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Abstract

Chronic inflammation is an established risk factor for colorectal cancer (CRC). To study reactive 

products of gut inflammation and redox signaling on CRC development we used untargeted 

adductomics to detect adduct features in pre-diagnostic serum from the EPIC-Italy cohort. We 

focused on modifications to Cys34 in human serum albumin (HSA), which is responsible for 

scavenging small reactive electrophiles that might initiate cancers. Employing a combination of 

statistical methods, we selected seven Cys34 adducts associated with CRC, as well as BMI (a 

well-known risk factor). Five adducts were more abundant in CRC cases than controls and 

clustered with each other, suggesting a common pathway. Since two of these adducts were Cys34 

modifications by methanethiol, a microbial-human co-metabolite, and crotonaldehyde, a product 

of lipid peroxidation, these findings further implicate infiltration of gut microbes into the intestinal 

mucosa and the corresponding inflammatory response as causes of CRC. The other two associated 

adducts were Cys34 disulfides of homocysteine that were less abundant in CRC cases than 

controls and may implicate homocysteine metabolism as another causal pathway. The selected 

adducts and BMI ranked higher as potentially causal factors than variables previously associated 

with CRC (smoking, alcohol consumption, physical activity and total meat consumption). 

Regressions of case-control differences in adduct levels on days to diagnosis showed no statistical 

evidence that disease progression, rather than causal factors at recruitment, contributed to the 

observed differences. These findings support the hypothesis that infiltration of gut microbes into 

the intestinal mucosa and the resulting inflammation are causal factors for CRC.
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Introduction

Colorectal cancer (CRC) is a major cause of human mortality, accounting for about nine 

percent of all cancer deaths (1); however, the etiology of CRC is poorly understood. Since 

studies of families and twins have shown that heritable genetics contribute less than 15% to 

CRC incidence (2,3), non-genetic factors must be important. Indeed, many studies have 

implicated diet and lifestyle factors with CRC risks (reviewed by (4)). Interestingly, some 

associations pointed to increased risks – notably, consumption of fat and red meat, smoking 

and alcohol use - while others suggested reduced risks, namely, consumption of fish, fish oil 

and fiber, plus regular exercise and intake of vitamin D, calcium and aspirin. Since most of 

these risk factors implicate dietary exposures, recent interest has focused on the interplay 

between the diet and gut microbiota as contributors to CRC (5,6). In particular, evidence is 

accumulating that the shift away from fiber-rich foods in the ‘Westernized diet’ has 

discouraged gut fermentation that enhances colonic health.

An emerging theme from this collection of risk factors is the hypothesis that CRC results 

from chronic promotion of gut dysbiosis “… creating a microclimate that promotes 

inflammation, proliferation and neoplastic progression” (5). Certainly, chronic colonic 

inflammation is a hallmark of inflammatory bowel disease and colitis-associated cancer, and 

is an established risk factor for CRC. A critical adjunct to gut inflammation is production of 

reactive oxygen species (ROS) by neutrophils and macrophages that are mobilized in 

response to infiltration of microbiota into the intestinal mucosa. Reactive oxygen species can 

damage DNA and thereby initiate tumors; they can react with polyunsaturated fatty acids to 

produce reactive carbonyl species (RCS) that modify proteins and promote cancers; and they 

are important modulators of redox-signaling pathways that are activated by gut inflammation 

(7).

Despite their potential importance to cancer causation, ROS, RCS and other reactive 

electrophilic products of human and microbial metabolism cannot generally be measured in 
vivo. This has motivated investigators to study the dispositions of reactive metabolites by 

monitoring adducts of these species with abundant proteins, particularly hemoglobin (Hb) 

and human serum albumin (HSA). Although most assays have targeted particular 

modifications of Hb and HSA selected a priori (8), recent work has explored untargeted 

avenues for characterizing adductomes at particular nucleophilic loci (9–11). Our laboratory 

developed an adductomics pipeline to investigate modifications at the highly nucleophilic 

Cys34 residue of HSA (11). We focused on Cys34, not only because it efficiently scavenges 

small reactive electrophiles (12), but also because its oxidation by ROS generates a host of 

reversible sulfoxidations that act as redox switches in homeostatic processes (13–16). 

Indeed, oxidation of HSA-Cys34 to the reactive sulfenic acid (Cys34-SOH) serves as an 

intermediate in formation of mixed Cys34-disulfides that are also sentinels of redox biology 

during the one-month residence time of HSA (17).

Given evidence that reactive products of gut inflammation and modulation of redox 

signaling pathways are potential contributors to CRC, we conducted Cys34 adductomics 

with archived serum from incident CRC cases and matched controls from the European 

Prospective Investigation into Cancer and Nutrition (EPIC) (18). This exploratory study is 
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intended to discover discriminating adducts that can motivate hypotheses and follow-up of 

potentially important exposures or pathways leading to CRC. Results point to CRC 

associations with several adducts, some of which further implicate the gut microbiota and 

redox biology as potential causes.

Materials and Methods

CRC Cases and controls

Serum samples were obtained at recruitment from 95 pairs of incident CRC cases and 

matched controls (68 male pairs and 27 female pairs), collected between 1993 and 1997 

from subjects in Turin, Italy as part of the EPIC cohort study (18). Written informed consent 

was obtained from all participants and the study was conducted in accordance with 

recognized ethical guidelines (e.g., Declaration of Helsinki, CIOMS, Belmont Report, U.S. 

Common Rule). The study protocol was approved by an institutional review board of the 

Human Genetics Foundation (Turin, Italy). Controls were sampled from within the cohort (a 

sample of the general population) and matched by age, gender and enrollment year and 

season. The cohort was regularly followed up and, at diagnosis of CRC, cases were 

confirmed by colonoscopy and biopsy; matched controls were healthy and with few 

exceptions, did not undergo colonoscopies. Information related to the diet, body mass index 

(BMI) and lifestyle factors were obtained by questionnaire (19). Serum samples were 

obtained in cryostraws from the central biorepository of the International Agency for 

Research on Cancer (IARC; Lyon, France) where they had been stored in liquid nitrogen 

prior to shipment to our laboratory with further storage at −80°C for approximately two 

years prior to analysis. Upon processing of the serum, 59 samples had a gelled consistency, 

which was traced to an additive in the cryostraws (20). Because these gelled samples 

affected adductomic profiles, they were excluded, as were two subjects with large 

percentages of missing adducts, leaving 129 samples for downstream statistical analysis (57 

cases and 72 controls), including 47 matched case-control pairs. Table 1 provides summary 

statistics for these subjects and relevant covariates (smoking, physical activity, consumption 

of alcohol and meat and BMI). Out of these covariates, BMI was the most different between 

cases and controls (nominal p-value = 0.026 from a two-sample t-test), with cases having a 

higher average BMI.

Chemicals and reagents

With the following exceptions, all of the chemicals used in this study were the same as 

described previously (11). For the current investigation, sodium thiomethoxide (≥ 95%) and 

iodine (≥ 99%), were from Sigma-Aldrich (St. Louis, MO), and hydrogen peroxide (30 wt. 

% aqueous solution) and formic acid (Optima, LCMS grade), were from Fisher Scientific 

(Pittsburgh, PA).

Sample processing and nLC-HRMS data acquisition

Sample processing and analysis by nano-liquid chromatography-high resolution mass 

spectrometry (nLC-HRMS) were performed as previously described (11). The order of 

analyses was randomized except that each case-control pair was analyzed on the same day, 

also with random order. Briefly, HSA was purified (≥ 75 %) by precipitating other serum 
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proteins and residual Hb with 60% methanol. HSA was digested with trypsin at 37°C with 

high-pressure cycling for 30 min (NEP2320, Pressure Biosciences Inc., South Easton, MA) 

and without prior reduction of disulfide bonds. Adducts were located on the triply charged 

‘T3 peptide’ (21ALVLIAFAQYLQQC34PFEDHVK41, m/z 811.7593). Prior to nLC-HRMS, 

1 μL of an internal standard, consisting of the isotopically labeled T3 peptide modified at 

Cys34 with iodoacetamide (IAA-iT3, 20 pmol/μL), was added to normalize data for 

instrument performance. One microliter of each digest was injected into the nLC-HRMS, 

consisting of a Dionex Ultimate® 3000 nanoflow LC system equipped with a Dionex 

monolithic column (100 μm i.d. × 25 cm) and connected via a Flex Ion nano-ESI source to 

an LTQ Orbitrap XL hybrid mass spectrometer (Thermo Scientific, Sunnyvale, CA) that was 

operated in positive-ion mode. After duplicate injections of a sample, a blank sample was 

injected to reduce carryover effects, and after analysis of three samples the LC column was 

washed with 1 μL of a solution containing 80% acetonitrile, 10% acetic acid, 5% DMSO, 

and 5% water to stabilize the chromatography.

Adducts were located on the T3 peptide based on the monoisotopic mass (MIM) within 10 

ppm as described previously (11). By performing nLC-HRMS in data-dependent mode, the 

MS2 spectra for all triply charged precursor ions were first interrogated for b+- and y2+-

series ions that are signatures of the T3 peptide and its modifications. Spectra displaying the 

requisite fragment ions were designated as putative T3 modifications. The corresponding 

precursor ions were then extracted from the total ion chromatogram (TIC) to obtain a MIM 

for each adduct feature. To normalize peak areas for the amount of HSA in each tryptic 

digest, the MIM was also extracted for the doubly charged HSA peptide 

(42LVNEVTEFAK51, m/z, 575.3111) adjacent to T3 and referred to as the ‘housekeeping 

peptide’ (HKP). As shown previously (11) the peak area ratio (PAR), representing the ratio 

of the adduct-peak abundance to the HKP peak abundance is a robust measure of the adduct 

concentration. Peaks representing the selected ion chromatogram (SIC) for the internal 

standard (IAA-iT3) were used to normalize for instrument performance. Peak picking and 

integration were performed using the Xcalibur Processing Method (version 3.0, Thermo 

Fisher Scientific, Waltham, MA) based on the average MIMs and retention times. Peak 

integration employed the Genesis algorithm after normalizing for instrument performance 

via iT3-IAA. Added masses relative to the Cys34 thiolate ion were estimated as Madduct = 

(m/zadduct-m/zT3-peptide)*3 + 1.0078, where m/zadduct and m/zT3-peptide are the observed m/z 
values for the triply-charged MIMs of a given precursor ion for an adduct and the 

unmodified T3 peptide, respectively, and 1.0078 is the mass of a hydrogen atom. All data 

processing utilized in-house software written in R.

Synthesis of reference standards

The identities of several adducts were verified by synthetic reference standards that had been 

prepared previously (11,21,22). A new reference standard for the Cys34 S-methanethiol 

adduct was prepared as follows. Two microliters of 25 mM sodium thiomethoxide were 

diluted with 0.25 mL of water with and without 10 μL of 1 mM hydrochloric acid and 

incubated at room temperature for 1 h. Purified HSA from 15 μL of serum from a volunteer 

subject was diluted with 0.2 mL of digestion buffer and mixed with the thiomethoxide 

solution plus 1 μL of 30 % H2O2 and 0.5 μL of 35 mM iodine. A negative control was also 
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prepared with HSA from an additional 15 μL of serum that was processed with all reagents 

except sodium thiomethoxide. After incubation at room temperature with constant agitation 

for 24 h the reagents were removed with 30K MWCO spin columns (Millipore Sigma, MA) 

and the modified HSA was digested with trypsin and analyzed by nLC-HRMS as described 

above. The monoisotopic mass for the Cys34 S-methanethiol adduct (m/z 827.0890) was 

extracted from TICs using a mass tolerance of 5 ppm.

Statistical analysis

Duplicate injections were averaged for each adduct peak, ignoring missing values, in order 

to reduce technical variation. Eight adducts were detected in only one or two serum samples 

and were excluded from further analyses. Using a cutoff of 15% for missing values across 

adducts, two subjects were excluded. Missing values were imputed using the k-nearest-

neighbor method (23), with k = 5 adduct neighbors. Data were normalized using the 

Bioconductor R package ‘scone’ (24), which employs linear regression models on scaled 

and logged feature abundances to adjust for various combinations of factors of unwanted 

variation (25). The ‘scone’ package then evaluates each candidate normalization scheme 

with metrics that gauge the removal of unwanted variation and retention of wanted variation 

(e.g., case-control status) to help users select an appropriate normalization scheme. The top-

ranking normalization scheme according to ‘scone’ used DESeq scaling (26) and adjusted 

for unwanted variation due to digested HSA and instrument performance. Here, ‘digested 

HSA’ was quantified by the abundance of the HKP and ‘instrument performance’ was 

indicated by the drift in abundance of the internal standard (iT3-IAA) peak over time. All 

quantified T-3 peptides were clustered using the partitioning around medoids (PAM) method 

(k=6, ‘pam’ function in R) using Spearman correlations on the normalized abundances.

A combination of regression and classification methods was used to select adducts that were 

associated with CRC cases and controls. Since BMI was greater on average in CRC cases 

than controls (Table 1), this variable was also investigated. (Due to missing values of BMI, 5 

cases and 7 controls were excluded, leaving 117 subjects for analysis). First, the following 

multivariate linear regression model was fitted:

Y i j =  β0 + β1Xcase i + β2Xsex i + β3Xage i + β4XHKP i + β5XIS i + εi, (1)

where Yij represents logged and DESeq-scaled abundances for the jth adduct (or BMI) in the 

ith subject Xcase and Xsex are binary indicators, Xage is a continuous variable, XHKP is the 

vector of housekeeping peptide abundances, XIS is the vector of internal standard 

abundances, and εi is a random error term for the ith subject. The nominal p-value 

corresponding to the coefficient β1 was used to rank each variable by its association with 

case-control status. The mean case/control fold-change in adduct levels was calculated as 

exp(β1), and β1 was used to represent the difference in average BMI between cases and 

controls, adjusting for sex and age.

Second, a regularized logistic regression (LASSO) (27) of CRC case-control status on 

normalized adduct abundances and BMI along with sex and age (matching variables), was 

performed to find groups of variables associated with CRC. The logistic LASSO regression 

was performed on 500 bootstrapped datasets to provide stability (28), using the number of 

Grigoryan et al. Page 5

Cancer Res. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



times a given adduct was selected in 500 iterations as a measure of its importance. A 

concordance plot was used to evaluate agreement between ranked p-values from Model (1) 

and the bootstrapped LASSO variable importance measures. Variables that were top-ranking 

for both methods were selected.

Finally, variable importance measures from random forest classification of CRC case-control 

status were used to provide a nonlinear index of association (29). A random forest of 500 

trees was used to predict case-control status based on adduct abundances and BMI, and all 

variables were ranked in importance based on their mean decrease in Gini index (30,31). 

Variables with large increases in random forest variable importance were also considered for 

addition to the list of selected variables.

To investigate factors that could potentially drive relationships between selected adducts and 

CRC status, the covariates BMI (kg/m2), smoking (current vs. former/never), alcohol 
consumption (g/d), physical activity (active/moderately active vs. moderately inactive/

inactive) and total meat consumption (g/d) were evaluated because these variables have been 

implicated as risk factors for CRC (4). First, to determine whether the above covariates 

might have influenced selection of adducts in our ensemble variable-selection method, a 

random forest classifier was used to rank all selected adducts and covariates by their 

importance in classifying CRC case status (31–33). Then, to obtain additional information 

about potential associations between adducts and covariates - regardless of case-control 

status - random forest classifiers were used to rank all measured adducts in terms of their 

predictive power for each particular covariate.

Because CRC cases and matched controls were evaluated more than 14 years after 

recruitment, we tested associations between adduct abundances and days (from recruitment) 

to diagnosis to discern whether they represent potentially causal effects or reactive effects of 

disease progression (34). If a significant linear trend in the log fold-change for a given 

feature were detected with increasing days to diagnosis, the adduct would be regarded as 

potentially reactive.

Results

Adducts detected

A total of 55 modifications to the T3 peptide were detected in CRC cases and controls 

(Supplementary Table S1). Peak abundances covered a 2,250-fold range (PARx1000: 0.09 – 

203). Based on ANOVA of duplicate injections across blood specimens for the 46 adducts 

with sufficient data (Supplementary Table S2), the median intraclass correlation coefficient 

(ICC) was 0.777 (range: 0.345 – 0.982), indicating that technical variation typically 

accounted for 23% of the total variance of adduct abundances. Coefficients of variations 

(CVs) across duplicate injections for adducts ranged from 0.134 to 0.758 with a median 

value of 0.283, consistent with previous applications of the assay (11).

Accurate masses for 51 adducts led to reasonable elemental compositions added to the 

Cys34-S− ion within 3 ppm of theoretical values from −46 Da to 510 Da (negative added 

masses refer to deletions and truncations). A subset of 30 modifications to the T3 peptide 
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was annotated including: truncations [e.g. 796.43 (Cys34→Gly) and 805.76 

(Cys34→oxoalanine or formylglycine)], Cys34 sulfoxidation products (816.42, 822.42 and 

827.76, representing addition of 1, 2 and 3 oxygens to Cys34, respectively), RCS (i.e., 

crotonaldehyde, 835.11) and a host of mixed Cys34 disulfides, notably those of 

methanethiol (827.09), Cys (851.43), homocysteine (hCys, 856.10), CysGly (870.44), 

GluCys (894.44) and glutathione (913.45). About one third of the T3 adducts were 

unannotated, including several whose MS2 spectra indicated T3 modifications at sites other 

than Cys34, including methylation (816.43).

We had previously detected 43 of these adducts in at least one of four studies with serum/

plasma from diverse populations (11,22,35,36), and 17 of these adducts were common to all 

four studies. This points to a pool of modifications of the T3-peptide that arises from a set of 

precursor molecules, including ROS, RCS and small thiols from metabolic pathways 

involving common nutrients. Twelve adducts were unique to the current study, and none of 

these modifications was annotated (Supplementary Table S1). The MS2 spectra and 

SICs/MS1 spectra of these 12 new adducts are reproduced in Supplementary Figures S1 and 

S2, respectively.

Adducts associated with CRC

Results of our variable selection strategy are summarized in Figure 1. The concordance of 

linear regression (Model 1) and bootstrapped LASSO logistic regression was 100% for the 8 

highest ranked variables, including 7 adducts and BMI (Figure 1 A and 1B). In addition to 

BMI, five of the selected adducts were present at higher levels in CRC cases, namely, 853.78 

(unknown), 835.11 (crotonaldehyde), 805.76 (Cys34→oxoalanine or formylglycine), 827.09 

(S-methanethiol) and 811.76 (a ‘T3-labile adduct’ detected with the same MIM as the T3 

peptide but a different retention time, suggesting truncation of the adduct in the ESI source), 

while two adducts representing hCys disulfides were more abundant in controls, namely, 

860.77 [S-hCys (+CH3)] and 850.10 S-hCys (-H2O)]. Many of the adducts and BMI that had 

been selected by both linear regression and LASSO logistic regression were among the top 

ranked variables determined by random forest (Figure 1C). In fact, the S-methanethiol 

adduct was the only adduct to demonstrate a marked increase in Gini index by random forest 

(Figure 1C).

Clusters of adducts and BMI resulting from the PAM algorithm are shown in Supplementary 

Figure S3 (k=6 resulted in the highest average silhouette width among k=2,…, 8). Of the six 

clusters identified, the most informative was cluster 2, which included all of the five adducts 

that were more abundant in CRC cases than controls (from Figure 1A). Other adducts in this 

cluster included the Cys34 sulfonic acid (827.75), the T3 dimer (811.42) and two unknowns 

(847.77 and 815.44). The two selected adducts that were less abundant in CRC cases were 

disulfides of hCys that had been either methylated (860.77) or dehydrated (850.10). These 

adducts were grouped with each other and with the parent hCys disulfide (856.10) in cluster 

5 of Supplementary Figure S3. Interestingly, BMI did not cluster with any of the seven 

adducts associated with CRC. Spearman correlations between these selected adducts and 

BMI were ≤ |0.11| except for the dehydration product of hCys (850.10), which was −0.21.
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Effects of covariates on associations between adducts and CRC

Variables ranked for importance by a random forest classification of case-control status are 

shown in Figure 2 to compare the selected adducts (Figure 1) and covariates previously 

associated with CRC (BMI, smoking, alcohol consumption, physical activity and total meat 
consumption). Aside from BMI (second ranked), the other covariates ranked below the 

selected adducts as classifiers of CRC case status, suggesting that these covariates are 

probably not responsible for the potential associations shown in Figure 1. When random 

forest models were constructed to investigate the variable importance of all 46 adducts as 

predictors of each covariate individually, the seven selected adducts were not top-ranking for 

most of the covariates, further suggesting that the covariates are not driving the associations 

shown in Figure 1. Nonetheless, there were some interesting results (Supplementary Figure 

S4). For example, among smokers the variables with greatest importance were adducts of 

acrylonitrile (829.43) and ethylene oxide (826.43) (Supplementary Figure S4–A), both of 

which had been previously associated with smoking in our adductomics pipeline (11). Also, 

the top three variables for BMI were Cys34 sulfoxidation products [(-H2+O), 816.42; 

(+CH3O2), 827.10; (+HO2), 822.42] (Supplementary Figure S4–B). Top-ranking adducts for 

total meat consumption included two unknowns (847.77 and 815.44) and the Cys34→Gly 

truncation (796.43) (Supplementary Figure S4–C); top-ranking adducts for physical activity 
included three unknowns (981.50, 894.13 and 879.13) plus the T-3 labile adduct (811.76) 

and S-Cys (NH2→OH) (851.76) (Supplementary Figure S4–D); and top-ranking adducts for 

alcohol consumption included S-Cys (NH2→OH) (851.76), S-hCys (856.10) and S-

glutathione (913.45) (Supplementary Figure S4–E). Thus, of the seven adducts selected as 

associated with CRC (Figure 1) only the T-3 labile adduct (811.76) had high-ranking 

variable importance for any of the tested covariates (i.e., physical activity and alcohol 
consumption), further suggesting that the underlying CRC associations were largely free of 

confounding by these variables.

Discussion

This is the first study to apply our adductomics pipeline to prospective analysis of CRC or 

cancer generally. We had validated our adductomics methodology with archived serum/

plasma from healthy smoking and nonsmoking subjects (11) and subsequently applied it to 

populations with and without high exposures to indoor combustion products (36) or benzene 

(22), and to subjects with and without lung or heart disease (35). This led to measurement of 

over 75 adducts, several of which were significantly associated with particular exposures or 

diseases, notably Cys34 modifications of reactive oxygen and carbonyl species and 

disulfides of small thiols derived from redox processes. This combination of results points to 

separate windows that Cys34 modifications provide for viewing exposure-specific 

electrophiles and global characteristics of the redox proteome (14).

Using an ensemble of regression and classification methods developed initially for 

untargeted metabolomics (20,31), we selected seven adducts as potentially associated with 

CRC in 57 cases and 72 control subjects from the EPIC cohort. The fact that our 

adductomics pipeline had previously detected all seven of the selected adducts in various 

human populations (11,22,35,36) suggests that the reactive precursors of these modifications 
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represent common exposures of everyday life that are modulated by pathways leading to 

CRC.

Using results from two large cohort studies, Morikawa et al. argued that high BMI increased 

CRC risk through a combination of obesity, insulin and insulin-like growth factor-1 that 

modulated the Wnt-β-catenin signaling pathway in unspecified ways (37). Based on a 

review of recent literature, Liu et al. concluded that the Wnt-β-catenin signaling pathway 

was modulated by production of ROS (38). Thus, it is interesting that the top-ranking 

adducts in terms of random forest variable importance for BMI were all sulfoxidation 

products of Cys34 (Supplementary Figure S4–B) that are formed by Cys34 reactions with 

ROS. However, since these Cys34 sulfoxidation products were not among the seven adducts 

selected as associated with CRC (Figure 1), it appears that multiple pathways are involved in 

the etiology of this cancer.

Five of the seven adducts associated with CRC incidence were more abundant in cases than 

controls, with fold-changes between 1.11 and 1.20 (Figure 1A). Interestingly, all five of 

these adducts clustered with each other (Figure 2, cluster 2), suggesting a common pathway. 

Yet, the sources and biochemistry underlying production of these adducts are varied. 

Perhaps the most informative of these five adducts is the S-methanethiol modification of 

Cys34 (827.09) that was also observed in two previous studies (11,36). This modification 

results from oxidation of Cys34 to the sulfenic acid (Cys34-SOH) which subsequently binds 

with circulating methanethiol, with loss of H2O, to form the corresponding Cys34 disulfide 

(17). Methanethiol is a product of microbial-human co-metabolism that is mediated by the 

gut microbiota via catabolism of methionine and/or methylation of hydrogen sulfide (39). 

Interestingly, methanethiol was found to be more abundant in feces from CRC patients 

compared to controls (40). Thus, we speculate that the Cys34 adduct of methanethiol is a 

biomarker of human enteric bacteria and that the increased abundance of this adduct in CRC 

cases further implicates the gut microbiota as a risk factor, consistent with formal 

hypotheses (5,6). It is also worth noting that Bae et al. reported a positive association 

between CRC risk in postmenopausal women and plasma trimethylamine-N-oxide (TMAO), 

which is another human/microbial cometabolite (41).

Another Cys34 adduct with mechanistic significance is the crotonaldehyde modification 

(835.11). Crotonaldehyde is a reactive α, β-unsaturated aldehyde produced by ROS 

oxidation of membrane lipids (42). We had previously shown that workers exposed to high 

levels of benzene – a strong promoter of ROS - had elevated serum levels of this 

crotonaldehyde adduct compared to controls (22). In their review of redox biology and CRC, 

Liu et al. linked lipid peroxidation with COX2 expression and two subsequent pathways 

towards CRC, one involving production of prostaglandins and the other involving reduced 

degradation of β-catenin (38). The fact that the crotonaldehyde adduct (835.11) clustered 

with the S-methanethiol adduct (827.09) (cluster 2 of Supplementary Figure S3), lends 

credibility to the hypothesis that invasion of gut microbiota into the intestinal mucosa 

initiates a chain of events involving an inflammatory response followed by production of 

ROS, RCS and subsequent damage to DNA and proteins as well as modulation of redox-

signaling pathways (7).
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Potential origins of the other three adducts in cluster 2 (Supplementary Figure S3) that are 

associated with CRC are more difficult to characterize. Adduct 805.76 represents conversion 

of Cys34 to oxoalanine or formylglycine with a mass loss of 18 Da. While oxidative 

cleavage of the sulfhydryl group from protein cysteine residues to produce dehydroalanine 

(−34 Da) and serine (−16 Da) has been reported (43,44), we have not found evidence of 

modifications yielding the observed mass shift of −18 Da. It also seems unlikely that 805.76 

represents conversion to Cys34 to formylglycine by human or microbial sulfatase 

metabolism because Cys34 is not embedded in the sequence motif (CXPXR) recognized by 

sulfatases (45). Regarding unknown adduct 853.78, we had previously detected this 

modification in two studies and suspected that it was a Cys34 disulfide of a small thiol 

because it disappeared after treatment of HSA with TCEP, a reagent that selectively cleaves 

disulfide bonds (11,36). However, none of the putative elemental compositions that include a 

sulfur atom (C7H11S, C5H7N2S or C6H9NS) resulted in a plausible added mass relative to 

that observed (127.077 Da). Based on analysis of MS2 fragmentation spectra it appears that 

the same precursor ion (853.7834) can generate two different sets of fragment ions that 

suggest rearrangement during collision induced dissociation in the mass spectrometer. And 

finally, the T3-labile adduct (811.76) appears to represent a T3 modification(s) that is 

cleaved in the ESI source to yield the unadducted T3 peptide, albeit with a different 

retention time. Although this modification has been observed in all previous studies, we 

have no information regarding its identity.

The other two adducts potentially associated with CRC in our samples were Cys34 

disulfides of hCys that were either methylated (860.77) or dehydrated (850.10) at another 

site on the T3 peptide. Unlike the other five associated adducts, these hCys modifications 

were less abundant in CRC cases than controls (Figure 1A) and clustered with each other 

and the unmodified Cys34-hCys disulfide (856.10) (cluster 5 of Supplementary Figure S3). 

As a key intermediate in one-carbon metabolism, hCys is remethylated to produce 

methionine, and subsequently S-adenosylmethionine (SAM), which plays an important role 

in DNA methylation that has been linked to CRC and other cancers (46). However, recent 

meta-analyses of many case-control studies (46,47) and a combination of case-control and 

cohort studies (48) point to CRC risks that increase with hCys blood concentrations, which 

is the reverse of what we observed. However, estimated effect sizes were smaller in cohorts 

than case-control studies, and numerous dietary and lifestyle factors increased CRC risks 

(reduced intake of fiber, methionine, vitamin B9 or folate, and vitamin B6, and increased 

intake of B12 intake, alcohol, and smoking) (48). Also, hCys levels have been shown to 

increase with age greater (but not less than) 65 y (49) and the mean age across 16 studies 

that linked CRC with increasing hCys by Xu et al. (47) was 61.4 y (SD = 3.7 y). This 

indicates that many subjects in the meta-analysis (47) were greater than 65 y and this may 

have contributed to increased levels of hCys. In contrast, the mean age at phlebotomy of the 

57 cases in our study was 55.3 y. Thus, although it is difficult to entirely reconcile our 

findings regarding adducts 860.77 and 850.10 with the current epidemiologic literature, we 

cannot rule out their connections to a potentially causal pathway involving hCys 

metabolism.

Finally, to determine whether modulation in levels of selected adducts was the result of 

disease progression rather than a causal factor, we examined the relationships between log-
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fold-changes of adduct abundances of CRC case-control pairs and days (from recruitment) 

to diagnosis (34). Results are presented in Supplementary Figure S5 as individual plots for 

the selected adducts. In each case, the p-value for slope of the linear relationship was large 

indicating that there is little statistical evidence supporting the notion that disease 

progression (reverse causality) rather than a causal pathway(s) lead to differential adduct 

abundances between cases and matched controls.

Our study had several limitations. The initial sample size was small (95 cases and matched 

controls) and then was reduced due to exclusion of gelled samples from cryostraw-storage 

and missing information about BMI in some subjects. Also, we had no information 

regarding aspirin use and histories of CRC in families of cases, two factors that have been 

associated with CRC (4). The storage of biological specimens for decades can lead to 

artifacts but in our study all specimens were collected within four years and cases and 

controls were matched by year of enrollment to minimize potential effects of sample storage 

on case-control differences. Three of the seven adducts selected for associations with CRC 

were unannotated and, therefore, of limited utility in discovery of causal factors. Another 

limitation was our inability to examine possible connections between adducts and advanced 

neoplasms (precursors of CRC) and advanced stage vs. early stage cancers.

In summary, we used untargeted adductomics to detect 51 adduct features in HSA from 

incident cases and controls from the EPIC cohort of which seven were found to be 

associated with CRC (Figure 1). Two adducts were more abundant in CRC cases than 

controls and represent Cys34 modifications by methanethiol and crotonaldehyde that jointly 

implicate infiltration of gut microbes into the intestinal mucosa and the corresponding 

inflammatory response as potential causes of CRC. Two other associated adducts were 

disulfides of hCys that were both less abundant in CRC cases than controls and may 

implicate hCys metabolism as a contributor to CRC. These adducts should be targeted for 

validation in independent samples of CRC cases and controls and should motivate 

mechanistic hypotheses regarding the underlying causal exposures and pathways. For 

example, the methanethiol/crotonaldehyde adducts could be measured in CRC cases and 

controls in conjunction with metagenomics of fecal samples to determine whether particular 

strains of microbiota may be responsible for the observed effects. It would also be 

interesting to determine whether there are associations between Cys34 adducts and DNA 

adducts or mutations in oncogenes or tumor suppressor genes in CRC cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations list.

BMI body mass index

CRC colorectal cancer

EPIC European Prospective Investigation into Cancer and Nutrition

ESI electrospray ionization for mass spectrometry

Hb hemoglobin

HSA human serum albumin

HKP housekeeping peptide (adjacent to T3)

IAA iodoacetamide

IAA-iT3 carboxyamidomethylated Cys34 adduct of iT3

iT3 isotopically-modified T3

IARC International Agency for Research on Cancer

LASSO least absolute shrinkage and selection operator

MIM monoisotopic mass

nLC-HRMS nano-liquid chromatography high resolution mass spectrometry

PAR ratio of the adduct-peak abundance to the HKP peak abundance

PAM partitioning around medoids method

RCS reactive carbonyl species

ROS reactive oxygen species

SAM S-adenosylmethionine

SIC selected ion chromatogram

T3 third largest peptide of HSA in tryptic digests

TCEP tris(2-carboxyethyl)phosphine

TIC total ion chromatogram

TMAO trimethylamine-N-oxide
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Statement of significance.

Infiltration of gut microbes into the intestinal mucosa and the resulting inflammation are 

causal factors for colorectal cancer.
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Figure 1. 
Regression and classification methods used to measure associations between CRC status and 

modifications to the T3 peptide or BMI in 57 CRC cases and 72 controls. A) Volcano plot of 

nominal p-values for case-control status in multivariate linear regression of each adduct and 

BMI in Model (1) (the dashed line represents a nominal p-value of 0.05); B) proportion of 

times that a given adduct or BMI was selected by regularized logistic regression (LASSO) of 

CRC case-control status; C) ranked variable importance measures from random forest 

classification of case-control status (top 15 variables).
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Figure 2. 
Ranking of adducts and covariates by random forest variable importance measures for CRC 

status in 57 CRC cases and 72 controls. (‘Activity’ represents physical activity and ‘Meat’ 

represents total meat consumption).
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Table 1.

Descriptive statistics of human subjects matched by age and gender.

Total n= CRC cases n=57 Controls n=72 p-value*

Gender Male 39 49

Female 18 23

Age at enrollment (y) mean 55.30 55.05

median 57.02 56.4

min 35.48 35.46

max 64.68 63.58

mean 6.86 -

Years to diagnosis median 6.99 -

min 0.02 -

max 14.41 -

BMI (kg/m2) mean 27.06 25.52 0.026

median 26.71 25.01

min 19.68 18.73

max 40.68 33.57

Smoking status current 10 17

former 25 26

never 17 25

NA 5 4

Alcohol consumption (mL/day) mean 21.94 19.78 0.585

median 13.47 11.77

min 0.0 0.0

max 80.57 93.54

Physical activity† active 9 11

moderately active 10 20

moderately inactive 23 20

inactive 10 17

NA 5 4

Total meat consumption(g/day) mean 80.24 72.76 0.386

median 75.30 63.45

min 2.60 0.0

max 189 201.3

Total vegetable consumption
¶
 (g/day)

mean 259.1 255.6 0.849

median 227.9 241.5

min 74.5 80.7

max 739.7 593.6

NA – not available

*
Nominal p-values from a two-sided t-test.

†
For definitions and validation see (50).
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¶
Sum of: leafy vegetables (raw and cooked), other vegetables, tomatoes (raw and cooked), root vegetables, cabbages, mushrooms, onion, garlic, 

mixed salad, mixed vegetables, and legumes.
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