,y,2) = —2? — y? — 22, which implies that the series ¥ defined above

must be identically 0 and therefore
Espa(M - 7) = (e1 + d)*p" (M) Esa(7),

so Es/y is a true modular form. (In this case, the local L-series Ly(n,v,2 + 2s) at p = 2
is holomorphic at s = 0, and therefore the factor (1 — 272%) annihilates the L-series term
L(n,7,3/2 + ¢/2) in the shadow.) This must be the theta series because Mso(p*) is one-
dimensional.

It may be worth pointing out that the coefficient formulas ([18], theorem 4.8) for this
theta series and for the Zagier Eisenstein series are nearly identical, since the squarefree parts
of their discriminant and the “bad primes” are the same: the only real difference between
them is the local factor at 2. For odd integers n, the local factor at 2 is easily computed
and in both cases depends only on the remainder of n mod 8, so the coefficients r3(n) of the
theta series and H(4n) of the Zagier Eisenstein series within these congruence classes are

proportional. Specifically,
rs(n) =12H(4n), n=1,5(8); r3(n) =6H(4n), n=3(8); r3(n) =0, n=7(8).

These identities are well-known and were already proved by Gauss.
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Example 63. Even when M, 5(p) # 0, we can identify ¥ in M, »(p) by computing finitely
many coefficients. Consider the quadratic form Q(z,y, z) = 2* + y* — z*. The space M 2(p)
is always spanned by unary theta series embedded into C[A’/A] (as proven by Skoruppa [61])

and in this case one can find the basis

Vi(7) = (1 +2¢+2¢" + ) (e(0,0,0) + €1/2,0,1/2))+
n <2q1/4 4 20%M 4 2g®/t ) (e(0,1/2,0) T €(1/2,1/2,1/2))5
Va(7) = (1 +2q+2¢" + ) (¢0,0,0) + €(0,1/2,1/2))+
+ <2(]1/4 +2¢°* 4 2¢%/* + ) (e(1/2,0,0) + €1/2,1/2,1/2))-
The local L-series at the bad prime p = 2 for the constant term n = 0 are

(1—27%)L,(0,0,2 + 2s) = and (1 —27%)L,(0,7,2+2s) =1

1—2- 1-4s
for v € {(1/2,0,1/2),(0,1/2,1/2)}, which implies that
3
21y \3

(where the ... involves only negative powers of ¢) and therefore that the shadow is

9(r) = =8(1(7) + va(r)).

In particular, the ep-component Es/s(7)g of Es/5(7) is a mock modular form of level 4

that transforms under I'(4) by

4 2 2
< €(0,0,0) T 5€(1/2,0,1/2) T 5€(0,1/2, 1/2)) + .

E3)5(7,0) = E39(7) — 3 3

Esp(M - 7)o = (7 + d)*/? [E3/2(T)o - \/—_Z (4 t)7320(t) dt|,
™ d/c
where O(t) = >, ., e(nt) is the classical theta series. It was shown by Bringmann and

Lovejoy [8] that the series

o0

M(r+1/2)=1- Z n)|g" =1 —2¢ — 4¢* — 8¢ — 10¢* —

of example 51, where |@(n)| counts overpartition rank differences of n, has the same trans-
formation behavior under the group I'g(16), which implies that the difference between
M(7 + 1/2) and the ep-component of E3/y is a true modular form of level 16. We can

verify that these are the same by comparing all Fourier coefficients up to the Sturm bound.
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4.5 Weight two

In weight k = 2, the L-series term is

mnbadp(l —p€/272725)Lp(n,7,1 +€/2+28) n 7é 0,

L(n,7,2+¢/242s) =

;i;z ig Hbadp( pe/2_2_2S)Lp(n7 Y, 1+ 6/2 + 28) : n=0.

Since L(1, ) is never zero for any Dirichlet character, the only way a pole can occur at
s=0isif n =0 and D = |A’/A| is square. (In particular, when |A’/A| is not square, Es is

a modular form.)
Assume that |[A’/A] is square. Then

L(1+2s,xp) = ((1+2s) [J(1=p ™),

bad p

and therefore L(0,7,2 + e/2 + 2s), has a simple pole at s = 0 with residue

Res(i(o,% 24 /24 2s),s = 0)
1

= 1 — -1 li 1 — e/2—2—2s L.(0 1 9 9
2L(27XD) bl_(i[ |:< p )51_13(%( p ) p( » Vs +€/ + S)

3 . 1 — pe/2-2=2s
RS slgtl)b];[ Tp,le(O,’y, 1+e/2+2s)
ad p

for any v € A’/A with Q(vy) € Z. This pole is canceled by the zero of 1(2,y,0,s) at s =0

which has derivative

zs 5:01(2,%0,5) = _2ﬂ(2y)_1dis SO(QZJ)_%%
o m
==
SO
* pe/2-2-2s
E3(7,0) = Ey(7) — ﬂy\/msﬁ @Z'/Agp e Ly(0,7,1 4 ¢/2 + 28)e,.  (4.5)

Q(v)EZ
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Example 64. Let A be a unimodular lattice. The only bad prime is p = 2. Using the
hyperbolic plane Q(z,y) = xy to define A, the local L-function is

1—27°%
L5(0,0,5) = ————
2( ) 75) (1 . 21,3)2
with Ls(0,0,2) = 3, so we obtain the well-known result
3 1-1/2 3
E5(1,0) = E - L5(0,0,2) =FE - —.
H(0) = Balr) = = g 1al0.0.2) = Balr) = =

Remark 65. We can summarize the above by saying that

E3(1,0) = Ey(t) — = > A(Y)e,

Cc

b
is a Maass form for some constants A(vy). For M = <a d> € Mpy(Z), since

E5(M - 7,0) = (1 4 d)*p*(M) E5(7,0),
we find the transformation law

. et + d|?
Ey(M -7)=FEj;(M -1,0)+ ler +d Z A(vy)e,

y ~veA /A
Q()EeZ
= (e1 +d)?| p* (M) Ey(7) — 2ic(er + d) Z A(fy)p*(M)ew].

Q()€EZ

Example 66. The weight-2 Eisenstein series for the quadratic form Q(z,y) = 22 + 3zy +
is a true modular form because the discriminant 5 of () is not a square. In particular, the

¢g-component
1 — 30q — 20¢> — 40¢* — 90¢* — 130¢° — 60¢° — 120" — 100¢® — 210¢° — ...

is a modular form of weight 2 for the congruence subgroup I';(5). Using remark 11, we see

that the coefficient ¢(n) of ¢" for n coprime to 10 is

=30 g <ni/d)d : n==+1 mod 10;
=205, (2)d: n=+3 mod 10;

c(n) =

with a more complicated expression for other n involving the local factors at 2 and 5.
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Example 67. The weight-2 Eisenstein series for the quadratic form Q(x,y) = 2zy is

By(1) = (1 — 8 — 40¢% — 32¢° — 104¢" — ...)e(ovo)
+ (= 169 — 324> — 64¢° — 64¢" — 96¢° — ) (e(01/2) + ¢(1/20))

+ ( — 8¢"/? — 32¢%? — 48¢°"* — 64"/ — 104¢° — ) e(1/2.1/2)

- (1= 82 [0

n=1 d|2n
+ ( - 82 [Z(l — (—1)n/d)d} C.I”) (e(0,1/2) + €(1/2,0))
=1 djn

+ ( -8 Z o1(2n + 1)q"+1/2> €(1/2,1/2)-
n=0

It is not a modular form. On the other hand, the real-analytic correction (7) only involves

the components e, for which Q(7) € Z, i.e. ¢(0,), ¢(0,1/2), ¢(1/2,0), SO the components
1=83 [ ntd)en, S0 [30 - (-]
n=1 d|2n n=1 d|n
are only quasimodular forms of level 4, while >>° jo1(2n + 1)¢*"*! is a true modular form.

Example 68. Although the discriminant group of the quadratic form Q(x1,zo, 3, 14) =
—x? — 23 — 2 — 22 has square order 16, the correction term still vanishes in this case. This

is because the local L-functions for p = 2,

220 =,
L(0,7,3+s) =422
1: v =1(1/2,1/2,1/2,1/2);

4/272723>

are both holomorphic at s = 0 and therefore annihilated by the term (1 — p at

s = 0. (Another way to see this is that ) ,car/a A(7)e, is invariant under p due to the

Qv)ez
transformation law of E,, but there are no nonzero invariants of p in this case.) In fact, the

Eisenstein series Fy for this lattice is exactly the theta series as one can see by calculating

the first few coefficients. Comparing coefficients of the ¢p-component leads immediately to
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Jacobi’s formula:

(2m)*
L(2, X64) . 4

AP ERTR S

dn 32772 peven;

#{(a,b,c,d) €Z*: a* +V* + P+ d* =n} = ~o1(n, xe4) - L2(n,0,3)

(8°d:  nodd;

din

24 > d: neven;
din
\ dodd

for all n € N.

4.6 Remarks on weight 1/2

The Fourier expansion defining Ej(7) is no longer valid in weight £ = 1/2; in fact, the

L-series factor in this case is

L 257D 1— (e—1)/2—2s e ) ‘
é(4s)) Hbadp L#Lp (TL, v, Tl -+ 25) : n 75 O’

- 1
L(n,fy, e—;— +25) =

Ads— _(e—1)/2—2s _nl—4s e
C(C(4s)1) Hbadp U= 1,p—2s(1 z )Lp (n, v, Tl + 25) Ton= O’

which generally has a singularity at s = 0, so our approach fails in weight 1/2.

Despite this, the weight 1/2 Eisenstein series Ej /2(7',5) should extend analytically to
s = 0. One way to study E7 /2(7, s) is by applying the Bruinier-Funke operator &5/, to the
weight 3/2 series Ej (7, s) for the dual representation (i.e. the same lattice with negated
quadratic form); from &35y = —5y*'/2 one obtains &9 E; o (7, 5) = =5 By (7,5 +1/2) for
all large enough s. Carrying over the arguments from the scalar-valued case (e.g. [28], section
4.10) should imply that EY /2(7, s) will satisfy some functional equation relating EY /2(7, s+
1/2) to EY (7, —s) (or more likely some combination of Ej, 5(7,—s) as # runs through
elements of A’/A with Q(f) € Z in general) although in the half-integer case this seems less
straightforward. Assuming this, for large enough Re[s] it follows that E} /2(7', —s) should be
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a linear combination of 3/ F3 /2 ﬂ(T, s) with coefficients depending on s but independent of

7; we might even expect this to hold for arbitrary s and therefore conjecture:

Conjecture 69. The zero-value EI/2(T, 0) for a discriminant form (AN'/A, Q) is a holomor-
phic modular form of weight 1/2; moreover it is a linear combination of the shadows of mock
Eisenstein series Esjs g(T) for (N/A, =Q).

Unfortunately, if this is true then from our point of view there is little motivation to
consider EY /2(7, 0) further: modular forms of weight 1/2 are spanned by what are essentially
unary theta series and any resulting identities among coefficients will be uninteresting. There
may be interest in higher terms of the Taylor expansion of E7 /2(7', s) in the variable s which
might be used to generate mock modular forms of weight 1/2 and higher depth, but this is
outside the scope of this chapter.

There is one class of examples where this conjecture can be verified directly. In dimension
e = 1, where the quadratic form is Q(z) = —ma? for some m € N, we can make sense of

1745 are canceled by the numerators at s = 0,

the coefficient formula because the terms 1 —p
and the Fourier series then provides the analytic continuation of E} /2(7, s) to s = 0. The

L-series factor in this case is

287XD Lp(n 7723) . .
TCls) Hbadp Tlap n # 0;

L(n,~,1+2s) =

45 1) 1 4S)LP( v7728) . —
C(4S Hbadp 1+4+p—2s : n=0.

Here, D is the discriminant

D = 2d2n|A'/A| H p* = dmnd’ H P

bad p bad p

Suppose for simplicity that m is squarefree (and in particular, § = 0 is the only el-
ement of A’/A with Q(5) € Z). The local L-factors can be calculated by elementary

means (for example, with Hensel’s lemma), and the result in this case is that F; /2(7') =
L- ¢o + Z’yEA’/A ZnGZ—Q('y) C(nJ ’Y)qne'y with
4|d,

c(n,v) =2-(1/2)%, e = #{primes p # 2 dividing d, } +
0: otherwise.
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Here, d, is the denominator of v; that is, the smallest number for which d,y € A.

The shadow of the mock Eisenstein series Ejo(7) attached to ma? can be computed
directly as well, although this is more difficult. On the other hand, one can use the fol-
lowing trick: via the theta decomposition, the nonholomorphic weight 3/2 Eisenstein series
By,
index m. The argument of chapter 4 of [31] still applies to this situation and in particular
B3, (1,2,0) = ﬁE{l(T, 2,0)|V,, for the Hecke-type operator

DIV (7, 2) = MZCT” (- cchfci)q)(ZIZ’C:fd)?

(7,0) corresponds to a nonholomorphic, scalar Jacobi Eisenstein series Ej, (7,2,0) of

the sum taken over cosets of determinant-m integral matrices M by SLy(Z). (Here we must
assume that m is squarefree). However, E3 (7,2,0) arises through the theta decomposition
from the Zagier Eisenstein series and so its coefficients are well-known. In this way one can

compute that Eg‘/z(r, 0) is

g X T

'yeA'/A n€Z—Q(v) alm 'yGA’/A nEZ+Q(v

where H(n) is the Hurwitz class number (and H(n) = 0 if n is noninteger) and the coefficients

of the shadow are

—24y/m2. . n=0;
a(n,vy) = —48\/_‘70 d(m") . mn =0, mn # 0;
0: otherwise,

and where we use the convention ged(m,n) =[], )4 ()20 prin(e(m) () (50 for example

vp(m),vp(n

ged(30,3/4) = 3). Unraveling this, we see that Ejo(7) differs from the shadow of Ej/o(7)
by the factor —24\/5?1)%23
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Chapter 5
Poincaré square series of small weight

This chapter is taken from the paper [69].

5.1 Introduction

The purpose of this chapter is to extend the previous construction of Poincaré square series
to weights k = 3/2 and k = 2. Convergence issues make these cases more difficult. One
immediate problem is that the Eisenstein series may fail to define a modular form; in fact, it is
not hard to find lattices where My (p*) = 0. For example, the space of scalar-valued modular
forms of weight 2 is zero. These weights remain relevant to the problem that motivated [68]
of computing spaces of obstructions for the existence of Borcherds products. Modular forms
of weight k = 3/2 resp. k = 2 are obstructions to the existence of Borcherds products on
Grassmannians G(2,1) (which includes scalar modular forms) resp. G(2,2) (which includes

Hilbert modular forms) as explained in [5]. The construction can be summarized as follows:

Proposition 70. (i) In weight k = 3/2, there are modular forms Qrmps € M(p*) with
rational coefficients and the property that

[(k—1) i c(mA?, \B)

(4m7r)k_1 /\2k+s—2
A=1

(f7 Qk,m,ﬂ) =2

s=0

for all cusp forms f.

(i1) In weight k = 2, there are quasimodular forms Q. m s with rational coefficients such that
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Qrm,p — B 15 a cusp form satisfying

Ik —1) i c(mA2, \j3)

(4ﬂ1ﬂ)k_1 \2k+s—2

(f, Qemp — E) =2

s=0
for all cusp forms f.

Here the notation |;—¢ may be understood as taking the value of an analytic continuation
at s = 0, regardless of whether the series above actually converge at s = 0.

The failure of the Jacobi Eisenstein series of weight &k < 5/2 to define a Jacobi form
is closely related to the failure of the usual Eisenstein series of weight k — 1/2 to define a
modular form. In particular, k¥ = 2 is the most difficult weight to treat because Eisenstein
series of weight 3/2 are often mock theta functions that require a real-analytic correction
term to transform correctly under T'.

Even in the cases where there are no cusp forms, the computation of ()., s may be
interesting; for example, in the simplest case where A is unimodular and m = 1, the equation

Q2,10 = Es is equivalent to the Kronecker-Hurwitz class number relation

o0

Z H(4n —r?) = 20,(n) — Zmin(d, n/d) = Zmax(d, n/d).

r=—00 dln d|n

5.2 The real-analytic Jacobi Eisenstein series

Fix an even lattice A, an element § € A’/A and a positive number m € Z — Q(f).

Definition 71. The real-analytic Jacobi Eisenstein series of weight £ and index m

twisted at [ is

E,:mﬁ(T, z,8)

= %S Z Z(CT +d)*|er + dl_QSe(m/\z(M T) +

c,d AEZ

2mAz — emz?
* A4 -1 ]
ct +d )p (M) €8

a b
c d
3—k

with bottom row (c, d). This series converges locally uniformly for Re[s] > =5=.

Here, ¢, d runs through all pairs of coprime integers, and M = < ) e T is any element
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After writing
E;ck,m,,B<7-7 Z>S> - Z (yseo)’km *(C, M)7
(G M)ETa\T P

it is clear that Ej, 5(7, 2, s) transforms like a Jacobi form of weight k and index m:

mez?
et +d

. <CL7"|—b z
kmB\er +d er +d

,8) = (eT + d)k’e< >p*(M>E;7m75(T, z,8)

and

By p(T 2+ AT+ ) = e( — mAT — 2mAz — m(Ap + t))a;(C)E;mﬁ(T, 2, 8)

a b -
for any M = 4 € " and ¢ = (A, u,t) € H. This series has an analytic continuation to
c

s € C, for which one can reduce to the continuation of the usual Eisenstein series by the same
argument as [2] uses in the scalar-valued case. (Another point of view is that the components
are essentially expansions of a Jacobi Eisenstein series for a congruence subgroup at various
cusps.)

Using the argument of [68], we see that Ej, (7,2, s) has the Fourier expansion
By p(7,2,5) qu’\ P erg + Z Z Z "(n, 7,7y, 8,9)q" ey,
AEZ YeN' /A reZ—(v,8) n€Z—

where ¢ = e(7) and ¢ = e(z) and the coefficient ¢(n,r,~, s,y) represents the contribution
from all M € f‘oo\f‘ other than the identity, given by

d(n,rv,sy) = —\/Eb_iwil
» Iy 9 - /—2m|A//A|

Here, I(k,y,w, s) denotes the integral

I(k—1/2,y,n —r*/4m, s)L(n,r, v, k + e/2 + 2s).

Ik, y,w,5) = y' ey / (1) H(# + 1) e(—wyt) dt,

[e.e]

and L is the L-series
L(n,r,v,s) =C(s —e—1)"'L(n,r,v,s — 1),

where

L(n,r,~v,s) = H <ZN _”S)

pprime v=0
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and N(p”) is the number of zeros (v, \) € Z*™! /p*Z¢*! of the polynomial Q(v + A3 — ) +
mA\% —rX+n.

Remark 72. Gross and Zagier consider in [37] the integral

Vi(w) = /_ T )R 4 1) (=) dt,

[e. 9]

(notice that k in that paper represents k“ here), and they show that for w # 0, the completed
integral

Vo (w) = (wlw]) =T (s + k) Vi(w)

s

is an entire function of s that satisfies the functional equation

Vi(w) = sgn(w)Vis,_(w).
Since
ye2wwy(ﬂ_|w|)s+k
[(s+k)

this extends I(k,y,w, s) meromorphically to all s € C and gives the functional equation

I(k,y,w,s) = Vi (wy),

I(k,y,w,s) = sgn(w)(ﬂ|w|)25+k_l%](k yyw, 1 —k—3), w#0.

The integral for w =0 is

l—k—sF(QS +k — 1)

I(k,y,0,s) = n(—i)"275(2y) T k)

Remark 73. The local L-series

(N, 1,7, S ZN p e

that occur in L(n,r,7,s) can be evaluated in the same way as the local L-series of [69].
Namely, for fixed 7,5 € A’/Aand n € Z — Q(y), m € Z— Q(B), r € Z — (~, 3), we define
discriminants

D' = d3d2 (1) (dmn — r?)|\'/A|

if e is even and

D' = 2md3(—1) V2N /A
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if e is odd.
Define the “bad primes” to be p = 2 as well as all odd primes dividing [A’/A[ or md} or

the numerator or denominator of (n — r?/4m)d3d2, and set

:D,‘HPQ, D:D/'HPQ.

bad p bad p

If e is even, then for primes p 1 D,

—1_;573 [1 + <%) peﬂ_s} : r?/4m —n # 0;
(n,r,7,s ZN p =

1_p€725 . 2 o .
(1—pe=s)(1—plte=2s) ° r /4m —n= 07

and if e is odd, then for primes p 1 D,

(
—1,;_5 [1 — (%) ple=D/2=s o 2 /4m —n £ 0;

»(n, 7,7, s ZN p =

1_(%)27(6—1)/2—5

(1—pe—2) [1—(%)p(e+1)/2—8] .

r?/4m —n = 0;

\

where (%) , (%) denote the Legendre (quadratic reciprocity) symbol. This gives the mero-

morphic extensions

S e eJrl s
L;S—Q/Z(iwnbadp 1— p€+2 28L (nylr‘;’y,s_ 1) . 1"‘2/4m_n%0’
z(na 7, S) -

(1_pe+11_7;2(712_72273725)Lp(n7 r,y,s—1): r?/dm —n =0;

for even e, and

m [Thaa, [(1 — Ly, y, s — 1)] : r?/dm —n £ 0;

L(n,r,v,s) =
L(s—(e+3)/2, et+1—s . .
—Lgsfgeilgjzégg [Thaayp [(1 —p ) Ly(n,ryy, s — 1)] : r?/4m —n = 0;

for odd e.
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Together, this gives the analytic continuation of the Fourier coefficients ¢/(n,r,~, s, y) of

B} .5(7,2,5) to s € C (possibly with poles) which must be the Fourier coefficients of the

3—k

continuation of Ej, 5(7, z,s) away from Re[s] > =5

Remark 74. We denote by FEy,, (T, z) the series that results by naively evaluating the
coefficient formula of [68] at k = 3/2 or k = 2 (without the weight 5/2 correction). In the
derivation of this formula it was assumed that I(k—1/2,y,n—r*/4m,0) = 0 for n—r?/4m < 0
and that Z(n, 7,7, ) is holomorphic at s = 0. These assumptions are not generally satisfied
when k£ < 5/2, and Ej,, (T, z) generally fails to be a Jacobi form in those cases. (In

particular, Ej ., 3(7,0) generally fails to be a modular form.)

5.3 A Petersson scalar product

Recall that the Petersson scalar product on Si(p*) is defined by

(f.9) = / Loy, S S

This is well-defined because cusp forms f(7) satisfy the “trivial bound” ||f(7)| < C - y~*/2
for some constant C' (this is clear on the standard fundamental domain by continuity, and
| £(7)||y*/? is invariant under I'), and because (f(7),g(7))y*2dz dy is invariant under T'.
More generally, we can define (f, g) for any functions f, g that transform like modular forms
of weight k& and for which the integral above makes sense. (This includes the case that
f,g € My(p*) and only one of f, g is a cusp form.)

In many cases it is useful to apply the following “unfolding argument” to evaluate (f, g),

which is well-known. If g(7) can be written in the form
= M
9= 3 U‘W
MeT\I
for some function u(7) that decays sufficiently quickly as y — oo, then for any cusp form f,

o= [ W T e My

MeT o\l

1/2 00
= / / (f,u)y* 2 dy du.
~1/2J0
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This is because there is a unique representative of every class M € foo\F that maps the

strip [—1/2,1/2] x [0, 00) to itself, “unfolding” the fundamental domain of I\ H to the strip.

Example 75. Taking the Petersson scalar product with the real-analytic Eisenstein series

Ei(r,s)= Y (y'«)

MeDo\T

M

k,p*

gives

(f, Ep(1,5)) / / ),e0) dzyf T 2dy =0
~1/2

J/

-~

=0

for all cusp forms f and sufficiently large Re[s] (and more generally by analytic continuation).

The more important example will be

9(1) = Ej , 5(7,0,0) — E;(7,0) = lim (Zy e(mA’7) e,\g>‘ M.

s—0 - B
MeT o\ A#0

Lemma 76. For any cusp form f(1) = ZyeA’/A ZnEZ—Q(’Y) c(n,v)q" ey,

I'(k—1) w= c(mA2,\3
(f.9) = 2(4;7”)19—)1 AZ; ()\2k+s—2 )

s=0.

Proof. If Re[s] is large enough to guarantee that all series involved converge absolutely and

locally uniformly, then the unfolding argument gives

(f, E]:,mﬁ(T,O,S) Ej(T,s) / / m)\2 )e 5>yk+5_2 dy dx
,\;éo —1/2

—9. c(m)\Q, AB)/ e—47rm)\2yyk+s—2 dy
0

A=1

2L c(mAZ,\pB)
k—|—s—1 Z 47rm)\2 k+s—1"
A=1

Series of the form ) 37, C(mﬁv\ﬁ)

example [59]) and have analytic continuations, for which one can reduce to the scalar case

are closely related to symmetric square L-functions (see for

because the components of f are cusp forms of higher level. We take analytic continuations
of both sides to s = 0. m
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Remark 77. For k > 5/2, a simple M&bius inversion argument was used in [68] to show
that if a cusp form f(7) = > _ c(n,v)q"e, satisfies >3 % =0 forall g € A'/A
and m € Z — Q(), m > 0, then f = 0 identically. In weight & = 2 one can use Deligne’s
bound c(n,v) = O(n'/?*¢), which implies that s = 0 is on the boundary of the region of
absolute convergence, and apply essentially the same argument: taking the limit s — 0 in the
Mobius inversion argument gives the same result. On the other hand, in weight k£ = 3/2 this
argument would require switching the order of a limit process and an analytic continuation,

which seems difficult to justify.

In the following sections, we will construct modular forms Qg2 5(7) € Ms/2(p*) resp.
cusp forms Qa5 — F2 € Ms(p*) with rational coefficients that satisfy
= c(mA?,\p)
mp) =20k —1) — .
(f, Qrm,p) = Z (ArmA2)k+s =1 [ 4—g

A=1

For the above reason, the proof of chapter 3 that such forms contain Si(p*) within their
span is not rigorous when k = 3/2 and may well be false. For example, there is a Jacobi
form of weight two and index 37 ([31], table 4) corresponding to a modular form of weight
3/2 for the quadratic form Q(x) = 3722. 1 suspect that it cannot be constructed from the

forms Q3/2,m,5 (all of which seem to be identically zero).

5.4 Weight 3/2

Proposition 78. The value E;f/z’m’ﬁ(f, 2,0) at s = 0 is a holomorphic Jacobi form of weight
3/2. It differs from the result Es)s,, 5(T, 2) of the coefficient formula of [68] naively evaluated
at k = 3/2 by a weight 1/2 theta series.

Proof. The L-series term in this case is

L(n,r,7,3/2+ /2 + 25)

m [Thea,(1 = 07271 72) Ly(n, 7y, 1/2 + €/2+ 25) = n— 12 /4m # 0;

L@sxp) Hbadp( — 22 Lo (n, 1y, 1/2 +e/2 4+ 28) ¢ n—1?/d4m = 0.

1+25 XD)
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This is holomorphic in s = 0 because the Dirichlet L-series L(s, xp) never has a pole at
s = 0 or a zero at s = 1 and because the local L-factors L,(n,r,v,1/24e/2+2s) are rational
functions of s with finitely many poles, while the dimension e can be made arbitrarily large
without changing the underlying discriminant form (and therefore the value of L). Note that
L,(n,r,v,1/2 + e/2 4 2s) may have a simple pole at 0 if e = 2, but this is canceled by the

e/2—1-2s.

factor 1 — p ; in this case, we will write

(1= p* ) Lp(n,ry,1/2 + €/2) = lan(1 = p2 7 2) Ly (n, 7,7y, 1/2 + /2 + 2)
s—

by abuse of notation.

Despite this, the coefficient formula [68] still requires a correction because the zero-value

I(1,y,0,0) = —mi is nonzero. This is easiest to calculate as a Cauchy principal value:
I(1,,0,0) = lim _Z(t +i) N+ 1) dt = PV[/_Z(t+7J)‘1] = —Ti.
The corrected series
b~ —bt—1
S 2m(T:2,0) = E3a(7, 2) — \/Wzm n,r,7,3/2+¢/2)¢"¢"

(_1>(1+b*fb+)/4

= E3/5(1,2) — L(n,r,v,3/2+¢/2)¢"¢"

3/2(T, 2) TR 7«2:24;171 (n,7,7,3/2+¢/2)q"¢
is holomorphic in 7 and therefore defines a Jacobi form. O]
Remark 79. The exponent (n,r) = (0,0) occurs in this correction term and therefore

B3 Jom 5(7', z,0) will generally not have constant term 1 - ¢y and may even vanish identically.
This is not surprising because there are many cases where no nonzero Jacobi forms of weight

3/2 exist at all.

Definition 80. We define Q3/2.m 5(7) = Eg‘/z’mﬁ(r, 0,0). In particular, this differs from the
computation of [68] by a weight 1/2 theta series.

These series produce modular forms which represent the functional through the Petersson
inner product as claimed in proposition 70. There is a unique cusp form that represents the
same functional, and its difference with (03/2,, g Will lie in the Eisenstein subspace, but this
subspace is more difficult to describe in weight 3/2; in particular, the difference will almost

never be the Eisenstein series Es/5(7) of [69] (which is often not a modular form at all).



CHAPTER 5. POINCARE SQUARE SERIES OF SMALL WEIGHT 92

Example 81. Let A = Z* with quadratic form Q(xz,y,z) = 2zz + y?; then M;)(p*) is

one-dimensional, spanned by

Q3/2,1,0( (2 +3q+6¢° +4¢° + .. >( ¢0.0.0) = €00.1/2) ~ ¢(1/2.00))
+ <4q3/ L 12"+ ) (e0.1/20) = C0.1/21/2) — €/2,1/20))
n ( B 6q1/2 . 12q3/2 _ 12q5/2 - ,..)6(1/2,0,1/2)
" ( _ 3q1/4 . 12q3/4 _ 15q9/4 — .._)2(1/2,1/2,1/2)7

with constant term %6(0,0,0) — 52(0,071/2) — %6(1/2,070). Unlike the case of weight k& > 5/2, there
is no way to produce a modular form with constant term 1 - ey. (Following [5], the theta
series in M /(p) act as obstructions to producing modular forms in Mss(p*) with arbitrary

constant term.)

5.5 Weight two

The value Ej,, 5(7,2,0) at s = 0 is not generally holomorphic:

Proposition 82. There are constants A(n,r,y), v € N/A, n € Z—Q(v), r € Z — (v, )

gien by
48(—1)(+b*—b7)/4 1 — pe/2-1 1: 7?2 #4dmn;
A(n,r,y) = ————Ly(n,r,v,1+¢/2) x
vm - [AA| bl;llp L+p™ 1/2: r*=4mn
such that
E3(1,2,0) = Ey(1,2) + — Z Z Z A (n,r,7)B(my(r*/m — 4n))q"("e,.

veA’/A n€Z—Q(y) reZ—(v,p

Here, 5(z) is a sort of incomplete Gamma function:

1 o0
B(x) = 16_7r/1 u=? e~ du,

and we abuse notation and write
(1= p > D Lp(n vy, 1+ €/2) = ln(1 = p277*) Ly(n, 7,7, 1+ ¢/2 + 5)
S—r

in the cases where L, has a simple pole at 1+ ¢/2.



CHAPTER 5. POINCARE SQUARE SERIES OF SMALL WEIGHT 93

Proof. In weight k = 2, the L-series term is

L(n,r,v,2+¢e/2 4+ 2s)

1—pe/2—1-2s

L(2s+1, . .
%HbawﬁpewLp(n,r,%l—l—eﬂ—i-%) : n—r?/4m # 0;

s _pe/2—1-2s\(1_,—1—4s
ggisig Hbadp d-p 1—p—%(—143p )Lp<n7 9, 1+ 6/2 + 28) Lon— 7’2/4m = 0.

Here, D denotes the discriminant
D = (r* — 4mn)|N' /A|d3d2 H P’
bad p

This L-series has a pole in s = 0 when n — r?/4m = 0 or when D is a square, and in these

cases the residue at s =0 is

Res(i(n, r,y,2+e/24+2s),s = O>

e/2—1

3 1—p
- F[ H Tp—le(ana%l‘i‘(i/Q)] X
bad p

1: n —r?/4m # 0;
1/2: n—r*/4m =0.

The pole of L cancels with the zero of I(3/2,y,n—12/4m, s) at s = 0, whose derivative there

18

d
d—( 1(3/2,y,n — 12 /dm, s) = —1672(1 + i)y~ Y2B(x4n — 12 /m|y).
S 1s5=0
(This is essentially the same computation that arises when studying the weight 3/2 Eisenstein
series in [69]). O

In particular, E3(7,0,0) is generally far from being a holomorphic modular form. Instead,
we define a family of cusp forms Q3 ,, 5(7,5) € Sa(p*) by taking the orthogonal projection
of B3, 5(7,0,5) — E5(7,s8) to Sy(p*) with respect to the Petersson scalar product, i.e. by
holomorphic projection of the zero-values of Eg‘,m,ﬁ(T, 0,s). Explicitly, if ey, ...,e, are an
orthonormal basis of weight-2 cusp forms then

n

Qsnp(7:8) = D (Bsp(7.0,5) = By(r,5), 5(7) ) - 5(7).

J=1
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From the definition it is clear that for large enough Re[s], @3, 5(7,s) is the cusp form

satisfying
. . . =L ¢(mA?,\B3)
(> @il 3)) = (- B l7,0,5) = () = 2- L0483 32y

for any cusp form f(7) = E,m c(n,v)q"e,.

Remark 83. For any 5 € A’/A and m € Z — Q(), m > 0, the Poincaré series of weight 2
is defined by

Py 5(T) = Z <e(m7)eﬁ> 2WM = %Z(CT + d)—2e<m(M : r)>p*(M)—le/3,

MeT \I' c,d

where ¢, d runs through all pairs of coprime integers and M € T is any element with bottom

row (c,d). This series does not converge absolutely, but as shown in [46],

iy 30 (vremmes)

MeTo\T

M

a

is holomorphic in 7 and therefore P, 5(7) defines a cusp form. The unfolding argument

characterizes P ,, g by

c(m, 5) n
yy— for any cusp form f(7) = Z c(n,v)q"e,

n”y

(fa P2,m7ﬁ) -

as usual.

Remark 84. Writing Q5 ., 5(7,5) = >_ cnr/a Dnez—o(y) (157, 8)q" ey, the fact that Q3 , 5(7,5)—
E; . 5(7', 0, s) is orthogonal to all Poincaré series implies that

b(n,7,s)
471n,

= (@ s(7:5), Ponsy)
= (E;vaﬁ(T, 0,s), P27M>
= /OO c(n, vy, s)e™y* dy,
0
where c(n,7,y, s) is the coefficient of ¢"e, in Ej,, 5(7,0,s).
Definition 85. The Poincaré square series of weight 2 is the quasimodular form

Qom,p(T) = Ea(7) + Q3,, 5(7,0).
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It follows from the above remarks that (2., 5(7) differs from the computation of [68] as

follows: we can write

QZ,m,ﬂ( ) E2 7— 0 Z Z n 7 q e’ya

YEN /A nEZ—Q(7)
n>0

with coefficients that are determined by

b [e%¢]
(47:;73) = lim | c(n, 7.y, s)e" ™y dy
= > Al / e By (r? fm — 4n))y V2 dy
r€Z—(v,5)
— L A 7’L T,y / / —3/2 —1/2 47rnyu 1)—mr2yu/m dudy
167
1 w32 ( (2 —-1/2
= A(nﬂ“ﬂ) (( /m 4n)u+4n> du
167 . 1

:m;A(n,rv)Or\ Vi),
b(n,y) = 8\/_ Z Anrfy(|7’\ \/m>

When |A’/A| is square, it turns out that for fixed n and -+, the sum above is finite and
can be calculated directly. Otherwise, this tends to be a truly infinite series and we will
need some preparation to prove that b(n, ) are rational and to evaluate them with a finite

computation.
5.6 A Pell-type equation
The condition

D = d3d2(r* — 4mn)|A'/A| H p? =0
bad p

is equivalent to requiring (a,b) = d,dg(\/|A'/A|(r? — 4mn),r) to occur as an integer solution

of the Pell-type equation

a® — [N /AP = =4[\ JA|(d2m) (d2n)
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satisfying the congruence b = dgd. (7, 3) mod d,dzZ. We will study such equations in gen-

eral.

Definition 86. A Pell-type problem is a problem of the form
find all integer solutions (a, b) of a*> — Db* = —4C'D

for some C, D € N.

The behavior of solutions is quite different depending on whether or not D is square. If

D is a square, then the equation can be factored as
(a — V' Db)(a + VDb) = a> — DV? = —4CD,

from which it follows that there are only finitely many solutions and all are bounded by
la|, vVDJb| < CD + 1.
Assume from now on that D is nonsquare. In this case, the solutions of the Pell-type

problem are closely related to the solutions of the true Pell equation
a’ — Db* = 1.

It follows from Dirichlet’s unit theorem that there are infinitely many solutions (a,b) of the

Pell equation and all have the form
a+VDb==+el, nel,

where gy € Z[v/D] is the fundamental solution ¢y = a + /Db, which is the minimal
solution satisfying €y > 1. The problem of determining ¢, is well-studied; see for example

[43] for an overview.

Lemma 87. Assume that D is squarefree and let K = Q(v/D) with ring of integers Ok.
Then the solutions (a,b) of the Pell-type equation a*> — Db?> = —4C'D are in bijection with

elements pu € Ok having norm C'.

Proof. Let (a,b) be any solution of the Pell-type equation and define y = “‘;—\/‘/gb. This is an

algebraic integer because its trace u+m = b and norm g = C are both integers. Conversely,

given any algebraic integer 11 € Ok of norm C, we can define (a, b) by a++v/'Db = 2v/Dp. O
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Lemma 88. Assume that D is squarefree. Then there are finitely many elements py, ..., p, €
Ok, all satisfying 0 < Trgq(p;) < 2v/Cey, such that

{M € Ok = Ngjolp) = C} = Ju 05"
i=1

Here, £ is the fundamental solution to NK/@(el) = 1. In other words £ is either the

fundamental unit or its square if the fundamental unit has norm —1. Also,
O ={e € OF: Ngsle) =1}
Proof. Suppose p is any solution of Ng/q(p) = C, and choose n € Z such that
| log(e7 1) — log(VC))
is minimal. Then it follows that
[log(={) ~ 105(VO)| <  log(e1)
In particular, ety < /Ce;, and e;"u~! < /e1/C. Tt follows that

er + C’gl_”/fl < 24/Cé¢;.

Try /g (571%)’ =

By replacing p by —p we may assume that Trx,q(ef i) > 0.
In particular, p lies in the same O;(’l—orbit as a root of one of finitely many polynomials
X2+ XX +C with 0 < X < [24/Ce, |, which also shows that there are finitely many orbits. [

Example 89. Consider the Pell-type equation a? — 33b%> = —528 with D = 33 and C = 4.
There are three orbits of elements u € Ok = Z[(1 + v/33)/2] with norm 4, represented by

_TEV33

=2
=2, p 5

having traces 4 and 7. The bound in this case is 24/Ce; =~ 28. Note that elements p that
are conjugate by Gal(K/Q) result in the same solutions to the Pell equation.

Remark 90. Let by,n € N. Reducing modulo n shows that the set of solutions (a,b) to

a’ — Db* = —4CD, b=by mod n
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is also in bijection via (a,b) — pu = “;’—\/‘/gb to a union of finitely many orbits (possibly none):

U M - <€Mi>7
=1

where the “congruent fundamental solution” ¢,, is the minimal power of the fundamental
solution e, such that Trg/q(pi(1 —€,,)) = 0 (mod n).
When D is not squarefree, we can pull out the largest square factor of D to reduce the
equation
a®* — Db* = —4CD

to a squarefree Pell-type equation with congruence condition.

Lemma 91. Fiz v € A'/A andn € Z — Q(v), n > 0. Then the value of

1: r?#4dmn;
A(n,r,7y) x
2: 1% =dmn;

depends only on the orbit of d,ds\/|N/A|(r + Vr? —4mn) as a solution of the Pell-type
equation
a’*— DV’ = —4CD, D =[N /A|, C = d3d2mn,

with congruence condition b = dgd. (7, ) mod d.dgZ.

Proof. Assume first that 5 = 0 and abbreviate D = |A’/A|. Multiplying r + /72 — 4mn by
the congruent fundamental solution € = a + bv/D replaces r by

-1 _ 1
7‘€+€ Vi — dmnt = ar + b\/D(r? — 4mn),

2 2

and r? — 4mn by

(r? — 4mn) + 2Db*(r? — 4mn) + 4mnDb?* + 2abr+/D(r2 — 4mn),

which is congruent to r? — 4mn modulo the largest modulus whose square divides D.
Since 8 = 0, it follows that Ej, (7, z,s) arises from a weight-3/2 real-analytic Maass

form (here the Eisenstein series E3 ,(7, s)) for the quadratic form

Q(U, )‘> = Q(U) +mA?
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through the theta decomposition; in other words, the coefficient of ¢"("e, in E§7m75(7', 2, )

equals the coefficient of ¢""/4me

(y,r/2m) 0 B3 /2(7', s). In particular, this equality also holds
for the real-analytic parts. The coefficients A(n,r,7) in the real-analytic part of £ /2(7', 0)
occur (up to a constant factor) as the coefficients of its shadow, which is a modular form
of weight 1/2 for the quadratic form —(@). Using Skoruppa’s strengthening of the Serre-
Stark basis theorem ([61], Satz 5.1; see also (3.5) of [20]), it is known that for any Weil
representation p : T — Aut C[A’/A], M, 5(p) is spanned by modular forms that are C[A’/Al-
linear combinations of the theta series

2

Jp=> 9(2—67‘), bezZ,

VEL
v=b (2¢)

where ¢ runs through divisors of 4N for which N// is squarefree (where N is the level of the
discriminant form A’/A), in which the Fourier coefficient of ¢" (multiplied by 1/2 if n = 0)
depends only on whether ¢n is square and if so on the remainder of v/4¢n modulo 2¢. The
previous paragraph implies this congruence for n —r2/4m for all r +/r2 — 4mn in the same
orbit.

For general 3, we can embed the space of Jacobi forms for pj of index m as “old” Jacobi

forms of index md% for the trivial action of the Heisenberg group via the Hecke-type operator
Ug‘I)(T, Z) = (I)(’l', dgz)
and apply the argument for 5 = 0. O]

Proposition 92. The Poincaré square series Qam 5(7) has rational Fourier coefficients.

Proof. The expression for the coefficients of Ey(7,0) in [68] consists of special values of
Dirichlet L-functions and finitely many local L-series, and these remain rational in weight

k = 2. Therefore, we need to show that the correction terms

Z A(n,r, ’y)<|r| —Vr?— 4mn>

’l"627<’7,6>

1
b(n,y) = -—=
are rational.
This is easy to see when |A’/A| is square, since b(n, ) is a finite sum of rational numbers.

Assume that |A’/A| is not square.
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Suppose first that § = 0. By lemma 91, we can write

ZA(n,r,v)(M —4mn> ZAn Y Z(M—M),

rez

where for each i, the sum over r is taken over solutions

(a,b) = dv(\/|A’/A](r2 - 4mn),r)

of the Pell equation with congruence condition coming from the orbit of an element p; of

norm C' and minimal trace as in lemma 88. These solutions are given by

2¢/|A /A
r4+r2 —dmn =+ |d/ |/Ll€l-,
v

which runs through the solutions r twice if 7;/1; € Ok and once otherwise. The minimality

of Trgq(jt;) implies that the terms in the series are
|| — Vr2 —4dmn € {2u,2pue ™", 20" : n € N},

and

> (Irl = vz =mn) = (-5 + ﬁ5_1>x Lo fi/we O;

1—e1 1—¢1

. 2. otherwise
1 o L: 7/p € Ok;
:W<u—u+u€—ug) X
x/o(l—¢) 2 : otherwise;

and we see that 1 ( r| —Vr? — 4mn> is rational. Since
i 2 =

A(n,r,vy) =

_ . (rational number),
VA /A
we see that b(n, ) is rational.

The argument for general  is essentially the same but slightly messier because r +
Vr2 —4dmn and —r + /r2 — 4mn generally occur as solutions of the Pell equation with
different congruence conditions. In this case we can use the identity b(n,vy) = b(n, —y) =

b b(n,— : L
w and consider both congruence conditions at once. O

The formula above has been implemented in SAGE and is available on the author’s

university webpage.
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5.7 Example: the class number relation

In the simplest case of a unimodular lattice A and index m = 1, the fact that
Qa1.0(7) = —1-24 Z o1(n)q" =1 —24q — 72¢° — 96¢° —

(since the difference Q219 — E» is a scalar-valued cusp forms of weight 2 and level 1 so it
vanishes) implies the Kronecker-Hurwitz class number relations. We explain this here.

The real-analytic Jacobi form Ej, (7, 2,0) arises from the real-analytic correction of
Zagier’s Eisenstein series (in the form of example 60 of chapter 4),

o0

* - n 24 —n
E3(7,0) =1 — 122 H(n)g" e, — ﬁ B(myn?)q 2/4en/2
=1 n=-—o0

through the theta decomposition, where H(n) is the Hurwitz class number of n. Therefore,
E;7170(T, 2,0) is

1—1222[—[ n—r? q(—i——z Z A(n,r)B(ry(r* — 4n))q"¢"

n=1r=—oo TL—*OOT2 4n=0

where the correction constants are

—24: 7r? —4n = 0;

A(n,r) =
—48 1 1% —4n # 0.
It follows that
Qa,1,0(7)
=1-12 ni::”:ij:oo H(4n —r¥)q" + é ni::lﬂ%;:DA(n, T) (|7“| —Vr2 — 4n> q"
=1- 12i i H(4n —1*)q" — 6i Z (|7‘| — M)q" + 12inq”2
n=1r=—co n=1r2_4p=[] n=1

The identity (J210 = E implies that for all n € N,

v on=10;
2

S——. el 0: otherwise.
r2—4n=0

i H(4n — r?) =2al(n)—1 > (|r| —M) +
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Here, 5 (\r\ Ve — 4n> takes exactly the values min(d,n/d) as d runs through divisors of

n (but counts /n twice if n is square); so this can be rearranged to

o0

Z H(4n —r?) = 20,(n medn/d

r=—o0 djn
Remark 93. Mertens [47] has given other proofs of this and similar class number relations
using mock modular forms. It seems likely that we can recover other class number relations
(possibly some of the other relations of [47]) by studying the higher development coefficients
(as defined in chapter 3 of [31]) of the real-analytic Jacobi Eisenstein series £, (7, z, s) in
the same way that we have studied its zeroth development coefficient 5, ((7,0,s), but we

will not pursue that here.

5.8 Example: overpartition rank differences

Consider the lattice A = Z? with quadratic form Q(z,y) = x? — y?. There are no mod-
ular forms of weight 2 for the dual Weil representation, and the ¢ g)-component of the

quasimodular Eisenstein series is
By ()00 = 1 — 16g — 24¢°> — 64¢° — 72¢" — 96¢° — 96¢° — 128¢" — ...

This is a quasimodular form of level 4 and we can verify by computing a few coefficients that

it is

Es(7)0,0) = E2(27) —16201 n)q" —1—16201 n)q" —24201 n/2)q"

nodd nodd neven

The real-analytic Jacobi Eisenstein series of index (m, 5) = (1,0) corresponds to the real-
analytic Eisenstein series for the lattice A = 73 with quadratic form Q’ (1,9, 2) = 2% —y? + 2*
under the theta decomposition. It was shown in example 63 of chapter 4 that the component

of ¢(0,0,0) in the corresponding mock Eisenstein series is

1—2q—4q2—8q3—...:Z(—
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where a(n) is the difference between the number of even-rank and odd-rank overpartitions
of n. (We refer to [7] for the definition of overpartition rank differences and their appearance
in weight-3/2 mock modular forms.) We will also need to understand the component of

¢(0,0,1/2) in this mock Eisenstein series. A quick computation shows that this is the series

E3/2<7—>(07071/2) — _4q3/4 o 4q7/4 o 12q11/4 o 8q15/4 o 12q19/4 o 12q23/4 o 16q27/4 o

Lemma 94. The coefficient of ¢*/* in the series E3/2(T)(07071/2) 18
—12H(n): n =3 mod §;
—4H(n): n=7 mod§;
where H(n) is the Hurwitz class number.

We remark without proof that this series appears to have an interesting closed form:

o 4q3/4 o 4q7/4 - 12q11/4 . 8q15/4 - 12q19/4 -

=—12 )  H(n)¢"* -4 > H(n)g"*
n=T(8)

n=3(8)

_4q_1/4<H1+q )( ¢ _ 3¢ 5 _ T¢° . 9 _)
S l—q"/\l+q 14+¢ 1+¢ 144¢° 1+¢°

Proof. We can use the exact formula for the coefficients given by Bruinier and Kuss [18],
theorem 4.8: for an odd-dimensional lattice of dimension e, the coefficient ¢(n,~) of Ey(T)

is given by

(2m)Fnf N (=1)" 2Lk — 1/2, xp) S uld)x

VINJAIT(R)C(2k — 1) o
y H 1 _pe/2—k

1 _ n1-2k
pl(2IA7/A] b

02—2k(f/d)] X
L,(n,v,k+e/2— 1)} :

(We do not need the assumption that k = e/2 because this is only used in the computations

of local factors L, in [18]; here we are working with a different expression.) Here, D is

a discriminant defined in theorem 4.5 of [18], and xp(d) = (%) is the Kronecker symbol,

and f? is the largest square dividing n that is coprime to 2 - |A’/A|. For the lattice Z with
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quadratic form Q(z) = 2® (where Ej), is Zagier’s mock Eisenstein series), and v = 1/2 and

n € Z — Q(v), it is not hard to see that the local factor at p = 2 is

1: 4n = 3 (mod8);
LQ(na Y, S) =
(2°+1)/(2°—1): 4n = T7(mod8);
since n always has valuation —2 modulo p = 2, resulting in the values
1/2: 4n =3modS8;
3/2: 4n =T7mod8.

(1 - 271)[42(71,’)/, 1) =

On the other hand, for the lattice Z* with quadratic form Q(x,vy, 2) = 2 — y* + 2%, the local

factor is always
28

T34
with limg (1 — 272%)Ly(n,~y,2 + 2s) = 1. Since all other terms in the formula are the same

L2(”7 7, S)

between the two lattices (other than an extra factor of 1/2 from ——=—), and the coefficient
VIN/A|

n/4

of ¢"* in Zagier’s mock Eisenstein series is —12H (n), we get the claimed formula. O

In example 63 of section 4.4 we saw that the real-analytic correction of Ejs/,(7) for the

lattice A is

* ]' n
E3/2(7'7 0) = E3(7) + i E E a(n,y)B(—4mny)q"e,
Y veA' /A n€Z—Q(v)
n<0
with shadow

Z a(_n7 7)qn67

v.n

= —8(1 + 2q + 2q4 + ) (28(070,0) + €(1/2,1/2,0) T 2(0,1/2,1/2))—

— 8(2(]1/4 + 2(]9/4 + 2(]25/4 + ) (22(1/271/271/2) + €(0,0,1/2) + 8(1/27070)).
Therefore the constants of section 5 for square r? — 4n are

—16: 72 — 4n odd or zero;
A(n,r,0) =

—32: 12— 4n even and nonzero.
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The formula for the Poincaré square series of index (1, 0) implies that the coefficient of ¢"e (o)

in Q21,0 18
Z—\a(n—r)]—S 4(— ZH n—r?
r=—o0 rodd
4. n="LI
Z A(n,r, 0)(|7"\ —Vr?— 4n) +
reZ 0: otherwise.
r2—4n=0

The additional 4 at the end if n is square is due to the constant term in the mock

Eisenstein series Fs3/; being 1 rather than —1:

Es3/5(7) 0,00 =1 — Z [a(n)|q" Z [a(n)] + 2,
n=1

[r|=v7r2—4n \/ —4n

and because we use the convention @(0) = 1. As before, takes exactly the values

min(d,n/d) for divisors d of n (but counts \/n twice if n is Square), and one can show that
if n is odd and r? — 4n is square, then 72 — 4n is always even, while if n is even, then 7% —4n

d = =vr—in ';274" and n/d are both even.

is even exactly when the divisor
Denote A (n) = 2 3 4 in(d, n/d) as in [47]. Comparing coefficients with the Eisenstein

series F5(7T)(0,0) gives the following formula:

Proposition 95. Ifn € N is odd, then > >2 ___|a(n —r?)| equals

r=—00

4: n="L1;
—16X1(n) + 1601 (n) — 12> H(4n —1*
rodd 0: otherwise.
If n € N is even, then Y o2 |a(n —r?)| equals
4: n="01;

—81(n) — 16A1(n/4) + 2401 (n/2) =4 " H(4n —1?) +

rodd 0: otherwise.
Here, we set A\;(n/4) = 0 if n is not divisible by 4, and @(n) = H(n) = 0 for n < 0. Note
that this can also be expressed as a relation among Hurwitz class numbers since |[@(n)| itself

can be written in terms of Hurwitz class numbers, as observed in corollary 1.2 of [8].



CHAPTER 5. POINCARE SQUARE SERIES OF SMALL WEIGHT 106

5.9 Example: computing an obstruction space for

Borcherds products

The interpretation of certain Borcherds products for O(2,2) as Hilbert modular forms is
well-known and described in detail in Bruinier’s lectures [14], in particular section 3.2. For a
fundamental discriminant m = 1 mod 4, the relevant obstruction space for Hilbert modular

forms for the field Q(y/m) consists of weight-two modular forms for the dual Weil represen-

2 1

1 m—1

tation attached to the Gram matrix S = <
T2

). The smallest example where this

space contains cusp forms is m = 21.
It is not very difficult to compute a basis of this space by other means but one can also
use the functions described here to do this. The Eisenstein series is a true modular form

whose coefficients up to order O(g*) can be computed as

Ey(7) = (1 — 6q — 12¢* — 40¢° — ...)eo

+q" 7 (=1/2 =50 —22¢" —43/2¢° — ) > e,
Q=—1/2147

+q* P (=3/2-31/2¢ - 11> = 34¢° —...) > ¢,
Qy)=—1/21+7,

—+ q1/3(—4 — 12q — 25q2 — 18q3 — ...)(2(1/371/3) + 2(2/372/3))
+ %" (=5 — 6g — 36¢% — 20¢° — ...)(e(_1/7.2/7) + €(1/7,—2/7))
+¢*"(—12 — 15q — 18¢* — 24¢* — ...)(e(aj73/7) + ¢(5/7.4/7))

+qO (112 - 19g - P — 40 — ) Y e
Q()=—16/2147

+ q18/21(—4 —12q — 36(]2 — 41q3 — ...)(8(3/771/7) + 6(4/7,6/7))
and the cusp space is represented by

T(Q2,16/21,(10/21,1/21) — F>)
_o1/21 9
=q /(1 —14q+ 12¢° + ...)(e(8/21,716/21) + €(—8/21,16/21) — €(—1/21,2/21) — e(1/21,72/21))
+ q4/21(5 —5q + 14¢° + <) (e(2/21,4721) F €(2/21,-4/21) — €(16/21,10/21) — €(5/21,11/21))
+ q16/21(11 + 6g — 28¢° + < )(e@oa1,1/21) F €(a1/21,-1/21) — €(—a/21,8/21) — €(4/21,—8/21))-
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Following [5], there exists a vector-valued nearly-holomorphic modular form of weight
k for the Weil representation p with principal part > > _a(n,7)q"e, + a(0)eo if and
only if a(n,v) = a(n,—v) and ) _,a(n,v)b(—n,7y) = 0 for all (true) modular forms
Z%n b(n,7v)q"e, of weight 2 — k for the dual representation p*. From this principle and the
above computations, we find that the following principal parts extend to nearly-holomorphic

modular forms f;:

fi(t) = q_1/21(8(71/21,2/21) + e(1/21,-2/21) + €(8/21,—16/21) + €(—8/21,16/21)) *+ 2¢(0,0) + .-
fa(T) = q_4/21(9(—2/21,4/21) + €(2/21,—4/21) + €(—5/21,10/21) F €(5/21,—10/21)) + 6e0,0) + ...
fa(T) = (177/21(9(1/3,1/3) + ¢(2/3,2/3)) + 8¢0,0) + ---

fo(T) = ¢ (e(C1ym2/m) + e(1y7,—2/m) + 10e(o ) + ...

Jis(T) = a7 (eaprmapm) + ezpram) + 24e0) + -

Fi6(7) = a7 (eqr0/21,-20/21) + e(-10/21,2021) + (—a/21,8/21) + Casa1,—s/am)) + 22¢(0.0) + -
Fis(r) = a7 (e yraym) + esmom) + Beo) + -

for(T) = q e(,0) + 6e(00) + ---

These inputs produce holomorphic Borcherds products

¢1>¢§1)a :(32)7%(11), 1(12),1%,1?11,%2

as Hilbert modular forms for Q(v/21), each 1, having weight k and only simple zeros. The
principal parts above are enough to determine the divisors and weights of these products, us-
ing theorem 13.3 of [4], and this is enough for some applications. To calculate the products
explicitly, one needs to compute the coefficients of higher powers of ¢ in the input func-
tions f;(7). One way to do this algorithmically is by identifying A(7)f;(7) in Mjs(p) using
the algorithm of [68], where A(7) is the discriminant; this is a messy but straightforward

computation.
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Chapter 6

Vector-valued Hirzebruch-Zagier

series and class number sums

This chapter is taken from the paper [72].

6.1 Introduction

The Hurwitz class numbers H (n) are essentially the class numbers of imaginary quadratic

fields. To be more specific, if —D is a fundamental discriminant then

_ 21(D)
~ w(D)

H(D)

where h(D) is the class number of Q(v/—D) and w(D) is the number of units in its ring of
integers (in particular, w(D) = 2 for D # 3,4). More generally,

) = 200 St () onts/a)

daf

if —n = D f?, where D is the discriminant of Q(v/—n), and p is the Mobius function, oy is the
divisor sum, and () is the Kronecker symbol; and by convention one sets H(0) = —1—12 and
H(n) = 0 whenever n = 1,2 (mod 4). Hurwitz class numbers have natural interpretations
in terms of equivalence classes of binary quadratic forms or orders in imaginary quadratic

fields. We refer to section 5.3 of [22] for more details.
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Many identities are known to hold between Hurwitz class numbers, the prototypical
identity being the Kronecker-Hurwitz relation

> H(4n—1?) = max(d,n/d),

rel dln

where we set H(n) = 0 if n < 0. These and other identities have interpretations in the
theory of modular forms. The most influential result in this area is probably Hirzebruch and
Zagier’s discovery [38] that for any prime p = 1 (mod4) the sums

mw- S n (4n;r2)

4n—r2=0 (p)

can be corrected to the coefficients of a modular form of weight 2 and level I'y(p) and Neben-
typus x(n) = (%), and that these corrected coefficients can be interpreted as intersection
numbers of curves on Hilbert modular surfaces. (The construction of the modular form there
also goes through when p is replaced by the discriminant of a real-quadratic number field.)
The paper [38] is a pioneering use of what are now called mock modular forms. Related
techniques have turned out to be effective at deriving other identities among class numbers
(among many other things); the papers [6], [47], [48] are some examples of this.

As observed by Bruinier and Bundschuh [15], there are isomorphisms between the spaces
of vector-valued modular forms that transform with the Weil representation attached to a
lattice of prime discriminant p and a plus- or minus-subspace (depending on the signature of
the lattice) of scalar modular forms of level T'y(p) and Nebentypus. We prove here that up
to a constant factor, the Hirzebruch-Zagier series of level p mentioned above corresponds to
a Poincaré square series of index 1/p (in the sense of [69]; see also section 2) by computing
the latter series directly. One feature of this construction is that p being prime or even
a fundamental discriminant is irrelevant: the construction holds and produces a modular
form attached to a quadratic form of discriminant m for arbitrary m = 0,1 (mod4) whose
coefficients are corrections of the class number sums _ H(4n — mr?). (However, if m is a
perfect square then it will produce a quasimodular form similar to the classical Eisenstein
series of weight 2, rather than a true modular form.) It seems natural to call these vector-
valued functions Hirzebruch-Zagier series as well.

Our construction starts with a nonholomorphic vector-valued Jacobi Eisenstein series

E3 1 m, 5(7, z,8;Q) of weight 2 and index 1/m whose Fourier coefficients involve the expres-
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sions H(4n — mr?). (Jacobi forms of fractional index are acceptable when the Heisenberg
group also acts through a nontrivial representation.) The action through the Petersson
scalar product of the value of the Jacobi Eisenstein series at z = 0 is straightforward to
describe using the usual unfolding argument (e.g. [12], section 1.2.2) for large enough Re(s),
and it follows for all s by analytic continuation. We construct the Hirzebruch-Zagier series
by projecting the zero value EJ, /mﬁ(T,O, 0; Q) orthogonally into the space of cusp forms
and then adding the Eisenstein series; neither of these processes change the value of its Pe-
tersson scalar product with any cusp form, so this construction makes the behavior of the
Hirzebruch-Zagier series with respect to the Petersson scalar product clear for arbitrary m.
(In the case m is prime, this was left as a conjecture at the end of [38]). This method of con-
structing holomorphic modular forms from real-analytic forms is holomorphic projection
and it remains valid for vector-valued modular forms (see also [42]).

For small values of m, there are several examples where the Hirzebruch-Zagier series
equals Bruinier’s Eisenstein series of weight 2. By comparing coefficients that are chosen
to make the correction term in the Hirzebruch-Zagier series vanish, one can find several

identities relating > H(4n — mr?) to a twisted divisor sum. A typical example is
2y _ D _
ZH(4n —3r°) = 60’1(71,)(12), n =7 (mod 12),
TEL
where x,(n) = (%) is the Kronecker symbol and where
0'1(71, Xm) = Z de(n/d)
dn

Additionally, by taking m = d* € {4,9,25,49} we give another derivation for identities

involving sums of the form y _, , H(4n —r?) which were considered in [6], [11].

6.2 The case m =1 mod 4

Fix any number m = 1 mod 4 and consider the quadratic form Q(z,y) = 2 + 2y — mT_1y2
of discriminant m. There is a unique pair of elements +/5 € A in the associated discriminant
form with Q(8) = 1 — %; they are represented by +(—1/m,2/m). (In particular, the

discriminant form is cyclic and these elements are generators, and () takes values in %Z /Z.)
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We will also consider the ternary quadratic form

Q(z,y,2) = Qa,y) + 2wz + 2°,

which has discriminant
2 2
diser(Q) =det [1 —m=1 0| =—2.
2 2

Comparing the coefficient formulas for the Jacobi Eisenstein series of index 1/m ([69],
section 3) and the usual Eisenstein series of [18], (for which the correction in weight 3/2
was worked out in [70]), we see that the coefficient of ¢"¢" in E;l/m’ﬁ(T, z,8; Q) equals the
coefficient of ¢"~""*/* in F /2
of ¢"C"e, for elements v € A instead; however, the condition r € Z — (v, 5) determines

(7,5;Q). To be more precise, we should consider the coefficients

(7,8) € Q/Z, and due to our choice of 8 this determines v uniquely. Both coefficient
formulas involve zero-counts of quadratic polynomials modulo prime powers and Q is chosen

to make these zero-counts equal; specifically, for ally € Aand n € Z—Q(~), r € Z— (v, ),

#{(v,\) € ZPmodp" : Qv+ A3 —7) +N2/m —rX+n =0}
= #{v € Z*modp" : Qv —,) + (n —mr?/4) = 0},

where v, = (v — 23, 2) € (Q/Z)? lies in the dual lattice and n — mf € Z—Q(7,). On the

2

level of matrices, letting S = ) be the Gram matrix of @), this follows because

m—1

2
the Gram matrix of Q has block form

(s SB
- \BTs 2(L 4 5Tsp)

for the representative 8 = (=1 2) € Q?. (See also remark 30 of chapter 3.)

m ’m

2 2
Gram(Q)=|1 -z ¢
2 2

Since |discr(Q)| = 2 and sig(Q) = 1, the discriminant form of Q is isomorphic to that
of 22 and so the nonholomorphic weight 3/2 Eisenstein series attached to it is the Zagier

Eisenstein series in which the coefficient of ¢" is H(4n). Evaluating at s = 0 and using the
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previous paragraph, we find

E;,l/m,ﬁ(Tv 2, 0) Q)

— 192 Z Z Z H(4n — mrQ)q”CTeﬁ—

YEA n€Z—Q(v) r€Z—(v,B) (6.1)

+ —Z Z Z A(n,r,y)B(my(mr® — 4n))qg"("e.,,

’YGA n€Z—Q(7) r€Z—(v,8)

where the coefficients A(n,r,v) are given by

—24: mr?=4n;
A(n,r,v) = § —48 : mr? — 4n is a nonzero square;

0: otherwise.

The main result of chapter 5 is a coefficient formula for the Poincaré square series Q2 4.5(7)
forany € Aand d € Z — Q(p). If

;,d,@TOOQ Z Z Z nr’nge7

YEA neZ—Q(y) reZ—{

+—Z > Z A(n,r,7)B(my(r? /d — 4n))q"( e,

”/EA n€Z—Q(v) reZ—{vy,5)
then the coefficient C'(n,7) of ¢"e, in Q2,45 is

C(n,vy) = Z c(n,ryy) + L\/_ Z [A(n,r, 7)<]r| —Vr?— 4dn)]
r€Z—(7,p) 8 dreZ—w,m

In our case where d = 1/m, these coefficients are

—12 Z H(4n — mr?) — 6y/m Z <|r\—\/m>+

r€Z—(7,8) TGZ (7,8)
mr2—4n=0

(6.2)
12¢/n: 3Ir € Z — {7, B) with mr? = 4n;

_|_
0: otherwise.

Note that % (\r\ —/r? —4n/ m) is always an algebraic integer when mr? — 4n is square:
if m itself is square then this is clear, and otherwise its conjugate is % <|7“| + /12 —4n/ m),
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so its trace is m|r| € mZ+m(y, B) C Z and its norm is mn € mZ —mQ(vy) C Z. Conversely,

if m is squarefree then

%(M - \/r2—4n/m>, reZ+{(y,B), vyeA

runs exactly through the values taken by min(\, \), where X is a positive integer of O,
K = Q(y/m) with positive conjugate \ that has norm mn; however it double-counts /mn if
r = £+/4n/m occur in the sum. This allows one to remove the additional term 12/n in the
formula (6.2). In some sense this remains true for m = 1 (with trivial discriminant form):
then 1(|r| —v/r2 —4n), r € Z takes the values min(d, n/d) where d runs through divisors of
n in Z but it double-counts y/n if n is square.)

In this way, we obtain for m = 1 an identity equivalent to the Kronecker-Hurwitz rela-

tions:

—1—24201
= Qa10(T _1—122<2m1ndn/d +ZH47’L—7“ )

nez din r€Z
whereas if m = p is a prime, we obtain a vector-valued form of the Hirzebruch-Zagier series:
1 ) -\ n
Q2,1/p,8(T —1—12257< Z H(4n — pr?) + — Z mm()\,)\))q ey,
reZ—(v,8) \/ﬁ AeO0K

A>0
A=pn

where K = Q(,/p), and ) is the conjugate of A, and X > 0 means that both A, X are positive,
and finally we set ¢, = 1 if v = 0 and ¢, = 1/2 otherwise. (The factors e, come from the
fact that relating the sum over r to a divisor sum requires both congruences r € Z + (v, 5);
but the coefficients ¢(n,y) of any modular form satisfy ¢(n,~y) = ¢(n, —7) by our assumption
2k + sig(Q) = 0(4) on their weight.) As shown by Bruinier and Bundschuh [15], there is
an identification between modular forms attached to quadratic forms of prime discriminant
and the plus space of modular forms with Nebentypus which is given essentially given by
summing together all components and replacing n by n/p in the coefficient formula. It is

not difficult to see that the image of ()3, s under this identification is

“12p,=1-123" [ > H(4n _ TQ) + % > min(A,X)|a" € Ma(To(p), X).

ne” reZ p
4n—r2=0 (p) A>0
AA=n
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where ¢, is the function of Hirzebruch and Zagier’s paper [38].

6.3 The case m =0 mod 4

Our procedure in this case is nearly the same, but we consider instead the quadratic form
Q(z,y) = 2* — 2y? of discriminant m. There is again an element 3 € A with Q(8) =1— %7
in this case, one can choose the representative (0,2/m). (Note that this discriminant form
is not cyclic. Also, ( is not necessarily unique; but any other choice of g will give a similar

result.) We also consider the ternary quadratic form Q(z,y,z) = Q(z,y) — yz which has

discriminant
2 0 0
discr(Q) =det |0 —m/2 —1| =-2.
0o -1 0

Comparing coefficient formulas between E3(7, 2, s; Q) and Ej /2(7'; Q) gives exactly the same

formula as equation (6.1) in the previous section:

ES 1y p(7:2,0,Q) = —12 Z Z Z H(4n — mr?®)q"¢ e +

veA n€Z—Q(y) r€Z—(7.,8)
+— Z Z Z A(n,r,y)B(my(mr® — 4n))q" (e,
’yeA n€Z—Q(v) reZ—
and therefore the same coefficient formula from the previous section again produces a mod-

ular form for Q.

6.4 Formulas for class number sums

In this section we compute values of m where the relevant space of weight 2 modular forms
is one-dimensional and therefore the Hirzebruch-Zagier series )21/ 5 equals the Eisenstein
series. We obtain formulas for class number sums by considering those exponents n for which

the corrective term

oy Y (- VT )

mr2—4n=0
above vanishes. First we will list the numbers m for which the cusp space Sy(p*) attached

the quadratic forms we considered above vanishes.
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Lemma 96. (i) Suppose m =1 mod 4 and let Q(z,y) = 2% + zy — mT_lyZ. Then the cusp

space So(p*) vanishes if and only if m < 25.
m,,2

(i) Suppose m =0 mod 4 and let Q(x,y) = x* — 2y>. Then the cusp space Sa(p*) vanishes
if and only if m < 20.

Proof. Table 7 of [20] lists the genus symbols of all discriminant forms of signature 0 mod 8
with at most four generators for which the space of weight two cusp forms vanishes. We only

need to find the values of m for which the discriminant form of ) appears in their table. []

In particular, when m < 21 or m = 25, due to the lack of cusp forms the Hirzebruch-
Zagier series Q21/m,3(7; Q) equals the Eisenstein series Fy(7; @) in which the coefficient of

q"e, is a multiple of the twisted divisor sum

ov(nd xm) = Y d- (mg/d) |

dind2

where d., is the denominator of v (i.e. the smallest number such that d,y = 0 in A) and
Xm = (?) is the quadratic character attached to Q(y/m); and these multiples are constant
when n is restricted to certain congruence classes. This leads to numerous identities relating
class number sums of the form - ., . 5 H(4n — mr?) (even in some cases where n is not
integral!) to twisted divisor sums.

The simplest identities arise by comparing the components of ¢y in both series and re-
stricting to odd integers n for which in addition y,,(n) = —1 (which is never true for
m = 1,4,9,16,25); in these cases, the “correction term” in Q21 /m 3(7; Q) vanishes and its
coefficient of ¢"eq is =12, H(4n — mr?). This is then a constant multiple of oy (n, x.n)
depending on the remainder of n mod m. The constant multiple can be computed by study-
ing the formula of [18] carefully but it is easier to compute by plugging in just one value of
n. We list the results one can obtain with this argument:

(1) m = 5: for n = 3,7 (mod 10),

Z H(4n — 5r7%) = gal(n, X5)-

rez

(2) m =8: for n = 3,5 (mod38),

Z H(4n —2r%) = ZH(ZLn —8r%) = gal(n, Xs)-

reZ rEZ
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(3) m = 12: for n = 5 (mod 12),

> H(4n—3r) = H(4n —12r%) = 01(n, x12),

rez rez

and for n = 7 (mod 12),

Z H(4n — 3r%) = Z H(4n —121%) = gal(n,xlg).

rez rE€Z

(4) m = 13: for n =5,7,11,15,19, 21 (mod 26),

Z H(4n — 13r?) = o1(n, x13).

rez

(5) m = 17: for n = 3,5,7,11, 23, 27,29, 31 (mod 34),

2
ZH(ZLn —17%) = gal(n,XN).

reZ

(6) m = 20: for n = 3,7,13,17 (mod 20),

2
Z H(4n — 20r?%) = 301 (1, X20)-

rez

(7) m = 21: for n = 11, 23,29 (mod 42),

Z H(4n — 217%) = o1(n, x21)

rEZ

and for n = 13,19, 31 (mod 42),

2
ZH(ZLn —21r?) = gal(n,)@l).

rez

Remark 97. There are some values of m where the Eisenstein series does not equal the
Hirzebruch-Zagier series (one should not expect it to when dim Sy(p*) > 0) but where one
can still obtain some information by comparing coefficients within arithmetic progressions,
yielding more identities than those above. (Note that if f(7) = > _, c(n)q™ is a modular
form of some level N, then restricting to an arithmetic progression produces a modular form
D n=r (modd) ¢(n)q" of the same weight and level N d?; so one can always check whether the

coefficients of two modular forms agree in an arithmetic progression by computing finitely



CHAPTER 6. VECTOR-VALUED HIRZEBRUCH-ZAGIER SERIES AND CLASS
NUMBER SUMS 117

many coeflicients.) In particular, we do not claim that the list of m above where ), _, H(4n—
mr?) can be related to o1(n, X.m) is complete. The vector-valued setting is useful here because
it lowers the Sturm bound considerably.

Some examples of this occur when m = 24,28, 32, 40. For m = 24 it is not true that
Ey = @Q2,1/m,s; however, the ep-components of these series have the same coefficients of ¢"
when n = 5,7 (mod 8). This can be proved by writing f = E» — Q2,1/m and considering
the form 37, 70487 /(7 + k/8)e(3k/8), which is a modular form for (a representation of)
['1(64) all of whose coefficients vanish except for those of ¢"ey with n = 5 mod 8. To
check that it vanishes identically we consider coefficients n = 5 (8) up to the Sturm bound
2[SLy(Z) : T1(64)] = 512; this was done in SAGE. The case n = 7 mod 8 is similar.

Specializing to the n with (%) = —1, we obtain

> H(dn—6r") = H(4n — 24r%) = %m(n, X24)

reZ rel

for all n = 7,13 (mod 24).
For m = 28 the series have the same coefficients when n = 3, 5,6 (mod 7), and specializing
to the n with (%) = —1 gives

> H(dn—17r%) = H(4n —28r%) = %Jl(n, Xas)

reZ rez

for all n = 5,13,17 (mod 28).
For m = 32 it is not true that Fy = @21/, s; however, the ep-components are the same, and

we find

1
Z H(4n — 32r%) = 501(71, X32), n = 1(mod4),

reZ
2
Z H(4n — 32r%) = §01(n, X32), n = 3 (mod38)
rEL
by considering odd n for which 32r? — 4n = a? is unsolvable in integers (a,r).
For m = 40 the series have the same coefficients when n = 3,5 (mod 8), and specializing to
the n with (470) = —1 gives

Z H(4n — 10r?) = Z H(4n — 40r?) = %01 (1, X40)

reZ TEZ
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for all n = 11,19, 21, 29 (mod 40).
However, there do not seem to be any such relations of this type for m = 44 (or indeed

for “most” large enough m); in particular, >_ _, H(4n — 11r?) is not obviously related to a

re€Z
twisted divisor sum within any congruence class mod 44.

6.5 Restricted sums of class numbers

Restrictions of the sums that occur in the Kronecker-Hurwitz relation to congruence classes,

i.e. sums of the form

Z H(4n —r?),

r=a (d)
have been evaluated in [6], [11] for d = 2,3,5,7, where identities are obtained for all a and
d = 2,3,5 and for some a when d = 7. These identities can be derived from the fact that
the Hirzebruch-Zagier series equals the Eisenstein series when m = 4,9,25 and that some
coefficients agree when m = 49, as we will show below. Here we need to compare coefficients
of components ¢, with Q(y) € Z but v not necessarily zero. A somewhat stronger result in

the case m = 4 was worked out in [71]; in the special case that n is odd, the result of [71]
implies Y, 44 H(4n —1r?) = 201(n).
Therefore we will first consider the case m = 9 with quadratic form Q(x,y) = 2> +zy—2y°.

The elements v € A of the associated discriminant group with Q(v) € Z are represented by

v =1(0,0),(1/3,1/3),(2/3,2/3) € (Q/Z)*
and their products with the element 8 = (1/9,—2/9) € A with Q(5) = 1 — 1/9 are respec-
tively
(v, 8) = 0,1/3,2/3mod Z.
We compute the Fourier coefficients ¢(n,~y) of Ey(7) using what is essentially theorem
4.8 of [18] in the form suggested in remark 56 of chapter 4: if Q(v) € Z then

e(n.3) = 5y - [T [L=p )L 0.2)
:4< Z d>L2(n,7,2)L3(n,”y,2).
din

2,3t(n/d)
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The local factor at 2 can be computed using the formula of section 3.8: letting x = vo(n) we

find
2(n+1)s L 2(}%—1)8-‘1—1 4 2(&—2)54—2 4o+ 9s+r—1 _ 9K
LQ(”’ v 8) = 2(5—1—1)3 — 9Ks+l

and setting s = 2,
Ly(n,v,2) = 3(1 —27"71).

Similarly, we compute the local factor at p = 3 using proposition 33 of section 3.3: if

v = (0,0) then we are always in part (iii) and so with x = v3(n),

1 1
Crg(f3358) = 37+ L (T, dy)377,
g Dirs1) ; P / () G(v)
where d(,) = (—1)"; where r(,) = 0) if v is even and r(,) = (v — 1) if v is odd; and altogether
with some algebraic manipulation one obtains the following local L-functions: if n = 1 mod

3 then L3(n,v,s) =1; if n =2 mod 3 then L3(n,~,s) = gfg, and if Kk = v3(n) > 0 then

3(/<+1)s +92. 3(/~cfl)s+2 +92. 3(n72)s+3 442,35k grtl

L3(n7 s 8) - 3(k+1)s _ Frs+1 !
such that
1: n=1(3);
Ly(n,v,2) =142 n=2(3);

2(1-37"%): Kk =uw3(n) >0.
When v = £(1/3,1/3)) the local L-function at 3 is considerably simpler (since we are
often in case (ii) which does not depend on the valuation vz(n)): the result is
3/(3° = 3) : n=1(3);
L3(n7’y7 5) = 1: n =
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and therefore L3(n,v,2) = 3/2,1,2 respectively. In this way we find

A 21}2(71) 31}3(11)

) 070 - : ( : )

c(n, (0,0)) T2t 220 1531 F3nm (™)X
x 3(1 — 2721 La(n, (0,0),2)

= —4o1(n)(1 — 3_v3(n)_1)_1L3<n, (0,0),2)

—601(n) : n=1(
=4 —120¢(n) : n=2(3);

—8a1(n) - % : Kk =uw3(n) > 0;
and if v = £(1/3,1/3) then similarly

C(TL, 7) = _401(77’ ( 3wl 1)_1L3(n77a 2)

=< —601(n) : n = 2(3);

3n+1

)
—901(n) : n=1(3);
(
—801(n)gem— K = v3(n) > 0.

Since there are no cusp forms, this equals the coefficient of the Hirzebruch-Zagier series:

12 Z H4n—9’r 18 Z <|ry— r2—4n/9)+

rel— rel—
91"27471 D

12/n: 3Ir € Z — (v, ) with 9r? = 4n;
+
0: otherwise.

Here 3r runs through congruence classes mod 3; and 3 (|r| — v/r? — 4n), r = £3(v, ) mod 3
runs through the values min(d, n/d) for divisors d|n with |r| = d + n/d = +3(~v, ) mod 3,

but double-counts /n if that occurs at all. Therefore, we can rewrite this as

—12 Z H(4n —r?®) — 12¢, Z min(d, n/d)

r=3(7,8) (3) dln
d4+n/d=+3(v,8)

where e, =1 if v = 0 and ¢, = 1/2 otherwise. Comparing coefficients gives the formula:
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Proposition 98. (i) For any n € N,

1o1(n) : n=1(3);
Z H(4n —r?) + Z min(d,n/d) = ¢ o(n) : n=2(3);
r=0(3) dln 381
d+n/d=0 (3) T 5eo1(n) 1 Kk =w3(n) > 0.
(1t) For any n € N and a € {1, 2},
301(n) : n=1(3);
1
2 .

> H(n-—r )+§ > min(d,n/d) = Lo(n) : n=2(3);

r=a(3) dln 3k

d+n/d==a (3) mal(n) DR = 'Ug(n) > 0.

The computations for other m (and the results) are similar so we omit the details and
state the identities that one obtains here. When m = 16 there are no cusp forms. However
the fact that the quadratic form Q(x,y) = x? — 8y* has terms with larger valuation at 2

implies that the local factor at 2 is somewhat complicated.

Proposition 99. (i) For any n € N,

Loa(n) n=1(4)
301(n) n=2(4);
Z H(4n —r?) + Z min(d,n/d) = 201(n) n=3(4);
r=0 (4) djn 10 B
d+n/d=0 (4) s1o1(n) : n =4(8);
\%al(n) : K=uwy(n) >3

(ii) For any n € N and a € {1, 3},

1 ioi(n): n=13(4);
Z H(4n —r?) + 3 Z min(d,n/d) = { * 1<ﬁ) 4
r=a(4) dln Hﬁ—mOj(n) R = UQ(TZ) > 0.

d+n/d==+a (4)
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(iii) For any n € N,

%Ul(n) n=1(4);
501(n) n=2(4);
> H(n—r*)+ Y min(d n/d) =< Loy(n) n=3(4):
r=2(4) dln <
d+n/d=2(4) ﬁgl(n) n=4 (8);
\ﬁal(n) D k=1(n) > 3.

Now we consider the case m = 25. There are again no cusp forms. Some of the details

of this case appear in the published version [72].

Proposition 100. (i) For any n € N,

so1(n) n==+1(5);
Z H(4n —r?) + Z min(d, n/d) = { 1o(n) n = +2(5);
r=0(5) dn 1 5R_q
d+n/d=0 (5) 5" m01<n) R = ’05(n) > 0.
(ii) For any n € N and a € {1,4},
(éal(n) : n=1,2(5);
io1(n): n=3(5);
Z H(4n —1r°) + = Z min(d,n/d) = { * 1(n) ©)
r=a (5) din zo1(n) n=4(5);
d+n/d==a (5) ) -
(5 T e oi(n) s k=us(n) >0
(111) For any n € N and a € {2,3},
(
Zoi(n) : n=1(5);
io1(n): n=2();
Z H(4n —1r®) + = Z min(d, n/d) = { * 1(n) ©)
r=a (5) dn éal(n) : n=3,4(5);
d+n/d==a (5) ) -
k5~mal(n) : KJ:U5(TL)>O

Finally we will consider m = 36. Here the difference between Ey and Q21/36,(0,1/18) is a

cusp form in which the components of e, for Q(v) € Z are all multiples of the form

n(67)" = q —4q" +2¢" + 8¢" — 5¢° — 4¢™ — 10¢°" £ ... € My(T'o(36)).
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In particular, the coefficients of these components of Es and Q21/36,0,1/18) are equal unless
n = 1 mod 6. The identities we find in this case involve nontrivial local factors at both p = 2

and p = 3:

Proposition 101. Let a(n), n € N denote the coefficient of " in n(67)*.
(i) For any n € N,

Z H(4n —r%) + Z min(d,n/d) — %a(n)

=0 (6) din
d+n/d=0 (6)

(%01(”) : n=1(6);

LS o(n) n=2(6):

_ g'%al(”)i n=3(6);

%'%Ul(n) : n=4(6);

son(m): n=5(0)

L (1+2+F.2.U+22(:2)(:3§Ei’f?(,’i).ii)gvzg(n))Ul (n): n=0(6).

(ii) For anyn € N and a € {1,5},

1 1
g H(4n —r?) + 3 E min(d, n/d) — Ea(n)
r=a (6) dn
d+n/d==xa (6)

jo1(n) n=1(6);
%'%01(”) : n=2(6);

— %'%Ul(")i n = 3(6);
%'%Ul(") : n=4(6);
571(n) n=5(6);

\ (1+2+.“+221)")22((n";)).€)1”j_;"-:_“.+3v3(n))0_1 (n): n=0(6).
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(111) For anyn € N and a € {2,4},

> Han-r)t Y min(dn/d) + -

12¢
r=a (6) dln
d4+n/d==a (6)

(n)

(

%01(71) n=1(6);

3 T n=2(6)
Rk n=3(6):
b T ¢ n=14(0);
%Ul(n) n=>5(6);

L (1+z+...(+2;3;2>§gfﬁxwm)01 (n): n=0(6).

(iv) For any n € N,

S Hin—)+ Y min(d,n/d) + =a(n)

r=3(6) din 6
d+n/d=3 (6)

(15,(n) - n=1(6);
%01(”% n=2(6);

— %'%01(")3 n = 3(6);
%'#j—szal(n): n=4(6);
so1(n) : n =5 (6);

L (1+2+...i};j:();lg?:ir;;_l}_*{;v;g(n))Ul(n) : n=0(6).

In general we always find some sort of expression relating

Z H(4n —r*) + Z min(d, n/d)

r==a (N) dln
d+n/d==a (N)

to a multiple of the divisor sum o4(n), with an error term coming from cusp forms.
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Chapter 7

Rational Poincaré series in

antisymmetric weights

7.1 Introduction

We retain the notation from previous chapters. The purpose of this chapter is to adapt the
construction of modular forms with rational coefficients from chapter three to weights that
satisfy 2k + b" — b~ = 2 mod 4. Since there does not seem to be a widely-used name for
this case, we refer to such k as antisymmetric weights because the Fourier coefficients
¢(n,v) of any modular form F(7) € My(p*) now satisfy c¢(n,v) = —c(n, —v), as one can see
by considering the action of Z = (—1,i) on F.

The constructions of Eisenstein series Ej o and Poincaré square series Qg will be
identically zero in these weights. However, it still makes sense to consider the usual Poincaré
series Py, 3 as well as the Eisenstein series Ej g attached to nonzero elements 5 € A with
Q(fS) € Z as in [12]. A computable exact formula for Ej 3 was given by Schwagenscheidt in
[57]; however the Poincaré series Py, 3 are impractical to work with explicitly (as usual).
Instead, infinite linear combinations of Fj,, s can again be used to produce bases with
rational coefficients.

Modular forms of antisymmetric weight have received less attention in the literature,
likely because they do not seem to be directly useful within the theory of theta lifts. On

the other hand, one can produce obstructions to Borcherds products out of antisymmetric
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modular forms through simple operations such as Rankin-Cohen brackets. We can also men-
tion that antisymmetric modular forms correspond to Jacobi forms (and skew-holomorphic
Jacobi forms) via the usual theta decomposition ([31], chapter 5); as an example, we can give
another construction of the Jacobi cusp form of weight 11 and index 2 (see the discussion in
[31] after theorem 9.3).

7.2 Rational Poincaré series in antisymmetric weights

Suppose that k£ > 7/2 and let

Pampl(r) = > (@"es)| M
METo\T
be the Poincaré series of exponential type, which is characterized through the Petersson
scalar product by
['(k—-1)

(f7 Pk:,m,ﬁ) = W

c(m, B) for f(r) = c(n,7)q"e, € Si(p").

n?’y

We denote by Ry, g the series

Rk7m7ﬁ = Z )‘Pk,)\2m7)\ﬁ-

AEZ

(This can be interpreted as the Poincaré averaging process applied to the weight 3/2 theta
function 3, A\g*"ers.)

The convergence of Ry, ,, s follows from the same argument that we used for the Poincaré
square series Qg s in chapter 3: since Sk(p*) is finite-dimensional, it is enough to prove
that ), ., APy x2m s converges weakly (i.e. as a functional through the inner product) and
for any cusp form f(7) =" . ¢(n,y)q"e, the convergence of

D(k—1) o= Ac(A?m, A\B)

Z(f: APy z2mag) = 2 (4m)F 1 \2h—2y k1
AEZ A=1

follows from known bounds on the coefficients of cusp forms when k£ > 7/2. Also, M6bius

inversion implies Py s = 3 2 qoq di(d) Re g2m,as with convergence by the same argument;
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so all Poincaré series lie in the closure of

Span(Rymp: €A me (Z—Q(S))so)-

By finite-dimensionality again, Span(Ry, ) contains all Poincaré series and therefore all

cusp forms.

By switching the order of summation (valid for large enough k), we see that Ry, 3 arises

from the Jacobi Eisenstein series Ej_1 ,, 3: differentiating with respect to z gives

0
— E_
82 =0 " 1m.8(7, %)
2mAz — cmz>
_ 2 . s, * —1
- ZCT—i—d )\28220 (m)\(M T) + i d )p(M) exs
47rmz B
=TS e a)” ZAe(mA2(M T)) (M) ers
c,d ANEZ
= 47rmiRk,m,5.

Such a manipulation is valid whenever Ej_, ,, 3 converges locally uniformly as a triple series
and in particular when k& > 4. (The Hecke trick will show that it is also valid in weight
k =4.) In particular Ry, 3 has rational coefficients that can be computed using the results

of chapter 3: if ¢(n,r, ) are the Fourier coeflicients of Ej_1,, 3 then

1 0
Ry mp(T) = mazoEklmﬁTZ 2mzz Z ( Z nrv)q”ev.

YEANEZ—-Q(y) rEL—

For practical computations it is important to have a formula for dim Mj(p*). A Riemann-
Roch based formula that is also valid for antisymmetric weights appears as theorem 2.1 of
[29]; with some modifications we can express it in a form similar to proposition 14 of chapter

2:

Proposition 102. Suppose 2k +bT — b~ =2 mod 4 and k > 2. Let d denote the number of
pairs {7}, v € A for which v # —~. Define

=3Y"B@Q()), B:=>_ BQ())

YEA vEA
2v=0
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and
au=#{v€A: Qv) €EZ, v# -}/ £ 1,

where B(x) is the auziliary sawtooth function B(x) = x — W Then

dim M (p") = %
1 2(k +1) +sig(A)
7 |A|e< 5 )Im[G(2, )
1 4k + 3sig(A) — 10
3 3\A;Re[e< 24 )@ 4) = G(=3.4))|
a4+ By — Bs
T

and dim Si(p*) = dim My (p*) — ay.

To be clear, the differences between this formula and proposition 14 are a sign change
in the third and fourth lines, the fact that k is replaced by (k + 1) in the second line, the
imaginary part of the Gauss sum G(2, A) being used instead of its real part, and the different
definition of d.

Example 103. Classical Jacobi forms of index 2 correspond to modular forms for the
quadratic form Q(z) = 22?. The discriminant group of @ is represented by 0,1/2 and
+1/4. The equation Py, 3 = —FPym —p for antisymmetric weights & implies that Ry, s is
zero unless = +1/4 mod Z. The dimension formula shows that the first nonzero instances

of a form Ry, 5 occur in weight k = 2F. In this weight we compute

25920
R21/277/8,1/4<7') = @ <q7/8 — 21q15/8 + 189q23/8 — 910(]31/8 + 2205(]39/8 + ) (€1/4 - 83/4).

Via the theta decomposition this corresponds to a Jacobi cusp form of weight 11 with the
same Fourier coefficients; it is essentially Fj,FEs; — Ey1Fg,. (Compare equation 13 of
section 9 of [31] and with Table 3 (part d) at the end of [31]). Computing this in the form
Ro1/2,7/8,1/4(T) may be more efficient since the coefficient of ¢" is now a sum of only O(y/n)

coefficients of Eisenstein series.

Example 104. Modular forms for Q(z) = —max?, m € N and weight &k can be interpreted

as skew-holomorphic Jacobi forms of index m and weight k + 1/2 (see [9],(62]), again via a
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theta decomposition that sends the skew-holomorphic Jacobi form

90(7_7 Z) _ Z c(n, r)qncreﬁ(zlmn—r?)y

n,r
4mn—r2<0

to the modular form ) ¢(—n, r)q*n+7”2/4m

¢,/2m- In that sense it is also straightforward to
compute skew-holomorphic Jacobi forms of even weight using the formula here. When m = 2
the dimension formula implies that we first find a nonzero cusp form in weight £ = 11/2 and

the rational Poincaré series of index (1/8,1/4) gives such a form:

Ruypasaya(r) = (g% 4+ 237¢°5 4 1440975 4 2456/ — 14406%* .. ) (e1)4 — ea0).

7.3 Small weights

The extra terms that appear in By 5(7,2,0) for k € {3/2,2,5/2} determine corrections to
the coefficient formula for Ry, 5 for k € {5/2,3,7/2} that can again be calculated using the
holomorphic projection technique. Suppose first that (A, Q) has signature 3 mod 4.

Proposition 105. Let
. 1
5/2,m,8(T:2) = Espamp(T, 2) + ?9(77 z)

denote the decomposition of the nonholomorphic Jacobi Eisenstein series into its holomorphic
and real-analytic parts as in section 3.4. Then
1 0

> (7. 2) 1 0?
o 2P 7% 3mm 010z | 2=0

R y2.mp(7) (T, 2).

- drmi 0z

_1 9
47mi 0z |
z=0

Proof. Rz, is the projection of E3 o (T, %) to S7y2(p"). Therefore its Fourier

coefficients are determined as follows: writing Rajomp(T) =32, b(n,7)q" e,
(47n)>/?
b(n, ) = =2 (R /2m.5, Pr/om
(n,7) 52 (R/2.m,8: Prjany)

6472 n®2/ 1 0 ‘
B 3 7 (2_717,% Z:0E5/27m75 (T’ Z)’ P7/2,n,fy>

B 6472 n®/2p [

3 m Jo
rel— <775>

1 47n
= %;TC(%T,’Y)ﬂL%ZTA(nJﬁ)-

T

1
(0(n, ) + ;A(n, , 7)) e~ 1myS/2 dy
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In other words, writing E5, , (7, 2) = Es5/o,m(7,2) + 519(7', z) where Ejs/om g is holo-

morphic and ¥ is the weight 1/2 theta function from above,

1 0 1 o

E5/2,m,,3(7—7 Z) - 19<T7 Z)

Rz y2.m,6(7T)

- drmi 0z | =0 3mm 0102 | 2=0

as claimed. O

Example 106. There is a unique skew-holomorphic Jacobi cusp form of weight 4 and index
3 up to scalar multiples. The corresponding modular form for Q(z) = —3z? is the (corrected)
rational Poincaré series of weight 7/2 and index (1/6,1/12):

1 19
Rijsjoa12(7) = <§q1/12 — 24" 4 qus/lz 4245712 4+ ) (e1/6 — e5/6)

10 28
+ ( - qu/g — §q4/3 — 48q7/3 + 96(]10/3 + > (61/3 — 62/3);

but the coefficient formula of the previous section evaluated naively gives the series
<q1/12 — 24112 _ 7B 494 PT12 4 > (e1/6 — e5/6)

T <2q1/3 — 52¢*% — 48¢"/% 4 96¢'/3 + ) (6173 — ez/3).

These differ by what is essentially a theta series that has been differentiated 3/2 times. (In

particular, the coefficients of ¢" are unchanged unless 3n is a rational square.)
Now suppose (A4, Q) has signature 0 mod 4.

Proposition 107. Let

1
— A(n,r,¥)B(my(r? /m — 4n))q"C"e
NG 727; ( )B(my(r”/ ))q"¢"ey
be the splitting of E5 ,,, 5(T, 2,0) into its holomorphic and nonholomorphic parts, where 3(x) =

1 [, -3/2 —zu
= [ u e du and

E;mﬂ(T, 2,0) = Eomp(T,2) +

48(—1 (4+bt—b7)/4 1 — e/2—1
(1) H 1fp1 Ly(n,r,v,1+e/2)L,(n,r,v,1+¢€/2)x

\% m|A//A| bad p

1: r? # 4mn;

A(n,r,y) =

1/2: r*=4mn;
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if A arises from the even lattice A of dimension e and signature (b*,b). Then

1 0

drmi 0z | 2=0

1 2
Es(1,2) + S Z sgn(r)A(n,r,7) (\r| —Vr? — 4mn> q"e,

’Y?n7r

R3 mp(T)

and all Fourier coefficients of Rs, 3 are rational.

Proof. Holomorphic projection in this case gives R, 5(7) = > b(n,v)q" e, where b(n,~)

’y?n

differs from —=— >~ rc(n,r,v) by

4mmsa
47rn)? . o
—47SimF)(2) Z (2mir)A(n,r, fy)/ o4 yﬁ(ﬂy(TQ/m—Zln))yl/? dy
TEZ_('\/aﬁ) 0
= 7Tn2 Z (271'27")14(” T ’7/) /Oo /oo u*3/2y1/2e47rny(u71)77rr2yu/m du dy
4mim redtop) o L
2 oo
- 47”6_ Z rA(n,r,7) / u”2(r? /m — 4n)u + 4n] %2 du
m r€Z—(7,8) !
1
= 16m3/2 Z sgu(r)A(n,r,7) (7“2 —2nm — |r|Vr? — 4nm)
m TGZ*<'}/,B>
1 2
= 3m3/2 Z sgn(r)A(n, 7)(|7‘| —Vr2— 4mn> .
r€Z—(7,8)

Asin section 5.6, if | A] is square then this is a finite sum of rational numbers, and otherwise we

can split it into a sum over finitely many orbits and calculate each as a geometric series. [

Example 108. Consider the quadratic form Q(x,y) = 2 + zy — 2y? of discriminant 9 and
the real-analytic Jacobi Eisenstein series of weight 2 of index (m, 8) = (1/9,(1/9,—-2/9)):

1
—12)  H(4n — 9r°)q"C"ey + —= > A(n,7,7)B(my(9r” — 4n))q"(e,,
v¥,M,T \/y v,M,T
where A(n,r,v) = —24 if 9r* = 4n, and A(n,r,v) = —48 if 97? — 4n is a nonzero square,
and A(n,r,v) = 0 otherwise. The dimension formula implies M3(p*) = 0 and therefore
R3mp = 0. As in section 6.5 we can compute the component of e(/31/3) in this series in

terms of a divisor sum; the identity we find here is

Z rH(4n —r?) = ¢(n) Z (g) min(d, n/d)*,

r=1(3) dln
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for all n € N, where e(n) = —1 if 3|n and £(n) = 1/2 otherwise. This is simpler than the
formula for 3 _, 5 H(4n — 7?) (see section 6.5) because there is no Eisenstein series E3 in

M;(p*) to compare against.

Note in particular that the right hand side is zero when n = 2 mod 3, since d — n/d
swaps the two sums; therefore )" _, 3) rH(4n — r?) = 0 for all n = 2 mod 3. Also, by
antisymmetry > o rH(4n — %) = =37 _, g rH(4n — r?) (as one can see directly by
swapping r with —r).

Finally, we consider weight £ = 5/2 when (A, Q) has signature 1 mod 4. Here the
corrected Jacobi Eisenstein series E3 5(7,2,0) is holomorphic so it is easy to correct its
derivative to Rs/9 m 3. However, unlike the case of weight k > 3 it seems likely that the series
R5/2.m,5 do not generally span S5/2(p*). One example where I suspect it does not span is the
case of the quadratic form Q(z) = 13z2. There is a nonzero Jacobi cusp form of weight 3

and index 13, (unique up to scalar multiple), namely

0a(r,2) = (9(C = ¢ +7(C = ¢ = 17(¢ = ¢ +4(¢ = ¢+
+7(6° = ¢ = 5(C° = ) + (= ¢ a + Olad),

which corresponds to a nonzero form in S5 5(p*). It seems likely that all Rs/s., g are identi-
cally zero. This implies a lot of vanishing of certain special values of L-functions attached
to ¢3(7, z) but it is not a contradiction to the spanning claim of the previous section (which
does not apply in small weights). The situation here is similar to the Jacobi form of weight

2 and index 37 as in the paragraph after remark 77.
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Appendix A
Paramodular forms

In this chapter we will apply the algorithm of chapter 3 to some spaces of paramodular forms
of small level. A paramodular form of level ¢ € N is a holomorphic function on the Siegel
upper half-space Hy of genus two that satisfies the usual functional equation (possibly with

a character) for the group

T, — {M € Spa(Q) : (é i) M (é 2) c Z4X4}

(where I above is the (3 x 3) identity matrix) instead of Spy(Z). Paramodular forms can
also be interpreted as orthogonal modular forms for the lattice A;(—t) @ 15 of signature
(2,3) so there is a version of the Borcherds lift. The relevant obstruction space consists of
weight 5/2 modular forms for the dual Weil representation attached to Q(z) = —tx?. A more
detailed reference for product expansions of paramodular forms is section 2 of [35]. We use

211?12

the formulation of theorem 7.1.1 of [44] here. For Z = ( > € Hs, write ¢ = e(z11),

212 %22
r = e(z12), $ = €(z22). Then the paramodular form of the Borcherds product with input

function F(1) = >_,, _ c(n,v)q"e, is
qu(Z) _ qp17,2tp28tp3 H (1 . anZStm)c(mn—l2/4t,l/2t)
(m,n,l1)>0
where

1

m:ﬁz o(—12/4t,1/2t), Zlc (—12/48,1/2t), ps = 212 (—1%/4¢,1/2t)

lEZ leZ
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(such that p = (p1, pa, p3) is the Weyl vector of [4]) and (m,n,l) > 0 means either m > 0; or
m=0andn>0;orm=n=0and [ <0.

The character group of I'; was determined by Gritsenko and Hulek [33]. If ¢; = ged(¢, 12)
and to = ged(2t, 12) then the characters are exactly X, where a,b € Z/t2Z satisfy a — b =
to/t; mod ty and they are determined by

1 01 0 1 00 O
01 00 01 0 ¢t
a =e(a/t2), Xa =e(b/ty).
X,b0010 (/2)X,b001 (/2)
00 01 00 0 1

For example, when ¢ = 1, the character group consists of the trivial character x( o and the

Siegel character x; ;. In particular the character of ¥z can be read off its Weyl vector: since

10 0 0
U (Z + ) = e(p)Vr(Z), U (Z w7 ) — e(py)Ur(2),
00 0t
the character of W iS Xy, t2ps- We also remark that Borcherds products transform under

certain maps V,; which are not contained in I';. The most important is the involution V; :

z Z tz z
( " 12) > ( > 2 ) . For t > 1, the characters of the group I} = (I';, V;) are

212 299 219t 'z
generated by the character x;, = x1,1 and a character p defined by u(I'y) =1, p(V;) = —1.

Whether i appears in the character for Up can be determined by

Up(Vi- Z) = (—1)PUp(Z) = (=1 xu, (V) Up(Z), D= oi(n)e(—n —1*/4t,1/2t).

neN
leZ

(When t = 1 this degenerates to i = x2.) In particular the Weyl vector (p1, p2, p3) always
satisfies p; — p3 € Z, since the character under I'; is always a multiple of x1 ;.
Computations of Borcherds products for some small levels (and their applications to
finding generators of rings of paramodular forms) have appeared in the literature. In [32],
Freitag gave a short proof of Igusa’s [40] computation of generators for N = 1, using a
reduction process based on the product 5 of ten theta-constants. Gritsenko-Nikulin [35]
found paramodular forms of level N = 2,3 (and N = 4) with similarly simple divisors,

which were used to compute the graded rings by Ibukiyama-Onodera [39] and Dern [25],
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respectively. Results of this type do not seem to be known for higher levels; from our
point of view, the existence of cusp forms in the obstruction spaces makes the divisors of
products of small weights more complicated and makes such a reduction process unlikely.
One could try to find exponents for which the coefficients of all cusp forms are zero (which
is sometimes indicated by those coefficients of the Eisenstein series being integral) and use
these to produce Borcherds products with simple divisors, but it seems difficult to use these
products to determine graded rings.

All computations were done in SAGE [64]. In all cases the obstruction space was com-
puted in less than a second. The problem of finding holomorphic principal parts was in-
terpreted here as finding integer points in a polytope described by an equation for every
modular form in the obstruction space and an inequality for every Heegner divisor, the poly-
tope being compact because of the obstruction by the Eisenstein series Fs/,. This becomes
difficult with increasing weight as the dimension of the polytope increases and as the number
of solutions grows rapidly (most of the solutions being redundant). There is a recent preprint
[52] which describes a method to solve a similar problem (computing Borcherds products

that are cusp forms) and does not rely on the obstruction principle.

Explanation: The tables below work out a basis of the obstruction space and the
principal parts of the input functions for the holomorphic Borcherds products of smallest
weights (from which one can read off the divisor) as well as their Weyl vectors and characters.
(In half-integer weight there is a multiplier system rather than a character.) We use the Gram
matrix S = (—2N) so the discriminant form is represented by v = a/2N, 0 < a < 2N — 1.
We omit any products that can be constructed as products or quotients of previous entries
in the table. v denotes a product of weight k. The Weyl vector p = (p1, p2, p3) uses the
convention of Borcherds [4]; in other works (e.g. [25],[44]) one sometimes sees the exponents
(A, B,C) = (p1,2tps, tps) used instead. As above, the character x4 of I'; of order d € N is

characterized by

z z = z z =€ 3
Xd 0 0 Xd 0

and the character u of (I'y, V) indicates that the product is antisymmetric in even weight,

or symmetric in odd weight.
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A.1 Levelt=1

Paramodular forms of level 1 are Siegel modular forms of genus 2.

Table A.1: Obstruction space, level t =1

Es/o

€0

1 —70q — 120¢> — 240¢> — 550¢* — 528¢° + O(q°)

€1/2

g4~ 10 — 48¢ — 2504 — 240¢° — 480¢* — 480¢° + O(g®))

Table A.2: Holomorphic products of weight less than 100

Principal part Weyl vector Character
U5 | 10e0 4+ g~ ey (1/2,1/4,1/2) | x2 (= )
Pou | 48eo + g% ey o (2,0,0) -
Y30 | 6060 — gV e10+q e | (5/2,3/4,1/2) | x2 (= p)
wGO 12080 + q72eo (5, O, 0) —
A.2 Levelt=2
Table A.3: Obstruction space, level ¢t = 2
Es/s
¢ 1 —24q — 166¢> — 144¢°® — 312¢* — 336¢° + O(¢%)
e1/4,¢3/1 | ¢V/8(—2 — 50q — 96¢° — 242¢° — 288¢* — 384¢° + O(¢°))
e1/2 q"/?(—22 — 48¢q — 144¢* — 192¢° — 550¢" — 336¢° + O(q°))

Table A.4: Holomorphic products of weight less than 50

Principal part Weyl vector Character
Yo | deg+ g V8(ers + e34) (1/4,1/8,1/4) | x4
Yy | 18eq — ¢ /¥ (erya + e3/a) + ¢ er 0 (3/4,1/8,3/4) | xin
Yra | 24e0 4+ ¢ e (1,0,0) Iz
Yo | 48 + ¢ % %e1 o (2,0,0) I

144
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Yas

96eq — q_1/8(21/4 + e34) + q_9/8(€1/4 + e3/4)

(4,1/4,2)

A.3 Levelt=3

Table A.5: Obstruction space, level t = 3

Es)s

¢ 1 —24q — 72¢% — 238¢® — 216¢* — 288¢° + O(q°)

e1/6,¢506 | ¢/ 12(—1 — 24q — 121¢° — 120¢® — 337¢* — 264¢° + O(¢%))

e1/3, 023 | ¢V/3(—7 — 55q — 96¢% — 168¢° — 264¢* — 439¢° + O(¢°))

e1/2 /(=34 — 48¢q — 144> — 192¢® — 336¢* — 288¢° + O(¢%))

Table A.6: Holomorphic products of weight less than 50

Principal part Weyl vector Character
Y1 | 2e0+q V12 (e1/6 + e5/6) (1/6,1/12,1/6) | xeu
Ve | 12e0 — ¢ 2 (e16 + e5s6) + ¢ P ez +eays) | (1/2,1/12,1/2) | X3
Pra | 24e0 4+ q e (1,0,0) U
Y16 | 32e0 —q " (ers + ess6) + a7 ey (4/3,1/6,4/3) | x3
Qﬁé? 48¢o + g~ e1 (2,0,0) U
S | 48eq + 1312 (eq 6 + e5/6) (2,0,0) -
Yss | T2e0 + q e (3,0,0) L
Yas | 96eg — ¢ V3 (e1/3 + eay3) + ¢ (e1/3 + eay3) (4,1/6,2) —

A4 Levelt=141

145

Paramodular forms of level 4 are Siegel modular forms of genus 2 for a congruence subgroup.

Table A.7: Obstruction space, level t = 4

Es/o

¢o

1 — 24q — 72¢% — 96¢° — 358¢* — 192¢° + O(q°)

Continued on next page
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€1/8, €7/8 1/16(_% — 24q — 72¢* — 337 ¢° —192¢" — 673q5 +0(¢%))
€1/4, €34 ¢4 (=5 — 24q — 125¢> — 120q — 240¢* — 240¢° + O(¢%))
€3/8, €5/8 ¢*M0 (=% — 2lg — 96¢% — 168¢> — 264¢* — 312¢° + O(¢%))
¢1/2 0 — 46q — 48q — 144¢3 — 192¢* — 336¢° + O(q°)

Table A.8: Holomorphic products of weight less than 50

Principal part Weyl vector Character

Vija | €0+ g 0 (erys + eq/s) (1/8,1/16,1/8) | \/Xap
Yosa | 9e0 — ¢ 0 (erss 4+ ersg) + A (erya +eaps) | (3/8,1/16,3/8) | /xin
Wiy | 24e0 — q V1518 4 ers8) +q V10 (ess +e58) | (1,1/8,1) —

W) | 24e0 + g e (1,0,0) B

Prs | 3669 — g erya + e3pa) + ¢ ey (3/2,1/8,3/2) | x2
Wl | 48ey +q 2er 0 (2,0,0) B

wéi) 48eo + ¢/ *(e1/4 + €374) (2,0,0) —

¢§i) 48e0 + ¢ '/0(e1 /5 + e7/8) (2,0,0) —

Uss | T2e0 + q 2eo (3,0,0) M

Yag | 96e0 + g e (4,0,0) —

A.5 Levelt=5

Table A.9: Obstruction space, level t =5

Es/o
¢ 1 — 21634q _ 81430q2 _ 1z11§oq3 168¢* — 5110q5 +0(¢°)
€110, €010 q1/20<_15_3 21430q _ 91630q2 1?:2)’0 @ — 3:I>g5q4 2280 q5 +0(¢%))
¢1 /5 €45 611/5(—% 31630(] _ Séoqz 2125 ¢ — 2(15§0q4 3000q5 +0(¢%)
€3/10, €7/10 QQ/ZO(—%B - % - %?,5 2 1i‘§0q3 — 240q¢" — 3240(15 + O(q 6))
€2/5, €3/5 q4/5(—% _ % _ %go ¢ — 2?30613 3§§0q4 3960q5 + 0(¢%))
e/ q1/4(—% 71330q 71%9,4‘12 1?§0q3 _ 2}§0q4 _ 432oq5 +0(¢%)

Continued on next page
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%(E5/2 - Q5/2,1/20,1/10)
¢ 0 + 20g + 40¢> — 80¢® + 0g* — 60¢° + O(q°)
€1/10, 9/10 ¢"/*°(=1 + 30q — 10¢* — 30¢® + 29¢* — 40¢° + O(¢°))
€175, €4/5 q'°(6 — 20 + 40¢” + 16¢° — 60¢" — 80¢° + O(¢°))
€3/105 €7/10 ¢*/*°(1 — 20q + ¢* + 50¢® + 0¢* — 50¢° + O(¢°))
0a/5, €3/5 q"/°(—16 — 6q + 20¢> — 40¢> + 80¢* 4 40¢° + O(¢%))
e1/2 q"/*(—10 + 10q — 50¢ — 20> 4 140¢* + 20¢° + O(q®))

Table A.10: Holomorphic products of weight less than 50

Principal part Weyl vector Character
~1/20

o | ql/; o (1/2,3/20.1/2) | xs
+q (e +eass) +q 1/421/2
(3 10ep + 66]_1/20(61/10 + e9/10) + q_1/521/5 + e4/5) (1,2/5,1) M
Y10 | 20e0 + ¢~ (e1/10 + e9/10) + ¢ (e3/10 + e7/10) | (1,1/5,1) —
Yra | 24eq + 27410 + g7 ey (1,0,0) L

(

(

s | 48eg + 66_171/461/2 + q721/20(91/10 + ¢9/10) 2,0,0) -
§) | 58eo + ¢ ey sy + g ey 5/2,1/4,5/2) | xap
o8¢y — 3(]1/20(21/10 + 69/10) + 3(]_1/5(61/5 + e4/5>+
5 o o (5/2,7/20,5/2) | xap
+q ey +q 7 (eays + e3ys)
) 70ey — 2q71/20(€1/10 + ¢9/10)+
35 ~1/5 ~1/4 —9/4 (371/571> -
+3q (15 +eays) —q e+ g ey

) | 060 = 247" (e1/10 + eoj10)+ (3,1/5,1) u
35 ) )

+ 3q_1/5(21/5 + eqs5) + q‘29/2°(e3/10 + ¢7/10)
3) 70eq — 2q_1/20(€1/1o + 99/10)"‘

35

175 6/ (3,1/5,1) L
+3q / (€1/5 + €4/5) +q / (21/5 + 84/5)

e | T2e0 + 4q_1/421/2 + ¢ e (3,0,0) M

Borcherds products for paramodular forms of level 5 were studied in detail in [44], especially
chapter 7. The analogous tables on pages 90 and 121-122 of [44] have a number of entries
such as the product 15! of weight 11 which are omitted here. The products of weight
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35 and 36 here do not appear in [44], possibly because their input functions have poles of

higher order in oco.

A.6 Levelt=6

Table A.11: Obstruction space, level t = 6

Es/o
¢ 1— %q 351)2 ¢* — 96¢° — 9?6 gt — 816 q5 + 0(¢)
€1/12, €5/2, €7/2, €11/12 q1/24( l - I?q 327612 5§8q3 8é6q4 1321(15 + O(q 6))
€1/6,€5/6 ql/ﬁ( —72¢* — 426(13 1331 q' —192¢° + O(q ))
€14, €3/4 q3/8( _ 144 3§6q2 855)8q3 864 ¢* — 240¢° + O(¢%))
e1/3, €2/3 q2/3( _ 168 6;9 ¢ — 522 ¢ — 12548q4 1104q5 +0(¢%)
e/ 1/2( _4 3g4q 2?8 ¢® — 144¢% — 8?8 ¢t — 1584q5 + 0(¢%))

5 - (Es/z - Q5/2,1/24,1/12)

¢o 0+ 48¢ + 48¢* + 0¢® — 964" — 96¢° + O(q°)

€1/12, €5/12, €7/12, €11/12 /(=1 — q + 23¢% — 48¢° + 24¢* — ¢° + O(¢%))
6

€1/6, €5/6 q"/%(4 + 24q + 0¢® + 24¢° + 4¢* — 120¢° + O(¢%))
€1/4, €3/4 ¢*/8(6 — 24q + 24¢* — 18¢® + 96¢* — 120¢° + O(¢%))
¢1/3, €2/3 ¢?/3(—8 — 48q + 16¢% + 48¢> — 48¢* + 96¢° + O(¢%))
e1/2 q'?(—24 — 24q — 48¢* + 0¢® + 72¢* + 96¢° + O(¢°))
Table A.12: Holomorphic products of weight less than 25
Principal part Weyl vector Character

1) Geo — 971/24(61/12 + e11/12)+

’ + 5q_1/24(e5/12 + e7/12) + q_1/6(91/6 + e5/6)
;gQ) Geo + 4q /% (e5/12 + e7/12) +q /O (erss + es6) | (1/3,1/12,1/3) | xiop
12¢¢ — 2Q1/24(91/12 + e5/12 + e7/12 + e11/12)F

Ve (1/2,1/12,1/2) | x%,
+ 261_1/6(91/6 +e5/6) + q_1/2€1/2

(1/4,1/24,1/4) | xiop

Continued on next page
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~1/24
g |0 by 2/3.1/12.2/3) | %
+7q (e5/12 + e7/12) + ¢ /8(81/4 + e3/4)
ia | 24e0 + 247> (es/12 + er/12) + 47 e (1,0,0) z
o 36ey — 2(]_1/24(21/12 + e5/12 + e7/12 + €11/12)+ (3/2,1/6.3/2) | —
+ q_1/6(€1/6 + e5/6) + q_2/3(21/3 + e9/3)
(1) | 480 — q_1/24(21/12 + e11/12)+ )
24 g (e 10+ e 1) (2,5,2) -
/ /
(2 | 480 — q*1/24(e5/12 + e7/12)+
24 P ey g+ 11 10) (2,0,0) -
/ /
3) 48¢y + 24q_1/24(e5/12 + e7/12)+ (2,0,0) _
o + q_7/6(91/6 + e5/6) o
A.7 Levelt=17
Table A.13: Obstruction space, level t =7
Es/a
¢ 1= % 48¢7 — B/g3 _ 80g1 91205 4 (g0
e1/14, €13/14 gUB(—L _T2g 8362 as2p3 8g4q4 86105 1 0(q°))
17, o7 gVT(—T — 108y 38 5w 192 275q +O(¢%))
e3/14, €114 O/ (=5 — 24q — g2 _ 4323 1321 ' — 168¢4° + O(¢))
ea/1 57 gYT(—11 — 188y 322 sy 8§6q4 121805 1 O(gf))
5,14, €o/14 qP/B (1L 168, 6T3ge _ Gisgs  1wgd 105605 1 ()(gf))
€3/7, €4/7 ¢*7(—2 —3bg — 22¢* — 96¢° — 2L0¢* — 264¢° + O(¢°))
12 A~ 6, 22 s6dgs 8;6(]4 153605 1 O(gf))
3B (BEsp2 — Qs/2,1/28,1/14)
¢ 0+ 14q + 70¢% — 28¢% — 14¢* — 112¢° + O(¢%)
€1/14, €13/14 q"/%(—1 + 28q + 14¢* + 28¢® — 14¢* — 84¢° + O(¢°))
e1/7, €67 q"7(34 Tq + 42¢® — 42¢° + 28¢* — 25¢° + O(¢%))
€3/14, €11/4 q”/8(5 + 0q — 14¢% + 28¢° + 19¢* + 0¢° + O(¢%))

Continued on next page



APPENDIX A.

PARAMODULAR FORMS

150

€2/7,€5/7

q*7(5 — 28q — 7¢* + 33¢° + 49¢* — 98¢° + O(q°))

€5/14, €9/14

5/ (—11 — 28¢ + 17¢% — 28¢° + 28¢* + 84¢° + O(¢®))

€3/7,€4/7 q2/7(—7 — 15(] — 29(]2 + 0q3 + 14q4 + Oq5 + O(qﬁ))
e1/2 /(=28 4 14q — 28¢% — 84¢°> + 84¢" + 84¢° + O(¢%))
Table A.14: Holomorphic products of weight less than 25
Principal part Weyl vector | Character
y deg + 3(]_1/28(61/14 + 913/14)+ (l 5 l)
2 —1/7 27928792 X2
+q (o7 + eoy7)
10eg — 9_1/28(91/14 + e13/14)+ L3 1
Vs (5, 287 5) X2
—1/7 —2/7 8
+2q " (ery7 +egy7) +q 7 (37 + eay7)
" 12¢q + 5q_1/28(61/14 + e13/14)+ (1 9 1)
6 _ )T -
+q 9/28(93/14 + ¢11/14)
¢(1) 20¢g — 2q_1/28(61/14 + e13/14)+ (1 3 1) _
10 —1/7 —3/4 7147
+4q (e1y7 +e6/7) + 4 7 er)n
@) 20¢q + 2q’1/28(81/14 + 613/14)— 1
1/’10 —1/7 —4/7 (17771) -
—q (e1)7 +ee7) + 4 (e2/7 + ¢5/7)
P11 | 22¢0 + 7@171/28(61/14 + e13/14) + ¢ 'eo (%, i, %) X2
" 40¢¢ + 28q_1/28(21/14 + e13/14)+ (4,1,2)
20 L -
+ q_29/28(91/14 + ¢13/14)
4480 + 14(]71/28(81/14 + 213/14)— 1
a2 ot 87 (3,5,1) -
—q (e3/7 +ea7) + ¢ (e1/7 + ¢6/7)
Uoq | 48eq + ¢ 57/ (e5/14 + €11/14) (2,0,0) —

Gritsenko and Nikulin have constructed a holomorphic product of weight 12 and character

p and Weyl vector (1,0,0) for every level ¢ > 1 by restricting the singular-weight product

on the Grassmannian of Iy ([35], remark 4.4). It is easy to find in the previous tables. It

does not appear in this table because for t = 7 it can be factored into products of smaller

weight: 11515 2. We leave it as an exercise to find this form in the tables below.
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Table A.15: Obstruction space, level t = 8

151

Es/o

€0

1—12q — 72¢% — 72¢® — 168¢* — 168¢° + O(q°)

€1/165 €15/16

g'/32(—1 — 18¢ — 48¢% — 102¢° — 150¢" — 192¢° + O(¢%))

€1/8,€7/8

q'/8(—3 — Bg—60¢* — 23 — 180¢* — 144¢° + O(¢%))

€3/16, €13/16

€1/4, €3/4

q9/32(_% — 24q — 6642 — 108q — 144¢* — 2185(]5 +0(¢%))
q"/2(—11 — 24q — 724> — 96¢° — 275¢" — 168¢° + O(¢°))

€3/8, €5/8

q1/8<_4§1 _ 125 36(] 605 3 108(] 240q5 —|—O( 6)

€7/165 €9/16

)
732G — ;%7q 882 — 108¢° — 192¢* — 234¢° + O(¢°))

€1/2 0—12¢ — 94¢% — 72q — 144¢* — 168¢° + O(q°)
%<E5/2 - Q5/2,1/32,1/16)
i 0+ 32¢ + 0g° + 64¢° + 0g* — 64¢° + O(¢°)

€1/165 €15/16

q*/32(—1 4 16q + 64¢> — 16¢° + 48¢* — 128¢° + O(¢%))

€1/8,€7/8

q"/3(2 + 14q + 32¢% + 14¢° — 32¢* + 0¢° + O(¢%))

€3/165 €13/16

¢”/32(7 4 0q + 16¢% — 32¢° + 64¢* — 9¢° + O(¢%))

€1/4;€3/2

0

€5/165 €11/16

¢%/32(7 — 48 — 16¢% + 55¢° + 16¢* — 32¢° + O(¢°))

€3/8, €5/8

q"/8(—2 — 14q — 32¢* — 14¢3 + 32¢* + 0¢° + O(¢®))

€7/165 €9/16

q""/32(—16 — 17q — ¢* — 32¢° — 64¢* + 80¢° + O(q%))

€1/2

0 — 32q + 0¢* — 64¢> + 0¢* + 64¢° + O(q°)

Table A.16:

Holomorphic products of weight less than 20

Principal part

Weyl vector Character

P32
+ q_l/s(h/g + 97/8)

3eg + 2(]_1/32(21/16 + 315/16)"_

(3/8,1/8,3/8) | V/xin

(0 dep + q_l/s(el/s + e3/8

+ e5/8 + ¢7/5) (1/4,1/16,1/4) | x4

Continued on next page
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8o + 7q %% (e1 )16 + ¢ +
b | ST e w56y |-
+q% (e3/16 + €13/16)
g 16eg + 16q_1/32(€1/16 + e15/16) + ¢ teo (2,1/2,1) Iz
18¢y — q_l/s(el/g + €3/8 + €5/8 + 67/8)+
wQ —1/2 (3/4? 1/167 3/4) Xi:u
+q " (e1ya +e3/4)
1) | 24e0 — 2q_1/32(€1/16 + e15/16)+
12 iy . (1,1/8,1) —
+2q (e3/16 + €13/16) + ¢ e1)2
2) 24eg — 26]71/32(61/16 + e15/16) + 2‘]79/32(63/164-
12 173 (1,1/8,1) —
+e13/16) + ¢ (e7/16 + €9/16)
3220 + 7q_1/32(e1/16 + 615/16)+
Y16 - (2,3/8,2) —
+4q (e5/16 + €11/16)
A9 Levelt=9
Table A.17: Obstruction space, level t = 9
Es )2
¢ — g — 40q2 — 96¢° — 10¢* — 176¢° + O(¢°)
€1/18, €17/18 q1/36( 5~ 3 P — 176 ¢ 72(1 512 q' —152¢° + O(q ))
¢1/9, €s/0 1/9( 7 3 q 122(]2 96q3 4§0q4 592 5 + O( ))
€1/65 €5/6 q1/4(—g1 — 16q — 72¢* — 88¢® — 160¢* — 144q +0(¢%)
€2/9, €7 /9 q4/9(_@ _ %—8(] 1§4q2 320 3 168q 2359q5 + O( ))
e5/18, €13/18 q25/36( 121 3 88, _ 2;2(12 2§2q3 21985 ¢t — 544q5 +0(¢%)
81/3, 62/3 0— 40q — 72(] 605 4 176q + O( )
e /18, €11 /18 q13/36( 8 337q 48¢2 — 13921q3 3§4q4 784q5 +0(¢%)
€19, €5/9 q7/9(—% — g — 8¢ — 3B¢5 —168¢" — Z2¢° + 0(¢°))
e1/2 q"/*(—% — 16q — 106¢* — 64 — 160¢* — 192¢° + O(¢°))
%(E5/2 — (Q5/2,1/36,1/18)
¢o 0+ 12q + 72¢% + 0> + 48¢* — 72¢° + O(¢%)
€1/18, €17/18 q'/% (=1 + 24q + 30¢* + 54¢* — 6¢* — 18¢° + O(¢°))
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€1/9, €8/9 q*°(2 + 12g + 48¢% + 0¢® + 48¢* — 120¢° + O(¢))
€1/65 €5/ q/*(3 + 18¢ + 0¢ + 18¢° + 18¢* + 0¢° + O(¢%))
€29, €7/9 ¢*?(8 — 12q + 24¢> — 24¢® + 0¢* + 26¢° + O(¢°))
€5/18, €13/18 q25/36(5 —12¢ — 42¢* + 12¢° + 83¢* — 30¢° + O(¢%))
¢1/3, /3 0 — 6g — 36¢* + 0¢° — 24¢* + 36¢° + O(q°)
€7/185 €11/18 q"¥/%(—6 — 13q — 54¢* + 11¢° + 12¢* — 48¢° + O(¢°))
€4/9, €5/9 q7/°(—24 — 16q — 10¢® — 604> + 48¢° + O(¢%))
e1/2 q"/*(—6 — 36q + 0¢*> — 36¢> — 36¢"* + 0¢° + O(¢%))
Table A.18: Holomorphic products of weight less than 15
Principal part Weyl vector Character

(5

2eq + 2(]_1/36(81/18 + e17/18)+
+ qfl/g(el/g + eg/9)

(1/3,1/9,1/3) | xén

(2

deg — q /% (e1 18 + e17/18)+
+q V2 eryg +espo) + ¢ Mero

(1/6,1/36,1/6) | xs

) | 8eo — 2(.7_1/36(91/18 + e17/18)+
4
+ 2(171/9(61/9 + eg/9) + q713/16(€7/18 + ¢11/18)

(1/3,1/18,1/3) | x2

(2)
4

8eq + 3(171/36(61/18 + e17/18)+
+ q_1/4(21/6 + e5/6)

(2/3,1/6,2/3) | X

12¢¢ + 6@1_1/36(61/18 + e17/18) —

+ q_25/36(95/18 + ¢13/18)

wﬁ (17 2/97 1) -
- q_l/g(h/g + eg/9) + q_4/9(€2/9 + e7/9)
18eo + 9q_1/36(€1/18 + e17/18) —
¢9 —1/4 1 (3/27 1/47 1/2) X%
—q ei2t+q ¢
24eg — 6% (e1 15 + e17/18)+
V12 1o . (1,1/6,1) —
+6q /7 (e1/9 + esy9) +q 7 er o
28e + 5(]_1/36(61/18 + 917/18)+




APPENDIX A. PARAMODULAR FORMS 154
A.10 Level t =10
Table A.19: Obstruction space, level t = 10
Es/o
¢ 1— 168 68802 81605 _ 16801 14465 + O(qP)
1 /20, €19/20 q1/40(—% — Loz G132 182103 153604 285205 4 (b))
110, ¢0/10 q1/10(_% _ oS, T2 96003 21200 14405 4 O(g5))
3/20, €17 /20 gO/0(—28 83T ggg2 120043 218504 22565 1 ()(g))
15, 84/ ¢*P (=35 — A0 — 72¢° — 1}24(13 168¢" — 213°¢” + O(¢"))
e1/1, €34 q5/8(_% B1g 8642 188603 18U o1 36005 4 0(46))
€3/10, €7/10 q9/10(_% A6, 108002 g STOT 4 200045 4 (g6
€7/20, €13/20 q9/40(—f—§ 3133761 48¢° — 1?§°q3 2125614 2?36q5 O(q ))
€5, €3/5 ¢PP(—2 -89 — 80g2 — 23 — Tt — 240¢° + O(¢°))
€920, €11/20 q1/40(—% —lozg G2 182103 153604 285205 4 O(gf))
12 q1/2(_% _ BB 16060 91203 22834 2?g8q5 +0(g%)
65(E5/2 — Q5/2,1/40,1/20)
¢ 0 + 720q + 1440¢? + 2160¢* 4+ 0¢* + 0¢° + O(¢°)

€1/20, €19/20

gV4(=31 + 600q + 1315¢> — 365¢° + 3240¢* — 2400¢° + O(¢%))

€1/10, €9/10

g'/19(36 + 720 + 1080¢? + 1440¢° + 360¢* + 0¢° + O(¢%))

€3/20, €17/20

g”*°(161 — 125¢ + 1560¢° + 240¢° — 5¢* — 1920¢° + O(¢"))

€1/5,€4/5

q*/°(144 + 360q + 0¢> + 720¢° + 0¢* — 720¢° + O(q°))

€1/4,€3/4

¢°/3(180 — 360q + 360¢2 — 1440¢® + 1800¢* — 180¢° + O(¢°))

€3/10, €7/10

q”/1°(—36 — 720q — 720¢* — 36¢" + 720¢° + O(q%))

€7/20, €13/20

¢*/*0(—125 4 161g — 1560¢> — 1320¢° + 1841¢* + 1200¢° + O(¢%))

€2/5,€3/5

¢*/°(—360 — 864q — 1440¢> — 144¢> — 1080¢* + 0¢° + O(¢%))

€9/20, €11/20

¢/ (=5 — 960q — 271¢* — 391¢> — 1440¢* — 840¢° + O(¢%))

€1/2

g'/2(—360 — 1440g — 360> — 1440¢° — 1800g* + 1440¢° + O(g®))

g(Q5/2,1/4o,1/20 — @5/2,1/40,9/20)

€1/20, €19/20

/(1 — 60q — 61¢*> — ¢* — 180¢* + 60¢° + O(¢%))

€3/20, €17/20

(=11 4 11q — 120¢® — 60¢° + T1g* 4+ 120¢° + O(¢°))
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€7/20, €13/20

€9/205 €11/20

¢*/°(11 — 11¢ + 120¢° + 60¢° — 71¢* — 120¢° + O(¢®))
¢"/(~1+ 60q + 61 + ¢* + 180" — 60¢° + O(¢%))

other components 0

Table A.20: Holomorphic products of weight less than 15

Principal part Weyl vector | Character
N 2e0 + ¢~ /" (e1/20 + €9/20 + €11/20 + €19/20)+ (1,3 1 Yalt
+ ¢ (e1/10 + e9/10) o
. 8¢ + g /%% (e1/90 + €o/20 + €11/20 + €19/20)+ (1,11 ¥
+q (520 + e7/20 + €13/20 + €17/20) S
e 100 — 2¢"/*(e1/20 + €9/20 + €11/20 + €19/20)+ (3:1003) | X
3q_1/10(¢1/10 + ¢9/10) + q_1/2e1/2
10eg — 2q_1/40(21/20 + €19/20)+
el 1 9g7 1 eg 0 + e11/20) (3:16+3) XiH
+ 3q71/10(¢1/10 + ¢o/10) + q’9/40(27/20 + ¢13/20)
(N 12e + 3q~"/*(e1/20 + e9/20 + €11/20 + €19/20)— (35 1) X
- q_l/lo(el/lo + ¢9/10) + 9_2/5@1/5 + ¢ays)
’ 16¢¢ + 10q_1/40(e1/20 + €9/20 + €11/20 + €19/20)+ 311 2
; +q e ) w
(o 18¢o — 5¢~/**(e1/20 + €9/20 + €11/20 + €19/20)+ (3,13 Xk
+ 5(]_1/10(31/10 + ¢9/10) + 9_3/5(62/5 + e/5) o
o 24eo + 5q1/40(€1/20 + e9/20 + €11/20 + €19/20)+ (3,1 3) %
+q 8 (e1sa + e3/4) o
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A.11 Level t =11

Table A.21: Obstruction space, level t = 11

Es/o
¢o 1— 86410q 2;(;0 q2 52%0 q3 72(150 q4 11040 (]5 + O( )
21/227 621/22 q1/44(_6% 76414q o 3é%0q2 42?0(]3 92(150(]4 7680q5 + O( ))
21/117 610/11 ql/ll(_zf_? o % 2400q2 _ 52?0(]3 - 8%?4(]4 _ 10800q5 + O( 6))
€3/22, €19/22 q9/44(—% - % - 42% 2 42%093 gé§0q4 972095 + O( ))
92/11, 39/11 q4/11(_% _ % 32(130q2 thl)Oqs 82(130q4 10200 5 + O( ))
€522, €17/22 q25/44(—% 181%0(] . 42?0(12 - 5é§30q3 . 1167160q4 - 8%1%4(15 + O( ))
83/11, 68/11 q9/11(_% _ %354 42(1)0q2 6?5?0 q3 921110q4 17555 5 ( ))
87/22, 615/22 q5/44(_§_411 _ % Qé?0q2 52(1)’0q3 624110 q4 15125 q5 + O( ))
€4/11, €7/11 q5/11<_26114 2151)5(] _ 33(150q2 _ 49§0q3 _ 117195q4 _ 12960q5 + O(qG))
69/22, 613/22 q37/44(_66l10 _ 32% 32?4 q2 1069125 q3 72(1)0 q4 14400 q5 + O(qﬁ))
25/11, 96/11 q3/11(_% _ % 4(23:;5q2 6215 q3 62§0q4 11880q5 + O( ))
e1/2 q3/4(—% _ lé#q _ %qz 525150(13 11280 4 10800q5 + O( ))
671 (E5/2 - Q5/2 1/44, 1/22)
¢ 0 + 286q + 748¢% + 3744¢° 4 1232¢* — 1034¢° + O(q°)
€1/22, €21/22 ¢/ (=15 4 330q + 583¢* + 814¢> + 407¢* + 506¢° + O(q%))
€1/11, ¢10/11 ¢Y"NAT + 176q + 913¢% 4 1544¢° + 946¢* — 924¢° + O(¢%))
€3/22, €19/22 q”/* (52 4 2864 + 143¢% + 704¢° + 517¢* — 429¢° + O(q°))
€2/11, €9/11 g/ (90 4 11q + 638¢> — 341¢> + 682¢* — 649¢° + O(¢%))
€5/22, €17/22 q®/M(76 + 11q + 33¢2 + 319¢° — 693¢* + 165¢° + O(¢°))
€3/11, €8/11 ¢*M (120 — 330q — 187¢% — 286¢° + 462¢* — 144¢° + O(q%))
€7/22, €15 /22 ¢®*/* (=11 — 53¢ — 319¢> — 627¢° — 451¢* + 1168¢° + O(¢%))
€4/11, 07/11 M (=121 — 58¢q — 869¢> — 242¢> + 239¢* — 572¢° + O(¢%))
€9/22, €13/22 >4 (=275 — 335q — T15¢ — 445¢> + 55¢* + 110¢° + O(¢%))
€5/11, C6/11 >/ (=55 — 550q — 444q> — 312¢> — 396¢* — 748¢° + O(¢%))
e1/2 ¢*/*(—330 — 660q + 330¢> — 1078¢> — 1144q* + 418¢° + O(q%))

T1<E5/2 - C25/2 1/11, 1/11)
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4y

0+ 374q — 3564¢> — 1782¢°

— 660q* + 3190¢° + O(¢)

€1/22, €21/22

1/44(32 .

704q — 528¢>

€1/11, €10/11

g/ (=81 — 286 — 1903¢> —

— 3168¢% — 1584¢* + 352¢° + O(¢%))
— 418¢° — 1034¢" — 6

176¢° + O(q°))

€3/22, €19/22

q”/*(68 — 968¢ — 4844

— 114443

—924¢"* +110¢° + O(q

q
)
(
(

°)
€2/11, €9/11 g/ (=192 — 605q — 198¢> + 1309¢* — 2618¢* 4 803¢° + O(¢%))
€5/22, €17/22 q%/* (=520 + 66q + 1540¢> — 770¢> — 132¢* — 1694¢° + O(q°))
€3/11, 88/11 q*M (=256 + 704q — 451¢% + 2310¢° — 1254¢* + 844¢° + O(q°))
€7/22, €15/22 ¢/ (=66 4 292q + 770¢> + 264> + 2662¢* — 1776¢° + O(¢°%))
€a/11, €711 ¢/ (=55 4 T50q + 2167¢* — 110¢> — 823¢* + 594¢° + O(¢%))

€9/22, €13/22

7441034 — 180q + 1078¢% + 184443 + 330¢* + 660¢° + O(¢°))

€5/11, €6/11

¢*/11 (341 + T26¢ + 1484¢> — 408¢> + 308¢* + 3564¢° + O(q

)

°)
2860¢° + O(¢"

¢1/2 ¢/ (704 + 1408q — 704¢* + 4268¢> — 14964* — ))
Table A.22: Holomorphic products of weight less than 15
Principal part Weyl vector | Character
Geg + 2(]71/44(31/22 + e21/22)+ s 1
Vs +2g P " ) ¢ (€323 + €1922) (334 3) Xap
q €7/22 T €15/22 q 3/22 19/22
8eg — q_1/44(21/22 + €21/22)+
1/&(11) + 36171/11(?1/11 + e10/11) + q75/44(97/22 + e15/22)+ (%7 ﬁa %) X2
+ qu/ll(%/n + eg/11)
8eg + 5q_1/44(21/22 + €21/22)+
%(12) + 2q_1/11(el/11 + e10/11) + q_5/44(e7/22 + e15/20)+ | (1, %7 1) -
+ q*9/44(23/22 + e19/22)
18eo + q71/11<81/11 + e10/11)+
Yo —9/44 —5/11 (1, %’ 1) H
+2q (e3/22 + €19/22) + ¢ (ea/11 + e7/11)
20eg — 3(]_1/44(91/22 + €91/22)+
¢%) + 461_1/11(31/11 + e10/11) + q_9/44(23/22 + e19/22)+ (1, %7 1) H
+ q73/4¢1/2
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2020 + 7q_1/44(€1/22 + 221/22)"‘
2 _ _
%0) +q 1/11(31/11 + e19/11) + 5q 5/44(27/22 + e15/22)+ (%, ﬁa %) X2
+qte
28eq + 22(]_1/44(61/22 + 621/22)"‘ 1
14 454 (3,1,1) —
+q (e1/22 + €21/22)

A.12 Level t =12

Table A.23: Obstruction space, level t = 12

Es/o
¢o 1— 458q 2;6 q2 48)8 q3 6:26 q4 576 5 + O( )
€1/24, €7/24, €17 /24, €23/24 1/48( 32307q _ 2g4q2 35554q3 5§8q4 852 5 + O(q ))
€1/12, €5/12, €7/12, €11/12 1/12( - 131 ¢* — 60¢* — 337 q* 132q +O(q ))
e1/s, ¢7/8 3/16( 2;6 q2 96q3 55558q4 828 5 + O( ))
€1/6, €5/6 q1/3( 5 q 228(]2 336 3 168q 768 5 + O( ))
€5/245 €11/24, €13/24, €19/24 q25/48(—%1 - %q - 1;’(2)1q2 - 427(13 696 4 —192¢° + O(q ))
€1/4,€3/4 ¢ (—17 — 24q — 72¢% — 96¢° — 168¢* — 144¢° + O(¢°))
€1/3, ¢2/3 g"3(—2 - g — 22¢2 — B¢ — 960" — BE¢° + O(¢"))
33/87 95/8 q11/16<_% 41409(] 60q 428 q3 2(1)(5)7(]4 888 q5 + O( ))
€1/2 0— Qq 1;14(12 722 q3 3§4q4 864q5 + O( )

20(E5/2 - Q5/2,1/48,1/24)
¢o 0 + 288¢ + 576¢% + 288¢> + 576¢* + 576¢° + O(q°)
€1/24, €23/24 q"/*8(—11 + 143q + 6244° + 384> + 1008¢* — 528¢° + O(q°))
€1/12, €11/12 q"/'2(10 4 240q + 230¢> + 720¢° — 10¢* + 240¢° + O(¢%))
e1/8, €7/8 ¢*/'5(36 4 144q + 576¢> + 1008¢* — 432¢° + O(¢%))
¢1/6, €5/6 q"/3(48 + 96q + 288¢> + 576¢° + 0¢* — 192¢° + O(q°))
€5/24, €19/24 q>*/*8(109 — 48¢ + 119¢> — 265¢> + 576¢* — 960¢° + O(¢°))
€1/4,€3/4 0
€1/3,€2/3 g3 (—48 — 96q — 288¢% — 576¢> + 0¢* + 192¢° + O(¢%))

Continued on next page
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€3/8, €5/8

¢'V/16(—144 — 108q — 720¢% — 432¢% + 364" + 288¢° + O(¢*))

€5/12; €7/12

g"/1?(—10 — 240g — 230¢> — 720¢° + 10¢* — 240¢° + O(¢®))

€11/24, €13/24

¢?/*%(—121 — 528q — 131¢> — 35¢° — 864¢* — 480¢° + O(¢%))

€1/2

0 — 288¢ — 576¢> — 288¢® — 576¢* — 576¢° + O(¢°)

20(1575/2 - Q5/2,1/48,5/24)

€1/24, €23/24

q"/*8(1 — g — 96¢> — 48¢> — 1444 + 48¢° + O(¢%))

€1/12; €11/12

q/"2(—=2 — 48q — 46 — 144¢° + 2¢* — 48¢° + O(¢%)

€5/24, €19/24

)
5/18(—23 — 48¢ — 25¢2 + 23¢° — 144¢" + 48¢° + O(¢°))

€7/24, €17/24

g/ (=1 + q + 96¢% + 48¢> + 144q"* — 48¢° + O(¢%))

€5/125 €7/12

g"/12(2 + 48¢ + 464 + 144¢° — 2¢* + 48¢° + O(¢°))

€11/24, €13/24

q*°/48(23 4 48q + 25¢% — 23¢% + 144q* — 48¢° + O(¢%))

other components

0

Table A.24: Holomorphic products of weight less than 10

Principal part

Weyl v. | Char.

(23 2e0 + q_l/u(el/lz + e5/12 + e7/12 + €11/12) (%7 ia %) XTatt

P32

3eo — q_1/48(€1/24 + e93/24) + q_1/48(¢7/24 + e17/24)F
+ q_1/12(€1/12 + e11/12) + 2q_1/12(e5/12 + e7/12)

(éaﬁa%) \/le))2:u

— L _3
(0 deg + 3q 18 (1724 + €7/24 + €17/24 + €23/24) + ¢ 16 (€15 + e7/3) (%7 %, %) X2

4

1) 8eg — q_1/48(21/24 + €724 + €17/24 + €23/24)+
+ q73/16(91/8 +e7/8) + q71/3(€1/3 + e9/3)

(%7%7%) X4112

4 —
—q 1/12(

) 8eo + 4(]71/48(61/24 + €724 + €17/24 + €23/24) —
¢1/12 + 5712 + er/12 + €11/12) + C]_l/3(€1/6 + e5/6)

(%7%7%) X?Q

Ve 12¢¢ + 126171/48(81/24 + €724 + €17/24 + €23/24) + q ‘e (%a 71» %) X2

(1)
9

18eq — 6(]_1/48(61/24 + e23/04) + 562_1/48(67/24 + e17/24)+
+ 6(1_1/12(91/12 + e11/12) + 61_25/48(911/24 + €13/24)

(3,5,2) | xlon

(2) 18¢p + 5q_1/48(21/24 + e93/24) — 661_1/48@7/24 + e17/24)+
9
+6q " (512 + erj12) + ¢ 2 M (er1j00 + e13/24)

(37%72) X?Q:u
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Appendix B
Hermitian modular forms

Any complex matrix z € C?>*2 can be decomposed in the form z = x + iy where x,y are
hermitian, i.e. z =27, y = yT. (Despite the notation, = and y are generally not real.) The
Hermitian upper half-space of degree two is the set H of those matrices z for which y

as above is positive-definite. It is acted upon by the split-unitary group

— 0 I 10
U2,2(C) = {M € GL4((C) : MTJM = J}7 where J = (_] 0) , I = <O 1>

in the usual way; that is,
71 ) a b
M -z = (az+b)(cz+d)” for a block matrix M = p € Uy »(C).
c

Let K be an imaginary-quadratic field with ring of integers Og. A Hermitian modular
form of degree two of weight k& and character y for K is a holomorphic function f : H — C
for which

F(M - z) = det(cz + d)" x (M) f ()

b
holds for all M = | © o) € 02a(€) with a.bc.d € O

c
Hermitian modular forms of degree two can be interpreted as orthogonal modular forms

for the lattice O @ I15 2, which has signature (2,4) when Of is equipped with the negative

norm-form ¢ = —Ng,g. We can write the Lorentzian Gram matrix of Ox @ I, in block
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form
0 0 1 5 are(a)
- —2re(«
S = 0 SO 0 s SO: ;
—2re(a) —2|al?
1 0 0

where « is any (fixed) element such that Ox = Z[a]. In particular there is also a version of
the Borcherds lift. A detailed reference for this is the dissertation [24], in particular chapter
5. The Hermitian upper half-space and the orthogonal upper half-space (in the convention

of section 2.6) are identified by the map
¢:H — Hg, O(x+iy)=0(z)+id(y),

X1

T
where if x = < 2) is Hermitian then we define

Ty X4

Ty T2\ im(az,)  im(zq) T
! (I_2 JJ4> N <$1, im(a) * im(a) ,x4> 7

one can check that this map satisfies det(Z) = $P(Z)"S®(Z) as well as

tr(b2) = ®(b*4)'SP(Z)

by by
In this way the Hermitian form of the Borcherds product with input function F(r

ny,n C(na 7)qne’y is

Up(z) = e(tr(qu(p)adjz)) I] (1 —e(tr(T%))

T>0

I . bl b2 . . di b4 _b2

for all Z € H and all Hermitian matrices b = | _ with adjugate b*¥ = o)
—b2 Oy

(1) =

)c(det(T),<I>(T))

Y

where p = py is the Weyl vector of a particular Weyl chamber W for S and 7" > 0 means T’
is positive with respect to W. (See [24], Satz 5.4 and its proof for more details.)

The possible characters of the product W are easy to determine using section 5.3 of [24].
If the discriminant of K is odd then ¥y transforms without character; if the discriminant of

K is even, then there is a unique nontrivial character x of SU (O ) which is determined

by
x(m—)z—i— <(1) 8))2—1,
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and it appears in the character of ¥ if and only if

YD a)e(=n—Q().)

vye€A n=0

(which is always integral) is odd, where we set 01(0) = —1/24 as suggested by the Eisenstein
series Ey. Note that x restricts to the Siegel character of SPy(Z). In the cases K =
Q(v/-3), K = Q(i) there is an additional character det of Uy 2(Ok)/SUs2(OF). In the first
case this never occurs in the character of ¥y because all products for Q(v/—3) have weight
divisible by 9 (cf. [26]); in the second case, all products for Q(7) have even weight (also cf.
[26]) so that det occurs in the character of W if and only if y does. Also, the transformation
2+ 2T belongs to the orthogonal group but not the Hermitian modular group; so Borcherds

T ie. they are either

products also transform with a quadratic character under z — z
symmetric or skew-symmetric depending on the sign in Wz(27) = £¥p(2). As in [24]

one can compute

T
\I\]I,F;(ZZ)) = e(% Z_l d—Q(v)w))-
YeVdr N
Explanation: In the tables below, we work out a basis of the obstruction space CE5 &
S3(p*) for some lattices Ok of small discriminant, as well as the first few solutions to the
obstruction problem. 1 denotes a Borcherds product of weight k. For each product, we
include the principle part of the nearly-holomorphic modular form that produces it under

Borcherds’ lift as well as its Weyl vector. The components e., of the principal part correspond
-2 -1

_1 dx-1
1 2

to the cosets v € Sy'Z?/Z% where Sy = ( ) if the discriminant dg is odd and

di

2
symmetric or skew-symmetric under z + z?. If the discriminant is even then we include

— 0
Sy = ( 0 > if dg is even. We write “symm” or “skew” according to whether 1, is

its character under SUs;2(Of); it is either trivial (-) or the character y that restricts to the
Siegel character of SPy(7Z), depending on whether the first and last components of the Weyl
vector are integral or half-integral. In the last few tables we use ¢4, to denote either e, +e_,

or {e,,e_,} in order to save space.
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B.1 Discriminant —3

Table B.1: Obstruction space, discriminant —3

Es

€(0,0)

1 — 90q — 216¢2 — 738¢3 — 1170¢* — 1728¢° + O(¢°)

€(1/3,1/3), €(2/3,2/3)

¢'/3(—9 — 117q — 45042 — 648¢° — 1530¢" — 1845¢° + O(¢"))

Table B.2: Holomorphic products of weight less than 200

Principal part Weyl vector
Yo 18e(00)+q—1/3(e(1/3,1/3)+e(2/3,2/3)) (1,1/6,1/6,1) | skew
Va5 | 90e0,0) + ¢ 1e0,0) (4,1/2,1/2,3) | symm
R s * o)t (9,1/6,1/6,3) | symm
+q P (8(1/3,1/3) + e2/32/3))
& | 216¢(00) + ¢ %e(0.0) (9,0,0,0) symm

B.2 Discriminant —4

Table B.3: Obstruction space, discriminant —4

Es

€(0,0)

1 — 68q — 260¢* — 480> — 1028¢* — 1768¢° + O(q°)

e(1/2.0); €0.1/2) | ¢4 (—4 — 104g — 292¢>

— 680¢> — 1160q¢*

— 1536¢° + O(¢%))

e(1/2,1/2) q'/*(—20 — 96¢ — 520¢* — 5764 — 1460¢* — 1440¢° 4+ O(¢%))
(B3 — Q3,1/4,0,1/2))

€(0,0) 0

€(1/2,0) q"/*(1 — 6 + 9¢> + 10¢* — 30¢" + 0¢° + O(¢°))

€0,1/2) q"/*(=1+ 6¢ — 9¢° — 10¢° + 30¢" + 0¢° + O(¢°))

€(1/2,1/2) 0

163
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Table B.4: Holomorphic products of weight less than 150

Principal part Weyl vector | Char.
Yy | 8e0) + a (eqy20 + €0,1/2) (3,3.3,3) X skew
Yo | 20e(0,0) + ¢ e 1/2,1/2) (1,1,3,1) - symm
Y30 | 60e00) — ¢ (ec1/20) + e0,1/2) + 0 00y | (2,1,4,2) | x symm
Yas | 96e(00) + g e(1/2,1/2) (4,0,0,0) — Symim
1/18;) 128e(0,0) + 6(]_1/46(1/2,0) + q_5/4€(1/2,0) (6, %7 zz; 4) - Symin
wéﬁ’ 128e(q,0) + 6(]_1/46(0,1/2) + q_5/4€(0,1/2) (6, 27 %7 4) - symm
Y120 | 240e(g,0) — q_1/28(1/2,1/2) + q_%(o,o) (10, i, %17 3) |- Symin
B.3 Discriminant —7
Table B.5: Obstruction space, discriminant —7

E;3
€(0,0) 1— 8¢ — 8P8¢% — 336¢° — %¢" — 1008¢° + O(¢°)
175/ €(6/7.2)7) q1/7(—— 595 — 168¢% — 2135q3 29;17(]4 10731q5 +0(¢%))
(/7.6 €(3/7.1/7) P~ 52131(] 23887q2 1855 ¢ — 8404 — 4795 4195 05 1 (%))
€(2/7,3/7)1 €(5/7,4/7) q4/7(—% — g — 28842 42807q3 2584t 1176q +0(¢%)

2(Es — Qs.1/7,01/7,5/7)

¢(0,0)

0+ 14q — 42¢* + 0¢® + 70¢* + 0¢° + O(q°)

€(1/7,5/7), €(6/7,2/7)

¢"/7(—1+ 3¢ + 02 — 18¢° + 5dg* — 45¢° + O(¢"))

€(4/7,6/7)5 €(3/7,1/7)

q*7(3 —9q + 11¢* — 18¢° + 0¢* + 38¢° + O(¢°))

€(2/7,3/7), €(5/7,4/7)

¢7(=5 + 6 + 272 — 25¢° — 45¢" + 0° + O(¢%))

Table B.6: Holomorphic products of weight less than 175

164

Principal part

Weyl vector

Y7

1de(.0) + 3¢ (e yzs/m) + e6y7.2/7)+
+ ¢ (easr /1) + 03/7/7))

Ll)

3
i skew

(1,

Continued on next page
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W | 56e00) + a7 (eqsmsm + ewram) + 202 (ewsmem+

28 oy (3,2, %,3) | symm
+esrym) 4 (eram + esmam)
%? 96¢(0,0) + 7q_l/7(e(1/7,5/7) + e6/7.2/7)) + 4 e (0,0) (3, %, 0,2) skew
140¢e(0.0y — ¢~/ (e +e +
" (0,0) (e(asr6/7) + €(3/7,1/7)) (6,2,2,4) symm

+ ¢ ¥ (e /1) + C6)7.2/7))

27
o 154e(0,0) + 3¢~ (e(ay7,6/7) + e3/7,1/7))+ (7.9 3 3) | skew

+ ¢~ (esrom) + e37/m)
224e(0,0) + 6¢ " (e(1/7,5/7) + e(o72/m)+

Y112 e (10,3, 2,4) | symm
q (ec2/7,3/7) + ¢5/7.4/7))

Y1ao | 280e(0,0) + 7q 2 (es/7m) + Cayrem) + 4 2e00) (13,2,1,8) | symm

{6k 336¢(0,0) + ¢/ (e1/75/7) + e(6/7.2/7)) (14,0,0,0) | symm

% 336¢(0,0) + 4 e (0,0) (14,0,0,0) | symm

B.4 Discriminant —8

Table B.7: Obstruction space, discriminant —8

E;
¢0.0) 1— 1_30q _ 5_;'41612 133?0q3 2050 g* — 1008¢° + O(¢®)
€(0.1/4): €(0.3/4) g8 (— g 182 520 ¢ — 12302 q3 24340 ¢ — 3364 836405 1 O(¢"))
€(0,1/2) q1/2( 334 340 240(] 480q 30394q4 _ 4148q5 4 O(q ))
¢(1/2,0) g (=1 — 48q 2042 — 336¢% — 20g* — 960¢° + O(¢°))
6(1/2,1/4), 8(1/2,3/4) q3/8( 2 244 7§4q2 1640 3 768(] 3700q5 + O( 6))
e1/2.1/2) ¢4 (— 100 _ 1220 e 480q 3620 g — 1056¢° + O(¢%))
2(Es — Q3,18 01/4))
€(0,0) 0+ 16g — 32¢* — 32¢° + 64¢* + 0¢° + O(¢°)
0(0,1/4), €(0,3/4) ¢"/3(=1+ 5q — 2¢* — 25¢° + 28¢" + 46¢° + O(¢"))
€(0,1/2) q"/?(—=8 4 16q + 0¢% + 0¢° + 40¢* — 112¢° + O(q®))
e(1/2,0) q"/*(4 + 0g — 20¢% + 0¢® + 8¢* + 0¢° + O(¢%))
€(1/2,1/4); €(1/2,3/4) ¢*/#(2 — 14q + 34¢* — 28¢° + 0¢* — 14¢° + O(¢°))

Continued on next page
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e(1/2,1/2) /(=8 4 0q + 56¢% + 0¢> — 136¢* + 0¢° + O(¢%))
Table B.8: Holomorphic products of weight less than 80
Principal part Weyl vector Char.
3 | 6e0) + 261_1/8(8(0,1/4) + ¢(0,3/4)) + q_1/42(1/2,0) (%, iu %17 %) X Symm
16e(0,0) + 2q_1/8(e(0’1/4) + 6(0,3/4))4—
Vs _3/8 (1,7,2,1) - symim
+q " (eqy21/0) + a/23/9)
Yo | 18eo0) + 2¢ Ye(120) + ¢ ?e(0,1/2) (1,3,3,1) - skew
Woo | 40e0,0) + 2 e(120) + ¢ Ye(1 2.1 )9) (2,3,1,2) - symm
0| 48e0.0) + ¢ et 20) (2,0,0,0) - symm
48¢(0.0) + 6/ (e +e )—
2 (0,0) T 09 (0,1/4) T €(0,3/4)
§4) _1/4 1 (27%17%7%) X Symm
—q e/20 +q €0,
as | 96e00) +a e 2y (4,0,0,0) - symim
108e(0.0) + 6¢/8(e(0.1/4) + (0.3/4)) —
aa | G+ eoas) o (5,1/4,7/8,3) | — | symm
—q¥ (e(1/2,1/0) + €1/2,3/2)) + 4~ / €(0,1/2)
1289(070) + 5(]_1/8(2(0,1/4) + 2(0,3/4))4‘
77D64 —9/8 (67 %7 %) 4) - SyImin
+q 7" (e,1/2) + €(0,3/4))
B.5 Discriminant —11
Table B.9: Obstruction space, discriminant —11
E3
(00 1_ 122 — 12042 — 12320q3 15386q4 3172q5 +0(¢%)
€(1/11,9/11), €(10/11,2/11) q1/11( l - 1§0q 530 2 288q 2366 4 816q + O( ))
€(5/11,1/11)5 €(6/11,10/11) M (- — 48¢ — 2176] - 11383(13 2210 q* — 840¢° + O(q%))
(2/11.7/11)1 €(0/11.4/11) g1 (— 33 260 —168¢2 — 13370q3 20350q4 3482q5 +0(g%))
€(4/11,3/11), €(7/11,8/11) 5/11( ? - 205 820 q° — 360q* — 23353q4 3380q5 O(q ))
(3/11.5/11)1 €(5/11.6/11) ¢/ (— % _ 338 962 2 — 48047 — 28310q4 3277q5 0(¢%))

Continued on next page
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3(Bs — Qs1/11,01/11,0/11))

€(0,0)

0+ 22q + 0g* — 110> + 88¢* — 22¢° + O(¢)

€(1/11,9/11);

€(10/11,2/11)

g1 (=1 + 20q — 35¢2 + 0g® + 16¢* + 0¢° + O(¢®))

€(5/11,1/11); €(6/11,10/11) ¢*/"' (54 0g + 24¢* — 64¢* — 50¢* + 0¢° + O(¢°))
€(2/11,7/11)s €(9/11,4/11) g/ (=4 — 5q + 0¢* + 25¢° + 80¢* — 107¢° + O(¢°))
€(4/11,3/11)5 €(7/11,8/11) ¢*/M (1 — 16¢ + 35¢* + 0¢* — 49¢" — 20¢° 4+ O(¢%))
©(3/11,5/11)» (8/11,6/11) ¢*" (=16 4 4q + 37¢% + 0¢° + 70¢* — 64¢° + O(¢%))

Abbreviate e, 4 ¢_, by e4,.

Table B.10: Holomorphic products of weight less than 80

Principal part Weyl vector
Vs | 10e,0) + 5(1_1/11%(1/11,9/11) + q_g/nei@/n,l/n) (1, 252, 212, 1) | skew
16e(070) + q_l/neiu/n,g/n)*‘
wS —3/11 —4/11 (17%7%71) sSymimn
+4q e1(5/11,1/11) T ¢ €1(2/11,7/11)
Yo | 18eo0) + ¢ Y Mewiino/11) + ¢ Mes(asin g (1,%,2,1) | skew
og | 48e(0,0) + 11(1_1/11%(1/11,9/11) + q_le(o,o) (3, %; 0,2) skew
80e — qil/nei +
Yo | o wany o (4,1, 15,4) | symm
+ 3¢ e+(5/11,1/11) T ¢ €4(3/11,5/11)
90e(0,0) + 156]_1/11%(1/11,9/11)—
¢45 —3/11 —12/11 (57 2527 227 3) skew
—q e+(5/11,1/11) T ¢ €+(1/11,9/11)
Yas | 96e0.0) + ¢ M (e(s5/11,1/11) + €6/11,10/11)) (4,0,0,0) symm
Ve 120e(0,0) + q_2€(070) (5,0,0,0) symm
150e(0,0) + 3(171/11%(1/11,9/11) + 3(]73/11%(5/11,1/11)— 5
Vs —4/11 —16/11 (7, 22 227 22’ 3) | skew
—q €1(2/11,7/11) T ¢ €1 (4/11,3/11)
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B.6 Discriminant —15

Table B.11: Obstruction space, discriminant —15

168

E;
€(0,0) — 8¢ —120¢% — 2404 — B¢t — 624¢° + O(¢°)
€(1/15,13/15)5 €(4/15,7/15)> g/ (— 1_slly . d81o2 132503 186Lgd 380105 4 (46))
€(11/15,8/15)5 €(14/15,2/15)
$(2/15,11/15); (7/15,1/15), GY(—L 18l T2 285803 BA6Loa 312105 4 ((46))
€(8/15,14/15) €(13/15,4/15)
€(2/5.1/5)s €(3/5.4/5) ?/3(—2% — 48q — g2 — B3 _ 600q" — L5 1 O(gf))
€(1/5,3/5)» €(4/5,2/5) (-4 — 124 — 1684 — %Cf’ BBg* —1008¢° + O(¢%))
©(1/3,1/3), £(2/32/3) (- —5 g — W g2 — 360¢° — 720¢* — 8565 + O(¢%))

8(E3 — Q3,1/15,(1/15,13/15))

€(0,0) 0 + 300¢ + 0¢* + 0¢® — 900¢* + 0¢° + O(¢°)

€(1/15,13/15)5 €(14/15,2/15)

g/ (=9 + 219q — 2¢* — 650¢> + 1062¢* — 1298¢° + O(q%))

€(4/15,7/15) €(11/15,8/15)

g5 (—1 — 269¢ — 18¢2 + 310¢3 + 118¢* + 638¢° + O(¢°))

€(2/15,11/15) €(13/15,4/15)

"% (—29 + 198¢ — 410¢ — 49¢> + 939¢* — 98¢° + O(¢°))

€(7/15,1/15)» €(8/15,14/15)

¢*/15(59 + 22¢ + 550¢% — 441¢° — 1069¢* — 882¢° + O(¢°))

0(2/5,1/5): €(3/5:4/5) ¢*/*(30 + 0g + 270¢° — 420¢° + 0¢* — 810¢° + O(¢°))

€(1/5,3/5), €(4/5,2/5) ¢*/°(—90 — 210q + 0q® + 270¢> + 1020¢* + 0¢° + O(¢%))

€(1/3.1/3)> ©(2/3,2/3) ¢*3(—50 — 250¢ + 350¢° + 0> + 0g* + 700¢° + O(¢%))
Q3,1/15,(1/15,13/15) — (3,1/15,(4/15,7/15)

€(1/15,13/15) €(14/15,2/15) g/ (1 — 61 — 2¢* + 120¢* — 118¢* + 242¢° + O(¢®))

€(4/15,7/15)s €(11/15,8/15) ¢/ (=14 61q + 2¢> — 120¢* + 118¢* — 242¢° + O(¢°))
€(2/15,11/15) €(13/15,4/15) 4/15(11 22q 4+ 120¢* — 49¢* — 251¢* — 98¢° + O(QG))
e(7/15,1/15), 8(8/15.14/15) | ¢/ 1P(—11 + 22 — 120¢° + 49¢> + 251¢* + 98¢° + O(¢°))
other components 0
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Abbreviate e, + ¢_, by e,.
Table B.12: Holomorphic products of weight less than 40
Principal part Weyl vector
12¢(0,0) + 3(]71/15(%(1/15,13/15) + e1(4/15,7/15))+ _
wﬁ' _4/15 (1,%,% 1) symm
+q (ex(2/15,11/15) + €+(7/15,1/15))
1de(o,0) + 36]_1/15(%(1/15,13/15) + €1 (4/15,7/15))+
(U /s (1,1,15,1) | skew
+q T Tex2/51/5)
18e(0,0) — q_1/159i(1/15,13/15) + 10q_1/15€i(4/15,7/15)+ _—
g 415 415 (1, 55,35, 1) | skew
+2q €+(2/15,11/15) T ¢ €+(7/15,1/15)
~1/15
éé) 40¢(0,0) — 3¢ / (ex(1/15,13/15) + €+ (4/15,7/15))+ (2, 719y | symm
_ _ 157 15°
+ 2q 4/15(9i42/1541/15)‘+'€i(7/15J/15))‘+ q 3/59i11/53/5)
é%) 40¢0,0) IL 15q_1/15(9i(1/15,13/15) + ex(4/15,7/15)) + (3.1/2.0.2) | skew
+q €0,
54e 0,0y + q71/15(2j:(1/15,13/15) + e4(a/15,7/15))+ 9 7
1027 _4/15 a3 (3, 307 307 3) skew
+2q (ex(2/15,11/15) + €x(7/15,1/15)) + ¢ ' "ex(1/3,1/3)
B.7 Discriminant —19
Table B.13: Obstruction space, discriminant —19
E3
¢00) 1_ 31612q 1(1»130(]2 _ 25;2150(13 _ 41?6(]4 _ gzﬂzq&a +0(¢°)
C4(1/19.17/19) (]1/19(—% 31318q — 1:;;4114q2 2?%0(]3 61(30614 6552q5 +0(¢5)
€4 (2/19.15/19) M1 % _ 13(1)0q2 332q3 5i’i’0q4 8906q5 +0(¢%)
€4(0/19.1/19) ¢ % _ % 2 2§§0q3 5?(1)5q4 8463q5 +0(¢%)

€4(5/19,9/19)

4 651, 1586 2 _ 3650 3 _ 5040 4
9 1 4 11 4 11 4

€4(8/19,3/19)

¢’/

2
50 504 1898 2 3277 .3 6890 4 6960 5

11q_ q_llq_llq_ q+0()
7

(-1
(-3
6/19(
(-
(=

)
)
)
10202q5 + O(q6))
)
)

¢/ 3 650 2210 2 _ 2028 3 _ 7540 4 _ 8568 5
€+(3/19,13/19) / Td— =14 D0t — 238¢° + 0(q 6)

11/1 122 _ 624 2451 2 _ 3770 3 _ 6720 4 _ 8424 5
€+(7/19,5/19) g (— T 11 11 4 11 4 2P0 =57 +0(0°))

Continued on next page




APPENDIX B. HERMITIAN MODULAR FORMS 170

16/19(_205 _ 1300, _ 19682 _ 53303 _ 68904 _ 10944 ;5
€4(4/19,11/19) q / (— 1 19 149149 1749 14 +O(q ))

17/19(_ 290 _ 949 . 3172 2 41043 7680 4 10250 7
€+(6/19,7/19) q"""(— 11 119 4 11 4 11 4 +0(¢%))

5(EBs — Q31/19,(1/19,17/19))

€(0,0)

0+ 34q + 20¢2 — 20¢3 + 112¢* — 282¢° + O(¢®)

€+(1/19,17/19)

g/ (=1 +36q — 2¢*> + 10¢° + 5¢* — 18¢° + O(¢%))

€+(2/19,15/19)

€4(9/19,1/19)

¢/ (=2 + 20q + 10¢*> — 81¢> + 104¢* — 29¢° + O(¢%))
/(7 4 10q + 75¢* — 20¢> — 53¢* — 202¢° + O(¢%))

€+(5/19,9/19)

€4(8/19,3/19)

g5 4 2q + 71¢% — 54¢° — 70¢* — 30¢° + O(¢%))

€4(3/19,13/19)

/(=74 10q — 65¢° + 20¢° + 105¢* — 10¢° + O(¢°))

€+(7/19,5/19)

(—
(
¢/ (=2 — 46q — 24> + 35¢° + 20¢* + 94¢° + O(¢®))
(
(—
9

g9 (—1 — 8q + 24¢% — 30¢* — 10¢* — 42¢° + O(q®))

€4(4/19,11/19)

q16/19(_18 — 35q — 10¢? + 5¢> + 150q¢* + 12¢° + O(QG))

€4(6/19,7/19)

¢'7/19(—15 — 36 + 29¢2 — 12¢° + 20¢* + 90¢° + O(¢%))

11(E5 — Q3,4/19,(2/19,15/19))

€(0,0)

0 + 78q — 200¢* + 200¢> + 552¢* — 942¢° + O(q°)

€4(1/19,17/19)

¢"/19(—1 + 36q + 20¢> — 100> + 115¢* + 180¢° + O(¢°))

€+(2/19,15/19)

¢/ (=24 4 130q — 100¢> — 323¢> + 544q¢* — 7¢° + O(q°))

€4(9/19,1/19)

¢°/"(29 — 100q + 185¢% + 200¢° — 361¢* — 444¢° + O(¢%))

€4(5/19,9/19)

€4(8/19,3/19)

q"/"(5 — 20q + 181¢° — 164¢> — 290¢* + 300¢° + O(¢%))

€4(3/19,13/19)

¢/

(—
(
q%/9(20 — 156q + 108¢% + 145¢> — 200¢* + 182¢° + O(¢%))
(
(=29 + 120q — 175¢* — 200¢® + 435¢* + 100¢° + O(q°))
9

€+(7/19,5/19)

¢"/19(=23 + 80q + 24¢% — 360¢3 + 100¢* + 420¢° + O(¢°))

€4(4/19,11/19)

'9/19(4 — 145¢ + 100> + 225¢% — 180¢* — 120¢° + O(¢°))

€4(6/19,7/19)

¢'7/19(—15 — 36 + 7¢® + 120¢° — 200¢* — 20¢° + O(¢°))
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Abbreviate e, + ¢_, by e,.

Table B.14: Holomorphic products of weight less than 35

Principal part Weyl vector
8e(0,0) + 5(]71/19%(1/19 17/19)t
' ’ 9 1
¢4 —4/19 —5/19 (17 387 38" ]-) symin
+q €+(2/19,15/19) T ¢ €+(9/19,1/19)
¥s | 10e(,0) + 5¢ s (1/19,17/19) + 4 Pes(s/193/19) (1,15, 25, 1) | skew
14e,0) + q_l/lgei(1/19,17/19) + 2q_4/19%(2/19,15/19)+ 0 1
'd]7 —5/19 —6/19 (1, 387 387 1) skew
+q €4(9/19,1/19) T ¢ €+(5/19,9/19)
g 189(070) + q_s/lgei(9/19,1/19) + q_9/19€1(3/19,13/19) (1; 3%; %7 1) skew
28e(0,0) + 6(]71/19%(1/19 17/19)t
’ k) & i
Y1 —5/19 —11/19 (2, 197197 2) | symm
+q €+(9/19,1/19) T ¢ €+(7/19,5/19)
38¢(0,0) + 15@1_1/19%(1/19,17/19)-{-
(T _4/10 i (3,3,0,2) symm
+4q €1(2/19,15/19) T ¢ €(0,0)
60¢(0,0) — 5q_1/19€i(1/19,17/19) + 4q_4/19€i(2/19,15/19)+ o 3
V30 —5/19 —16/19 (3, 5 387 38" 3) | symm
+ 3¢ €+(9/19,1/19) + ¢ €4(4/19,11/19)
66 + 27 —-1/19 o —5/19 +
€(0,0) q €4(1/19,17/19) — ¢ €4(9/19,1/19) 59 13 K
Vs —6/19 —20/19 (5, 387 38" ) | skew
+4q €+(5/19,9/19) T ¢ €1(1/19,17/19)

B.8 Discriminant —20

171

Table B.15: Obstruction space, discriminant —20
Es

¢(0.0) 442q 504 2 — 24047 — 6(155532(]4 10642q5 +O(¢9)

0.1/10), €£0/22/5 ¢ (g5 — 12% HPe - e’ - Bte' - R 1 0(¢)
e1(01/5) q1/5(_% 130 —120¢% — 4(1327(13 17300q4 3528q5 +0(¢%)
€.(0.3/10), €-(1/2.1/5) qg/zo(_% _ % 8;7(]2 1%60q3 7?22 ¢t — 11882 11882 05 1 O(40))
ex(02/5) q4/5(—%7 1?;17(1 650 ¢ — 360¢° — 20350q4 _ 14314q5 +0(¢%))
€(0,1/2): €(1/2,0) q1/4(_f_§ — % _ %?‘)6 2 _ %qs 23504q4 2600q5 +0(¢%)

Continued on next page
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e:i:(l/2,1/10) q3/10(_m _ %q 530 2 240(] o 1850q4 _ 2808q5 + O( 6))
€1(1/2.3/10) q7/10( 50 2§8q sgoqz 13568q3 2210 4 720q + O( ))
e(1/2.1/2) ql/Q(—% _ 2;20(] 6§4q2 13??0(]3 2184 4 960q + O( ))
15(E3 — Q3,1/20,0,1/10))
€(0,0) 0 + 608q + 288¢* + 0¢° + 1568¢* — 2752¢° + O(q°)
€4(0,1/10) q"/?°(—16 + 550q + 118¢ — 122¢° + 854¢* — 1232¢° + O(q°))
01 (1/2,2/5) q"/*(—1 — 350¢ — 812¢* + 748¢* — 31¢" + 598¢° + O(¢%))
€4(0,1/5) q"/°(—32 4 400q — 512¢° + 800¢* — 864¢° + O(¢°))
€4(0,3/10) ¢*/?° (=106 + 208q — 666¢> — 650¢° 4 2128¢* — 362¢° + O(¢%))
€4(1/2.1/5) q”/?°(59 — 122¢ + 1299¢> — 1550¢° — 2¢* — 932¢° + O(¢%))
€4(0,2/5) q*/°(—272 — 512q — 400¢* + 0¢* + 1600¢* + 1856¢° + O(¢%))
€(0,1/2) q'/*(—26 — 656q — 266¢> — 432¢° + 288¢* + 3500¢° + O(¢%))
¢(1/2,0) q"/*(124 + 94q + 1384¢* — 432¢° + 288¢* — 5500¢° + O(¢%))
€£(1/2,1/10) ¢*/1°(100 + 216¢ 4 1100¢> — 1900¢* — 504¢° + O(q°))
€£(1/2,3/10) q"/1°(—100 — 144q — 200¢> + 216¢°> — 100¢* + 0¢° + O(q°))
€(1/2.1/2) q"/*(=72 — 1000q — 432¢* + 1000¢> 4 648¢* + 0¢° + O(¢°%))
(3,1/20,(0,1/10) — &3,1/20,(1/2,2/5)
©1(0,1/10) q'/?°(1 — 60g — 62¢* + 58¢° — 59¢* + 122¢° + O(¢%))
01 (1/2,2/5) q"/?°(=1+ 60q + 62¢> — 58¢° + 59¢* — 122¢° + O(¢°))
€4(0,3/10) /(11 — 22¢ + 131¢%> — 60¢° — 142¢* — 38¢° + O(¢°))
€4(1/2,1/5) ¢/ (—11 + 22q — 131¢% + 60> + 142¢* + 38¢° + O(¢%))
€0,1/2) q"/*(10 + 50q + 110¢% + 0¢* + 0¢* — 600¢° + O(q®))
€(1/2,0) q*/*(—=10 — 50q — 110¢> + 0¢* + 0g* + 600¢° + O(¢°))
other components 0
15(Es — Q3,1/5,(0,1/5))
€(0,0) 0+ 128¢q — 192¢* + 0¢> + 1088¢* — 832¢° + O(¢")
€£(0,1/10); €£(1/2,3/5) q"/*°(—1 4 40q — 182¢* + 178¢" 4 359¢* — 602¢° + O(¢°))
€4(0,1/5) q"/*(=32 + 160q — 512¢* + 320¢* + 576¢° + O(¢"))
€£(0,3/10) €£(1/2,1/5) ¢°/*° (=31 4 118¢ + 9¢* — 440¢° 4 238¢* + 178¢° + O(¢"))
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€4(0,2/5) q*/°(—32 — 32¢ — 160¢* + 0¢> + 640¢* — 64¢° + O(¢%))
€(0,1/2)» 8(1/2,0) q*4(34 — 146q + 94¢* + 288¢> — 192¢* — 400¢° + O(q%))
€£(1/2,1/10) ¢*/1°(40 — 144q + 440> + 0¢° — 760q¢* + 336¢° + O(q°))
€+(1/2,3/10) g1 (=40 + 96 — 80¢* — 144¢* — 40¢* + 0¢° + O(¢°))
€(1/2,1/2) q1/2 (48 — 400q + 288¢2% + 400¢> — 432q¢* + 0¢° + O(q6))

Table B.16: Holomorphic products of weight less than 18
Principal part Weyl vector | Char.
6e0.0) + ¢ /> (ex(0,1/10) + ex(1/2:2/5))+ e
w?’ ~1/5 —1/4 172_075) X symm
+q  Perass) a7 (e0/2) F e1/2,0)
10¢(0,0) + 4g~"** (ex(0,1/10) + ex(1/2.2/5))+ | 7
¢5 15 3/10 17207 1) — skew
+q Tex,1/5 t ¢ €4(1/2,1/10)
) | 16eq,0) + 20 es01/10) + 4P era 225+ 11 B
Vs ~1/4 ~9/20 15 1) Symim
+2q "e,1/2) T4 €4(1/2,1/5)
@ | 16e@0) + q e 01/10) + 207 i jooym)+ -
Vs ~1/4 ~9/20 250 1) B Symm
+2q" e 20 T q €+(0,3/10)
(3) 16e(0,0) + 10q71/20€i(0,1/10) + C]73/10%(1/2,1/10)+ -
Vs 15 14 T 2) - Symin
+2q  Pex0,1/5 + 29 e 20
16e10.0) + ¢~ >/1% +
(@) (0,0 +(1/2,1/10) -
g s 1 1) - symm
+2q7 Pexr0,1/5 T4 /2,12
30e(0,0) + 154/ (e1(0,1/10) + €a(1/2,2/5)) — L33
(T 14 L 1 53) b% skew
—q (e,12) + ea/20) + 4 e

B.9 Discriminant —23

Table B.17: Obstruction space, discriminant —23

Es

€(0,0)

265
1 — 359 — 5374

1325 2 _ 1325 3 _ 1855 4
— 6 4 — 4 4

— 528¢° + O(¢%)

Continued on next page
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€+(1/23,21/23) 1/23( L4 - 41225 - 1}85q2 240¢° — 24605614 294795 + O(q 6))
e (5/23.13/23) 2/23( 54 62041 q— 1135 ¢ — 2?31 ¢ — 5?35 ¢ — 735 ¢ + 0(¢%))
€.L(7/23.9/23) 3/23( 52 41225 q— 2323 ¢ — 7525 ¢ — 360" 8;25 ¢ + 0(¢%))

€ (2/23.10/23) 4/23( 225q _ 3025q2 _ 2?35 ¢ — 2275 ¢* — 576¢° + O(¢%))

e (11/231/23) 6/23( 421 525 ¢ — 3(;25 ¢ — 112165 ¢ — 14521 1521 05 1 (O(¢F))
€(10/23.3/23) 8/23( 41821 _ 10625 ¢* — 2404 4207 4207 g4 4205 220505 1 0(¢F))
€.(3/23.17/23) 9/23( 455 ~ 12042 — 2125 21253 5}31 ¢t — 3367q5 + 0(¢%))
€.(0/25.5/23) 12/23( 2}35 ¢ — 7321 ¢ — 735 ¢t — 8065 q5 + 0(¢%))
e(6/23.11/23) 13/23( 637 _ 1{1211 ¢ — 43(2)5 ¢® — 480¢* — 21845q +0(¢%)
e(4/23.15/23) 16/23( 341 _ 425 2111(2)5q2 288¢° — 14235q4 8581q5 +0(¢%)
e (8/25.7/23) 18/23( 455 841 542121 ¢ — 2105 ¢ — 600¢* — 720¢° + O(¢°))

g (E3 - Q3,1/23,(1/23,21/23))

€(0,0)

0+ 230q + 46¢> + 92¢3 + 414¢* + 0¢° + O(q°)

€4(1/23,21/23)

¢/ (=5 + 166q 4 134¢* + 0¢® 4 T16¢* — 954¢° + O(¢%))

€4(5/23,13/23)

q¥?(—1 —125q — 298¢* — 202¢° + 142¢* + 698¢° + O(¢%))

€4(7/23,9/23)

¢/ (—2 — 122q — 245¢> — 11¢% + 0¢* — 26¢° + O(q°))

€4(2/23,19/23)

q"/? (=9 + 172q — 25¢° + 86¢> — 42¢* + 0¢° + O(q°))

€4(11/23,1/23)

€4(10/23,3/23)

€4(3/23,17/23)

%)
¢/ (31 + 38¢ + 380¢% + 0¢° — 225¢* — 724¢° + O(¢%))
q

¢”/%(=23 4 63q + 0¢%> — 500¢> + 830¢* — 306¢° + O(¢°))

(—1
(—2
(—
q%/%3(38 + 62¢ + 486¢> — 50¢° — 49¢* — 605¢° + O(q
(
(—
3

)
)

©4(9/23,5/23) q*2/%3(6 + 0g + 358¢ — 329¢° — 250¢* — 346¢° + O(¢%)

€4(6/23,11/23) q*3/%3 (=34 — 339q — 130¢ 4 94¢> + 0¢* + 575¢° + O(¢%))
€4(4/23,15/23) q'%/% (=73 — 4q — 338¢> + 0¢® + 396¢* + 254¢° + O(q%))
€(8/23,7/23) q'¥?(—43 — 106q + 103¢> — 196¢> + 0¢* + 0¢° + O(¢%))

24(E5 — Q3,2/23,(5/23,13/23))

€(0,0)

0+ 46q + 1334¢> — 1748¢3 — 1242¢* + 0¢° + O(¢°)

€4(1/23,21/23)

g/ (—1 — 274q + 142¢> + 0g® + 7964* + 2430¢° + O(¢®))

€4(5/23,13/23)

¢¥/%(—29 — 25 + 622¢% — 386¢° — 1210¢* — 398¢° + O(¢®))

€4(7/23,9/23)

¢*/?3(38 4 350q — 49¢> — 1423¢° + 0¢* — 754¢° + O(¢°))

Continued on next page
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175

€£(2/23,19/23) q*'*3(27 + 380q — 725¢° + 1054¢> — 2226¢* + 0¢° + O(¢"
€ (11/23,1/23) q%/%(—2 + 358¢ — 738¢> + 950¢> — 1421¢* — 121¢° + O(
C4(10/23,3/23) ¢/ (=109 — 338¢ + 1084¢> 4 0¢® + 675¢* — 17964 + O(q°))
€4(3/23.17/23) q”/?3(—43 — 189¢ + 0¢> + 1292¢* + 166¢* — 2970¢° 4+ O(q°
€4(9/23,5/23) q'?/%(318 4 0g — 706¢% — 1525¢> + 22544 + 46¢° + O(¢%)
€4(6/23,11/23) q*3/%(—122 — 183 — 26¢* + 854¢> + 0¢* + 547¢° + O(¢%))
€4(4/93,15/23) q'%/?3(187 — 500q — 154¢> + 0¢° + 1836¢* — 986¢° + O(¢°))
€.£(8/23,7/23) q"¥/%3(—431 + 94q + 827¢* + 844¢* + O(¢°))

24(E5 — Q3,3/23,(7/23.9/23))

€(0,0)

0+ 46q — 8744 + 1564¢>

— 138¢* + 0¢° + O(q°)

€+(1/23,21/23)

g% (=1 + 134q + 262¢° + 0¢* — 812¢* — 1938¢° + O(¢°))

€.4(5/23,13/23) ¢*/%(19 — 25¢ — 362¢* — 266¢* + 1070¢* + 610¢° + O(¢°))
C.4(7/23,9/23) ¢*/*(—34 — 250q — 49¢* + 905¢® + 0¢* + 494¢° + O(¢°))
€4(2/23,19/23) q"/?(3 — 268q + 475¢* — 554¢> + 1470¢* + 0¢° + O(q°))
€4(11/23,1/23) q%/%3(—26 — 98q + 654¢% — 850¢° + 931¢* — 121¢° + O(q%))
€(10/23,3/23) q/%(83 4 358¢ — 956¢> + 0¢° + 75¢* + 1204¢° + O(q°))
€4(3/23,17/23) ¢/ (77 — 21q + 0¢® — 748¢> + 166¢* + 1878¢° + O(q°))
©4.(9/23,5/23) "%/ (=210 + 0g + 422¢* + 1211¢* — 986¢* — 986¢° + O(¢°))
€(6/23,11/23) q"*? (=2 + 225 — 26¢° — 898¢° + 0¢* — 173¢° + O(¢"))
€4(4/23.15/23) q'9/%3 (=149 + 196¢ + 398¢> + 0¢° — 2004¢* + 1438¢° 4+ O(¢°))
€4(8/23,7/23) q'¥?3(361 — 362¢ — 517¢% — 188¢° + 0¢* + 0¢° + O(¢®))

Table B.18: Holomorphic products of weight less than 18

Principal part Weyl vector

Vs

10¢(0,0) + 3(171/2321(1/23,21/23)4-

(L4, L)

+ 3¢ P e s 50313703 + 4 P esirjso/ant 6 76

+ 2q—4/23

€4(2/23,19/23) T q_6/23€i(11/23,1/23)

skew
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176

12¢(0,0) + 361_1/23%(1/23,21/23)—1-

Ve + q72/233j:(5/23,13/23) + 3q73/23¢ﬁ:(7/23,9/23)+ (1, 2%, %7 1) | symm
+ q_4/239i(2/23,19/23) + q_8/239i(10/23,3/23)
1eo0) + 2¢~ /ey 1/23,21/23)+
(e + q_2/239i(5/23,13/23) + 2q_3/23¢i(7/23,9/23)+ (1, %, ﬁa 1) | skew
+ q76/233j:(11/23,1/23) + q79/233j:(3/23,17/23)
16e(0,0) — q_1/23ei(1/23,21/23)+
g + 861_2/23%(5/23,13/23) + 4q_3/239i(7/23,9/23)+ (1, ié, 36> 1) | symm
+ 3q_4/239ﬁ:(2/23,19/23) + q_6/23¢i(11/23,1/23)
g | 24e(0) + 23(]_1/23%(1/23,21/23) + q_le(o,o) (3, %7 0,2) skew
28¢(0,0) + 6(]71/23%(1/23,21/23)-1-
(O + 7q_2/23%(5/23,13/23) + Q_S/zsei(10/23,3/23)+ (2, ig7 243> 2) | symm

+ q_12/23€i(9/23,5/23)

B.10 Discriminant —24

Table B.19: Obstruction space, discriminant —24

Es
¢00) 1— 62530 q— 2(2)§0 2 5(2)§0 P — 1022350 4 _ 13104 ¢ + O(¢%)
€4(0.1/12)) C£(0.5/12) q1/24(_% _ % 2;131 @ — 5:2320q3 9;1:1))0q4 14763 ¢ + O(¢%))
e4(0.1/6) ql/G(__ _ @ 25§0q2 _ 54g0q3 _ 110367q4 _ 16354q5 +0(¢%)
e (0.1/4) q3/8(__ _ 1320(] 2320 P — 6322 P — 1320300 ¢ — 14784 ¢ + 0(¢%))
e (0.1/3) q2/3(—£ _ @ 4327(12 73:;0 P — 1228350 ¢ — 18144 18144 05 4 O (g%))
¢0.1/2) q1/2( 120 1394 4§§0q2 _ 6ggoq3 _ 1029320q4 _ 20740q5 +0(¢%)
e1/2.0) q" /4( 624 3220 @ — 5%0 @ — 1125320 ¢ — 12000 1200005 4 O(48))
€(1/2.1/12)s C4(1/25/12) q7/24( gg 92632 3;;2 P — 332(]3 1026310 ¢ — 16130q5 +0(¢%))
e1(1/2.1/6) q5/12(—%0 _ 82%1(1 _ %qz 5(2);10613 1420350 4 13104q5 +0(¢%))
eL (12 ) q5/8(—% . %q %goqz 8;L§0q3 _ 1029344 4 18980q5 +0(¢%))
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€+(1/2,1/3) q11/12(_% 1g§4q _ 63g0q2 28843 — 1724310q4 _ 15120q5 +0(q ))

9(1/2’1/2) q3/4(_% 23g0q 2g§8q2 1026360 q3 1028300q4 21120 5 + O( ))
23(E5 — Q3,1/24,(0,1/12))

€(0,0) 0+ 960q + 720¢% + 480¢> + 2400¢* — 960¢° + O(¢%)

€(0,1/12) q"*4(—24 + 959¢ + 309¢% 4+ 190¢° + 3240¢* — 2642¢° 4+ O(q%))

€£(0,1/6) q"/%(—40 + 760q + 240q> 4 120¢> + 1560¢* — 2600¢° + O(¢°))

€£(0,1/4) ¢*/8(—105 + 390q — 120¢> — 1065¢° 4 1260¢* + 120¢° + O(q%))

€(0,1/3) ¢?*/3(—280 — 80q — 1360q¢® — 800¢> + 2560q¢* — 480¢° + O(¢°))

04(0,5/12) q"/*(—1 — 674q — 864¢> — 960¢°> — 1130¢* + 3407¢° + O(q°))

€(0,1/2) q*/?(—=120 — 1440q — 1200¢2 — 480¢> + 120¢* + 4560¢° + O(q%))

€(1/2,0) q"/*(180 + 480q + 2100¢> + 480¢* — 480¢* — 960¢° + O(q°))

€1 (1/2,1/12) g7/ (180 + 142q + 2578¢% — 722¢° + 430¢* — 48604¢° + O(q%)

€4(1/2,1/6)

€+(1/2,1/4)

)
¢°/12(100 + 240q + 15402 + 480¢> — 2780¢* — 960¢° + O(g°))
‘)

€4(1/2,1/3)

¢°/3(—30 — 240q + 1650¢> — 2670¢° + 1200¢* — 2190¢° + O(q
q"/12(—380 — 480q — 5204¢° + 0¢® — 620¢* + 1440¢° + O(q°))

€4(1/2,5/12)

q7/?4 (=50 — 732q — 183842 + 61243 + 660¢* + 430¢° + O(¢°))

e(1/2,1/2) ¢*/*(—240 — 2040q — 720¢ + 840¢® + 240¢* + 960¢° + O(¢°))
C23,1/24,(0,1/12) - Q3,1/24,(0,5/12)

©4(0,1/12) q"/*(1 — T1q — 51¢% — 50¢° — 190¢* + 263¢° + O(¢%))

04(0,5/12) /(=1 + 71q + 51¢% + 50> + 190¢* — 263¢° + O(q°))

04(1/2,1/12) g7/ (=10 — 38q — 192¢* + 58¢° + 10¢* 4 230¢° + O(¢°))

C1(1/2,5/12) q7/4(10 + 38¢ + 192¢% — 58¢% — 10¢* — 230¢° + O(¢%))

other components

0

23(Es — Q3.1/6,0,1/6))

€(0,0)

0 + 224q — 384¢* — 256¢° + 1664¢* + 512¢° + O(¢)

€4(0,1/12)5 €4+(0,5/12)

/2 (—1 1 85¢ — 243¢% — 178¢% + 894¢* — 43¢° + O(¢°))

€(0,1/6) q"/%(—40 + 208q — 128¢> — 64¢> + 4564¢* — 944¢° + O(¢°))
€4(0,1/4) ¢/3(—82 + 252q + 64¢> — 674¢> + 248¢"* — 64¢° + O(¢%))
€4(0,1/3) ¢?/3(—96 + 288q — 256¢% — 800¢> + 1088¢* + 256¢° + O(¢°))
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¢(0,1/2) q'/%(64 — 336q — 96¢% + 256¢° — 64q¢* + 1248¢° + O(¢%))
¢(1/2,0) q'/*(88 — 256¢ + 536¢> — 256¢> + 256¢* + 512¢° + O(q°))
€L(1/2,1/12)5 €4(1/2,5/12) q7/24(42 — 134q — 44(]2 + 474(]3 — 214(]4 — 582q5 + O( ))
€1(1/2,1/6) ¢°/1%(8 — 128¢ + 712¢* — 256¢> — 1400¢* + 512¢° 4+ O(¢°))
€(1/2,1/4) ¢*/3(—76 4 128¢ + 500¢> — 8764 — 640¢* + 340¢° 4+ O(¢°))
C4(1/2,1/3) q11/12(—104 + 256 — 336¢° + 0¢® + 24¢* — 768¢° + O(q ))
€(1/2.1/2) ¢/ (128 — 752q + 384¢% + 656¢° — 128¢* — 512¢° + O(¢°))
Table B.20: Holomorphic products of weight less than 17
Principal part Weyl vector | Char.
deo0) +2¢ /(e +e +
" (0,0) (e+(0,1/12) + €1(0,5/12)) array |y .
~1/6 —1/4 2)176°2
+q er,1/6) T4 7 €1/2,0)
) | 10e00) = 207 exa/12) + 80~ esosin)+ L1 11
5 (_7_7_7_) X symim
—~1/6 —1/4 —7/24 27471272
+ 2" Per,1/6) 4 Te120 T ¢ €1(1/2,5/12)
10e(0,0) + 861_1/24%(0,1/12) — 2q_1/24%(0,5/12)ﬂL
2 _ _
é ) + 2q 1/6%(0,1/6) +q 1/46(1/2,0)4‘ (37 %7 %7 %) X symm
+ q77/24€i(1/2,5/12)
10e(0,0) — 26171/24(%(0,1/12) +e105/12))+
3 _ _
é ) + 2q 1/6€i(0,1/6) +4q 1/49(1/2,0)+ (%7 %7 %a %) X symm
+ q_1/29(0,1/2)
1 — _
= 12¢(0,0) + 4¢ " (e0.1/12) + 05/12)) + ¢ e | (1,1 351) — symm
@ | 12¢00 + 3¢ (ex(01/12) + ex(05/12))+ 111 B
6 —1/4 —3/8 ( 199 40 ) Symin
+2q" 7 ey2,0) T ¢ 7 V00,1 /4)
20e(0,0) — 46]71/24(%(0,1/12) + ¢4 (0,5/12))+
Y10 + 4q_1/6€i(0,1/6) + 2q_1/4e(1/2,0)+ (1, %; %7 1) - symm
+ q_3/49(1/2,1/2)
28¢(0,0) + 64/ **(ex(0,1/12) + €(0,5/12))+
P14 i s (2,3,3,2) - symm
+2q" " ey2,0) T @ T er(1/2,1/4)






