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ABSTRACT OF THE DISSERTATION

The Chameleon Framework:

Practical Solutions for Memory Behavior Analysis

by

Jonathan Weinberg

Doctor of Philosophy in Computer Science

University of California, San Diego, 2008

Professor Allan Snavely, Chair

Though the performance of many applications is dominated by memory behavior,

our ability to describe, capture, compare, and recreate that behavior is quite lim-

ited. This inability underlies much of the complexity in the field of performance

analysis: it is fundamentally difficult to relate benchmarks and applications or use

realistic workloads to guide system design and procurement. A concise, observable,

and machine-independent characterization of memory behavior is needed.

This dissertation presents the Chameleon framework, an integrated solution

to three classic problems in the field of memory performance analysis: reference

locality modeling, accurate synthetic address trace generation, and the creation

of synthetic benchmark proxies for applications. The framework includes software

tools to capture a concise, machine-independent memory signature from any ap-

plication and produce synthetic memory address traces that mimic that signature.

It also includes the Chameleon benchmark, a fully tunable synthetic executable

xii



whose memory behavior can be dictated by these signatures.

By simultaneously modeling both spatial and temporal locality, Chameleon

produces uniquely accurate, general-purpose synthetic traces. Results demonstrate

that the cache hit rates generated by each synthetic trace are nearly identical to

those of the application it targets on dozens of memory hierarchies representing

many of today’s commercial offerings.

This work focuses on the unique challenges of high-performance computing

(HPC) where workload selection, benchmarking, system procurement, performance

prediction, and application analysis present important challenges. The Chameleon

framework can aid in each scenario by providing a concise representation of the

memory requirements of full-scale applications that can be tractably captured and

accurately mimicked.
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Chapter 1

Introduction

The field of performance analysis seeks to understand why applications per-

form as they do across various computer systems. The goals are manifold: perfor-

mance analysis can help manufacturers design faster systems, customers to decide

which systems are right for them, programmers to understand and optimize their

applications, and system software designers to bridge the gap between software

applications and hardware platforms.

For some years, the performance gap between memory and processor has

grown steadily. Processors are now able to operate on data at a rate that easily

dwarfs that at which the memory subsystem can deliver that data. This phe-

nomenon, known as the von Neumann bottleneck [12], has anointed memory be-

havior the principal determinant of whole application performance [21].

It has been widely observed that accesses to memory are not randomly dis-

tributed, but rather exhibit some form of reference locality ; memory references are

more likely to access addresses near other recently accessed addresses. This obser-

vation has been ubiquitously exploited in today’s systems to close the gap between

processor and memory. Most often, caches or cache hierarchies are employed to

keep the values of recently accessed memory addresses in speedy memory banks

near the processor. The success of such a system naturally depends on the level of

1
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reference locality exhibited by any given application.

Despite the importance of reference locality to the performance of today’s

applications, we currently have no practical, quantitative language that suffices

to describe that property. Likewise, we have no practical tools to observe it nor

effective techniques to reproduce it. The pursuit of a usable model of reference

locality has been an open problem since Mattson’s seminal work in 1970 [45],

making the topic today seem quaintly theoretical, it’s solution comfortably distant,

and its pursuit mildly quixotic. It is however, among the central problems in the

modern field of performance analysis.

As this chapter outlines, the consequences of our historical inability to de-

scribe, capture, and recreate memory behavior are numerous and profound. Much

of the presented motivation is drawn from the theater of High Performance Com-

puting (HPC), where performance analysis research has burrowed its most applica-

ble niche. The issues and solutions presented in this work, however, can nonetheless

be extended to many other computing scenarios.

1.1 Workload Selection

Consider for example, the most fundamental problem of system perfor-

mance analysis: choosing an evaluation workload. All performance analysis must

be relative to a specific workload, but choosing the applications that constitute that

workload is difficult without a way to describe their relative memory behaviors.

Ideally, the benchmark set should not be redundant since the inclusion of

multiple benchmarks with highly similar memory behavior can increase the time

and cost of system evaluation. While this may seem a trivial concern when only a

few small benchmarks are involved, consider the case of large-scale, HPC system

procurements. Performance analysts may spend months evaluating and projecting

the expected performance of the workload across dozens of proposed systems [22].

Beyond the additional time and cost involved, such unguided evaluations may even
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obscure the results, giving undue weight to a specific type of memory behavior in

disproportion to its representation among the machine’s entire expected workload.

In addition to avoiding redundancy, a memory behavior characterization

can further ensure that the evaluation workload is complete. It should include

applications representing a wide sampling of the most commonly observed memory

access patterns on the target machine. This is impossible to accomplish without

some way to describe the memory behavior of applications. In the past, designers

of benchmark suites such as the HPC Challenge benchmarks [1] have sought to

quantify the memory behavior of each benchmark to demonstrate that the suite

covers an interesting space with respect to all possible application behaviors [67].

A measurable characterization of memory behavior is extremely helpful for

producing benchmark suites or other evaluative workloads by which to measure

systems. It is essential for understanding how those benchmarks relate to each

other and the rest of a machine’s projected workload.

1.2 System Design and Synthetic Traces

Consider now the predicament of system designers who must tune and eval-

uate many cache configurations to achieve performance across a wide and volatile

workload. Designers not only inherit all the workload selection problems described

above, but must then also acquire memory address traces of each application in

the workload to drive cycle-accurate system simulations. In addition to being gen-

erally cumbersome and inflexible, full memory traces are difficult to produce when

applications are large or even impossible when the the code is classified or other-

wise proprietary. Even when collected, such full traces are prohibitively difficult to

store and replay [29]. A 4-processor trace of the simple NAS benchmark BT.A [13]

for example, requires more than a quarter of a terabyte to store and consequently

relies on disk performance to replay; a 100x slowdown is realistic.

These difficulties have spurred long-running research into synthetic address
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trace generation techniques. These produce smaller, more manageable traces and

enable evaluations to proceed in seconds instead of days [25, 64, 33]. However, the

accuracy of a synthetic trace is intrinsically bound to the memory characterization

underpinning it. Because such characterizations have not been forthcoming, stud-

ies as recently as 2005 have concluded that no existing trace generation technique

can adequately characterize memory behavior with sufficient accuracy [30, 56, 54].

1.3 System Procurement and Benchmarking

Let us now consider the problem of large-scale system procurement. With

multiple vendors and designs to evaluate, the procurer must similarly begin by

choosing a representative workload by which to compare systems. As before, this

choice is made in relative darkness. Unlike the designer however, the consumer

cannot normally execute his chosen workload on the target system. Customers

may not have access to the systems they are considering and it is time-consuming

and expensive for vendors to deploy large-scale applications on their behalf.

Worse yet, HPC systems are normally not fully built before the purchas-

ing decisions are made. Instead, the vendor may produce a small prototype from

which procurement decision-makers may acquire some benchmark results. Seldom

can they execute an application at scale. In some scenarios, such as system pro-

curement by the U.S. Department of Defense [38], applications in the evaluation

workload may be classified or otherwise proprietary, making vendor deployment

impossible even when the test systems are large enough.

With no way to describe their applications to vendors, consumers have tra-

ditionally turned to small and manageable benchmarks. Such benchmarks can be

passed along to the vendors, who in turn, execute them on the partial systems and

report the results back to their customers. Unfortunately, the underlying issue

quickly resurfaces: how do the benchmark relate to the customer’s applications of

interest? Application benchmarks [5, 13], made from whittling down full applica-
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tions, are laborious to produce and easily relatable to only one other application.

Synthetic benchmarks [6, 4], which perform some generic access pattern, are simple

to produce and easily relatable to no other application.

Frustratingly, consumers can neither describe their applications to vendors

nor reliably interpret benchmark results. Instead of quantifying the behavior of

applications and then observing their relationships, they are forced to awkwardly

infer this information from observed runtimes.

Benchmark suites such as the classic NAS Parallel Benchmarks [13] or the

HPC Challenge benchmarks [43] facilitate this type of induction using a scatter-

shot approach. Recent years have seen researchers develop sophisticated method-

ologies to map the performance of benchmarks to that expected of target applica-

tions [50, 65]. Such techniques require performance modeling expertise and can be

time consuming and expensive.

1.4 Application Analysis

There are many more scenarios in performance modeling, application tun-

ing, and system tool design that require a robust characterization of memory be-

havior.

Consider the challenge of the software developer or algorithm designer at-

tempting to craft a performance-tuned application. What are the effects if he par-

titions the data this way or shapes the stencil that way? Currently, he can gauge

the effectiveness of these techniques by the resulting run time on his particular sys-

tem. Could it be that his optimization made little performance improvement on his

test system but resulted in large performance gains on several others? Perhaps the

optimization improved memory performance markedly, but the performance of the

application is not bound by that of the memory subsystem? The developer could

identify these scenarios with an intuitive and observable memory characterization.

The challenge is similar to that faced by a compiler developer or user who
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wants to observe the true effects of a certain optimization strategy. With no

memory characterization, he is forced to infer the effects through cursory runtime

or hardware counter information on one or a few systems.

Consider a performance modeler attempting to understand and predict the

performance of his parallel application under various processor counts. Perhaps

he can observe the application executing at several different counts and wants to

produce a general projection of its behavior on many others. What information

should he observe from each of the three runs in order to project the application’s

behavior on subsequent sizes? He requires a memory behavior characterization

more descriptive than the erratic stepwise functions exhibited by run time and

cache hit rate observations.

1.5 Symbiotic Space-Sharing

Understanding application behavior can also inform operating system de-

sign. The problem of job scheduling on a multi-processor system is one such

example. Many of today’s symmetric multi-processors share various levels of the

memory hierarchy among the processors. Consequently, the runtime behavior of

one executing application can affect the performance of the others. The challenge

of symbiotic space-sharing is for a smart scheduler to execute jobs in combinations

and configurations that mitigate pressure on shared resources [68, 69].

To be effective, the scheduler must learn to identify jobs that behave sim-

ilarly and predict that they will have similar space-sharing impact on and sen-

sitivity to other executing jobs. With no description of memory behavior, the

scheduler cannot quantify, or even loosely qualify, the level of similarity between

applications. It can only identify recurring jobs and predict their interactions with

previously co-scheduled jobs. With a combinatorial number of job pairings to try

and a relatively limited number of scheduling iterations with which to try them,

the scheduler is unlikely to find optimal combinations quickly enough to affect
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meaningful performance gains.

If it were able to capture a core description of each job’s behavior, the sched-

uler would eventually learn to identify symbiotic job combinations even among a

completely untested job set. In fact, if we could synthetically replicate memory

behavior, developers could train their schedulers to identify symbiotic job combi-

nations even before they are ever deployed into production settings.

1.6 Chameleon Overview

As we have discussed, the consequences of our inability to quantify, com-

pare, and recreate memory behavior are ubiquitous in the field of performance

analysis. System designers strain to understand customer workloads and design

systems optimized for them; procurement decision-makers are even more precar-

iously situated, neither able to describe their workloads to vendors nor reliably

interpret benchmarks results. Application and system tool developers observe only

nebulous measures of their success and performance analysts must often ground

their models on thin or volatile data.

Ideally, system designers would like to generate synthetic traces that cover

a verifiably interesting space with respect to the machine’s likely workload. System

procurers would like to describe their applications to vendors or produce bench-

marks with clear relationships to their applications. Algorithm designers, system

tools developers, performance modelers, and benchmark suite authors alike require

a concise description of application memory behavior.

The Chameleon framework is a single integrated solution to each of these

problems. It addresses three of the classic problems in the field of performance

analysis: memory behavior characterization, synthetic address trace generation,

and tunable synthetic benchmarks. The framework includes a series of components

and tools, each meant to facilitate solutions to the issues described above. The

following subsections provide a brief description of each.
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1.6.1 The Cache Surface Model

The framework is grounded in an architecture-neutral model of reference

locality that is compatible with theory and inclusive of many previous proposals.

We call this the Cache Surface Model and have designed it to meet the following

requirements:

Hybrid - The model simultaneously describes both spatial and temporal locality,

thereby capturing the memory address stream’s cache performance across

disparate cache sizes and designs without prior knowledge of a target ar-

chitecture.

Observable - It is possible to extract the model’s parameters by observing an

application’s address stream online; there is no need to collect and store

the entire memory trace. This obviates the burdening space requirements

of trace collection and storage.

Concise - The model parameterization is small, typically between 10-100 num-

bers, depending on the granularity that the user and application require.

This allows any application’s memory signature to be easily stored and

communicated between interested parties.

Reproducible - Given an application’s memory signature, it is relatively straight-

forward to generate synthetic address streams that match it.

Intuitive - The model is intuitive and simple to reason about, with clear relation-

ships to real world caches and expected performance on various systems.

Chapter 2 provides a full description of the Cache Surface Model.

1.6.2 Tracing Tool

The Chameleon Framework includes two memory tracing tools for extract-

ing memory signatures from applications. The first is built on top of the Pin
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instrumentation library [42] and is meant for tracing serial applications on x86

architectures. The second uses the PMaCInst [66] binary re-writer for extracting

memory signatures from either serial or parallel codes on the Power architecture.

The modeling logic itself is completely encapsulated and exposes a simple

interface that allows developers to mount it easily on any instrumentation library

of their choosing. Using several sampling-based optimizations, the framework’s

stock tracers can extract memory signatures even from HPC applications with as

little as 5x slowdown.

Chapter 3 provides a full description of the framework’s tracing tools.

1.6.3 Synthetic Trace Generation Tool

The Chameleon Framework includes a trace generation tool that can convert

any memory signature into a concise trace seed. A trace seed is a short synthetic

memory trace that can be used to generate a full trace by replication onto discrete

sections of memory until the desired footprint is reached and repetition until the

desired length is likewise [71].

A trace seed is not only more flexible and useful than a full-scale trace,

but it can also be easily stored and communicated due to its small size. The trace

generator anticipates and pre-adjusts for the errors of seed replication, so synthetic

traces of any footprint size remain accurate.

The trace generator is written as a stand-alone Java application to maxi-

mize portability and enable vendors or performance modelers to generate synthetic

traces from memory signatures they receive from clients.

To assist users with comparing the generated traces to the originals and to

each other, the framework includes a graphing tool that can output the points on

a trace’s cache surface, a visualization of the trace’s hit rates on LRU caches of

various dimensions. The cache surface visualization is convenient for making quick,

qualitative or even quantitative comparisons of applications or synthetic traces.
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Chapter 4 provides a full description of the framework’s synthetic trace

generation tools.

1.6.4 The Chameleon Benchmark

The framework’s namesake, Chameleon is a fully-tunable, executable bench-

mark whose memory behavior conforms to given model parameters. Users can

utilize the trace generator to produce a Chameleon-specific seed that can be used

as input to the benchmark. Chameleon, written in C++, can then be executed on

target systems to foreshadow cache hit rates or application performance.

As a performance benchmark, Chameleon also allows users to experiment

with the amount of data parallelism it exposes, revealing more about the charac-

teristics and capabilities of applications and target systems.

Chapter 5 provides a full description of the Chameleon benchmark.

1.7 Test Platforms

This work uses the following three systems for evaluation throughout:

Intel Pentium D820 - The Intel Pentium D820 is a dual core x86 machine run-

ning at 2.8GHz with 1GB of shared memory. Each of the two processors

leverages its own 16KB, 4-way set associative L1 cache with 64-byte blocks

and 1MB, 8-way set associative L2 cache with 128-byte blocks. Both caches

employ a Least Recently Used (LRU) replacement policy. The two proces-

sor connect to main memory over a shared 800MHz front side bus. The

PentiumD is run by the Linux operating system using kernel version 2.6.

Intel Core Duo 2500 - The Intel Core Duo 2500 is also a dual processor ma-

chine running the same Linux kernel as the Pentium D. Each of it’s pro-

cessors runs at 2.0GHz and leverages its own 32KB, 8-way set associative
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L1 cache with 64-byte blocks. Unlike the Pentium D however, the two pro-

cessors share a combined 2MB, 8-way set associative L2, also with 64-byte

blocks. All caches use a LRU replacement policy and connect to 1GB of

main memory over a shared 667MHz front side bus.

IBM Power4 - The last system is the San Diego Supercomputer Center’s DataS-

tar system, a Power4-based supercomputer composed of 272, p655 nodes.

Each node contains 8 processors running at 1.7GHz, paired into four 2-

processor chips. Each processor utilizes its own 32KB, 2-way, LRU L1 cache

with 128-byte blocks. The two processors on each chip share a 1.5MB, 8-

way L2 with 128-byte blocks and the 8 processors on each node share a

combined 128MB, 8-way L3 cache with 512-byte blocks.



Chapter 2

Modeling Reference Locality

In order to understand and replicate memory access patterns, one must

begin with a model of reference locality. Locality is the principle that whenever

a memory addresses is accessed, it or its neighbors are likely to be accessed again

soon. Since the early 1970’s, many such models have been conceived and evaluated

with mixed results [45, 25, 20, 8, 64, 30, 18, 17, 15, 56, 67, 32].

2.1 Background

Traditionally, locality has been subdivided into temporal and spatial vari-

eties, where the former is the tendency of an application to access recently ref-

erenced addresses and the latter, its tendency to access addresses near recently

accessed ones.

This dichotomy is somewhat artificial since both types of locality have spa-

tial and temporal dimensions [52]. With some exceptions [31, 55, 59, 67], most

previous models have focused only on a single dimension. Though they are thus

able to simplify their locality characterizations, these proposals may forfeit ac-

curacy or generalization. To contextualize this proposal, we briefly describe the

tradeoffs these models make and the classic abstractions on which they are based.

12
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2.1.1 Temporal Locality

The classic measure of temporal locality is reuse distance or stack distance

distributions [45, 36]. The reuse distance of some reference to address A is equal

the number of unique memory addresses that have been accessed since the last

access to A. Reference distance is the same measure for non-unique addresses [47].

A cumulative distribution function (CDF) of a trace’s reuse distances, some-

times called the LRU cache hit function, is a useful characterization and has been

used frequently to model general locality [45, 71, 8, 18, 72, 26, 44, 23, 67].

Reuse distance was first studied by Mattson et. al around 1970 [45], and

multiple studies, some as recently as 2007, have leveraged these ideas to create

locality models and synthetic trace generators that function by sampling from an

application’s reuse distance CDF [11, 18, 26, 32, 33]. Many works have also used

reuse distance analysis for program diagnosis and compiler optimization [26, 49,

72].

While reuse distance characterization is a powerful tool with practical use,

such quantifications cannot dynamically capture spatial locality. They require the

modeler to choose a specific block size, thereby freezing spatial locality at a single

value. One can just as easily examine the reuse distances of 4-byte integers as

512-byte cache lines. Which block size is most advisable?

The 8-byte word is a popular choice, as is the width of some target cache’s

block length. Choosing the latter also allows modelers to predict the application’s

hit rate on a target cache [17, 33, 44, 73].

However, choosing a fixed cache width is undesirable. The same reuse

patterns of an 8-byte word can have variable hit rates on caches with larger block

sizes. Choosing the length of the target cache’s block size is similarly problematic.

While useful for predicting hit rates on the target caches, these choices make

characterizations machine-dependent. Further, since block sizes often vary across

levels of a single machine’s memory hierarchy, the model can seldom capture the
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application’s overall memory behavior across an entire memory hierarchy, even on

a single system.

Lastly, access patterns that trigger optimizations such as multi-line prefetch-

ing may not be captured. Such optimizations are triggered by spatial access pat-

terns such as a series of short strides or access to consecutive cache lines. A

temporal only characterization cannot describe such behavior.

Enabling this type of model to capture general locality would require a

continuum of reuse distributions with corresponding block sizes.

2.1.2 Spatial Locality

A classic measure of spatial locality is stride, simply the distance from one

memory address to another. Stride distributions have been used by numerous

models to characterize locality [63, 67, 22]. The most straightforward approach

is the distance model, which captures the probability of encountering each stride

distance [57]. Thiebaut later refined this idea by observing that stride distributions

exhibit a fractal pattern governed by a hyperbolic probability function [63, 62, 64].

In recent years, the PMaC framework has focused on spatial locality by quantifying

an application’s stride distributions.

Analogously to the freezing of spatial locality by temporal locality char-

acterizations, these spatial characterizations require a particular temporal value.

Thiebaut’s fractal model, for example, measures the stride distance from the single

previous access [62]. The PMaC framework measures the distance from the nearest

of the previous 32 addresses [22, 51]. This value is similarly used in other spatial

locality quantifications in hopes of approximating cache sizes of interest [67].

The number of previous addresses used to measure stride is generalized as

the lookback window and can be measured terms of either the number of unique

or non-unique memory references. Clearly, the greater the size of the lookback

window, the more local the address stream appears.
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Enabling this type of model to capture general locality would require a

continuum of stride distributions with corresponding lookback window sizes.

2.1.3 Hybrid Models

Several researchers have recognized the need to fuse both varieties of locality

into a single measure. The idea of a three dimensional locality surface is owed

to Grimsrud [31, 30]. For every memory reference in a trace, he calculates the

stride and reference distance to every other reference and plotted the totals on a

three dimensional histogram. Sorenson later refined the idea by replacing reference

distance with reuse distance [53, 37].

Both Grimsrud in 1994 [30] and Sorenson in 2002 [56] and 2005 [54], con-

cluded that no existing trace generation technique adequately captures locality of

reference. Unfortunately, neither author also proposed a methodology for trans-

lating their own characterizations into synthetic traces.

2.2 A Unified Model

As we have discussed, to be complete, traditional temporal models would

require a series of reuse CDF’s, each with a unique block size. Traditional spa-

tial models similarly require a series of distributions, each with its own lookback

window size. We observe that both approaches actually converge on the same

characerization.

2.2.1 Convergence of Abstract Locality Models

Although they start from seemingly disjoint abstractions, the classic quan-

tifications of spatial and temporal locality actually converge into a single model.

This is because reuse distance is essentially analogous to the unique access defini-

tion of lookback window and reference distance to the non-unique. Similarly, block
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size is analogous to stride.

To illustrate, let us describe the temporal model’s reuse distance CDF with

a block size equal to B as the function t(d, B), where d is the reuse distance. The

temporal-based hybrid model that generalizes all such CDF’s is t(d, b).

This surface can also be described using the spatial model’s stride and

lookback window parameters. If we assume that strides are measured in absolute

distance, then any point t(d, b) is equal to the fraction of memory operations with

stride < b and lookback window < d.

The hybrid spatial characterization can similarly be described using the

temporal parameters of reuse distance and block size. Because either set of pa-

rameters can be used to describe the other, they are essentially equivalent.

2.2.2 Abstractions to Cache Hit Rates

Now that we have established a unified model of reference locality, we must

undertake to understand its relationship to cache hit rates. Overwhelmingly, the

accuracy of locality models has been measured using cache hit rates [20, 8, 40, 63,

18, 17, 73, 15, 44, 16, 67, 33, 32]. Instead of starting with abstractions and then

correlating those to cache hit rates, let us work backwards from the goal: the most

trivially correct characterization of an application’s cache-exploitable locality is a

series of cache descriptions and the application’s hit rate on each.

Many variables describe a cache, but for simplicity, let us assume only fully-

associative caches with a least recently used (LRU) replacement policy. In exchange

for this simplification, we trade our ability to capture and predict conflict misses.

However, research has repeatedly shown conflict misses to be far more rare than

capacity misses and that hit rates on such LRU caches are consequently similar to

analogously sized set-associative configurations with alternate replacement policies

[17, 33, 44, 73]. It is also worthwhile to note that conflict misses, unlike capacity

misses, are not dependent on reference locality. We can consequently expect their
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effects to apply uniformly across memory traces and the relationship between LRU

and set associative cache hit rates to be preserved.

Given these observations, we can therefore describe a cache simply by its two

dimensions: width and depth. We refer to the block size of a cache as its width and

the number of blocks as its depth. We can thus visualize an application’s locality

signature as a surface hit(d, w) = z with each {d, w, z} coordinate representing a

cache depth, cache width, and the corresponding hit rate for the application. We

refer to this collection of hit rates as an application’s cache surface.

Figure 2.1 displays an example of such a cache surface for CG.A, one of the

NAS Parallel benchmarks. The granularity at which one samples points on this

surface naturally depends on the precision one requires; Figure 2.1 is an example of

such a surface, representing various cache configurations from 64 bytes to 33.5MB.
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Figure 2.1: Cache surface of CG.A

Note that the cache surface is nearly identical to the unified locality model

proposed in the previous section. This is because a memory reference hits in a

fully-associative, LRU cache of depth D only if it has a reuse distance of less than

D−1 [17]. Therefore, the function hit(d, W ) is the reuse distance CDF with block
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size W , and the surface hit(d, w) is the collection of all such functions.

There is however, one subtle but important difference between the classic

locality abstractions and cache-exploitable locality. Caches pre-partition the ad-

dress space into discrete blocks. This is an implementation detail not mandated

by the original locality abstractions. Because they do so, caches are not perfect

locality filters. For example, consider accessing the address sequence {2, 4, 6}. If

the block size is 2, then the reuse distance sequence is {∞, 0, 0}. However, because

a cache would partition these addresses onto separate cache lines, the sequence

would have no reuse at all. The relationship between reuse distance and stride

is therefore somewhat altered. However, because we are interested in predicting

cache hit rates and consequent performance on real machines, we prefer the cache

surface as a characterization of cache-exploitable locality.

As shown, the cache surface is a complete description of cache-exploitable

reference locality with close ties to the classic abstractions and cache hit rates. We

therefore argue that it is at least as relevant and complete as any characterization

based on these abstractions [31, 53].

2.2.3 A Definition of Spatial Locality

For all the of the cache surface’s simplicity, there may be good reason why

researchers have traditionally preferred incomplete abstractions. One objection is

the size of the characterization. Even if we sample the surface at log intervals, the

area of interest for an application may consist of over a hundred points. Perhaps

speed is the problem. Fully associative, LRU caches are notoriously expensive to

simulate. Why simulate over a hundred points when each modeler can instead

simulate just those he is interested in? Lastly, the model does not readily admit

of any obvious techniques for generating synthetic traces.

Fortunately, instead of capturing all the points of the cache surface, we

can obviate these concerns by capturing only the statistical relationships between
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them. We observe that the functions hit(d, C) that comprise the surface, as shown

in Figure 2.1, are not composed of independent points. Importantly, the function

hit(d, C) is a predictable, statistical permutation of the function hit(d, C+1). This

permutation is spatial locality.

Intuitively, we understand that caches use larger block sizes in order to ex-

ploit spatial locality and not temporal locality. The difference in hit rates between

some cache with N -byte blocks and another with N − 1 byte blocks is defined by

the spatial locality of the application at that point.

To illustrate, let Li be a reference to the ith word in cache line L and con-

sider the following sequence using cache lines of 8 words: A0, B0, C0, B1, C6, A3.

The reuse distance of the reference to A3 is 2 because there are two unique

cache line addresses separating it from the previous access to A0. If we halve

the cache line length, then the index 6 no longer exists and the trace becomes

A0, B0, C0, B1, D2, A3, where D is some other cache line. Because C6 becomes D2,

the reference distance of that access increases from 1 to ∞ and the reuse distance

of A3 consequently increases to 3.

Suppose an address stream T contains a reference at T [i] that is first reused

at T [i + j]. Any element T [i + k] with 0 < k < j, whose reference distance has

become greater than k will increment the reuse distance of T [i + j]. Because the

length of the new reference distance is a function of the reuse distribution, the only

parameter we need obtain is the probability that a reference distance will change

at all when we decrease the cache line length.

To predict the misses generated when we halve the cache line length, for

example, we need only determine the probability that two consecutive references

to some cache line will reuse the same half of that line. The lower this probability,

the lower the hit rate of the shorter cache. Let us define this probability as follows:

Spatial Locality = α(S, U) = the probability of reusing some contiguous sub-

set of addresses S during consecutive references to a contiguous superset U
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Because a single α value theoretically suffices to relate any two reuse dis-

tance CDF’s, we can parameterize this model as a single reuse distance CDF and

a series of α values that iteratively project that CDF to ones with shorter word

sizes. Technically, since hit(d, F ) = 1 for any application with footprint less than

or equal to F , we can characterize an application using only α values. We choose

to add a reuse CDF however, both to limit the number of α parameters necessary

and to mitigate error in the trace generation tools as described later.

For this work, we use hit(d, 512) as the top end CDF, meaning we can model

caches with block sizes up to 512-bytes. As in Figure 2.1, we constitute this CDF

from points sampled at log intervals up to a maximum cache depth of 216. We then

use six α values to capture the temporal behavior of caches with identical depths

but widths of 256, 128, 64, 32, 16, and 8 bytes; the resulting characterization is

therefore 23 numbers altogether.

In practice, we can increase accuracy by pooling memory references by their

reuse distances and characterizing each pool’s α values independently instead of

using an application-wide basis. Because the brevity of the characterization is not

important for this study, the results we present were gathered using separate α

values for each reuse distance in the CDF, each corresponding to a bin of reuse

distances. The total parameterization can therefore be up to 119 numbers per

application.

2.2.4 Limitations

As we demonstrate in the remainder of this work, the reference locality

model described in this section is a useful characterization of memory access pat-

terns. Because it is a statistical summarization however, it has some limitations

for characterizing whole programs with discrete behavioral phases on production

cache hierarchies.
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From the perspective of the cache abstraction, separate behavioral phases

do not pose any difficulty for capturing hit rates using a statistical summarization.

If such a summarization can describe the cache surface, then it properly describes

the application’s overall hit rate on any cache. Additionally, if we view each

memory access as a discrete event, requiring a certain amount of time to complete

depending on the level of cache it must access, then the distribution can describe

performance as well. It is unimportant in what order those operations are executed,

but only that they are properly proportioned.

The matter becomes more muddled when cache optimizations are intro-

duced. Take multi-line prefetching for example. This optimization essentially

detects if the recent pattern of memory accesses has been highly strided and if

so, fetches several consecutive cache lines on the next miss. A trace-cache, which

prefetches instructions based on more complex access patterns, is another such

example [48].

In these scenarios, the grouping and ordering of memory operations is con-

sequential. However, ordering cannot be described effectively with a statistical

distribution. Memory access streams can have the same distribution of reuse dis-

tances but different access streams. Here are two examples of sequences with

identical signatures but different access ordering:

Example1 : 1, 0, 0, 1, 0 ⇒ 1, 0, 1, 0, 0

Example2 : 1, 2, 3, 4, 1, 2, 3, 4 ⇒ 3, 4, 1, 2, 3, 4, 1, 2

This does not mean that the model cannot differentiate between certain

stride patterns, which it can, but rather that it does not capture the order in

which they occur. This implies that if some program goes through a highly strided

phase, followed by a non-strided phase, then the overall characterization would

capture the proper hit rates but not necessarily the phased behavior.

If we know in advance that the application exhibits phased behavior and

that we would like to trigger prefetching type optimizations, then it would be

better to characterize the application piecewise and concatenate the traces later.
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2.3 Summary

In this chapter, we have reviewed the classic abstractions with which re-

searchers have traditionally described reference locality, including reuse/reference

distance and stride distributions. To be complete, a characterization must incor-

porate both spatial and temporal locality abstractions, and that doing so from

either end, melds the two approaches into a single unified model.

This chapter has introduced the cache surface as an intuitive visualization

of reference locality and has argued that it embodies the cache-exploitable charac-

teristics of this unified theoretical model.

We have observed an important statistical correlation between the points

of the cache surface and used it to define a new, practical definition of spatial

locality, α. The new definition theoretically enables us to condense the surface

characterization, capture its points with less overhead, and create synthetic address

traces that match it.

The following chapters validate this definition of spatial locality by describ-

ing how they can be leveraged to create synthetic memory address traces and

showing that such traces closely match the cache surfaces they are intended to

target.



Chapter 3

Collecting Memory Signatures

Now that we have a model of reference locality, we must build tools that are

able to collect the model’s parameters from any given application. To do this, we

can use binary instrumentation, a process by which a call to some modeling logic is

inserted at each point in an application’s binary where a load or store instruction

exists. The modeling logic can thereby observe the application’s dynamic memory

stream and extract the model parameters from it.

Because the modeling logic can be encapsulated, it is essentially indepen-

dent of the instrumentation library and is simple to port onto various architectures.

The Chameleon framework currently includes one tracer built using the Pin instru-

mentation library [42] for tracing on x86 architectures and another using PMaCInst

[66], a Power-based instrumentation library for tracing on that architecture.

These tools allow us to characterize applications of interest in the most

common contexts. The Pin tool can be deployed to investigate serial desktop

applications running on the most common x86 personal computer architectures.

The deployment on PMaCInst allows us to model scientific applications executing

on supercomputers or other large-scale, parallel resources.

For the remainder of this work, all traces using the Pin tool have been col-

lected using the dual-processor Pentium D820. All PMaCInst traces were collected

23
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using one node on DataStar.

Further ports using libraries such as ATOM [58] or Dyninst [35] would be

straight forward and require little, if any, modification to the modeling logic.

This chapter describes the modeling logic and how it extracts the previously

described model parameters from a given stream.

3.1 Obtaining the Reuse CDF

Our approach first requires that we obtain hit rates for the 17 caches

with maximum width (512-bytes in this case). Simulating multiple, large, fully-

associative, LRU caches requires specialized software as conventional simulators

are untenably slow [10, 26, 39, 61].

Our simulator uses an approach similar to that described by Kim et. al.

[39] with some modifications. We maintain an LRU ordering among all cache

lines using a single, doubly-linked list. To avoid a linear search through the list

on every memory access, we maintain a hashtable for each simulated cache that

holds pointers to the list elements representing blocks resident in that cache. Each

hashtable structure also maintains a pointer to its least recently used element.

On each access, we find the smallest hashtable that contains the touched

block, recording a hit for it and larger caches and a miss for all smaller caches. The

hashtables that missed then evict their least recently used element, add the new,

most recently used element, and update their LRU pointer. Lastly, we update the

doubly-linked list to maintain ordering.

Our approach simulates all 17 caches concurrently with a worst-case asymp-

totic running time of O(N*M) where N is the number of memory addresses sim-

ulated and M the number of caches. The average case runtime improves with

increased locality and the overall performance is comparable to the most efficient

published solutions [26, 39, 72].
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3.2 Obtaining Alpha Values

We earlier defined α as the probability that a certain sized working set will

be reused between consecutive references to a superset. In this case, the superset is

initially a cache block and the subset its halves. What is the probability that two

consecutive accesses to some block will use the same half? What is the probability

that two accesses to a half will use the same quarter, etc? We stop after reaching

a non-divisible working set: 4 bytes in our case, corresponding to a single 32-bit

integer. We are interested in the values:

α(256, 512), α(128, 256), α(64, 128), α(32, 64), α(16, 32), α(8, 16), α(4, 8)

To calculate these probabilities, we first set up two counters for each α value

we expect to derive. The counters represent the number of times each subset was

reused and the number of times it was not reused during the run.

Every modeled block maintains its own access history as a binary tree.

Each leaf represents a 4-byte working set. The parent of two siblings represents

the 8-byte superset and so forth until the root, which represents the entire 512-byte

cache block.

On an access to some 4-byte word, a function traverses the accessed block’s

tree from root to the corresponding leaf. At each node, it marks the edge along

which the traversal proceeded. Before doing so however, it observes whether or

not the edge is the same as the one chosen during the previous visit to this specific

node. If so, it increments the global yes counter corresponding that that tree level

and if not, the global no counter. If the node had never been visited, no counter

is incremented.

The end result is a list of reuse and non-reuse counts for each tree level

across all cache lines. α(256, 512) for example, is equal to the number of reuses

reported by root nodes divided by the number of non-reuses such nodes reported.

We can thus determine each of the α values we seek, revealing how frequently two

consecutive accesses to some working set reused the same half.
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3.3 Performance

It is well known that memory instrumentation often causes prohibitively

high slowdown [28]. The initial performance measurements of the framework’s

tracing tools bear out this conventional wisdom. Table 3.1 displays the slowdown

manifested by two of the NAS Parallel Benchmarks, CG and SP, both at size A.

We observe slowdown near 1000x over uninstrumented runtimes for Pin

executables and approximately 300x for PMaCInst. The base performance dis-

crepancy between the instrumentation libraries likely arises from their underlying

mechanisms: the Pin library is a dynamic instrumentation tool that performs in-

strumentation at runtime while PMaCInst is a static binary re-writer that produces

an instrumented binary in advance of execution. Additionally, PMaCInst shaves

some runtime by assuming that all memory references load a single word instead

of checking the exact size of the load. It also enjoys the added benefit of instru-

menting only the most important sections of an application due to a preprocessing

step described in Section 3.3.2.

Table 3.1: Slowdown caused by memory tracing

Application Tracing Slowdown
CG.A(Pin) 1160
SP.A(Pin) 915

CG.A(PMI) 276
SP.A(PMI) 348

The slowdown numbers are clearly prohibitive even for small codes and out-

right impractical for larger scientific applications whose uninstrumented runtimes

alone can be several hours long. At 350x slowdown, it would require several months

of execution to extract the model parameters from some HPC applications. We

therefore investigate sampling techniques aimed at mitigating this slowdown.
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3.3.1 Interval Sampling

The first optimization we evaluate is interval sampling. Rather than send

every memory access through the modeling logic, the tracer will send some con-

secutive number through and then ignore a subsequent set. Previous research has

shown that memory tracing of scientific applications can maintain good accuracy

even when as few as 10% of addresses are sampled [28]. We follow this guideline

and modify the tracer to iteratively use a consecutive stream of 1M addresses and

then ignore the subsequent 9M.

Performance

As expected, the performance increase is around one order of magnitude.

Table 3.2 lists the slowdown numbers for CG.A and SP.A when traced with the

Pin and PMaCInst (PMI) instrumentation libraries.

Table 3.2: Slowdown caused by memory tracing

Application Full Trace Sampling (10%)
CG.A(Pin) 1160 163
SP.A(Pin) 915 112

CG.A(PMI) 276 27
SP.A(PMI) 348 36

Accuracy

We must also examine the error introduced into the characterizations by

applying the interval sampling technique. Because we are using a cache-type model,

the penalty we pay for this sampling is simply the cold cache misses at the start

of each sampling interval. For the temporal locality portion of the model, this is

not a significant penalty. Recall that this portion of the model is simply the reuse
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distance CDF with word sizes of 512 bytes, corresponding to the cache hit rates of

17 increasingly deep LRU caches. The maximum number of additional cold-cache

misses introduced by the start of each sampling interval is at most equal to the

depth of each cache. Because this number is so small with respect to the size of

the sampling interval, there is no palpable inaccuracy introduced to the model’s

temporal elements.

The spatial parameters, represented by the α values, are somewhat more

susceptible to perturbation by interval sampling. Intuitively, this is because each

cache line carries with it more spatial history than temporal; while the temporal

history is simply the line’s reuse distance, the spatial history is an entire tree

representing every recursive subset in the line. This history is lost at the end of

each interval.

To determine the error that interval sampling introduces into the spatial

characterization, we use the same two NAS benchmarks. We first perform five

full traces of each benchmark and record the average value of each α parameter.

We assume this average to be the actual value. We then calculate the average

deviation from the actual value between the five runs. These values constitute the

natural average deviations of each α value.

Next, we perform five traces of each benchmark using interval sampling

and record the average deviation of each α value from the previously calculated

actual. The error introduced by the sampling technique is then equal to this

average deviation minus the natural deviation.

The maximum error among the α values characterizing each test application

is only 1.2%, meaning that interval sampling does not cause a significant error in

the spatial characterization of these two benchmarks.

The interval sampling technique reduces slowdown by an order of magnitude

without a significant accuracy penalty. The resulting 30-40x figure is tractable

for common desktop applications and we use this sampling mode as the default

memory tracing technique for serial applications in the remainder of this work.
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3.3.2 Basic-Block Sampling

While the tracing slowdown with interval sampling is tractable for smaller

serial applications, 30-40x slowdown is high for the larger, parallel codes of interest

to the HPC community; such applications normally display base runtimes of several

hours. We must therefore search out yet more powerful sampling techniques to

characterize HPC applications.

One such technique is basic block sampling. This technique, successfully

employed by mature performance prediction methodologies [50], works as follows:

A preprocessing step decomposes the binary into basic-blocks and instruments it

to count the number of times each is executed during runtime. This information

is then used by the instrumentor to identify the most important basic-blocks to

trace (perhaps those collectively constituting 95% of all memory operations). A

cap (e.g. 50K visits) is placed on the number of times that each basic block can

be sent through the modeling logic. The modeling logic, for its part, must output

a separate characterization for each basic block. In a post-processing step, these

per-block characterizations may be combined with the execution counts collected

in the pre-processing step to derive the full application’s characterization.

To deploy this strategy, we leverage preexisting PMaCInst tools to decom-

pose the binary into basic blocks and perform the preprocessing runs [66]. We

then modify the framework tracer to isolate the locality model results by basic

blocks. To incorporate each memory reference, the modeler invocation now re-

quires a block id to accompany the address. Internally, it executes identical logic

as before, but then places the outcome of each reference into the bin specified by

its block id. Note that this is not the same as modeling each block separately; the

internal state of the modeler is shared among all blocks but only the results are

separated. Consequently, this separation increases neither the modeler’s runtime

nor space complexity by any meaningful measure.

The output format is as before, but instead of containing a single memory
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signature, the output file lists one signature per basic block, preceded by that

block’s unique identifier. To produce a synthetic address trace, we pass this file,

along with one detailing the basic block execution counts, to the stream generator.

The generator combines the block signatures into a single signature according to

the given weights and uses the resulting model to generate a synthetic trace.

Performance

To evaluate the performance gains of this technique, we replace the two

NAS benchmarks with larger-scale, parallel applications. AMR [70] is an adaptive

mesh refinement code that we deploy across 96 processors of DataStar. S3D [41]

is a sectional 3-dimensional, high-fidelity turbulent reacting flow solver developed

at Sandia National Labs. We deploy that code across 8 processors of the same

machine.

We employ both the interval and block sampling techniques concurrently to

observe the memory address streams of the applications on each of their processors.

The output is a separate locality signature for each processor involved in each run.

Table 3.3 lists the results of several performance experiments. The original,

uninstrumented, AMR and S3D codes execute for 140 and 23 minutes respectively.

The preprocessing that collects the basic block counts slows the applications by

less than 2x while the modeling logic that collects our memory signatures causes

a total slowdown of approximately 5x.

To determine how much of this 5x slowdown is due to the modeling logic

rather than other tracing overheads, we replace the locality logic with a simulation

of 15 arbitrary caches and retrace. The slowdown is nearly identical. Finally, we

execute a trace with both the locality modeling and cache simulation logic present,

observing a total slowdown of only 5.16x and 5.73x for the two applications. We

can therefore conclude that the locality modeling logic itself accounts for only a

small fraction of the tracing overhead.
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Table 3.3: Application slowdown due to memory tracing

Configuration Runtime (min) Slowdown
AMR S3D AMR S3D

Uninstrumented 140 22 1.00 1.00
Basic Blocks 257 26 1.84 1.18

Memory Signature 721 111 5.09 5.05
Caches 710 120 5.09 5.45

Signature+Caches 710 126 5.16 5.73

With such low overhead for the modeling logic, it is feasible to simply

insert it into a performance analysis group’s existing memory tracing activities.

For example, a modeler trying to evaluate an application’s performance on these

15 caches can concurrently collect its locality signature at little extra cost. If he

later wishes to determine the application’s expected performance on a different

cache, he could use the Chameleon framework to generate a synthetic trace and

make a hit rate approximation without incurring the significant time and cost of

retracing. Sending the synthetic trace through a cache simulator requires only a

few seconds and is almost surely faster than even executing the original application

without instrumentation

Accuracy

We address the accuracy of memory signatures acquired using this technique

in Chapter 4.

3.4 Summary

This section describes the implementation of a memory address tracer that

can collect Chameleon’s memory signatures from any given application with min-

imal slowdown. The framework deploys this tracing logic using both the Pin and
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PMaCInst instrumentation libraries for tracing of serial codes on x86 and parallel

codes on Power architectures respectively.

To achieve its runtime goals, the Pin implementation uses a novel LRU cache

simulation technique and 10% interval sampling. The PMaCInst version adds basic

block sampling to reduce slowdown to approximately 5x, only marginally higher

than empty instrumentation. We have verified that the inaccuracy introduced

by these sampling techniques is marginal. As a result, the Chameleon modeling

logic can be inserted into application tracing activities to extract accurate memory

signatures without significant performance penalty.

The following chapter describes a technique for generating synthetic address

traces from the collected signatures and the evaluation of those traces’ effectiveness

in mimicking the locality properties of the original applications.



Chapter 4

Generating Synthetic Traces

To prove that the compressed cache surface representation can effectively

capture locality of reference and is therefore a useful memory signature, one must

go beyond previous hybrid models and convert these characterizations into syn-

thetic traces; similarity between cache hit rates of the synthetic and original traces

would indicate a sound model.

Chameleon’s trace generation tool can be used convert model descriptions

into synthetic traces. It accepts as input, the unmodified output file from the tracer

and creates a small file containing the new synthetic trace’s seed. A trace seed is a

minimally sized trace that can be used to generate larger traces of arbitrary length

and footprint. These concise seeds are preferable to the full traces both because

of their flexibility and their ease of handling.

4.1 Generation Technique

Recall that the model consists of temporal and spatial components. We

have a reuse distance CDF with block sizes of 512 bytes and a series of α values

that iteratively project that CDF to shorter block sizes.

We begin by creating a trace conforming to the CDF by sampling reuse

33
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distances from it. We create an initial linked list of all possible cache blocks. Each

list element is given a unique identifier and represents a unique block. The list is

marginally longer than the largest cache is deep, ensuring we can perform random

accesses. Using inverse transform sampling, we sample reuse distances from the

input CDF and record the identifier of the element at that index. The element

then moves to the head of the list as the most recently used element.

Error stems from two sources: chance and cold cache misses. To eliminate

the former, we need only generate a sufficiently sized sample. The latter is some-

what trickier. Cold cache misses occur because the cache is initially empty and a

reference to the third element in the list for example, might therefore correspond

to a random access rather than a reuse distance of 2. While this effect too can be

mitigated with large enough sample lengths, we do not want to grow trace seeds

too large.

Instead of the brute force approach, the generator can simply adjust its

aim. At regular intervals, the stream generator checks the average and maximum

discrepancy between the points of the input CDF and those of the sample it has

generated. These error bounds are tunable and both are set to half of one percent

for the experiments described in this work. The trace continues to grow until it is

either within the error bounds or has exceeded a maximum length. If the latter

occurs before the former, then the generator scales each point of the original CDF

by T/R where T is the original target and R is the achieved hit rate. The generator

uses the resulting CDF as its new input and repeats the entire process until finding

a satisfactory trace. The generator additionally keeps track of the incremental

improvement that each iteration has made. If an iteration does not improve the

trace accuracy above a tunable improvement threshold, then the generator stops.

Two or three iterations are typical and, depending on the data set, each

requires between a few seconds to one minute on the Pentium D820 we used. For

these tests, we cap the number of iterations at five, the minimum length of each

seed at 200,000 and the maximum length at 1,000,000.
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At this stage, the trace generator has created a trace of block addresses. In

order to add spatial locality, it must then convert these to 4-byte word addresses.

The generator iterates over the trace and for each block, it chooses an offset as

dictated by the series of α values in the input. Each block maintains its own

history using a tree structure identical to that used by the tracer.

The final product is a series of indices to words. The size of each word, most

often 4 or 8 bytes, can be set as a compile-time parameter in the tracing logic.

The generator writes this trace to an output file no larger than a few megabytes

and prefaces it with some metadata as follows:

Length - The number of elements in the trace

Signature - The target memory signature passed as input into the trace generator

Size of Word - The trace output is a series of word addresses. This value reports

the size of each word and is necessary for replaying the trace.

Working Set Size - The total memory footprint touched by this trace. The

reported working set size helps determine the number of times this seed

should be replicated in order to achieve a certain footprint.

Minimum Replications - The minimum replications figure is the fewest num-

ber of replications needed to ensure full accuracy. Why does the number of

replications affect accuracy? Recall that when the generator calibrates the

trace, it includes cold cache misses. However, if we repeat the trace, the

cache warms and these misses may become hits of unpredictable reuse dis-

tances. To avoid this, we must ensure that no element in some replication’s

working set is resident in cache when we begin that replication’s simulation.

During seed creation, the generator counts the number of unique block ad-

dresses used in the trace. In order to flush a cache of depth d, a seed using

u unique block addresses must be replicated at least d

u
+ 1 times.
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4.2 Accuracy on Cache Surfaces

This section compares the cache surfaces of the synthetic traces with those

of some target benchmarks. We use serial versions of the NAS benchmarks CG.A,

SP.A, and IS.B running on the Pentium D820. We collect the memory signatures

of each benchmark using 10% interval sampling and create a synthetic trace for

each. We then feed the synthetic traces through the framework’s cache surface

tool, effectively determining their cache hit rates on 68 LRU caches of various

dimensions. We do the same with the original traces.

Figures 4.1, 4.2, and 4.3 plot the discrepancy in hit rate between each

synthetic trace and the benchmark it is targeting on the 68 LRU caches. The

X-axis represents cache depths on a log2 scale. Each line, represents a different

cache width as labeled in the legend. The figure plotted is calculated as T − A

where T is the trace’s hit rate and A is the application’s.
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Figure 4.1: Synthetic trace hit rates vs CG.A

Overall, the traces are quite accurate. The absolute average error for CG,

SP, and IS is only 1.9%, 1.6%, and 8.1% respectively. Notice that there is no

error for caches specified by the model’s temporal parameters (512-byte width).
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Figure 4.2: Synthetic trace hit rates vs SP.A

Cache Width 
(bytes)

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0 4 8 12 16

Cache Depth (Log2)

E
rr

o
r

512

256

128

64

,

Figure 4.3: Synthetic trace hit rates vs IS.B
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Chameleon’s trace generation technique is therefore the most accurate possible for

any temporal locality based solution. Moreover, because the memory signatures

capture spatial locality using the α parameters, the resulting synthetic traces also

match the hit rates of caches with shorter widths. In this capacity, Chameleon is

distinct from all previous memory modeling and synthetic trace generation pro-

posals.

Next, observe that the magnitude of error increases as cache widths de-

crease. This is not due to some inherent difficulty with emulating shorter widths,

but rather to the statistical mechanism by which we recursively project each func-

tion from the previous. Starting from the perfectly accurate 512-byte function,

we project to 256 and then from there to 128, etc. Subsequent projections thus

accumulate error. This may not be critical since most memory hierarchies do not

present more than two cache widths and a single projection may suffice.

Even though some points on the IS plot err by as much as 20%, and one

point by almost 30%, the condensed cache surface model is nevertheless accurate

and generally useful, particularly when more is known about the target cache

configurations. If, however, we desire more accuracy under ambiguity, we can

barter some of the model’s brevity for it.

4.3 Multiple Alpha Values

Examine Figure 4.3 again. Notice that the α values we use are not par-

ticularly good for projecting even from very shallow caches. Because the shallow

caches are subsets of the deeper caches, any error they incur is propagated. How-

ever, we notice that as the caches deepen, the error eventually gravitates back

towards zero. This indicates that while the α we used was too low for references

with short reuse distances, it was actually too high for those with longer ones.

With a small modification to the tracer and without palpable runtime

penalty, we can break down the α values by reuse distance. The results dis-
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played in Table 4.1 show this breakdown for α(256, 512), the 512-byte to 256-byte

projection.

Table 4.1: α(256, 512) by reuse distance in IS.B

Reuse Distance α
20 1.0
21 .98

≥ 22 .50
Weighted Avg: .84

As hypothesized, the α value of .84 is indeed too low for short reuse distances

and too high for long distances. The same pattern holds in IS for every working

set size, down to 8-bytes. This tells us much about the access patterns of IS and

enables us to emulate it much more accurately.

We modify the memory tracing logic to collect and report α values according

to exponentially sized reuse distance bins as in Table 4.1. An example memory

signature is shown in Appendix A. In addition to the original α values, now

reported as “Avg”, the new format breaks down each value into its contributing

parts by reuse distance range. The Appendix explains the format in more detail.

We modify the trace generator to accept this new format and conform its

traces to the detailed α value breakdowns. To do this, the generator must record

the reuse distance that generated each block address. To convert each block address

to a word address, the generator looks up the block address’s reuse distance and

then retrieves the corresponding α value set. Lastly, it uses that set of α values to

choose an appropriate index as before.

Repeating the experiments in the previous section produces the results de-

picted in Figures 4.4, 4.5, and 4.6. The traces are clearly superior to those derived

using only a single spatial parameter. Traces emulating CG.A, SP.A, and IS.B

err on absolute average by only 1.0%, 1.5%, and 0.1% respectively. Given these
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Figure 4.4: Trace vs CG.A (multiple alphas)
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Figure 4.5: Trace vs SP.A (multiple alphas)

results, we can conclude with some confidence that the α parameter does indeed

quantify the spatial locality of applications usefully and accurately.
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Figure 4.6: Trace vs IS.B (multiple alphas)

4.4 Accuracy on Cache Hierarchies

To this point, we have shown that Chameleon’s synthetic traces produce

cache surfaces that are highly similar to those of their target applications. As de-

scribed in Chapter 2, this implies that the synthetic traces and target applications

have nearly identical theoretical locality properties.

The last step is to determine the extent to which these locality properties

can dictate hit rates on real-world, set-associative, caches. To test this, we compare

the hit rates of the actual and synthetic traces for the three test benchmarks on

46 real-world and theoretical cache hierarchies. We choose these as representative

of many modern commercial offerings; the same set was evaluated by the U.S.

Department of Defense’s HPCMO program to support equipment procurement

decisions in 2008 [38]. These cache hierarchies are listed in Table 4.2.

Table 4.3 lists the average absolute difference between the hit rates produced

by the actual traces and those produced by the synthetics as measured by cache

simulation. The results demonstrate that the two are highly comparable, even

when multi-level caches of disparate widths and depths inhabit a single hierarchy.
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Table 4.2: Cache Hierarchies used to evaluate synthetic trace accuracy

ID size/width/assoc ID size/width/assoc
L1 L2 L1 L2

1 32768/128/2 786432/128/4 2 32768/128/2 786432/128/8
3 65536/64/2 1048576/64/16 4 262144/128/8 6291456/128/12
5 16384/64/8 1048576/64/8 6 32768/128/4 983040/128/10
7 32768/64/8 2097152/64/16 8 262144/128/8 4194304/128/4
9 16384/32/2 2097152/32/2 10 262144/128/8 7340032/128/12
11 262144/128/8 9437184/128/12 12 32768/128/2 499712/128/4
13 32768/128/2 366592/128/8 14 204800/128/8 5372928/128/12
15 32768/64/8 1597440/64/16 16 32768/128/4 458752/128/10
17 204800/128/8 8518656/128/12 18 243712/64/8 1048576/64/8
19 65536/64/2 524288/64/16 20 65536/64/2 2097152/64/16
21 65536/64/2 4194304/64/16 22 16384/32/2 524288/32/4
23 204800/128/8 3275776/128/4 24 65536/64/2 983040/64/16
25 32768/128/4 1966080/128/10 26 32768/128/4 1433600/128/10
27 32768/64/8 3145728/64/24 28 32768/64/8 1253376/64/24
29 32768/64/8 983040/64/16 30 32768/64/8 565248/64/16
31 32768/64/8 1253376/64/16 32 262144/128/8 6291456/128/4
33 204800/128/8 5505024/128/4 34 65536/64/2 811008/64/16
35 32768/32/64 2097152/128/8 36 32768/32/64 2099200/128/8
37 262144/128/8 9437184/128/4 38 204800/128/8 7372800/128/4
39 32768/128/8 4194304/128/8 40 32768/128/8 2099200/128/8
41 32768/128/8 3637248/128/8 42 32768/32/4 262144/64/2
43 32768/32/4 131072/64/2 44 65536/64/2 524288/64/16
45 65536/64/2 524288/64/16 46 65536/64/2 524288/64/16
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Table 4.3: Avg. absolute error on 46 simulated cache hierarchies

Application Avg. L1 Error Avg. L2 Error
IS.B .05 .05
CG.A .01 .02
SP.A .03 .09

There are several possible sources of error. First, is the linear interpolation

used by the trace generator. The memory signature given as input is only suffi-

cient to define 119 points on the cache surface. The trace generator uses linear

interpolation between these points, possibly causing some error when the traces

execute on arbitrary cache sizes.

An additional source of error may be the model’s omittance of conflict

misses. The similarity of the synthetic and actual trace’s cache surfaces portends

similar cache hit rates on fully associative caches, but does not explicitly address

conflict misses on set-associative configurations. We assume the level of conflict

misses should be similar, perhaps even a uniform penalty across all traces. How-

ever, we cannot guarantee these rates to be identical.

Lastly, because these are cache hierarchies, errors in the L1 hit rates may

propagate to L2. This may help to explain the relatively larger error margins we

observe in L2.

The results of this section demonstrate that the memory signatures col-

lected from serial benchmarks using the interval sampling technique can be used

to generate accurate synthetic memory traces for set-associative, multi-level cache

hierarchies, even when multiple cache widths exist.

4.5 Accuracy for Parallel Applications

In this section, we address whether or not we can collect useful signatures

from parallel applications using the block-sampling technique. To do so, we again
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use the parallel applications from Section 3.3.2, AMR and S3D at 96 and 8 pro-

cessors respectively.

We wish to compare the cache hit rates of these parallel applications with

those produced by their synthetic counterparts across several systems. First, we

employ the interval and block sampling techniques to observe the memory address

streams of each application’s processors. We use each stream to drive a simulation

of 15 real-world, set-associative caches chosen arbitrarily from Table 4.2. Perfor-

mance modeling results from recent HPC system procurement efforts have shown

that cache hit rates gathered in this way are accurate enough to predict the per-

formance of full scientific applications within 10% [22]. They are therefore useful

approximations of the actual hit rates of each processor on the 15 systems.

During this simulation, we concurrently collect each processor’s locality

signature and later use it to create a unique synthetic address trace. Lastly, we

use the synthetic traces to drive a full simulation of the 15 caches with no sampling.

Table 4.4 lists the average absolute difference between the hit rates produced

by the processors of each application and those produced by the corresponding

synthetic traces. The results sample an evenly distributed set of processors across

each application and demonstrate that the hit rates are virtually identical across

the 15 caches.

These results demonstrate that the interval and block sampling techniques

can help us accurately characterize whole, parallel-applications. In addition to

whole program characterization, it is often useful in performance modeling to pro-

duce per-block characterizations [22].

We confirm that Chameleon can accurately model the behavior of each block

of the applications should a stream at that level of detail be needed. It is important

to recall here that the characterizations are not of each block per se, but rather of

each block’s behavior. This is a subtle difference. Because of cache warming and

cooling effects, a block that executes in isolation may exhibit different hit rates

than it would had it executed among the others. The characterization produced by
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Table 4.4: Average absolute error in cache hit rates between applications and

synthetic traces over 15 cache configurations by processor

AMR S3D
Proc Abs. Error Proc Abs. Error

0 .00 0 .01
10 .04 1 .00
20 .00 2 .01
30 .00 3 .01
40 .00 4 .01
50 .00 5 .02
60 .00 6 .01
70 .00 7 .01
80 .00 – –
90 .00 – –

the Chameleon Framework implicitly captures cache state. The characterization is

therefore not a representation of the block in isolation, but rather of its behavior

in the context of the application.

To model application behavior at the block level, we decompose the locality

signature of processor 0 into its separate blocks and produce a trace for each. We

use each synthetic trace to drive a simulation of the same 15 caches and compare

the results to the actual hit rates achieved by each of these blocks.

We examine the 10 most heavily executed basic blocks of each application,

which constitute approximately 55% and 40% of AMR’s and S3D’s dynamic mem-

ory references on the processor respectively. In all cases, the hit rates produced

by the actual basic blocks are within 1% of those achieved by the synthetic traces.

Such a capability is important for basic-block oriented performance analysis tools

such as the PMaC prediction framework, which we have earlier discussed.

The results in this section demonstrate that the proposed characterization

is able to describe memory access patterns effectively at the granularity of either

whole applications or basic blocks for parallel applications, even when both interval
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and basic block sampling is employed. We can thus extract usefully accurate

memory signatures from parallel applications while imposing only a 5x tracing

slowdown.

4.6 Summary

This chapter introduced a software tool and technique for generating accu-

rate synthetic memory traces from an application’s Chameleon memory signature.

We have verified that the resulting traces are characterized by cache surfaces that

are nearly identical to those of the original applications.

We have observed that α values may not be uniform across all reuse dis-

tances discussed how Chameleon’s tracing tools can therefore parse and report

those values by reuse distance. Trace generation tool accepts these delineated α

values as input and produce conforming traces.

By observing that the synthetic traces produce cache surfaces that are

highly similar to those of the original applications, we have verified that α val-

ues do indeed define the relationships between the points of the cache surface, and

consequently, are a useful characterization of locality.

Lastly, we have verified that cache surfaces correlate strongly to cache hit

rates. We have done so by demonstrating that the framework’s synthetic traces

produce highly similar cache hit rates to those of their target applications across

46 modern memory hierarchies, even when multiple block sizes exist within a

single hierarchy. We have verified the accuracy of the parallel application tracer

by demonstrating that it produces hit rates that are nearly identical to those

produced by existing simulation tools on 15 memory hierarchies.

The following chapter describes the implementation of a tunable synthetic

memory benchmark based on this framework.



Chapter 5

The Chameleon Benchmark

The previous chapters have described an observable characterization of ref-

erence locality and a technique for generating accurate synthetic traces based on

that characterization. While these are powerful tools for system designers and

performance modelers, they may have limited utility for less sophisticated users

or for those outside of our framework. For more accessibility, users may favor an

executable benchmark over a trace.

5.1 Motivation

Benchmarking is currently the technique of choice for end-user performance

evaluation of systems. Users can simply attain benchmark runtimes on target

systems and use those to extrapolate a notion of overall performance. In HPC

for example, the Top500, a sorting of the world’s fastest 500 computers [7], orders

systems according to the speed at which each can execute the Linpack benchmark

[27]. The problem is that the significance of benchmark results to application

runtimes is not always clear [21]. Teasing out such relationships can be a significant

endeavor, which is nonetheless undertaken regularly for HPC procurement cycles

[50, 65].

47
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Further complicating the undertaking is the sometimes volatile nature of

benchmark behavior across platforms. It is not always clear that a certain bench-

mark is actually doing the same thing across platforms. If not, then the results may

be a measure of some compiler optimization or failing instead of hardware perfor-

mance. Even simple synthetic benchmarks intended to perform some uninvolved

access pattern are vulnerable to this volatility, perhaps even more so.

This chapter proposes a fully tunable memory benchmark based on the

Chameleon framework’s memory signatures. If we can dictate benchmark behav-

ior with a memory signature, we can eliminate the uncertainty surrounding the

benchmark’s relationship to a given application. The relationship would be clearly

described by their respective memory characterizations, which could be set as

equivalent to produce benchmark proxies for any application. Users could calibrate

the benchmark to imitate any application and deploy it outside the Chameleon

framework as a self-contained executable, independent of a cache simulator or

trace generator.

A further requirement is that the behavior not be volatile. It is often

difficult to know what a particular benchmark is doing across systems or compiler

optimizations. We would like to eliminate this complexity by creating a memory

benchmark that behaves predictably.

5.2 Background

Few tunable memory benchmarks exist today and none, of which we are

aware, is based on an observable characterization of memory. MultiMAPS [3]

for example, is a two-dimensional extension of the traditional MAPS benchmark

that has gained acceptance in recent years as part of the HPC Challenge suite

[1]. MultiMAPS performs regularly strided access through memory; the memory

footprint and length of the strides is tunable. The abstractions used to parame-

terize MultiMAPS however, are inadequate for describing arbitrary memory be-
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havior. Because memory access patterns are more complex than regular strides,

MultiMAPS’s coverage of memory behavior space quite sparse.

Researchers have recently attempted to deploy MultiMAPS as a perfor-

mance benchmark by using a parameter sweep to correlate cache hit rates and

corresponding memory bandwidths on a target machine. The data is then used to

extrapolate the expected memory bandwidth of some other application, given its

cache hit rates [65]. Unfortunately, the extrapolation is complex and the assump-

tion that a single cache hit rate on a particular machine can predict the achieved

memory throughput is tenuous.

A similarly cache-based level of abstraction has been used to relate the

tuning parameters of the Apex-Map benchmark [59, 60] to other applications [67].

Unlike MultiMAPS, the tuning parameters of Apex-Map are based on principles

of spatial and temporal locality, but like MultiMAPS, these parameters do not

exhibit a one-to-one correspondence with applications.

Apex-MAP performs L consecutive stride 1 accesses through memory at

starting points chosen from an exponential distribution. The nature of the ex-

ponential distribution, the memory footprint, and L are tunable. Again, these

parameters are not extractable from an arbitrary stream and only sparsely cover

the space of possible memory behavior [67].

The Apex-Map benchmark also has the issue of using an index array to

dictate memory behavior. In this approach, an initialization phase creates separate

data and index arrays. At each iteration of the work loop, the benchmark reads

the next value from the index array and then accesses the element of the data array

at that index. The problem is that since the index array is touched between every

reference to the data array, at least 50% of the benchmark’s memory accesses do

not conform to the target distribution. Worse yet, the spacing of these overhead

accesses between every intended access, further warps the locality properties of the

intended stream. This sort of problem is common among performance benchmarks.

One may argue that superfluous L1 hits in such circumstances do not impose
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a significant runtime impact. Nevertheless, this inaccuracy makes relating the

benchmark behavior to applications difficult to impossible, even through cache hit

rates.

5.3 Benchmark Concept

The goal of the Chameleon benchmark is to build a fully tunable memory

benchmark based on the framework’s memory signatures. One approach is to

use the synthetic address streams produced by the trace generator to define the

memory access pattern of the benchmark. Because the synthetic address trace

consists of a series of word addresses, the benchmark simply needs to read the seed

file, initialize a data array of the properly sized types (e.g. 4-byte integers, 8-byte

longs, etc), and then access the data array in the pattern specified by the file. In

much the same way as creating a synthetic trace, the benchmark can expand its

footprint by replicating the seed pattern onto discrete portions of the data array

and control its runtime by repeating the full access pattern as desired.

The only question is how the benchmark will keep the access pattern itself in

memory. One approach is to hold it in index array, but as discussed in the previous

section, this would cause a significant perturbation of the intended pattern.

Rather than using separate index and data arrays, Chameleon uses a single

array to double as both. Each data array element contains the value of the next

index to touch. In this way, the read from the data array actuates a reference to

the desired memory location while simultaneously providing the benchmark with

the information it needs for the next iteration.

The work loop is essentially:

for(int i = 0; i < numMemAccesses; i++)

nextAddress=dataArray[nextAddress];
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The benchmark ensures that the pointer chasing forms a closed loop by

pointing the last index touched by each replication to the first one touched by the

next replication. The final replication points back to the first memory access of

the original replication. The value of numMemAccesses can therefore be any value

without additional modification to the data array. To ensure that every memory

address is performed, the function returns the final value of nextAddress.

There is, of course, the caveat that no two elements of the array can contain

the same value. The loop can only touch a particular array element once per

iteration. This requirement, that trace seeds never repeat an index, obligates the

generator to make extra considerations in its work.

5.4 Modified Seed Generation

In addition to the name of the trace file to use, the seed generator accepts

a boolean parameter to indicate if indices can be used only once. If the seed is

intended for the Chameleon benchmark, this flag must be set to true.

Significant challenges arise when the generator cannot repeat indices. Recall

that seeds are generated in two phases: first the generator creates a stream of block

addresses using the model’s temporal parameters and then converts those to 4-byte

word addresses using its spatial parameters. Both phases are affected by the new

requirement. The blocks chosen by the spatial process may have already been

used. Further, a block may only be touched a certain number of times, affecting

the temporal distribution.

The following two sections discuss the necessary adjustments to each phase

of the seed generation.
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5.4.1 Adjusting Spatial Locality

During the spatial phase, the generator takes a series of cache block identi-

fiers and translates them to word addresses according to the given spatial param-

eters. Because now it cannot reuse any word, the generator needs to track those

it has already touched.

Recall that each block is already represented by a tree structure with the

leaves representing individual words. Once a word is used, the generator must now

delete the node representing it. Any node in the tree without children must be

deleted as well.

There are two implications of this policy. First, missing nodes may pre-

vent the generator from traversing the tree along its desired path. For instance,

suppose some node has only one child. Even if the next memory access needs to

traverse down a different path, it cannot. The generator makes reuse decisions

independently for each level of the tree, so even when a subtree is unavailable, it

will complete an identical traversal pattern on the symmetric subtree.

The net result is that the generator is unable to comply accurately with

the requested α values. As done for cold cache misses in the temporal phase, this

error can be corrected by iteratively adjusting the generator’s aim. During the

spatial phase, the generator tracks the α values it actually achieves and compares

them to those requested. If sufficient error exists, the generator scales each value

by its ratio to the original target and repeats the index generation phase. Most

often, the error is sufficiently mitigated within a few iterations. Depending on the

requested values, it may not always be possible to eliminate the error completely

using this technique. Section 5.4.3 discusses this in more detail.

The second problem is that some blocks fill to capacity before the last access

to them is to occur. Since each 512-byte block contains 64 4-byte words, the entire

block disappears after that number of accesses. To deal with this, the generator

virtualizes blocks. Each time it encounters a new identifier in the block trace, the
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generator allocates a new physical block. When that block fills to capacity, the

generator reassigns the identifier to refer to a new physical block.

This technique allows the generator to accommodate any number of refer-

ences to a single block. In doing so, however, it perturbs the block trace’s temporal

distribution. Luckily, the generator can anticipate this effect and make preemptive

corrections in the temporal locality phase.

5.4.2 Adjusting Temporal Locality

Recall that the temporal locality phase produces a trace of block addresses

by sampling reuse distances from the application’s distribution and compensating

for cold cache misses. Block virtualization compounds this error since the generator

incurs a cold cache miss for every physical block touched. Remember that this

happens whenever a M-word block is touched N times and N%M=0.

To anticipate when unwanted misses occur, the generator counts the number

of accesses to each virtual block and determines when a new physical block would

become necessary. With this information, it determines the actual reuse CDF it

achieves and iteratively compensates its aim as described in Section 4.1.

5.4.3 Limitations

The requirement that the Chameleon benchmark can never touch the same

memory address twice, places certain limitations on the level of locality it can

exhibit. Chameleon’s miss rate on an N -word cache must be at least 1/N . For a

L1 cache with 64-byte blocks, this implies that a Chameleon instance using 4-byte

integers cannot achieve a hit rate higher than 15/16 ≈ .94. For 128-byte blocks, it

can be no higher than 31/32 ≈ .97.

This may be somewhat problematic for imitating the memory behavior of

highly local applications. The most local behavior that Chameleon can produce

is a regular, one word stride through memory. This may not be local enough for
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some benchmarks and Chameleon’s hit rates on first level caches may consequently

be too low.

This does not necessarily mean that Chameleon cannot achieve higher hit

rates. Indeed, its regularly strided access pattern is exploitable by prefetching

optimizations, particularly at higher levels of cache.

5.5 Benchmark Initialization

Chameleon accepts the following input parameters:

Trace File - The name of the file containing the trace seed description

Footprint - The size of memory for the data array in megabytes

Number of Operations - The number of memory operations the benchmark

should execute (x2 billion)

Processor - For multiprocessor systems, the processor to bind onto

Print Counters - On x86 systems with an installation of the Performance API

(PAPI) [19], setting this boolean flag prints the value of all available hard-

ware counters after the execution

Delay - Delay is the number of seconds to wait after initialization before begin-

ning the actual run. This is useful for performing co-scheduling tests.

Using the working set size and minimum number of replications reported

in the seed file, Chameleon calculates the minimum footprint for this run. If

the memory footprint requested by the user is smaller, then Chameleon uses the

calculated minimum instead. Otherwise, Chameleon uses the smallest multiple of

the working set size that is greater than the requested footprint.

The benchmark then allocates a data array and finds the index of the first

array element that begins a new cache block. The benchmark detects this by
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checking that the address of the element is evenly divisible by 512. This element

would be mapped onto the beginning of a block for any cache with exponentially

sized block widths less than or equal to 512.

Chameleon reads the input into an indices array and for each replication,

the initializer uses the seed and offset to populate the data array as follows:

dataArray[offset+indices[i]] = offset+indices[i+1]

When each replication is finished, the initialization function adds the work-

ing set size to the offset and points the last element of the previous replication to

the first element of the new one. Once the initialization has created enough repli-

cations, it points the final element to the first element of the first replication and

the data array is complete. At runtime, Chameleon simply follows the indices as

shown in Section 5.3, making the number of hops dictated by the input parameter.

The processor binding parameter is a zero-indexed integer specifying the

processor on which to execute Chameleon, on multiprocessor, unix-based systems.

This is important to ensure uniformity across runs by preventing process migration.

This, along with the delay parameter can be used for studying symbiotic space-

sharing [68, 69] by measuring destructive interference between benchmarks running

concurrently on different processors of an SMP. Chapter 6 describes this in more

detail.

5.6 Accuracy on Cache Surfaces

Given that the Chameleon benchmark is based on the same synthetic trace

methodology evaluated in Chapter 4, we can anticipate that it would accurately

mimic target applications on most real world caches. However, this would only hold

if the benchmark’s additional requirement, that the synthetic traces never reuse

the same address, can be shown to perturb the trace accuracy only minimally.
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Figure 5.1: Chameleon hit rates vs CG.A

To test the accuracy of the Chameleon benchmark’s input traces, we create

seeds for each of the three NAS benchmarks evaluated in Section 4.2, using the

benchmark’s one address, one access requirement. We then feed the synthetic

traces through the framework’s cache surface tool, which effectively captures their

hit rates on 68 LRU caches.
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Figure 5.2: Chameleon hit rates vs SP.A
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Figure 5.3: Chameleon hit rates vs IS.B

Figures 5.1, 5.2, and 5.3 plot the difference between Chameleon’s hit rates

and those of the original three applications. The results demonstrate that the

benchmark requirement of reference uniqueness does not introduce significant error

beyond that present in the unconstrained traces. The average absolute difference in

hit rates between the benchmark and CG.A, SP.A, and IS.B is only 1.7%, 2.0%, and

1.1% respectively. These values are only marginally higher than the uninhibited

Chameleon trace’s respective errors of 1.0%, 1.5%, and 0.1%.

5.7 Accuracy on Cache Hierarchies

Section 4.4 demonstrated that the Chameleon framework’s synthetic traces

produce hit rates that are highly similar to those of target applications on dozens

of real-world cache hierarchies, even when disparate block sizes exist within the

hierarchy. Given that the Chameleon benchmark’s restricted traces produce cache

surfaces that are highly similar to those of the unrestricted traces, we would antic-

ipate that the executable benchmark can similarly mimic the target applications

on real-world cache hierarchies.
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We can verify this by using the Pentium D820 and the PAPI performance

counter library [19] to compare the cache hit rates achieved by the NAS bench-

marks and those achieved by their Chameleon counterparts. Recall that the D820

uses different block sizes in its first and second level caches, making the system

challenging for synthetic address traces.

Table 5.1 displays cache hit rates produced by each NAS benchmark versus

those produced by its Chameleon counterpart. Because the D820’s Linux kernel

uses a time-sharing scheduler, hardware counter statistics are prone to perturbation

by system and other background processes. To mitigate this effect, we repeat each

test 10 times and chose only the highest hit rate combination observed in those

trials.

Table 5.1: Cache hit rates of NPB and Chameleon on Pentium D820

Application L1 — L2 Chameleon Error
BT.A .96 — .98 .93 — .98 .03 — .00
CG.A .66 — .99 .67 — .99 .02 — .00
FT.A .86 — .97 .88 — .99 .02 — .01
IS.B .67 — .85 .58 — .83 .09 — .02
LU.A .94 — .95 .94 — .97 .00 — .02
SP.A .93 — .94 .94 — .97 .01 — .03
UA.A .91 — .91 .94 — .97 .03 — .06

These measurements demonstrate that the hit rates of Chameleon and the

actual applications are quite similar. The errors are almost uniformly under 5%,

with an average of only 2.4% and maximum of 9%. The magnitude of the error

rates is similar to that presented for unrestricted traces in Section 4.4.

Some of the error in emulating the L1 rates stems from the choice of bench-

marks and architecture. Recall that the Pentium D’s L1 cache uses a 64-byte block

length, enough to hold 16 32-bit integers. As we discussed earlier, this makes hit

rates above 94% highly unlikely. Three of the benchmarks in Table 5.1 (BT, LU,

and SP) exhibit L1 hit rates above that mark, causing unavoidable error for the
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benchmark on this system.

5.8 Instruction Level Parallelism

The results in this chapter have thus far shown that the Chameleon bench-

mark is capable of imitating the memory behavior of arbitrary applications as

measured by cache hit rates. The benchmark can therefore serve as an effective

application proxy for projecting memory hierarchy hit rates for target applications.

Previous work has shown that such information can be sufficient for gener-

ating detailed performance models and predictions for applications [65]. However,

one would prefer to dispense with the modeling phase and simply infer the antic-

ipated performance of a given application based on the observed performance of

its Chameleon counterpart. Unfortunately, the similarity of an application’s hit

rates to those of its Chameleon counterpart is not necessarily indicative of highly

similar performance.

Table 5.2 compares a series of NAS benchmarks and their Chameleon coun-

terparts, listing the cache hit rates and corresponding performance for each on the

Pentium D820. Observe that despite its highly similar hit rates, Chameleon con-

sistently under-performs its target benchmark by 2-4x.

Table 5.2: Performance of NPB vs Chameleon

Application L1/L2 L1/L2 [C] MemOps/s (x108) MemOps/s (x108) [C]
BT.A .96/.98 .93/.98 12.90 4.91
CG.A .66/.99 .67/.99 9.69 1.84
FT.A .86/.97 .88/.99 7.39 3.19
IS.B .67/.85 .58/.83 2.07 .638
LU.A .94/.95 .95/.97 8.25 4.84
SP.A .93/.94 .94/.97 9.06 4.46
UA.A .91/.91 .94/.97 9.19 4.65
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This may be somewhat surprising, considering that, unlike the benchmarks,

Chameleon performs no floating point work at all. Perhaps the most important

factor explaining this discrepancy is the level of instruction level parallelism (ILP)

that is exposed by the respective applications. Many modern machines utilize out-

of- order processors that allow multiple load/store instructions to be outstanding

at any given time [34]. While one instruction is waiting for its operands to be

retrieved from memory, the system may execute other, non-dependent instructions.

Systems are thus able to overlap memory penalties and speed up execution.

Recall Chameleon’s work loop from Section 5.3. Because the execution

of each iteration is completely dependant upon the results of the previous one,

Chameleon’s work loop has no instruction parallelism to exploit. Contrast this,

for example, with the work loop of CG.A, which uses an inverse power method

to find the largest eigenvalue of a random sparse matrix. The pseudocode for its

innermost work loop is:

p[j] = r[j] + beta*p[j]

As we can see, CG has no dependence between work loop iterations; we

would consequently expect it to perform significantly faster than Chameleon. It

does. A speedup figure in the observed 2-4x range is certainly within the bounds

of what can be feasibly explained by ILP.

5.8.1 Adding ILP to Chameleon

In order to get Chameleon’s performance closer to that of its target appli-

cations, more parallelism must be exposed in its work loop. The problem is that

Chameleon’s pointer-chasing algorithm causes each instruction to be dependent on

the preceding instruction.

While the loop cannot be “unrolled” by traditional compiler optimization,
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coordinated changes to both the work loop and data array can expose more paral-

lelism. Instead of a single index pointer traversing the data array, we will need a

variable number. Consider the following modification to Chameleon’s work loop:

1 for(int i = 0; i < numMemAccesses; i+=2)

2 {

3 nextAddress1=dataArray[nextAddress1];

4 nextAddress2=dataArray[nextAddress2];

5 }

There is no dependence between lines 3 and 4 of the loop. Ignoring any un-

rolling the compiler might perform, this modification allows the system to execute

two memory operations concurrently in each loop iteration. The increment value

for i should correspond to the number of memory operations performed in each

loop iteration.

In order for this new loop to perform the same memory access pattern as

the original, we must interleave the data array. To illustrate, consider the following

data array example:

3 5 1 6 2 7 4 0
Data Array A

In this instance, the serial version of Chameleon would start by setting

nextAddress=0 and execute as follows:

Iter 1: nextAddress=dataArray[0];

Iter 2: nextAddress=dataArray[3];

Iter 3: nextAddress=dataArray[6];

Iter 4: nextAddress=dataArray[4];
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Iter 5: nextAddress=dataArray[2];

Iter 6: nextAddress=dataArray[1];

Iter 7: nextAddress=dataArray[5];

Iter 8: nextAddress=dataArray[7];

--------------

Iter 9: nextAddress=dataArray[0];

Iter 10: nextAddress=dataArray[3];

...

In order to maintain the same access pattern while exposing parallelism,

we must interleave the data array so that each cell does not contain the value of

the next index to touch, but rather, of the nth, where n is the level of parallelism.

In the 2-way parallel example, nextAddress1 would initially be 0 and

nextAddress2 would be set to 3. We then must rearrange the data array as

follows:

6 7 5 4 1 0 2 3
Data Array B

Even though the two indices now traverse the array independently, their

combined, interleaved instruction stream is actually the same as the original ver-

sion. An in-order machine executing with Array B would issue the following

instruction sequence:

Iter 1: nextAddress1=dataArray[0];

nextAddress2=dataArray[3];

Iter 2: nextAddress1=dataArray[6];

nextAddress2=dataArray[4];
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Iter 3: nextAddress1=dataArray[2];

nextAddress2=dataArray[1];

Iter 4: nextAddress1=dataArray[5];

nextAddress2=dataArray[7];

--------------

Iter 5: nextAddress1=dataArray[0];

nextAddress2=dataArray[3];

...

This is the same pattern as the original version described by Array A.

However, since the instructions of each loop iteration are now independent, an

out-of-order processor could overlap their execution and possibly attain significant

speedup. We can generalize this technique to any level of parallelism and have

done so through a compile-time ILP constant. The constant can currently be set

at values from 1-20.

5.8.2 ILP Effects on Hit Rates

While out-of-order execution increases performance, it also perturbs the

reference stream. To understand the nature and magnitude of the parallel memory

stream’s deviation from its serial counterpart, it is important to first introduce

some general components and concepts of out-of-order processors. Such processors

employ several techniques for exploiting ILP.

Dynamic Execution Overview

Figure 5.4 is a high-level illustration of a dynamic instruction pipeline. Al-

though details may vary across specific implementations, the basic process is as

follows: An instruction fetch stage brings instructions into the instruction queue

and decodes them in order. Following this in-order issue, each instruction must
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Figure 5.4: An out-of-order execution pipeline

remain in the queue until its operands become available. Because of data depen-

dencies, some instructions may stall and allow other instructions whose operands

are ready, to begin execution despite having been issued later. This out-of-order

execution may freely cross loop boundaries.

When an instruction is ready for execution, it is sent to an appropriate

functional unit, such as a floating point, integer, or memory unit. In Chameleon’s

case, this is always the load unit. To exploit ILP, systems may have multiple

functional units of each type, pipelined functional units, or both. The D820 for

example, pipelines its load and store units into two stages. Figure 5.4 does not

distinguish between these two options and simply represents both as effectively

being multiple load/store units.

Depending on how far up the cache hierarchy its requested information
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resides, load/store instructions may require several cycles to complete. While a

load/store unit waits, it may issue a concurrent request to memory on behalf of

another instruction. The number of outstanding load/store instructions that a

system can tolerate is variable from system to system.

The ILP capabilities of this execution phase (including replicated functional

units, pipelined functional units, and multiple outstanding memory requests) allow

a number of independent memory operations to proceed in parallel. They also place

a cap on the level of parallelism that can be exploited by the machine.

Lastly, once a functional unit completes the execution of an instruction, it

moves the instruction to a reorder buffer. To execute instructions out of order while

maintaining correct semantics, the processor buffers completed instructions in the

reorder buffer and commits them in order as the instructions become available.

If the reorder buffer fills, then the structural hazard halts the issue of subsequent

out-of-order instructions from the instruction queue.

Implications for Chameleon

Based on the description in the previous section, a N -way parallel Chameleon

configuration will have exactly N memory operations in the process of execution

at any given time. This is because each nextAddressN variable inside Chameleon’s

work loop is independent of the others while simultaneously dependent on its own

value in the previous iteration. The operands of any such instruction are avail-

able if and only if its previous iteration has completed. The instruction queue can

therefore release no more than N instructions simultaneously.

Out-of-order execution does perturb the originally intended memory stream.

For example, suppose some memory reference (A) evicts the cache block needed by

a later operation (B). If their execution order is inverted, B would hit in cache. This

situation is known as a hit under miss. More abstractly, out-of-order execution can

shorten the reuse distance of some memory operations.
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The magnitude of this change is controlled by the reuse distribution and

is capped by the size of the reorder buffer. For example, suppose a certain re-

order buffer contains 256 entries. Including the loop variables, it is reasonable to

assume a 2-way parallel Chameleon benchmark would require 4 instructions per

loop iteration, meaning that neither nextAddressN index can run ahead of the

other by more than 64 loop iterations. Thus, the size of the reorder buffer caps

the maximum error.

This error value is quite small with respect to the number of lines in a

typical cache, and as parallelism increases, this value decreases even further. It is

also highly unlikely that any one index would run far ahead of the others, given

that they are all derived from the same statistical distribution and operate on the

same set of memory.

The other possible perturbation is a miss under miss. Suppose operation

A accesses main memory to bring a block into cache that operation B uses. If the

two operations do not complete in order, B will miss cache as well, altering the

behavior expected by the Chameleon trace generator. The benchmark’s hit rates

in lower level caches would therefore deteriorate palpably. Despite the adverse

effects on hit rates however, miss under miss scenarios do not actually decrease

performance because the miss penalty for access B is overlapped with that of A.

Given these two sources of error, we would anticipate that the greatest effect

of ILP on the Chameleon benchmark’s cache behavior would be a decrease in L1

hit rates that is unaccompanied by performance degradation. To demonstrate this

effect, we execute Chameleon at four different levels of ILP, targeting an arbitrary

benchmark (IS.B). Table 5.3 documents the steady degradation of L1 hit rates

exhibited by Chameleon as various levels of ILP are exposed.

To demonstrate that this degradation is due to miss under miss scenarios, we

modify the IS.B signature to preclude any memory references with reuse distances

equal to 0, instead, assigning them a value of 1. We leave the rest of the distribution

unchanged.
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Table 5.3: Cache hit rates of Chameleon versions targeting IS.B

Max Reuse Parallelism L1 L2
0 1 .58 .83

2 .49 .84
3 .44 .85
4 .40 .86

1 1 .58 .83
2 .58 .81
3 .41 .86
4 .43 .86

Memory operations with a reuse distance of 1, cannot cause miss under

miss situations for a 2-way parallel Chameleon implementation. This is because

any such reference is dependent on the value of its previous iteration. For example,

consider the following access stream where “A->1” implies that index A is touching

address 1:

A->1

B->3

A->5

B->1

...

All references with an odd-valued reuse distance refer to an iteration on

which they are dependant; such reference can therefore not be executed out of

order and cause a miss under miss. Because we eliminate reuse distances of 0, the

smallest reuse distance that can cause this is therefore 2. However, IS.B performs

almost no memory references with reuse distances between the values of 1 and

128. As more operations are executed, the probability of some earlier operation

not having been completed and another operation accessing the same address drops
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precipitously. Consequently, a miss under miss by a 2-way Chameleon instance for

this trace seed is highly improbable.

Table 5.3 lists the observed cache hit rates for variously parallel Chameleon

runs using the new trace seed. The L1 cache hit rate for the 2-way Chameleon

is identical to that of the serial version, implying that the entire L1 degradation

observed with the original seed is due to miss under miss situations.

These observations support the conclusion that the proposed ILP modifica-

tions to Chameleon can be deployed without adversely impacting the benchmark’s

performance and behavioral accuracy for reasonably sized caches.

5.8.3 ILP Effects on Performance

To demonstrate the performance effects of exposing ILP in Chameleon, this

section presents runtime measurements from a series of performance tests on the

Pentium D820. These results are representative of identical tests we carried out

on the other two systems.

As anticipated, the addition of ILP into the Chameleon benchmark increases

its performance markedly. Table 5.4 displays the memory bandwidth achieved

by the Chameleon benchmark while various degrees of parallelism are exposed.

The runtimes were collected using the Pentium D820 machine and each test was

executed 10 times, though observed performance remained highly stable.

Depending on the application it targets, Chameleon is able to exhibit a

speedup of 1.5-2.5x by exploiting parallelism. If we compare the performance

results to those of the original applications presented in Table 5.2, we observe that

the performance gaps have been shortened to within 10-50%.

One possible causes for the remaining performance gap is that the NAS

benchmarks have an even greater degree of ILP than these versions of Chameleon.

The most parallel version of Chameleon reported in Table 5.4 is 4, meaning that

at any given time, at most 4 memory operations are outstanding. A benchmark
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Table 5.4: Performance of Chameleon with parallelism

Target Parallelism MemOps/s (x108) Speedup
BT.A 1 4.91 1.00

2 6.39 1.30
3 6.99 1.42
4 7.51 1.53

CG.A 1 1.84 1.00
2 2.90 1.58
3 3.88 2.11
4 4.54 2.47

FT.A 1 3.19 1.00
2 4.43 1.39
3 5.28 1.65
4 6.02 1.89

IS.B 1 .64 1.00
2 .90 1.40
3 1.04 1.62
4 1.36 2.13

LU.A 1 4.84 1.00
2 6.31 1.31
3 6.96 1.44
4 7.47 1.54

SP.A 1 4.46 1.00
2 5.97 1.34
3 6.68 1.50
4 7.24 1.62

UA.A 1 4.65 1.00
2 6.16 1.33
3 6.82 1.47
4 7.35 1.58
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such as CG.A for example, exposes the maximum level of ILP, perhaps explaining

why it exhibits the greatest performance discrepancy from Chameleon of all the

measured benchmarks. LU on the other hand, designed to allow somewhat less

parallelism than the other benchmarks in the suite, performs at a rate within 10%

of Chameleon.

Unfortunately, the Pentium D820 cannot execute Chameleon instances with

more parallelism than 4 because of insufficient register space. Recall that Chameleon

depends on the general purpose registers to store all the nextAddress indices. If

too many of these indices exist to store in registers, the system is forced to use

L1 cache to store the overflow, and the memory access pattern is affected. Even

though the extra indices occupy a very small part of cache, their repeated access in

each iteration slows the benchmark and complicates the hit rate figures reported

by hardware counters or tracing.

Still, a figure of four outstanding memory references on average is a sufficient

number for many real-world applications, which may have significantly less ILP

than the NAS Benchmarks. Ideally, one would like to extract some ILP measure

from an application during the tracing phase and set Chameleon’s level to the same

value. We leave exploration of this possibility to future work.

Even with the register-imposed limit on producible ILP and our uncertainty

about the level of parallelism in target applications, Chameleon’s tunable paral-

lelism scheme nonetheless allows for interesting studies and insight into anticipated

performance. For example, suppose we determine through tracing, or infer through

observation on other machines, that the NAS Benchmarks in this section average

6 outstanding memory operations during execution. For each benchmark, we can

execute Chameleon at the first four levels of ILP and extrapolate the performance

anticipated when we expose 6 instructions. Using a simple least squares linear re-

gression on the data in Table 5.4, we can extrapolate the anticipated performance

as displayed in Table 5.5. This rough performance prediction is relatively accurate

with respect to modern performance prediction techniques [44, 50].
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Of course, we are not bound to apply a uniform 6-way estimation onto

every benchmark application, but these results demonstrate that we can gain some

insight into anticipated performance, even with only broad strokes.

Table 5.5: Projected Chameleon Performance with ILP of 6

MemOps/s(x108)

Benchmark Original Chameleon Error
BT.A 12.1 9.38 0.23
CG.A 9.69 6.46 0.33
FT.A 7.39 8.00 0.08
IS.B 2.07 1.80 0.13
LU.A 8.25 9.38 0.14
SP.A 9.06 9.25 0.02
UA.A 9.19 9.31 0.01
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5.9 Summary

This Chapter has described the Chameleon benchmark, a fully-tunable syn-

thetic memory benchmark based on the framework’s traces. The benchmark is able

to replicate the memory access patterns of target applications without an index

array by effectively pointer chasing through a data array in a pattern dictated by

the framework’s synthetic traces.

The benchmark concept requires the pointer chasing to progress in one large

loop and therefore demands that Chameleon’s trace generator produce synthetic

traces that never reuse a given word. To enable this, the generator must choose the

word nearest to that dictated by the target statistical distribution and compensate

for errors by extending it’s existing cold-cache miss compensation mechanisms.

Verification tests show that the cache surfaces of three NAS benchmarks

are within 1.7%, 2.0%, and 1.1% of those produced by their respective Chameleon

counterparts. Further, runs on a real-world system with hardware performance

counters show that the Chameleon executable benchmark normally produces cache

hierarchy within 5% on a set-associative cache hierarchy with nonuniform block

sizes. The presented results confirm this on seven of the NAS Benchmarks.

Lastly, this chapter describes modifications to the benchmark that allow

users to expose various amounts of instruction-level parallelism using a compile-

time flag. The final section argues that exposing parallelism causes moderate but

tolerable perturbation to the benchmark’s memory access patterns and enables

interesting performance studies and prediction techniques.



Chapter 6

Use Cases

The previous chapters have outlined the ideas and implementation of a prac-

tical framework for observing, understanding, and imitating the memory behavior

of applications. This chapter describes a series of hypothetical use case scenarios

in which the Chameleon tools could be leveraged.

6.1 Workload Selection

As described in Section 6.1, workload selection is an important problem for

system benchmarking. When performance analysts look to evaluate systems or

benchmarkers look to compose effective benchmark suites, both aim to choose a

minimal but complete set of executables that spans the behavioral space of some

target system’s expected workload without being redundant. As importantly, they

would like to know where in this behavioral space the chosen benchmarks reside.

The discussion in Chapter 2 of a uniform model of reference locality enables

them to describe the full behavioral space of applications using cache surfaces. The

Chameleon tools also enable users to capture and compare this characterization

more quickly and easily than would otherwise be possible

Suppose for example, that a performance analyst is working on a large-

73
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scale system procurement effort. He would like to evaluate a slate of several dozen

possible systems and chooses the NAS Parallel Benchmark set, including BT, CG,

FT, IS, LU, MG, SP, and UA. He is told however, that the staff does not have

enough time to evaluate all of the systems across all eight benchmarks and that

he must eliminate at least two. Without intimate knowledge of each benchmark’s

implementation, the analyst can use the cache surface model and Chameleon tools

to narrow the evaluation workload, qualify the tradeoffs, and justify his decisions.

He begins by using Chameleon’s tracing tools to extract the memory sig-

nature from each benchmark. With interval sampling and modest benchmark

parameters, the extraction requires only a few minutes. A cursory review of the

signature data reveals that some of the benchmarks do in fact appear similar. To

confirm, the analyst would like to compare their respective cache surfaces.

He decides that a cache surface of 17 exponentially deeper and 5 exponen-

tially wider caches should cover his systems of interest. However, it would take

many hours to perform full memory traces and simulations of all 85 LRU caches

for every benchmark. Instead, he uses Chameleon’s trace generator to create a

synthetic address trace for each memory signature and then the framework’s cache

surface tool to extract a cache surface from each synthetic trace. The trace gener-

ation and surface extraction phases each require only a few minutes and seconds

respectively. The process creates the surfaces pictured in Figures 6.1-6.8.

The analyst can expect these synthetic surfaces to approximate those of

the actual benchmarks reasonably. With this visualization, he can quickly confirm

that up to half of the proposed benchmarks are really quite similar. While the

first four benchmarks (CG, FT, IS, MG) each exhibit a unique cache surface, the

second four (BT, LU, SP, UA) appear very much alike.

More quantitatively, the analyst may even use some similarity metric to

measure the difference between the surfaces. Table 6.1 presents a simple example,

reporting the average absolute difference between the analogous points of each

benchmark’s surface. Only the four identified benchmarks are within 5%.
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Figure 6.1: Synthetic cache surface for CG
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Figure 6.2: Synthetic cache surface for FT
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Figure 6.3: Synthetic cache surface for IS
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Figure 6.4: Synthetic cache surface for MG
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Figure 6.5: Synthetic cache surface for BT
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Figure 6.6: Synthetic cache surface for LU
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Figure 6.7: Synthetic cache surface for SP
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Figure 6.8: Synthetic cache surface for UA
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Table 6.1: Similarity between synthetic cache surfaces

CG FT IS MG BT LU SP UA
CG – 0.13 0.14 0.14 0.15 0.12 0.13 0.13
FT 0.13 – 0.16 0.12 0.08 0.08 0.07 0.07
IS 0.14 0.16 – 0.24 0.22 0.20 0.19 0.20

MG 0.14 0.12 0.24 – 0.06 0.05 0.05 0.06

BT 0.15 0.08 0.22 0.06 – 0.03 0.03 0.03

LU 0.12 0.08 0.20 0.05 0.03 – 0.02 0.03

SP 0.13 0.07 0.19 0.05 0.03 0.02 – 0.02

UA 0.13 0.07 0.20 0.06 0.03 0.03 0.02 –

The verified similarity between BT, LU, SP, and UA does not necessar-

ily imply that they are all superfluous, but only that their LRU cache hit rates

are highly comparable. The benchmarks may yet have differences, such as var-

ious levels of ILP, propensities for prefetching, or communication patterns when

parallelized.

Fortunately, it is relatively simple to check for variation in ILP or prefetch-

ing levels among the benchmarks: the analyst need only execute them once on an

arbitrary machine capable of exploiting such optimizations. Benchmarks for which

these optimizations can be disproportionately leveraged will likely outperform the

others. For example, the runtime observations in Table 5.2 reveal that BT is just

such an outlier among the four similar benchmarks.

Having observed this on his local system, the analyst decides to keep BT

and discard two of LU, SP, and UA. According to the similarity measurements in

Table 6.1, SP is more similar to the other two benchmark than they are to each

other. He keeps SP.

To provide some evaluation of his decision, Table 6.2 presents multi-platform

performance data for the entire benchmark set. The performance measurements

are in memory operations per second x108.

These observations confirm that only the three benchmarks identified by
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the analyst have uniform performance characteristics on every system. The run

time and hit rate measurements also confirm that SP is indeed more similar to LU

and UA than those benchmarks are to one another. The cache surface comparison

in Table 6.1 identifies FT as the next most similar benchmark; the measurements

in Table 6.2 concur.

Table 6.2: Performance of NPB on various systems

App
Pentium D820 Intel Centrino IBM Power4

L1/L2 Performance L1/L2 Performance L2/L3 Performance
CG.A .66/.99 9.69 NA 5.22 .96/1.00 3.18
FT.A .86/.97 7.39 NA 4.75 .98/.32 9.63
MG.A .93/.98 13.9 NA 8.37 .94/.45 5.52
IS.B .67/.85 2.07 NA 1.68 .78/.89 .11
BT.A .96/.98 12.1 NA 7.59 .94/.96 13.0

LU.A .94/.95 8.25 NA 5.05 .87/.94 6.64
SP.A .93/.94 9.06 NA 5.59 .89/.93 7.94
UA.A .91/.91 9.19 NA 5.86 .87/.93 8.13

Before breaking for lunch, the analyst has successfully trimmed redundancy

from the evaluation workload and potentially saved the procurement team signifi-

cant effort over the coming weeks.

6.2 System Simulation

Having selected a streamlined but complete workload, the performance

team benchmarks each of the target systems and eventually settles on an IBM

Power4 machine similar to DataStar. The memory hierarchy specifications are

presented in Table 6.3.

After the benchmarking activities have been completed however, the vendor

offers the company a new “performance option” that will upgrade the size of the
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Table 6.3: IBM Power4 memory hierarchy

Level Size Block Associativity Replacement Policy
L1 32768 128 2 LRU
L2 366592 128 8 LRU
L3 8749056 512 8 LRU

system’s L2 caches by 36%. Instead of a 366592-byte, 8-way L2 cache, the system

can be built with a 499712-byte, 4-way associative configuration 1. The new con-

figuration is not available for benchmarking, but the procurement executives ask

the performance analyst for guidance nonetheless. What performance returns can

they expect for this investment?

Because the system is not available for benchmarking, the analyst must rely

on simulation. He has a cache simulator tool on hand but needs memory traces

from the evaluation workload to drive it. Collecting, storing, and replaying these

traces would require terabytes of storage and days if not weeks of compute time.

The executives would like his recommendation more quickly.

Instead of tracing the six evaluation benchmarks, the analyst retrieves the

synthetic trace seeds he had produced weeks before during the workload selection

phase. Because of the relatively small size of these files, he was able to store them

on his local machine for only a few megabytes. He runs the seeds through the

cache simulator and within seconds, determines that the new cache configuration

would result in only a very modest performance improvement.

Table 6.4 details these results for a few benchmarks in the evaluation work-

load. The analyst finds no more than a 6% increase in L2 hit rates, barely within

Chameleon’s usual error margins. The analyst concludes that he cannot project

a significant benefit from the upgrade and the executives opt for the original design.

1actual commercially available options for IBM Power4
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Table 6.4: Simulated cache hit rates of NPB on two potential systems

Benchmark
Hit Rates (L1/L2/L3)

Option 1 Option 2
CG .79 / .84 / .83 .79 / .86 / .81
IS .79 / .16 / .96 .79 / .22 / .96
SP .95 / .59 / .79 .95 / .65 / .75

To verify that the analyst has made the proper recommendation, we com-

pare his numbers to those derived using the test workload’s actual address streams.

Table 6.5 catalogs the cache hit rates yielded when the synthetic address streams

used by the analyst are replaced with each benchmark’s actual trace. These re-

sults confirm the analyst’s conclusion, that the 36% increase in cache size would

not yield a comparable increase in performance. The L2 predictions he derived

were within 0-3% of the actual values.

Table 6.5: Actual cache hit rates of NPB on two potential systems

Benchmark
Hit Rates (L1/L2/L3)

Option 1 Option 2
CG .79 / .84 / .83 .79 / .86 / .81
IS .84 / .16 / .99 .84 / .22 / .99
SP .96 / .62 / .83 .96 / .63 / .82

6.3 Synthetic Memory Benchmarking

The company has purchased and deployed its new system when the analyst

receives an email from a colleague in the performance community. The colleague

inquires about the performance of this new machine with respect to that of other

systems around the country. He would like some standard metrics such as the total
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throughput for strided and random memory access patterns on this machine.

These two memory access patterns are standards for comparing cross-system

performance. In fact, they are represented by the Stream [6] and RandomAccess

[4] benchmarks in the community’s HPC Challenge benchmark suite [1]. The ana-

lyst could find these benchmarks online and build, tune, verify, and execute each.

However, this is not always as simple as it should be. Platform-specific compiler

and hardware optimizations may alter the benchmark’s intended behavior. The

analyst would have to performance tune each benchmark, tinker with compiler

flags, and likely even hand edit the code to ensure full performance. This effort is

repeated anew for each benchmark.

Even after tuning, the benchmark’s behavior may still be unclear. For ex-

ample, performance counters report that the HPCC’s RandomAccess benchmark,

running on the Pentium D820, hits in L1 96% of the time and in L2, 10%. Is

the benchmark actually performing random access? The benchmark, its parame-

ters, the hardware, the performance counters, and the compiler are all suspects.

Perhaps none are guilty and the reported throughput is correct after all.

Instead of building and tuning multiple benchmarks, the analyst decides

to use the Chameleon benchmark since he is already familiar with it. He writes

two memory signatures by hand to describe the strided and random memory access

patterns. The random access pattern can be described by setting all of the model’s

parameters to 0, and the stride pattern by setting them all to 1. Chameleon also

allows him to control the size of the working set and the data types to be used.

Because Chameleon’s access pattern can be prescribed cleanly without in-

dex arrays or vulnerability to compiler optimizations, the resulting benchmarks

are more likely to exhibit the intended behavior and report the correct results.

Table 6.6 compares the observed cache hit rates and performances of Stream,

RandomAccess, and Chameleon at various levels of ILP. To mitigate error, only

the work loops of each application are instrumented. These results were derived

using the PAPI performance counter library on the Pentium D820.



84

Table 6.6: Synthetic benchmark performance on Pentium D820

Benchmark Pattern L1 L2 Performance (x108)
Stream stride 0.55 0.81 6.42

Chameleon1 stride 0.93 0.99 5.39
Chameleon4 stride 0.65 1.00 7.56
Chameleon20 stride 0.91 0.99 9.17

RandomAccess random 0.96 0.15 .05
Chameleon1 random 0.00 0.00 .11
Chameleon4 random 0.00 0.00 .33
Chameleon20 random 0.63 0.00 .45

We observe that the cache hit rates of the two benchmarks do not match

expectation. Perhaps this is due to index arrays or other timing overheads, but we

cannot know for sure without more in-depth analysis of the benchmarks.

Chameleon’s hit rates match expectations more closely. For instance, the

stream pattern with Chameleon1 hits within 1% of the theoretical maximum of

93.75% on the 64-byte wide L1. As 4-way parallelism is added, we see the ex-

pected L1 drop, accompanied by increased performance. We can safely increase

the parallelism to 20 without fear of hit under miss augmentations because the

stride pattern has no temporal reuse. We do see an increase in L1 hit rates due

to the index overflow issue, but we disregard all of these memory references when

calculating the total performance. The same analysis applies equally to the ran-

dom access pattern. The RandomAccess benchmark makes many superfluous L1

and some L2 references while Chameleon does not.

The unexpected hit rates would not necessarily be concerning, except that

the performance figures reported by the Stream and RandomAccess benchmarks

are incorrect. As the Chameleon runs demonstrate, it is possible to access the same

number of memory addresses, over the same workspace, using the same pattern,

in less time. The array sizes and data types are identical for each pattern’s tests.

The slowdown of RandomAccess may be somewhat explained by it performing
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only store operations, while Chameleon performs only loads. Stream only performs

loads as well.

6.4 Symbiotic Space-Sharing

Thus far, our discussion has illustrated how memory modeling can inform

system evaluation for benchmarking, procurement, and design efforts. It may

also go beyond mere observation and actually improve system performance as

well. Take for example, symbiotic space-sharing, a job scheduling technique that

attempts to execute parallel applications in combinations and configurations that

alleviate pressure on shared resources [68]. Memory behavior analysis can help

inform this technique and improve overall system throughput.

6.4.1 Background

Symmetric multiprocessor systems (SMP), such as the three testing plat-

forms used in this study, share memory resources among their processors to various

extents. As detailed in Section 1.7, the two processor on the Pentium D820 share

a single front side bus to memory. The two processors on the Centrino Duo share

that bus, as well as a single L2 cache. Memory resource sharing among the proces-

sor of the Power4’s 8-way nodes is even more complex: each processor receives a

dedicated L1 cache, but two processors must share a L2 cache, and all eight must

share L3 and bandwidth to main memory.

As one might expect, memory resource sharing leads to performance degra-

dation. The more heavily coexisting processes make use of a shared resource, the

more likely it is that the performance of that resource will suffer. Heavy use of a

shared cache might lead to lower hit rates, and consequently, lower per-processor

throughput.

Figure 6.9 illustrates how performance degrades on the Power4 as the pro-
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Figure 6.9: Performance degradation from memory sharing on the Power4

cessors on each node fill up. EP.B is a non-memory intensive member of the NAS

benchmark set. Stream and RandomAccess are synthetic memory benchmarks

from the HPCC as described in the previous section. As the 8-way node fills, the

performance of memory-intensive applications degrades precipitously.

Because the consequences of resource sharing are ill-understood, scheduling

policies on production space-shared systems avoid inter-job sharing wherever pos-

sible. The scheduling policy for SDSC’s DataStar system, for instance, provides

jobs with exclusive use of the nodes on which they run [2]. This is not an ideal

policy. Resource utilization and throughput suffers when small jobs occupy an

entire node while making use of only a few processors. The policy also encourages

users to squeeze large parallel jobs onto the fewest number of nodes possible since

doing otherwise is both costly and detrimental to system utilization. Such configu-

rations are not always optimal; the processes of parallel jobs often perform similar

computations, consequently stressing the same shared resources and exacerbating

the slowdown due to resource contention.

In such situations, a more flexible and intelligent scheduler could increase

the system’s throughput by more tightly space-sharing symbiotic combinations of

jobs that interfere with each other minimally. Such a scheduler would need to
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recognize relevant job characteristics, understand job interactions, and identify

opportunities for non-destructive space-sharing.

Previous studies have demonstrated that users who declare shared-resource

bottlenecks in submission scripts can improve job performance by 15-20% [69].

What is needed however, is a more precise and accessible approach.

6.4.2 Symbiotic Space-Sharing Using Memory Signatures

The challenge of symbiotic space-sharing is therefore the same as that of

many performance analysis problems, requiring a practical and consequential de-

scription of memory behavior. In HPC scenarios, this description could ideally

be extracted from applications by non-expert users and submitted to the sched-

uler along with the job. Over time, the scheduler can learn how different memory

signatures interact with one another on its particular system and anticipate that

similar signatures would interact similarly.

As shown in Section 6.1, Chameleon’s memory signatures are comparable

and can convey similarity between between the memory behavior of applications.

In this section, we demonstrate that they can also describe and predict runtime

interactions on shared memory resources.

Recall from Section 6.1 that four of the NAS benchmarks (BT, LU, SP, UA)

have highly similar memory signatures, though only the latter three have compara-

ble ILP. We would therefore predict that LU, SP, and UA should have comparable

reactions to being coscheduled with other applications on SMP systems.

An application’s space-sharing effects can be measured along two dimen-

sions: interference and sensitivity. The former is the performance detriment it

imposes on other applications and the latter is the reciprocal. We choose eight of

the NAS benchmarks and execute every combination on our three target systems,

measuring the sensitivity of each benchmark to every other in terms of observed

slowdown.
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Figure 6.10: NPB performance while space-sharing on Pentium D820

Figures 6.10, 6.11, and 6.12 report these measurements for each system. The

benchmarks are ordered along the X-axis by overall interference and in the legend

by overall sensitivity. We plot these figures using line graphs to help accentuate

emergent trends, not to imply interpolation.

While the interference and sensitivity orderings shift across machines, LU,

SP, and UA are almost always adjacent in both categories. The only exception is

that the sensitivities of UA on the Centrino, are slightly less aligned with those of

LU and SP than are those of FT.

As we anticipate, the performance interactions grow more complex with

more involved memory resource sharing. The Pentium D820, which shares only

a bus to memory among its processors, produces a clean interference ordering.

Presumably, all applications perform better with a cosecheduled process that makes

lighter use of the shared bus. The other two systems share multiple resources, and

consequently, less consensus exists.

These results imply that Chameleon’s memory signature, when coupled

with some knowledge of ILP, can be used to inform symbiotic space-sharing de-
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Figure 6.11: NPB performance while space-sharing on Centrino
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Figure 6.12: NPB performance while space-sharing on Power4
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cisions. If a scheduler could obtain these signatures, it could eventually learn to

identify symbiotic combinations, irrespective of the volatility of the actual work-

load.

Instead of relying only on the workload stream however, it may be possible

to train a scheduler using parameter sweeps of the Chameleon benchmark itself.

To illustrate this, let us take Chameleon’s approximation of LU, which has the

smallest performance error of the tests reported in Section 5.8.3. Tables 6.7 and

6.8 compare the sensitivity and interference numbers of LU.A and the Chameleon

benchmark targeting that application on the Pentium D820. These measurements

convey that the symbiotic properties of LU.A and its Chameleon counterpart are

similar and should motivate future research investigating the possibility of using

Chameleon as a space-sharing proxy.

Table 6.7: Relative sensitivities of LU and Chameleon on Pentium D820

EP.A BT.A FT.A SP.A UA.A LU.A CG.A IS.B
LU.A 0.99 0.94 0.85 0.80 0.76 0.75 0.72 0.59

Chameleon 1.00 0.94 0.88 0.78 0.76 0.74 0.73 0.57

Table 6.8: Relative interference of LU and Chameleon on Pentium D820

Benchmark LU.A Chameleon
EP.A 1.00 1.00
BT.A 0.94 0.93
FT.A 0.84 0.83
SP.A 0.81 0.80
CG.A 0.76 0.75
LU.A 0.77 0.79
UA.A 0.73 0.72



Chapter 7

Related Work

As described in the opening chapter, an incredible breadth of work has

addressed locality modeling over the past 40 years. While a complete survey would

merit its own publication, this chapter touches on some important contributions.

7.1 Locality Models and Synthetic Traces

One of the earliest reference models, the independent reference model, was

introduced in 1971 by Denning [9, 25]. It is noteworthy because unlike most

subsequent models, it is not based on locality per se, but rather, on the independent

probability of referencing each address.

Temporal locality, and reuse distance in particular, has been an extremely

popular basis for quantifying locality. Reuse distance was first studied by Mattson

et. al around 1970 [45]. Multiple studies, as recently as 2007, have leveraged these

ideas to create locality models and synthetic trace generators based on sampling

from an application’s reuse distance CDF [11, 18, 26, 32, 33]. Many works have also

used reuse distance analysis for program diagnosis and compiler optimization [26,

49, 72]. The Chameleon framework distinguishes itself by eliminating error when

block widths are known and by modeling spatial locality to capture application
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behavior under various block widths; all previous approaches used fixed block

widths.

In 2004, Berg proposed StatCache, a probabilistic technique for predicting

miss rates on fully associative caches [16, 15]. His model is a histogram of reference

distances with a fixed cache width. The Chameleon framework also effectively

predicts hit rates on caches of a particular width, but also does so when widths

change. The ability to create synthetic traces and benchmarks also distinguishes

Chameleon from this work.

Spatial locality has traditionally been quantified using strides. The most

straightforward approach is the distance model, which captures the probability of

encountering each stride distances [57]. Thiebaut later refined this idea by ob-

serving that stride distributions exhibit a fractal pattern governed by a hyperbolic

probability function [63, 62, 64]. In recent years, the PMaC framework has focused

on spatial locality but added a temporal element by including a lookback window

[22, 51].

As discussed in Chapter 2, an interesting hybrid approach that fuses spatial

and temporal locality into locality surfaces was introduced by Grimsrud [31, 30].

Sorenson later studied a refinement of this idea extensively [54, 53, 37, 56, 55].

Neither Grimsrud nor Sorenson however, proposed techniques for converting their

characterizations into synthetic traces.

Conte and Hwu described the inter-reference temporal and spatial density

functions to quantify spatial and temporal locality separately [24]. More recently,

Weinberg et al have proposed spatial and temporal locality “scores” for describing

the propensity of applications to benefit from temporal and spatial cache optimiza-

tions [67].
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7.2 Measuring Reuse Distance

Techniques for collecting reuse distance distributions have been studied ex-

tensively over the past four decades. Mattson’s original approach was to use a

stack [45]. Bennet and Kruskal improved this technique by using a tree structure

to search for elements [14]. Later proposals include Olken’s AVL tree [46], Sugumar

and Abraham’s splay tree [61], and Almasi’s “hole” algorithms [10].

In 1991, Kim et al proposed a method similar to that used by Chameleon’s

tracer [39]. They used a single hashtable to locate elements in the stack and marked

each element with the smallest sized cache that holds it.

Ding et al provide a useful summary of the runtime complexity of these and

other proposals [26].

7.3 Tunable Synthetic Benchmarks

Work on tunable synthetic benchmarks has been somewhat scarce. Wong

and Morris argued mathematically that benchmarks can be synthesized to match

the LRU cache hit function when block widths are known [71]. They hypothesized

that multiple benchmarks could be manually stitched together through replication

and repetition to match arbitrary reuse distributions. Chameleon represents the

manifestation of these ideas into a practical framework.

More recently, Strohmaier and Shan developed the tunable memory bench-

mark Apex-Map [59, 60]. The benchmark accepts one spatial and one temporal

parameter, allowing users to compare architectures via large parameter sweeps.

However, as discussed in Section 5.2, Apex-Map’s locality parameters are not ob-

servable and the use of an index array limits the benchmark’s range. Chameleon

extends this idea by building on an observable model and eliminating the index

array.

The MultiMaps benchmark [3], also discussed in Section 5.2, is similarly able
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to exhibit a range of memory access patterns. However, because it is not grounded

in a general characterization of memory behavior, its relationships to other ap-

plications is nebulous. It is also difficult to determine the breadth or complete-

ness with which it covers memory behavioral space. The Chameleon benchmark

addresses these issues by basing its memory behavior directly on an observable

characterization of reference locality that is capable of describing the full breadth

of cache-observable memory behavior.



Chapter 8

Future Work

There are several studies and extensions to Chameleon that constitute im-

portant future work. Of these, an elegant extension to address ILP is foremost.

At its core, Chameleon’s memory characterization quantifies locality in memory

access patterns. As such, it can predict the cache hit rates of applications. As this

work has shown however, hit rates alone are not always sufficient for forecasting

performance. Memory dependencies that dictate the degree of instruction-level

parallelism exposed by an application to the machine can commonly alter per-

formance by 2-4x. What is needed is a sound methodology for quantifying and

extracting the level of ILP from an application. Whether gleaned from runtime or

static analysis, this quantification should be added to the memory signature and

integrated seamlessly with Chameleon’s synthetic address trace generator.

In conjunction with the locality characterization, an ILP quantification

would enable a more textured evaluation of program and architectural optimiza-

tions and interactions. As importantly, its integration would allow the Chameleon

benchmark to fulfill its promise as an accessible, executable benchmark proxy for

applications. Chameleon’s runtime capabilities could be equally applied to sim-

plifying performance prediction, anticipating runtime interactions of space-shared

applications, and studying the comparative ILP capabilities of architectures.
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Another interesting refinement of this work would be a study of the cache

surface characterization itself. Given a broad workload, what is the tradeoff be-

tween the model’s granularity and accuracy? For example, do we need 17 LRU

caches or do 8 suffice? Perhaps these should be collected at non-uniform points

that conform to the particular curves and knees of each application. Also, the

granularity of α values collected for this work is certainly more fine than is needed.

How well can these be compressed without losing accuracy? It is most likely that

they too can be chosen at application specific sizes. It may be possible to decrease

the size of the characterization to a great extent, enabling simpler comparisons.

Characterization compression may help the development of a symbiotic

space-sharing scheduler. This work has suggested that such a scheduler may em-

ploy a learning algorithm to compare application signatures. It would be interest-

ing to investigate such an algorithm and determine the relationship between the

required training set size and achieved accuracy. This study would also naturally

require a fuller investigation for the locality and ILP quantifications’ combined

ability to predict runtime space-sharing interaction. Another interesting question

would be how best to quantify similarity between signatures for this purpose and

how disparate these surfaces truly are.

The study could employ parameter sweeps of the Chameleon benchmark

to map the interactivity between applications of various signatures. Perhaps this

could lend insight not only into the ability of memory signatures to forecast sym-

biosis, but also into the nature of interaction on specific architectures. Perhaps a

certain type of memory hierarchy design is less prone to detrimental interactions

between common application signatures than is another.

As a pure locality model Chameleon can be applied to many novel applica-

tion studies. For example, the characterization can be used to compare and study

scaling behavior for large-scale applications. Strong scaling-studies, whereby ana-

lysts investigate the effects of increasing processor counts on parallel codes while

holding the input data set steady, necessitate a memory behavior characteriza-
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tion. Observed performances are unsteady because of the stepwise delay penalties

of cache hierarchy levels. Chameleon’s locality characterization can provide such

studies a smooth intermediate level of abstraction, enabling interpolation and ex-

trapolation of runtime behavior.



Chapter 9

Conclusions

This work has presented practical solutions to three pervasive problems in

memory performance analysis: memory behavior characterization, accurate syn-

thetic address trace generation, and tunable memory benchmarking with clear

relationships to applications. The major contributions are:

Unified Reference Locality Model - This work describes the state of refer-

ence locality analysis in the field of memory modeling and compares the

relative strengths and shortcomings of various approaches. It argues that

many seemingly disjoint proposals actually converge on a single unified

memory reference model and describes this model’s relationship to caches

and cache hit rates.

This work introduces a new definition of spatial locality, α, that suffices to

characterize a memory stream’s behavior as defined by the unified locality

model. The α properties of applications can be tractably captured using

memory address tracing and leveraged to create synthetic address traces.

Fast Memory Tracing for Locality Analysis - This work describes the im-

plementation of two memory tracers for collecting the memory signatures

of applications with minimal slowdown. One tracer, built using the Pin
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instrumentation library for x86 architectures, can capture the memory sig-

natures of serial codes with approximately 30x slowdown. A second tracer,

built using the PMaCInst instrumentation library for Power architectures,

can capture the memory signatures of parallel codes with approximately 5x

slowdown. The interval and basic block sampling techniques used by these

tracers can reduce tracing overheads by as much as two orders of magnitude

without significant loss of accuracy.

This dissertation also contributes to the current body of work regarding fast

LRU cache simulation by describing an algorithm and accompanying data

structures for fast simulation of multiple, fully-associative, LRU caches.

Accurate Synthetic Address Traces - This work describes the implementa-

tion of a synthetic address stream generator that can convert memory sig-

natures into synthetic address traces with cache hit rates nearly identical to

those of target applications. It introduces an iterative correction technique

that enables the stream generator to mimic hit rates on caches of known

width without error. The stream generation technique is also the first pro-

posal to offer tunable hit rates, simultaneously on caches of disparate widths

and depths.

Using the NAS benchmarks and 68 cache configurations, the results pre-

sented in this work verify that the synthetic address traces produce LRU

cache hit rates that are, on average, within 2% of those produced by the

original applications. Using a cache simulation of 46 commercially avail-

able, set associative cache hierarchies, they further verify that these traces

produce hit rates on real-world machines that are highly comparable to

those of target applications.

Tunable Memory Benchmark - This dissertation described the implementa-

tion of the Chameleon benchmark, a fully-tunable synthetic memory bench-
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mark with memory behavior that is dictated by the framework’s memory

signatures. The benchmark concept calls for a modified synthetic address

trace generator with extended accuracy adjustment capabilities, which are

described as well.

Using the NAS benchmarks, measurements reveal that Chameleon’s hit

rates are comparable to those of target applications on the same 68 LRU

caches used to evaluate the framework’s synthetic streams. Further, read-

ings from the PAPI performance counter library confirm that the bench-

mark also produces comparable hit rates on a non-trivial, real world cache

hierarchy.

Lastly, this work describes the implementation and evaluation of an auto-

mated scheme for exposing various degrees of instruction-level parallelism

to the Chameleon benchmark through a compile-time flag.

The Chameleon Framework outlined in this dissertation, can be used to

describe, compare, and mimic the memory access patterns of arbitrary serial or

parallel applications. The solution is unique in this space due to its combination

of high accuracy, ability to model spatial locality, and tractable tracing time for

even large-scale, parallel codes.

Chameleon can be leveraged in application analysis, architecture evalua-

tion, performance prediction, and benchmark development. It enables users to

understand their workloads and describe them to vendors. It enables vendors to

understand customer requirements and evaluate system designs more quickly, accu-

rately, cheaply, and completely by using synthetic memory traces with transparent

relationships to realistic workloads.



Appendix A

Example Memory Signature

This is a sample memory signature in the format output by the Chameleon

tracer. The metadata at the top reports the number of instructions simulated, the

sampling rate, the maximum block width used to calibrate the temporal locality

parameters. Size of word is the smallest load unit assumed by the tracer and the

“using access sizes” flag designates whether the tracer performed multiple reads

when more than one word was requested or treated all reads as a single word.

The bin number corresponds to the basic block sequence id for block-

sampled codes. Those that were not block-sampled, such as this example, contain

only a single bin.

The temporal values are reported as a series of hit rates on fully associative

LRU caches of increasing size. The spatial locality parameters are reported next.

P (2N) is shorthand for α(2N , 2N+1). The reported average value is the α value for

that working set size.

The value is also broken down by reuse distances to provide higher granu-

larity. For example, the line “Reuse(2^2) = 0.497281 (3932/7907)” under “P(2^4)”

indicates that memory accesses with reuse distance=R, {R|21 < R ≤ 22}, have

a 49.7% probability of reusing working sets of size 24 and that this number was

derived by observing 3932 reuses out of 7907 trials.
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Instructions Seen : 0x429*10^7 + 1652644414

Instructions Simulated : 55000000

Simulation limit : 4294967285

Sample rate : 0.1

Line Length (bytes) : 512

Size of Word (bytes) : 4

Using access sizes : yes

Bin: 0

TEMPORAL LOCALIY (Reuse Distance CDF):

HitRate(2^0) = 0.392172

HitRate(2^1) = 0.693671

HitRate(2^2) = 0.693817

HitRate(2^3) = 0.694109

HitRate(2^4) = 0.694694

HitRate(2^5) = 0.695869

HitRate(2^6) = 0.698217

HitRate(2^7) = 0.702929

HitRate(2^8) = 0.712338

HitRate(2^19) = 0.731167

HitRate(2^10) = 0.768718

HitRate(2^11) = 0.843716

HitRate(2^12) = 0.9887

HitRate(2^13) = 0.997397

HitRate(2^14) = 0.997397

HitRate(2^15) = 0.997505

HitRate(2^16) = 0.997505

SPATIAL LOCALITY (Probability of Set Reuse):
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P(2^2):

Reuse(2^0) = 0.953847 (20078766/21050290)

Reuse(2^1) = 0.000230828 (1980/8577821)

Reuse(2^2) = 0.497281 (3932/7907)

Reuse(2^3) = 0.492609 (7798/15830)

Reuse(2^4) = 0.503193 (15916/31630)

Reuse(2^5) = 0.502397 (31966/63627)

Reuse(2^6) = 0.498101 (63348/127179)

Reuse(2^7) = 0.4999 (127630/255311)

Reuse(2^8) = 0.499974 (254791/509608)

Reuse(2^9) = 0.49957 (509334/1019545)

Reuse(2^10) = 0.500176 (1017036/2033357)

Reuse(2^11) = 0.500326 (2031886/4061126)

Reuse(2^12) = 0.500253 (3927421/7850876)

Reuse(2^13) = 0.500014 (235502/470991)

Reuse(2^14) = 0 (0/1)

Reuse(2^15) = 0.00236486 (14/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.614295 (2.83073e+07/4.6081e+07)

P(2^3):

Reuse(2^0) = 0.977263 (20823354/21307827)

Reuse(2^1) = 0.654317 (8231385/12580114)

Reuse(2^2) = 0.500502 (3992/7976)

Reuse(2^3) = 0.503574 (8031/15948)

Reuse(2^4) = 0.501802 (16009/31903)

Reuse(2^5) = 0.501139 (32132/64118)

Reuse(2^6) = 0.497909 (63815/128166)
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Reuse(2^7) = 0.500949 (128868/257248)

Reuse(2^8) = 0.499742 (256688/513641)

Reuse(2^9) = 0.500734 (514651/1027794)

Reuse(2^10) = 0.499773 (1024338/2049607)

Reuse(2^11) = 0.499873 (2046199/4093439)

Reuse(2^12) = 0.499824 (3955321/7913431)

Reuse(2^13) = 0.500105 (237428/474756)

Reuse(2^14) = 0 (0/1)

Reuse(2^15) = 0.00253378 (15/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.739862 (3.73422e+07/5.04719e+07)

P(2^4):

Reuse(2^0) = 0.988752 (21195483/21436596)

Reuse(2^1) = 0.850998 (12408627/14581264)

Reuse(2^2) = 0.495258 (3969/8014)

Reuse(2^3) = 0.495632 (7942/16024)

Reuse(2^4) = 0.503933 (16146/32040)

Reuse(2^5) = 0.499705 (32170/64378)

Reuse(2^6) = 0.498454 (64147/128692)

Reuse(2^7) = 0.500246 (129187/258247)

Reuse(2^8) = 0.499964 (257799/515635)

Reuse(2^9) = 0.499792 (515725/1031880)

Reuse(2^10) = 0.499668 (1028133/2057634)

Reuse(2^11) = 0.499533 (2052928/4109696)

Reuse(2^12) = 0.5001 (3973178/7944769)

Reuse(2^13) = 0.500283 (238404/476538)

Reuse(2^14) = 1 (1/1)



105

Reuse(2^15) = 0.00253378 (15/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.796013 (4.19239e+07/5.26673e+07)

P(2^5):

Reuse(2^0) = 0.994458 (21381819/21500981)

Reuse(2^1) = 0.930395 (14497269/15581839)

Reuse(2^2) = 0.497072 (3989/8025)

Reuse(2^3) = 0.502553 (8070/16058)

Reuse(2^4) = 0.506447 (16261/32108)

Reuse(2^5) = 0.501907 (32374/64502)

Reuse(2^6) = 0.500849 (64571/128923)

Reuse(2^7) = 0.499277 (129180/258734)

Reuse(2^8) = 0.501486 (259066/516597)

Reuse(2^9) = 0.499946 (516876/1033864)

Reuse(2^10) = 0.499989 (1030828/2061703)

Reuse(2^11) = 0.500061 (2059119/4117737)

Reuse(2^12) = 0.50026 (3982350/7960567)

Reuse(2^13) = 0.500632 (239044/477484)

Reuse(2^14) = 1 (1/1)

Reuse(2^15) = 0.00456081 (27/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.822483 (4.42208e+07/5.3765e+07)

P(2^6):

Reuse(2^0) = 0.997288 (21474782/21533173)

Reuse(2^1) = 0.966385 (15541521/16082129)
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Reuse(2^2) = 0.502802 (4038/8031)

Reuse(2^3) = 0.495054 (7958/16075)

Reuse(2^4) = 0.499347 (16052/32146)

Reuse(2^5) = 0.496872 (32082/64568)

Reuse(2^6) = 0.500899 (64642/129052)

Reuse(2^7) = 0.499836 (129444/258973)

Reuse(2^8) = 0.499123 (258120/517147)

Reuse(2^9) = 0.50067 (518126/1034865)

Reuse(2^10) = 0.499495 (1030862/2063808)

Reuse(2^11) = 0.499827 (2060175/4121773)

Reuse(2^12) = 0.500315 (3986662/7968307)

Reuse(2^13) = 0.500869 (239383/477935)

Reuse(2^14) = 1 (1/1)

Reuse(2^15) = 0.00422297 (25/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.835217 (4.53639e+07/5.43139e+07)

P(2^7):

Reuse(2^0) = 0.9987 (21521263/21549269)

Reuse(2^1) = 0.983556 (16063704/16332273)

Reuse(2^2) = 0.500062 (4017/8033)

Reuse(2^3) = 0.497045 (7990/16075)

Reuse(2^4) = 0.497917 (16015/32164)

Reuse(2^5) = 0.498754 (32219/64599)

Reuse(2^6) = 0.501196 (64719/129129)

Reuse(2^7) = 0.500843 (129772/259107)

Reuse(2^8) = 0.499872 (258624/517380)

Reuse(2^9) = 0.499621 (517287/1035358)
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Reuse(2^10) = 0.499422 (1031200/2064785)

Reuse(2^11) = 0.500088 (2062276/4123830)

Reuse(2^12) = 0.499808 (3984576/7972208)

Reuse(2^13) = 0.500159 (239176/478200)

Reuse(2^14) = 1 (1/1)

Reuse(2^15) = 0.00489865 (29/5920)

Reuse(2^16) = NA (0/0)

Avg = 0.841441 (4.59329e+07/5.45883e+07)

P(2^8):

Reuse(2^0) = 0.999411 (21544626/21557317)

Reuse(2^1) = 0.991941 (16324715/16457346)

Reuse(2^2) = 0.50504 (4058/8035)

Reuse(2^3) = 0.500435 (8046/16078)

Reuse(2^4) = 0.501943 (16148/32171)

Reuse(2^5) = 0.499745 (32287/64607)

Reuse(2^6) = 0.501208 (64733/129154)

Reuse(2^7) = 0.499639 (129494/259175)

Reuse(2^8) = 0.499385 (258431/517499)

Reuse(2^9) = 0.499831 (517625/1035600)

Reuse(2^10) = 0.499119 (1030813/2065266)

Reuse(2^11) = 0.499513 (2060434/4124889)

Reuse(2^12) = 0.49974 (3985005/7974158)

Reuse(2^13) = 0.500596 (239451/478332)

Reuse(2^14) = 1 (1/1)

Reuse(2^15) = 0.00743243 (44/5920)

Reuse(2^16) = NA (0/0)
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Avg = 0.844503 (4.62159e+07/5.47255e+07)
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