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Abstract of the Dissertation

Secure Computation from Hardware Assumptions

by

Akshay Wadia

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Rafail Ostrovsky, Co-chair

Professor Amit Sahai, Co-chair

Highly concurrent environments, like the Internet, present new challenges towards design of

secure cryptographic protocols. Indeed, it is known that protocols proved secure in the so

called ‘stand-alone’ model, where a protocol is assumed to execute in isolation, are no longer

secure in a concurrent environment. In fact, the case of arbitrary composition is so severe

that no security can be achieved without an external secure set-up. Numerous such set-ups

have been proposed in the literature, each with its own advantages and disadvantages. In this

thesis, we study two new set-ups motivated by recent advances in secure hardware design:

tamper-proof tokens, and physically uncloneable functions. For both set-ups, we provide

universally composable protocols for general cryptographic tasks. Additionally, our protocols

using tamper-proof tokens are information-theoretically secure, and non-interactive.
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CHAPTER 1

Introduction

Consider two parties, Alice and Bob, each of whom holds private inputs xA and xB, respec-

tively. They wish to compute a joint function f(xA, xB) = (yA, yB) over their inputs in such a

way, that the other party does not learn anything about their private inputs. This is known

as the problem of secure computation. This problem has attracted tremendous attention

over the history of cryptographic research, and continues to occupy a marquee position in

the field. Various axes along which secure computation has been studied include the kind

of security obtained (for eg., computational vs. information theoretic), complexity of the

algorithm that the parties run, number of rounds in the protocol, etc. An important and

well studied generalization of the problem is to the setting of more than two parties, but

we will focus exclusively on the two party case in this thesis. A good discussion of various

introductory results in this area can be found in [Gol01, Gol04].

The classical setting in which secure computation was studied is the so called stand-alone

setting. In this setting, it is assumed that the protocol is being run in isolation. Research

in this setting culminated in the discovery of general protocols for any polynomial-time

functionality [GMW87]. However, the assumption of isolation is not tenable in the presence

of highly concurrent environments like the Internet. For example, on your laptop, you may

be logging in to your online banking account, while chatting with a friend on a messenger

service, while checking your mail. All these protocols are running concurrently and with

arbitrary interleaving on your laptop. Thus, there is a need to analyze protocols in such a

concurrent setting.

A formal framework to study security in a concurrent setting was described by Canetti [Can01a].

This notion of security is known as Universally Composable (UC) security. It was soon ob-
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served that stand-alone security is not sufficient for UC security. In fact, it was shown by

Canetti and Fischlin [CF01] that UC security is impossible to obtain without set-up assump-

tions. A set-up is a functionality that both parties have access to during protocol execution.

It is assumed that this functionality is provided to the protocol externally, and its security

properties do not need to be established within the protocol. For example, one of the first

set-up assumptions considered was the so called Common Reference String (CRS). The CRS

functionality simply samples a string of appropriate length from a pre-specified distribution

and sends it to both the parties. Given this simple functionality, it can be shown how UC

security can be achieved.

Given that the formal security proof simply assumes the security of the set-up, it is

natural to ask which set-ups are valid to consider. For instance, what prevents us from

choosing a set-up that is so strong, that it trivializes the task of protocol construction?

Because of these issues, we focus only on those set-ups that have strong heuristic guarantees

in real life. Consider a variant of the CRS set-up, known as the Common Random String

model, where the underlying distribution is uniform over the set of string of appropriate

length. There are many proposed heuristics to implement this set-up. For instance, taking

the average of the stock price of a particular stock over the past ten years as the random

string can be considered heuristically uniform. Another proposal is to measure variations in

solar activity over a period of time.

The heuristic nature of set-ups strongly motivates the discovery and investigation of

a variety of different set-up assumptions. Motivated by developments in secure hardware

manufacturing, researchers have recently considered set-ups based on hardware assumptions.

These set-ups involve parties using and physically exchanging actual hardware devices during

the course of a protocol. In this thesis, we will study two hardware based set-up assumptions,

and show how UC security can be achieved using them. The set-ups we consider are:

Tamper-proof Hardware Tokens: These are hardware boxes that a sender can initialize

with any polynomial time functionality. The tamper-proof property guarantees that

the receiver has access only to the input/output behaviour of the functionality, and
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can not learn anything else about the functionality.

Physically Uncloneable Functions: These are hardware boxes that provide an implementa-

tion of a random function. Further, the randomness is obtained from complex physical

properties of materials used in the construction of these boxes. This prevents an ad-

versary from cloning such a box, and thus a party can evaluate the box only when it

is in its possession.

The organization of the thesis is as follows. In Chapter 2, we formally model tamper-

proof tokens. In Chapter 3, we give a non-interactive unconditional UC secure protocol

for any functionality. This protocol relies on stateful tokens, that is, tokens which retain

state over execution. In Chapter 4, we consider the simpler stateless tokens, and give a UC

protocol that relies on cryptographic assumptions. In Chapter 5 we introduce Physically

Uncloneable Functions, and provide the formal model. Finally, in Chapter 6 we provide UC

secure protocol for general functionalities in the Physically Uncloneable Function model.
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CHAPTER 2

Modeling Tamper-Proof Hardware

Our model for tamper-proof hardware is similar to that of Katz ([Kat07]). However, as we

consider both stateful and stateless tokens, we define different ideal functionalities for the

two. Here, we formally define the ideal functionalities F singlewrap , for single use stateful tokens,

and F statelesswrap for stateless tokens.

The functionality F singlewrap is used to model hardware tokens that can be executed only

once. Thus, the only state these tokens keep is a flag which indicates whether the token has

been run or not. To model this behaviour, F singlewrap deletes the token from its memory after

it has been run once. The formal description of F singlewrap is presented in Figure 2.1.

Next, we define the functionality F statelesswrap that models stateless tokens. The idea of

F statelesswrap , described in Figure 2.2, is to model the following real-world functionality: party

Pi sends a stateless token M to party Pj. Since the token is stateless, Pj can run M multiple

times on inputs of its choice. Thus, F statelesswrap saves the description of the Turing machines

it gets from a party in create messages, and lets the other party run them multiple times.

Each machine is uniquely identified by a machine identifier mid.

One can also consider a variant of F statelesswrap which allows a malicious sender to generate

stateful tokens. Our protocols which use stateless tokens are secure in this more adversarial

setting as well. (This is automatically the case in all protocols for which an honest receiver

makes only a single use of each token.)

We are interested in non-interactive protocols in which the communication involves a

single batch of tokens sent from a “sender” to a “receiver”. (One could also allow the sender

to send a message to a receiver; however, from a feasibility point of view this could also be

done in the simpler model in which only tokens are sent.)
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Functionality F singlewrap

F singlewrap is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create Upon receiving (create, sid, Pi, Pj,mid,M) from Pi, where M is a Turing

machine and mid is machine id, do:

1. Send (create, sid, Pi, Pj,mid) to Pj.

2. Store (Pi, Pj,mid,M).

Execute Upon receiving (run, sid, Pi,mid,msg) from Pj, find the unique stored tuple

(Pi, Pj,mid,M) (if no such tuple exists, do nothing). Choose random r ← { 0, 1 }p(k).

Run M(msg; r) for at most p(k) steps, and let out be the response (out =⊥ if M does

not halt in p(k) steps). Send (sid, Pi,mid, out) to Pj, and delete (Pi, Pj,mid,M).

Figure 2.1: Ideal functionality for single-use stateful tokens

Definition 1. (Non-Interactive Protocols in the Tamper-Proof Hardware Model) A two-party

protocol Π = (P1, P2) is non-interactive if the only messages sent by P1 are create messages

to F singlewrap (or F statelesswrap ) and the only messages sent by P2 are run messages to F singlewrap (or

F statelesswrap ).

2.1 One-Time Programs

Informally, a one-time program (OTP) [GKR08] for a function f lets a party evaluate f

on only one input chosen by that party at run time. The intuitive security goal is that no

efficient adversary, after evaluating the one-time program on x, can learn anything about

f(y) for some y 6= x, other than what can be inferred from f(x). In our constructions, OTPs

will be used within other protocols, thus it would be convenient for us to view them as

two-party non-interactive protocols in the hardware token model, which are secure against

malicious receivers. We thus view OTP as implementing a two-party functionality f(·, ·)
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Functionality F statelesswrap

F statelesswrap is parameterized by a polynomial p(·) and an implicit security parameter κ.

Create Upon receiving (create, sid, Pi, Pj,mid,M) from Pi, where M is a Turing

machine, do:

1. Send (create, sid, Pi, Pj,mid) to Pj.

2. Store (Pi, Pj,mid,M).

Execute Upon receiving (run, sid, Pi,mid,msg) from Pj, find the unique stored tuple

(Pi, Pj,mid,M). If no such tuple exists, do nothing. Run M(msg) for at most p(k)

steps, and let out be the response (out =⊥ if M does not halt in p(k) steps). Send

(sid, Pi,mid, out) to Pj.

Figure 2.2: Ideal functionality for stateless tokens

(where the description of f is known to both parties), where the first (secret) input is fixed

by the sender during construction.

Figure 2.3 defines the ideal functionality for a one-time program for function f(·, ·).

Functionality FOTPf

Create Upon receiving (create, sid, Pi, Pj, x) from Pi, where x is a string, do:

1. Send (create, sid, Pi, Pj) to Pj.

2. Store (Pi, Pj, x).

Execute Upon receiving (run, sid, Pi, y) from Pj, find the stored tuple (Pi, Pj, x) (if

no such tuple exists, do nothing). Send f(x, y) to Pj and delete tuple (Pi, Pj, x).

Figure 2.3: Ideal functionality for One-time Program for function f(·, ·).
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Now we define OTPs in the F singlewrap -hybrid model.

Definition 2. (One-Time Program for f(·, ·)) A one-time program for function f(·, ·) is

a two-party non-interactive protocol Π = (P1, P2) in the F singlewrap -hybrid model, such that

for every probabilistic polynomial time adversary A corrupting P2, there exists a probabilistic

polynomial time ideal-world adversary S called the simulator, such that for every environment

Z,

IDEAL
FOTP

f

S,Z ∼ REALΠ,A,Z .

One way of implementing OTPs using hardware tokens is to construct stateful hardware

tokens that contain the entire code of the function f(x, ·). However, like in [GKR08] we would

like to use only the simplest kind of hardware tokens in our protocols. To this end, we focus

on using one-time-memory (OTM) tokens only. OTM tokens realize the ideal functionality

defined in Figure 2.5.

2.2 Flavors of OT

The ideal OT functionality required by unconditionally secure protocols in the OT-hybrid

model [Kil88, IPS08] is denoted by FOT and is formally defined in Figure 2.4.

Functionality FOT

On input (Pi, Pj, sid, id, (s0, s1)) from party Pi, send (Pi, Pj, sid, id) to Pj and store the

tuple (Pi, Pj, sid, id, (s0, s1)).

On receiving (Pi, sid, id, c) from party Pj, if a tuple (Pi, Pj, sid, id, (s0, s1)) exists, return

(Pi, sid, id, sc) to Pj, send an acknowledgment (Pj, sid, id) to Pi, and delete the

tuple (Pi, Pj, sid, id, (s0, s1)). Else, do nothing.

Figure 2.4: Ideal functionality for OT

Following [GKR08], we refer to simple hardware tokens that implement a single OT call

as OTM (one-time-memory) tokens. We give the formal definition of OTM tokens here, and

discuss these tokens in detail in Section 3.1. OTM tokens are defined in Figure 2.5.
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Functionality OTM

On input (Pi, Pj, sid, id, (s0, s1)) from party Pi, send (Pi, Pj, sid, id) to Pj and store the

tuple (Pi, Pj, sid, id, (s0, s1)).

On receiving (Pi, sid, id, c) from party Pj, if a tuple (Pi, Pj, sid, id, (s0, s1)) exists, return

(Pi, sid, id, sc) to Pj and delete the tuple (Pi, Pj, sid, id, (s0, s1)). Else, do nothing.

Figure 2.5: Ideal functionality for OTM tokens

We also define a parallel version of the OTM functionality, denoted pOTM, which allows

the receiver to make several parallel OTM choice. Note that unlike a direct implementation

using separate OTM tokens, this functionality requires the receiver to make all its choices

at once, and does not allow a malicious receiver to determine its choice bits in an adaptive

fashion. The ideal functionality for pOTM is defined in Figure 2.6.

Functionality pOTM

pOTM is parameterized by an integer k.

On input (Pi, Pj, sid, id, ((s
1
0, s

1
1), . . . , (sk0, s

k
1)))) from party Pi, send (Pi, Pj, sid, id) to

Pj and store the tuple (Pi, Pj, sid, id, ((s
1
0, s

1
1), . . . , (sk0, s

k
1)))).

On receiving (Pi, sid, id, (c
1, . . . , ck)) from party Pj, if a tuple

(Pi, Pj, sid, id, ((s
1
0, s

1
1), . . . , (sk0, s

k
1))) exists, return (Pi, sid, id, (s

1
c1 , . . . , s

k
ck

)) to Pj

and delete the tuple (Pi, Pj, sid, id, ((s
1
0, s

1
1), . . . , (sk0, s

k
1))). Else, do nothing.

Figure 2.6: Ideal functionality for parallel-OTM.

Finally, the ExtOTM functionality differs from OTM in that it takes an additional input

r from the sender, and delivers this input to the receiver together with its chosen string sc.

This functionality is described in Figure 2.7. It is easy to see that a protocol for the ExtOTM

functionalities allows us to realize the FOTfunctionality as required by [Kil88, IPS08].
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Functionality ExtOTM

On input (Pi, Pj, sid, id, ((s0, s1), r)) from party Pi, send (Pi, Pj, sid, id) to Pj and store

the tuple (Pi, Pj, sid, id, ((s0, s1), r)).

On receiving (Pi, sid, id, c) from party Pj, if a tuple (Pi, Pj, sid, id, ((s0, s1), r)) exists,

return (Pi, sid, id, sc, r) to Pj and delete the tuple (Pi, Pj, id, ((s0, s1), r)). Else, do

nothing.

Figure 2.7: Ideal functionality for ExtOTM

2.3 Other Definitions

Definition 3. (Computational Indistinguishability) Two distribution ensembles X := {Xn }n∈N
and Y := {Yn }n∈N are computationally indistinguishable (written as X ∼ Y ) if for

every probabilistic polynomial-time algorithm D, every positive polynomial p(·), and all suf-

ficiently large n’s,

|Pr [D(Xn, 1
n) = 1 ]− Pr [D(Yn, 1

n) = 1 ] | ≤ 1

p(n)
.

The statistical difference between two distribution ensembles X := {Xn }n∈N and Y :=

{Yn }n∈N is defined by

∆(n) =
1

2

∑
α

|Pr [Xn = α ]− Pr [ Yn = α ] |.

Ensembles X and Y are statistically close if the their statistical difference is negligible in

n.

Now we define the next-message function of an interactive TM P :

Definition 4. (Next Message Function) Let P be an interactive TM. The next message

function for round i of P is the function P x,r
i (), which on input (m1, . . . ,mi, si−1), outputs

(m̂i, si), where m̂i is the message output by P on input x and random input r, after receiving

m1, . . . ,mi in previous rounds, and si−1 and si contain auxiliary state information for rounds

i− 1 and i respectively.
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Commitments. We will use the two-round statistically binding commitment scheme com

([Nao91]). To recall, to commit to bit b, the first message in Naor’s scheme is a random string

r from receiver to sender. Then the sender responds with either G(s) or G(s)⊕ r depending

of whether b = 0 or b = 1, where G(·) is a pseudo-random generator, and s is a randomly

chosen seed. To decommit, the sender sends (b, s) to the receiver. We observe that Naor’s

scheme has the property that the same r can be used for committing to (polynomially)

many bits. Thus, once the receiver’s string has been initially exchanged, we essentially have

a non-interactive commitment function. For receiver’s message r, denote sender’s response

by comr(b), where b is the bit being committed. Abusing terminology, we will call comr(b)

the commitment to bit b. When the randomness used in the first message is clear from the

context, we will drop the subscript r, and will denote the committed string by com(b). The

opening of a commitment α is denoted by open(α) and consists of the committed bit b and

seed s (the randomness r is implicit).

Unconditional One-Time MAC. By (MAC, V F ), we will denote an unconditional one-

time message authentication scheme, where MACk(m) represents tagging message m with

key k, and V Fk(m,σ) denotes the verification algorithm, which returns 1 if σ is the correct

tag of m under key k. An example of such a MAC is as follows: the key k is a pair of κ

length strings (a, b) (where κ is the security parameter). The tag of message m with key

k = (a, b) is a ·m+ b, where all operations are in GF (2κ).

2.3.1 The UC Model

We use the UC-framework of Canetti [Can01b] to capture the general notion of secure com-

putation of (possibly reactive) functionalities. Our main focus is on the two-party case. We

will usually refer to one party as a “sender” and to another as a “receiver”. A non-reactive

functionality may receive an input from each party and deliver output to each party (or

only to the receiver). A reactive functionality may have several rounds of inputs and out-

puts, possibly maintaining state information between rounds. We begin by defining protocol

syntax, and then informally review the UC-framework. For more details, see [Can01b].
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Protocol syntax. Following [GMR89] and [Gol01], a protocol is represented as a system

of probabilistic interactive Turing machines (ITMs), where each ITM represents the program

to be run within a different party. Specifically, the input and output tapes model inputs

and outputs that are received from and given to other programs running on the same ma-

chine, and the communication tapes model messages sent to and received from the network.

Adversarial entities are also modeled as ITMs.

The construction of a protocol in the UC-framework proceeds as follows: first, an ideal

functionality is defined, which is a “trusted party” that is guaranteed to accurately capture

the desired functionality. Then, the process of executing a protocol in the presence of an

adversary and in a given computational environment is formalized. This is called the real-

life model. Finally, an ideal process is considered, where the parties only interact with the

ideal functionality, and not amongst themselves. Informally, a protocol realizes an ideal

functionality if running of the protocol amounts to “emulating” the ideal process for that

functionality.

Let Π = (P1, P2) be a protocol, and F be the ideal-functionality. We describe the ideal

and real world executions.

The real-life model. The real-life model consists of the two parties P1 and P2, the envi-

ronment Z, and the adversary A. Adversary A can communicate with environment Z and

can corrupt any party. When A corrupts party Pi, it learns Pi’s entire internal state, and

takes complete control of Pi’s input/output behaviour. The environment Z sets the parties’

initial inputs. Let REALΠ,A,Z be the distribution ensemble that describes the environment’s

output when protocol Π is run with adversary A.

The ideal process. The ideal process consists of two “dummy parties” P̂1 and P̂2, the ideal

functionality F , the environment Z, and the ideal world adversary S, called the simulator. In

the ideal world, the uncorrupted dummy parties obtain their inputs from environment Z and

simply hand them over to F . As in the real world, adversary S can corrupt any party. Once

it corrupts party P̂i, it learns P̂i’s input, and takes complete control of its input/output
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behaviour. Let IDEALFS,Z be the distribution ensemble that describes the environment’s

output in the ideal process.

Definition 5. (Realizing an Ideal Functionality) Let n ∈ N. Let F be an ideal functionality,

and Π be a protocol. We say Π realizes F if for any real-world adversary A, there exists

an ideal process adversary S such that for every environment Z,

IDEALFS,Z ∼ REALΠ,A,Z .
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CHAPTER 3

Unconditional Non-Interactive Secure Computation

Using Stateful Tokens

In this chapter we establish the feasibility of unconditionally non-interactive secure compu-

tation based on stateful hardware tokens. As is typically the case for unconditionally secure

protocols, our protocols are in fact UC secure.

This section is organized as follows. In 3.1 we present as a “warmup” an interactive pro-

tocol for arbitrary functionalities, which requires the parties to engage in multiple rounds of

interaction. This section will introduce some useful building blocks that are used in the next

. This gives an unconditional version of previous protocols for UC-secure computation based

on hardware tokens [Kat07, CGS08, MS08], which all relied on computational assumptions.1

In 3.2 we consider the case of secure evaluation of two-party functionalities which deliver

output to only one of the parties (the “receiver”). We strengthen the previous result in two

ways. First, we show that in this case interaction can be completely eliminated: it suffices for

the sender to non-interactively send tokens to the receiver, without any additional communi-

cation. Second, we show that even very simple, constant-size stateful tokens are sufficient for

this purpose. This strengthens previous feasibility results for one-time programs [GKR08]

by providing unconditional security (in fact, UC-security) and by offering general protection

against malicious senders.

1The work of [MS08] realizes an unconditionally UC-secure commitment from stateful tokens. This does
not directly yield protocols for secure computation without additional computational assumptions.
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3.1 Warmup: The Interactive Setting

Unconditionally secure two-party computation is impossible to realize for most nontrivial

functionalities, even with semi-honest parties [BOGW88, Kus92]. However, if the parties are

given oracle access to a simple ideal functionality such as Oblivious Transfer (OT) [Rab81,

EGL85], then it becomes possible not only to obtain unconditionally secure computation

with semi-honest parties [GV87, GHY87, Gol04], but also unconditional UC-security against

malicious parties [Kil88, IPS08]. This serves as a natural starting point for our construction.

In the OT-hybrid model, the two parties are given access to the following ideal OT

functionality: the input of P1 (the “sender”) consists of a pair of k-bit strings (s0, s1), the

input of P2 (the “receiver”) is a choice bit c, and the receiver’s output is the chosen string

sc. The natural way to implement a single OT call using stateful hardware tokens is by

having the sender send to the receiver a token which, on input c, outputs sc and erases s1−c

from its internal state. The use of such hardware tokens was first suggested in the context of

one-time programs [GKR08]. Following the terminology of [GKR08], we refer to such tokens

as OTM (one-time-memory) tokens. OTM tokens were formally defined in Section 2.2.

An appealing feature of OTM tokens is their simplicity, which can also lead to better

resistance against side-channel attacks (see [GKR08] for discussion). This simplicity feature

served as the main motivation for using OTM tokens as a basis for one-time programs.

Another appealing feature, which is particularly important in our context, is that the OTM

functionality does not leave room for bad sender strategies: whatever badly formed token a

malicious sender may send is equivalent from the point of view of an honest receiver to having

the sender send a well-formed OTM token picked from some probability distribution. (This

is not the case for tokens implementing more complex functionalities, such as 2-out-of-3 OT

or the extended OTM functionality discussed below, for which badly formed tokens may not

correspond to any distribution over well-formed tokens.)

Given the above, it is tempting to hope that our goal can be achieved by simply taking

any unconditionally secure protocol in the OT-hybrid model, and using OTM tokens to

implement OT calls. However, as observed in [GKR08], there is a subtle but important
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distinction between the OT-hybrid model and the OTM-hybrid model: while in the former

model the sender knows the point in the protocol in which the receiver has already made

its choice and received its output, in the latter model invoking the token is entirely at the

discretion of the receiver. This may give rise to attacks in which the receiver adaptively

invokes the OTM tokens “out of order,” and such attacks may have a devastating effect on

the security of protocols even in the case of unconditional security.2

Attacks on simple solution ideas. A natural way to handle the above type of attacks is

by having the sender pick a secret key r for each OTM and append this key to both strings

(s0, s1) it stores in the OTM. Then, to emulate a single call to an OT oracle, the sender

sends such an OTM token to the receiver, and expects the receiver to send back r before

proceeding with the protocol. This approach can indeed be used to protect a semi-honest

sender from out-of-order token invocations by a malicious receiver. However, it completely

exposes the receiver to an attack by a malicious sender who puts a pair distinct strings

(r1, r2) in the same OTM. Note that in the context of one-time programs where the sender is

semi-honest, a variant of this approach [GKR08] does suffice to solve the problem. However,

in the context of malicious senders that we consider here, the approach of [GKR08] does not

suffice.

A more subtle attack, known as selective abort, arises if one tries to fix the problem above

in näıve ways such as asking the sender to send a randomized hash of r, and then instructing

the receiver to abort if the sender’s message is different from the hash of the r that it received

from the OTM. This would allow a malicious sender to cause the receiver to abort based on

its private choice bit, which is not allowed by the ideal OT functionality (and can lead to

real attacks on secrecy).

2 To illustrate the effect of such attacks, consider the following functionality f . The functionality takes
from the sender a pair of k-bit strings (x1, x2) and from the receiver a k-bit string y. If y = x1, the
functionality delivers (x1, x2) to the receiver, otherwise it delivers only x1. Now, let Π be any OT-based
protocol for f which consists of only one round of OTs from the sender to the receiver, where the receiver’s
OT choices are its input bits. (A simple protocol of this type with perfect security against a malicious
receiver and a semi-honest sender is given in [Kil88] for any f in NC1.) Modify Π into a new protocol Π′ in
which the sender, following the round of OT calls, reveals x1 to the receiver. The protocol Π′ is still perfectly
secure against a malicious receiver in the OT-hybrid model, but if OT calls are realized by sending OTM
tokens, the new protocol allows the receiver to always learn x2 by first observing x1 and then invoking the
OTM tokens with y = x1.
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Extending the OTM functionality. To fix the above idea, we will realize an extended

OTM functionality which takes from the sender a pair of strings (s0, s1) along with an

auxiliary string r, takes from the receiver a choice bit c, and delivers to the receiver both sc

and r. We denote this functionality by ExtOTM (see Figure 2.7). What makes the ExtOTM

functionality nontrivial to realize using hardware tokens is the need to protect the receiver

from a malicious sender who may try to make the received r depend on the choice bit c while

at the same time protecting the sender from a malicious receiver who may try to postpone

its choice c until after it learns r.

Using the ExtOTM functionality, it is easy to realize a UC-style version of the OT func-

tionality which not only delivers the chosen string to the receiver (as in the OTM functional-

ity) but also delivers an acknowledgment to the sender. This flavour of the OT functionality,

which we denote by FOT(see Figure 2.4), can be realized by having the sender invoke Ex-

tOTM with (s0, s1) and a randomly chosen r, and having the receiver send r to the sender.

In contrast to OTM, the FOTfunctionality allows the sender to force any subset of the OT

calls to be completed before proceeding with the protocol. This suffices for instantiating the

OT calls in the unconditionally secure protocols from [Kil88, IPS08].

Realizing ExtOTM using general3 stateful tokens. As discussed above, we cannot

directly use a stateful token for realizing the ExtOTM functionality, because this allows the

sender to correlate the delivered r with the choice bit c. On the other hand, we cannot allow

the sender to directly reveal r to the receiver, because this will allow the receiver to postpone

its choice until after it learns r. In this , we present our protocol for realizing ExtOTM using

stateful tokens. This protocol is non-interactive (i.e., it only involves tokens sent from the

sender to the receiver) and will also be used as a building block towards the stronger results

in the next . We start with a detailed discussion of the intuition of the protocol and its

security proof.

As mentioned above, at a high level, the challenge we face is to prevent unwanted corre-

lations in an information-theoretic way for both malicious senders and malicious receivers.

3 Here, we make use of general tokens. Later in this section, we will show how to achieve
the ExtOTM functionality (and in fact every poly-time functionality) using only very simple
tokens – just bit OTM tokens.
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This is a more complex situation than a typical similar situation where only one side needs

to be protected against (c.f. [Kil90, LP07]). To accomplish this goal, we make use of secret-

sharing techniques combined with additional token-based “verification” techniques to enforce

honest behavior.

Our ExtOTM protocol ΠExtOTM starts by having the sender break its auxiliary string r

into 2k additive shares ri, and pick 2k pairs of random strings (qi0, q
i
1). (Each of the strings

qib and ri is k-bit long, where k is a statistical security parameter.) It then generates 2k

OTM tokens, where the i-th token contains the pair (qi0 ◦ ri, qi1 ◦ ri). Note that a malicious

sender may generate badly formed OTM tokens which correlate ri with the i-th choice of

the receiver; we will later implement a token-based verification strategy that convinces an

honest receiver that the sender did not cheat (too much) in this step.

Now the receiver breaks its choice bit c into 2k additive shares ci, and invokes the 2k

OTM tokens with these choice bits. Let (q̂i, r̂i) be the pair of k-bit strings obtained by the

receiver from the i-th token. Note that if the sender is honest, the receiver can already learn

r. We would like to allow the receiver to learn its chosen string sc while convincing it that the

sender did not correlate all of the auxiliary strings r̂i with the corresponding choice bits ci.

(The latter guarantee is required to assure an honest receiver that r̂ =
∑
r̂i is independent

of c as required.)

This is done as follows. The sender prepares an additional single-use hardware token

which takes from the receiver its 2k received strings q̂i, checks that for each q̂i there is a

valid selection ĉi such that q̂i = qiĉi (otherwise the token returns ⊥), and finally outputs

the chosen string sĉ1⊕...⊕ĉ2k . (All tokens in the protocol can be sent to the receiver at one

shot.) Note that the additive sharing of r in the first 2k tokens protects an honest sender

from a malicious receiver who tries to learn sĉ where ĉ is significantly correlated with r, as it

guarantees that the receiver effectively commits to c before obtaining any information about

r. The receiver is protected against a malicious sender because even a badly formed token

corresponds to some (possibly randomized) ideal-model strategy of choosing (s0, s1).

Finally, we need to provide to the receiver the above-mentioned guarantee that a malicious
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sender cannot correlate the receiver’s auxiliary output r̂ =
∑
r̂i with the choice bit c. To

explain this part, it is convenient to assume that both the sender and the badly formed

tokens are deterministic. (The general case is handled by a standard averaging argument.)

In such a case, we call each of the first 2k tokens well-formed if the honest receiver obtains

the same ri regardless of its choice ci, and we call it badly formed otherwise. By the additive

sharing of c, the only way for a malicious sender to correlate the receiver’s auxiliary output

with c is to make all of the first 2k tokens badly formed. To prevent this from happening,

we require the sender to send a final token which proves that it knows all of the 2k auxiliary

strings r̂i obtained by the receiver. This suffices to convince the receiver that not all of the

first 2k tokens are badly formed. Note, however, that we cannot ask the sender to send these

2k strings ri in the clear, since this would (again) allow a malicious receiver to postpone its

choice c until after it learns r.

Instead, the sender generates and sends a token which first verifies that the receiver

knows r (by comparing the receiver’s input to the k-bit string r) and only then outputs all

2k shares ri. The verification step prevents correlation attacks by a malicious receiver. The

final issue to worry about is that the string r received by the token (which may be correlated

with the receiver’s choices ci) does not reveal to the sender enough information to pass the

test even if all of its first 2k tokens are badly formed. This follows by a simple information-

theoretic argument: in order to pass the test, the token must correctly guess all 2k bits ci,

but this cannot be done (except with 2−Ω(k) probability) even when given arbitrary k bits of

information about the ci. We describe the protocol formally now.

Protocol ΠExtOTM.

• Input: P1 gets as input k-bit strings (s0, s1, r), and P2 gets as input a bit c.

• Specified Output: P2 should receive (sc, r).

1. P1 chooses 4k distinct strings of length k, ((s1
0, s

1
1), . . . , (s2k

0 , s
2k
1 )). Now P1 chooses

another 2k−1 strings of length k, (ρ1, . . . , ρ2k−1), and sets ρ2k such that
⊕2k

i=1 ρ
i =

r. Then,
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(a) For 1 ≤ i ≤ 2k, send (create, sid, P1, P2,mid,M i) to F singlewrap , where M i imple-

ments the following functionality: on input bit ci, output (sici , ρ
i).

(b) P1 constructs and sends an unconditional OTP for the following functionality

F1:

. Receive input (ŝ1, . . . , ŝ2k). For 1 ≤ i ≤ 2k, let ĉi ∈ { 0, 1 } be such that

ŝi = siĉi. If no such ĉis exist, output ⊥. Else output sĉ1⊕...⊕ĉ2k .

(c) P1 constructs and sends an unconditional OTP for the following functionality

F2:

. On input ρ ∈ { 0, 1 }k, check if ρ =
⊕2k

i=1 ρ
i. If not, output ⊥. Else,

output ρ1 ◦ . . . ◦ ρ2k.

2. P2 picks random bits c1, . . . , c2k−1, and sets c2k such that c =
⊕2k

i=1 c
i. For 1 ≤ i ≤

2k, P2 runs M i with input ci and obtains (ŝi, ρi). It runs the OTP for F1 on input

(ŝ1, . . . , ŝ2k) and obtains string s. If the OTP aborts, then P2 sets s = 0k. Next,

P2 runs OTP for F2 on input
⊕2k

i=1 ρ
i, and obtains string ρ. If ρ 6= ρ1 ◦ . . . ◦ ρ2k,

P2 aborts. Else, it outputs (s,
⊕2k

i=1 ρ
i).

Claim 6. Protocol ΠExtOTM realizes ExtOTM with statistical UC-security in the OTM-hybrid

model.

Proof First consider the case of malicious sender. Let A be an adversary controlling P1,

and let Z be any environment. We define the simulator SExtOTM1 as follows:
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Simulator SExtOTM1

1. Receive input (s0, s1, r) from Z for A. Start internal simulation of A with the

given input.

2. Receive TMs M1, . . . ,M2k, and OTPs for functionalities F1 and F2 from A.

3. For 1 ≤ i ≤ 2k, run M i with input 0 to obtain (si0, ρ
i
0). Now rewind M i and

run it with input 1 to obtain (si1, ρ
i
1). If for every 1 ≤ i ≤ 2k, ρi0 6= ρi1, abort.

4. Choose 2k − 1 random bits c1, . . . , c2k−1, and set c2k such that
⊕2k

i=1 c
i = 1.

Then,

(a) If for any index i, sici = ⊥, abort. Run the OTP corresponding to F1 with

input (s1
c1 , . . . , s

2k
c2k

) to obtain s1. Let j be the index such that ρj0 = ρj1.

Run F1 again with input (s1
c1 , . . . , s

j−1
cj−1 , s

j
cj⊕1

, sj+1
cj+1 , . . . , s

2k
c2k

) to obtain s0.

If the OTP aborts in either case, set that string to the default value, 0k.

(b) Set r =
⊕2k

i=1 ρ
i
ci . Run OTP for F2 with input r and obtain string ρ. If

ρ 6= ρ1
c1 ◦ . . . ◦ ρ2k

c2k, abort. Else, send (s0, s1, r) to ExtOTM.

We proceed to show that REALExtOTM,A,Z and IDEALExtOTM
SExtOTM
1 ,Z are statistically close.

Consider the following hybrids:

Hybrid H0: In this experiment, Z interacts with simulator SextOT1 only. The simulator

receives inputs (s0, s1, r) for A on one hand, and bit c for P2 on the other. It then internally

simulates a real execution of the protocol between A and P2, and outputs whatever the

simulated P2 outputs. Clearly, H0 is identical to REALExtOTM,A,Z .

Hybrid H1: In this experiment, SextOT1 runs M1 with input 0, and then rewinds M1 and

runs it with input 1 to obtain both the outputs s1
0 ◦ ρ1

0 and s1
1 ◦ ρ1

1. Let c1 be P2’s query to

M1. Then, instead of running M1, the simulator responds with (s1
c1 , ρ

1
c1) (if M1 outputs ⊥

on input bit c1, then SextOT1 returns ⊥ to P2).
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Note that in both H0 and H1, P2 receives the same value when it queries M1. Thus, H0

and H1 are identical.

Hybrids H2 . . .H2k: In hybrid Hi for 2 ≤ i ≤ 2k, the simulator extracts both the values

of M i. When P2 queries M i, the simulator responds without running M i again, as it did in

the case of M1 in H1. As above, all these hybrids are identical.

Hybrids H2k+1: If for all i, 1 ≤ i ≤ 2k, ρi0 6= ρi1, simulator aborts.

If for each i the ρis are different, then F2 must guess a 2k length binary string. However,

its input is only of length k, and thus with probability negligibly close 1, F2 will output the

wrong sequence of ρis, causing P2 to abort in H2k. Thus, H2k and H2k+1 are statistically

close.

Hybrid H2k+2: SextOT1 chooses 2k − 1 random bits c1, . . . , c2k−1, and sets c2k such that

c2k =
⊕2k−1

i=1 ci. If for any index i, sici = ⊥, the simulator aborts. Else, it runs F1 with

input (s1
c1 , . . . , s

2k
c2k

), and obtains s0. Let j be the index such that ρj0 = ρj1. Now SextOT1

runs F1 with input (s1
c1 , . . . , s

j−1
cj−1 , s

j
cj⊕1

, sj+1
cj+1 , . . . , s

2k
c2k

) and obtains s1. If F1 aborts in either

execution, it sets the corresponding string to the default value 0k. Then it runs F2 with

input r :=
⊕2k

i=1 ρ
i
ci , and obtains output ρ. If ρ 6= ρ1

c1 ◦ . . . ◦ ρ2k
c2k

, simulator aborts. Finally,

SextOT1 ignores P2 and outputs (sc, r) as P2’s output.

Note that P2’s input bits to the M is are 2k−1-wise independent. Thus, as there is at least

one M i which does not abort on either input, the probability that P2 aborts in H2k+1 (before

querying F1) is the same as the probability that SextOT1 aborts in H2k+1 (before running F1).

Next, consider the joint distribution of inputs to F1 and F2. Since ρj0 = ρj1, the joint dis-

tribution of inputs to F1 and F2 is identical in H2k+1 and H2k+2. Thus, the joint distribution

of outputs from F1 and F2 is identical in the two experiments. Thus, the output of P2 is

distributed identically in H2k+1 and H2k+2.
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Hybrid H2k+3: This is the ideal world experiment. The simulator SextOT1 extracts (s0, s1, r)

as above, and sends it to the ideal functionality. The output of P2 in this case is exactly the

output in H2k+2. Thus, this experiment is identical to H2k+2.

Now we handle the case of malicious P2. Let A be an adversary controlling P2, and

let Z be an environment. Let SF1 and SF2 be the simulators for the OTPs for F1 and F2

respectively. The ideal-world adversary SExtOTM2 is defined as follows:

Simulator SExtOTM2

1. Receive input bit c from Z for A. Start internal simulation of A with given

input.

2. For 1 ≤ i ≤ 2k, send (create, sid, P1, P2,midi) to A. Also, run simulators SF1

and SF2 and convey their messages to A.

3. Answer token-queries from A as follows:

(a) Let (run, sid, P1, P2,midil , cil) be a query to one of the M is. For all but the

last such query, answer with a random sil , and a random ρil . When A asks

the last query, set c′ =
⊕2k

j=1 c
j. Send c′ to ExtOTM and obtain (s, r). Set

ρi2k = r ⊕⊕2k−1
l=1 ρil . Choose a random si2k , and reply with (si2k , ρi2k).

(b) For queries to OTPs for F1 and F2, forward them to SF1 and SF2 , and pass

their responses back to A.

4. Let (ŝ1, . . . , ŝ2k) be SF1 ’s query to the ideal functionality for F1’s OTP. If this

query occurs before all M is have been queried, return ⊥. For 1 ≤ j ≤ 2k, check

if ŝj = sj. If not, return ⊥. Else, return s.

5. Let ρ be SF2 ’s query to the ideal functionality for F2’s OTP. If this query occurs

before all M i’s have been queried, or if ρ 6= r, return ⊥. Else, return ρ1◦ . . .◦ρ2k

to SF2 .
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We proceed to show that REALExtOTM,A,Z and IDEALExtOTM
SExtOTM
2 ,Z are statistically close.

Consider the following hybrids:

Hybrid H0: In this experiment, Z interacts with simulator SextOT2 only. The simulator

receives inputs (s0, s1, r) for P1 on one hand, and bit c for A on the other. It then internally

simulates a real execution of the protocol between P1 and A, and outputs whatever the

simulated A outputs. Clearly, H0 is identical to REALExtOTM,A,Z .

Hybrid H1: SextOT2 runs the simulator SF1 for F1, and passes its messages to A. When SF1

queries its ideal functionality, SextOT2 runs the correct OTP for F1 sent by P1, and returns

the output to SF1 . It follows from the security of OTPs that H1 and H0 are identical.

Hybrid H2: If A queries the OTP for F1 without querying all the M is, SextOT2 causes SF1

to abort.

Let M j be a token not queried by A before querying F1. Unless A guesses one of the

outputs of M j, F1 will output ⊥. Thus, H1 and H2 are statistically close.

Hybrid H3: SextOT2 runs the simulator SF2 for F2, and passes its messages to A. When SF2

queries its ideal functionality, SextOT2 runs the correct OTP for F2 sent by P1, and returns

the output to SF2 . It follows from the security of OTPs that H2 and H3 are identical.

Hybrid H4: If A queries F2 without querying all the M is, SextOT2 causes SF2 to abort.

Let M j be a token not queried by A before querying F1. Unless A guesses one the output

of M j, F1 will output ⊥. Thus, H1 and H2 are statistically close.

Hybrid H5: For each i, 1 ≤ i ≤ 2k, let ĉi be A’s query to M i, and let siĉi ◦ ρi be its

response. Let (ŝ1, . . . , ŝ2k) be SF1 ’s query to its ideal functionality. SextOT2 checks, for all

1 ≤ i ≤ 2k, if ŝi = siĉi . If not, it returns ⊥ to SF1 . Else, it returns sĉ1⊕...⊕ĉ2k .
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If siĉi = ŝi for all i, then H4 and H5 are identical. If not, then there exists index j, such

that ŝj is not the value A received from M j. Unless A is able to guess the other output of

M j, F1 aborts. Thus, H4 and H5 are statistically close.

Hybrid H6: For each i, 1 ≤ i ≤ 2k, let ĉi be A’s query to M i, and let siĉi ◦ ρi be its

response. Let ρ be SF2 ’s query to its ideal functionality. SextOT2 checks, if ρ = r. If not, it

returns ⊥ to SF2 . Else, it returns ρ1 ◦ . . .◦ρ2k to SF2 . This is exactly what F2 does, therefore,

H5 and H6 are identical.

Hybrid H7: Let (ĉi1 , . . . , ĉi2k) be A’s queries to the M is, and let s
ij

ĉij
◦ ρij , 1 ≤ j ≤ 2k − 1

be the first (2k − 1) responses. For the final query, instead of running M i2k , simulator

chooses random k-bit string ti2k , and sets γi2k = r ⊕⊕2k−1
j=1 ρij . When SF1 queries its ideal

functionality, SextOT2 checks if ŝi2k = ti2k and ŝij = s
ij

ĉij
for ij 6= i2k. If all coordinates match,

SextOT2 returns sĉ1⊕...⊕ĉ2k to SF1 .

As SextOT2 picks ti2k uniformly at random, ti2k and si2k
ci2k

are identically distributed. Also,

as γi2k ⊕⊕2k−1
j=1 ρij = r, γi2k and ρi2k are identically distributed. Thus, the output of A is

identically distributed in experiments H6 and H7.

Hybrids H8 . . .H2k+6: In each of these hybrids H6+l, 2 ≤ l ≤ 2k, the simulator SextOT2

replaces the outputs of M i2k−l+1 with random outputs, as in H7. By the same argument,

these hybrids are identical.

Hybrid H2k+7: This is the ideal world experiment. For the first 2k − 1 queries to M is,

cij , SextOT2 responds with random values sij ◦ ρij . For the last query, SextOT2 queries the ideal

functionality with bit
⊕2k

i=1 c
i, and obtains (sc, r). Then it sets ρi2k = r⊕⊕2k−1

j=1 ρij . This is

identical to H2k+6.

�

We are now ready to prove the main feasibility result of this .
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Theorem 7. (Interactive unconditionally secure computation using stateful to-

kens.) Let f be a (possibly reactive) polynomial-time computable functionality. Then there

exists an efficient, statistically UC-secure interactive protocol which realizes f in the F singlewrap -

hybrid model.

Proof We compose three reductions. The protocols of [Kil88, IPS08] realize uncondition-

ally secure two-party (and multi-party) computation of general functionalities using FOT.

A trivial reduction described above reduces FOT to ExtOTM. Finally, Claim 6 reduces

ExtOTM to F singlewrap .

�

While our main focus here is on feasibility questions, a couple of remarks about efficiency

are in place. First, the protocol ΠExtOTMuses stateful tokens of size poly(k), where k is

a statistical security parameter. In the next we will show that the tokens can be further

simplified to OTM tokens, each containing a pair of bits. Second, the number of stateful

tokens employed by the above protocol is proportional to the computational complexity of

f . This seems unavoidable given the current state of the art in the area of unconditionally

secure MPC. However, if one is willing to settle for computational UC-security based on one-

way functions, Beaver’s OT extension technique [Bea96] can be used to reduce the number

of tokens to poly(k), independently of the complexity of f . Moreover, all of these poly(k)

tokens can be sent at one shot in the beginning of the protocol. We defer a more detailed

discussion of these optimizations to the final version.

3.2 The Non-Interactive Setting

In this we restrict the attention to the case of securely evaluating two-party functionalities

f(x, y) which take an input x from the sender and an input y from the receiver, and deliver

f(x, y) to the receiver. We refer to such functionalities as being sender-oblivious. Note that

here we consider only non-reactive sender-oblivious functionalities, which interact with the

sender and the receiver in a single round. The reactive case will be discussed in Section ??.
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Unlike the case of general functionalities, here one can hope to obtain non-interactive

protocols in which the sender unidirectionally send tokens (possibly along with additional

messages4) to the receiver.

For sender-oblivious functionalities, the main result of this strengthens the results of

Section 3.1 in two ways. First, it shows that a non-interactive protocol can indeed realize

such functionalities using stateful tokens. Second, it pushes the simplicity of the tokens to

an extreme, relying only on OTM tokens which contain pairs of bits.

3.2.1 One-time programs.

Our starting point is the concept of a one-time program (OTP) [GKR08]. A one-time pro-

gram can be viewed in our framework as a non-interactive protocol for f(x, y) which uses

only OTM tokens, and whose security only needs to hold for the case of a semi-honest

sender (and a malicious receiver).5 The main result of [GKR08] establishes the feasibil-

ity of computationally-secure OTPs for any polynomial-time computable f , based on the

existence of one-way functions. The construction is based on Yao’s garbled circuit tech-

nique [Yao86]. Our initial observation is that if f is restricted to the complexity class NC1,

one can replace Yao’s construction by an efficient perfectly secure variant (cf. [IK02]). This

yields perfectly secure OTPs for NC1. We now present a general construction of a OTP

from any “decomposable randomized encoding” of f . This can be used to derive perfectly

secure OTPs for larger classes of functions (including NL) based on randomized encoding

techniques from [FKN94, IK02].

The construction uses randomized encodings for functions:

Definition 8. (Perfect Randomized Encodings [AIK06]) Let f : { 0, 1 }n → { 0, 1 }l be

a function. We say that a function f̂ : { 0, 1 }n×{ 0, 1 }m → { 0, 1 }s is a perfect randomized

encoding of f , if it satisfies the following:

4Since our main focus is on establishing feasibility results, the distinction between the “hardware” part
and the “software” part is not important for our purposes.

5 The original notion of OTP from [GKR08] is syntactically different in that it views f as a function of
the receiver’s input, where a description of f is given to the sender. This can be captured in our framework
by letting f(x, y) be a universal functionality.
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• Correctness There exists a deterministic algorithm Df̂ , called a ‘decoder’, such that

for every input x ∈ { 0, 1 }n, Pr
[
Df̂ (f̂(x,Um)) 6= f(x)

]
= 0.

• Privacy There exists a randomized algorithm Sf̂ , called the ‘simulator’, such that for

every x ∈ { 0, 1 }n, δ(Sf̂ (f(x)), f̂(x,Um)) = 0.

A perfect randomized encoding is called ‘efficient’ if f̂ can be computed in time polynomial

in the length of x. A perfect randomized encoding is called ‘decomposable’ if every output bit

of f̂ depends upon a single bit of x.

We note that the Correctness and Privacy conditions can be relaxed to obtain computa-

tional and statistical randomized encodings.

We will need the following theorem on randomized encodings for NC1 functions:

Theorem 9. ([Kil88], [IK02]) Let f be an NC1 function. Then there exists an efficient,

perfect decomposable randomized encoding for f .

Let f(·, ·) be any function admitting a decomposable randomized encoding. We now

construct an OTP for f(·, ·) in the pOTM-hybrid model.

Protocol Π1. (One-Time Program for f)

• Input: P1 has input x ∈ { 0, 1 }n.

• Output: P2 should receive f(x, y), for y ∈ { 0, 1 }n.

• The Protocol:

1. P1 constructs a decomposable randomized encoding f̂(·, ·) of the function f . Let f̂x

be the restriction of the encoding to x. Choose random string r, and let f̂x(y, r) =

(f1(y1, r), . . . , fn(yn, r)). Send (create, sid, P1, P2,mid, ((f1(0, r), f1(1, r)), . . . , (fn(0, r), fn(1, r))))

to pOTM.

2. P2 sends (run, sid, P1, P2,mid, (y1, . . . , yn)) to pOTM and obtains s := f̂x(y, r). Let

Df̂ (·) be the decoder for f̂(·, ·). Party P2 outputs Df̂ (s).
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We now show that the above construction is indeed an OTP for f .

Claim 10. For any PPT adversary A corrupting P2, there exists a PPT Simf , such that

for every environment Z,

IDEAL
FOTP

f

Simf ,Z = REALΠ1,A,Z .

Proof We construct the ideal world simulator Simf as follows:

Simulator Simf

1. Send (create, sid, P1, P2,mid) to A.

2. Receive (run, sid, P1, P2,mid, (y1, . . . , yn)) from P2. Send y = y1 . . . yn to FOTPf

and obtain f(x, y). Let Sf̂ (·) be the simulator for the randomized encoding f̂ .

Run Sf̂ (f(x, y)) to obtain (ρ1, . . . , ρn). Send (ρ1, . . . , ρn) to A.

It directly follows from Theorem 9 that IDEAL
FOTP

f

Simf ,Z = REALΠ1,A,Z .

�

Implementing Parallel-OT tokens by simple OT tokens. The above protocol uses parallel-OT

tokens. Now we construct a non-interactive protocol in the OTM-hybrid model that realizes

pOTM.

Protocol Π2 .

• Input: P1’s input is a tuple of n-bit strings ((s1
0, s

1
1), . . . , (sk0, s

k
1)). Party P2’s input is

a tuple of bits (c1, . . . , ck).

• Output: P2 should receive (s1
c1 , . . . , s

k
ck

).

• The Protocol:
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1. P1 chooses k random strings ri, for 1 ≤ i ≤ k. Let r = r1 ◦ . . . ◦ rk. Now P1

additively shares r into k random shares ρ1, . . . , ρk. For 1 ≤ i ≤ k, party P1 sends

(create, sid, P1, P2,midi, ((s
i
0 ⊕ ri) ◦ ρi, (si1 ⊕ ri) ◦ ρi)) to OTM.

2. For 1 ≤ i ≤ k, party P2 sends (run, sid, P1, P2,midi, c
i) to OTM and obtains ai ◦bi.

Now party P2 computes r′ =
∑k

i=1 bi. Let r′1, . . . , r
′
k be successive n-bit substrings

of r′. Party P2 outputs (a1 ⊕ r′1, . . . , ak ⊕ r′k).

�

Claim 11. For any PPT adversary A corrupting P2 there exists a PPT SpOTM2 , such that

for every environment Z,

IDEALpOTM

SpOTM
2 ,Z

= REALΠ2,A,Z .

Proof We define the ideal world adversary SpOTM2 as follows.

Simulator SpOTM2

1. For 1 ≤ i ≤ k, send (create, sid, P1, P2,midi) to A.

2. On input (run, sid, P1, P2,midi, c
j) from A, do

(a) if this is not the kth query from A, choose random strings aj ∈ { 0, 1 }n

and bj ∈ { 0, 1 }kn, and return aj ◦ bj to A.

(b) if this is the kth query from A, send (c1, . . . , ck) to pOTM and obtain

(s1
c1 , . . . , s

k
ck

). Choose a random aj ∈ { 0, 1 }n. For 1 ≤ i ≤ k, set ri =

ai ⊕ sici . Set bj =
∑k

i=1,i 6=j bi + r1 ◦ . . . ◦ rk. Send aj ◦ bj.

We proceed to show that for every environment Z, IDEALpOTM

SpOTM
2 ,Z

= REALΠ2,A,Z by

considering the following intermediate hybrids. In the following, the symbols H0,H1, . . . will

be used to denote both the random variable that defines the output of environment Z in the

experiments described, and the experiments themselves.
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Hybrid H0: In this experiment, Z interacts with SpOTM2 only. Simulator SpOTM2 receives

inputs ((s1
0, s

1
1), . . . , (sk0, s

k
1)) for P1, and inputs (c1, . . . , ck) for P2 from Z. Now SpOTM2

internally simulates a real execution by running P1 and A on their respective inputs, and

simulating OTM. This is clearly identical to REALΠ2,A,Z .

Hybrid H1: This experiment is the same as above, except forA’s final query to (simulated)

OTM. Let the final query be (run, sid, P1, P2,midj, c
j). Let { ai◦bi } i=1,...k

i 6=j
be OTM’s responses

to A so far. Instead of sending it to OTM, simulator SpOTM2 answers the last query as follows:

choose random string âj ∈ { 0, 1 }n. Then, for 1 ≤ i ≤ k, compute r′i = ai ⊕ sici , and set

b̂j =
∑k

i=1,i 6=j bi + r′1 ◦ . . . ◦ r′k. Return âj ◦ b̂j to A.

Note that A’s view before the last query is uniformly distributed. Also,
∑k

i=1,i 6=j bi+ b̂j =

r′1 ◦ . . . ◦ r′k, and for 1 ≤ i ≤ k, ai ⊕ r′i = sici . Thus, H0 and H1 are identical.

Hybrid H2: This experiment is the same as above, except for the first and last queries by

A. Let (run, sid, P1, P2,midl1 , c
l1) be the first query by A to OTM. Instead of forwarding this

query to OTM, simulator SpOTM2 chooses random strings âl1 ∈ { 0, 1 }n and b̂l1 ∈ { 0, 1 }kn

and responds with âl1 ◦ b̂l1 . For the last query, SpOTM2 responds as in H1, using âl1 ◦ b̂l1 as

the response to the first query. All other queries are handled honestly

As before, A’s view before the final query is uniformly distributed. Thus, H1 and H2 are

identical.

. . .

Hybrid Hk: This experiment is similar to previous ones, except that SpOTM2 fakes the

second-last query also. Thus, in Hn, simulator SpOTM2 answers the first k − 1 queries by

responding with random strings. Then, in the last query, it uses (s1
c1 , . . . , s

k
ck

) to correct its

previous responses. By the same argument as before, Hk is identical to Hk−1.

Hybrid Hk+1: This is the ideal-world experiment. The simulator SpOTM2 proceeds as in

Hk till the last query. At this point, it sends (c1, . . . , ck) to pOTM and obtains (s1
c1 , . . . , s

k
ck

).

30



Then it performs corrections to previous responses as the simulator in Hk.

Note that in Hk, simulator SpOTM2 does not need use P1’s input till after the last query.

Thus, Hk+1 and Hk are identical. This completes the proof.

�

A next natural step is to construct unconditionally secure OTPs for any polynomial-time

computable function f . However, this result will be subsumed by our main result, which can

be proved (in a less self-contained way) without relying on the latter construction.

3.2.2 The Protocol

As in Section 3.1, the main ingredient in our solution is an interactive secure protocol Π for

f . To explain the idea it is convenient to first assume that Π is secure in the plain model,

without any oracles or setup. In such a case, we could obtain a non-interactive protocol

for f which emulates Π by having the sender generate and send a one-time token which

computes the sender’s next message function for each round of Π. We need to guarantee

that the receiver executes the tokens in the correct order, and also let the receiver pass the

sender’s state information from one token to the other without revealing this information to

the sender. This can be done via a standard authentication mechanism: each token i outputs

an (unconditionally secure) authenticated encryption of the sender’s internal state in the end

of Round i, and this information should be supplied by the receiver as an additional input

to the token implementing Round i+ 1. If the authentication fails, the token outputs ⊥.

The above procedure transforms Π into a non-interactive protocol Π′ which uses very

complex one-time tokens (for implementing the next message functions of Π). The next idea

is that we can break each such complex token into simple OTM tokens by just using a one-

time program realization of each complex token. This yields a new non-interactive protocol

Π′′. The main observation here is that the one-time programs are already secure against a

malicious receiver, and any strategy a malicious sender may use in generating badly-formed

OTPs corresponds to legitimate strategy for attacking Π′ (which in turn corresponds to a
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legitimate strategy for attacking Π). Note that since the next message function of Π can be

assumed wlog to be in NC1 (possibly breaking each round into multiple mini-rounds), and

since unconditionally secure authenticated encryption can also be realized in NC1, we may

assume that each one-time token in Π′ realizes an NC1 function. This allows us to apply the

unconditional OTP construction for NC1 described above.

From the plain model to the OT-hybrid model. Recall that so far we assumed the

protocol Π to be secure in the plain model. This rules out unconditional security as well

as UC-security, which are our main goals in this section. A natural approach for obtaining

unconditional UC-security is to extend the above compiler to protocols in the OT-hybrid

model. This introduces a subtle difficulty which was already encountered in Section 3.1: the

sender cannot directly implement the OT calls by using OTM tokens, because this would give

the receiver an advantage it does not have in Π. Namely, the receiver will be able to defer

the invocation of the OTM tokens to the end of the protocol, thereby correlating some of its

inputs with partial information obtained from the sender. (The same problem persists even

if one applies to Π a standard transformation which guarantees that all OT calls are done

in the beginning of the protocol and use random choice bits ci which are independent of the

receiver’s inputs.) A natural approach to solve this problem that does not work in our context,

which was applied in the context of OTPs in [GKR08], is to let the sender secret-share a

key between the OTMs which is then used to encrypt all subsequent interaction. However,

this gives rise to correlation attacks by a malicious sender, as discussed in Section 3.1.

Fortunately, we can use the (non-interactive) ExtOTM protocol from Section 3.1 to realize

the approach of [GKR08] while resisting attacks by a malicious sender. The complex tokens

required by the ExtOTM protocol can be themselves implemented using one-time programs,

thereby eliminating the need for any tokens more complex than simple OTM tokens. We are

ready to present our protocol formally now.

Protocol Π′. (non-interactive protocol for computing f(x, y)):

• Input: P ′1 has input x ∈ { 0, 1 }n, and P ′2 has input y ∈ { 0, 1 }n.

• Specified Output: P ′2 should receive f(x, y).

32



• The protocol:

1. P ′1 constructs its first message as follows:

(a) P ′1 uniformly chooses random tape r for P1. For 1 ≤ i ≤ l, P ′1 chooses keys ki1

for message authentication scheme MAC(·). Also, for 1 ≤ i ≤ l, P ′1 chooses

random strings ki0, where the length of ki0 is the length of the state output by

gx,ri (·, ·).

(b) P ′1 runs P1 on x and r, and obtains the initial OT values (r1
0, r

1
1), . . . , (rt0, r

t
1).

P ′1 also chooses random strings ρ1, . . . , ρt.

(c) For each 1 ≤ i ≤ l, P ′1 constructs an unconditional one-time program for the

following functionality Gi:

0. (Only for i=1) Obtain input (m1, s0). If s0 6= ρ1 ◦ . . .◦ρt, output ⊥. Else,

set s0 = null and proceed to step (ii) below.

i. Receive input (mi, c
i−1
0 , ci−1

1 ). Check V Fki−1
1

(ci−1
0 , ci−1

1 ) = 1. If not, output

⊥. Else, set si−1 = ci−1
0 ⊕ ki−1

0 .

ii. Compute gx,ri (mi, si−1) to obtain P1’s ith message m, and state si.

iii. Output (m, si ⊕ ki0,MACki1(si ⊕ k
i
0)).

(d) Finally, P ′1’s first message comprises of:

i. Tokens for initial OTs: for 1 ≤ i ≤ t, P ′1 sends (P ′1, P
′
2, idi, ((r

i
0, r

i
1), ρi))

to FExtOTM .

ii. Unconditional OTPs G1, . . . , Gl.

2. Output: P ′2 uniformly chooses random tape r′ for P2. Now, P ′2 runs P2 and

executes all initial OTs. Then, for each 1 ≤ i ≤ l, P ′2 does the following:

(a) Run P2 and obtain its message mi for the ith round.

(b) Run the ith one-time program on input (mi, c
i−1
0 , ci−1

1 ) (or (mi, s0) if i = 1),

and obtain (m, ci0, c
i
1) as output.

(c) Forward m to P2.

Finally, P ′2 outputs P2’s output.
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Theorem 12. Protocol Π′ UC-realizes functionality f in the (OTM,FExtOTM)-hybrid model.

Proof

Security against malicious P ′1. Let A be an adversary corrupting P ′1. We construct

an adversary SP ′1 such that, for every environment Z, REALΠ′,A,Z = REALΠ,SP ′1
,Z , i.e., no

environment can distinguish between an execution of Π′ with adversary A and an execution

of Π with adversary SP ′1 .

The adversary SP ′1 is defined as follows: start internal simulation of adversary A with

input y received from the environment. For each j, 1 ≤ j ≤ t, obtain (rj0, r
j
1, ρj). Use (rj0, r

j
1)

as the input for the jth OT, and set s0 := ρ1 ◦ . . . ◦ ρt. For each i, 1 ≤ i ≤ l, obtain OTP

for Gi. Now run protocol Π with the external P2: in round i, receive message mi from P2.

Run OTP for Gi with input (mi, c
i−1
0 , ci−1

1 ) (for i = 1, run OTP for G1 with input (m1, s0)).

Obtain Gi’s response, (mi, ci0, c
1
i ). Store (ci0, c

i
1) for the next round, and forward mi externally

to P2.

Note that in both the executions ((SP ′1 , P2) and (A, P ′2)), the (joint) distribution of in-

puts to the one time programs is identical. Thus, the outputs of the OTPs are identically

distributed, and the output of P ′2 in Π′ and P2 in Π are identically distributed.

Security against malicious P ′2. Let A be an adversary corrupting P ′2, and Z be any

environment. The adversary SP ′2 must play the part of P2 in Π. Adversary SP ′2 proceeds as

follows: it takes input y from the environment Z and internally simulates A on input y. For

each 1 ≤ i ≤ l, adversary SP ′2 invokes the OTP simulator of Claim 10, SimGi
and sends these

simulated OTP G̃i to the internal simulation of A. To evaluate G̃i, A issues OT queries to

SP ′2 . When A asks the last input OT query for G̃i, A’s complete input to G̃i is determined,

and SimGi
queries the functionality for the correct output. Now SP ′2 externally forwards

this to the real P1, and obtains its response m, which it forwards to SimGi
as answer to its

query.

However, the adversary A can query the OTs in any order and with arbitrary interleaving
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between OTs of different OTPs. This is a problem for SP ′2 . Call the ith OTP fixed if all but

one of its input OTs have been queried. Thus, when the next input OT request comes, A’s

input to this OTP will be fully specified. Now, let k < i, and consider the stage where the

ith OTP is fixed, while not all OTs for kth OTP have been executed (that is, A’s input to

kth OTP is still not fully specified). Now, suppose A queries the final input OT for ith OTP,

thereby fully specifying its input to this OTP. Now, SP ′2 can not forward this message to P1,

as P1 is waiting for a previous response.

To handle this problem, whenever SP ′2 detects A attempting to execute OTP i out of

order, it makes it abort; that is, when SimGi
queries the ideal functionality, SP ′2 returns ⊥.

Details follow.
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Adversary SP ′2

1. Construction phase:

(a) For 1 ≤ i ≤ l, choose keys k0
i , k

1
i , like P ′1.

(b) For 1 ≤ i ≤ l, run SimGi
(κ) and send its output to A

2. Execution phase: SP ′2 handles A’s queries as follows:

(a) Initial OTs. On receiving (P ′1, P
′
2, idi, ci) from A (for 1 ≤ i ≤ t), forward

c to the external OT, and obtain rici . Choose a random ρ̂i, and return

(rici , ρ̂i) to A.

(b) On receiving OT queries from A for unconditional OTP Gi forward the

queries to SimGi
, and return the response to A.

(c) For SimGi
’s query to its ideal functionality, do,

i. if ith OTP is fixed, and there exists i′ < i such that i′ is not fixed,

return ⊥.

ii. else,

A. if i = 1 and all initial OTs have not been queried, then return

⊥. Else, let σ1 be A’s input to G1. Interpret σ1 as (m1, s0).

If s0 6= ρ̂1 ◦ . . . ◦ ρ̂t, return ⊥. Else, forward m1 externally to

P1, and obtain response m̃1. Choose random state w, and return

(m̃1, w ⊕ k1
0,MACk11(w ⊕ k1

0)).

B. else, let σi beA’s input toGi. Interpret σi as (mi, c
i−1
0 , ci−1

1 ). Verify

V Fki−1
1

(ci−1
0 , ci−1

1 ) = 1. If not, return ⊥ to SimGi
. Else, externally

forward mi to P1, and obtain response m̃i. Choose random state

w, and forward (m̃i, w ⊕ ki0,MACki1(w ⊕ k
i
0)) to SimGi

.

Finally, output A’s output.
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We proceed to show that the random variables REALΠ′,A,Z and REALΠ,SP ′2
,Z are statisti-

cally close. Consider the following hybrids:

Hybrid H0: This distribution is the output of the following experiment: the environment

Z interacts with adversary SP ′2 only. SP ′2 receives input x from Z for P ′1 and input y from

Z for P ′2. Now it internally simulates a real execution of honest P ′1 and A on inputs x and

y respectively. Clearly, H0 is identical to REALΠ′,A,Z .

Hybrid H1: The adversary SP ′2 proceeds as above, except for handling the first initial OT.

On receiving (P ′1, P
′
2, idi1 , ci1) from A, it sends obtains (ri1ci1 , ρi1) from (simulated) FExtOTM .

Then, it chooses a random ρ̂i1 , and returns (ri1ci1 , ρ̂i1) to A.

Note that the distributions of ρ̂i1 in H1 and ρi1 in H0 are identical. Thus, H0 and H1

are identical.

Hybrids H2 . . .Ht: In each hybridHj, 2 ≤ j ≤ t, adversary SP ′2 replaces ρij with a random

ρ̂ij . As above, all these hybrids are identical.

Hybrid Ht+1: Same as above, except adversary SP ′2 replaces the lth OTP with a simulated

OTP. That is, SP ′2 honestly constructs one-time programs for the first l − 1 next message

functions. But for the last one, it runs SimGl
. When A completely specifies its input to

the last OTP by querying the last input OT for G̃l, adversary SP ′2 replies with the correct

response of the lth next message function.

Hybrid Ht+2 . . .Ht+l: In each hybrid Ht+j, for 2 ≤ j ≤ l, SP ′2 replaces the l − j + 1 OTP

with SimGl−j+1
.

Before proceeding further, we show that the random variables Ht+1 and Ht+l are statis-

tically close. For any 1 ≤ i < l consider any two adjacent hybrids Ht+i and Ht+i+1. Observe

that the only difference between the two is that in Ht+i, the (l − i)th OTP is real, while in
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Ht+i+1 the (l− i)th OTP is simulated. But by Claim 10, these distributions are statistically

close. Thus, Ht+i and Ht+i+1 are statistically close, for all 1 ≤ i < l.

Hybrid Ht+l+1: Same as Ht+l, but now if A queries the OTP for G1 before executing all

initial OTs, SP ′2 returns ⊥ to SimG1 .

Note that the OTP for G1 takes as input ρ1 ◦ . . . ◦ ρt. Thus, if A tries to query G1 OTP

before executing all initial OTs, with probability negligibly close to 1, the OTP for G1 will

abort.

Hybrid Ht+l+2: Same as before, but now if A tries to query OTPs out of order, then

instead of obtaining the honest output from P1, SP ′2 causes the relevant OTP simulator to

output ⊥.

Note that, in Ht+l+1, adversary A can succeed in out of order querying with probability

at most the probability of generating a forged MAC, which is negligible. Thus it follows

from the security of the unconditional one-time signature scheme that the two distributions

are statistically close.

Hybrid Ht+l+3: This experiment is the real execution of Π with (P1, SP ′2), where SP ′2

interacts with the real P1. Observe that in Ht+l+2, the adversary does not use P1’s real next

message function for construction of any OTPs. Instead, it only uses them to obtain P1’s

responses. Ht+l+3 is exactly the same except here SP ′2 gets P1’s responses directly from P1

rather than using its next message functions. Thus, the two distributions are identical.

�

Using bit-OT tokens. In all our constructions so far, the size of the output of our tokens

is polynomially related to the input size and the security parameter. Ideally, we would

only like to use hardware that handles strings of small size. For example, in the case of

OT tokens, we would like to use only bit OT tokens. To this end, one can use a known

perfectly secure reduction from string OT to bit OT [BCS96]. This reduction reduces OT on
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`-bit strings to O(`) parallel instances of bit OT. While in our case we need the reduction

to be UC-secure against a receiver who may invoke the bit OTs in an arbitrary adaptive

fashion, the reduction from [BCS96] can indeed be shown to satisfy this stronger notion of

security. This is a natural consequence of the perfect security of the reduction and an efficient

conditional sampling property. In the appendix, we briefly sketch an alternative construction

and proof using a coding argument. Further details will be provided in the final version.

Combining this final reduction with the previous results, we get an unconditionally-secure,

non-interactive, UC-secure protocol for a circuit C which uses O(|C|·poly(κ)) bit OT tokens.

This yields the following main result of this section:

Theorem 13. (Non-interactive unconditionally secure computation using bit-

OTM tokens.) Let f(x, y) be a non-reactive, sender-oblivious, polynomial-time computable

two-party functionality. Then there exists an efficient, statistically UC-secure non-interactive

protocol which realizes f in the F singlewrap -hybrid model in which the sender only sends bit-OTM

tokens to the receiver.
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CHAPTER 4

Two-Party Computation with Stateless Tokens

In this chapter, we again address the question of achieving interactive two-party computa-

tion protocols, but asking the following questions: (1) Can we achieve interactive two-party

computation protocols without requiring that the number of tokens increase with the com-

plexity of the function being computed, as was the case in the previous section, and (2)

Can we achieve two-party computation protocols using stateless tokens? We show how to

positively answer both questions: We use stateless tokens, whose complexity is polynomial

in the security parameter, to implement the OT functionality. We assume only the existence

of one-way functions. Since (as discussed earlier), secure protocols for any two-party task

exist given OT, this suffices to achieve the claimed result. Our construction for the OT

functionality (and thus for general two-party computation) is UC secure.

Before turning to our protocols, we make a few observations about stateless tokens to set

the stage. First, we observe that with stateless tokens, it is always possible to have protocols

where tokens are exchanged only at the start of the protocol. This is simply because each

party can create a “universal” token that takes as input a pair (c, x), where c is a (symmetric

authenticated/CCA-secure) encryption1 of a machine M , and outputs M(x). Then, later

in the protocol, instead of sending a new token T , a party only has to send the encryption

of the code of the token, and the other party can make use of that encrypted code and the

universal token to emulate having the token T . The proof of security and correctness of this

construction is straightforward, and omitted for the sake for brevity.

Dealing with dishonestly created stateful tokens. The above discussion, however,

assumes that dishonest players also only create stateless tokens. If that is not the case, then

1An “encrypt-then-MAC” scheme would suffice here.
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re-using a dishonestly created token may cause problems with security. If we allow dishonest

players to create stateful tokens, then a simple solution is to repeat the above construction

and send separate universal tokens for each future use of any token by the other player,

and honest players are instructed to only use each token once. Since this forces all tokens

to be used in a stateless manner, this simple fix is easily shown to be correct and secure;

however, it may lead to a large number of tokens being exchanged. To deal with this, as was

discussed in the previous section, we observe that by Beaver’s OT extension result [Bea96]

(which requires only one-way functions), it suffices to implement O(k) OT’s, where k is the

security parameter, in order to implement any polynomial number of OT’s. Thus, it suffices

to exchange only a linear number of tokens even in the setting where dishonest players may

create stateful tokens.

Convention for intuitive protocol descriptions. In light of the previous discussions, in

our protocol descriptions, in order to be as intuitive as possible, we describe tokens as being

created at various points during the protocol. However, as noted above, our protocols can

be immediately transformed into ones where a bounded number of tokens (or in the model

where statelessness is guaranteed, only one token each) are exchanged in an initial setup

phase.

4.1 Protocol Intuition

We now discuss the intuition behind our protocol for realizing OT using stateless tokens;

due to the complexity of the protocol, we do not present the intuition for the entire protocol

all at once, but rather build up intuition for the different components of the protocol and

why they are needed, one component at a time. For this intuition, we will assume that the

sender holds two random strings s0 and s1, and the receiver holds a choice bit b. Note that

OT of random strings is equivalent to OT for chosen strings [BG89].

The Basic Idea. Note that, since stateless tokens can be re-used by malicious players, if

we naively tried to create a token that output sb on input the receiver’s choice bit b, the

receiver could re-use it to discover both s0 and s1. A simple idea to prevent this reuse would
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be the following protocol, which is our starting point:

1. Receiver sends a commitment c = com(b; r) to its choice bit b.

2. Sender sends a token, that on input (b, r), checks if this is a valid decommitment of c,

and if so, outputs sb.

3. Receiver feeds (b, r) to the token it received, and obtains w = sb

Handling a Malicious Receiver. Similar to the problem discussed in the previous section,

there is a problem that the receiver may choose not to use the token sent by the sender until

the end of the protocol (or even later!). In our context, this can be dealt with easily. We can

have the sender commit to a random string π at the start of the protocol, and require that

the sender’s token must, in addition to outputting sb, also output a valid decommitment

to π. We then add a last step where the receiver must report π to the sender. Only upon

receipt of the correct π value does the sender consider the protocol complete.

Handling a Malicious Sender. While this protocol seems intuitive, we note that it is

actually insecure for a fairly subtle reason. A dishonest sender could send a token that on

input (b, r), simply outputs (b, r) (as a string). This means that at the end of the protocol,

the dishonest sender can output a specific commitment c, such that the receiver’s output is

a decommitment of c showing that it was a commitment to the receiver’s choice bit b. It is

easy to see that this is impossible in the ideal world, where the sender can only call an ideal

OT functionality.

To address the issue above, we need a way to prevent the sender from creating a token

that can adaptively decide what string it will output. This has to be done in a way to enable

our simulator to extract the inputs of the malicious sender. Thinking about it in a different

way, we want the sender to “prove knowledge” of two strings before he sends his token. We

can accomplish this by adding the following preamble to the protocol above:

1. Receiver chooses a pseudo-random function (PRF) fγ : {0, 1}5k → {0, 1}k, and then

sends a token that on input x ∈ {0, 1}5k, outputs fγ(x).
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2. Sender picks two strings x0, x1 ∈ {0, 1}5k at random, and feeds them (one-at-a-time) to

the token it received, and obtains y0 and y1. The sender sends (y0, y1) to the receiver.

3. Sender and receiver execute the original protocol above with x0 and x1 in place of s0

and s1. The receiver checks to see if the string w that it obtains from the sender’s

token satisfies fγ(w) = yb, and aborts if not.

The crucial feature of the protocol above is that a dishonest sender is effectively commit-

ted to two values x0 and x1 after the second step (and in fact the simulator can use the PRF

token to extract these values), such that later on it must output xb on input b, or abort.

Note that a dishonest receiver may learn k bits of useful information about x0 and x1

each from its token, but this can be easily eliminated later using the Leftover Hash Lemma

(or any strong extractor).

Preventing correlated aborts. A final significant subtle obstacle remains, however. A

dishonest sender can still send a token that causes an abort to be correlated with the receiver’s

input, e.g. it could choose whether or not to abort based on the inputs chosen by the

receiver2.

To prevent a dishonest sender from correlating the probability of abort with the receiver’s

choice, the input b of the receiver is additively shared into bits b1, . . . , bk such that b1 + b2 +

· · · + bk = b. The sender, on the other hand, chooses strings z1, . . . , zk and r uniformly at

random from {0, 1}5k. Then the sender and receiver invoke k parallel copies of the above

protocol (which we call the Quasi-OT protocol), where for the ith execution, the sender’s

inputs are (zi, zi + r), and the receiver’s input is bi. Note that at the end of the protocol,

the receiver either holds
∑
zi if b = 0, or r +

∑
zi if b = 1.

2At first glance, this may not seem like a problem, since we can treat an abort as a special output string
⊥, which the sender could have anyway provided as one his inputs to the OT. But the adaptive decision of
whether or not to abort is actually a problematic additional “axis” of control that the sender has in addition
to the allowed choice of strings depending on the receiver’s bit. We now elaborate with an example:

A concrete “problem case” is to consider a commitment algorithm in which the first bit c1 of the commit-
ment to a bit b is set equal to r ⊕ b, where r is a randomly chosen bit. Now, a dishonest sender can send a
token such that when it is fed the decommitment information, it decides to abort iff r = 1. Let r′ = 1 iff the
honest receiver sees the token abort and thus aborts. In real life executions of the protocol, we will always
have the invariant that c1 = r′ ⊕ b. However the natural simulator for this protocol, in which the simulator
(which does not know b), chooses a commitment to a random b′, would lead to ideal world executions in
which c1 6= r′ ⊕ b with probability 1/2.
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Intuitively speaking, this reduction (variants of which were previously used by, e.g. [Kil90,

LP07]) forces the dishonest sender to make one of two bad choices: If each token that it

sends aborts too often, then with overwhelming probability at least one token will abort and

therefore the entire protocol will abort. On the other hand, if few of the sender’s tokens

abort, then the simulator will be able to perfectly simulate the probability of abort, since

the bits bi are (k−1)-wise independent (and therefore all but one of the Quasi-OT protocols

can be perfectly simulated from the receiver’s perspective). We make the receiver commit to

its bits bi using a statistically hiding commitment scheme (which can be constructed from

one-way functions [HR07]) to make this probabilistic argument go through.

Now we are ready to present our protocol formally.

4.1.1 Preliminaries

Statistically Hiding Commitment Schemes We will use the statistically hiding com-

mitment scheme of [HR07]. The receiver’s transcript of commitment to bit b when the sender

uses randomness r will be denoted by scom(b, r). The decommitment phase consists of the

sender simply sending its randomness r along with bit b, and the receiver verifies if (r, b) is

consistent with the transcript scom(b, r).

Definition 14. (Pairwise Independent Hash Functions ([CW79])) Let H be a family of

functions mapping strings of length l(n) to strings of length m(n). Then, H is an efficient

family of pairwise independent hash functions if the following hold:

Samplable. H is polynomially samplable in n.

Efficient. There exists a polynomial time algorithm that given x ∈ { 0, 1 }l(n) and a descrip-

tion of h ∈ H outputs h(x).

Pairwise Independence. For every distinct x1, x2 ∈ { 0, 1 }l(n), and every y1, y2 ∈ { 0, 1 }m(n),

we have:

Pr
h←H

[ h(x1) = y1 ∧ h(x2) = y2 ] = 2−2m(n).
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It is known ([CW79]) that there exists an efficient family of pairwise independent hash func-

tions for every l and m whose element description size is O(max(l(n),m(n))).

Let X be a random source with min-entropy k.

Theorem 15. (Leftover Hash Lemma ([HILL99])) If the family H of hash functions h :

{ 0, 1 }n → { 0, 1 }l is pairwise independent, where l = k−2log(1/ε)−O(1), then Ext(X, h) :=

(h, h(X)) is a strong (k, ε/2)-extractor.

4.1.2 The Protocol

Let k be the security parameter. Let H be an efficient family of pairwise hash functions

mapping strings of length 5k to k. Let F be a family of pseudo-random functions mapping

strings of length 5k to k.

Protocol. (Quasi OT.)

• Input: P1 has two strings (s0, s1) ∈ { 0, 1 }k, P2 has a selection bit b.

• Common input: An index j.

• Protocol:

1. P2 chooses a random PRF key γ for family F , and sends (create, sid, P2, P1,midj,1,M1),

where M1 implements the following functionality:

• On input string x ∈ { 0, 1 }5k, output fγ(x).

P2 also sends to P1 a randomly chosen string r, which serves as the first message

of the (statistically binding) commitment scheme com.

2. P1 chooses two strings x0 and x1 uniformly from { 0, 1 }5k, and a random string

π ∈ { 0, 1 }k. P1 sends (run, sid, P2, P1,midj,1, xi) to obtain yi, for i ∈ { 0, 1 }. Now

P2 chooses a random hash function h ∈ H, and sends (y0, y1, h, α = com(π)) to

P2.
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3. Now P2 commits to its input bit b using the commitment scheme scom. That is,

P2 and P1 run the statistically hiding commitment protocol scom, with P2 acting

as the sender in the commitment protocol with input bit b. Let α̂ be P1’s transcript

(view) of the commitment phase, and let r̂ be the randomness used by P2 in the

commitment protocol.

4. If the commitment phase succeeds, P1 sends (create, sid, P1, P2,midj,2,M2), where

M2 implements the following functionality:

• Obtain randomness r̂ and bit b, and verify that this is a valid decommitment

(with respect to commitment transcript α̂). If so, output xb and β = open(α).

Else, output ⊥.

5. P2 sends (run, sid, P1, P2,midj,2, (r̂, b)) and obtains xb and β. It then checks if

fγ(xb) = yb. If not, it aborts. Then it checks if β is a valid opening of α. If not,

it aborts. Else, let π′ be the revealed string. P2 sends π′ to P1.

6. P1 receives string π′ from P2, and checks if π = π′. If not, it aborts. Else, it sends

(s′0 = s0 ⊕ h(x0), s′1 = s1 ⊕ h(x1)).

7. P2 receives (s′0, s
′
1), and outputs s′b ⊕ h(xb).

As mentioned before, this protocol does not realize the OT functionality, as a malicious

sender can selectively abort based on receiver’s input. Now we present a protocol that uses

QuasiOT as a subroutine and realizes OT in the F statelesswrap -hybrid model.

Protocol. (OT in F statelesswrap -hybrid model.)

• Input: P1 has two strings (s0, s1) ∈ { 0, 1 }k × { 0, 1 }k, P2 has selection bit b.

• Output: P2 outputs sb.

• Protocol:

1. P1 chooses z1, . . . , zk, r ∈ { 0, 1 }k uniformly at random. P2 chooses k− 1 random

bits b1, . . . , bk−1, and sets bk such that b =
⊕k

j=1 bj. Now P1 and P2 execute in
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parallel, k copies of QuasiOT . For 1 ≤ j ≤ k, the inputs to the jth copy of

QuasiOT are (zj, zj ⊕ r) and bj.

2. If all k copies of QuasiOT finish without aborts, then P1 sends to P2 the pair

(s′0 = s0 ⊕
⊕k

j=1 zj, s
′
1 = s1 ⊕

⊕k
j=1 zj ⊕ r).

3. For 1 ≤ j ≤ k, let aj be the string received by P2 at the end of the jth invocation

of QuasiOT . Then, P2 outputs s′b ⊕
⊕k

j=1 aj.

4.1.3 Security Proof

Theorem 16. Protocol 4.1.2 UC-realizes OT in the F statelesswrap -hybrid model.

Proof We first consider the case of malicious sender. Let A be an adversary corrupting

P1, and let Z be any environment. For each j, 1 ≤ j ≤ k, we first present a sub-routine Ŝ1,j

that will be used by the ideal-world simulator S1.
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Subroutine Ŝ1,j

1. Send (create, sid, P2, P1,midj,1) to A. Also send a random string r.

2. For each query x to midj,1, Ŝ1,j checks if A queried the midj,1 on x before. If it

did, return the previous response. Else, return a randomly chosen k-bit string

y. The simulator keeps a list of A’s queries to midj,1 and its responses.

3. When Ŝ1,j receives (y0, y1, h, α) from A, it checks the list of responses, and

obtains the strings x0 and x1 to which it responded with y0 and y1 respectively.

If for any yi, i ∈ { 0, 1 }, no such xi exists, set xi = ⊥.

4. Ŝ1,j picks a random bit b, and runs the commitment protocol scom with A, with

b as its input.

5. When Ŝ1,j receives (create, sid, P1, P2,midj,2,Mj,2), it honestly runs the decom-

mitment phase of scom, and obtains output (x̂b, β). If x̂b 6= xb, it aborts. If β

is not the correct opening of α, it aborts. Else, let π be the string revealed in

the opening. Ŝ1,j returns π to A.

6. When Ŝ1,j obtains (s′j,0, s
′
j,1) from A, it returns (sj,0 = s′j,0 ⊕ h(x0), sj,1 = s′j,1 ⊕

h(x1)) to S1.

Now we describe the the ‘outer’ simulator S1.
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Simulator S1

1. Invoke adversary A, and pass messages from environment to P1 or A, to A and

vice versa.

2. For each j, 1 ≤ j ≤ k, run Ŝ1,j, and pass messages between the subroutine and

A. If no subroutine Ŝ1,j aborts, for each j, obtain pair (sj,0, sj,1).

3. Let (s′0, s
′
1) be the final message from A. The simulator S1 picks two random

bit-vectors (b1, . . . , bk) and (b′1, . . . , b
′
k), such that

⊕k
j=1 bj = 0 and

⊕k
j=1 b

′
j = 1.

Then it sets s0 = s′0 ⊕
⊕k

j=1 sj,bj and s1 = s′1 ⊕
⊕k

j=1 sj,b′j . The simulator sends

(s0, s1) to the ideal OT functionality.

We prove indistinguishability of real and ideal worlds via the following series of hybrids.

We denote the k invocations of the QuasiOT subroutine by QOT1, . . . , QOTk.

Hybrid H0: This is the real execution.

Hybrid H1,0: Same as above, except we modify the behaviour of QOT1 as follows: instead

of answering A’s queries by running M1,1, for each query x, we respond with a randomly

chosen k-bit string. We record the queries and our responses in a list. When A asks query

x, we first check if A asked x before. If this is the case, we respond with the same string as

before.

Any environment that can distinguish between H1,0 and H0 can distinguish the PRF

from a random function. Thus, as the PRF key is never revealed, by the security of the

PRF, hybrids H1,0 and H0 are indistinguishable.

Hybrid H1,1: Same as above, except now, as we record the responses in the list, we ensure

that no two of A’s queries have the same response. If there is a collision, H1,1 aborts.

Note that the probability of abort in H1,1 is at most the probability of finding a collision

in a randomly chosen function. Thus, H1,0 and H1,1 are statistically close.
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Hybrid H1,2: This experiment is same as above, except the following: let (y0, y1, h, α) be

A’s first message to P2. We check the list of responses to find strings x0 and x1 such that

y0 and y1 were the responses to x0 and x1 respectively. Note that conditioned on the event

that H1,1 does not abort, each y can be a response to at most a single A query x. If for

i ∈ { 0, 1 }, yi is not the response to any query, set xi = ⊥. Now, let (x̂b1 , β) be M1,2’s

output. If x̂b1 6= xb1 , hybrid H1,2 outputs ⊥. Else, let (s′1,0, s
′
1,1) be A’s final message. QOT1

returns (s1,0 = s′1,0 ⊕ h(x0), s1,1 = s′1,1 ⊕ h(x1)) to S1, which forwards s1,b1 to the simulated

P2.

If xb1 6= ⊥, the the probability that the images (under a random function) of x̂b1 and xb1

would be the same, is negligible. If xb1 = ⊥, then the probability that A can guess the image

(under a random function) of x̂b1 is negligible. Thus, H1,1 and H1,2 are statistically close.

Hybrids H2,0, . . . ,Hk,2: For 2 ≤ j ≤ k and j′ ∈ { 0, 1, 2 }, hybrid Hj,j′ modifies the

behaviour of QOTj in the same way as H1,j′ modifies the behaviour of QOT1. By the same

arguments as above, it follows that these hybrids are indistinguishable.

Hybrid Hk+1: Same as above, except instead of using ~v = (b1, . . . , bk) as the inputs to

QOTjs, where
⊕k

j=1 bj = b, we pick a random vector of bits ~v′, and use that as inputs to the

QOTjs. Let (s′0, s
′
1) be the final message from A. Now we randomly pick two k-bit vectors

~v0 = (b1, . . . , bk) and ~v1 = (b′1, . . . , b
′
k) such that

⊕k
j=1 bj = 0 and

⊕k
j=1 b

′
j = 1. For each

j, let (sj,0, sj,1) be the pairs of strings obtained from QOTjs. Set s0 = s′0 ⊕
⊕k

j=1 sj,bj and

s1 = s′1 ⊕
⊕k

j=1 sj.b′j . Finally, output sb as P2’s output.

Note that com is a statistically binding commitment scheme. Thus, with probability

negligibly close to 1, α has a single opening. Next, observe that the only difference between

Hk,2 and Hk+1 is in the inputs to the OT boxes (that is, inputs to the tokens Mj,2). Also note

that in Hk,2, each token Mj,2, outputs either the correct string xj,bj , or ⊥. Thus, the only

difference in the two hybrids is the probability of abort. We now show that the probabilities

of abort are negligibly close to each other.

Claim 17. Let p1 be the probability of abort in Hk,2, and p2 be the probability of abort in
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Hk+1. Then, |p1 − p2| ≤ 2−k+1.

Proof For simplicity, we assume that the commitment scheme scom is perfectly hiding. In

the end, we point out how to extend the proof to the case of statistical hiding schemes.

We will condition the probability of abort on A’s transcripts of the commitments. Let

~v = (b1, . . . , bk) be a bit vector, and let ~r = (r1, . . . , rk) be a vector of random strings. By

scom(~v, ~r) = (α̂1, . . . , α̂k) we mean a vector of transcripts, where for 1 ≤ j ≤ k, α̂j is the

transcript of the receiver in the commitment scheme scom when the sender commits bit bj

using randomness rj (the randomness of the receiver is implicit).

Let ~c = (α̂1, . . . , α̂k) be a transcript vector. First, note that, because of the perfect

hiding property of the commitment scheme scom, the probability of occurrence of ~c in Hk,2

and Hk+1 is exactly the same. That is, the number of randomness strings ~r that lead to

transcript ~c is the same in the two hybrids. For ~c, fix a randomness vector ~r that can lead to

~c. For ~c and ~r, we analyze the behaviour of the tokens Mj,2 in the following two experiments

corresponding to Hk,2 and Hk+1 respectively: in the first, ~v is chosen so that
⊕k

j=1 bj = b,

and in the other, ~v is randomly chosen. Note that fixing ~c and ~r fixes the output of token

Mj,2: on on input bj, it either outputs xj,bj or ⊥. Consider the following two cases:

Case 1. There exists j, 1 ≤ j ≤ k such that Mj,2 aborts neither on 0 nor on 1. In this

case, as the inputs to the Mj′,2s are (k− 1)-wise independent, the probability of abort

is identical in the two cases.

Case 2. For all j, Mj,2 aborts on either 0 or 1. Then, the probability that Hk,2 aborts is at

least 1 − 2−k+1. Thus, in this case, the difference in the probability that Hk,2 aborts

and the probability that Hk+1 aborts is at most 2−k+1.

Thus, the two hybrids are statistically close.

In the case of statistical hiding instead of perfect hiding, the probability that a transcript

vector ~c occurs in the two hybrids are not the same, but negligibly close. Thus, we must

discard some randomness vectors ~r from the analysis, but this changes the probabilities only

be a negligible amount.
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Hybrid Hk+2: This is the ideal world. Note that we only use P2’s selection bit b in the

final step to determine its output. As the ideal world P2 is honest, it queries the ideal

functionality with bit b and obtains string sb. Thus, Hk+2 and Hk+1 are identical.

Next, we handle the case of a malicious receiver. Let A be an adversary corrupting P2,

and let Z be any environment. We first present Ŝ2,j which will be used as a sub-routine by

simulator S2.

Subroutine Ŝ2,j

1. Receive as input from S2 a pair of strings (sj,0, sj,1). Receive

(create, sid, P2, P1,midj,1,Mj,1) and random string r from A. Run Mj,1 on ran-

domly chosen 5k-bit strings xj,0 and xj,1 and obtain yj,0 and yj,1. Choose

random πj ∈ { 0, 1 }k and a random hash function hj ∈ H, and return

(yj,0, yj,1, hj, αj = com(πj)) to A.

2. Run the statistical hiding commitment protocol with A. Let α̂j be the receiver’s

transcript.

3. Send (create, sid, P1, P2,midj,2) to A. If A correctly decommits, then let bj be

the revealed bit. Send (xj,bj , βj = open(αj)) to A. If A ever decommits to both

0 and 1, output binding abort and abort.

4. Receive π′ from A. If π′ 6= π, abort. If A returns the correct π without

running Mj,2, output hiding abort and abort. Else, set s′j,0 = sj,0 ⊕ hj(xj,0) and

s′j,1 = sj,1 ⊕ hj(xj,1). Send (s′j,0, s
′
,1) to A, and return bj to S2.

Now we present the ideal-world simulator S2.
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Simulator S2

1. Choose z1, . . . , zk, r ∈ { 0, 1 }k uniformly at random. For each 1 ≤ j ≤ k, run

Ŝ2,j with input (zj, zj ⊕ r). If any subroutine aborts, abort. Else, let bj be the

values returned by the Ŝ2,js.

2. Send b =
⊕k

j=1 bj to the ideal OT functionality, and obtain sb. Choose random

k-bit string s1⊕b. Set s′b = sb ⊕
⊕k

j=1(zj ⊕ bj · r) (where bj · r is r if bj = 1, else

0) and s′1⊕b = s1⊕b. Send (s′0, s
′
1) to A.

We show indistinguishability of the real and ideal worlds via the following hybrids.

Hybrid H0: This is the real world execution.

Hybrid H1: Same as above, except we modify the behaviour of the QuasiOT protocols in

the following way: if for any j, A outputs the correct value πj without running Mj,2, then

output hiding abort and abort.

We now show that the probability that H1 outputs hiding abort is negligible.

Claim 18. Let ε be the probability that H1 outputs hiding abort. Then, ε is negligible in k.

Proof We construct a non-uniform adversary Acom that breaks the hiding property of

commitment scheme com with probability ε. To show this, the adversary Acom must succeed

with probability ε in the following game: Acom interacts with an external party, called the

challenger, and acts as the receiver in commitment scheme com. It sends a random string r

as the first message, and receives a commitment α̃ to a random k bit string π. The adversary

succeeds if it outputs π.

Let j be such that A outputs πj without running Mj,2 with probability at least ε. The

adversary Acom works as follows: it sends a random r to the challenger, and receives a com-

mitment α̃ = com(π). Now Acom sets up an execution of A and honest P1 with environment

Z. For the jth copy of the QuasiOT subroutine, it uses α̃ as the commitment in P1’s first
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message to A. Thereafter, Acom proceeds with the rest of the execution without modifica-

tion. If A queries Mj,2 correctly, then Acom aborts. Otherwise, let π′ be A’s message to P1 in

step 6 of the jth QuasiOT subroutine. Adversary Acom outputs π′ as its guess of the string

committed in α̃.

By the hypothesis, with probability ε, adversary A outputs the correct stri ng π in step 6

of the jth QuasiOT. Thus, if the commitment scheme com is computationally hiding, ε must

be negligible.

�

Hybrid H2: This is the same as above, except if for any j, adversary A provides two

different openings to Mj,2, then H2 outputs binding abort and aborts.

We show that the probability that H2 outputs binding abort is negligible.

Claim 19. Let ε be the probability that for some j, adversary A provides different openings

to Mj,2. Then, ε is negligible in k.

Proof We construct a non-uniform adversary Acom that breaks the binding property of

commitment scheme scom with probability ε. To show this, the adversary Acom must succeed

with probability ε in the following game: Acom interacts with an external party, called the

challenger, and acts as the sender in commitment scheme scom. If the commitment phase is

successful, let α̂ be the transcript of the receiver in the commitment phase. The adversary

succeeds if it can produce (r, 0) and (r′, 1), both of which are valid decommitments with

respect to α̂.

Let j be such that A queries Mj,2 twice on two distinct bits. The adversary Acom works

as follows: it sets up an execution between Z, A and honest P1 as in H2. Then it executes

the jth copy of scom with the challenger. If A queries Mj,2 only once, abort. Else, let (r, 0)

and (r′, 1) be the two queries. Acom outputs (r, 0) and (r′, 1).

By the hypothesis, with probability at least ε, Acom outputs two different openings. As

scom is computationally binding, ε must be negligible in k.
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Hybrid H3: Same as above, except we modify the last message of S2. We set s′b =

sb
⊕k

j=1(zj ⊕ bj · r) and set s′1⊕b to a random k-bit string.

We show that in H2, s′1⊕b is uniformly distributed in { 0, 1 }k given previous messages.

We first show that for every j, if bj is A’s input to Mj,1, then s′1⊕bj is uniformly distributed

in { 0, 1 }k. Observe that Mj,1 partitions the domain { 0, 1 }5k into 2k partitions S1, . . . , S2k ,

such that for all x, x′ ∈ Si, Mj,1(x) = Mj,1(x′). For x ∈ { 0, 1 }5k, let S(x) be the partition

that x belongs to. Call a partition Si “good” if |Si| ≥ 23k. We have the following claim.

Claim 20. If x is uniformly chosen in { 0, 1 }5k, then the probability that it belongs to a good

partition is at least 1− 2−k.

Proof As there are only 2k partitions, we have, by the union bound,

Pr [ S(x) is bad ] <
2k · 23k

25k
= 2−k.

Thus, the probability that x lies in a good partition is at least 1− 2−k.

�

Thus, with probability negligibly close to 1, the random variable U5k|Mj,1(U5k) has min-

entropy 3k. Thus, by the leftover hash lemma, we have that,

∆((hj, hj(x1⊕bj)), (UH,Uk)) ≤ 2−k−1.

That is, hj(x1⊕bj) is distributed close to randomly in { 0, 1 }k. Thus, for each j, A learns

zj ⊕ b · r, while zj ⊕ (1 ⊕ b) · r is completely random to it. Note that as s′0 = s0 ⊕
⊕k

j=1 zj

and s′1 = s1 ⊕
⊕k

j=1 zj ⊕ r, A learns only sb, while s1⊕b is complete random to it.

Hybrid H4: This is the ideal world. Note that H3 is exactly the simulator S2. The

simulator extracts b as above, sends it to the ideal OT functionality, and obtains sb. Then

it sets s′b = sb
⊕k

j=1(zj ⊕ bj · r), and s′1⊕b to a random value, and sends (s′0, s
′
1) to A. This

hybrid is identical to H3.
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Thus, we have the following main theorem for this section.

Theorem 21. (Interactive UC-secure computation using stateless tokens.) Let f

be a (possibly reactive) polynomial-time computable functionality. Then, assuming one-way

functions exist, there exists a computationally UC-secure interactive protocol which realizes

f in the F statelesswrap -hybrid model. Furthermore, the protocol only makes a black-box use of the

one-way function.
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CHAPTER 5

Physically Uncloneable Functions

5.1 Defining PUFs

In this section we follow definitions given in [BFSK11]. A PUF is a noisy physical source

of randomness. The randomness property comes from an uncontrollable manufacturing pro-

cess. A PUF is evaluated with a physical stimulus, called the challenge, and its physical

output, called the response, is measured. Because the processes involved are physical, the

function implemented by a PUF can not (necessarily) be modeled as a mathematical func-

tion, neither can be considered computable in PPT. Moreover, the output of a PUF is noisy,

namely, querying a PUF twice with the same challenge, could yield to different outputs. The

mathematical formalization of a PUF due to [BFSK11] is the following.

A PUF-family P is a pair of (not necessarily efficient) algorithms Sample and Eval, and is

parameterized by the bound on the noise of PUF’s response dnoise and the range of the PUF’s

output rg. Algorithm Sample abstracts the PUF fabrication process and works as follows.

On input the security parameter, it outputs a PUF-index id from the PUF-family satisfying

the security property (that we define soon) according to the security parameter. Algorithm

Eval abstracts the PUF-evaluation process. On input a challenge q, it evaluates the PUF

on q and outputs the response a of length rg. The output is guaranteed to have bounded

noise dnoise, meaning that, when running Eval(1n, id, q) twice, the Hamming distance of any

two responses a1, a2 is smaller than dnoise(n). Wlog, we assume that the challenge space of a

PUF is a full set of strings of a certain length.

Definition 1 (Physically Uncloneable Functions). Let rg denote the size of the range of

the PUF responses of a PUF-family and dnoise denote a bound of the PUF’s noise. P =
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(Sample,Eval) is a family of (rg, dnoise)-PUF if it satisfies the following properties.

Index Sampling. Let In be an index set. On input the security parameter n, the

sampling algorithm Sample outputs an index id ∈ In following a not necessarily efficient

procedure. Each id ∈ In corresponds to a set of distributions Did. For each challenge

q ∈ {0, 1}n, Did contains a distribution Did(q) on {0, 1}rg(n). Did is not necessarily an

efficiently sampleable distribution.

Evaluation. On input the tuple (1n, id, q), where q ∈ {0, 1}n, the evaluation algorithm

Eval outputs a response a ∈ {0, 1}rg(n) according to distribution Did(q). It is not required

that Eval is a PPT algorithm.

Bounded Noise. For all indexes id ∈ In, for all challenges q ∈ {0, 1}n, when running

Eval(1n, id, q) twice, the Hamming distance of any two responses a1, a2 is smaller than

dnoise(n).

In the paper we use PUFid(q) to denote Did(q). When not misleading, we omit id from

PUFid, using only the notation PUF.

Security of PUFs. We assume that PUFs enjoy the properties of uncloneability and unpre-

dictability. Unpredictability is modeled via an entropy condition on the PUF distribution.

Namely, given that a PUF has been measured on a polynomial number of challenges, the

response of the PUF evaluated on a new challenge has still a significant amount of entropy.

In the following we recall the concept of average min-entropy.

Definition 2 (Average min-entropy). The average min-entropy of the measurement PUF(q)

conditioned on the measurements of challenges Q = (q1, . . . , qpoly(n)) is defined by

H̃∞(PUF(q)|PUF(Q)) = −log
(
Eak←PUF(qk)[max

a
Pr
[
PUF(q) = a|a1 = PUF(q1), . . . , apoly(n) = PUF(qpoly(n))

]
]
)

= −log
(
Eak←PUF(qk)[2

H∞(PUF(q)=a|a1=PUF(q1),...,apoly(n)=PUF(qpoly(n))]
)

where the probability is taken over the choice of id from In and the choice of possible

PUF responses on challenge q. The term PUF(Q) denotes a sequence of random variables

PUF(q1), . . . ,PUF(qpoly(n)) each corresponding to an evaluation of the PUF on challenge qk,

for 1 ≤ k ≤ poly(n).
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Definition 3 (Unpredictability). A (rg, dnoise)-PUF family P = (Sample,Eval) for secu-

rity parameter n is (dmin(n),m(n))-unpredictable if for any q ∈ {0, 1}n and challenge list

Q = (q1, . . . , qpoly(n)), one has that, if for all 1 ≤ k ≤ poly(n) the Hamming distance satisfies

disham(q, qk) ≥ dmin(n), then the average min-entropy satisfies H̃∞(PUF(q)|PUF(Q)) ≥ m(n),

where PUF(Q) denotes a sequence of random variables PUF(q1), . . . ,PUF(qpoly(n)) each cor-

responding to an evaluation of the PUF on challenge qk. Such a PUF-family is called a

(rg, dnoise, dmin,m)-PUF family.

Fuzzy Extractors. The output of a PUF is noisy, that is, feeding it with the same chal-

lenge twice may yield distinct, but still close, responses. Fuzzy extractors of Dodis et al. [?]

are applied to the outputs of the PUF to convert such noisy, high-entropy measurements

into reproducible randomness.

Let U` denote the uniform distribution on `-bit strings. Let M be a metric space with

the distance function dis: M×M→ R+.

Definition 4 (Fuzzy Extractors). A (m, `, t, ε)-fuzzy extractor is a pair of efficient random-

ized algorithms (FuzGen,FuzRep). The algorithm FuzGen on input w ∈ M, outputs a pair

(p, st), where st ∈ {0, 1}` is a secret string and p ∈ {0, 1}∗ is a helper data string. The

algorithm FuzRep, on input an element w′ ∈M and a helper data string p ∈ {0, 1}∗ outputs

a string st. A fuzzy extractor satisfies the following properties.

Correctness. For all w,w′ ∈M, if dis(w,w′) ≤ t and (st, p)
$← FuzGen, then FuzRep(w′, p) =

st.

Security. For any distribution W on the metric space M, that has min-entropy m,

the first component of the random variable (st, p), defined by drawing w according

to W and then applying FuzGen, is distributed almost uniformly, even given p, i.e.,

SD((st, p), (U`, p)) ≤ ε.

Given a (rg(n), dnoise(n), dmin(n),m(n))-PUF family with dmin(n) = o(n/ log n), a match-

ing fuzzy extractor has as parameters `(n) = n and t(n) = dnoise(n). The metric space M
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is the range {0, 1}rg with Hamming distance disham. We call such PUF family and fuzzy

extractor as having matching parameters, and the following properties are guaranteed.

Well-Spread Domain. For all polynomial p(n) and all set of challenges q1, . . . , qp(n), the

probability that a randomly chosen challenge is within distance smaller than dmin with

any qk, for 1 ≤ k ≤ n is negligible.

Extraction Independence. For all challenges q1, . . . , qp(n), and for a challenge q such that

dis(q, qk) > dmin for 1 ≤ k ≤ p(n), it holds that the PUF evaluation on q and subsequent

application of FuzGen yields an almost uniform value st even if p is observed.

Response consistency. Let a, a′ be the responses of PUF when queried twice with the

same challenge q, then for (st, p)
$← FuzGen(a) it holds that st← FuzRep(a′, p).

5.2 Modeling Malicious PUFs

We allow our adversaries to send malicious PUFs to honest parties1. As discussed before,

the motivation for malicious PUFs is that the adversary may have some control over the

manufacturing process and may be able to produce errors in the process that break the

PUF’s security properties. Thus, we would like parties to rely on only the PUFs that they

themselves manufacture (or obtain from a source that they trust), and not on the ones they

receive from other (possibly adversarial) parties.

Malicious PUF Families. In the real world, an adversary may create a malicious PUF in a

number of ways. For example, it can tamper with the manufacturing process for an honestly-

generated PUF to compromise its security properties (unpredictability, for instance). It may

also introduce additional behaviour into the PUF token, like logging of queries. Taking

inspiration from the literature on modeling tamper-proof hardware tokens, one might be

tempted to model malicious PUFs analogously in the following way: to create a malicious

PUF, the adversary simply specifies to the ideal functionality, the (malicious) code it wants

1Throughout this section, we assume the reader is familiar with the original UC PUF formulation of
Brzuska et al. ([BFSK11], Section 4.2).
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to be executed instead of an honest PUF. But, note that as the adversary is a PPT machine,

the malicious code it specifies must also be PPT. However, PUFs are not modeled as PPT

machines, so this places severe restrictions on the adversaries2. In particular, modeling

malicious PUFs in this way would disallow the adversary from modifying honest PUFs (or

more precisely, the honest PUF manufacturing process). Instead, we allow the adversary to

specify a “malicious PUF family”, that the ideal functionality uses. To keep our treatment

as general as possible, we do not place any restriction on a malicious PUF, except that it

should have the same syntax as that of an honest PUF family, as specified in Definition 1. Of

course, in the protocol, we also want the honest parties to be able to obtain and send honestly

generated PUFs. Thus our ideal functionality for PUFs, FPUF (Fig. 5.1) is parameterized by

two PUF families: the normal (or honest) family (Samplenormal,Evalnormal) and the possibly

malicious family (Samplemal,Evalmal). When a party Pi wants to initialize a PUF, it sends

a initPUF message to FPUF in which it specifies the mode ∈ { normal, mal }, and the ideal

functionality uses the corresponding family for initializing the PUF. For each initialized

PUF, the ideal functionality FPUF also stores a tag representing the family (i.e., mal or

normal) from which it was initialized. Thus, when the PUF needs to be evaluated, FPUF

runs the evaluation algorithm corresponding to the tag.

As in the original formulation of Brzuska et al., the ideal functionality FPUF keeps a list L
of tuples (sid, id, mode, P̂ , τ). Here, sid is the session identifier of the protocol and id is the PUF

identifier output by the Samplemode algorithm. As discussed above mode ∈ { normal, mal }
indicates the mode of the PUF, and P̂ identifies the party that currently holds the PUF.

The final argument τ specifies transition of PUFs: τ = notrans indicates the PUF is not in

transition, while τ = trans(Pj) indicates that the PUF is in transition to party Pj. Only

the adversary may query the PUF during the transition period. Thus, when a party Pi

hands over a PUF to party Pj, the corresponding τ value for that PUF is changed from

notrans to trans(Pj), and the adversary is allowed to send evaluation queries to this PUF.

When the adversary is done with querying the PUF, it sends a readyPUF message to the ideal

2Observe that allowing the adversary to specify the malicious code enables the simulator to “rewind” the
malicious PUF. However, in the model we use, such rewinding is not possible.

61



functionality, which hands over the PUF to Pj and changes the PUFs transit flag back to

notrans. The party Pj may now query the PUF. The ideal functionality now waits for a

receivedPUF message from the adversary, at which point it sends a receivedPUF message to Pi

informing it that the hand over is complete. The ideal functionality is described formally in

Fig. 5.1.

Allowing Adversary to Create PUFs. We deviate from the original formulation of

FPUF of Brzuska et al. [BFSK11] in one crucial way: we allow the ideal-world adversary S to

create new PUFs. That is, S can send a initPUF message to FPUF. In the original formulation

of Brzuska et al., S could not create its own PUFs, and this has serious implications for the

composition theorem. We thank Margarita Vald [Val12] for pointing out this issue. Also, it

should be noted that the PUF set-up is non-programmable, but not global [CDPW07]. The

environment must go via the adversary to query PUFs, and may only query PUFs in transit

or held by the adversary at that time.

We remark that the OT protocol of [BFSK11] for honest PUFs, fails in the presence of

malicious PUFs. Consider the OT protocol in Fig. 3 in [BFSK11]. The security crucially

relies on the fact that the receiver Pj can not query the PUF after receiving sender’s first

message, i.e., the pair (x0, x1). If it could do so, then it would query the PUF on both x0⊕v
and x1 ⊕ v and learn both s0 and s1. In the malicious PUF model however, as there is no

guarantee that the receiver can not learn query/answer pairs when a malicious PUF that he

created is not in its hands, the protocol no longer remains secure.

PUFs and computational assumptions. The protocol we present in the next section

will use computational hardness assumptions. These assumptions hold against probabilistic

polynomial-time adversaries. However, PUFs use physical components and are not modeled

as PPT machines, and thus, the computational assumptions must additionally be secure

against PPT adversaries that have access to PUFs. We remark that this is a reasonable

assumption to make, as if this is not the case, then PUFs can be used to invert one-way

functions, to find collisions in CRHFs and so on, therefore not only our protocol, but any

computational-complexity based protocol would be insecure. Note that PUFs are physical
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devices that actually exist in the real world, and thus all real-world adversaries could use

them.

To formalize this, we define the notion of “admissible” PUF families. Informally, a PUF

family (regardless of whether it is honest or malicious) is called admissible with respect to a

hardness assumption if that assumption holds even when the adversary has access to PUFs

from this family. We will prove that our protocol is secure when the FPUF ideal functionality

is instantiated with admissible PUF families.

For our purpose, all the cryptographic tools that we use to construct our protocols can

be based on the DDH assumption. Thus, we define PUF families that are admissible only

with respect to DDH, but note that the definition can be generalized to other cryptographic

primitives. This is a straightforward generalization of the standard DDH definition. From

this point on in this paper, we only talk of admissible families.

5.3 Other Definitions

5.3.1 Commitment Schemes

Definition 5 (Bit Commitment Scheme). A commitment scheme is a tuple of PPT algo-

rithms Com = (C,R) implementing the following two-phase functionality. Given to C an

input b ∈ {0, 1}, in the first phase (

emphcommitment phase) C interacts with R to commit to the bit b, we denote this interaction

as ((c, d), c)← 〈C(com, b), R(recv)〉 where c is the transcript of the commitment phase and

d is the decommitment. In the second phase ( opening phase) C sends (b, d) and R finally

accepts or rejects according to (c, b, d).

Com = (C,R) is a commitment scheme if it satisfies the following properties.

Completeness. If C and R follow their prescribed strategy then R will always accept the

commitment and the decommitment (with probability 1).

Computational Hiding. For every PPT R∗ the ensembles {viewR∗ (C(com, 0), R∗) (1n)}n∈N
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and {viewR∗(C(com, 0), R∗) (1n)}n∈N are computationally indistinguishable, where viewR∗

(C(com, b), R∗) denotes the view of R∗ in the commit stage interacting with C(com, b).

Computational Binding. For every PPT C∗, there exists a negligible function ε such

that the malicious sender C∗ succeeds in the following game with probability at most

ε(n): On security parameter 1n, C∗ interacts with R in the commit stage obtaining the

transcript c . Then C∗ outputs pairs (0, d0) and (1, d1), and succeeds if in the opening

phase, R(0, d0, c) = R(1, d1, c) = accept.

When hiding (resp., binding) holds even against an unbounded adversary, then the com-

mitment scheme enjoys statistical hiding (resp., binding).

It will be helpful to consider commitment schemes in which the committer and receiver

take an additional common input, denoted by σ. This additional common input is drawn

fresh for each execution from a specified distribution. In our case, this additional common

input is always drawn from the uniform distribution of appropriate length. We will denote

such commitment schemes with Com = (C,R)(σ). The properties of Definition 5 are required

to hold over the random choice of σ.

Definition 6 (Straight-line Equivocal Commitment Scheme.). A commitment scheme Com =

(C,R)(σ) with common input σ, is a straight-line equivocal commitment scheme if there exists

a straight-line strict polynomial-time simulator S = (S1,S2,S3) such that for any b ∈ {0, 1},
and for all PPT R∗, the output of the following two experiments is computationally indistin-

guishable:

Experiment ExpC
R∗(n) : Experiment ExpSR∗(n):

σ
$← {0, 1}`(n); (σ̃, state1)

$← S1(1n);

((c, d), c)← 〈C(com, b),R∗(recv)〉(σ); (state2, c̃)← 〈S2(state1),R∗(recv)〉(σ̃);

return R∗(σ, b, c, d)〉; d̃← S3(σ, state2, b); return R∗(σ̃, c̃, b, d̃);

Note that in this definition, the verification of the receiver R is computed by using also

the common input. Further, this definition can easily be extended to the setting where all

parties have access to PUFs.

64



Definition 7 (Straight-line Extractable Commitment Scheme in the Malicious PUF model).

A commitment scheme Com = (C,R) is a straight-line extractable commitment scheme in

the malicious PUF model if there exists a straight-line strict polynomial-time extractor E

that, having on-line access to the queries made by any PPT malicious committer C∗ to the

PUFs sent by the honest receiver R, and running only the commitment phase, it outputs a

bit b? or the special symbol ⊥ such that:

- (simulation) the views viewC∗(C
∗(com, ?),R(recv)) and viewC∗(C

∗(com, ?),E) are identi-

cal;

- (extraction) let c be the transcript obtained from the commitment phase run between C∗

and E. If E outputs ⊥ then the probability that C∗ will provide an accepting decommit-

ment is negligible.

- (binding) if b? 6= ⊥ the probability that C∗ decommit to a bit b 6= b? is negligible.

Remark 1. The standard definition of extractable commitments in the plain model requires

that, if the commitment is accepting then, probability that the extractor fails and outputs ⊥,

is negligible. Our definition is in the FPUF-hybrid model, and straight-line extractability is

achieved using access to FPUF. Here, we require that, if the decommitment is accepting, then

probability that the extractor fails and output ⊥ is negligible. Therefore, to establish that an

extractor fails, we have to consider the probability of success in the decommitment phase.

To see why this definition is necessary, consider the following protocol. To commit to a bit

b, the committer sends COM(b) to the receiver, then it queries a PUF (received from the

receiver) with the opening of COM(b), and finally it commits to the response received from

such PUF. Then in the decommitment phase, the committer has to open both commitments,

and send the PUF back to the receiver, who accepts iff the openings are accepting and the

response committed by the committer corresponds to the response of the PUF on input the

opening of COM(b). In this case, a committer can always provide an accepting commitment,

without querying the PUF (making the extractor output ⊥). Indeed, it can just commit to

junk. However, in the decommitment phase, the committer will not be able to open to the

correct response, and the receiver will not accept. In such case, the extractor did not fail,

since the committer did not actually commit to any value that could have been opened.
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5.3.2 Statistical Zero-Knowledge Argument of Knowledge

A polynomial-time relation R is a relation for which it is possible to verify in time polynomial

in |x| whether R(x,w) = 1. Let us consider an NP-language L and denote by RL the

corresponding polynomial-time relation such that x ∈ L if and only if there exists w such

that RL(x,w) = 1. We will call such a w a valid witness for x ∈ L. We will denote by

Probr[ X ] the probability of an event X over coins r.

Interactive proof/argument systems with efficient prover strategies. An interac-

tive proof (resp., argument) system for a language L is a pair of probabilistic polynomial-time

interactive algorithms P and V , satisfying the requirements of completeness and soundness.

Informally, completeness requires that for any x ∈ L, at the end of the interaction between P

and V , where P has as input a valid witness for x ∈ L, V rejects with negligible probability.

Soundness requires that for any x 6∈ L, for any (resp., any polynomial-sized) circuit P ∗, at

the end of the interaction between P ∗ and V , V accepts with negligible probability. We

denote by out(〈P (w), V 〉(x)) the output of the verifier V when interacting on common input

x with prover P that also receives as additional input a witness w for x ∈ L. Moreover we

denote by out(〈P ∗, V 〉(x)) the output of the verifier V when interacting on common input x

with an adversarial prover P ∗.

Formally, we have the following definition.

Definition 8. A pair of interactive algorithms 〈P (·), V (·)〉(·) is an interactive proof (resp.,

argument) system for the language L, if V runs in probabilistic polynomial-time and

1. Completeness: For every x ∈ L, |x| = n, and for every NP witness w for x ∈ L

Pr [ out(〈P (w), V 〉(x) = 1 ] = 1.

2. Soundness (resp. computational soundness): For every (resp., every polynomial-sized)

circuit family {P ∗n}n∈N there exists a negligible function ε(·) such that

Pr [ out(〈P ∗n , V 〉(x)) = 1 ] < ε(|x|).

for every x 6∈ L of size n.
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Arguments of knowledge. Informally, an argument system is an argument of knowledge

if for any probabilistic polynomial-time interactive algorithm P ∗ there exists a probabilistic

algorithm called the extractor, such that 1) the expected running time of the extractor

is polynomial-time regardless of the success probability of P ∗; 2) if P ∗ has non-negligible

probability of convincing a honest verifier for proving that x ∈ L, where L is an NP language,

then the extractor with overwhelming probability outputs a valid witness for x ∈ L.

Zero knowledge. The classical notion of zero knowledge has been introduced in [GMR89].

In a zero-knowledge argument system a prover can prove the validity of a statement to a

verifier without releasing any additional information. This concept is formalized by requiring

the existence of an expected polynomial-time algorithm, called the simulator, whose output

is indistinguishable from the view of the verifier.

Definition 9. An interactive argument system 〈P (·, ·), V (·)〉 for a language L is compu-

tational (resp., statistical, perfect) zero-knowledge if for all polynomial-time verifiers V ∗,

there exists an expected polynomial-time algorithm S such that the following ensembles are

computationally (resp., statistically, perfectly) indistinguishable:

viewV ∗((P (w), V ∗(z))(x))x∈L,w∈W (x),z∈{0,1}∗ and {S(x, z)}x∈L,z∈{0,1}∗ .
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FPUF uses PUF families P1 = (Samplenormal,Evalnormal) with parameters (rg, dnoise, dmin,m),

and P2 = (Samplemal,Evalmal). It runs on input the security parameter 1n, with parties

P = {P1, . . . , Pn } and adversary S.

• − If this is the case, then turn into the waiting state.

− Else, draw id← Samplemode(1
n) from the PUF family. Put (sid, id, mode, P̂ , notrans)

in L and write (initializedPUF, sid) on the communication tape of P̂ .

• When party Pi ∈ P writes (evalPUF, sid, Pi, q) on FPUF’s input tape, check if there exists

a tuple (sid, id, mode, Pi, notrans) in L.

− If not, then turn into waiting state.

− Else, run a ← Evalmode(1
n, id, q). Write (responsePUF, sid, q, a) on Pi’s communica-

tion input tape.

• When a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF, check if there exists a tuple

(sid, ∗, ∗, Pi, notrans) in L.

− If not, then turn into waiting state.

− Else, modify the tuple (sid, id, mode, Pi, notrans) to the updated tuple (sid, id, mode,

⊥, trans(Pj)). Write (invokePUF, sid, Pi, Pj) on S’s communication input tape.

• When the adversary sends (evalPUF, sid,S, q) to FPUF, check if L contains a tuple (sid,

id, mode, ⊥, trans(∗)) or (sid, id, mode,S, notrans).
− If not, then turn into waiting state.

− Else, run a← Evalmode(1
n, id, q) and return (responsePUF, sid, q, a) to S.

• When S sends (readyPUF, sid,S) to FPUF, check if L contains the tuple (sid, id, mode,

⊥, trans(Pj)).

− If not found, turn into the waiting state.

− Else, change the tuple (sid, id, mode, ⊥, trans(Pj)) to (sid, id, mode, Pj, notrans) and

write (handoverPUF, sid, Pi) on Pj’s communication input tape and store the tuple

(receivedPUF, sid, Pi).

• When the adversary sends (receivedPUF, sid, Pi) to FPUF, check if the tuple

(receivedPUF, sid, Pi) has been stored. If not, return to the waiting state. Else, write

this tuple to the input tape of Pi.

Figure 5.1: The ideal functionality FPUF for malicious PUFs.
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CHAPTER 6

UC from PUFs

In this chapter we present a construction for UC-secure commitment scheme in the malicious

PUFs model, which yields UC-security for any PPT functionality via the [CLOS02] compiler.

We first recall some of the peculiarities of the PUFs model. A major difficulty when using

PUFs, in contrast to say tamper-proof tokens, is that PUFs are not programmable. That is,

the simulator can not simulate the answer of a PUF, and must honestly forward the queries to

the FPUF functionality. The only power of the simulator is to observe the queries made by the

adversary to honest PUFs. Thus, in designing the protocol, we shall force parties to query

the PUFs with the critical private information related to the protocol, therefore allowing

the simulator to extract such information in straight-line. In the malicious PUFs model the

behaviour of a PUF created and sent by an adversary is entirely in the adversary’s control.

A malicious PUF can answer (or even abort) adaptively on the query according to some

pre-shared strategy with the malicious creator. Finally, a side effect of the unpredictability

of PUFs, is that the creator of a honest PUF is not able to check the authenticity of the

answer generated by its own PUF, without having the PUF in its hands (or having queried

the PUF previously on the very same value).

Techniques and proof intuition. Showing UC security for commitments requires obtain-

ing straight-line extraction against a malicious sender and straight-line equivocality against a

malicious receiver. Our starting point is the equivocal commitment scheme of [CO99] which

builds upon Naor’s scheme [Nao89]. Naor’s scheme consists of two messages, where the first

message is a randomly chosen string r that the receiver sends to the sender. The second

message is the commitment of the bit b, computed using r. More precisely, to commit to
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bit b, the second message is G(s)⊕ (r ∧ b|r|), where G() is a PRG, and s a randomly chosen

seed. The scheme has the property that if the string r is crafted appropriately, then the

commitment is equivocal. [CO99] shows how this can be achieved by adding a coin-tossing

phase before the commitment. The coin tossing of [CO99] proceeds as follows: the receiver

commits to a random string α (using a statistically hiding commitment scheme), the sender

sends a string β, and then the receiver opens the commitment. Naor’s parameter r is then

set as α⊕ β.

Observe that if the simulator can choose β after knowing α, then it can control the

output of the coin-tossing phase, and therefore equivocate the commitment. Thus, to achieve

equivocality against a malicious receiver, the simulator must be able to extract α from the

commitment. Similarly, when playing against a malicious sender, the simulator should be

able to extract the value committed in the second message of Naor’s commitment.

Therefore, to construct a UC-secure commitment, we need to design an extractable com-

mitment scheme for both directions. One extractable commitment from used by the receiver

to commit to α must be statistically-hiding (this is necessary to prove binding). We denote

such commitment as Comshext = (Cshext,Rshext). Another extractable commitmentt used by

the sender to commit to its own bit must be extractable and allow for equivocation. We

denote such commitment as Comequiv = (Cequiv,Requiv). As we shall see soon, the two schemes

require different techniques as they aim to different properties. However, they achieve ex-

tractability using the following technique.

Technique for Extracting the Bit Committed. The receiver creates a PUF and queries it with

two randomly chosen challenges (q0, q1), obtaining the respective PUF-responses (a0, a1). The

PUF is then sent to the sender. To commit to a bit b, the sender first needs to obtain the

value qb. This is done by running an OT protocol with the receiver. Then the sender queries

the PUF with qb and commits to the PUF-response ab. Note that the sender does not commit

to the bit directly, but to the answer of the PUF. This ensures extractability. To decommit to

b, the sender simply opens the commitment of the PUF-response sent before. Note that the

receiver can check the authenticity of the PUF-response without having its own PUF back.

The simulator can extract the bit by observing the queries sent to the PUF and taking the
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one that is close enough, in Hamming distance, to either q0 or q1. Due to the security of OT,

the sender can not get both queries (thus confusing the simulator), neither can the receiver

detect which query has been transferred. Due to the binding property of the commitment

scheme used to commit qb, a malicious sender cannot postpone querying the PUF to the

decommitment phase (thus preventing the simulator to extract already in the commitment

phase). Due to the unpredictability of PUFs, the sender cannot avoid to query the PUF to

obtain the correct response. This technique ensures extractability. To additionally achieve

statistically hiding and equivocality, we build protocol Comshext and Comequiv on top of this

technique in different ways accordingly to the different properties that they achieve. The

main difference is in the way the PUF-response ab is committed.

In Protocol Comshext, the sender Cshext commits to the PUF-response ab using a statisti-

cally hiding commitment scheme. Additionally, Cshext provides a statistical zero-knowledge

argument of knowledge of the message committed. This turns out to be necessary to argue

about binding (that is only computational). Finally, the OT protocol executed to exchange

q0, q1 must be statistically secure for the OT receiver. A graphic high-level description of

Comshext is given in Fig. 6.1. To commit to a N -bit string using Comshext, it is sufficient to

run the same protocol N times in parallel reusing the same PUF.

In Protocol Comequiv the PUF-response ab is committed following Naor’s commitment

scheme. In Comequiv, sender and receiver take as common input the vector r̄ = r1, . . . , rl ( l

is size of a PUF-response ab) which represent Naor’s parameter decided in the coin-flipping

phase. Earlier we said that the simulator can properly craft r̄ so that it will be able to

equivocate the commitment of ab. However, due to the technique for extraction that we

described above, being able to equivocate the commitment of ab is not sufficient anymore.

Indeed, in the protocol above, due to the OT protocol, the simulator will be able to obtain

only one of the PUF-queries among (q0, q1), and it must choose the query qb already in the

commitment phase (when the secret bit b is not known to the simulator). Thus, even though

the simulator has the power to equivocate the commitment to any string, it might not know

the correct PUF-response to open to. We solve this problem by asking the receiver to reveal

both values (q0, q1) played in the OT protocol (along with the randomness used in the OT
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protocol), obviously only after Cequiv has committed to the PUF-response. Now, the simulator

can: play the OT protocol with a random bit, commit to a random string (without querying

the PUF), and then obtain both queries (q0, q1). In the decommitment phase, the simulator

gets the actual bit b. Hence, it can query the PUF with input qb, obtain the PUF-response

and equivocate the commitment so to open to such PUF-response. There is a subtle issue

here and is the possibility of selective abort of a malicious PUF. If the PUF aborts when

queried with a particular string, then we have that the sender would abort already in the

commitment phase, while the simulator aborts only in the decommitment phase. We avoid

such problem by requiring that the sender continues the commitment phase by committing to

a random string in case the PUF aborts. The above protocol is statistically binding (we are

using Naor’s commitment), straight-line extractable, and assuming that Naor’s parameter

was previously ad-hoc crafted, it is also straight-line equivocal. To commit to a bit we are

committing to the l-bit PUF-response, thus the size of Naor’s parameter r̄ is N = (3n)l. A

graphic representation of Protocol Comequiv is given in Fig. 6.2.

The final UC-secure commitment scheme Comuc = (Cuc,Ruc) consists of the coin-flipping

phase, and the (equivocal) commitment phase. In the coin flipping, the receiver commits to

α using the statistically hiding straight-line extractable commitment scheme Comshext. The

output of the coin-flipping is the Naor’s parameter r̄=α ⊕ β used as common input for the

extractable/equivocal commitment scheme Comequiv. Protocol Comuc = (Cuc,Ruc) is formally

described in Fig. 6.4.

Both protocol Comshext,Comequiv require one PUF sent from the receiver to the sender.

We remark that PUFs are transferred only once at the beginning of the protocol. We finally

stress that we do not assume authenticated PUF delivery. Namely, the privacy of the honest

party is preserved even if the adversary interferes with the delivery process of the honest

PUFs (e.g., by replacing the honest PUF).

Theorem 1. If Comshext = (Cshext,Rshext) is a statistically hiding straight-line extractable

commitment scheme in the malicious PUFs model, and Comequiv = (Cequiv,Requiv) is a sta-

tistically binding straight-line extractable and equivocal commitment scheme in the malicious

PUFs model, then Comuc = (Cuc,Ruc) in Fig. 6.4, is a UC-secure commitment scheme in the
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Sshext (b) Rshext

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

c = ComSH(ab)

SZKAoK
I know the value
committed in c

OT

open c as ab, send b
check opening a′

b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′
b ∈ {a0, a1}, output b

stat.secure
for Sshext

Figure 6.1: Straight-line Extractable Statistically-hiding Bit Commitment Cshext

malicious PUFs model.

The above protocol can be used to implement the multiple commitment functionality

Fmcom by using independent PUFs for each commitment. Note that in our construction

we can not reuse the same PUF when multiple commitments are executed concurrently1.

The reason is that, in both sub-protocols Comshext,Comequiv, in the opening phase the sender

forwards the answer obtained by querying the receiver’s PUF. The answer of a malicious

PUF can then convey information about the value committed in concurrent sessions that

have not been opened yet.

When implementing Fmcom one should also deal with malleability issues. In particular,

one should handle the case in which the man-in-the-middle adversary forwards honest PUFs

to another party. However such attack can be ruled out by exploiting the unpredictability of

honest PUFs as follows. Let Pi be the creator of PUFi, running an execution of the protocol

with Pj. Before delivering its own PUF, Pi queries it with the identity of Pj concatenated

with a random nonce. Then, at some point during the protocol execution with Pj it will ask

Pj to evaluate PUFi on such nonce (and the identity). Due to the unpredictability of PUFs,

1Note that however our protocol enjoys parallel composition and reuse of the same PUF, i.e., one can
commit to a string reusing the same PUF.
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Sequiv (b) Requiv

a0 ← PUFR(q0)

a1 ← PUFR(q1)
PUFR

q0

q1

b

qb

ab ← PUFR(qb)

Naor Com of ab

OT

open ab, send b
check opening a′b. If ∃ b

If PUFR aborts

ab = 0l

s.t. a′b ∈ {a0, a1}, output b

r̄ = (r1, . . . , rl)

run OT with

randomness rOT

Let τOT be the transcript of OT

rOT, q0, q1check τOT is
consistent with rOT, q0, q1

computed on parameter r̄

stat.secure
for Sequiv

Figure 6.2: Straight-line Extractable Statistically-binding Equivocal Bit Commitment

Comequiv

and the fact that nonce is a randomly chosen value, Pj is able to answer to such a query only

if it possesses the PUF. The final step to obtain UC security for any functionality consists in

using the compiler of [CLOS02], which only needs a UC secure implementation of the Fmcom

functionality.

6.1 Component Commitment Schemes

6.1.1 Statistically Hiding Straight-line Extractable Commitment Scheme

Let ComSH = (CSH,RSH) be a Statistically Hiding string commitment scheme, (SOT,ROT) be

a statistical receiver OT protocol (namely, an OT protocol where the receiver’s privacy is

statistically preserved). Let (P, V ) be a Statistical Zero Knowledge Argument of Knowledge

(SZKAoK) for the following relation: Rcom = {(c, (s, d)) such that RSH(c, s, d) = 1}. A

pictorial description of protocol Comshext = (Cshext,Rshext) was given in Fig. 6.1. In Fig. 6.5

we provide the formal specification.

Theorem 2. If ComSH = (CSH,RSH) is a statistically-hiding commitment scheme, (SOT,ROT)
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α← {0, 1}N

β ← {0, 1}N

Comshext(α)

β

open α

Comequiv(r̄, b)

Cuc Ruc

r̄ = α⊕ β

run opening of Comequiv

Figure 6.3: Pictorial representation of Protocol Comuc.

Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Ruc ⇔ Cuc : (Coin Flipping)

1. Ruc picks α
$← {0, 1}N ; commit to α by running ((cα, dα), cα) ←

〈Cshext(com, α),Rshext(recv)〉 with Cuc.

2. Cuc sends β
$← {0, 1}N to Ruc.

3. Ruc sends decommitment (α, dα) to Cuc.

4. Cuc: if Rshext(dα, α) = 0, abort.

Cuc ⇔ Ruc : (Equivocal Commitment)

Cuc commit to b by running ((cbit, dbit), cbit) ← 〈Cequiv(com, b),Requiv(recv)〉(α ⊕ β)

with Ruc.

Decommitment Phase

Cuc sends decommitment (b, dbit) to Ruc.

Ruc accepts iff Requiv(α⊕ β, cbit, b, dbit) is accepting. Else, reject.

Figure 6.4: Computational UC Commitment Scheme (Cuc,Ruc).
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Committer’s Input: Bit b ∈ {0, 1}.
Commitment Phase

Rshext : Initialize PUFR.

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).

3. handover PUFR to Cshext.

Rshext ⇔ Cshext : (Statistical OT phase)

〈SOT(q0, q1),ROT(b)〉 is run by Rshext as SOT with input (q0, q1), and Cshext as ROT with

input b. Let q′b be the local output of Cshext.

Cshext : a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

Cshext ⇔ Rshext : (Statistically Hiding Commitment)

((c, d), c)← 〈CSH(com, a′b),RSH(recv)〉 is run by Cshext as CSH to commit to a′b, and by

Rshext as RSH.

Cshext ⇔ Rshext : (SZKAoK)

〈P (d, a′b), V 〉(c) is run by Cshext playing as prover P for the theorem (c, (c, d)) ∈ Rcom
and by Rshext playing as verifier V on input c. If the proof is not accepting, Rshext

aborts.

Decommitment Phase

Cshext : if PUFR did not abort, send opening (d, a′b, b) to Rshext.

Rshext : if RSH(c, a′b, d) = 1 and FuzRep(a′b, pb) = stb then accept. Else reject.

Figure 6.5: Statistically Hiding Straight-Line Extractable Bit Commitment Scheme

(Cshext,Rshext).

is a statistical receiver OT protocol and (P, V ) is a SZKAoK, then Comshext is a statistically

hiding straight-line extractable bit commitment scheme in the malicious PUFs model.

Proof
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Completeness. Before delivering its own PUF PUFR, Rshext queries it with a pair of

random challenges (q0, q1) and gets answers (a0, a1). To commit to a bit b, Cshext has to

commit to the output ab of PUFR.

By the completeness of the OT protocol, Cshext obtains the query qb corresponding to its

secret bit. Then Cshext queries PUFR with qb and commits to the response a′b running CSH.

Furthermore, Cshext proves using SZKAoK the knowledge of the opening. By the complete-

ness of SZKAoK and ComSH the commitment phase is concluded without aborts. In the

opening phase, Cshext sends b and opens the commitment to a′b, and Rshext checks whether the

string a′b matches the answer ab obtained by its own PUF applying the fuzzy extractor. By

the response consistency property, Rshext gets the correct answer and accept the decommit-

ment for the bit b.

Statistically Hiding. We show that, for all R∗shext it holds that:

viewR∗shext(Cshext(com, 0),Rshext)
S≡ viewR∗shext(Cshext(com, 1),R∗shext).

This follows from the statistical security of the three sub-protocols run in the commitment

phase by Cshext. More specifically, recall that the view of R∗shext in the commitment phase

consists of the transcript of the execution of the OT protocol (SOT,ROT), the transcript of

the Statistically Hiding commitment scheme ComSH and the transcript of the execution of

the SZKAoK protocol. The proof goes by hybrids.

H0: In this hybrid the sender Cshext commits to bit 0. Namely, it plays the OT protocol

with the bit 0 to obtain q′0, then it queries the malicious PUF∗R to obtain a string a′0,

then it commits to a′0 executing CSH and finally it runs the honest prover P to prove

knowledge of the decommitment.

H1: In this hybrid, Cshext proceeds as in H0, except that it executes the zero knowledge

protocol by running the zero knowledge simulator S. By the statistical zero knowledge

property of (P, V ), hybrids H0 and H1 are statistically indistinguishable.
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H2: In this hybrid, Cshext proceeds as in H1, excepts that it runs CSH to commit to a random

string s instead of a′0. By the statistically hiding property of protocol ComSH, hybrids

H1 and H2 are statistically indistinguishable.

H3: In this hybrid, Cshext proceeds as in H2, except that in OT protocol it plays with bit 1,

obtaining query q′1. By the receiver security of protocol (SOT,ROT), hybrids H2 and H3

are statistically indistinguishable.

H4: In this hybrid, Cshext proceeds as in H3, except that here it queries the PUF with string

q′1 to obtain a′1 (however it still commits to the random string s). If the PUF∗R aborts,

then Cshext sets a′1 ← {0, 1}l. Note that any malicious behavior does not effect the

transcript generated in H4. Thus, hybrids H3 and H3 are identical.

H5: In this hybrid, Cshext proceeds as in H4 except that it commits to the string a′1. By the

statistically hiding property of protocol ComSH, hybrids H4 and H5 are statistically

indistinguishable.

H6: In this hybrid, Cshext proceeds as in H5, except that it executes the zero knowledge

protocol running as the honest prover P . By the statistical zero knowledge property

of (P, V ), hybrids H5 and H6 are statistically indistinguishable.

By observing that hybrid H0 corresponds to the case in which Cshext commits to 0 and

hybrid H6 corresponds to the case in which Cshext commits to 1, the hiding property is proved.

Straight-line Extractability. To prove extractability we show a straight-line strict polynomial-

time extractor E that satisfies the properties required by Definition 7. Recall that, in the

commitment scheme Comshext, the sender basically commits to the answer ab received from

PUFR. By the unpredictability of PUF, the sender needs to get the right query qb from Rshext

in order to obtain the value to commit to. Such qb is obliviously retrieved by Cshext running

OT with the bit b. The strategy of the extractor, that we show below, is very simple. It

consists of running the commitment phase as the honest receiver, and then looking at the

queries made by C∗shext to PUFR to detect which among q0, q1 has been asked and thus extract

the bit. The extraction of the bit fails when one of the following two cases happens. Case
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Fail1: the set of queries contains both (q0, q1) (or at least a pair that is within their hamming

distance); in this case E cannot tell which is the bit played by C∗shext and therefore outputs

⊥. By the sender’s security of OT this case happens only with negligible probability. Case

Fail2: the set of queries does not contain any query close (within hamming distance) to

neither q0 nor q1. This is also a bad case since E cannot extract any information. However,

if there exists such a C∗shext that produces an accepting commitment without querying the

PUF in the commitment phase (but perhaps it makes queries in the decommitment phase

only) then, given that responses of honest PUFs are unpredictable, one can break either the

binding property of the underlying commitment scheme ComSH or the argument of knowl-

edge property of (P, V ). The formal description of E is given below. Formal arguments follow.

Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure.

We denote by (q0, q1) the queries made by the extractor E to the honest PUF before

delivering it to C∗shext. E uses such a pair when running as SOT in OT protocol. If

all sub-protocols (OT, ComSH,SZKAoK) are successfully completed go the extraction

phase. Else, abort.

Extraction phase. Let Q be the set of queries asked by C∗shext to PUFR during the com-

mitment phase.

Fail1. If there exists a pair q′0, q
′
1 ∈ Q such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤

dmin, output b? = ⊥.

Fail2. If for all q′ ∈ Q it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin,

output b? = ⊥.

Good. 1. If there exists q′ ∈ Q such that disham(q0, q
′) ≤ dmin then output b? = 0.

2. If there exists q′ ∈ Q such that disham(q1, q
′) ≤ dmin then output b? = 1.

The above extractor E satisfies the following three properties.
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Simulation. E follows the procedure of the honest receiver Rshext. Thus the view of C∗shext

playing with E is identical to the view of C∗shext playing with Rshext.

Extraction. Let τc the transcript of the commitment phase. For the extraction property

we have to show that if τc is accepting, then the probability that E outputs ⊥ is negligible.

Note that E outputs ⊥ if and only if one of the event between Fail1 and Fail2 happens.

Thus,

Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

In the following we show that, if τc is accepting, then Pr [ b? = ⊥ ] is negligible by showing

separately that Pr [ Fail1 ] and Pr [ Fail2 ] are negligible.

Lemma 22 (Pr [ Fail1 ] is negligible). If (SOT,ROT) is an Oblivious Transfer protocol, then

Pr [ Fail1 ] is negligible.

Proof Assume that there exists a PPT C∗shext such that event Fail1 happens with non-

negligible probability δ. Then it is possible to construct R∗OT that uses C∗shext to break the

sender’s security of the OT protocol. R∗OT interacts with an external OT sender SOT, on

input auxiliary information z = (s0, s1), while it runs C∗shext internally. R∗OT initializes and

sends PUFR to C∗shext, then it runs the OT protocol forwarding the messages received from

the external sender SOT to C∗shext and vice versa. When the OT protocol is completed,

R∗OT continues the internal execution with C∗shext emulating the honest receiver. When the

commitment phase is successfully completed, R∗OT analyses the set Q of queries made by

C∗shext to PUFR. If there exists a pair (q′0, q
′
1) within hamming distance with strings (s0, s1)

then R∗OT outputs (s0, s1), therefore breaking the sender’s security of OT with probability δ

(indeed, there exists no simulator that can simulate such attack since in the ideal world Sim

gets only one input among (s0, s1)). Since by assumption (SOT,ROT) is a stand-alone secure

OT protocol, δ must be negligible.

�
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Lemma 23 (Pr [ Fail2 ] is negligible). Assume that τc is an accepting transcript. If ComSH =

(CSH,RSH) is a commitment scheme and if (P, V ) is a SZKAoK then Pr [ Fail2 ] is negligible.

Proof If transcript τc is accepting then it holds that C∗shext in the decommitment phase will

send a tuple (b, d, a′b) for which, given τc, the receiver Rshext accepts, i.e., the opening (d) of

the statistically hiding commitment is valid and corresponds to an answer (a′b) of PUFR upon

one of the queries played by the Rshext in the OT protocol. Formally, RSH(c, a′b, d) = 1 and

FuzRep(a′b, pb) = stb.

Toward a contradiction, assume that Pr [ Fail2 ] = δ and is not-negligible. Recall that

the event Fail2 happens when C∗shext successfully completed the commitment phase, without

querying PUFR with any of (q0, q1). Given that τc is accepting, let (b, d, a′b) be an accepting

decommitment, we have the following cases:

1. C∗shext honestly committed to the correct a′b without having queried PUFR. By the un-

predictability of PUFR we have that this case has negligible probability to happen.

2. C∗shext queries PUFR in the decommitment phase to obtain the value a′b to be opened.

Thus C∗shext opens commitment c (sent in the commitment phase) as string a′b. We

argue that by the computational binding of ComSH and by the argument of knowledge

property of (P, V ) this case also happens with negligible probability.

First, we show and adversary C∗SH that uses C∗shext as a black-box to break the bind-

ing of the commitment scheme ComSH with probability δ. C∗SH runs C∗shext internally,

simulating the honest receiver Rshext to it, and forwarding only the messages belonging

to ComSH to an external receiver RSH, and vice versa. Let c denote the transcript of

ComSH. When the commitment phase of Comshext is successfully completed, and there-

fore C∗shext has provided an accepting proof for the theorem (c, ·) ∈ Rcom, C∗SH runs the

extractor EP associated to the protocol (P, V ). By the argument of knowledge prop-

erty, EP , having oracle access to C∗shext, extracts the witness (ãb, d̃) used by C∗shext to

prove theorem c ∈ Rcom w.h.p. If the witness extracted is not a valid decommitment

of c, then C∗shext can be used to break the soundness of (P, V ).

Else, C∗SH proceeds to the decommitment phase, and as by hypothesis of Lemma 23,
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since the commitment τc is accepting, C∗shext provides a valid opening (ab, d).

If (ãb, d̃) 6= (ab, d) are two valid openings for c then C∗SH outputs such tuple breaking

the binding property of ComSH with probability δ.

If (ãb, d̃) = (ab, d) with non-negligible probability, then consider the following analysis.

By assumption, event Fail2 happens when C∗shext does not query PUFR with none

among (q0, q1). By the unpredictability property, it holds that without querying the

PUF, C∗shext cannot guess the values ab, thus w.h.p. the commitment c played by C∗shext

in the commitment phase, does not hide the value ab. However, since the output of

the extraction is a valid opening for ab, then it must have been the case that in one of

the rewinding attempts of the black-box extractor EP , C∗shext has obtained ab by asking

PUFR. Indeed, upon each rewind EP very luckily changes the messages played by the

verifier of the ZK protocol, and C∗shext could choose the queries for PUFR adaptively

on such messages. However, recalling that EP is run by C∗SH to extract from C∗shext,

C∗SH can avoid such failure by following this strategy: when a rewinding thread leads

C∗shext to ask the PUF with query qb, then abort such thread and start a new one. By

noticing that in the commitment phase, C∗shext did not query the PUF with qb, we have

that, by the argument of knowledge property of (P, V ) this event happens again in

the rewinding threads w.h.p. Thus, by discarding the rewinding thread in which C∗shext

asks for query qb, C
∗
SH is still be able to extract the witness in polynomial time (again,

if this was not the case then one can use C∗shext to break the argument of knowledge

property). With this strategy, the event (ãb, d̃) = (ab, d) is ruled out.

�

Binding. Let b? = b0 the bit extracted by E, given the transcript τc. Assume that in the

decommitment phase C∗shext provides a valid opening of τc as b1 and b0 6= b1. If such an event

happens, the the following three events happened: 1) in the commitment phase C∗shext queried

PUFR with query qb0 only; 2) in decommitment phase C∗shext queried PUFR with qb1 , let ab1

be the answer; 3)C∗shext opens the commitment c (that is the commitment of the answer of

PUFR received in the commitment phase), as ab1 , but c was computed without knowledge of
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PUFR(qb1).

By the security of the OT protocol and by the computational binding of the commitment

scheme ComSH, the above cases happen with negligible probability. Formal arguments follow

previous discussions and are therefore omitted.

�

Lemma 24. Protocol Comshext is close under parallel repetition using the same PUF.

Proof [Sketch.] The proof comes straightforwardly by the fact that all sub-protocols used

in protocol Comshext are close under parallel repetition. However, issues can arise when the

same, possibly malicious and stateful PUF, is reused. Note that, the output of the (malicious)

PUF is statistically hidden in the commitment phase and that it is revealed only in the

decommitment phase. Thus, any side information that is leaked by a dishonest PUF, cannot

be used by the malicious creator, before the decommitment phase. At the decommitment

stage however, the input of the committer is already revealed, and no more information is

therefore gained by the malicious party. We stress out that re-usability is possible only when

many instances of Comshext are run in parallel, i.e., only when all decommitment happen

simultaneously. If decommitment phases are interleaved with commitment phase of other

sessions, then reusing the same PUF, allow the malicious creator to gain information about

sessions that are not open yet. To see why, let i and j be two concurrent executions. Assume

that the commitment of i and j is done in parallel but session j is decommitted before session

i. Then, a malicious PUF can send information on the bit committed in the session i through

the string sent back for the decommitment of j.

�

Statistically Hiding Straight-line Extractable String Commitment Scheme. We obtain statisti-

cally hiding straight-line extractable string commitment scheme, for n-bit string, by running

n execution of Comshext in parallel and reusing the same PUF. In the main protocol shown

in Figure 6.3 we use the same notation Comshext to refer to a string commitment scheme.
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6.1.2 Statistically Binding Straight-line Extractable and Equivocal Commit-

ment Scheme

Let l = rg(n) be the range of the PUF, (SOT,ROT) be a statistical receiver OT protocol and

let G : {0, 1}n → {0, 1}3n be a PRG. The commitment scheme that we present, takes as

common input a string r̄ = r1, . . . , rl, that is uniformly chosen in the set ({0, 1}3n)l. This

string can be seen as l distinct parameters for Naor’s commitment, and indeed it is used to

commit bit-by-bit to an l-bit string (i.e., the answer received from the PUF). Our statistically

binding straight-line extractable and equivocal commitment scheme Comequiv = (Cequiv,Requiv)

is depicted in Fig. 6.6. A graphical representation was provided in Fig. 6.2.

Theorem 3. If G is a PRG and (SOT,ROT) is statistical receiver OT protocol, then Comequiv =

(Cequiv,Requiv) is a statistically binding straight-line extractable and equivocal commitment

scheme in the malicious PUFs model.

Proof

Completeness. It follows from the completeness of the OT protocol, the correctness of

Naor’s commitment and the response consistency property of PUFs with fuzzy extractors.

To commit to the bit b, the sender Cequiv is required to commit to the answer of PUFR on

input qb. Therefore, Cequiv runs the OT protocol with input b and obtains the query qb and

thus the value to commit to using Naor’s commitments. The correctness of OT guarantees

that the consistency check performed by Cequiv goes through. In the decommitment phase,

the response consistency property along with correctness of Naor, allow the receiver Requiv

to obtain the string ab and in therefore the bit decommitted to by Cequiv.

Straight-line Extractability.

Extractor E

Commitment Phase. Run the commitment phase following the honest receiver procedure:

E queries PUFR with (q0, q1) before delivering it to C∗equiv, and uses such a pair when

running as SOT in OT protocol. If OT protocol is not successfully completed then
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Committer’s Input: Bit b ∈ {0, 1}. Common Input: r̄ = (r1, . . . , rl)

Commitment Phase

Requiv : Initialize PUFR;

1. obtain a0 ← PUFR(q0), a1 ← PUFR(q1), for (q0, q1)
$← {0, 1}n.

2. (st0, p0)← FuzGen(a0), (st1, p1)← FuzGen(a1).

3. handover PUFR to Cequiv;

4. choose random tape ranOT
$← {0, 1}∗.

Requiv ⇔ Cequiv : (OT phase)

〈SOT(q0, q1),ROT(b)〉 is run by Requiv as SOT with input (q0, q1) and randomness ranOT,

while Cequiv runs as ROT with input b. Let q′b be the local output of Cequiv, and τOT be

the transcript of the execution of the OT protocol.

Cequiv:(Statistically Binding Commitment)

1. a′b ← PUFR(q′b). If PUFR aborts, a′b
$← {0, 1}l.

2. for 1 ≤ i ≤ l, pick si
$← {0, 1}n, ci = G(si)⊕ (ri ∧ a′b[i]).

3. send c1, . . . , cl to Requiv.

Requiv: upon receiving c1, . . . , cl, send ranOT, q0, q1 to Cequiv.

Cequiv: check if transcript τOT is consistent with (ranOT, q0, q1, b). If the check fails abort.

Decommitment Phase

Cequiv : if PUFR did not abort, send ((s1, . . . , sl), a
′
b), b to Rshext.

Requiv : if for all i, it holds that (ci = G(si) ⊕ (ri ∧ a′b[i]) and FuzRep(a′b, pb) = stb) then

accept. Else reject.

Figure 6.6: Statistically Binding Straight-line Extractable and Equivocal Commitment

(Cequiv,Requiv).

abort. Else, let Qprecom be the set of queries asked by C∗equiv to PUFR before sending the

commitments c1, . . . , cl to E. Upon receiving such commitments, do as follows:
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Fail1. If there exists a pair q′0, q
′
1 ∈ Qprecom such that disham(q0, q

′
0) ≤ dmin and disham(q1, q

′
1) ≤

dmin, output b? = ⊥.

Fail2. If for all q′ ∈ Qprecom it holds that disham(q0, q
′) > dmin and disham(q1, q

′) > dmin,

output b? = ⊥.

Good. 1. If there exists q′ ∈ Qprecom such that disham(q0, q
′) ≤ dmin then output b? = 0;

2. If there exists q′ ∈ Qprecom such that disham(q1, q
′) ≤ dmin then output b? = 1;

Finally sends ranOT, q0, q1 to C∗equiv.

Simulation. E follows the procedure of the honest receiver Requiv. Thus the view of C∗equiv

playing with E is identical to the view of C∗equiv playing with Requiv.

Extraction. The proof of extraction follows from the same arguments shown in the proof

of Theorem 2, and it is simpler since in protocol Comequiv we use statistically binding com-

mitments (given that the common parameter r̄ is uniformly chosen).

Let τc the transcript of the commitment phase. For the extraction property we have to

show that if τc is accepting, then the probability that E outputs ⊥ is negligible. Note that

E outputs ⊥ if and only if one event between Fail1 and Fail2 happens. Thus,

Pr [ b? = ⊥ ] = Pr [ Fail1 ] + Pr [ Fail2 ]

By the sender’s security property of the OT protocol, event Fail1 happens with negligible

probability. The formal proof follows the same arguments given in Lemma 22. Given that

the common parameter r̄ is uniformly chosen, we have that the Naor’s commitments (i.e.,

c1, . . . , cl) sent by C∗equiv in the commitment phase, are statistically binding. Thus, by the

unpredictability property of PUFs and the by the statistically binding property of Naor’s

commitment scheme, event Fail2 also happens with negligible probability only.

Binding. Given that the common input r̄ is uniformly chosen, binding of Comequiv follows

from the statistically binding property of Naor’s commitment scheme.

Straight-line Equivocality. In the following we show a straight-line simulator S =

(S1,S2,S3) and we prove that the view generated by the interaction between S and R∗equiv is
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computationally indistinguishable from the view generated by the interaction between Cequiv

and R∗equiv.

S1. (r̄ = r1, . . . , rl, state1)← S1(1ln):

For i = 1, . . . , l.

1. pick si0 ← {0, 1}n, αi0 ← G(si0);

2. pick si1 ← {0, 1}n, αi1 ← G(si1);

3. ri = αi0 ⊕ αi1.

Output r1, . . . , rl, state1 = {si0, si1}i∈l;

S2. (state2)← S2(state1):

- obtain PUF∗R from R∗equiv.

- run OT protocol with input a random bit b̃; if the OT protocol is not successfully

completed, abort.

- computes commitments as follows: for i = 1, . . . , l, c̃i ← G(si0). Send c̃1, . . . , c̃l to

R∗equiv.

- Obtain (ranOT, q
′
0, q
′
1) from R∗equiv and check if the transcript τOT is consistent with

it. If the check fails, abort. Else, output state2 = {state1, (q
′
0, q
′
1)}.

S3. S3(state2, b):

- query PUF∗R with input q′b. If PUF∗R aborts, abort. Otherwise, let a′b denote the

answer of PUF∗R.

- for i = 1, . . . , l: send (siab[i], ab[i]) to R∗equiv.

Lemma 25. If (SOT,ROT) is a statistical receiver OT protocol and G is a pseudo-random

generator, then for all PPT R∗equiv it holds that, {out(Exp
Cequiv

R∗equiv
(n))} C≡ out{(ExpSR∗equiv(n)}.

Proof The proof goes by hybrids arguments.

H0. This is the real world experiment Exp
Cequiv

R∗equiv
.
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H1. In this hybrid the common parameter r̄ is chosen running algorithm S1. The only

difference between experiment H0 and H1 is in the fact that in H1 each string ri ∈ r̄ is

pseudo-random. By the pseudo-randomness of PRG H0 and H1 are computationally

indistinguishable.

H2. In this hybrid, the commitments c1, . . . , cl are computed as in S2, that is, for all i, ci

corresponds to an evaluation of the PRG i.e., ci = G(si0), regardless of the bit that is

committed. Then in the decommitment phase the sender uses knowledge of si1, in case

the i-th commitment of a′b is the bit 1. (Each pair (si0, s
i
1) is inherited from the output

of S1). The difference between experiment H1 and experiment H2 is in the fact that in

H2 all commitments are pseudo-random, while in H1, pseudo-random values are used

only to commit to bit 0. By the pseudo-randomness of PRG, experiments H1 and H2

are computationally indistinguishable. Note that in this experiment, the sender is not

actually committing to the output obtained by querying PUF∗R.

H3. In this experiment the sender queries PUF∗R on input qb only in the decommitment phase.

The only difference between this experiment and the previous one is that in H3, the

sender is able to detect if PUF∗R aborts, only in the decommitment phase. However,

in experiment H2, if the PUF aborts, the sender continues the execution of the com-

mitment phase, committing to a random string, ad aborts only in the decommitment

phase. Therefore, hybrids H2 and H3 are identical.

H4. In this experiment, the sender executes the OT protocol with a random bit b̃, obtaining

qb̃, but it does not use such a query to evaluate PUF∗R. Instead it uses the string q′b

received from R∗equiv in the last round of the commitment phase.

We stress out that, due to the correctness of the OT protocol and to the statistical

receiver’s security, the case in which R∗equiv plays the OT protocol with a pair (qb, qb̄)

and then is able to compute randomness ranOT and a different pair ((q′b, qb̄) that are still

consistent with the transcript obtained in the OT execution, is statistically impossible

. By the statistical receiver security of the OT protocol, H3 and H4 are statistically

indistinguishable.
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H5. This is the ideal world experiment ExpSR∗equiv .

�

�

6.2 Proof of Security of UC Commitment

In this section we show that protocol Comuc = (Cuc,Ruc) is UC-secure, by showing a PPT

ideal world adversary Sim such that for all PPT environment Z, the view of the environ-

ment in the ideal process is indistinguishable from the view of the environment in the real

process, in the FPUF hybrid model. Due to the straight-line extractability of Comshext and to

the straight-line extractability and equivocality of Comequiv, showing such a simulator Sim is

almost straightforward.

Receiver is corrupt. Let R∗uc a malicious receiver. We show a PPT simulator Sim whose

output is computational indistinguishable from the output obtained by R∗uc when interacting

with the honest committer Cuc. The goal of Sim is to use the straight-line equivocator

S = (S1,S2,S3) associated to protocol Comequiv. To accomplish that, Sim has to force the

output of the coin flipping, to the parameter generated by S1. Once this is done, then Sim

can use S2 to complete the commitment phase, and S3 to equivocate the commitment. In

order to force the output of the coin flipping, Sim extracts the commitment of α sent by R∗uc

so that it can compute β appropriately. The extraction is done by running the extractor

ECshext
associated to the protocol Comshext.

Simulator 1.

Commitment Phase

- Run (r̄, state1)← S1(1ln).

- Execute protocol Comshext by running the associated extractor ECshext
. If the output

of the extractor is ⊥, then abort. Else, let α? be the string extracted by ECshext
.
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Set β = r̄ ⊕ α?, and send β to R∗uc. If R∗uc aborts, then abort.

- When receiving the opening to α from R∗uc, if the opening is not accepting, or if

α 6= α? then abort.

- Execute the commitment phase of protocol Comequiv, on common input α⊕ β = r̄,

by running S2(state1), and obtain state2 as local output.

Decommitment Phase

- On input the bit b. Execute the decommitment phase of protocol Comequiv by

running S3(state2, b).

- Output whatever Ruc outputs.

Lemma 26. For all PPT real-world malicious receiver R∗uc, for all PPT adversary Z, it

holds that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,R∗uc,Z

Proof

It follows from the straight-line extractability of Comshext and from the straight-line equiv-

ocality of Comequiv.

By the straight-line extractability of Comshext it holds that, with overwhelming proba-

bility, Sim obtains the value α? that will be later opened by R∗uc, before it has to send the

message β. Hence, Sim is able to force the output of the coin flipping to the value deter-

mined by S1. Then Sim just runs the simulator S2 in the commitment phase, and S3 in

the decommitment phase. By the straight-line equivocality property of Comequiv the view

generated by the interaction between R∗uc and Sim is computationally indistinguishable from

the view generated by the interaction between R∗uc and an honest sender Cuc.

�

Receiver and Committer are honest. In this case, Z feeds the parties with their inputs,

and activates the dummy adversary A. A does not corrupt any party, but just observes the

conversation between the committer and the receiver, forwarding every message to Z.
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In this case the simulator is almost equal to the simulator shown in Simulator 1 (when

the receiver is corrupt). The only difference in this case is that, the receiver is also simulated

by Sim. Therefore, Sim chooses both the strings used in the coin flipping by himself (α, β).

Thus, there is no need for extraction.

More specifically, upon receiving the message (receipt, sid, Pi,Cuc) from Fcom in the ideal

world, Sim draws a random tape to simulate the receiver, and runs the commitment phase

as in Simulator 1, except for the second step. Instead of using the extractor associated to

Comshext run by the receiver, Sim just picks values α and β so that r̄ = β⊕α (where r̄ is the

value given in output by S1), and continues the commitment phase using such values. The

decommitment phase is run identically to the decommitment phase of Simulator 1.

From the same argument of the previous case, the transcript provided by Sim is indis-

tinguishable from the transcript provided by the dummy adversary A running with honest

sender and receiver.

Committer is corrupt. In this case, the task of Sim is to extract the bit of the malicious

committer C∗uc already in the commitment phase. This task is easily accomplished by running

the straight-line extractor Eequiv associated to protocol Comequiv. However, note that the

binding property and thus the extractability property hold only when the common parameter

r̄ is uniformly chosen, while in protocol Comuc the common parameter is dictated by the coin

flipping.

However, by the statistically hiding property of Comshext, any unbounded adversary can

not guess α better than guessing at random. Therefore for any C∗uc the distribution of α⊕ β
is uniformly chosen over {0, 1}3nl, and thus the statistically binding property of Comequiv still

holds.

Commitment Phase

- Pick a random αln and executes Comshext as the honest receiver.

- Obtain β from C∗uc and let r = α⊕ β.

- Execute protocol Comequiv by running the associated extractor Eequiv. If the extrac-
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tor aborts, abort. Else, let b? the output of Eequiv. Send (commit, sid,Cequiv,Requiv, b
?)

to Fcom

Lemma 27. For all PPT real-world malicious committer C∗uc, for all PPT adversary Z, it

holds that:

IDEALFcom
Sim,Z ∼ REALFPUF

Comuc,C∗uc,Z

Proof As mentioned before, the common input r̄ computed through the coin-flipping, is

uniformly distributed. Therefore the binding and the extractability property of Comequiv hold.

The simulator runs protocol Comshext following the honest receiver, and runs the protocol

Comequiv activating the straight-line extractor associated. By the simulation property of the

extractor, the transcript generated by Sim is indistinguishable from the transcript generated

by the honest receiver Ruc. From the extraction property satisfied by Eequiv, we have that

Sim extracts the input bit of the adversary C∗uc and plays it in the ideal functionality, w.h.p.

�
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Physically uncloneable functions in the universal composition framework. In
Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 51–70. Springer, 2011.

[BG89] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty ma-
jority (extended announcement). In FOCS, pages 468–473. IEEE, 1989.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In STOC, pages 1–10, 1988.

[Can01a] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[Can01b] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136–145, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Salil P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 61–85. Springer, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

[CGS08] Nishanth Chandran, Vipul Goyal, and Amit Sahai. New constructions for UC
secure computation using tamper-proof hardware. pages 545–562, 2008.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. pages 494–503,
2002.

[CO99] Giovanni Di Crescenzo and Rafail Ostrovsky. On concurrent zero-knowledge
with pre-processing. In CRYPTO, pages 485–502, 1999.

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J.
Comput. Syst. Sci., 18(2):143–154, 1979.

93



[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637–647, 1985.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In STOC, pages 554–563, 1994.

[GHY87] Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure
faut-tolerant protocols and the public-key model. In CRYPTO, pages 135–155,
1987.

[GKR08] Shafi Goldwasser, Yael T. Kalai, and Guy. N. Rothblum. One-time programs.
In Advances in Cryptology – CRYPTO’08, volume 5157, pages 39–56, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems. SICOMP, 18(6):186–208, 1989.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or a completeness theorem for protocols with honest majority. In STOC,
pages 218–229, 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge Uni-
versity Press, Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

[GV87] Oded Goldreich and Ronen Vainish. How to solve any protocol problem - an
efficiency improvement. In CRYPTO, pages 73–86, 1987.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM J. Comput., 28(4):1364–
1396, 1999.

[HR07] Iftach Haitner and Omer Reingold. Statistically-hiding commitment from any
one-way function. In STOC, pages 1–10, 2007.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation
via perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on
oblivious transfer - efficiently. pages 572–591, 2008.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In EUROCRYPT, Lecture Notes in Computer Science, pages
115–128. Springer, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. pages 20–31, 1988.

[Kil90] Joe Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, 1990.

94



[Kus92] Eyal Kushilevitz. Privacy and communication complexity. SIAM J. Discrete
Math., 5(2):273–284, 1992.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In EUROCRYPT, pages
52–78, 2007.

[MS08] Tal Moran and Gil Segev. David and Goliath commitments: UC computation
for asymmetric parties using tamper-proof hardware. pages 527–544, 2008.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness. In CRYPTO, pages
128–136, 1989.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–
158, 1991.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer, 1981.

[Val12] Margarita Vald. Private Communication, 2012.

[Yao86] A. Yao. How to generate and share secrets. In FOCS, pages 162–167, 1986.

95


	Introduction
	Modeling Tamper-Proof Hardware
	One-Time Programs
	Flavors of OT
	Other Definitions
	The UC Model


	Unconditional Non-Interactive Secure Computation Using Stateful Tokens
	Warmup: The Interactive Setting
	The Non-Interactive Setting
	One-time programs.
	The Protocol


	Two-Party Computation with Stateless Tokens
	Protocol Intuition
	Preliminaries
	The Protocol
	Security Proof


	Physically Uncloneable Functions
	Defining PUFs
	Modeling Malicious PUFs
	Other Definitions
	Commitment Schemes
	Statistical Zero-Knowledge Argument of Knowledge


	UC from PUFs
	Component Commitment Schemes
	Statistically Hiding Straight-line Extractable Commitment Scheme
	Statistically Binding Straight-line Extractable and Equivocal Commitment Scheme

	Proof of Security of UC Commitment

	References



