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For decades, X-ray crystallography has been the primary tool used to measure the struc-

ture of macromolecules at atomic resolution. As fruitful as this method has been, stan-

dard X-ray crystallographic methods often provide a model of only the average structure

of macromolecules, ignoring structural heterogeneity and correlated disorder. New methods

incorporating heterogeneity and correlated disorder are currently in development, but none

have yet been able to overcome the “R-factor gap”: the consistent and significant discrep-

ancy between the accuracy of macromolecular crystallographic structure factor prediction

and the higher accuracy achieved in small-molecule crystallography. It has been suggested

that closing this gap will require more accurate models of ordered solvent and disorder. The

work presented here uses molecular dynamics (MD) simulations of protein crystals to investi-

gate models of correlated disorder put forward to predict the “diffuse scattering” (non-Bragg

X-ray diffraction) which results from correlated disorder in protein crystals. We also present

insights in to the modeling of conformational ensembles, ordered solvent, protonation states,

and side-chain disorder gathered from crystalline MD simulations.
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Chapter 1

Background on Structural and

Dynamical Models of Crystalline

Proteins

Proteins are the workforce of the cellular world. Virtually every task a living things is able

to accomplish on the molecular and cellular level is carried out by proteins. Proteins are

composed of a chain of amino acids with different structural and electro-chemical properties.

The unique order in which the amino acids are chained together determines the structure

that the protein will fold in to and the dynamics of the folded structure, allowing for the

careful positioning of amino acids so that their structural and electro-chemical properties

can be leveraged to perform specific tasks. Because of the central role that proteins play in

biology — and the relationship between a protein’s structure and its function — one of the

most fundamental tasks in structural biology and biochemistry is the precise measurement

of protein structure. While there are many methods used to measure protein structure, the

most widely used method is X-ray crystallography.
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X-ray crystallography takes advantage of a quirk in the diffraction of light of a particular

wavelength through protein crystals: if the wavelength of the light and the spacing and orien-

tation between crystal lattice planes is correctly tuned, the peaks in the resulting diffraction

image will encode information about the arrangement of atoms within the lattice plane. The

intensity of these peaks are decoded to produce a static picture of the average structure of

the proteins which constitute the crystal. However, proteins are not static: they explore a

complex free energy landscape, and the dynamics resulting from their traversal of this land-

scape can be important to their function. New techniques are being developed which aim

to analyze the parts of the diffraction images between the peaks, which encode information

about the correlated motions of the atoms [95].

To understand both the current state of structural and dynamical modelling in X-ray crys-

tallography, and the challenges which remain, a basic understanding of the theory of X-ray

scattering and crystallographic modelling will be required. An introduction to both is sketched

out below, following the conventions of Meisburger and Ando (2017) [69].

1.1 Basic X-ray Scattering Theory

X-rays scattered elastically off of the electrons bound to atoms produce spherical waves of

the same wavelength, radiating outward. For an elastically scattered X-ray plane wave with

a particular wavelength λ, the difference in direction between the wavevector of an incident

(k; |k| = 2π/λ) and scattered (k′) wave is given by q = k′−k where q is called the “scattering

vector”, and its magnitude is given by |q| = 4π sin(θ)/λ, where 2θ is the angle between the

incident and scattered wavevectors.

For multiple atoms, the photons scattered elastically off of the electrons at different positions

— separated by a vector r — will differ by a phase shift of ∆φ = (k′ − k) · r = q · r. This is
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simply the difference in path length l (Figure 1.1) for the two scattered waves, converted to

radians by a factor of (2π/λ):

∆φ = q · r = |q||r| cos(θ) =
4π sin(θ)

λ
|r| cos(θ)

=
2π

λ
|r|2 sin(θ) cos(θ) =

2π

λ
|r| sin(2θ) =

2π

λ
l.

The effect of this phase shift can be expressed by way of a complex exponential ei∆φ = eiq·r,

called the “phase factor”, so the phase difference corresponds to turning a unit vector in the

complex plane by the angle ∆φ. If q · r is such that the path length is some multiple of the

wavelength, in the far-field diffraction limit the waves will constructively interfere (Figure

1.1) corresponding to a phase factor of 1 (l = nλ→ eiq·r = ei2πn = 1).

Electrons bound to atoms scatter differently from isolated electrons, depending on each

atom’s distribution of electron density. This difference is represented with the “atomic

scattering factor,” fn(q) for each atom n. We can calculate the scattering amplitude from

an atomic electron by integrating the complex exponential across the whole atomic density,

weighting by density at each point in space: fn(q) =
∫

atom
ρ(q)eiq·rd3r.

In a system of many atoms, at positions rn, the scattered wave has an amplitude equal to

the sum of the contributions from each atom: F (q) =
∑

n fn(q)eiq·rn , referred to as the

“Molecular Form Factor” or “Structure Factor”. We can extend the form factor to the

entire electron density by switching from summation to integration over the entire scattering

volume:

F (q) =

∫
ρ(r) eiq·rd3r.

The form factor is the Fourier transform of the density.
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Figure 1.1: Inset: Difference in path length (|r| sin(2θ)) is equal to the dot product of the scattering vector
(q = k′−k) with the separation vector (r), multiplied by a conversion factor (λ/2π). The far-field diffraction
from two scattering atoms is constructive in the far field (light blue) when the difference in path length is
equal to an integer multiple of the wavelength, and destructive when it is not (dark blue).

The form factor is therefore a complex-valued function of the scattering vector. However, the

intensity measured at the detector is real-valued and is proportional to the squared modulus

of the form factor: I(q) ∝ |F (q)|2. The squared modulus of the form factor is equal to the

Fourier transform of the auto-correlation in the electron density:

|F (q)|2 =

∫
(ρ ? ρ)(r)eiq·rdr.

This auto-correlation (the correlation of the density with itself at a displacement r) is also

known as the “Patterson Function” of the density, and it can be calculated directly from

experiment (up to a constant of proportionality) by feeding the measured intensity through

the inverse Fourier transform.
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However, because the intensity measured at the detector is proportional to the squared mod-

ulus of the form factor, but not the form factor itself, we can get information from experiment

about the amplitude of the form factor at each scattering vector, but all information about

the phases of the form factor at each scattering vector is lost. The recovery of the phases,

knowing only the amplitudes, is known as the “phase problem”. The phase problem can

be solved by a few different means: indirectly, by estimation with molecular replacement,

or directly, in more special cases, using e.g. isomorphous replacement[31] or anomalous

dispersion[34]. Once the phases are known or estimated, the form factor can be fed through

the inverse Fourier transform to recover the corresponding electron density.

1.1.1 X-ray Scattering in Crystalline Systems

In a crystal, where the density is periodic in space, we can express the full density for a

crystal in terms of the density with respect to the origin of each of “unit cells” (the repeating

structural units which make up the crystal). That is, the position of each atom ri can be

re-expressed in the form ri = Rn + rj where Rn is the position of the origin of unit cell

n and rj is the position of the jth atom with respect to the unit cell origin. Because the

unit cells are arranged periodically, we can express the position of each unit cell origin as

Rn = n1a1 + n2a2 + n3a3, where a1, a1 and a3 are the vectors describing the direction and

length of each unit cell axis, and n = [n1, n2, n3] is a vector of integers which index the unit

cells. Substituting this new formulation in to the expressions above, we can see that the form

factor for the crystal is given by Fcryst.(q) =
∑

n Fn(q)eiq·Rn , where Fn is the form factor for

unit cell n, relative to its origin.

The intensity measured at the detector is now expressible in terms of the sum over the many

unit cells: I(q) ∝ |Fcrystal|2 =
∑

n

∑
m Fn(q)F ∗m(q)eiq·(Rn−Rm). By defining the average

form factor for the N total unit cells Favg.(q) = 1
N

∑
n Fn(q) =

∫
ρu.c.avg.(r)eiq·rd3r, we can
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separate the intensity in to two terms:

I(q) = |Fcrystal(q)|2 = IBragg(q) + ID(q),

where

IBragg(q) = |Favg.(q)|2
∣∣∣∣∣∑

n

eiq·Rn

∣∣∣∣∣
2

,

and

ID(q) =
∑
n

∑
m

(Fn(q)F ∗m(q)− |Favg.(q)|2)eiq·(Rn−Rm).

IBragg is the “Bragg” intensity which results from the truly periodic average electron density,

and ID is the “diffuse” intensity, which results from the parts of the density which deviate

from the average, sometimes called the “variational” or “continuous” scattering.

Because vectors Rn form a lattice, the Bragg phase factors eiq·Rn will have terms equal to 1,

corresponding to in-phase scattering, when the dot product q ·Rn = 2πn with n ∈ Z. This

corresponds to the scattering from an entire lattice plane: because the wavelength λ of the

X-ray beam is well-defined, the position of the photons is uncertain, so we no longer consider

scattering off of individual atoms, but rather scattering off of all atoms which intersect a

particular lattice plane normal to Rn.

We can construct a new lattice, called the “reciprocal lattice”, with lattice points q satisfying

the in-phase scattering condition above. This new lattice in reciprocal space has the principal

axes a∗1, a
∗
2 and a∗3, where a∗1 = (2π/V ) a∗2×a∗3, a∗2 = (2π/V ) a∗3×a∗1, and a∗3 = (2π/V ) a∗1×a∗2,

and V = a1 · (a2 × a3) is the volume of the unit cell. Each reciprocal lattice vector is in a

direction normal to two of the lattice vectors and has a length of 2π divided by the spacing

between the lattice planes. The nodes of reciprocal lattice are at Gh = h1a
∗
1 + h2a

∗
2 + h3a

∗
3,
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and h = [h1, h2, h3] are called the “Miller indices”.

When the crystal is positioned such that q overlaps with a node of the reciprocal lattice

(q = Gh for some choice of h1, h2 and h3), there is constructive interference:

q ·Rn = Gh ·Rn = 2π(h1n1 + h2n2 + h3n3).

This is a restatement of Bragg’s Law, which says that constructive interference occurs when

waves scatter off of lattice planes separated by a distance d with an angle θ such that

2d sin(θ) = nλ, because Gh ·Rn is the path length difference converted to an angle, similar

to the case sketched out above for scattering off of individual atoms. In such cases where

where the scattering vector hits a reciprocal lattice node, the exponential factors will be 1,

and the value of IBragg(q) at that scattering vector q will be proportional to the average unit

cell structure factor |Favg.(q)|2.

The Ewald Sphere Construction

Figure 1.2: The reciprocal lattice as
black dots (left) with incident wavevec-
tor k and scattered wavevectors k′1 and
k′2 in black, scattering vector q1 and
q2 in red and orange, and the Ewald
sphere in yellow (left). For any scat-
tered wavevector (k′) whose associated
scattering vectors (q) coincide with a
reciprocal lattice node — like k′2 in the
left image — interference is construc-
tive and a spot appears on the detector
in the far field (right)

We can think of crystallographic experiments as a means of exploring reciprocal space. We

direct an X-ray beam at a crystal, and record the intensity of reflections at various angles

using a detector. At certain angles, θ, the scattering vector q = k′ − k will overlap with a

reciprocal lattice node (Figure 1.2), creating a peak in the diffraction image – these peaks
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are known as “Bragg peaks” due to their connection with Bragg’s Law.

The surface in reciprocal space swept out by all scattering angles θ for a given incident

wave is known as the “Ewald sphere”. Because the magnitude of the incident and reflected

wavevectors k and k’ is 2π/λ, when we decrease the wavelength of the incident X-ray beam,

we increase the magnitude of the wavevector, and the area of reciprocal space we can explore.

By rotating the crystal, we change the position of the Ewald sphere with respect to reciprocal

space, allowing for a new set of Bragg peaks to be resolved at various scattering angles (Figure

1.3). By recording diffraction images at many different incident angles, we can build up a

full three-dimensional picture of the reciprocal lattice, which gives us information about the

average form factor for the unit cell at each scattering vector.

Figure 1.3: By rotating the crystal, we expose
different reciprocal lattice nodes to the Ewald
sphere. This happens at different rotation angles
(different colored dots) and different scattering
vectors q = k′ − k (different scattered wavectors
k′1 or k′2).

Because the form factor is the Fourier transform

of the unit cell electron density, Bragg peaks at

Miller indices further from the origin correspond

to “higher resolution” features in the electron

density: a longer scattering vector along each

axis in reciprocal space corresponds to a shorter

separation distance between lattice planes from

which we detect constructive interference when

the scattering vector cross a reciprocal lattice

node. If the phases were known, adding together

three-dimensional sinusoids with frequencies de-

termined by the scattering vector magnitudes and amplitudes given by the magnitude of

the form factor at each scattering vector with the appropriate phases would reproduce the

average electron density in the unit cell.
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The Debye-Waller Factor and B-factors

Under the approximation that atoms exhibit small-scale harmonic disorder about their

average positions, the density gets smeared out about the atom’s average position, and

there is a new factor introduced to the form factor, called the “Debye-Waller” factor,

Tj(q) = e−1/2qTUjq, where uj = rj − 〈rj〉 is the displacement of the jth atom in the unit

cell from its average position, and Uj = 〈ujuTj 〉 is the variance-covariance matrix of atomic

displacements. This effect was originally thought to be so significant that Bragg diffraction

would not be possible: Peter Debye supposedly warned Max von Laue that thermal fluctu-

ations would preclude the possibility for constructive interference in crystal diffraction [27],

but von Laue went forward with his experiments anyway. As it happens, these fluctuations

simply augment the intensity of the Bragg peaks: the Debye-Waller factor introduces an addi-

tional multiplicative factor to the expression for the intensity from Bragg scattering, reducing

the intensity as the displacements increase: IBragg(q) = |
∑

j fj(q)Tj(q)eiq·〈rj〉|2|
∑

n e
iq·Rn|2,

where fj(q) is the atomic form factor. Hence, the Bragg scattering contains information not

only about the average position of the atoms in real space, but also information about the

degree of disorder about each atom’s average position.

Refinement of the Debye-Waller factor, alongside refinement of the structure factors, can

thus give us an estimate of the degree of small-scale harmonic disorder for each atom, which

is commonly published as a “B-factor” or “temperature factor” equal to 8
3
π2〈u2

j〉 in the case

where disorder is assumed to be isotropic, or as anisotropic displacement parameters (or

“ADPs”) which are the 6 unique elements of the matrix Uj. The reduction in intensity

at the Bragg peaks caused by harmonic disorder is more pronounced at larger scattering

vectors, making the refinement of the Debye-Waller factors more difficult for low-resolution

data.
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1.2 Standard Crystallographic Methods

We can record diffraction images at various incident angles by simply rotating the crystal

(using a goniometer), but the persistent bombardment of the crystal by X-ray radiation

causes damage, so often measurements will be made at various locations along the crystal,

continuing until the damage is severe enough to inhibit clean diffraction. Measurements at

different incident angles can also be made with smaller crystals using the technique of serial

crystallography, in which reflections are collected from many smaller crystals at random

orientations. However, because each crystal is randomly oriented, this technique requires

more data and computational resources to align and differentiate (or “merge”) reflections

taken at random and unknown incident angles.

By recording the intensities at these reciprocal lattice nodes, we can obtain information about

the average unit cell form factor |Favg.(q)|2 at each scattering vector. The intensities at each

Bragg peak are different, depending on the structure and small-scale harmonic disorder of the

atoms in the unit cell, and the various planes of symmetry passing through the atoms in the

unit cell. The intensity of each unique Bragg peak across all the different diffraction images

is indexed and measured relative to background noise in a process known as “integration”.

Once again, because these intensities are proportional to the squared amplitude of the form

factor, we lose all information about the phases, and we must estimate them to predict

the true average unit cell electron density. There are a variety of techniques to do this,

the most common of which is Molecular Replacement, but ab initio methods, isomorphous

replacement[31], and anomalous scattering[34] can also be used to recover the phases.

For Molecular Replacement, crystallographers use the known structure of proteins which

are similar to the protein under study (“homologous structures”), along with the crystal

symmetry operations, to calculate the amplitude and phase of the structure factors for the

unit cell, assuming the molecular model is correct. The structure factors from the model
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are compared to the magnitudes of the structure factors measured in experiment, with the

reciprocal space axes aligned by rotating and translating the Patterson function of the model

until it roughly matches the experimental Patterson. By iteratively refining the modelled

structure, calculating model structure factors (Fc), and comparing with observed structure

factors from experiment (Fo), crystallographers can arrive at a best-guess structure for the

protein. These structure factors are often deposited along with the structure files as “com-

posite” maps (2Fo−Fc), which correspond roughly to the model density and have the mean

subtracted so that they are centered on zero, and “difference” maps (Fo − Fc), which corre-

spond to differences in density between model and experiment. Positive difference density

generally corresponds to areas of the model density with too many electrons (compared to

experiment) while negative difference density corresponds to areas lacking electrons, though

negative difference density can be harder to interpret. Densities are often deposited in non-

absolute units, so the standard is to display composite maps at an iso-surface of 1σ (one

standard deviation above the mean) and the difference density at 3σ.

The agreement between the calculated and observed structure factors is captured in a statistic

known as the “reliability factor” or “R-Factor”, R, where

R =

∑
h1h2h3

||Fo| − |Fc||∑
h1h2h3

|Fc|
.

If the magnitude of calculated and observed structure factors matched exactly, the R-factor

would be zero. As the calculated structure factors deviate from the observed structure

factors, the R-factor increases. To protect against over-fitting to the data, a random selection

of structure factors (often, 10% of the total number of structure factors) are left out in the

calculation of the R-factor during refinement for cross-validation, with the R-factor for the

remaining (or “working”) structure factors referred to as the “Rwork”. After refinement of

the structural model, an R-factor is calculated using the structure factors left out, known

as the “Rfree.” If Rwork and Rfree are similar, then the model is considered valid, however,
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if Rfree is much larger than Rwork, then the model is considered to have been overfit to the

data.

The “R-factor Gap”

Despite improvements in both experimental and refinement techniques, Rwork and Rfree are

rarely lower than 0.15 in macromolecular crystallography. Small-molecule crystallographers

routinely obtain R-factors much lower than this (0.02-0.05) with discrepancies between calcu-

lated and observed structure factors largely attributable to measurement error and internal

consistency of the data. James Holton and collaborators were able to show that the dis-

crepancy between small-molecule and macromolecular crystallography is not attributable

to larger error in experimental apparatuses or deficiencies in measurement — the problem

lies in the models used to predict structure factors: they simulated many different forms

of experimental error, and error in data collection and processing, and found that standard

crystallographic methods should converge to small molecule precision, but do not, thanks

to deficiencies in the modelling of protein and solvent density. It has since been suggested

that improvements can be made by modelling the protein as structurally heterogeneous, and

by more accurately modelling the solvent (beyond bulk solvent corrections and placement of

full-occupancy waters into solvent peaks). [40]

1.3 Modern Methods

Various improvements on the standard crystallographic refinement procedure have been in-

troduced in the preceding decades. A common thread between them has been the rejection

of the model of a protein as a static object. Instead, these new and improved models view

proteins as dynamic objects, which sample from an ensemble of structures, whether on the

12



scale of the entire protein, domains, smaller groups of amino acids, or individual side chains.

Cutting edge methods are being developed, which expand refinement beyond the Bragg

peaks, modelling correlated motions which give rise to the diffuse scattering; these methods

will be discussed in the next section.

1.3.1 Anisotropic Displacement Parameters

As mentioned above, under the assumption of small-scale harmonic disorder, the Debye-

Waller factor can be refined alongside the structure factors during refinement. The refine-

ment of anisotropic displacement parameters (ADPs) requires estimating the full variance-

covariance matrix of atomic displacements for each atom, which has six unique elements. If

the data is low resolution, the data-to-parameter ratio can be too small, leaving the param-

eters susceptible to overfitting. However, crystallographers will often use techniques such

as as TLS (Translation, Libration, Screw) refinement or Normal Modes or Elastic Network

refinement to overcome this problem.

In TLS refinement, segments of the protein are collected in to groups, as small as a few amino

acids or as large as entire domains, and the entire group is treated as a rigid body which

can undergo uniform translation, screw-like rotation around an axis, and libration, which is

a mixture of the two [84]. The B-factors or ADPs for each of the atoms can then be inferred

relative to the rigid body motions of the group [53], lowering the number of independent

parameters to refine. If successful, this technique can also provide insight into the correlated

motions of large groups of atoms in the protein.

In the normal modes models, the structure of the protein is described by a set of generalized

coordinates (C-α coordinates, dihedral angles, or any other set of variables which cover the

essential degrees of freedom in the system) which are subject to a potential energy function

that is approximately quadratic about the minimum [56]. The dynamics of the system
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are then approximated by inserting the generalized coordinates and the quadratic potential

into the Lagrangian and solving for the modes of the system at various frequencies. Often,

the lowest frequency modes are used, and higher frequency modes are ignored, though the

implied dynamics can change quite dramatically depending on which modes are included or

ignored.

Elastic network (EN) models and, in particular, Gaussian network (GN) models, describe

the protein as a series of atoms connected by springs, excited by the injection of thermal

energy from the environment. The number of springs is determined by a cutoff, with a larger

cutoff allowing for the modelling of more long-range interactions. The spring constant(s) is

the parameter(s) of the model, tuned to reproduce experimental data. The modes of the

system can be solved for through eigenvalue decomposition of the Kirchoff matrix for the

system [81]. The EN and GN models are similar, with the main difference being that in

the GN model, both changes in the relative distance between the nodes of the network and

changes in the direction of the vector between the nodes are penalized by the potential,

whereas in EN, only the distance is constrained.

Both models, and their relatives, have been used to great success in modelling the isotropic

B-factors[30, 56, 20] and ADPs[50, 51, 80] in crystallographic refinement. In addition to

modelling harmonic disorder of the individual atoms, these models can also be used to infer

collective motions of the proteins’ secondary structure elements and domains, as well as

lattice disorder due to crystal contacts, which give rise to diffuse scattering. The application

of these models to the prediction of diffuse scattering is described below.

1.3.2 Ensemble and Multi-conformer Models

It has been known for many decades now that there is heterogeneity in the structures adopted

by the various proteins in crystals [88]. In particular, some side chains can be expected to
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sample from a wide range of conformations, leading to broader areas of density associated

with the side chains which are impossible to model with a single structure undergoing har-

monic disorder. With the advent of room-temperature X-ray crystallography, the inclusion

of this heterogeneity has become more necessary, as the switch from cryo temperatures to

room temperature broadens the distribution of conformations from which the side chains,

and the proteins as a whole, sample.

Recent work by James Fraser and Henry van den Bedem and colleagues have shown that more

than 35% of side chains experience significant changes to their conformational distributions

when studied at room temperature versus cryo temperatures [26]. These conformational

changes can be triggered both by perturbations in temperature and mutation, and can alter

contact networks with other side chains, as well as bound ligands, with broad implications

for the study of allostery and drug design [96].

The modelling of structural heterogeneity has been be carried out at the level of peptide

flips in the backbone, side chain reorientations, and changes in ligand binding mode, as in

the qFit and qFitLigand model building programs of Fraser, van den Bedem and colleagues

[49, 97]. modelling of structural homogeneity can also be carried out on the level of the

entire protein, with the all-atom ensemble generated by molecular dynamics sampling of a

potential landscape, as in phenix.ensemble refinement. These methods have been shown

to fit X-ray data better than single-structure refinements do [55, 7].
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1.4 Diffuse Scattering and Models of Correlated Dis-

order

Figure 1.4: Diffraction image from Wall,
Ealick, and Gruner (1997) showing point-
like Bragg peaks and diffuse scattering.
Streaks between Bragg peaks and speckles
are visible in the solvent ring, and more
cloudy, patterned features are visible at
higher resolution. Copyright (1997) Na-
tional Academy of Sciences.

Above, we saw that in addition to the constructive

Bragg intensity that results from periodicity in the

unit cell electron density, there is another part of

the intensity, the “diffuse” or “variational” scatter-

ing, which results from correlated density fluctua-

tions about the average across the many unit cells.

This part of the intensity is weaker than the Bragg

peaks, and largely consists of patterns of diffuse den-

sity in the form of haloes around the Bragg peaks, or

streaks and “speckles” between them, with more intri-

cate patterns visible for crystals of sufficient quality,

measured with detectors of sufficient resolution (Fig

1.4). To model this part of the density, we need to

model the dynamics which would give rise to fluctuations in the density which are correlated

across many unit cells.

Under the assumption that there is a distribution for the density in each unit cell, from which

we can calculate an ensemble average, the diffuse intensity can be expanded as follows:

ID(q) =
∑
n

∑
m

(Fn(q)F ∗m(q)− |Favg.(q)|2)eiq·(Rn−Rm)

=
∑
n

∑
m

(〈Fn(q)F ∗m(q)〉 − |〈Fcell(q)〉|2)eiq·(Rn−Rm)

= 〈|Fcrvstal(q)|〉2 − |〈Fcrystal(q)〉|2 = 〈|Fcrystal(q)− 〈Fcrystal(q)〉|2〉
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The equation above is known as Guinier’s Equation [32], and is the basis for the calculation

of diffuse scattering for every one of the models outlined below. It is plain to see in the last

expression that the diffuse scattering results from deviations of the crystal density from the

average – that is, from dynamics.

Under an additional assumption of harmonic deviations for each atom about their average

positions, we can express the diffuse scattering as:

ID(q) =
∑
nj

∑
mk

fj(q)f
∗
k (q)eiq·(Rn−Rm)eiq·(〈rj〉−〈rk〉)Tj(q)Tk(q){eqTVnjmkq − 1}

where Vnjmk = 〈unju
T
mk〉 is the displacement-covariance matrix for each pair of atoms in

the crystal (atom j in unit cell n and atom k in unit cell m). The exponent qTVnjmkq can

be thought of as the displacement covariance matrix projected on to the vector q. If the

displacement covariance for atoms j and k separated by 〈rj〉 − 〈rk〉 is high along the same

the direction as q, the diffuse scattering at q will be stronger. Under Taylor approximation

to first order, this expression can be rewritten as:

ID(q) =
∑
nj

∑
mk

fj(q)f
∗
k (q)eiq·(Rn−Rm)eiq·(〈rj〉−〈rk〉)Tj(q)Tk(q){qTVnjmkq}

So, in the same way that Bragg scattering can be leveraged to estimate the average electron

density of the unit cell, the diffuse scattering could, in principle, be leveraged to estimate

the displacement covariance matrix (and thus the correlated motions) for each pair of atoms

in the crystal. However, in contrast to Bragg refinement, the data-to-parameter ratio in the

diffuse case leaves the problem of refinement hopeless: the matrix Vnjmk has six independent

parameters for every pair of atoms in the illuminated volume of the crystal which, even for

small crystals and tight beams, is far too many parameters to refine given any reasonable

amount of data collected.
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Therefore, to move forward with the task of constructing structural models which include

information about correlated disorder which can be refined against the diffuse scattering, we

must construct simpler models, with fewer parameters to fit.

Figure 1.5: Simulated dif-
fuse scattering data (left).
The anisotropic component
is calculated by subtracting
away the average intensity
in radial shells (right – posi-
tive: green; negative: red)

Before delving in to the specific models proposed to interpret diffuse scattering, it is impor-

tant to note various general features in the diffuse scattering which will help in understanding

them all. The diffuse scattering can be separated in to two main components: the isotropic

and anisotropic components (Figure 1.5). The isotropic component is radially symmetric,

and is mostly associated with solvent-protein interactions – this component of the diffuse

scattering is often called the “solvent ring” 1.

The anisotropic component is all those features which remain once the radially symmetric

component is subtracted away. This component can contain streaks, speckles, haloes around

Bragg peaks, and cloudy features which span large swaths of reciprocal space. In general,

features in the anisotropic component closer to Bragg peaks correspond to correlated motions

which span distances of a unit cell or larger – these features are often referred to as Thermal

Diffuse Scattering (TDS). Features in the diffuse scattering farther from the Bragg peaks

include substantial contributions from more local correlated motions, and have proven much

harder to model. These components of the diffuse scattering are what must be predicted if we

1Though we now know this component is produced by contributions from both the protein and solvent, in
roughly equal proportion, the name “solvent ring” comes from a time when it was believed this component
came only from the solvent, and is often still referred to by this name.
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wish to produce models of correlated disorder which are relevant to functionally-important

motions in proteins.

There are four main models of this kind which have been studied extensively: the Rigid Body

Motions model (RBM), the liquid-like Motions (LLM) model, the Elastic Network/Normal

Modes model (EN/NM), and the Molecular Dynamics (MD) model. We will discuss each of

these models in brief below, with special attention paid to the modelling of diffuse scattering.

1.4.1 The Rigid Body Motions (RBM) Model

The Rigid Body Motions (RBM) model assumes that the protein(s) which comprise the unit

cell (or an ensemble of them) undergo rigid translation and rotation about their average

center of mass. Though the TLS model (a special case of RBM model, with rigid groups

smaller than the protein as a whole) has been used extensively and successfully to predict

B-factors and ADPs, the application of the TLS model to the prediction of diffuse scattering

has been less encouraging. The application of rigid body motions models more broadly have

been somewhat more successful, though the degree to which they explain the source of diffuse

scattering is a topic of debate. There is also a distinction to be made between coupled and

independent rigid-body motions, which will be important to keep in mind when attempting

to differentiate and compare the models described below.

A special case of rigid body motions are those produced by lattice-coupled motions due to

the interactions between proteins and their neighbors in the crystal lattice. This type of

rigid body motions was the first to be connected explicitly with diffuse scattering, in the

form of diffuse “streaks” which appear along crystal lattice planes. In the early days of the

modelling of diffuse scattering, analysis was restricted to single two-dimensional diffraction

images. Diffraction images collected from crystals of tropomyosin contained streaks which

were interpreted as the result of transverse motions along the filament arms of tropomyosin
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(like the vibrations of a string) and haloes which were interpreted as the result of coupled

motions of neighboring proteins in the lattice [6]. Follow-up studies of tropomyosin, ana-

lyzing six diffraction images rather than just one, showed further evidence for long-range

correlated motions due to transverse waves propagated along the filament arms [12]. Studies

of diffraction from hen-egg-white lysozyme crystals showed similar streaks between Bragg

peaks which were connected to rigid body molecular displacements along two perpendicular

directions in the crystal lattice, connected with close-contacts between neighboring proteins

along these axes (no streaks were found along the other axis, as there were no comparable

close contacts along the other direction in the lattice) [22, 4]. These models were validated

qualitatively, as quantitative validation was not yet possible.

Further study of the diffuse scattering from hen-egg-white lysozyme by Benoit, Faure, and

Perez showed that models of individual, independent rigid-body translational and rotational

motions (roughly equal in contribution) fit to the diffuse scattering could be used to cal-

culate the root-mean-square C-α fluctuations in good agreement with the B-factors from

refinement, though once again the comparison with the diffuse scattering from experiment

was qualitative, and the degree of rotational and translational motion was not refined but

guessed to an order of magnitude based on visual agreement with the scattering observed in

diffraction images [75]. These finding were, in part, a challenge to the models of Clarage et

al., who had proposed a model of homogeneous disorder, the “Liquid-like-motions” (LLM)

model: “The high proportion of rigid-body displacements which is deduced... strongly con-

tradicts previous interpretations of tetragonal lysozyme diffuse-scattering data in terms of

homogeneous disorder (Clarage et al., 1992). To our understanding, this discrepancy mostly

lies in the fact that the type of correlation accounted for by homogeneous disorder models is

intrinsically limited, which thus may lead to an erroneous interpretation of the experimental

diffuse scattering.” [75] This would be the first in a long string of disagreements over the

main source of diffuse scattering. However, the argument in favor of rigid-body motion was

supported in a paper published shortly after by Smith, Genest, and Héry, which found evi-
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dence for rigid body motions in groups of backbone atoms and associated rigid side-chains

in a 1ns molecular dynamics simulation of orthorhombic lysozyme [37].

The RBM-LLM debate went cold for a few decades before being revived in the mid 2010s in a

series of studies by Wall, van Benschoten and collaborators [94, 95]. Thanks to the develop-

ments of Wall et al. in the late 1990s[104], it was possible to construct full three-dimensional

diffuse scattering maps which could be analyzed more finely and quantitatively. A three-

dimensional diffuse scattering map was collected from diffraction by crystals of dimeric GpdQ

by van Benschoten et al. and the anisotropic component was modelled using a TLS model,

refined against the Bragg data. Firstly, refinements using different rigid groups for the TLS

model (sub-domains, monomers, or the entire protein dimer), despite predicting different

collective motions for the protein, did not produce significant difference in Rwork and Rfree,

though all TLS refinements produced lower Rfree values than non-TLS refinement. The dif-

fuse scattering, however, was highly dependent on the TLS groups selected: the different

diffuse scattering maps resulting form the different TLS rigid group selections showed little

similarity with each other. It was suggested that the different molecular motions implied

by the TLS models could, in principle, be (in)validated by comparison with the experimen-

tal diffuse scattering [94]. A followup study of the diffraction from cyclophilin A (CypA)

and trypsin crystals by van Benschoten et al. compared the predictions of various TLS

models (“Phenix”, “TLSMD”, and “whole molecule”) with those from the LLM model and

coarse-grained normal-modes models. None of the TLS models agreed well with the dif-

fuse scattering data (correlation coefficients between 0.02-0.14) nor did they agree well with

each other (CCs between 0.06-0.22), despite, again, yielding satisfactory and similar agree-

ment with the Bragg data (Rwork and Rfree between 0.16 and 0.18). These results suggested

that the protein motions which produced the diffuse scattering were correlated on distances

shorter than would be suggested by the TLS models [95]. It’s important to note as well, that

neither of the other models tested agreed particularly well with the diffuse scattering data,

with correlation coefficients for the full map between 0.4 and 0.5.
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These results cast doubt on the rigid body motions model as a viable model for the diffuse

scattering. However, two papers from Ayyer et al. in 2016 and de Klijn et al. in early 2019

may revive it. Ayyer et al. were able to show that the speckled patterns visible in X-ray

Free Electron Laser (XFEL) diffraction data from crystals of photosystem II were consistent

with independent rigid-body translational lattice disorder, and they were able to leverage

the information in the diffuse scattering under this assumption to extend the resolution limit

of the data beyond the Bragg diffraction limit, from 4.5 to 3.5 Angstroms, and also to phase

the diffraction pattern directly [3].

Figure 1.6: Diffuse scattering data predictions, with experimental data in the top row, and the other rows
labeled by the RBM model type used to predict the diffuse data: Translation, Rotation, Mixed Translation
and Rotation, and Ensemble Plus Rigid Body Motions models from rows two to five. De Klijn et al. (2019),
IUCrJ (CC-BY).
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De Klijn et al. made a stronger case for the RBM model in a paper confidently titled “Rigid-

body motion is the main source of diffuse scattering in protein crystallography” [19]. They

generated supercell models of CypA and hen-egg-white lysozyme assuming independent rigid-

body translational and rotational motions (fit to the B-factors), as well as internal motions

generated by ensemble refinement (after subtraction of TLS contributions to the B-factors)

for comparison to experimental diffuse scattering. The mixed rigid-body translational and

rotational motions models agreed best with the data, and the addition of internal motions

did not significantly improve the agreement with the data, leading them to suggest that

RBMs are the main source of diffuse scattering. However, even the best models showed

relatively poor agreement with both the full diffuse scattering data (CC of 0.47 for the

mixed RBM model) and the anisotropic component (CC of 0.53 for the same). Though the

authors say that the diffuse scattering maps predicted by the RBM models show “remarkable

resemblance” to the experimental data, the reader is invited to draw their own conclusions

(Figure 1.6).

1.4.2 The Liquid-like Motions (LLM) Model

The liquid-like Motions (LLM) model starts with the assumption that the displacement of

atoms from their average positions are harmonic, but it adds the additional assumptions that

the displacements of the atoms are isotropic about the average position and the elements of

the displacement covariance matrix Vnjmk decay to zero as the distance between atoms j and

k (∆rnjmk) increases. The connection between this assumption and the model’s name can

be made by analogy to water: the correlation between the displacements of water molecules

is close to unity when the molecules are adjacent to each other, and decays to zero as we

consider molecules further and further apart. Under these assumptions, the formula for the

first-order approximation to the diffuse scattering becomes:
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ID,LLM(q) =
∑

nj

∑
mk fj(q)f

∗
k (q)eiq·∆rnjmkTj(q)Tk(q){eiq

2
√
〈u2j 〉〈u2k〉Γ(∆rnjmk) − 1}

where Γ(∆rnjmk) is the correlation function describing the decay in correlation between

the atomic displacements of atoms j and k as a function of their average distance apart.

Here, we can see that (setting aside the Debye-Waller factors, which are refined from the

Bragg scattering) we need only refine the mean squared displacements (〈u2
j〉, and 〈u2

k〉)

and the parameter(s) of the correlation function Γ, which is normally chosen to be a sum of

exponential terms: Γ(∆rnjmk) =
∑

p e
−|∆rnjmk|/γp . Very often, this sum is restricted to one or

two terms, leaving the relatively straightforward task of refining one or two global correlation

parameters (γp) against the diffuse scattering (along with the mean squared displacements,

〈u2〉).

If we assume all mean squared atomic displacements are the same, and that correlations

are the same regardless of location in the crystal and only depend on the distance between

atoms, the expression becomes even simpler:

ID,LLM(q) = 1/(2π)3q2〈u2〉e−q2〈u2〉|Favg.(q)|2 ∗ Γ̂(q)

where Favg. is the structure factor of a reference crystal with all atoms at their average

positions.

That is, the diffuse scattering for the liquid-like motions model is proportional to the convo-

lution of the intensity with the Fourier transform of the correlation function (or, the product

of the Patterson and the correlation function in real space, with the correlation function sup-

pressing features of the Patterson at large separation distances). How much the Patterson is

“smeared out” by the correlation function depends on the functional form and parameters of

the correlation function. This expression can be easily extended to include anisotropic cor-

relation by making the correlation function dependent on the direction of the displacement

between atoms as well as their distance.
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The liquid-like motions model as presented above was introduced by Caspar, Clarage and

collaborators in 1988, in a study of the diffraction from crystalline insulin [9]. They found a

correlation length of 6 Angstroms and an RMS displacement of about 0.4 Angstroms. The

same system was studied by Caspar, Clarage and collaborators in both the tetragonal and

triclinic crystalline forms, and they found the same correlation length, with slightly different

RMS displacements (0.33 and 0.49 for triclinic and tetragonal, respectively)[14]. A series

of studies by Faure et al. published in 1994 analyzed the predictions of the normal modes,

molecular dynamics, and liquid-like motions models in lysozyme. Although the authors were

unable to conclusively differentiate between the accuracy of the models, they calculated that

the longer-distance correlations of the normal modes perturbations should produce diffuse

features about 125 times more intense than those from shorter-range correlated motions,

as in the LLM model [24, 25]. As with the early studies discussed in the section above on

the Rigid Body Motions Model, these studies were performed largely with single diffraction

images, analyzed qualitatively, and fit by trial and error.

In 1997, Wall, Ealick, and Gruner published a study in which they were able to collect three-

dimensional diffuse scattering data for the first time, from crystals of Staphylococcal nuclease.

Fitting quantitatively to this data, they found the best agreement with a LLM-like diffuse

scattering model with a correlation length of 10 Angstroms and an RMS displacement of

0.36 Angstroms [104]. This study also introduced R-factors and correlation coefficients as

measures of goodness-of-fit for diffuse scattering data.

Phillips, Clarage, and Wall performed a similar study on a calmodulin-peptide complex

published in the same year[103]. In this study, they tested two different correlation functions

in the LLM model: one which decays as usual (Γ(∆r) = e−|∆r|/γ) and another which adds

a factor out front (Γ(∆r) = 1
∆r
e−|∆r|/γ), testing both an isotropic and anistropic version for

both. The second correlation function was so chosen as in the large-q-limit the functional

form for Fourier transform of the correlation function would resemble that of a Debye solid,
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and the MSD and correlation length parameters could be used to estimate values for the

entropy and specific heat of the crystal. Analysis of the large-scale diffuse features using the

isotropic models yielded an RMS displacement of about 0.4 Angstroms with a correlation

length of 5 Angstroms for the first correlation function and 12 Angstroms for the second,

but was not able to definitively say which functional form was better (the R-factor for both

was about 0.4).

The streaks in the diffuse scattering were well modelled (Figure 1.72) using an anisotropic

LLM model, which uses the same correlation functions as above, but replaces the isotropic

variance with a matrix corresponding to the variance in each spatial dimension. This

anisotropic model yields a correlation matrix rather than a correlation length. This anisotropic

LLM model showed highest correlation for a 0.4 Angstrom RMS displacement with a corre-

lation length of 135 Angstroms along the end-to-end packing direction of the unit cell, and

also showed weakest correlation along the direction of the lattice containing large a solvent

cavity and a flexible portion of the protein.

Figure 1.7: Figure from Wall, Clarage, and Philips
(1997), showing an experimental diffraction image
(left) and simulated diffraction data (right) using the
anisotropic LLM model, showing that the streaks be-
tween Bragg peaks are well reproduced.

More tests of the liquid-like motions model

in macromolecular crystallography were per-

formed in a series of studies published by

Meinhold and Smith in 2005 and 2007 [67,

65]. The first study did not refine the pa-

rameters of the liquid-like motions model

directly against the data, but showed evi-

dence from molecular dynamics simulations

that C-α displacement correlations decay as

a function of distance, on average, for both

2Reprinted from Structure, 5 (12), Wall M., Clarage J., and Phillips G., “Motions of calmodulin charac-
terized using both Bragg and diffuse X-ray scattering”, 1599-1612, Copyright (1997), with permission from
Elsevier.
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intraprotein and interprotein atom pairs. The second study performed an analysis of both

LLM and molecular dynamics (MD) models of diffuse scattering, and found that MD and

LLM models differ in the correlation lengths predicted, and the convergence between MD

and LLM-derived diffuse scattering patterns is poor. Another study by Riccardi, Phillips,

and Cui in 2010 evaluated the liquid-like, rigid body, and normal modes modes of diffuse

scattering against data collected from Staph. nuclease, and found good agreement for the

liquid-like motions model with a correlation length of 10 Angstroms [82]. They also found

that a TLS (rigid body) model yields very good agreement with the B-factors but suggests

atomic correlations which are much too high, when compared to the other models.

More recently, van Benschoten and collaborators tested the LLM model against high qual-

ity diffuse data from CypA and Trypsin collected with a pixel-array detector, and found

relatively good agreement [95]. They analyzed the model-data agreement by correlation

coefficient (CC) to the anisotropic component of the diffuse scattering in spherical shells

of reciprocal space, and found the best agreement for CypA with a correlation length of

7.1 Åand an RMS displacement of 0.38 Angstrom (total CC=0.58 total; max CC=0.74 in

3.67-3.28 Angstrom shell) and for Trypsin with a correlation length of 8.35 A and an RMS

displacement of 0.32 Angstrom (total CC=0.44 Angstrom; max CC=0.72 in 4.53-4 Angstrom

shell).

A study conducted by Arianna Peck, Frederick Poitevin, and T.J. Lane from 2018 analyzed

the diffuse scattering from three different crystalline systems, and tested single-protein rigid

body, elastic network, and two liquid-like motions models (one with correlations restricted

to the asymmetric unit, one with correlations at arbitrary distances) [74]. Though they

found that none of the models could consistently reproduce the anisotropic data with a CC

with experiment greater than 0.5, the asymmetric-unit-constrained liquid-like motions model

consistently out-performed the elastic network and rigid body motions models: this LLM

models had correlation lengths of about 18 Angstroms, much higher than correlation lengths
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of previous studies. However, when LLM-like correlations were allowed to extend beyond the

asymmetric unit, the correlation coefficient with experimental data increased dramatically,

to a CC of 0.67-0.71. This result suggested that correlated motions which extend across

proteins are important in the modelling of diffuse scattering, a finding supported by work to

be discussed in Chapter 3.

1.4.3 The Elastic Network/Normal Modes (EN/NM) Models

The Elastic Network (EN) model is an extension of the Normal Modes (NM) model’s assump-

tion of harmonic disorder about the atoms’ average positions, in which the entire collection

of atoms is assumed to behave as masses connected by springs. The EN model is able to

reproduce the low-frequency modes present in NM model with two main advantages: (i) the

NM model has 3N parameters for a protein of N atoms, whereas the number of parameters

in the EN model depends on the distance cutoff used to define connections between nodes

(ii) in the EN model, the minimum energy configuration can be defined with respect to the

crystal structure, whereas in the NM model, the energy minimum is defined by the potential,

and can be quite far from the crystal structure [82]. Thermal excitation drives the ensemble

of masses and springs toward collective motions described by the modes of the system, which

are eigenvectors of the covariance matrix. These modes are used as a basis set with which

to construct a structural ensemble, and the dynamics implied by this ensemble are used to

predict the diffuse scattering.

Though normal modes models had been used to predict B-factors and ADPs for quite some

time, the first study using normal modes to predict diffuse scattering was conducted by

Mizuguchi, Kidera and Go in 1994.[70]. At the time, the quality of experimental data was

too poor to do any quantitative analysis of agreement, but they were able to show the

sensitivities of the features in the predicted diffuse scattering to changes in the adjustable
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parameters of the LLM and NM models. Faure, et al. were the first to directly compare the

predictions of the liquid-like, molecular dynamics, and normal modes models to experimental

diffuse scattering data, though only qualitatively [24, 25]. This work showed that long-

distance correlations predicted by the normal modes model should produce diffuse features

many times more intense than those produced from short-range LLM-like correlations.

Riccardi, Phillips and Cui published results in 2010[82] comparing the predictions of various

elastic network models (one empirical, one parametrized), an LLM model, and a rigid-body

TLS model. First, for elastic network models, they found that moving from isolated molecules

to molecules in a lattice context significantly improved agreement with the temperature

factors. They also found that both the elastic network models qualitatively agree with the

liquid-like motions model when a sufficient number of modes are included, however they

diverge from each other quite drastically for the same number of wavevectors. When the

number of modes included is drastically reduced, both models become qualitatively similar

to the TLS model.

This is to be expected, as the LLM model is a special case of the normal modes/elastic

network model under additional assumptions [99], and with few modes the proteins behave

more as a collection of rigid groups. This will be a common feature of diffuse scattering

models: the difficultly in establishing a “best” model for the prediction of diffuse scattering

comes largely from how similar the models can behave with the right choices of model

assumptions and parameters.

In their own comparison study, Peck, Lane, and Poitevin refined an elastic network model

against Bragg data before comparing the predicted diffuse scattering with data from three

crystalline systems, finding minimal correlation (CC=0.09-0.2) [74]. They suggest that al-

lowing the parameters to be refined against the diffuse data may have improved agreement,

however, they also note that these models would probably remain poor so long as the net-

works were restricted to intra-protein atom pairs. These comments would prove prescient.
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A elastic network model of a unit cell (rather than a single protein) computed by Wall,

Fraser and Wolf for Staphyloccocal nuclease, refined against diffuse scattering data, was able

to achieve much higher correlations with the anisotropic diffuse scattering data (CC=0.54).

However, a more complex elastic network model would prove to be even more successful[106].

In 2020, Ando, Meisburger and Case published the most comprehensive and high-quality

analysis of diffuse scattering and models of correlated disorder to date [68]. They collected

an extremely high-quality, fine-grained three-dimensional diffuse scattering map from tri-

clinic lysozyme at room temperature with a photon-counting pixel array detector, carefully

accounting for and removing experimental noise. First, they were able to connect the power-

law decay in the intensity of the haloes around Bragg peaks to long range correlations from

acoustic phonon-like vibrational lattice dynamics. Moreover, they were able to construct

a lattice aware elastic network model which treated proteins as rigid bodies connected to

their neighbors by Gaussian and directional springs. This model was able to reproduce the

anisotropic haloes around a set of 400 Bragg peaks. This lattice dynamics model was not able

to accurately reproduce the experimentally refined ADPs. However, when an internal elas-

tic network model (with rigid side chains) was coupled to this lattice aware elastic network

model, the agreement with the experimentally-derived ADPs improved dramatically. This

combined internal and lattice-connected elastic network model showed remarkable agree-

ment with the experimental diffuse Patterson function, and reproducing the decay in diffuse

Patterson fluctuations as a function of the scattering vector almost exactly. This combined

internal and lattice-connected elastic network model outperformed either model alone, in

addition to significantly outperforming a crystalline MD simulation with 343 unit cells, es-

pecially at high resolution.

This work was a significant advance. By suppressing domain-specific internal motions in their

combined internal and lattice-connected elastic network model, they were able to validate

(for the first time) a model of internal dynamics of a protein which could not have been
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distinguished from the domain-motion-suppressed model by Bragg data alone, by comparison

to the diffuse Patterson (Figure 5 in [68]). The improvement in CC with the diffuse Patterson

was slight (0.01 gain in CC), but consistent across all resolution shells: the authors were

careful to point out in the peer review notes that this claim (the ability to distinguish

between disorder models which agree equally well with the Bragg data) has been made by

other papers, but their work was the best example of such discrimination to date, as they

were able to reproduce the total anisotropic scattering to truly impressive levels of accuracy.

1.4.4 The Molecular Dynamics (MD) Model

The Molecular Dynamics model starts with the atomic structure deduced from crystallogra-

phy or other methods of structure determination, and assigns properties to the atoms based

on a set of parameters known as the “force field.” The force field parameters include the

masses, charges, and van der Waals radii of the atoms, the average bond length and effective

bond spring constant, bond angles for each set of three connected atoms, and the torsional

parameters which control how freely a set of four atoms rotates around the central bond.

These parameters are plugged into a Newtonian functional form for the potential, which is

integrated in time-steps to create a stop-motion trajectory describing the dynamics of the

system. Different force fields set different values for these parameters and produce different

results.

The MD model of collective motions differs from the others discussed above in that it is

essentially “model free”: the only underlying assumptions of the model are the the force-

field parameters (which are fixed) and the quasi-Newtonian framework (no chemistry or

quantum mechanics). Though the other models have outperformed MD in their prediction

of the anisotropic diffuse scattering, these models have the advantage of tunable parameters,

whereas the “parameters” (read: the forcefield) of the MD model are fixed. The main
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advantage of the MD model over the LLM, RBM, and NM models for prediction of diffuse

scattering is the inclusion of solvent effects. The MD model is the only model which is able to

reproduce the full diffuse scattering signal, isotropic and anisotropic. While the accuracy of

the force fields has been extensively tested and improved over the preceding decades, mostly

through single-molecule experiments, the accuracy of their predictions for protein-protein

interactions and crystal contacts is still being tested [73, 46].

In a sense, the true power of the MD model has never been in its own predictive capacity, but

in its ability to analyze and contextualize the assumptions underlying other models. From

the early days of the modelling of correlated motions and diffuse scattering, MD simulations

have been used to validate and contextualize the motions predicted by normal modes models

[41, 43], and rigid body motions models [28, 92]. It wasn’t until the work of Faure et al.

in 1994 [24] that a 600ps MD simulation was used to predict diffuse scattering directly:

this work showed that diffuse scattering predicted by NM and MD models were similar in

form, however, the finer details at higher resolution were better captured by the normal

modes model. Work by Clarage, Phillips and collaborators [15] showed that the deficiencies

of the MD model may be due to sampling: a 1ns simulation of a myoglobin crystal was

shown to insufficiently sample collection motions and correlations in atomic positions in low-

frequency modes. The atomic displacement covariance matrices calculated in the first and

second halves of the simulation were significantly different, indicating a lack of convergence,

and the diffuse scattering calculated from the trajectory did not match experiment.

The first promising analyses of diffuse scattering using MD simulations were carried about

by Meinhold and Smith, publishing three papers between 2005 and 2007 [67, 66, 65]. In

all three of these works, Meinhold and Smith ran 10ns NPT simulations of a unit cell of

Staphyloccocal nuclease, and calculated the diffuse scattering using Guinier’s equation, for

comparison with diffuse scattering data collected by Wall, Ealick and Gruner[104].

In the first of these works[67], they started by showing that the B-factors from experiment
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are over-predicted by the MD in regions of high flexibility, and that rigid body translations

and rotations contribute only a minority portion (about 0.25 A²) of the total mean squared

fluctuations. They also showed that the correlation in atomic displacements decays as a func-

tion of their pairwise distance apart, but the average correlation as a function of pairwise

distance was different for intra- and interprotein atoms pairs. Additionally, they showed that

the agreement between calculated and predicted diffuse scattering improves logarithmically

as a function of simulation length. They found, similarly, that the convergence of displace-

ment covariance matrix elements for intraprotein atom pairs converged logarithmically as

a function of simulation time, though the fraction of converged matrix elements increased

differently in different simulations, indicating that different simulations may get trapped in

different free-energy basins.

In the second of these works[66], the isotropic profile of the total diffuse scattering calculated

from the full simulation was shown to be in good agreement with the experimental profile

(though missing a “shoulder”, or dip in intensity, at slightly higher resolution than the peak

intensity) and they were also able to show that the agreement between the calculated and

experimental diffuse intensity improved logarithmically as a function of simulation length,

and that the secondary structure elements contribute most significantly to the peak in the

diffuse scattering profile. They were also able to use Principal Component Analysis (PCA)

clustering to associated intense features in the MD-predicted diffuse scattering profile with

specific intra- and interprotien motions from the trajectory, and that the first five PCA

features associated with intramolecular cross-correlations contributed the most to the large-

scale features in the diffuse scattering.

In the third of these works, multiple 10ns simulation were analyzed and the results from the

first were reproduced, but in addition they estimated that the variance-covarance matrix

of atomic displacements converges on the scale of ∼1 microsecond timescale, and that the

correlation coefficient of pairwise atomic displacements decayed as a function of their pairwise
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distance apart, for both inter-protein and intra-protein atom pairs. This is consistent with

the LLM, or “isotropic correlations (IC)” model (as they call it in the paper). The values for

the correlation length found by fitting an exponential to the calculated pairwise correlation

with distance were consistent (10 Å) with LLM-refinement against diffuse data from previous

experiments by Wall, Ealick and Gruner [104], however, when an LLM model was fit to the

diffuse scattering data predicted from MD, the correlation length was higher (∼14 Å).

Michael E. Wall and collaborators followed up on these studies with a 1.1 microsecond

simulation of a Staph. nuclease unit cell in 2014 [105]. In this case, the correlation between

the calculated and experimental diffuse scattering data was excellent across many different

time scales (0.99 and above for 10, 100 and 1000 ns trajectories), and robust to both sampling

timescales and changes in the forcefield. However, when the anisotropic diffuse scattering

was isolated, and compared with experimental data, the correlation coefficient dropped to

0.646 for 10ns, 0.654 for 100 ns and 0.832 for 1000 ns. They also found that, were they to test

the reproducibility of the C-α displacement covariance matrix elements, as in Meinhold and

Smith (2005), the agreement between the matrix elements from the first and second halves of

the simulation was low (CC=0.517). This suggested that the convergence of the elements of

the C-α displacement covariance matrix is a poor measure of the convergence of the diffuse

scattering as a whole. This work was also able to differentiate between the contributions

to the diffuse scattering from the protein, the solvent, and the protein-solvent cross-term,

showing that though the total intensity contains roughly equal contribution from the protein

and solvent, the anisotropic component of the diffuse intensity results almost entirely from

fluctuations in the structure of the protein.

Follow up work by Wall in 2018 [100] with an even longer and larger (5 microsecond, 2x2x2

unit cell) trajectory confirmed that a one microsecond trajectory is sufficiently converged

to model the diffuse scattering, albeit perhaps only for this system. In fact, the agreement

with the anisotropic diffuse scattering was roughly consistent across all 100 ns chunks of
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the full 5 microsecond simulation, with correlation coefficients ranging from 0.62 to 0.68 –

these are the highest correlation coefficients with the anisotropic component of the diffuse

scattering yet achieved by MD simulations, probably owing to the supercell (vs. unit cell)

simulation paradigm. As suggested by other studies, the inclusion of correlated motions

across unit cell boundaries appears to be important in modelling the anisotropic component

of the diffuse scattering. The qualitative agreement between the anisotropic components of

the simulated and experimental diffuse scattering maps is quite good, though some large

scale features are not reproduced. The similarity in the time required for convergence of the

diffuse scattering between unit cell and supercell simulations suggests that the convergence

time may be independent of system size above a certain number of unit cells.

The agreement between predicted and experimental B-factors was very good (CC=0.94),

similar to the agreement with the B-factors from the unit cell simulation (CC=0.95), and

better than the agreement found by another supercell simulation in 2016 from Case et al.

for hen-egg-white lysozyme (CC=0.78 for all heavy atoms) [46]. In both of these supercell

simulations, it was observed that the structure experiences a small but significant large-scale

drift away from the crystal structure atomic positions across the full supercell. Case et al.

posit that this drift may be due to deficiencies in the modelling of crystal contacts.

Finally, in the work by Ando, Meisburger and Case mentioned above in the section on Elastic

Network/Normal Modes (EN/NM) models, MD simulations of hen-egg-white lysozyme were

prepared with 1, 3x3x3, 5x5x5, and 11x11x13 unit cells (for 5, 5, 2, and 1 microsecond

simulation time respectively). The supercell systems were able to model the anisotropic

haloes around Bragg peaks (associated with phonon-like acoustic vibrations) more accurately

as more unit cells were included, however it overestimated the standard deviation profile of

these features in the largest supercell system, which they were able to be reproduce almost

exactly with their combined internal and lattice-connected elastic network model. The MD

model was also less successful at reproducing the features of the diffuse Patterson map,
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suggesting that there is still ample room for improvement in the MD modelling of diffuse

scattering, and MD force field treatment of large-scale atomic correlations more broadly.

Unlike the elastic network models, no MD-predicted internal protein motions have been well

validated against features in the diffuse scattering maps, nor the diffuse Patterson (though

agreement with the Patterson can be quite good; the Patterson predicted by crystalline MD

in Wall [2018] had a CC with the experimental Patterson of 0.7, whereas the combined

internal and lattice-connected elastic network model had a CC of about 0.8 or more).
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Chapter 2

Background on MD Simulation of

Protein Crystals and modelling of

Densities and Dynamics

Molecular Dynamics (MD) simulations have been used for decades as a means to probe dy-

namics at atomic detail and at time-scales down to the order of femtoseconds or picoseconds,

both of which are not easily accessible using more standard “bench” tools in biochemistry

and structural biology. The accuracy of molecular dynamics simulations depends on how well

parametrized the force fields are, however, leveraging experimental measurements to improve

force field parameterization has proven challenging. Many force fields (and, in particular, the

“gold standard” force fields from AMBER and CHARMM) have proven useful in expanding

our understanding of biochemical phenomena such as ligand-binding[16], the relationship

between protein structure and function[71], and allostery[33], but they can perform quite

differently (especially with regard to torsional free energy profiles[79]), and there is ample

room for improvement (in many respects, but particularly with regard to protein-protein

interactions and/or crowded environments[73, 76]).
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Crystalline MD (abbreviated cMD below) systems are prepared and parametrized identically

to standard solution single-protein systems (sMD), with a few idiosyncrasies, to be discussed

below. However, production simulation and analysis of these systems requires some care,

knowledge of the crystallographic context (reviewed in the previous chapter), and some

bespoke software. Despite computational advances, cMD simulations can often be very

expensive, with microsecond-scale “supercell” simulations (many unit cells) requiring dozens

of hours of compute time on thousands of cores, even with message-passing-interface (MPI)

enabled clusters with high-bandwidth, low-latency connections between nodes. Below, I

present an overview of the preparation and simulation of cMD systems, along with a review

of previous work.

2.1 Crystalline MD System Preparation

Molecular dynamics simulations require a structure file and a topology file as input: the

structure file simply lists the identity and coordinates all of the atoms present in the system,

while the topology file describes the properties of the atoms and their bonded and non-

bonded interactions with each other (based on the parameters of force field). Very often the

structures from crystallographic refinement will have missing atoms in regions of the density

that are not well resolved, and those parts of the structure need to be built back in, either

by homology modelling, or simpler forms of modelling based on common backbone torsional

profiles and rotomeric states for side-chains (now easily accomplished, through programs like

phenix[57], coot[23], UCSF Chimera[77], and others). Once one has arrived at a complete

structure for the protein and any bound ligands or co-factors, one must choose a force field

for parameterization, to create the topology file.

Waters present in the crystal structure are often (but not always) removed before con-

struction of the unit cell or supercell systems, for two reasons: (i) we often wish to test
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the force field with respect to the reproducibility of crystallographic waters, and (ii) min-

imization with crystal waters present can lead to “unsettled water” errors (waters stuck

in prohibitively high-energy configurations), either due to interactions with the protein, or

clashes with waters placed in by solvation. The gold standard MD force fields and TIP3P or

SPC/E waters perform very well at reproducing crystal waters in the appropriate positions if

crystallographic waters are removed from the start, especially when the system is restrained

to the crystal structure [102].

Once the asymmetric unit structure is complete, hydrogens are added with protonation

states determined by the experimental pH (with the help of a software package, such as

proPKA[90, 72] or pdb2pqr[21]), and the structure is propagated to a unit cell using the

appropriate symmetry operation for the system. This can be accomplished either on an

atom by atom basis, using a code similar to the pseudo-code outlined below, or using the

UnitCell program from the ambertools software suite [8], which reads the unit cell size and

space group information directly from the CRYST1 and SCALE records in the .pdb structure

file. Once a unit cell has been constructed, copies of the unit cell can be appended along

any of the unit cell faces to create a supercell of arbitrary size.

It is also possible to seed the supercell with structures from an ensemble model. Ensemble

refinement software (such as phenix.ensemble refinement[7]) allows one to generate a valid

ensemble with a chosen number of structures. As such, if one is generating an ensemble with

the explicit purpose of seeding a supercell, one should generate an ensemble with the number

of structures necessary to use a different ensemble member at each position in the crystal,

and send each member of the ensemble to a different position in the supercell, using the unit

cell box size and space group information. However, if one is working with an ensemble of a

different size, care should be taken to seed the supercell in such a way as to minimize bias

(for instance, taking care not to place the same structure adjacent to itself in the supercell,

which may lead to false correlations in dynamics).
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PSEUSDO-CODE FOR SYMMETRY PROPAGATION

1 def UnitCell(protein , uc_id):

2 ’’’Generates symmetry -propagated copies of of a protein in a P212121 unit cell

3 Input

4 -----

5 protein (object) -- class containing (i) an array (atoms) of atom objects with

coordinates x, y, and z, and (ii) crystinfo attribute containing unit cell side lengths

a, b, and c

6 uc_id (int) -- index from 0 to 3, indicating which unit cell protein to output

7 Output

8 ------

9 protein (object)’’’

10 for atom in protein.atoms:

11 #convert to fractional coordinates

12 atom.x /= protein.crystinfo.a

13 atom.y /= protein.crystinfo.b

14 atom.z /= protein.crystinfo.c

15 #if assymetric unit , pass

16 if uc_id = 0:

17 pass

18 #else , use the symmetry operations , in this case P212121

19 if uc_id = 1:

20 atom.x = atom.x + 0.5

21 atom.y = -atom.y + 0.5

22 atom.z = -atom.z

23 if uc_id = 2:

24 atom.x = -atom.x + 0.5

25 atom.y = -atom.y

26 atom.z = atom.z + 1/2

27 if uc_id = 3:

28 atom.x = -atom.x

29 atom.y = atom.y + 0.5

30 atom.z = -atom.z + 0.5

31 else:

32 print("uc_id must be integer from 0 to 3"); break

33 #convert back to real coordinates

34 atom.x *= protein.crystinfo.a

35 atom.y *= protein.crystinfo.b

36 atom.z *= protein.crystinfo.c

37

38 return protein
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The complete supercell structure can then be parametrized. It is recommended, if one is

working with a structure with bound ligands or cofactors, to separate off each constituent in

to its own structure file to be parametrized, using tleap or pdb2gmx, from the AMBER[8] and

GROMACS[5] software suites, respectively. This allows one to ensure that the parametriza-

tion is successful for each individual component before combining them. In AMBER, one

can use tleap to parametrize the constituents individually, and then source the appropri-

ate .lib .frcmod and .param files at the start of the parametrization script for the full

system, before loading in the structure file for supercell. In GROMACS, one can prepare each

constituent with pdb2gmx, pointing toward an appropriate forcefield.itp file for each,

and concatenate the .top files from each individual parametrization (either manually, or by

sourcing each constituent’s topology information as a .tpr file), and convert the supercell

.pdb structure file to a .gro file (using, e.g., parmed[86]), ensuring that the [moleculetype]

section at the end of the full system .top file has all of the molecules listed in the correct

order and with the correct number of occurrences. As an aside, we have found the ”Swiss-

Param” server (https://www.swissparam.ch) especially handy for the parametrization of

small molecules, as it only requires a .mol2 file as input, and outputs a GROMACS-ready .itp

file with parameters from the Merck Molecular Force Field (MMFF) and CHARMM22, which

we have found to be satisfactory[113], though one can also use the Generalized Amber Force

Field (gaff2).

The system must then be solvated. Often, these systems have a net charge, so one must

replace the appropriate number of water molecules with neutralizing ions to bring the full

system to net zero charge. Additionally, it is advisable, though perhaps not necessary, to

reproduce the solute content of the crystallographic mother liquor as accurately as possible.

Cerutti et al. (2008) showed that a cMD simulation of biotin-bound streptavidin with

cryoprotectant, high-salt-content mother liquor accurately reproduced improved agreement

with the data versus simulation in water only [11]. Whether or not the concentrations of

solute in the mother liquor are preserved in the cavities of the crystal is an open question,
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though certain experimental considerations are appropriate: for instance, if hanging-drop

diffusion or evaporation were used to prepare the crystals, the concentration of solute in

the crystal is likely to be higher than in the bulk mother liquor [10]. However, inclusion of

various components of the mother liquor can be difficult to achieve if, for example, accurate

and/or well-tested parameters for the components are not available. For components that

can be included, one can estimate the number of molecules which need to be added (knowing

the molarity) by either (i) using the reported solvent content or the Matthews coefficient1[62]

and the unit cell volume to estimate the volume of solvent in the unit cell or (ii) solvating

the crystal, and using the number of waters added to estimate the volume of solvent, using

the molar mass and density of water (updating this estimate if more water is added).

2.1.1 Constant pressure (NPT) versus constant volume (NVT)

ensembles for solvation and equilibration

Because the system has been prepared to exactly reproduce the crystalline structure using

the unit cell and space group information, special attention must be paid to the preservation

of the length and aspect ratio of the box sides, as changes would alter the crystal’s precise

symmetry. However, solvation presents a challenge. Standard solvation methods in both

AMBER and GROMACS software suites tile the supercell volume with smaller, pre-equilibrated

boxes of solvent, and remove waters which clash with the atoms in the system.

Case and Cerutti [10] warned that this tiling-and-culling procedure can lead to vacuum

bubbles, which could alter the volume of the system during NPT equilibration. They recom-

mend a solvation procedure with a uniform distribution of waters placed around the protein,

followed by restrained energy minimization and more weakly restrained equilibration, tun-

1The Matthews coefficient is the crystal volume per unit protein molecular weight, which Matthews
showed has a straightforward relationship to the solvent content: Vsolvent = 1 − 1.23

VM
, where Vsolvent is the

fractional solvent volume and VM is the Matthews coefficient in cubic angstroms per dalton

42



ing the number and distribution of waters placed around the protein so that the box size

and aspect ratio equilibrates correctly. However, we find that one can adequately solvate

the crystalline system while retaining the correct box size and aspect ratio by rigorously

enforcing the box dimensions in the NVT ensemble — albeit, the NVT restriction requires

additional rounds of solvation, minimization and equilibration, as the initial system is often

drastically under-pressurized. Case and others have since also moved to simulating almost

exclusively in NVT [45, 105, 47, 102, 100, 68], making this practice the de facto standard

for the simulation of protein crystals.

Solvent is added, and the entire system is minimized, often using a combination of steepest-

descent and conjugate gradient algorithms, with optional restraints to the crystal structure.

After initial solvation and minimization, the system is equilibrated with restraints to either

the minimized or crystallographic structure (we have found that this choice makes little

difference if the production simulations are to be unrestrained). The system at this stage is

often drastically under-pressurized in the NVT ensemble (pressure less than -1000 bar in a

2x2x2 supercell, for solvent content greater than 30%), but the system can be subjected to

iterative rounds of additional solvation and equilibration, until the pressure is brought up

to the neighborhood of 1 bar; in our simulations we repeat this procedure until the average

pressure (plus or minus the standard error) lies within the range -100 to 100 bar.

Systems parametrized with different force fields equilibrate to the target pressure at slightly

different rates, even with the same number of waters added during each round of solvation.

We prepared 2x2x2 unit cell systems of staph. nuclease and endoglucanase, with the AM-

BER 14SB and CHARMM 27 force fields, and added an equivalent number of waters to each

system for five rounds of iterative solvation and 5 nanoseconds of equilibration (pressure an-

alyzed in the final 2 ns of equilibration). The results are system dependent, but in general,

CHARMM produces higher pressures upon initial solvation, and the force fields require dif-

ferent numbers of waters to reach the -100 to 100 bar range. We suspected that this difference
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may be due to the fact that CHARMM has Leonard-Jones parameters for polar hydrogens,

whereas AMBER does not, so we also performed a test with a system parametrized with the

AMBER force field, substituting CHARMM Leonard-Jones parameters for polar hydrogens.

We found that this has the effect of increasing the pressure at every level of solvation, but

was not sufficient to make the behavior of the two force fields equivalent. One important

takeaway is that across both systems and force fields, the pressure comes up roughly linearly

as a function of the number of waters added, making it quite simple to estimate the number

of waters needed to achieve atmospheric pressure. Automated pipelines for the preparation

of crystalline supercell systems can use this property to their advantage.

2.2 Restrained and Unrestrained Production Simula-

tion

The heavy atoms of the protein are tied to the initial propagated crystal structure positions

with strong restraints during equilibration, allowing the solvent to exit the bulk and fill in

the protein’s water network. Restraints are often relaxed for production, or eliminated com-

pletely, however unrestrained simulations are often found lacking [112]. Many simulations

have used restraint constants on the order of 200 kJ mol−1 nm−2, however much weaker

restraints can be used, with varied effect (which we will discuss in a subsequent chapter).

Unrestrained simulations consistently show a large-scale “drift” away from the crystal struc-

ture: a deterioration of crystal lattice contacts leading to a small but noticeable reorientation

of the proteins (through rigid body displacements of entire proteins or domains). Though

unrestrained simulations show the unbiased dynamics implied by the force field, this drift

makes accurate predictions of crystallographic data more difficult, so it is important to un-

derstand how much we can bias the forcefield toward the crystallographic structure without
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suppressing the dynamics implied by the force field (this will be discussed in a later chapter

as well).

In 2015, Janowski et al. published the results of a comprehensive test of the effectiveness

of various force fields at reproducing a set of experimental crystallographic measurements,

using unrestrained cMD simulations of a 2x2x3 unit-cell triclinic lysozyme system, as well

as a test of the similarities and differences between sMD and cMD simulations of the same

system (the sMD/cMD comparison will be discussed below) [47]. Though all force fields

showed comparable performance in faithfully reproducing structural elements (particularly

non-terminal alpha helices and beta sheets) the simulation using the AMBERff 14SB force

field had the lowest backbone and heavy-atom RMSD to the experimental crystal structure,

and the lowest R-work and R-free when refining the experimental model into the simulation

average electron density. Refining a structural model against the structure factors calculated

from best-performing simulation (as one would refine a structural model against data from

diffraction images) produced Rwork and Rfree values on par with the experimental results.

The comparison also showed that forcefields have improved over time, with AMBER’s ff14SB

fore field exhibiting lower backbone and heavy-atom RMSDs to the crystal structure and

higher agreement with B-factors than ff99SB (with the improvement attributed to side-chain

torsion energy profiles)2. None of the simulations produced RMSD deviations from the crys-

tal structure greater than 0.5 angstroms for the backbone and 1 angstrom for heavy atoms.

This finding was in line with work published by Hu and Jiang in 2009 [42], showing that, for

a four unit cell cMD tetragonal lysozyme system, the OPLS-AA and AMBER03 force fields

outperformed GROMOS96: exhibited lower RMSDs to the experimental crystal structure

and showed better agreement with experimental B-factors (though the difference may also

have been attributable to differences in the force field family rather than improvements over

time).

2Other studies have confirmed the improvement of forcefields over time, by comparison to NMR data and
melting curves, though different force field families perform differently with respect to the formation and
stability of various secondary structure elements[60]
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The main differences between the simulations using the various force fields were found in

their modelling of 310 helices, with differences in structure more generally attributable mostly

to differences in the modelling of hydrogen bonds. However, all forcefields produced partic-

ularly high fluctuations for solvent-exposed side chains (higher than would be expected from

experimental B-factors, though refined B-factors are known to underestimate true average

atomic fluctuations [54]).

Consistent with other cMD simulations (and the simulations in the work to be presented

here), Janowski et al. saw a large-scale deterioration in the crystal lattice over the course

of the unrestrained simulations [47]. This drift is not substantial enough to dissolve the

crystal lattice completely, just a noticeable and significant difference in average structure.

They observed that each monomer’s average COM was between 0.2 and 0.5 angstroms away

from the ideal crystal lattice position – increasing with simulation time, but plateauing after

about a microsecond – with the amount of drift being force field dependent. Some monomers

drift away progressively over time, while some drift away and return. They suggest that this

drift may be due to inaccuracies in the modelling of crystal contacts: most of the hydrogen

bonds across the the interfaces between unit cells were reproduced less than 50% of the time,

but the data was not consistent enough to provide insight about the specific source of the

deterioration (especially one that is consistent across all the tested force fields).

2.3 Ordered water in crystalline MD simulations

Large-scale structural drift in unrestrained crystalline systems presents a modest problem for

prediction of atomic coordinates and fluctuations for the protein, but appears to be a much

larger problem for the prediction of the positions of ordered solvent molecules, with small-

scale structural drift in the backbone and side chains leading to significant knock-on effects in

the modelling of ordered solvent. This is important, as interactions with ordered waters can
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affect the protein structure, allosteric interactions and, particularly, the binding of ligands.

Though water models (e.g. TIP3P and SPC/E) are tuned to reproduce thermodynamic

properties, they may be lacking in their ability to reproduce complex solvent dynamics and

interactions with protein side chains. However, the choice of water model may not be all

that important in this regard: Hu and Jiang [42] found that, for a four unit cell cMD

simulation of tetragonal lysozyme, the choice of water model affected diffusion dynamics,

but had little effect on the structural and energetic properties of the system. That is to

say, all water models may perform equally well, but may all be found equally lacking when

it comes to fine-scale modelling of dynamics coupled to the protein. This is in line with

findings from Gilson and Henriksen, whose studies of host-guest systems (small models used

as test beds for MD simulation methodologies of protein-ligand binding) found that though

different water models produced similar predictions for binding free energies, the predictions

for enthalpies and entropies of binding could vary significantly, and the positions of waters

around the host-guest systems were different, depending on the protein force field and water

model used[36].

In an article published in 2018, Wall et al. [102] showed that a 1 microsecond 2x2x2 unit

cell simulation of endoglucanase with a force constant of 209.2 kJ mol−1 nm−2 for harmonic

restraints to heavy atoms was able to reproduce the crystal waters with remarkable precision

and recall. The precision and recall statistic measures the number of MD-predicted waters

within a certain distance of the nearest crystallographic water, providing a robust metric

for the accuracy of ordered water prediction in MD studies. Ninety five percent of the top

one hundred crystallographic waters (defined based on the strength of the density peak)

were reproduced to within one angstrom; ninety eight percent were reproduced to within

1.4 angstroms. Elimination of these restraints reduced the precision and recall dramatically,

with 40 to 50 percent of the top one hundred crystallographic waters reproduced to within

one angstrom and 50 to 60 percent reproduced to within 1.4 angstroms. These results are

in line with our work on protein kinase A (PKA), to be discussed in a later chapter, but
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I will note here that ordered solvent prediction worsens slowly with reduction in the force

constant for restraints, with marked reduction in precision and recall occurring between 20

and 2 kJ ·mol−1 · nm−2.

These precision and recall statistics were more impressive than comparable studies. Nakasako

and Higo (2002)[39], and Atlan et al. (2018)[1], were only able to reproduce 60-70% of crys-

tallographic waters with similar precision. However, the simulation paradigms were quite

different. Nakasako and Higo ran solution single-protein simulations for only a nanosec-

ond, computed the density by counting water molecules in voxels (rather than calculating

structure factors), and compared to cryogenic X-ray data, whereas the results of Wall and

Mobley et al. were compared to room-temperature X-ray and neutron diffraction. Atlan

et al ran four room-temperature simulations of a Yb3+-substituted mannose-binding protein

(MBP) unit cell, each with one of the four dimers removed – to facilitate faster sampling of

protein-protein interactions and to make the solvation process easier to tune – and averaged

the results, for comparison to cryogenic X-ray diffraction data. These simulations were all

run with very strong (1000 kJ ·mol−1 ·nm−2) restraints on heavy atoms. The authors report

that these strong restraints were necessary to compare the MD water density with the ex-

perimental density, and to ensure that side-chains did not change conformation, however, it

seems possible that restraints this severe may over -bias the simulation toward the crystallo-

graphic model, preventing the MD forcefield from falling in to local minima more amenable

to accurate prediction of the solvent. Thus, the weaker restraints of Wall et al. may have

helped that study achieve better results.

All told, room temperature cMD simulations with moderate restraints, compared to room-

temperature diffraction data (X-ray, or neutron, or both) appear to provide the best model

for ordered water in crystalline protein systems. However, even in cases where the cMD is

able to reproduce crystallographic waters with near-ideal precision and recall, R-factors for

MD models refined against experimental data remain greater than ∼0.13, suggesting once
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again that static models, even those with complex modelling of ordered solvent, are not

sufficient to fully reproduce even just the Bragg diffraction data (n.b. this R-factor would

be considered fairly good for macromolecular crystallography, but small-molecule crystallo-

graphers routinely obtain R-factors much lower than this, suggesting that macromolecular

crystallographic models need improvement — see the section on the R-factor gap from the

previous chapter).

It seems likely, based on improvements moving from single-structure to structurally heteroge-

nous or ensemble-based models [49, 97, 55, 7], that incorporating ordered solvent into models

of heterogeneity/disorder will be advantageous. MD models are uniquely suited to this task,

as they allow for prediction of not just the Bragg data, but of the full diffuse scattering map,

a large part of which results from correlated disorder in the solvent and from solvent-protein

interactions. However, even the best MD models show room for improvement: Wall et al.

[105] showed that the isotropic component of diffuse scattering comes mostly from solvent

and protein-solvent interactions and the cMD-predicted isotropic diffuse scattering they cal-

culated exhibited discrepancies in the 0.3-0.6 inverse-angstrom range, which were reproduced

in later simulations of the same system [111], suggesting that MD force fields are inadequately

modelling correlated disorder in the solvent and from solvent-protein interactions – though

there are myriad potential explanations for this discrepancy.

2.4 Single-protein versus crystalline MD

Many studies have shown that cMD simulations provide more accurate models of protein

crystallographic data than sMD simulations. Stocker et al. studied this question explicitly

[91], presenting the results of 2 ns simultions of sMD, single-unit-cell, and double-unit-cell

cMD systems. They found that, though the results were similar for both, the cMD simulation

reproduces data from both X-ray (B-factor) and NMR data slightly better than the sMD
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simulations. Another study by van Walser et al. in 2002 [107] showed that agreement

with the experimental structure improved as they moved from sMD simulations to 1 unit

cell and 2 unit cell cMD simulations. Even more unit cells provide even better agreement

and greater detail, as shown in the work by Case, Ando and Meisburger mentioned in the

previous chapter: in this case a 7x7x11 cMD model of triclinic lysozyme was necessary to

reproduce haloes in diffraction data with reciprocal space sampling of the same resolution

as the diffraction data. However, this model was not as successful at modelling either the

haloes or the diffuse Patterson as was a lattice-connected full-protein elastic network (EN)

model. Taken together, these results suggested that increasing the size of cMD systems is

not the best avenue for improvement – there does appear to be a law of diminishing returns.

What’s more, the fact that the lattice-connected full-protein EN model performed better

than a simpler rigid body EN model suggests that dynamics resulting from the coupling of

internal protein motions to the lattice make up a significant contribution to the dynamics

captured in the diffuse scattering – MD force fields, in their current state, seem to struggle

with modelling this exact category of dynamics and interactions.

Janowski et al. (2015)[47] conducted a study of the similarities and differences between

sMD and cMD simulations of triclinic lysozyme, as mentioned above, and found that the

unrestrained supercell system takes much longer to reach equilibrium than the solution single-

protein system (roughly an order of magnitude longer)3. They point to the constrained

crystalline environment, making solvent rearrangement more difficult, in explaining these

differences. However, one can also imagine that rearrangements of (particularly solvent

exposed) groups of side chains or secondary structure elements that would be easily accessible

in the free energy landscape of the sMD simulation are hindered or blocked completely by

interactions with neighboring protein residues.

3n.b. Cerutti and Case, in their 2018 review, point out that cMD systems “equilibrate” or “converge”
on very different time scales depending on the system, and the property being measured or predicted – e.g.
backbone position, B-factors, or diffuse scattering[10]
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Janowski et al. also calculated the instantaneous RMSD to the crystal structure in two

different ways: (i) “best fit” RMSD, in which each monomer’s trajectory was aligned to

the crystal structure in each frame, measuring only fluctuations due to internal dynamics,

and (ii) “lattice” RMSD, in which each monomer was mapped back to the unit cell using

the crystal symmetry operations in each frame, measuring RMSD due to fluctuations from

both internal and lattice dynamics. The “lattice” method produced higher RMSDs than the

“best fit” method for the cMD simulation, however, the “best fit” method for the cMD sim-

ulation produced lower RMSDs to the crystal structure than the solution sMD simulation,

suggesting that the incorporation of lattice interactions improves agreement with the crystal

structure model. The instantaneous RMSD of the sMD model also fluctuates more wildly

than the cMD model. Additionally, if one computes the average protein structure from the

cMD ensemble, and the average protein structure from the sMD simulation, the RMSD to

the crystal structure for the latter is higher. This difference is reflective of an under-reported

benefit of cMD simulations over sMD simulations: though the computational resources re-

quired to run cMD simulations are higher than those required for sMD simulations, the

explicit modelling of the crystalline context leads to better agreement with the experimental

data which is difficult to achieve without it. Validating force fields against solution-state

simulations may lead force field developers astray, or require additional solution-state simu-

lation corrections which are not otherwise necessary, were the researchers to attempt cMD

instead.

However, when Janowski and Case et al. considered dynamics on the scale of individual side

chains, the cMD and sMD simulations behaved more similarly: the χ1 angle distributions

(capturing rotations about the bond connecting side chains to the backbone) from sMD and

cMD simulations were about the same. Where there were differences in side chain disorder,

they were often found in charged or polar side chains exposed to the solvent: charged or

polar interactions with neighboring proteins in the cMD simulation stabilized these residues,

leading to higher disorder in the sMD simulation.
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These results suggest that dynamics on the level of individual side chains, particularly those

in the core of the protein, may be equally well modelled in sMD simulations as in cMD

simulations. However, if one wishes to validate the dynamics of larger-scale structural fea-

tures, or allostery, against crystallographic data (TLS/EN/ensemble models of Bragg data,

or diffuse scattering data) single protein simulations may not be sufficient.

2.5 Calculating densities and diffuse scattering from

MD trajectories

At various points above, I’ve mentioned direct comparisons between the densities from ex-

periment and densities calculated from MD trajectories. Knowing the atomic form factors,

it is trivial to calculate the densities from MD trajectories by inputting the coordinates and

atomic form factors for each atom in the system in to the equation for the structure factor,

though the software would be tedious to construct from scratch. Once the structure factors

for each frame of the simulation have been calculated, the diffuse scattering can be computed

with Guinier’s equation. Calculation of these densities from MD trajectories is made easier

through the computational crystallography toolbox (cctbx), an open source software suite

for crystallographic data processing and analysis, which has tools for calculating structure

factors, taking coordinate files as input. The most advanced version of this software comes

in the form of xtraj.py, written by Michel E. Wall, and available in the repository for

lunus (https://www.github.com/mewall/lunus), a software suite for the calculation of

diffuse scattering. xtraj.py takes in a GROMACS .xtc trajectory file as input, and outputs

the amplitudes and phases of the structure factors from the simulation, as well as the diffuse

scattering, in an .mtz file format. It uses cctbx, the open source component of the phenix

project for crystallographic analysis[58]. It can be run on a single core, multiple cores, or

multiple nodes of a high performance computing cluster, taking advantage of the embarrass-

52



ingly parallel nature of calculating average structure factors to allow for efficient calculation

of densities even for large supercell cMD systems with up to millions of atoms simulated for

microseconds or longer. Additionally, this software can output the “F000” structure factor

(the total number of electrons in the density), which allows for conversion of densities to the

absolute scale (electrons per cubic angstrom), which can be useful, if not necessary, when

comparing densities from different simulations.

Calculating densities in this way unlocks another powerful capability unique to cMD simu-

lations: the separability of electron densities in to their individual components. In standard

crystallographic experiments it is possible, in principle, to discriminate solvent density from

protein density in high-resolution data through careful and precise modelling, but it is diffi-

cult and perhaps specious for lower resolution data. In both cases, validating that a volume

of density is in fact, say, water density (rather than protein, solute, or ion density) requires a

separate experimental observable (such as neutron diffraction or solid-state-NMR). For cMD

density calculations, this discrimination is utterly trivial. One simply feeds in coordinates

from only those component of the system from which one wishes to calculate the density.

This allows densities to be calculated separately from the protein, water, ions, ligands, solute

molecules — whatever one likes — which can later be superimposed on top of the crystal-

lographic structure or the experimental density. Additionally, this software allows for the

density from the entire supercell to be folded back on to the asymmetric unit, using the unit

cell space group symmetry operations, averaging over not only the trajectory, but over the

ensemble present in each frame.

What’s more, this software is not limited to cMD simulations: it can be easily applied to

solution single-protein MD simulations as well. In this case, the entire periodic bounding

box of the simulation is treated as a P1 unit cell (a strange crystal, to be sure — it is difficult

to image a crystal maintaining its periodicity with a large volume of solvent separating the

adjacent proteins). One must be careful to rotationally and translationally align the system
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so that, in each frame, the protein is superimposed on top of the crystal structure. However,

densities calculated from these simulations can be compared to experimental densities in

the same way as outlined above, taking advantage of the same benefit of separability into

components. Preliminary tests of this capability for single protein simulations show that they

are surprisingly capable at reproducing ordered water density from even short trajectories.

This capability is powerful, considering the computational cost and complexity of tracking

solvent density through kinematic grid-based methods. We suspect that this method of

modelling ordered solvent density will be useful to many molecular dynamics practitioners,

and expect to publish results from a study of this kind in the near future.

54



Chapter 3

Models of Diffuse Scattering

Investigated Through Crystalline MD

Simulations

3.1 Introduction

In Chapter 1, Sections 1 though 3, we reviewed standard crystallographic methods, which

work exclusively with Bragg diffraction. The Bragg data result from average features in

the density, consistent across all unit cells. It is possible to extract information about disor-

der from this average picture, through refinement of the Debye-Waller factor (or “B-factor”),

which is related to small-scale atomic displacement and attenuates the intensity of the Bragg

peaks. Anisotropic displacement parameters (ADPs) can be refined using the Translation,

Libration, Screw (TLS) model, NM/EN models, ensemble models, or more fine-grained mod-

els of structural heterogeneity, providing a more detailed picture of protein structure and

structural variation. However, different models of disorder or structural heterogeneity can
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yield equivalent agreement with the Bragg data. Additional experimental observables are

required to differentiate and (in)validate them.

In Chapter 1, Section 4, we introduced diffuse scattering, which results from dynamics, and

has been tested as a means of differentiating and/or (in)validating models of correlated disor-

der in protein crystals. van Benschoten et al. (2015 and 2016)[94, 95] found that agreement

with the anisotropic diffuse scattering data from CypA and trypsin was insufficient to dis-

tinguish between different Translation Libration Screw (TLS) models which agreed equally

well with the Bragg data, however they were able to show that the liquid-like motions (LLM)

and elastic network (EN) models provided better agreement than any of the TLS models.

Peck et al. did similar comparisons, using agreement with the anisotropic diffuse scattering

data from CypA, WrpA and alkaline phosphatase to show that the LLM model (particu-

larly, one which allows for correlations between neighboring molecules) shows significantly

higher agreement than rigid body translation or rotation models, elastic network models, or

multiconformer models[74]. de Klijn et al., similarly used agreement with the anisotropic

diffuse scattering from CypA and hen egg-white lysozyme to compare models of correlated

disorder; however, they came to a completely different conclusion: because a mixed rigid-

body translation and rotation model showed roughly equivalent agreement to that of the

same model with internal motions included (generated by ensemble Bragg refinement), they

posited that rigid body motions are the main source of diffuse scattering[19]. Ayyer et al.

identified diffuse scattering features in diffraction data from photosystem II consistent with

rigid-body translational disorder, and were able to leverage the information contained in the

diffuse scattering to extend the resolution of the diffraction beyond the Bragg limit, and

perform model-free phasing of the structure factors[3]. Finally, Ando, Meisburger and Case

found remarkable agreement with diffuse scattering data from triclininc lysozyme by using

a combined internal and lattice-connected elastic network (EN) model — better than the

agreement found using a rigid-body lattice-connected EN model[68]. To summarize, some

systems and methods of analysis supporting the LLM model (which is a special case of an

56



EN network model[99]), and others supporting the rigid body motions model. In any case,

the field seems intent on determining the “main source” of diffuse scattering.

In Chapter 1, Section 4.4, and Chapter 2, we discussed the crystalline Molecular Dynamics

(cMD) model. The cMD model is the only model capable of predicting the full diffuse

scattering pattern (isotropic and anisotropic), thanks to explicit modelling of the solvent,

but it has not demonstrated better agreement with the anisotropic diffuse scattering than

the LLM or EN models have. This may be due to the fact that the LLM and EN models

have tune-able parameters, while the cMD model does not. The cMD model is “model free”

in some sense: the parameters are fixed by the choice of force field (though one can, and

some have[52], tuned the force field parameters on the fly).

For cMD simulations, force fields have been shown to have improved over time[47], with more

modern force fields providing better accuracy with respect to a wide array of structural and

dynamical phenomena, including agreement with crystallographic observables such as the

instantaneous and average RMSD to the crystal structure and B-factors. For solution-state

simulations, the same finding holds, with force fields improving over time with respect to

the modelling of solvation thermodynamic measurements[60, 29]. These findings inspire

confidence: after selecting a (modern, well-tested) force field, we let the model “take the

wheel,” so to speak, and see where it takes us. We trust, but verify, checking agreement

along some measures to give us confidence in the models predictions about others. Here, I’ll

present a study along these very lines.

3.2 System Setup

We simulated a 2x2x2 unit cell cMD model of Staphylococal nuclease using the AMBER14SB

and CHARMM27 force fields. The crystal structure model for Staph. nuclease was missing
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five residues on the N-terminus and eight residues on the C-terminus, which were modelled

back in based on extension of existing secondary structure. The bound thymidine-3’-5’-

bisphosphate (pdTp) molecule was parametrized with the SwissParam server [113] in the

both simulations. The structure was propagated to the supercell in the manner described

in the previous chapter, and hydrogen atoms were added using pdb2gmx with protonation

states assigned automatically, assuming a pH of 7. Both systems were solvated with TIP3P

waters using gmx solvate, and neutralized with chloride ions, using gmx genion -neutral,

before minimization using the steepest descent algorithm.

As previously described, the cMD system pressure was large and negative upon equilibration

after initial solvation: -1439±39 bar and -1795±252 bar for AMBER and CHARMM respectively

(as reported by GROMACS’s gmx energy). The system was subjected to iterative rounds of

solvation and equilibration at a temperature of 298 K, with heavy atoms strongly restrained

(1000 kJ ·mol−1 · nm−2), for a duration of 100 ps for CHARMM and 5 ns for AMBER – thus the

higher standard error CHARMM above – until the average pressure, plus or minus standard

error, was within the range of -100 to 100 bar. The two systems required 17,557 and 17,138

waters, for AMBER and CHARMM respectively. The systems were both subjected to 100 ns

production-equilibration with heavy atoms restrained more weakly (200 kJ · mol−1 · nm−2)

before restraints were released for 600 ns unrestrained production. Equilibration and pro-

duction simulations were carried out using the leapfrog algorithm (integrator = md in

GROMACS’s .mdp specification format), neighborhood searching using Verlet cutoffs, with a

cutoff for the short-range neighbor list of 1.5 nm (rlist = 1.5) and updating every 10

frames (niter = 10). All bonds were constrained with the LINCS algorithm (constraints

= all-bonds, constraint-algorithm = lincs). Both simulations used a timestep of 2

femtoseconds, with coordinate and data output every 2 picoseconds.

The potential energy of the system was monitored to get a sense of the convergence time

for the system. The potential energy drifted for about 100 ns out of the total 600 ns, and
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remained relatively stable thereafter. However, to ensure analysis was not affected by the

drift in the system, analysis was carried out ignoring the first 200 ns (thus, keeping only

400 ns of trajectory for analysis). Over the course of the analyzed trajectory, the heavy-

atom RMSDs of both systems to the initial crystal structure supercell increased from 2.7

to 3.1 Å and 2.6 to 2.9 Å for AMBER and CHARMM respectively. These RMSDs may seem

high given the RMSDs reported in the previous chapter for similar systems, however our

analysis was carried out by translationally and rotationally aligning the entire supercell,

whereas previously reported RMSDs were calculated by either mapping proteins back to the

asymmetric unit or unit cell before translational and rotational alignment; translationally

and rotationally aligning the full supercell can lead to larger artifacts (as will be discussed in

the section below regarding Analysis of Covariance of Atom Pairs). Additionally, the N- and

C-termini of the protein, and the loop from residues 40 to 60, are all very labile. Considering

that each protein started from the same initial conformation, the flexibility in these regions

alone can increase RMSD across the ensemble, compared to other systems, such as lysozyme.

Promisingly, the B-factors predicted by both systems were similar to each other, similar to

previous simulations of the same system, and similar to experimentally refined B-factors (see

Figure 7 from [100]).

We then moved to analyzing the diffuse scattering predicted by the final 10 ns of the trajec-

tory, using the software mentioned in Chapter 2, Section 5.

3.3 Diffuse Scattering Prediction

We computed the three-dimensional diffuse scattering maps from the analyzed portion of the

cMD trajectories, and compared the results to the diffuse intensity from experiment. The

Pearson Correlation Coefficient (abbreviated CC hereafter) between the full diffuse maps

calculated from both trajectories and full experimental diffuse map was greater than 0.9 in
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both cases. The isotropic diffuse intensity (the average intensity in radial shells of reciprocal

space) was subtracted from both cMD diffuse scattering maps and the experimental map,

leaving the anisotropic component. The CC between simulation and experiment for the

ansitropic map was 0.58 for the AMBER cMD simulation and 0.63 for the CHARMM simulation

(Figure 3.1). These values were lower than the 0.68 CC previously reported for a similar

simulation of Staph. Nuclease [100], which used the CHARMM27 force field (and which was re-

calculated against the same experimental map compared with the two simulations presented

in this work, reaffirming the result). The discrepancy may be due to a variety of factors

including, but not limited to, the LINCS constraints applied to all bonds here (whereas

LINCS constraints were used only on hydrogen bonds in the previous simulation) and the

length of the trajectory analyzed (previously 5 microseconds, versus the 0.6 microseconds

analyzed here).

Figure 3.1: Anisotropic diffuse scattering predicted by the 200-400 ns unrestrained production segment of the
AMBER simulation (left), from experiment (center), and predicted by the 200-400 ns unrestrained production
segment of the CHARMM simulation (right), with sampling at each Miller index, out to a resolution of 1.8 Å.
Features highlighted by the subtracting minimum intensity value in constant resolution shells of reciprocal
space, prior to visualization in ADXV[2].

One hint that the discrepancy may be due to the length of the trajectory came from analysis

of the accumulation of the diffuse intensity from smaller 100 ns segments of the full 400 ns

trajectory. The CC between modelled and experimental structure factors were between 0.53

and 0.58 for all individual 100 ns segments using either force field. If the diffuse intensity

from the 100 ns segments was accumulated “incoherently”, by simply averaging the intensity
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overall segments, the final intensities exhibited CCs of 0.58 and 0.63 for AMBER and CHARMM

respectively (the values reported above). However, when the diffuse intensity from the 100 ns

segments was accumulated “coherently”, by averaging the the complex structure factors, the

agreement was worse (0.54 and 0.58 for AMBER and CHARMM respectively). Indeed, the gains

in agreement for the incoherently accumulated data appear as though they may continue to

increase, were the simulation extended beyond the 400 ns analyzed in our study, perhaps

attaining the correlation seen in previous studies of the same system, with diffuse scattering

predictions accumulated from a much longer trajectory (Figure 3.2).

Figure 3.2: CC between experimental and simulated anisotropic diffuse scattering from 100 ns segments of
200-600ns cMD unrestrained production trajectories using AMBER (red) and CHARMM (blue): calculated in iso-
lation (left), accumulated “coherently”, by averaging complex structure factors (center), and by accumulated
“incoherently”, by simply averaging the intensities themselves (right).

3.4 Analysis of the Covariance of Atom Pairs

In Chapter 1, Section 4.2, we introduced the Liquid-like Motions (LLM) model, which is

based around the assumption that the elements of the variance covariance matrix of atom

pairs decay exponentially with the distance between the atoms. Therefore, if we analyze the

covariance matrix for atom pairs in our cMD system, we can analyze the degree to which the

assumptions of the liquid-like motions model are supported by the the dynamics implied by
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the force field. In total, our system contains on the order of 100,000 non-solvent atoms so the

variance covariance matrix for all atom pairs would contain on the order of 60,000,000,000

unique elements – far too many elements to compute from a trajectory efficiently. So, here,

we restricted our analysis to the variance covariance matrix for backbone carbon (C-α)

atoms.

Figure 3.3: Covariance and distance matrices
from cMD simulation of Staph. nuclease. Up-
per triangular elements: trace of atom pair
displacement-covariance matrices, from -0.2 Å2

(red) to 0 (white) to 0.2 Å2 (blue). Lower trian-
gular elements: average atom pair distance from
0 Å(dark blue) to 92 Å(white). Ticks separate
unit cells. Sub-matrices along the diagonal are
intraprotein distances and covariances. Elements
can be matched up by mirror symmetry through
the diagonal.

There are 149 C-α atoms in every 32 proteins in

our supercell, and each pair of atoms has its own

3x3 displacement covariance matrix, leading to

to a full C-α variance covariance matrix of size

14,304x14,304. However, we need a single covari-

ance for each atom pair to analyze the assump-

tions of the isotropic LLM model, so, we took

the trace of each 3x3 displacement covariance

matrix: this is a generalization of the variance

for vector-valued random variables, with nega-

tive trace when the displacements of atoms vary

in opposite directions1. The resulting matrix, af-

ter taking the trace of each 3x3 sub-matrix, is

of size 4768x4768, and is square-symmetric: the

diagonal elements correspond to the the mean

squared displacement for each C-α atom, and the

off diagonal elements correspond to the vector-valued-“variance” (or “covariance”, as I will

refer to it from now on) for the atom pairs indexed by row and column. To find the relation-

ship between the atom pair distance and the covariance of the atoms pairs, we computed

1We can define a variance for matrices: VarM(X) = E
[
‖X− E [X]‖22

]
= E[(X− E[X]) · (X− E[X])]

= E
[∑n

i=1(Xi − E[Xi])
2
]

=
∑n
i=1 E

[
(Xi − E[Xi])

2
]

=
∑n
i=1 Var(Xi) =

∑n
i=1 Cii, where C is the covariance

matrix, and Cii are the diagonal elements. The last expression is the trace: Tr(C), thus: VarM(X) = Tr(C).
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a matrix of the average distance between C-α atoms from the trajectory, and compared

the upper-triangular elements of each matrix, element-wise (Figure 3.3). We divided the

distance between atom pairs in to to 50 bins, and found the mean and standard error of

the covariance within each bin. For each simulation, for the smallest-distance bin (<5 Å)

the covariance between atoms pairs was inordinately high (20 times higher then the next

distance bin), most likely due to high displacement covariance between bonded atoms.

3.4.1 All atom pairs

Figure 3.4: Average atom pair covariance plus or minus standard error versus atom pair distance for all atom
pairs in cMD simulation of Staph. nuclease using the AMBER (left) and CHARMM (right) force fields. Dashed
lines show exponential fit to C(r) = ae−r/γ + b, with γ =11.0 Åfor AMBER and γ =11.1 Åfor CHARMM

For both simulations, the relationship between covariance and atom pair separation decreases

exponentially beyond 5 Å, crossing in to the negative at about 36-40 Å, and rising back above

zero at about 90 and 80 Å for AMBER and CHARMM, respectively. Both plots were fit to an

exponential function of the form C(r) = ae−r/γ+b where r is the separation distance between

atom pairs, with the constant b added to account for the crossover in to negative covariance.

The covariance versus distance data from the AMBER simulation yielded a correlation length

of γ =11.0 ± 0.1 Å and a MSD of a = 0.79 ± 0.01 Å2 and an offset constant of b = -0.022

± 0.001 Å2; the CHARMM simulation yielded a correlation length of γ =11.1 ± 0.2 Å and a

MSD of a = 0.94 ± 0.02 Å2 and an offset constant of b = -0.029 ± 0.001 Å2 (Figure 3.4).
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The dip in to negative covariance is most likely a result of the translational and rotational

alignment before calculation of the covariance matrix: rotation about a center of mass pro-

duces negative covariance for the atoms on opposite sides of the center of rotation; the

shortest supercell side length is 48.5 Å, and longest unit cell diagonal is about 94 Å, so

rotation would produce negative covariances for atom pairs separated by 25-94 Å, with the

negative covariances due to rotation increasing with distance (atom pairs further away from

the center of rotation move more relative to each other).

Here, we see that the liquid-like motions (LLM) model is well supported by the relationship

between covariance and distance, for all pairs of C-α atoms: on average the covariance

decreases exponentially as a function of the atom pair separation distance. The relationship

between covariance and distance seems to be independent of the choice of force field, with the

correlation length implied by both simulations equal, within uncertainty bounds provided by

the fitting procedure (fit using the nonlinear least-squares Levenberg-Marquardt algorithm

in gnuplot’s fit module[108]).

Next, we separated the covariance and distance matrix elements in to intraprotein atom

pairs (atom pairs within proteins) and interprotein atom pairs (atom pairs across proteins),

and performed a similar analysis as above for both.

3.4.2 Interprotein atom pairs

Interprotein atom pairs exhibited much the same relationship as all atom pairs for the mean

covariance versus separation distance. For interprotein atom pairs, the covariance decays

exponential with the separation distance with a correlation length γ = 14.3 ± 0.4 Å, MSD

a = 0.42 ± 0.02 Å2, and offset b = -0.025 ± 0.001 Å2 for AMBER and γ = 13.4 ± 0.3 Å,

MSD a = 0.55 ± 0.02 Å2, and offset b = -0.032 ± 0.001 Å2 for CHARMM. The correlation

coefficient values for intraprotein atom pairs are higher than those for all atom pairs, for
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Figure 3.5: Average atom pair covariance plus or minus standard error versus atom pair distance for inter-
protein atom pairs in cMD simulation of Staph. nuclease using the AMBER (left) and CHARMM (right) force
fields. Dashed lines show exponential fit to C(r) = ae−r/γ + b, with γ =14.3 ± 0.4 Å for AMBER and γ =13.4
± 0.3 Å for CHARMM

both simulations, implying correlations extend to a longer length scale. That said, there

are fewer interprotein atom pairs than intraprotein atom pairs at separation distances less

than about 12 Å (Figure 3.6), so this increase in correlation length may simply be a result

of partitioning the data rather than a real effect. The implied MSDs are also lower for

intraprotein atom pairs than all atoms pairs, perhaps for similar reasons.

3.4.3 Intraprotein atom pairs

We then moved on to analyzing the average C-α covariance plus or minus standard error

versus separation distance for intraprotein atom pairs (atom pairs within proteins). Unlike

the all-atom and interprotein atom pairs, the relationship between covariance and separation

distance for intra protein atom pairs appeared to be roughly linear – clearly an exponential fit

would be unsuccessful (again, the covariance for small-separation-distance (< 5Å) atoms was

much higher than the covariance at other distances, and that data point is again disregarded

in the figure below). For both simulations, the covariance between intraprotein C-α atoms

starts positive and decreases roughly linearly before it crosses in to the negative at about 37

Å (Figure 3.7; note the change in axis limits for both the distance and covariance axes.)
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Figure 3.6: Count of the of number residue pairs as a function of average C-α separation distance for
intraprotein (“within”; black) and interprotein (“across”, grey) residue pairs.

A reasonable explanation for why covariance would fall off linearly and dip in to the negative

so concertedly at larger atom pair separation distances can be arrived at by way of a rigid-

body motions model: a protein rotating about about its center of mass will produce negative

covariance for the atom pairs furthest away from each other (think of the earth: as it rotates,

people in the same city will move in the same direction, but people on opposite sides of

the globe from each other will be moving in the opposite direction relative to each other),

and atom pairs equidistant from the center of rotation will experience equal displacements,

increasing linearly as a function of the distance from the center (for small angle rotations).

To test whether a rigid body motions (RBM) model could explain this data, I wrote a

piece of software (RigidBodyMotions.py) that would take the crystal structure as input,

and generate an ensemble by shifting the coordinates through rotational or translational

transformations. Rotational transformations are generated by sampling three Euler angles,

each from a normal distribution with mean zero and a given standard deviation, and trans-

66



Figure 3.7: Average atom pair covariance plus or minus standard error versus atom pair distance for in-
traprotein atom pairs in cMD simulation of Staph. nuclease using the AMBER (left) and CHARMM (right) force
fields. C-α atom pair covariance versus distance predicted by a single-protein rigid body translation and
rotation model shown in the dashed line.

lations are generated by sampling a random three-dimensional vector with mean zero and

a given (Normally distributed) standard deviation, consistent across each three axes – the

code outputs an arbitrary number of samples, with rotational transformations performed

before translational ones.

Figure 3.8: Standard deviation of the three Euler angles for the 32 proteins (indexed along the x-axis) from
the 200-600ns segment of the cMD simulations of Staph. nuclease using the AMBER (red) and CHARMM (blue)
force fields.

Initial estimates for the standard deviations were chosen based on similarly to those measured

in the cMD simulation (for the Euler angles: about 1 degree, see Figure 3.8; for translations:

measured on average to be ∼0.25 Å). The best-fit values of the standard deviations for Euler

angles and translations were arrived at by visual inspection, based on agreement with the

covariance versus distance data (shown in the dashed lines above in Figure 3.7). For AMBER
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the best-fit rigid body motions model sampled Euler angles with a standard deviation of 0.95

degrees and sampled translations translations with standard deviation 0.24 Å; for CHARMM

the best-fit rigid body motions model had a standard deviation of 1.05 degrees for the Euler

angles sampled, and 0.27 Å for the translations. The error bars for covariance versus distance

for the RBM model are too small to be visible.

The agreement of the rigid body motions model with the covariance versus distance data from

both the AMBER and CHARMM simulations is excellent for atom pair separation distances above

20 Å(Figure 3.7). For distances lower than 20 Å, the discrepancies between the RBM model

and cMD values decreases with distance. We calculated the residual between the cMD and

RBM-modelled covariance versus distance, and found the relationship below (Figure 3.9).

Figure 3.9: Residual between the covariance verses distance from cMD simulations of Staph. nuclease using
the AMBER (left) and CHARMM (right) force fields, and a RBM model for each. Fit to an exponential function
of the form C(r) = ae−r/γ + b shown in dashed lines.

The residual between the covariance from the cMD simulations and those predicted by the

RBM model decays exponentially as a function of distance for both the AMBER and CHARMM

data. As with before, the residual was fit with an exponential of the form C(r) = ae−r/γ + b.

The best fit exponential function had a correlation length of γ = 5.7 ± 0.2 Å, an MSD of

a = 0.37 ± 0.02 Å2 and an offset of b = 0 Å2 for AMBER; for CHARMM, the best fit exponential

function had a correlation length of γ = 5.7 ± 0.3 Å, an MSD of a = 0.46 ± 0.03 Å2 and an

offset of b = 0 Å2.
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These results show that, for C-α atoms pairs within proteins, the data from cMD simulations

are well modelled by a combination of LLM-like and RBM-like covariance. The residual

covariance correlation length for intraprotein atom pairs is much shorter than that of all atom

pairs or interprotein atom pairs, suggesting that, once rigid body covariances are accounted

for, LLM-like correlations extend over much shorter distances for individual proteins than

they do over the entire system. However, beyond 12 Å the number of intraprotein C-α atom

pairs is dwarfed by the number of interprotein atom pairs, and beyond about 40 Å, there

are only interprotein atom pairs, so LLM-like exponential decay in covariance dominates the

overall picture.

3.5 Discussion

3.5.1 Insights into Models of Correlated Disorder

To further understand these findings, we fit a LLM model to the diffuse scattering data from

experiment (Figure 3.10). This LLM model had a correlation length of γ = 6.5 Å and an RMS

displacement of σ = 0.41 Å, with a Pearson correlation coefficient (CC) to the anisotropic

diffuse scattering data of 0.73 (the CC to the total diffuse scattering data is poor, but this is

consistent with other LLM models, and other phenomenological models – such as the RBM

and EN models – none of which model the solvent). We can convert this RMS displacement to

a MSD by squaring and multiplying by three (the MSD is isotropic): 3×(0.41)2 = 0.5043 Å2.

This is similar to both the MSD suggested by analysis of the covariance of interprotein atom

pairs (0.42 for AMBER; 0.55 for CHARMM) and the MSD suggested by intraprotein atom pair

covariance (0.37 for AMBER; 0.46 for CHARMM), but not the MSD suggested by the covariance

of all atom pairs (0.79 for AMBER; 0.94 for CHARMM). The correlation length for the LLM model

refined against experimental data was 6.5 Å. This correlation length is closer to the value
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for intraprotein atom pairs (5.7 Å) than it is to the correlation length of the all atom pairs

(11 Å) and interprotein atom pairs (14 Å).

Figure 3.10: Comparison of diffuse scattering from experiment (right) and LLM model refined against the
diffuse scattering (left). Features at low resolution dominate the visual comparison, but don’t contribute
strongly to the quantitative comparison: the Pearson correlation coefficient between the experimental and
LLM-predicted anisotropic diffuse scattering is 0.73.

We also fit a simple rigid body translation model with a single displacement parameter σ

to the diffuse scattering data, which yielded a refined displacement parameter of σ = 0.40

Å, and had a correlation coefficient to the anisotropic diffuse scattering data of 0.56. This

value for the displacement parameter is very similar to that of the LLM model fit to the

data, however the correlation coefficient is much lower. These results contrast with those of

de Klijn et al. (2019) [19], who found that (for both CypA and Lysozyme) a good fit to the

data comes in the form of a rigid body translation model, with only minimal improvements

when combined with rigid-body rotational motions and/or ensemble modelling (they did not

fit a LLM model to their data). In contrast to their findings, our results support the notion

that rigid body motions are not the main source of diffuse scattering.

The correlation length and MSD from the experimentally-fit LLM model is closest to the

parameters suggested by the fitting of the covariance versus distance from intraprotein atom
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pairs. This diffuse scattering data is coarsely sampled (data at Miller indices) compared to

the diffuse scattering from from CypA and WrpA crystals from from Peck et al., which over-

sampled Miller indices by a factor of three in each lattice direction[74]. The LLM models they

refined against diffuse scattering data had correlation lengths of 18 Å, and MSDs between

0.5 and 1.0 Å2. These correlation lengths were larger than previous studies as well (5 Å,

from calmodulin[103], 7.1 Å and 8.35 Å for CypA and trypsin, respectively[95]), however,

the diffuse data in these studies were also sampled more coarsely. Our results may provide

some context to the discrepancy, together with some insights from thermal diffuse scattering

theory[44].

The fineness or coarseness of the sampling of diffuse scattering data may preferentially select

for different types of models of disorder, and the length scales of correlations implied by

them. When motions are coupled across unit cell boundaries, the diffuse intensity resulting

from these motions appears closer to the Bragg peaks[74], sometimes directly on top of them.

Thermal diffuse scattering theory suggests that the intensity resulting from thermal motions

has local minima at Bragg peaks, which decay with distance from the Bragg peaks: motions

coupled across unit cells produce features which decay quickly with the distance from the

Bragg peak (as in the power law fit from Ando, Meisburger and Case (2020)[68]), whereas

motions coupled on shorter length scales produce diffuse features further from the Bragg

peaks, sometimes spreading across large regions of reciprocal space. Because of the coarse

sampling in our study, there is a larger proportion of data points far from the Bragg peaks,

whereas more finely sampled data would have a larger proportion of data closer to the Bragg

peaks. For future studies (particularly those with finely sampled data) it will be important

to test for differences in model fit when refined against down-sampled data. There are only

a handful of well-isolated and processed diffuse scattering data sets at high resolution, so it

is important to study the effect of down-sampling on model fit, so researchers working with

lower resolution data have proper context with which to ground their findings.
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3.5.2 Force Field Differences

The cMD simulations using the AMBER and CHARMM force fields produced very similar results

in their predictions of the covariance of atom pairs. The correlation lengths implied by the

exponential fit to the covariance and distance data for the simulations using both forcefields

were equal to within uncertainty for all atom pairs and intraprotein atom pairs, but were not

equal to within standard error for the interprotein atom pairs; the MSDs implied by the same

analysis were not consistent to within uncertainty across forcefields for any set of atom pairs.

The measured standard deviation of Euler angles for the rotations of individual proteins were

similar between forcefields, as were the standard deviations of Euler angles for rotation and

translational perturbations implied by the fitting of the covariance of intraprotein atom pairs

with a rigid body model.

There were some other notable differences between the AMBER and CHARMM simulations: for all

atom pairs and interprotein atoms pairs, the atom pair covariance from the AMBER simulation

stays negative to a separation of 90 Å, while that of the CHARMM comes out of the negative at

about 80 Å. The short distance covariance behavior (out of range in the y-axis in the plots

above) was also different between the simulations: for interprotein atom pairs, the covariance

between atom pairs remains exponential at short distance for the CHARMM simulation, but

dips in to the negative for the AMBER simulation for the bin from 0 to 3.31 Å.

Finally, and perhaps most importantly, the diffuse scattering predicted by the simulation

using the CHARMM force field had a higher correlation to the experimental data than the

simulation using the AMBER force field2. The origin of these differences is not immediately

clear. However, a few observations point toward the modelling of crystal contacts (in line

2I’ll note here, though it applies to comparisons with the LLM model as well, that correlation is not
a linear descriptor: a correlation of 0.25 is not half as good as a correlation of 0.5. In fact, multivariate
Gaussian distributions with correlation 0.25 and 0.5 between the random variables look quite similar. So,
small increases in correlation may not be all that meaningful. The field requires new metrics to better
quantify the agreement with experimental data, e.g. some form of the mutual information. However, as
things stand, the Pearson correlation coefficient is the standard for the field, so it is what we use here.

72



with the discussion from Case et al. from [10]): there are only few interprotein atom pairs at

short distances (Figure 3.6), but there is a large difference between the two simulations in the

covariance of interprotein atom pairs at short distances. The measured standard deviation

of rotational Euler angles in the AMBER simulation is slightly higher than the same from the

CHARMM simulation for almost all proteins. These results together suggest that the individual

proteins in the AMBER simulation experience slightly higher rotational displacements from the

crystal structure position, and that there is a significant difference in correlated dynamics

for the closest interprotein atoms pairs (which are likely to be crystal contact residues).

3.5.3 Additional Notes and Caveats

As mentioned in the beginning of this chapter, analysis of the covariance of all atom pairs in

the simulation would have been too computationally expensive to compute, so we restricted

our analysis to the covariance of C-α atom pairs. For all C-α covariance data except the inter-

protein atoms pairs from the AMBER simulation, the covariance for short-separation-distance

(< 5 Å) atoms pairs is much higher than the covariance for all other atom pairs at higher

separation distances. This finding is not too surprising, as C-α atom pairs at short distances

are often connected by bonds (and thus, their displacements would be highly correlated)

whereas residues with C-α atoms separated by larger distances may only be able to inter-

act with each other through longer range forces (charged or van der Waals interactions), if

they interact directly at all. Additionally, both cMD simulations used the linear constraints

solver (LINCS) to constrain the distances between all bonded atoms, which increases the

covariance between bonded atoms even further. Additionally, if the C-α/backbone atoms

are generally more rigid than side-chain atoms, restricting our analysis to C-α atom pairs

may bias the analysis toward a rigid body motions model.

The exponential fits for all atom pairs and interprotein atoms pairs have a negative offset
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(b < 0), meaning the correlation between atom pairs does not converge to zero as the

separation distance increases. Due to periodic boundary conditions, the longest possible

distance between atom pairs is half the longest box side length, or one lattice vector, along

each crystal axis. This offset may be the consequence of the translational and rotational

alignment of the supercell performed before analysis (as suggested in [67]), or it may be

due to low-frequency phonon-like crystal vibrations (which have been observed to contribute

to diffuse scattering by Polikanov and Moore[78]), or it may be some other real effect. As

these correlations are long-distance, however, if it were a real effect, the diffuse scattering

it contributes to would be focused very close to the Bragg peaks, and might be filtered out

along the with Bragg scattering, if filtering techniques are not sufficiently careful.

In 2015, Meinhold and Smith performed a similar analysis [65] on the same system, Staph.

nuclease. They analyzed the correlation matrix, rather than the covariance matrix (where

the former is the latter, with elements divided by the geometric mean of the variances for

both atoms). They found that the correlation for intraprotein and interprotein atom pairs

both decrease exponentially with separation distance, with a correlation length of 11.0 Å

and 11-18 Å, respectively. The exponential fit for their intraprotein atom pairs was quite

good, in disagreement with our findings here. However, they only simulated a single unit cell

(whereas we simulated a 2x2x2 unit cell supercell) for 10 ns (whereas we simulated for 400

ns), and they performed their simulations at constant pressure, allowing the periodic box

sides to fluctuate in length (whereas we simulated in the NVT ensemble, strictly enforcing

the crystal symmetry). They do not report the RMSD of their simulated protein coordinates

to the crystal structure, and though they found that the R-factor to the experimental data

improves with simulation time, they also estimated in an earlier paper that the covariance

matrix would take on the order of 1 microsecond to converge [67].

With regard to the diffuse scattering, we found that the agreement with the diffuse scat-

tering data is dependent on the method used to accumulate data from smaller segments of
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the trajectory (computational time allocation restraints on clusters makes it more efficient

to simulate longer trajectories in smaller chunks, which can be easily extended at a later

time). In particular, though Guinier’s equation (strictly applied) dictates that “coherent”

accumulation (in which the complex structure factors are averaged when adding new data)

should be used, we found that better agreement is found by “incoherently” accumulating

data (simply averaging the diffuse intensity from the segments). Although the difference in

correlation is small, it may be a sign of a real effect: it may be the case that a real crystal is

better described as an average over many independent domains than a single crystal under-

going dynamics as a single coherent system over long time scales. Atomic force microscopy

experiments have detected a relatively high concentration of crystal defects, in studies of

macromolecular crystals[61], in support of this suggestion (and the “mosaic block” model

used widely in crystallography[89]).

Finally, though the LLM model outperformed the cMD model with respect to the correlation

to anisotropic diffuse data, it is worth remembering that the LLM model is not capable of

predicting the full diffuse scattering data, which the cMD system models quite well (CC >

0.9). Additionally, the LLM model is fit to the data, whereas the cMD model is “model

free” in that the parameters are fixed after the force field is chosen. The cMD model may

improve if its parameters were allowed to be refined against the data, however, though it

has been attempted before, as things stand currently, this task is expected to be incredibly

computationally inefficient for a 2x2x2 supercell. Improvement of forcefield parameters is

more likely to be feasible through analysis of the Bragg data (density and difference maps)

than the diffuse scattering – a project we have been working toward, and which we will

discuss in the next chapter.
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Chapter 4

Lessons in the modelling of Protein

Structure and Disorder and Ordered

Water from Crystalline MD Density

Analysis

4.1 Introduction

In the previous Chapter, we discussed some insights on the modelling of correlated dynamics

and diffuse scattering gained by crystalline Molecular Dynamics (cMD) modelling of a 2x2x2

unit cell system of Staphylococcal nuclease. We saw that cMD models can perform very well

at modelling the total diffuse scattering signal, perform reasonably well at modelling the

anisotropic diffuse scattering, and provide insights on the character of correlated disorder for

atom pairs both within and across proteins. However, there is ample room for improvement.

For example, a simple, one parameter, liquid-like motions model produces predictions for
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the anisotropic component of the diffuse scattering which are better correlated with the

experimental data than those from the cMD model (however, the LLM model has parameters

fitted to the data, while the parameters of the cMD model are fixed). Improvement of the

cMD model will be dependent on improvements in force field parameterization, or on changes

to the simulation regime (such as the inclusion of polarizability or quantum mechanics).

Molecular dynamics force field parameters can be improved by a variety of means. Amino

acid and water model parameters have been validated or found lacking based on agreement

with measured solvation- or hydration-related thermodynamic quantities[38, 87, 29], with wa-

ter models being particularly important in determining the agreement with measured quan-

tities. However, the accuracy of the force fields in these studies may be system-dependent,

with force fields demonstrating agreement in certain domains (e.g. fully solvated molecules)

untested in other domains (e.g. coordinated water network interactions, membrane-bound

proteins, binding pockets, etc.).

A systematic study of protein force fields showed that modern force-fields are generally quite

accurate in reproducing NMR data and melting curves[60]. This study also showed that

force fields have improved over time, but force field families differ in their modelling of the

formation and stability of secondary structure elements. A systematic cMD study mentioned

in a previous chapter has also shown that force fields have improved over time, with respect

to a completely different set of experimental observables (instantaneous and average RMSDs

to the crystal structure and agreement with experimentally-refined B-factors)[47].

However, accurate prediction of more specific, complex phenomena such as the free energy of

protein-protein association [73], and the structural dynamics of intrinsically disordered pro-

teins [83] requires researchers to produce ad-hoc variants of the gold standard force fields.

cMD simulations provide a unique model system in which to (in)validate force field pa-

rameters at a much finer level of detail, for direct comparison to experimental data. cMD

simulations can also provide information about structural dynamics of side chains and al-
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lostery, and coordinated water networks, allowing for the careful study of both amino acid

and water model parameterization effects in the same system.

Here, we present preliminary results of a cMD study of a 2x2x2 unit cell cMD model of the

catalytic domain of protein kinase A (PKA). PKA is a cyclic-AMP (cAMP)-dependent kinase

present in the cells of the liver, kidney, nervous system, cardiovascular system, and muscular

system. In cells, inactive PKA exists as a tetrameric holoenzyme — a complex of two

heterodimers both containing a catalytic subunit (or “C subunit”) and a regulatory subunit

(the “R subunit”). The R subunit binds the C subunit at the active site cleft, blocking

access to the active site. Cyclic AMP binds to the R subunit, causing the R subunit to

dislodge from the cleft, exposing the active site for phosphorylation of other peptides. Once

phosphorylation takes place, any number of phosphodiesterases convert the cAMP bound to

the R subunit to AMP, restoring the R subunit to its original configuration. In the nervous

system, an endogenous inhibitor, PKI, modulates the function of the C subunit in place

of the R subunit. PKI binds potently and specifically to the free C subunit and helps in

its transportation from the nucleus. PKI is involved in morphogenesis, neuronal synaptic

activity and gene expression[18]. The bound peptide in the structure used in our study is

part of the PKI molecule.

Three motifs are important to the activation of PKA: (i) the glycine rich loop (this region is

often called the “P loop” in GTPases, however our collaborators refer to it as the “G loop”,

so we will use that nomenclature here) which packs over the active site, and helps to keep

the ATP molecule in place, and stabilize the transition state in catalysis; (ii) the YRD motif,

with the “D”, or aspartic acid, residue being the catalytic base for the hydrolysis of ATP to

ADP; (iii) the DFG motif, a regulatory loop which moves in and out from the active site as

a consequence of inhibitor binding[13].

PKA is, in general, modulated by phosphorylation of the active site loop, but is constitutively

active coming out of the ribosome, regulated by the presence of the R subunit. The “R-spine”
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and “C-spine” are a series of stacked hydrophobic residues which run from the N-terminus to

C-terminus, along the regulatory and catalytic subunits, respectively, whose conformations

(stacked or dispersed) are commonly used as a sign of activity (tightly stacked spines are

associated with activity)[93].

Figure 4.1: A PKA ensemble (refined by collaborators) with bound peptide in yellow, G loop in green,
YRD motif in orange, and DFG motif in blue. The inlay shows active site with bound ADP (bottom),
magnesium ions and phosphate molecule (top): aspartic acid (Asp; D) 166 at the end of the YRD motif
shown coordinated with phosphate and magnesium ions; Aspartic acid 184 from DFG motif obscured by
magnesium ions. Molecular graphics produced with UCSF Chimera[77], developed by the Resource for
Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support
from NIH P41-GM103311.

PKA exhibits substrate binding cooperativity, with the binding of ATP leading to increased

propensity for association with peptide substrate. It has been suggested that ordered water

plays an important role in the allosteric pathway responsible for this effect. Two hydration

sites seem to play an important role: one forming a hydrogen bond bridge between the

DFG and YRD motifs, and another smoothing out the free energy landscape between the

active and inactive conformations of the G loop[85]. It has also been proposed that ordered

waters play in important role (along with the bound magnesium ions) in the destabilization

of the transition state in catalysis, through QM/MM and MD simulations of the catalytic

subunit[13].
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Figure 4.2: Each member of the experimentally-refined ensemble is propagated to a different place in the
supercell, using the side lengths of the unit cell and the space group symmetry operations. Each frame of
the simulation can be reverse-propagated, using the reverse operations, to create a dynamically changing
representation of the ensemble from the supercell model.

4.2 System Setup

4.2.1 Ensemble Model

In this work, we studied only the catalytic subunit of PKA, with a peptide bound to the

active site cleft, which mimics the interaction with the R subunit. Our 2x2x2 unit cell system

(space group P212121, four proteins per unit cell, for thirty two proteins total) was seeded

with a thirty two member ensemble model of PKA refined by collaborators against 2.4 Å X-

ray diffraction data (Figure 4.2). The core of the protein was refined against the experimental

structure factors, and the N- and C-termini were added after the fact, and energy minimized,

to produce a full structural model, which was fed in to phenix.ensemble refinement[7] to

produce the ensemble model. Each ensemble member has a bound peptide whose coordinates

are also refined as part of the ensemble. Each member of the ensemble has a bound adeno-

sine diphosphate (ADP) molecule, phosphate molecule (PO4H2−
2 – with protonation state
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determined by the pH, in the range from 5.8 to 6.7), and two magnesium ions, all placed

in identical positions in the active site, while the ensemble protein atoms have different

coordinates.

After removing crystallographic waters, each member of the ensemble was sent to a different

place in the supercell using my python software module pdbio.py (a custom, minimalist

software program design to read, manipulate, and write PDB files) and propagation code

similar to the pseudocode outlined in Chapter 2 (propagate.py, in the Appendix). The

same code was used in reverse (reverse propagate.py, also in the Appendix), for analysis,

sending each protein in the supercell back to the asymmetric unit. These two scripts together

allowed us to measure structural and dynamical changes to the protein from an ensemble

perspective (Figures 4.2 and 4.3).

The protein and magnesium atoms were parametrized using the AMBER14SB force field, using

tleap from the ambertools[8] software suite (version 20.9), using the phosaa10 parameter

set for the phosphorylated serine (SEP) and tyrosine (TPO) residues. The bound ADP

molecule was parametrized based on the work of Meagher et al. (2003)[64]. The geometry of

the phosphate molecule was determined by mp2/aug-cc-pvdz QM geometry optimization,

before being parametrized with the gaff2 force field.

In the first round of simulations, all histidines were doubly protonated (residue name HIP),

whereas in all later simulations, the protonation states were assigned based on data from

neutron diffraction, collected by collaborators. Histidines 87, 158, and 260 remain doubly

protonated (HIP), whereas residues 62, 131, 142, and 294 are singly protonated on the epsilon

nitrogen (HIE), and histidine 68 is protonated on the delta nitrogen (HID). A later section

will discuss the differences in conformation observed in the cMD systems when switching from

double protonated to singly protonated forms, but it is sufficient to say for now that in some

cases, a switch in protonation state in the cMD simulation can (in)validate a protonation

state model when compared to experimental density.
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The fully parametrized supercell structure was solvated using GROMACS’s [5] solvate pro-

gram, made neutral in charge by the substitution of water molecules with the appropriate

number of chloride ions using GROMACS’s genion with the flag -neutral, and additional

water molecules were substituted with choride and magnesium ions sufficient to mimic the

crystallization buffer MgCl2 concentration of 0.05 M. The TIP3P parameter set was used for

all simulation waters[48].

In a procedure similar to that outlined in the previous chapter, the system was subjected

to iterative rounds of solvation, energy minimization (using the steepest-descent algorithm),

and NVT equilibration (2 ns total, with harmonic restraints to the crystal structure positions

with a force constant of 1000 kJ · mol−1 · nm−2), until the average pressure, plus or minus

standard error, was brought within the range from -100 to 100 bar (as close to 1 bar as

possible). The system was simulated for 10 ns with weaker restraints (to be discussed

below), to ensure that the system was fully equilibrated under the new restraint regime,

before starting 100 ns of restrained “production” simulation.

For the initial system, in which histidines were all modelled as doubly protonated, the force

constant used for harmonic restraints was 200 kJ · mol−1 · nm−2. For the other systems,

with histidine protonation states assigned based on the data from neutron diffraction, four

separate simulations were prepared, with the only difference between them being the strength

of the harmonic restraints: the four simulations had force constants of 200, 20, 2, and 0.2

kJ ·mol−1 · nm−2, respectively. These simulations were meant to test the effect of different

heavy-atom harmonic restraint strengths on the structure, dynamics and ordered solvent

modelling in cMD systems (Figure 4.3).

All simulations used a time step of 2 femtoseconds, with coordinate output every 2 picosec-

onds. Other specifications for the simulation parameters are detailed in the GROMACS .mdp

files in the Appendix. For all analysis below, the final 10 ns were used for density-based

analysis, and final frames were used for coordinate-based analysis.
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Figure 4.3: Phosphorylated serine (SEP), residue 139, from protein kinase A, from cMD simulations with
various force constants for harmonic restraints. Top: average densities calculated using xtraj.py. Bottom:
ensembles from the final frame of each simulation generated using reverse propagate.py. Starting ensemble
and density in white for both top and bottom. SEP 139 shows a concerted change in ensemble conformation
as the restraints are relaxed.

4.3 Density-based Analysis

Densities were calculated from the final 10 ns of the production trajectories, down-sampling

to frames every 10 ps. Each frame was aligned to the initial propagated-crystal-structure

supercell using translational fitting (gmx trjconv -fit translation), with molecules kept

whole by mapping coordinates back across the box using periodic boundary conditions (gmx

trjconv -pbc mol), before feeding the trajectory and initial propagated-crystal-structure

supercell in to xtraj.py to produce structure factor and intensity .mtz files (fcalc.mtz and

icalc.mtz, respectively).

Densities were calculated separately for the full system, water molecules, magnesium atom,

and calcium atoms, for all trajectories. The fft method from CCP4 (Collaborative Compu-

tational Project Number 4, version 7.1 [109]) was used (along with the electron count, or

“F000”, and volume information outputted by xtraj.py) to calculate densities on an abso-
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lute scale (electrons per cubic angstrom): this allows us to make more precise comparisons

between simulations, which would not be possible using relative density cutoffs (such as the

standard 3σ cutoff for visualizing solvent density). These files were converted to more stan-

dard, diffraction-like intensity .mtz (Iobs and SIGIobs columns of a .ccp4 map) files using

the sftools method from CCP4.

The calculation of separate densities for the full system, water molecules, magnesium ions,

and calcium ions allowed us to discriminate between protein and solvent density (which is not

possible using standard crystallographic techniques, except for proteins with little structural

flexibility or heterogeneity at high resolution). The peakmax method from CCP4 was was

used to generate a .pdb file with water molecules at the positions determined by peaks in

the solvent map. This allowed us to refine the protein and solvent coordinates separately,

combining them for a full structural model. To help in validating solvent density from the

cMD simulations we also constructed “Polder maps”, which are a special case of OMIT map

constructed by excluding certain solvent atoms from refinement and eliminating bulk solvent

corrections[59], to identify weak solvent density that is supported by experiment.

4.4 Discussion

4.4.1 B-factor Analysis

The initial experimentally-refined structural model used to seed the ensemble refinement was

used a target for B-factor analysis. B-factors were calculated from the cMD simulations by

refining a single structure against the intensities calculated from the cMD trajectories, using

phenix.refine. Figure 4.4 shows the results for all heavy atoms. Unsurprisingly, for the

most strongly restrained system, the B-factors are drastically underestimated. However, as

the restraints are relaxed, the B-factors approach the experimental values more and more
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closely, with some B-factors beginning to be overestimated. Figure 4.5 shows a comparison

of the cMD and experimental B-factors for each restraint force constant simulation, with

experimental B-factors on the abscissa and cMD B-factors on the ordinate.

Figure 4.4: B-factors from refinement of crystal structure model in to density calculated from the final 10ns
of cMD simulations with harmonic restraint energy force constant of 200 (blue), 20 (light blue), 2 (turquoise),
and 0.2 (green) kJ · mol−1 · nm−2. B-factors refined against experimental data in black. Inset showing B-
factors for cMD-refined heavy atoms from index 1800-2200: the overall pattern of B-factors is reproduced
even at high restraint energy, however the predictions of the B-factor values themselves improves as restraint
force constants are diminished.

The Pearson correlation coefficient between the experimentally-refined and cMD-density-

refined B-factors is high (CC=0.94) and is constant across all simulations, suggesting that

the overall pattern for the B-factors is largely preserved, even at high restraint energy (see

the legends in in Figure 4.5). However, as the restraints are relaxed, the root mean squared

error (RMSE) between the experimental and cMD-density-refined B-factors decreases, from

18.8 Å2 for the 200 kJ ·mol−1 ·nm−2 restraint force constant simulation to 5.6 Å2 for the 0.2

kJ ·mol−1 · nm−2 restraint force constant simulation. This indicates that the values for the

B-factors predicted by the simulation get more accurate as the restraints are relaxed.
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Figure 4.5: Comparison between experimental (abscissa) and cMD (ordinate) B-factors for simulations with
restraint energy force constant of 200 (left), 20 (center-left), 2 (center-right), and 0.2 (right) kJ·mol−1 ·nm−2.
Correlation coefficient between experimentally-refined and cMD-density-refined B-factors is 0.93-0.94 for all
simulations, whereas the RMSE decreases from 18.8 Å to 5.6 Å going from the 200 to 0.2 kJ ·mol−1 · nm−2

restraint force constant simulations.

The heavy-atom RMSD between the average coordinates of the cMD-density-refined struc-

ture and the experimental crystal structure increases, from 0.84 Å for the 200 kJ·mol−1 ·nm−2

restraint force constant simulation to 1.08 Å for the 0.2 kJ ·mol−1 ·nm−2 restraint force con-

stant simulation (Figure 4.5). All together, these results suggests that although the cMD

simulations may be converging to a slightly different structure than the structure refined

against experimental data (as evidences by the RMSD), the cMD simulations are faithfully

reproducing the overall character of small-scale harmonic disorder for the heavy atoms, even

at high restraint energies (with high B-factor atoms from experimental refinement corre-

sponding to relatively high B-factor atoms in the cMD-density refined structure, even at

high restraint energy, and vice versa for low B-factor atoms) though as the restraints are

relaxed, the predicted values for the B-factors improve.

4.4.2 Structural Deviation

Next, we compared the atomic coordinates of the models refined against the structure fac-

tors from the cMD trajectories to the atomic coordinates from the model refined against

experimental data. Do to this, we calculated a histrogram of the heavy atom displacements

between the experimentally-refined and cMD-density-refined structures. Unsurprisingly, the
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Figure 4.6: Histogram of heavy-atom
atomic displacements compared to the
experimentally-refined crystal struc-
ture, for the models refined against the
structure factors from the 200 (blue),
20 (light blue), 2 (turquoise), and 0.2
(green) kJ ·mol−1 ·nm−2 restraint force
constant cMD simulations.

coordinates from the model refined against the density from the most strongly restrained

simulation exhibited the lowest atomic displacements to the crystal structure coordinates –

the strong restraints are keeping the displacements low. As the restraint force constants are

reduced, the distribution of atomic displacement shifts toward having a larger mean and a

broader width (Figure 4.6). The distributions of atomic displacements appear surprisingly

well-converged and smoothly varied with the relaxation of the restraints, considering that

side chain atoms make up most of the atoms in the system and their displacements at low

restraint energies are influenced not only by thermal excitation but by complex interactions

with neighboring side chains and the solvent.

To better understand the change in the distribution of atomic displacements with the re-

laxation of restraints, we converted the histrograms of atomic displacements to probability

density functions, considering the atomic displacement not as an experimental observable,

but as a random variable sampled by the simulation. The probability density functions were

fit to a Weibull distribution
(
k
λ

) (
x
λ

)
e−(x/λ)k with shape parameter k and scale parameter

λ. The fit was optimized using the optimize.curve fit function from the open source

scientific Python package scipy[98], which uses the Levenberg-Marquardt algorithm (Figure
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Figure 4.7: Histrogram of heavy atom atomic displacements to the experimentally-refined crystal structure,
for the models refined against the structure factors from the 200 (blue), 20 (light blue), 2 (turquoise), and
0.2 (green) kJ · mol−1 · nm−2 restraint force constant cMD simulations, converted to probability density

functions. Fits to Weibull distribution
(
k
λ

) (
x
λ

)
e−(x/λ)

k

in dotted lines. Shape and scale parameters for each
fit, k and λ respectively, presented in the labels.

4.7). The fits are quite good, with the variance of the parameters on the order of 10−6 and

10−4, for λ and k respectively. The distributions were not well fit by Maxwell(-Boltzmann)

or Rayleigh distributions.

The shape parameter, k, is similar for the 200 and 20 kJ · mol−1 · nm−2 distributions (k =

1.93 - 1.96), and similar for the 2 and 0.2 kJ ·mol−1 · nm−2 distributions (k = 2.25 - 2.26),

but they are not similar to each other, within uncertainty. The scale parameter, λ falls off

linearly as a function of the logarithm of the restraint force constant (decreasing the force

constant by an order of magnitude increases the scale parameter by a constant value, about

0.14).

In statistics, the Weibull distribution is often used to model failure rates — where the random

variable is the time to failure — as it is the limiting distribution of the minimum of a large

number of i.i.d. random variables that are at least zero[17]. In that context, a value of k > 1

indicates that the failure rate increases over time, and the failure rate itself is proportional

to time to the power of k − 1. In this case the random variable is the displacement of the

cMD-density-refined heavy atoms to those from the experimentally-refined crystal structure.

However, a connection between the two can be made in the sense that the heavy atoms

are exploring a harmonically-restrained space around the crystal structure positions with
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simulation time, and the “failure” rate can be interpreted as the rate at which heavy atoms

significantly deviate from the positions they are meant to occupy in the crystal structure. In

this sense, the change in the shape parameter between the 200/20 and 2/0.2 kJ ·mol−1 ·nm−2

simulations may indicate that at some restraint force constant in between, the force field

begins to influence the positions of the atoms more than the restraints do, and the “failure

rate” converges to a new value. However, this analysis and interpretation is speculative at

best.

Histidine Protonation State Discrimination

In addition to being used as a target for refinement, the structure factors calculated from

the cMD trajectories can be analyzed on their own, as Fourier-transformed densities, for

comparison to experimental composite (2FO − FC) and difference (FO − FC) maps. A nice

example of this can be seen in the comparisons between the densities calculated from the

initial cMD simulation, with all histidines doubly protonated, and the otherwise equivalent

simulation with histidines protonated based on data from neutron diffraction.

Most of the histidines which changed protonation state, from doubly-protonated (HIP) to

singly-protonated on either the delta (HID) or epsilon (HIE) nitrogen, did not change con-

formation, with little to no change evident in the density for the side chains calculated from

the analyzed segment of the cMD trajectories. However, two residues did change conforma-

tion drastically after the protonation state was changed, both of which went from doubly

protonated to protonated on the epsilon nitrogen: histidines 62 and 294. After this confor-

mational change, we find that histidine 62 in the doubly protonated state is rotated almost

ninety degrees relative to the density from experiment, whereas in the epsilon-protonated

state the densities are almost equivalent. The effect of the protonation state on histidine

294 is even more drastic: in the doubly protonated state, the aromatic ring rotates and

moves several angstroms away from the crystal structure position, opening up space for a
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Figure 4.8: Comparison
between experimental
2FO −FC map displayed
as a 1 σ isosurface
(white), the density
calculated from the
original cMD simulation
with all histidines double
protonated (orange),
and the density calcu-
lated from the otherwise
equivalent cMD simu-
lation with protonation
state determined by neu-
tron diffraction (blue),
both displayed as a 1
σ isosurface. Epsilon-
nitrogen-protonated
histidine (HIE) 62
above, HIE 294 below.

coordinated water; while the epsilon-protonated density is not perfectly aligned with the

experimental density, the agreement is much improved (Figure 4.8).

In these cases, then, we find that density-based analysis from cMD simulations can (in certain

cases) discriminate between correct and incorrect protonation states for histidines. Although

many of the histidines did change conformation (in a way which was consistent across the

ensemble) when changed from doubly-protonated to singly-protonated, when there were large

conformational changes from this transition, they brought the cMD-predicted density in to

closer agreement with the experimental density. There were no observed cases for this system

in which the cMD-predicted density substantially disagreed with the experimental density

in the simulation where the protonation states were correctly assigned.
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4.4.3 Ordered Water Analysis

We’ve touched on another application of density-based cMD-trajectory analysis in a previous

chapter: the prediction of ordered waters from crystallographic models. Here, we analyzed

the effect of the strength of heavy-atom harmonic restraints on the precision and recall of

crystallographic waters in cMD simulations. The precision and recall measures the number of

cMD-density-refined waters which are within a certain distance of a crystallographic water.

In this case, we measure the fraction of experimentally-refined crystallographic waters which

have a cMD-density-refined water within a certain distance. The faster the curve slopes

upward toward one, the more accurate the cMD model (in the limit, 100% of crystallographic

waters have a cMD-predicted water in the exact same place — a distance of zero).

In this work, we converted the cMD-calculated structure factors to intensities to be used as as

targets for refinement, and used phenix.refine, with the single-conformation experimental

structure as input, to refine both the protein and solvent coordinates. This gives us a set of

cMD-density-refined waters we can compare to those refined against experimental data. This

allows us to test the degree to which the structure factors implied by cMD simulations recover

the solvent density, and thus the crystallographic waters, from experimental refinement, at

each restraint energy. There were 454 total waters refined against the structure factors from

the 200 kJ ·mol−1 ·nm−2 restraint force constant simulation, 425 for the 20 kJ ·mol−1 ·nm−2

restraint force constant simulation, 346 for the 2 kJ · mol−1 · nm−2 restraint force constant

simulation, and 296 for the 0.2 kJ ·mol−1 ·nm−2 restraint force constant simulation. That is,

the solvent density contains fewer solvent peaks which can be identified by phenix as spots

in which to place crystallographic waters.

Next, we tested the precision and recall of waters refined against the cMD data with respect

to the positions of experimentally-refined crystallographic waters (Figure 4.9). The 200

kJ ·mol−1 ·nm−2 restraint force constant simulation recovers nearly all (137 out of 144; 95%)
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Figure 4.9: Precision and recall statistics for waters refined against the structure factors from cMD sim-
ulations with restraints with force constants 200 (solid), 20 (dashed), 2 (dash-dotted), and 0.2 (dotted)
kJ ·mol−1 · nm−2. 200 and 20 kJ ·mol−1 · nm−2 restraint force constant simulations recover the same per-
centage of crystallographic waters to within 1 Å, while the precision and recall drops off for the 2 and 0.2
kJ ·mol−1 · nm−2 restraint constant simulations.

of all crystallographic waters to within one Angstrom. The results are similar for the 20

kJ · mol−1 · nm−2 restraint force constant simulation, with 94% of crystallographic waters

recovered to within one Angstrom. However, there is a steep drop off after this, with the

2 and 0.2 kJ ·mol−1 · nm−2 restraint force constant simulations recovering 84% and 74% of

crystallographic waters within one Angstrom.

These results are in line with the results of the previous section. There is a change in behavior

for the system between 20 and 2 kJ ·mol−1 · nm−2 — in the previous case, with respect to

the shape parameter describing the distribution of atomic displacements from the crystal

structure; in this case with respect to the number and position of waters refined against the

cMD data. There may be a connection between these two findings: as the force field takes
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over in influence from the restraints to the crystal structure heavy atoms, the structural and

electrostatic interactions responsible for holding ordered waters in place may be corrupted.

Figure 4.10: Composite and difference maps from experiment, Polder map excluding active site waters, and
solvent density from cMD simulatios. Top left: experimentally-refined composite map (displayed as a 1σ
isosurface, white) and difference map (displayed as 3σ, positive in green, negative in red), and Polder map
(displayed as a 3σ isosurface, orange); top right; experimentally-refined composite and difference maps, with
experimentally-refined ensemble protein (orange bonds) and water (red) atoms; bottom left: cMD solvent
density (isosurface at absolute density of 11 e/Å3; densities from the highest to lowest restraint force constant
simulations displayed in dark blue to light green), and Polder map (orange); bottom right: ensemble protein
and solvent coordinates, with cMD solvent densities and Polder map.

We can also identify areas of cMD-predicted solvent density around the active site to deter-

mine how well the force field performs at reproducing catalytically-relevant water positions.

The experimentally-refined ensemble model has waters placed in to solvent peaks in the com-

posite map, however, we also constructed Polder maps by removing the solvent molecules
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around the active site, and computing an OMIT map without bulk solvent corrections: this

map identifies areas of weak solvent density which are still consistent with the data from

experiment (but may have been un-modelled, perhaps by over-fitting, for the full structural

model). Comparisons between the experimental composite and difference maps, cMD sol-

vent maps from each different restraint force constant simulation, and the Polder map, are

shown below for two interesting areas around the active site (Figures 4.10 and 4.11).

Figure 4.11: Composite and difference maps from experiment, Polder map excluding active site waters, and
solvent density from cMD simulatios. Top left: experimentally-refined composite map (displayed as a 1σ
isosurface, white) and difference map (displayed as 3σ, positive in green, negative in red), and Polder map
(displayed as a 3σ isosurface, orange); top right; experimentally-refined composite and difference maps, with
experimentally-refined ensemble protein (orange bonds) and water (red) atoms; bottom left: cMD solvent
density (isosurface at absolute density of 11 e/Å3; densities from the highest to lowest restraint force constant
simulations displayed in dark blue to light green), and Polder map (orange); bottom right: ensemble protein
and solvent coordinates, with cMD solvent densities and Polder map.

There are a few things to note in general for the two figures above: (i) all of the crystallo-
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graphic waters around the active site are reproduced as solvent peaks in the cMD simulations,

for all restraint force constants, (ii) many of the cMD-predicted solvent density peaks are

supported by the Polder map, even if they do not have associated crystallographic waters.

Both magnesium ions in the active site have very closely associated waters (within one Å),

both of which are supported by the Polder density, but only one of which had crystallographic

waters modelled in by the ensemble refinement (the modelled in water is to the left of the

magnesium in the top right and bottom right images in Figure 4.10; the unmodelled water

is to the left of the magnesium ion in the top right and bottom right images in 4.11). Both

of these areas of solvent density in the cMD simulations coordinated with the magnesium

ions are associated with other waters, organized in tight hydrogen bonding networks: both

of these hydrogen bonding networks are supported by the Polder map, but the ensemble re-

finement misses most of the waters in these networks. There is very little difference density

in these regions as well, suggesting that the crystallographic model does not predict a lack

or excess of electrons in these regions.

4.4.4 Side Chain Disorder Analysis

Next, we moved from analyzing the disorder captured by the B-factors present in the models

refined against the data from cMD simulations, to analyzing the more complex forms of

disorder in the simulation ensembles. In the experimentally-refined ensemble, some side

chains occupy roughly the same conformation in every representative structure, but many

side chains are modelled with a broad range of conformations across the ensemble in areas

where the experimental density is poorly resolved. In fact, this the purpose of ensemble

modelling: to take advantage of the fact that areas of low-resolution density imply structural

heterogeneity or disorder in order to produce an ensemble of structures, all of which are

equally compatible with experimental data. In the simulations, this disorder is also modelled,

in this case by the force field. However, there are some striking differences between the
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structural ensemble generated by refinement and the structural ensemble generated by the

force field.

In Figure 4.12, I present a few different examples of the types of order and disorder present in

the experimentally-refined ensembles, and the reverse-propagated ensembles from the final

frame of the 200 kJ ·mol−1 ·nm−2 restraint force constant simulation, along with the density

calculated from the final 10 ns of the trajectory. Both the experimental composite (2FO−FC)

map and the cMD density are displayed as 1σ isosurfaces (for lysine 217, the chloride density

is displayed as a 12σ isosurface).

For lysine 105, the experimental composite map is well-resolved only for the backbone, and

the ensemble refinement produces significant structural heterogeneity for the side chain; the

cMD ensemble has significant structural heterogeneity for the side chain as well, and the

only resolved density is along the backbone, matching the experimental composite map. In

contrast, for lysine 189, the experimental composite map is well-resolved along the back-

bone and the entirety of the side chain (this side chain is involved in the positioning of the

ADP molecule in preparation for catalysis, so its conformation is stabilized by interactions

with the ADP in the active site); the cMD density and ensemble are similarly well-resolved

and structurally homogeneous. Lysine 217 presents an interesting case in which the exper-

imental composite map is resolved only along the backbone, but the refined ensemble is

relatively structurally homogeneous, with the side chain modelled in to density far from the

backbone; however, even in the most strongly-restrained simulation, the cMD ensemble con-

verges to a different configuration than the experimentally-refined ensemble, and the cMD

model suggests that the density far from the backbone is chloride density (this is supported

by the experimental difference map, which displays positive difference density, even with the

side chain atoms modelled in to the off-backbone density). The cMD model of lysine 217

has about the same structural homogeneity as the experimentally-refined ensemble, but the

position of the side chain is different.
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Because both the experimentally-refined ensemble and reverse-propagated cMD ensembles

have many different members, it is hard to characterize differences between the two ensembles

with a single measure (like the RMSD), particularly for disordered side chains. Lysine 105, for

instance, has significant structural heterogeneity in the side chain in both the experimentally

refined ensemble and the cMD ensemble, so each atom in the cMD ensemble is likely quite far

from its starting position in the experimentally refined ensemble, after 100ns of simulation.

Even on average, the heavy atoms in this side chain would have a high RMSD to their starting

positions. However, the same is true for lysine 217: all of the atoms in the side chain from the

cMD reverse-propagated ensemble are far from their starting positions in the experimentally-

refined ensemble, and thus would have a high RMSD. However, this high RMSD between

the cMD and experimentally-refined ensemble models is somewhat more “meaningful” than

in the case of lysine 105: it represents a significant difference in the modelling of the side

chain position and structural homo-/heterogeneity between the experimentally-refined and

cMD side chain ensembles.

Using lysines 105 and 217 as characteristic examples, we can derive a reasonable test for

significant differences between the experimentally-refined and cMD modelled ensembles. For

a side chain with significant structural heterogeneity, if the position and disorder of the side

chain are modelled equivalently by the experimental refinement and the cMD model, each

side chain in the ensemble will wander from its initial position, leading to a high ensemble-

averaged RMSDs from the crystal structure positions, however, if the disorder in the cMD

ensemble is similar to that of the experimentally refined ensemble, the atoms will explore the

same space, leading to similar standard deviation of atomic positions (SDAPs) between the

atoms of the experimentally-refined and cMD ensembles. This would be indicative of model

agreement: though the RMSD is high, the cMD model is building in the correct amount

of structural heterogeneity for the side chain, measured by high SDAP. (For a side chain

with little structural heterogeneity and disorder, both the RMSD between the cMD and

experimentally refined ensemble atoms and SDAP of the side chain atoms in each ensemble
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will be low — this would also be indicative of model agreement). However, if a side chain

has low structural heterogeneity in the experimentally-refined ensemble and low structural

heterogeneity in the cMD ensemble, but the side chain has a different position in the cMD

ensemble, there will be a high RMSD between the experimentally-refined and cMD ensemble

atoms, but a small and similar SDAP for the atoms from the two ensembles. In some

cases the SDAP for the atoms in the cMD ensemble may be smaller than those from the

experimentally-refined ensemble, if the cMD model predicts a more certain position for the

side chains in the ensemble. All of this is to say: a combination of the RMSD and SDAP

can be used to identify significant differences between the cMD and experimentally-refined

ensembles.

Another case similar to that of lysine 217 mentioned above, is phosphorylated serine (SEP)

139, (Figure 4.3): as the restraint force constants are lowered, the cMD model converges

on a new conformational ensemble. In this case, the ensemble-average SDAPs for the side

chain atoms stay relatively constant (there is not a lot of structural heterogeneity for the

side chains, across the ensemble, at any restraint strength) while the RMSDs to the crystal

structure positions increase (the conformational ensemble moves to a completely different

position). This is the another prototypical case of meaningful difference between the cMD

and experimentally-refined ensemble models, but this is by far the most extreme case we

observed in our cMD model: the force field forces the side chain in to a significantly different

position from the experimentally-refined ensemble, and the deviation gets more substantial

as the restraints are relaxed.

Backbone, Side Chain, and Residual RMSD and SDAP

We reverse-propagated the proteins from the final frame of each of the cMD simulation, so

all of the different ensemble members were superimposed in the asymmetric unit, as was the

case for the original experimentally-refined ensemble. We then matched each protein from
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the reverse-propagated supercell with the experimentally-refined ensemble member which

provided its starting structure. From here, we calculated the RMSD to the crystal structure

position in the following way: for each ensemble member, and for each heavy atom in the

protein, we calculated the average RMSD over all the heavy atoms in the residue, then

averaged these residue-averaged RMSDs over the entire ensemble. This gives us an ensemble

average RMSD for each residue in the protein, for each restraint force constant simulation.

We then performed a similar calculation for the SDAP: for each heavy atom in each en-

semble (the experimentally-refined ensemble, and the reverse-propagated ensemble from the

final frame of each restraint force constant simulation), we calculated the three-dimensional

ensemble-average position, then calculated the (euclidean) displacement from this average

position for each heavy atom, summed the squared deviations, averaged over all the equiv-

alent atoms in the ensemble, and took the square root of this average variance to find the

standard deviation. We then calculated the average SDAP for each residue in a similar way

as above (averaging the SDAPs over all heavy atoms in each residue).

If we plot the RMSD and SDAP simultaneously (with rising SDAP going up from the x-axis,

and rising RMSD going down from the x-axis) we can simultaneously observe the change

in ensemble-and-residue-averaged RMSD and SDAP for each residue in the protein (for the

experimentally-refined ensemble there is SDAP only, RMSD is relative to the experimentally-

refined-ensemble) as the restraint strength is diminished. The results for all side chains are

shown in Figure 4.13.

Areas of high initial (experimentally-refined-ensemble) SDAP correspond to regions of high

structural heterogeneity (as in the G loop, residues 50-56 in the left inset of Figures 4.13,

4.14, and 4.15, gray scatter points from the experimentally-refined ensemble, light to dark

green scatter points from the strongest to weakest restraint force constant simulations). Not

surprisingly, regions of high structural heterogeneity also show large changes in RMSD as re-

straint force constants are decreased (as restraints relax, residues are allowed more flexibility,
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wandering farther from their initial positions, leading to higher RMSD on average). However,

some residues with low structural heterogeneity (low SDAP) in the experimentally-refined

ensemble experience large increases in both SDAP and RMSD as the restraints are relaxed

(right inset in all figures): these are residues for which the MD predicts larger amounts of

structural heterogeneity than is predicted by the experimental ensemble refinement.

The order or disorder represented by the side chain RMSDs and SDAPs in the figure above

are not representative of the behavior of the side chains alone. Side chains are so named

because they are chained to the side of the backbone. If the backbone exhibits large RMSD

and/or SDAP, this disorder will be present in the RMSD and SDAP of the side chain atoms

as well (and vice versa if it does not). So, to isolate the behavior of the side chain on its

own, we constructed a similar plot to the one above, considering only the backbone atoms,

shown in Figure 4.14.

Here, we can see that many of the areas of high and/or increasing side chain RMSD and

SDAP from Figure 4.13 are primarily the result of backbone motions rather than the motions

of the side-chain itself. For instance, the G loop is modelled with significant structural

heterogeneity in the experimentally-refined ensemble (Figure 4.14). Interestingly, in this

region, the backbone SDAP decreases relative to the experimentally-refined ensemble for the

the 200 and 20 kJ · mol−1 · nm−2 (in some cases decreasing relative to the experimentally-

refined ensemble in all simulations, regardless of restraint strength). Thus, the cMD model

is suggesting that the experimentally-refined ensemble is modelling in too much backbone

structural heterogeneity in this region.

To isolate the RMSD and SDAP of the side-chain alone, we subtracted the backbone RMSD

and c-α SDAP from those of the side chains, leaving the “residual” RMSD and SDAP,

shown in Figure 4.15. We return to identifying the type of disorder present in the side

chains, by examining the relationship between residual SDAP and RMSD for each residue.

The residual RMSD and SDAP are both very small and remain close to zero for all restraint
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force constants for most residues. Compare this to the plot for side chains (Figure 4.13)

and backbone (Figure 4.14) in which, for most residues, the RMSD and SDAP increase as

the restraint force constants decrease. This finding is indicative of the fact that, for the

most part, the disorder present in the side chains is a knock-on effect of disorder from the

backbone, with the side chain contributing very little to the ensemble disorder captured by

the residual RMSD and SDAP. It is also indicative of the fact that the cMD model largely

agrees with the experimentally-refined ensemble on the position and structural heterogeneity

for most of the side chains.

Figure 4.16: Residual SDAP (above x-axis, in-
creasing upward) and residual RMSD (below the
x-axis, increasing downward) for residues 132-
141. Phosphorylated serine (SEP) 139 shows
roughly constant residual SDAP, with an asso-
ciated large increase in RMSD as restraints are
relaxed (light to dark green above, light to dark
blue below).

If the residual RMSD and SDAP both increase

as the restraint force constants decrease (e.g. in

phenylalanine 281 or leucine 284 in the right in-

set of figure 4.15) the deviation from the crystal

structure ensemble is matched by an increase in

atomic fluctuations about the mean positions as

restraints are relaxed. This is the type of disorder

we mentioned above as indicative of agreement

between the ensemble models: though the RMSD

between the cMD and experimentally-refined en-

semble models is high, if the SDAP for both is

also high, the two models are in agreement. Be-

cause an increase in SDAP moves upward, and an

increase in RMSD moves downward, an increase

in both RMSD and SDAP with a decrease in the restraint force constant is visually repre-

sented by scatter points which mirror each other in their movement away from the x-axis in

the plots. We say that these residues “pass the mirror test”.

However, if a residue strays from its position in the experimentally-refined ensemble (RMSD
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increases), but the residue is exhibiting a constant or decreased amount of structural het-

erogeneity (converging on a new position for the side chain or a more certain position across

the ensemble in the cMD model) the SDAP will either remain constant or decrease relative

to the SDAP of the experimentally-refined ensemble. Because an increase in RMSD and

constant or decreasing SDAP move in different directions with respect to the x-axis (one

away from it, one towards it), we say that these residue “fail the mirror test”. We used

the failed mirror test as a heuristic by which to identify residues for which the cMD model

deviates from the structural ensemble modelled by experimental refinement.

As an example: consider again phosphorylated serine (SEP) residue 139, visualized in both

density and coordinate views in Figure 4.3. This residue provides a clear example of the

ways in which the relationship between residual RMSD and SDAP can capture meaningful

differences in between the cMD and experimentally-refined ensemble models. The residual

SDAP for the residue stays roughly constant for all cMD simulations at the various restraint

strengths (indicating a roughly constant amount of structural heterogeneity) but the RMSD

increases (indicating that the residue is moving concertedly away from its position in the

experimentally-refined ensemble) (Figure 4.16). In this case, the residue is not highlighted

in red in the residual RMSD/SDAP because its SDAP does not decrease, it only remains

constant – residues highlighted in red correspond to the most extreme failures of the mirror

test, with both large increases in RMSD and large decreases in SDAP.

There are complexities to the interpretation of the failed mirror test that warrant discussion.

Lysines 105, 189, and 217 were highlighted in Figure 4.12, showing three different types of

disorder. Lysine 105 has significant structural heterogeneity for the side chain in both the

experimentally-refined ensemble and the cMD ensembles; lysine 189 has very little structural

heterogeneity in both the experimentally-refined and cMD ensembles; lysine 217 has signifi-

cant structural heterogeneity in the experimentally-refined ensemble, with a number of the

side chains modelled in to off-backbone density, but the cMD model has relatively less struc-
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tural heterogenity, modelling the off-backbone density as chloride or solvent density, and

modelling most of the side chain in a similar conformation. As expected the residual RMSD

and SDAP for lysine 189 are both very low, and remain low at all restraint energies. Also,

lysine 217 is identified by the mirror test as a residue for which the experimentally-refined

and cMD models diverge (Figure 4.17).

However, lysine 105 is also identified by the failed mirror test as a residue for which the

experimentally-refined and cMD models diverge (Figure 4.17). In this case though, the de-

crease in residual SDAP comes mostly from the fact that the disorder in the side chain stays

roughly constant while the disorder in the backbone increases (Figure 4.18). This is represen-

tative of a major difference between the cMD and experimentally-refined ensemble models:

the experimentally-refined ensemble model refines the B-factors of the atoms along with the

coordinates. The B-factors smooth out the density, representing small scale harmonic dis-

order about the atoms’ average positions. The cMD model builds in this disorder explicitly.

So, though the densities appear roughly equivalent between the two models, the coordinates

represented by the density are quite different. It’s important to note that the cMD model

predicts disorder in the backbone which is not (entirely) small scale and harmonic: there are

some ensemble members with backbone conformations that are quite different from the rest

(lower left image in Figure 4.18).

In general, most of the residues identified by the failed mirror test happen to be (i) residues

with significant structural heterogeneity modelled by the experimental refinement, and (ii)

on the surface of the protein (Figure 4.23). The failed mirror test does appear to be useful in

identifying residues for which the experimentally-refined and cMD ensembles diverge. This

does not mean that the failed mirror test (and the residual RMSD and SDAP in general)

cannot be used as a measure with which to identify side chains which are significantly dif-

ferently modelled between the experimentally-refined and cMD ensemble models. Below are

four residues, identified using the failed mirror test — glutamine 39 (Figure 4.19), arginines
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134 and 137 (Figures 4.20 and 4.21), and lysine 177 (Figure 4.22) — which, despite exhibiting

the same increase in backbone disorder mentioned above, also exhibit noticeably different

structural ensembles for the side chains that those from the experimentally-refined ensemble.

Glutamine 39 is an interesting case in which there is a straight-forward interaction with

a residue on a neighboring protein (Lysine 83, another residue which fails the mirror test),

which draws the end of the side chain away from its experimentally-refined ensemble position.

The backbone is more disordered than the experimentally-refined ensemble, but the side

chain also adopts a noticeably different conformation (with the amino group pulled off to

the left in the bottom right image of Figure 4.19). These ensemble changes are represented

in the density as well (bottom left image).

Arginines 134 and 137 both deviate from their experimentally-refined ensembles in the

cMD model. Arginine 134 adopts two major conformations across the ensemble in the

0.2 kJmol−1nm−2 restraints force constant simulation, with some side chains jutting off to

toward an adjacent phenylalanine (to the left), and others bending toward a symmetry re-

lated copy of serine 212 (to the right), whereas the experimentally-refined ensemble is more

scattered. The difference between the experimentally-refined and cMD ensemble models of

arginine 137 is more subtle: the experimental model has a few side chains jutting off in to

solvent density, while the cMD model has more structural homogeneity, despite the increased

backbone disorder.

Lysine 177 has such a significant change from structural heterogeneity to homogeneity that

it shows up in the density from the cMD simulation. In the experimentally-refined ensemble

model, the side chain is modelled with significant structural heterogeneity, but in the cMD

model, even with significant disorder in the backbone, the side chain adopts such a concerted

conformation across the ensemble that there is resolved density along the entire side chain,

even at the lowest restraint energy. The amino group of the lysine is pulled toward the

backbone oxygen of arginine 308 (top left of the top right image in Figure 4.22).
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As we’ve seen from examining each of these individual cases, the “mirror test” is an imperfect,

but still useful, quantitative heuristic for identifying side chain ensembles which the cMD

and experimental-refinement model differently. However, it is important to ask how well the

cMD density agrees with the density from experiment, even in cases where the side-chain

ensembles are modelled differently. It may be the case, for example, that the cMD converges

on a different structural ensemble for the side chain, but the density implied by the new

structural ensemble agrees with the experimental structure factors just as well.

To test this, we defined a mask region around each of the side chain ensembles using the

sfall method from CCP4, and analyzed the correlation between the experimental density

(converting the experimental structure factors to a density using phenix.mtx2map) and the

cMD-calculated density (using the same method) in the region defined by the mask, for each

residue, using the overlapmap method from CCP4. This gives us a real space correlation

coefficient (RSCC) between the experimental and cMD-predicted density for each residue,

for each restraint force constant cMD simulation. The results are presented in Figure 4.24.

There is an overall increase in correlation with the experimental map as the restraint force

constants decrease, with an average increase in RSCC across all residues of 0.028 going from

200 to 20 kJmol−1kJ−2, 0.048 going from 200 to 2 kJmol−1kJ−2, and 0.047 going from 200

to 0.2 kJmol−1kJ−2. Thus, on average, as the restraints are relaxed, the side-chain density

predicted by the cMD model agrees better with the experimental density, with the increase in

correlation maxing out somewhere between 20 and 2 kJmol−1kJ−2. In fact, even though the

“failed mirror test” identifies residues with significant differences between the experimentally-

refined ensemble and the cMD predicted ensemble, the correlation increases for these residues

as well, on average, with a RSCC increase of 0.03 going from 200 to 20 kJmol−1kJ−2, 0.05

going from 200 to 2 kJmol−1kJ−2, and 0.03 going from 200 to 0.2 kJmol−1kJ−2. Overall, the

cMD density appears to agree more with the density from experiment as the restraints are

relaxed. This is true even for the residues which fail the mirror test — that is for residues
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with side chain ensembles that are differently modelled by the cMD simulation than those

modelled the experimental refinement.

4.4.5 Conclusions

In this chapter, we’ve laid out a systematic study of protein kinase A (PKA) using a crys-

talline molecular dynamics simulation. This cMD system is novel in that it each of the pro-

teins in the supercell start from a different position pulled from an experimentally-refined

ensemble model. We also studied the effect of restraint strength on the modelling of the

density and the dynamics of the cMD ensemble.

We found that the overall pattern of the heavy-atom B-factors is modelled well, even in

relatively strongly restrained simulations, while the relaxation of the restraints brings the

magnitude of the B-factors closer to those from experiment. There may be a way to system-

atically scale the predicted B-factors up based on the restraint strength, to identify atoms

or regions which are being modelled as overly or insufficiently disordered even at strong

restraint strength, by comparison with the experimental B-factors.

We also found that cMD simulations of PKA are able to reproduce the crystallographic

waters from experimental refinement with very good precision and recall — similar to that

of previous studies on a system of enduglucanase. Unlike previous studies, we also showed

that the restraint force constant can be lowered by an order of magnitude without losing

signnificant accuracy in the prediction of crystallographic waters. However, somewhere be-

tween a restraint force constant of 20 and 2 kJ ·mol−1 ·nm−2 the accuracy of the cMD model

with respect to the prediction of crystallographic waters begins to plummet (from 95% of

waters recovered to within an Angstrom to 85% or below). Further work will need to be

done to isolate the source of this decline in accuracy, but the displacement of atoms from

their crystal positions may to play a strong roll (as may an increase in unrestrained thermal
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disorder). We were also able to identify potentially catalytically relevant water networks

around the active site of PKA which were not modelled in by ensemble refinement, and were

not associated with difference density (but were supported by a Polder map).

Finally, we were able to identify a heuristic with which to identify side chain ensembles which

are differently modelled by the cMD than the are by the experimental refinement. The RMSD

and SDAP of heavy atoms (in partcular, the residual, or side chain minus backbone RMSD

and SDAP) are simple measures of disorder which manage to to capture information about

the differences between two complicated ensembles. These measures can be used to easily

identify residues in the cMD simulation whose positions are significantly different from those

in the refined ensemble structural model, even if both ensembles exhibit significant structural

heterogeneity, allowing cMD modelers to identify areas were the ensemble model may be

building in side chains incorrectly (for instance, building the side chain in to density that is

more likely solvent).

We hope this work serves as example of the many and varied ways in which cMD models

can be useful in the modelling of crystallographic structure and disorder, particularly for

structural ensembles. cMD models can be used to study crystal systems from a coordinate-

based (ensemble) perspective and a density-based perspective. The density based perspective

is particularly powerful: the cMD model can be used to characterize areas of density as either

protein, solvent, or ion (or in some cases, a combination of multiple), a capability which is

not possible with standard crystallographic methods. This capability can be leveraged to

test hypotheses about the relationship between ordered water and side chains or active site

molecules which might not be possible otherwise, while maintaining the ability to compare

results with high quality crystallographic data. We hope others may find these techniques

useful.
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Figure 4.12: First row: experimental composite map (2FO−FC ; white) and difference map (FO−FC ; positive
in green, negative in red) displayed as a 1σ and 3σ isosurface, respectively. Second row: exp. composite
map (white) and cMD-calculated density (blue) from the final 10ns of the 200 kJmol−1kJ−2 restraint force
constant simulation, displayed as a 1 σ isosurface. Third row: exp. composite map (white) and cMD density
(blue) with experimentally-refine ensemble model (yellow bonds). Bottom row: exp. composite map (white)
and cMD density (blue) with reverse-propagated ensemble from the final frame of the cMD trajectory (green
bonds). Side chain of lysine 105 is structurally heterogeneous in both ensembles; side chain of lysine 189 is
structurally homogeneous in both models; side chain of lysine 217 is relatively structurally homogeneous in
both models, but the models place the side chain in different positions.
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Figure 4.13: Above the x-axis: side chain heavy-atom ensemble-and-residue-averaged SDAP for the
experimentally-refined ensemble (grey) and for the 200 kJ·mol−1 ·nm−2 (light grey-green), 20 kJ·mol−1 ·nm−2

(lime green), 2 kJ · mol−1 · nm−2 (medium green), and 0.2 kJ · mol−1 · nm−2 (forest green) restraint force
constant cMD simulation final frame ensembles. Below the x-axis: side chain heavy-atom ensemble-and-
residue-averaged RMSD for the cMD simulation final frame ensemble, from light to dark blue, in the same
order as above. Both are colored to indicate the small (white) to large (dark red) changes in RMSD and
SDAP. There is high RMSD and SDAP (and large increases in both, as restraints are relaxed) in flexibile
regions, such as the G loop (green bar).
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Figure 4.14: Above the x-axis: backbone heavy-atom ensemble-and-residue-averaged SDAP for the
experimentally-refined ensemble (grey) and for the 200 kJ·mol−1 ·nm−2 (light grey-green), 20 kJ·mol−1 ·nm−2

(lime green), 2 kJ · mol−1 · nm−2 (medium green), and 0.2 kJ · mol−1 · nm−2 (forest green) restraint force
constant cMD simulation final frame ensembles. Below the x-axis: backbone heavy-atom ensemble-and-
residue-averaged RMSD for the cMD simulation final frame ensemble, from light to dark blue, in the same
order as above, with increasing RMSD going down from the x-axis. Both are colored to indicate the small
(white) to large (dark red) changes in RMSD and SDAP. There is high RMSD and SDAP (and large increases
in both, as restraints are relaxed) in flexibile regions, such as the G loop (green bar).

110



Figure 4.15: Above the x-axis: residual (side chain minus backbone) heavy-atom ensemble-and-residue-
averaged SDAP for the experimentally-refined ensemble (grey) and for the 200 kJ · mol−1 · nm−2 (light
grey-green), 20 kJ ·mol−1 ·nm−2 (lime green), 2 kJ ·mol−1 ·nm−2 (medium green), and 0.2 kJ ·mol−1 ·nm−2

(forest green) restraint force constant cMD simulation final frame ensembles. Below the x-axis: backbone
heavy-atom ensemble-and-residue-averaged RMSD for the cMD simulation final frame ensemble, from light
to dark blue, in the same order as above, with increasing RMSD going down from the x-axis. Both are
colored to indicate the negative (dark red), zero (white), and positive (dark blue) changes in RMSD and
SDAP. “Failed mirror test” residues will have negative (red) change in SDAP and positive (blue) change in
RMSD – residues with both large negative SDAP change and large positive RMSD change are highlighted
with red labels.

Figure 4.17: Residual SDAP (above the x-axis, increasing upward) and RMSD (below the x-axis, increasing
downward) for residues 101-110, 180-190, and 210-220, with lysines 105, 189, and 217 highlighted with yellow
bounding boxes. Residues which significantly fail the mirror test (large increase in RMSD, large decrease in
SDAP) have their residue names highlighted in red.
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Figure 4.18: Lysine 105 — top left: experimental composite (2FO − FC)) map displayed as a 1σ isosurface;
Top right: same as top left, withe experimentally-refined ensemble superimposed; bottom left: cMD density
from the 0.2 kJmol−1nm−2 restraint force constant simulation, displayed as a 1σ isosurface; bottom right:
same as bottom left, with the final-frame reverse-propagated cMD ensemble from the 0.2 kJmol−1nm−2

restraint force constant simulation superimposed.
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Figure 4.19: Glutamine 39 — top left: experimental composite (2FO − FC) and difference (FO − FC) map
displayed as a 1σ and 3σ isosurface, respectively; Top right: same as top left, with the experimentally-refined
ensemble superimposed, and symmetry-related copy of lysine 83 in blue; bottom left: cMD density from the
0.2 kJmol−1nm−2 restraint force constant simulation, displayed as a 1σ isosurface; bottom right: same as
bottom left, with the final-frame reverse-propagated cMD ensemble from the 0.2 kJmol−1nm−2 restraint
force constant simulation superimposed.
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Figure 4.20: Arginine 134 — top left: experimental composite (2FO − FC) and difference (FO − FC) map
displayed as a 1σ and 3σ isosurface, respectively; Top right: same as top left, with the experimentally-
refined ensemble superimposed; bottom left: cMD density from the 0.2 kJmol−1nm−2 restraint force constant
simulation, displayed as a 1σ isosurface; bottom right: same as bottom left, with the final-frame reverse-
propagated cMD ensemble from the 0.2 kJmol−1nm−2 restraint force constant simulation superimposed.
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Figure 4.21: Arginine 137 — top left: experimental composite (2FO − FC) and difference (FO − FC) map
displayed as a 1σ and 3σ isosurface, respectively; Top right: same as top left, with the experimentally-
refined ensemble superimposed; bottom left: cMD density from the 0.2 kJmol−1nm−2 restraint force constant
simulation, displayed as a 1σ isosurface; bottom right: same as bottom left, with the final-frame reverse-
propagated cMD ensemble from the 0.2 kJmol−1nm−2 restraint force constant simulation superimposed.
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Figure 4.22: Lysine 177 — top left: experimental composite (2FO − FC) and difference (FO − FC) map
displayed as a 1σ and 3σ isosurface, respectively; Top right: same as top left, with the experimentally-
refined ensemble superimposed; bottom left: cMD density from the 0.2 kJmol−1nm−2 restraint force constant
simulation, displayed as a 1σ isosurface; bottom right: same as bottom left, with the final-frame reverse-
propagated cMD ensemble from the 0.2 kJmol−1nm−2 restraint force constant simulation superimposed.
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Figure 4.23: Experimentally-refined ensemble of PKA, with residues which fail the RMSD/SDAP “mirror”
test highlighted in red.

Figure 4.24: Pearson correlation coefficient (PCC) between the experimental and cMD-predicted density in
a mask defined around the side chain ensemble, for each residue, for cMD simulations with restraint force
constants of 200 (grey-green), 20 (grey green), 2 (medium green) and 0.2 (dark green) kJ · mol−1 · nm−2.
Colored backgrounds indicate trend in PCC with a net average decrease in correlation with relaxation of
restraints colored in dark red, net zero trend in PCC in white, and net positive trend in PCC in dark blue.
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Chapter 5

Future Directions in the Modelling of

Crystallographic Structure and

Dynamics

5.1 Diffuse Scattering

In the past decade or two, there has been renewed interest in the modelling of diffuse scat-

tering in X-ray crystallography, as a method for probing correlated dynamics in protein crys-

tals. Steady improvements in the modelling of conformational heterogeneity against Bragg

data and correlated dynamics through diffuse scattering have been made possible thanks

to better experimental methods (room temperature and time-resolved experiments), better

modelling paradigms (ensemble and multiconformer refinement), better detectors (pixel ar-

ray detectors, with high resolution, low point spread functions, and high signal to noise),

and brighter, more energetic light sources, with the ability to produce femtosecond pulses

(X-ray Free Electron Lasers, or XFELs)[106].
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Improvements in the modelling of diffuse scattering have been slowed by the relative scarcity

of high-quality data sets. Although the diffuse scattering accounts for about 50% of all

scattered photons, the anisotropic component can be quite weak (about 10 times weaker

than the isotropic), so to discriminate the signal from noise, care has to be taken to account

for and either experimentally eliminate or (post-measurement) subtract away sources of

background scattering from, e.g., the loop used to mount the crystal, the liquid the crystal is

suspended in, and the scattering from the air. The work of Ayyer et al. (2016)[3] and Ando

et al. (2020)[68] are the finest examples to date of careful data collection and processing, in

addition to being some of the most exciting and groundbreaking work in this space. Ayyer et

al. showed that the diffuse scattering (in their case, modelled as resulting from independent

rigid body translational displacements) could be used to extend the resolution of the data

set, and allow for model-free phasing (though Wall, Wolff, and Fraser present questions and

concerns about this work in their perspective paper[106], in the section on “Phasing and

resolution extension”).

Ando et al. presented the first case in which the diffuse scattering could be used to distinguish

between two roughly1 equivalent EN models of internal motions which were both refined

against the ADPs and the diffuse scattering and were equivalent in their correlation with

the B-factors. In addition, they were able to show that a significant part of the agreement

with the diffuse data comes from lattice-coupled motions, with only a comparatively small

increase in correlation coming from the addition of internal motions. This type of finding

would not possible with coarse-grained data, or data that is not carefully processed, as the

lattice-coupled motions were refined against halos around the Bragg peaks, which require

fine-grained data to analyze the power law dependence as a function of the distance from

the center of the Bragg peak. They also took care to collect diffraction images from the

crystal and the plastic capillary in which the crystal was housed, by simply translating the

1There was a small difference in the number of parameters between the rigid-body lattice-connected and
internal-plus-lattice-connect elastic network models.
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spindle arm at each angle at which the data was collected. They showed that background

scattering has many independent features that vary as the spindle arm is rotated, so the

rigorous collection of background scattering data for each reflection is important to achieve

similar quality in the Bragg and diffuse data. Beam line scientists would do well to design

their experiments, and process their data with the same level of care and sophistication.

Additional tools will be required to apply the same techniques to crystals with higher levels

of mosaicity, or more complex unit cells (the unit cell of triclinic lysozyme is P1, with one

protein per unit cell, and their particular data set showed very small amounts of mosiacity

compared to standard protein crystals).

Open source methods have been developed to aid in the collection of more high quality data

sets: the lunus and sematura (https://github.com/fraser-lab/diffuse scattering)

software suites provide end-to-end methods for the isolation, processing, and analysis of

diffuse scattering data from diffraction images (capable of processing thousands of images

in minutes, on a small computing cluster). Even with a small number of suitable data sets

to work with, there have been notable successes in extracting information from the diffuse

scattering using a variety of models.

The liquid-like motions (LLM) model has been the most widely tested of these models, and

(with the exception of the Ando et al. paper mentioned above) has reliably exhibited the

highest correlations with the experimental anisotropic diffuse scattering data compared with

other models. Its simplicity is both a strength and a weakness: it can be easily refined

against the data with very little required in the way of computational resources, but it has

not yet been leveraged to provide information about dynamics which are biologically or

functionally illuminating. This may change in the near future: it is possible to reconstruct

the variance-covariance matrix of atomic displacements using the RMS displacement and

correlation length obtained through refinement (or correlation lengths if one is using the

anisotropic LLM model), which can then be used to calculate the Hessian matrix and thus
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the normal modes and eigenvalues for the dynamics of the protein implied by the model. New

methods have very recently been developed[101] which move beyond assigning assigning the

same covariance matrix of atomic displacements to every atom, and instead utilize the full

Bragg scattering to capture information about the displacements of each atom independently

(from the B-factors). Whether or not combined B-factor and LLM model is able to (a)

better predict the anisotropic diffuse scattering, and/or (b) provide useful information about

internal motions in proteins to the degree that more complicated elastic network models have

is an open question. However, were both true, this updated LLM model would allow for

simultaneous refinement of a structural and dynamical model against the Bragg and diffuse

data with modest computational resources.

5.2 Crystalline Molecular Dynamics Simulations

5.2.1 Structural Modelling

The agreement between crystalline MD (cMD) models and diffuse scattering data is, in

general, very good for the full diffuse scattering signal (isotropic and anisotropic), with

correlation coefficients between modelled and experimental data greater than 0.9 (see [105],

[68], and our work, [110]). It is often left out of discussions of the merits of various models

that the cMD model is still, to this day, the only widely-studied model capable of predicting

both the isotropic and anisotropic components of the diffuse scattering, as it is the only

model which incorporates interactions between the protein and the solvent. However, this

remark is left out for an understandable reason: the anisotropic component of the diffuse

scattering comes almost entirely from the correlated dynamics of the protein alone, so this

is the data we’re interested in if we’re concerned primarily with the modelling of protein

dynamics. The other models (LLM, RBM, EN/NM) benefit from the ability to tune their
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parameters against experimental data (either Bragg or diffuse), while the MD model does

not.

The unrestrained cMD model does not appear to be an exceptionally good model of the

average structure of protein crystals (Bragg data) at the moment. Ando et al. [68] showed

that, for cMD simulations from 1 to over 300 unit cells, the correlation coefficient between

the experimental and predicted Bragg intensities decreases dramatically with diffraction

resolution (and doesn’t improve all that much with the addition of many unit cells) indicating

that unrestrained cMD systems are poor models for average structure at high resolution.

This is unsurprising, given the prevalence of structural “drift” observed in many different

unrestrained cMD simulations (remarked upon in Chapter 2). We found similar results:

for Staph. nuclease, the heavy-atom RMSD to the crystal structure supercell was 2.5-3 Å,

with the full supercell translationally fit to the starting structure. For PKA, we found that

protein structures refined against the cMD-simulated structure factors increased in RMSD

to the experimentally-refined structure, with a heavy atom RMSD increasing from 0.84 to

1.08 Å as restraint constants are decreased from 200 to 0.2 kJ ·mol−1 · nm−2. However, the

modelling of the B-factors by unrestrained simulations appears to be quite accurate (e.g. see

[46], [100], and the previous chapter), and agreement with other dynamical data (such as

chemical shifts from solid state NMR data) can be quite good as well (as remarked on in

Chapter 2).

It appears, therefore, that unrestrained MD models are well tuned to reproduce the small

scale harmonic motions that side chains and larger structural features undergo, due to ther-

mal motion and short-range interactions with nearby residues, but the force field leads the

structure as a whole to converge to an inaccurate conformation. The most promising course

for force field improvement seems to be the tuning of parameters for protein-protein and

protein-solvent interactions, as the force fields’ reproduction of secondary structure elements

and non-solvent-exposed side chains positions (for standard residues) appears to be fairly
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accurate. In a previous chapter, we discussed how important the choice of water model can

be in the prediction of solvation thermodynamics, and some attempts at developing a vari-

ant of the AMBER force field specifically designed for protein-protein association. Polarizable

force fields or quantum mechanical treatment may be useful in the modelling of these specific

interactions as well, though there is quite a bit of work to be done before either will be up

to the task of simulating an entire protein (let alone many unit cells of them) for, say, tens

to hundreds of nanoseconds (the time scales required to predict many biologically important

motions). Quantum mechanical treatment of isolated portions of a cMD simulation may be

possible in the near future, but only on short time-scales. However, simulations of this kind

at smaller time scales may help to better understand what is currently missing from the

gold-standard MD force fields.

In the meantime, restrained cMD simulations provide useful information about protein crys-

talline systems, while staying true to the experimentally-refined crystal structure. We showed

in the previous chapter that, while the B-factors of a strongly-restrained cMD simulation

may be severely underestimated due to the restriction of motion provided by the restraints,

the overall pattern in the B-factors is well modelled at all restraint constants, with the Pear-

son correlation coefficient to the experimental B-factors staying very high (CC≈0.94) and

constant for simulations with restraint force constants spanning four orders of magnitude.

What’s more, strongly restrained cMD simulations do a remarkably good job at reproduc-

ing the number and position of experimentally-refined crystallographic waters. In fact, the

restraints do not have to be that strong: the restraint force constant can be an order of mag-

nitude weaker than in previous studies of the same kind (on a different system[102]), and

the precision and recall of crystallographic waters to within an angstrom is about the same.

In special cases, the differences between restrained cMD systems and the crystal structure

(or experimentally-refined ensemble) can be large enough that errors in protonation state or

obvious false parametrizations for non-standard residues could be observed even in the most

strongly restrained simulations.
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cMD simulations may also be useful for producing or improving models of structural het-

erogeneiety. As we showed in the previous chapter, the residues with the largest changes

in the conformational ensemble from the experimentally-refined conformational ensemble

were mostly solvent-exposed or crystal-contact residues. These residues were shown, in some

cases, to have direct interactions with side chains from neighboring proteins in the crystal

lattice. The MD simulation used to produce the experimentally-refined ensemble uses bulk

solvent modelling (no explicit waters), and does not include the crystal context. Ensembles

generated for refinement against experimental data could, therefore, be improve by moving

from a sMD to cMD model (even a unit cell simulation would probably be sufficient for these

purposes).

5.2.2 Correlated disorder modelling

Even if there are simpler parametric models (such as the LLM or EN/NM model) that fit the

anisotropic diffuse scattering better than the cMD model does (assuming the results of Ando

et al. are reproduced in other systems), it will still be of interest to both the crystallography

community and the MD modelling community to work to improve the agreement of the cMD

model with crystallographic data. cMD simulations are unique in that they provide a way to

directly compare to experimental data that is (in some cases) incredibly precise and allows

for analysis of the effect of small changes in the model (protonation state changes, different

ligands, or side chain mutations) or the parameters of the force field on the (ensemble)

structure and dynamics, on a scale from the entire protein to the scale of a particular side

chain. In many cases, protein crystal are highly solvated (with solvent content greater than

forty or fifty percent by volume) so it is not unreasonable to expect that improving agreement

with crystallographic data with respect to protein-solvent interactions in the crystal context

will benefit modelling in the solution-state context as well. The same is true for protein-

protein interactions: indeed cMD simulations provide the ideal context in which to study
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protein-protein interactions; the systems is a large, dense collection of closely interacting

proteins.

5.3 Conclusion

I believe the work presented in this dissertation shows that cMD simulations can shed light

on a wide variety of complex phenomena in crystallographic modelling of structure and

dynamics. cMD models have been used to provide context to long-standing debates about

the nature and source of diffuse scattering, and suggest future directions in the modelling of

correlated disorder.

In Chapter 3, we discussed work which showed that a LLM-like model provides an excellent fit

to the global C-α pair displacements, but a combination of RBM- and LLM-like motions were

required to fit the data describing the displacement of intra-protein C-α atom pairs. We also

suggested that different models of disorder may capture features sampled in different areas

of reciprocal space, suggesting that sampling further from the Bragg peaks will preferentially

select models with correlations on shorter length scales, and sampling closer to the Bragg

peaks will select for models with longer range correlated motions. These findings were, in

some small way, validated by the work of Ando et al. who found that a rigid body elastic

network model fits the haloes around Bragg peaks, but a robust fit to the full anisotropic

diffuse scattering data, with more data further from the Bragg peaks, required the addition

of an elastic network model for internal protein motions.

In Chapter 4, we showed that cMD simulations can also be used to improve our understand-

ing of ensemble and/or multi-conformer modelling, side chain disorder, and ordered water

networks across a protein (and in particular, around the active site) to help improve crystal-

lographic models, and potentially expand our understanding of the structure and function of
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biologically-important proteins. Computational resources will continue to become cheaper

and faster, and simulation software will continue to become more flexible across broader

ranges of computing systems (from laptops to high-performance exa-scale computing clus-

ters) bringing down the computational cost and complexity of simulating large, complex

system at the atomic scale.

The work presented here is but a fraction at the work still left to be done. Crystallography

will continue to be a powerful tool in the hands of scientists all over the world. It may become

more powerful still: some of the work presented here suggests that careful crystallographic

experiments should be able to provide models not just of the average structure of proteins

but also their correlated dynamics (a dream in the field for quite some time). However,

as things stand, the “R-factor gap” remains unexplained: the source of the difference in

accuracy between small-molecule and macromolecular crystallographic models has not been

identified. Crystalline molecular dynamics simulations of both Bragg and diffuse diffraction

data may prove indispensable in the search for the source of this discrepancy, as it seems

likely that the modelling of structural heterogeneity, correlated dynamics, and ordered water

networks play a central role. cMD simulations are the finest tool currently available for the

study of both, using the same model.
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Chen, Tristan I Croll, Bradley Hintze, L-W Hung, Swati Jain, Airlie J McCoy, et al.

131



Macromolecular structure determination using x-rays, neutrons and electrons: re-
cent developments in phenix. Acta Crystallographica Section D: Structural Biology,
75(10):861–877, 2019.

[59] Dorothee Liebschner, Pavel V Afonine, Nigel W Moriarty, Billy K Poon, Oleg V
Sobolev, Thomas C Terwilliger, and Paul D Adams. Polder maps: improving omit
maps by excluding bulk solvent. Acta Crystallographica Section D: Structural Biology,
73(2):148–157, 2017.

[60] Kresten Lindorff-Larsen, Paul Maragakis, Stefano Piana, Michael P Eastwood, Ron O
Dror, and David E Shaw. Systematic validation of protein force fields against experi-
mental data. PloS one, 7(2):e32131, 2012.

[61] AJ Malkin, Yu G Kuznetsov, and A McPherson. Defect structure of macromolecular
crystals. Journal of Structural Biology, 117(2):124–137, 1996.

[62] Brian W Matthews. Solvent content of protein crystals. Journal of molecular biology,
33(2):491–497, 1968.

[63] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harrigan, Christoph Klein,
Jason M. Swails, Carlos X. Hernández, Christian R. Schwantes, Lee-Ping Wang,
Thomas J. Lane, and Vijay S. Pande. Mdtraj: A modern open library for the analysis
of molecular dynamics trajectories. Biophysical Journal, 109(8):1528 – 1532, 2015.

[64] Kristin L Meagher, Luke T Redman, and Heather A Carlson. Development of polyphos-
phate parameters for use with the amber force field. Journal of computational chem-
istry, 24(9):1016–1025, 2003.

[65] Lars Meinhold, Franci Merzel, and Jeremy C Smith. Lattice dynamics of a protein
crystal. Physical review letters, 99(13):138101, 2007.

[66] Lars Meinhold and Jeremy C Smith. Correlated dynamics determining x-ray diffuse
scattering from a crystalline protein revealed by molecular dynamics simulation. Phys-
ical review letters, 95(21):218103, 2005.

[67] Lars Meinhold and Jeremy C Smith. Fluctuations and correlations in crystalline pro-
tein dynamics: a simulation analysis of staphylococcal nuclease. Biophysical journal,
88(4):2554–2563, 2005.

[68] Steve P Meisburger, David A Case, and Nozomi Ando. Diffuse x-ray scattering from
correlated motions in a protein crystal. Nature communications, 11(1):1–13, 2020.

[69] Steve P Meisburger, William C Thomas, Maxwell B Watkins, and Nozomi Ando. X-
ray scattering studies of protein structural dynamics. Chemical reviews, 117(12):7615–
7672, 2017.

[70] Kenji Mizuguchi, Akinori Kidera, and Nobuhiro Gō. Collective motions in proteins
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Appendix A

Preparatory and analysis code, and

production simulation .mdp paramters

propagate.py: an example of a propagation script, using mdtraj[63] and numpy[35] which

takes in an ensemble model .pdb file as input, and outputs a full supercell .pdb file.

1 import mdtraj as md

2 import numpy as np

3

4 # LOAD IN ENSEMBLE

5 ens = md.load_pdb("ensemble.pdb")

6

7 #UNIT CELL LENGTHS (a, b, c)

8 UC_L = ens.unitcell_lengths [0]

9

10 # TRANSFORM TO FRACTIONAL COORDS

11 for i in range (32):

12 ens.xyz[i] = np.apply_along_axis(lambda x: np.divide(x, UC_L), 1, ens.xyz[i])

13

14 def UC(coords , which):

15 ’’’Takes in protein coordinates in array form and outputs coordinates

16 transformed by P212121 symmetry operations

17 ’’’

18 if which == "first":
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19 for i in range(len(coords)):

20 coords[i] = np.array([-coords[i][0]+0.5 , -coords[i][1], coords[i][2]+0.5])

21

22 if which == "second":

23 for i in range(len(coords)):

24 coords[i] = np.array ([ coords[i][0]+0.5 , -coords[i][1]+0.5 , -coords[i][2]])

25

26 if which == "third":

27 for i in range(len(coords)):

28 coords[i] = np.array([-coords[i][0], coords[i][1]+0.5 , -coords[i][2]+0.5])

29

30 return coords

31

32 def TRN(coords , axis):

33 ’’’Translates coordinates by a full unit cell along the selected direction

34 ’’’

35 if axis == "x":

36 return np.apply_along_axis(lambda x: np.add(np.array ([1.0 , 0.0, 0.0]), x), 1, coords

)

37

38 elif axis == "y":

39 return np.apply_along_axis(lambda x: np.add(np.array ([0.0 , 1.0, 0.0]), x), 1, coords

)

40

41 elif axis == "z":

42 return np.apply_along_axis(lambda x: np.add(np.array ([0.0 , 0.0, 1.0]), x), 1, coords

)

43

44 # OG UC

45 # DO NOTHING FOR THE ORIGINAL PROTEIN (ens.xyz [0])

46 ens.xyz [1] = UC(ens.xyz[1], "first")

47 ens.xyz [2] = UC(ens.xyz[2], "second")

48 ens.xyz [3] = UC(ens.xyz[3], "third")

49 # UC +X

50 ens.xyz [4] = TRN( ens.xyz[4], "x")

51 ens.xyz [5] = TRN(UC(ens.xyz[5], "first"), "x")

52 ens.xyz [6] = TRN(UC(ens.xyz[6], "second"), "x")

53 ens.xyz [7] = TRN(UC(ens.xyz[7], "third"), "x")

54 #UC +Y

55 ens.xyz [8] = TRN( ens.xyz[8], "y")

56 ens.xyz [9] = TRN(UC(ens.xyz[9], "first"), "y")
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57 ens.xyz [10] = TRN(UC(ens.xyz[10], "second"), "y")

58 ens.xyz [11] = TRN(UC(ens.xyz[11], "third"), "y")

59 # UC +Z

60 ens.xyz [12] = TRN( ens.xyz[12], "z")

61 ens.xyz [13] = TRN(UC(ens.xyz[13], "first"), "z")

62 ens.xyz [14] = TRN(UC(ens.xyz[14], "second"), "z")

63 ens.xyz [15] = TRN(UC(ens.xyz[15], "third"), "z")

64 # UC +X+Y

65 ens.xyz [16] = TRN(TRN( ens.xyz[16], "x"), "y")

66 ens.xyz [17] = TRN(TRN(UC(ens.xyz[17], "first"), "x"), "y")

67 ens.xyz [18] = TRN(TRN(UC(ens.xyz[18], "second"), "x"), "y")

68 ens.xyz [19] = TRN(TRN(UC(ens.xyz[19], "third"), "x"), "y")

69 # UC +X+Z

70 ens.xyz [20] = TRN(TRN( ens.xyz[20], "x"), "z")

71 ens.xyz [21] = TRN(TRN(UC(ens.xyz[21], "first"), "x"), "z")

72 ens.xyz [22] = TRN(TRN(UC(ens.xyz[22], "second"), "x"), "z")

73 ens.xyz [23] = TRN(TRN(UC(ens.xyz[23], "third"), "x"), "z")

74 # UC +Y+Z

75 ens.xyz [24] = TRN(TRN( ens.xyz[24], "y"), "z")

76 ens.xyz [25] = TRN(TRN(UC(ens.xyz[25], "first"), "y"), "z")

77 ens.xyz [26] = TRN(TRN(UC(ens.xyz[26], "second"), "y"), "z")

78 ens.xyz [27] = TRN(TRN(UC(ens.xyz[27], "third"), "y"), "z")

79 # UC +X+Y+Z

80 ens.xyz [28] = TRN(TRN(TRN( ens.xyz[28], "x"), "y"), "z")

81 ens.xyz [29] = TRN(TRN(TRN(UC(ens.xyz[29], "first"), "x"), "y"), "z")

82 ens.xyz [30] = TRN(TRN(TRN(UC(ens.xyz[30], "second"), "x"), "y"), "z")

83 ens.xyz [31] = TRN(TRN(TRN(UC(ens.xyz[31], "third"), "x"), "y"), "z")

84

85 # TRANSFORM BACK TO REAL COORDINATES

86 for j in range (32):

87 ens.xyz[j] = np.apply_along_axis(lambda x: np.multiply(x, UC_L), 1, ens.xyz[j])

88

89 # SAVE OUT THE FULL SUPERCELL

90 ens.save("supercell.pdb")
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reverse propagate.py: an example of a script which sends supercell proteins back to the

position of the asymmetric unit, by reversing the unit cell translation and symmetry propa-

gation operations. This script uses the helper module pdbio.py, a minimalist script written

by me to facilitate the reading, manipulation, and writing of atom information from .pdb

files. The link to the code is provided in the Vita.

1 from pdbio import *

2 import numpy as np

3 from copy import deepcopy

4 import sys

5

6 # GET THE FILENAME

7 filename = sys.argv [1]

8

9 # LOAD IN ENSEMBLE

10 full = PDBFile(filename)

11

12 # GET UNIT CELL SIDE LENGTHS FROM SUPERCELL BOX LENGTHS

13 full.crystinfo.a = full.crystinfo.a/2

14 full.crystinfo.b = full.crystinfo.b/2

15 full.crystinfo.c = full.crystinfo.c/2

16

17 # TRANSFORM TO FRACTIONAL COORDS

18 for atom in full.contents:

19 if not isinstance(atom , str):

20 atom.x /= full.crystinfo.a

21 atom.y /= full.crystinfo.b

22 atom.z /= full.crystinfo.c

23

24 # ATOMS PER PROTEIN

25 app = int(len([atom for atom in full.contents if not isinstance(atom , str)])/32)

26

27 # INDIVIDUAL PROTEINS

28 prots = [PDBFile(ifilename=None , crystinfo=full.crystinfo ,

29 contents=full.contents[i*app:(i+1)*app]) for i in range (32)]

30

31 def UC(_prot , which):

32 ’’’Takes in a protein PDBFile object , and outputs the same object , with

33 coordinates mapped back to the assymmetric unit , based on their placement

34 in the unit cell
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35 ’’’

36 prot = deepcopy(_prot)

37 if which == "first":

38 for atom in prot.contents:

39 if not isinstance(atom , str):

40 coord = [atom.x, atom.y, atom.z]

41 coord = [-(coord [0] -0.5), -coord[1], coord [2] -0.5]

42 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

43

44 if which == "second":

45 for atom in prot.contents:

46 if not isinstance(atom , str):

47 coord = [atom.x, atom.y, atom.z]

48 coord = [coord [0]-0.5, -(coord [1] -0.5), -coord [2]]

49 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

50

51 if which == "third":

52 for atom in prot.contents:

53 if not isinstance(atom , str):

54 coord = [atom.x, atom.y, atom.z]

55 coord = [-coord[0], coord [1]-0.5, -(coord [2] -0.5)]

56 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

57

58 return prot

59

60 def TRN(_prot , axis):

61 ’’’Takes in a protein PDBFile object , and outputs the same object ,

62 translated by a unit cell length in the selected axis direction

63 ’’’

64 prot = deepcopy(_prot)

65 if axis == "x":

66 for atom in prot.contents:

67 if not isinstance(atom , str):

68 coord = [atom.x, atom.y, atom.z]

69 coord = [coord [0]-1.0, coord[1], coord [2]]

70 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

71

72 if axis == "y":

73 for atom in prot.contents:

74 if not isinstance(atom , str):

75 coord = [atom.x, atom.y, atom.z]
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76 coord = [coord[0], coord [1]-1.0, coord [2]]

77 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

78

79 if axis == "z":

80 for atom in prot.contents:

81 if not isinstance(atom , str):

82 coord = [atom.x, atom.y, atom.z]

83 coord = [coord[0], coord[1], coord [2] -1.0]

84 atom.x = coord [0]; atom.y = coord [1]; atom.z = coord [2]

85

86 return prot

87

88 # OG UC

89 # DO NOTHING FOR THE FIRST PROTEIN

90 # (IT IS ALREADY ON THE ASYMMETRIC UNIT)

91 prots [1] = UC(prots[1], "first")

92 prots [2] = UC(prots[2], "second")

93 prots [3] = UC(prots[3], "third")

94 # UC X

95 prots [4] = TRN(prots[4], "x")

96 prots [5] = UC(TRN(prots[5], "x"), "first")

97 prots [6] = UC(TRN(prots[6], "x"), "second")

98 prots [7] = UC(TRN(prots[7], "x"), "third")

99 #UC Y

100 prots [8] = TRN(prots[8], "y")

101 prots [9] = UC(TRN(prots[9], "y"), "first")

102 prots [10] = UC(TRN(prots [10], "y"), "second")

103 prots [11] = UC(TRN(prots [11], "y"), "third")

104 # UC Z

105 prots [12] = TRN(prots [12], "z")

106 prots [13] = UC(TRN(prots [13], "z"), "first")

107 prots [14] = UC(TRN(prots [14], "z"), "second")

108 prots [15] = UC(TRN(prots [15], "z"), "third")

109 # UC XY

110 prots [16] = TRN(TRN(prots [16], "x"), "y")

111 prots [17] = UC(TRN(TRN(prots [17], "x"), "y"), "first")

112 prots [18] = UC(TRN(TRN(prots [18], "x"), "y"), "second")

113 prots [19] = UC(TRN(TRN(prots [19], "x"), "y"), "third")

114 # UC XZ

115 prots [20] = TRN(TRN(prots [20], "x"), "z")

116 prots [21] = UC(TRN(TRN(prots [21], "x"), "z"), "first")
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117 prots [22] = UC(TRN(TRN(prots [22], "x"), "z"), "second")

118 prots [23] = UC(TRN(TRN(prots [23], "x"), "z"), "third")

119 # UC YZ

120 prots [24] = TRN(TRN(prots [24], "y"), "z")

121 prots [25] = UC(TRN(TRN(prots [25], "y"), "z"), "first")

122 prots [26] = UC(TRN(TRN(prots [26], "y"), "z"), "second")

123 prots [27] = UC(TRN(TRN(prots [27], "y"), "z"), "third")

124 # UC XYZ

125 prots [28] = TRN(TRN(TRN(prots [28], "x"), "y"), "z")

126 prots [29] = UC(TRN(TRN(TRN(prots [29], "x"), "y"), "z"), "first")

127 prots [30] = UC(TRN(TRN(TRN(prots [30], "x"), "y"), "z"), "second")

128 prots [31] = UC(TRN(TRN(TRN(prots [31], "x"), "y"), "z"), "third")

129

130 alph = "abcdefghijklmnopqrstuvwxyzABCDEF"

131 # CHANGE CHAIN NAMES

132 for i in range(len(prots)):

133 for atom in prots[i]. contents:

134 if not isinstance(atom , str):

135 atom.chainid = alph[i]

136

137 #TRANSFORM BACK

138 for prot in prots:

139 prot.renumber_residues ()

140 _idx = 1

141 for atom in prot.contents:

142 if not isinstance(atom , str):

143 atom.x *= prot.crystinfo.a

144 atom.y *= prot.crystinfo.b

145 atom.z *= prot.crystinfo.c

146 atom.index = _idx

147 _idx += 1

148

149 def multiconf ():

150 ’’’Output multi -conformer .pdb file

151 ’’’

152 new_sys = prots [0]

153 for atom in new_sys.contents:

154 if not isinstance(atom , str):

155 _chainid = atom.chainid

156 atom.chainid = " "

157 atom.resname = _chainid + atom.resname
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158

159 for i in range (31):

160 #prots[i+1]. make_model(i+2)

161 for atom in prots[i+1]. contents:

162 if not isinstance(atom , str):

163 _chainid = atom.chainid

164 atom.chainid = " "

165 atom.resname = _chainid + atom.resname

166

167 new_sys = new_sys.combine(prots[i+1])

168

169 multiconf = PDBFile(ifilename=None , crystinfo=new_sys.crystinfo , contents =[])

170 for i in range (370):

171 multiconf.combine(PDBFile(ifilename=None , crystinfo=new_sys.crystinfo ,

172 contents =[el for el in new_sys.contents if not isinstance(

el, str) and el.resid == i+1]))

173

174 for atom in multiconf.contents:

175 if not isinstance(atom , str):

176 atom.chainid = "A"

177

178 multiconf.write("{} _multiconf.pdb".format(filename [: -4]))

179

180 def multimodel ():

181 ’’’Output multi -model pdb file

182 ’’’

183 new_sys = prots [0]. make_model (1)

184

185 for i in range (31):

186 prots[i+1]. make_model(i+2)

187 new_sys = new_sys.combine(prots[i+1])

188

189 new_sys.write("{} _multimodel.pdb".format(filename [:-4]))

190

191 multiconf ()

192 multimodel ()

144



prod.mdp: example GROMACS[5] .mdp (molecular dynamics parameters) file for a re-

strained 100ns simulation, using the leap-frog stochastic dynamics integrator, with 2 fem-

tosecond times steps, coordinate output every 2 picoseconds, simulated annealing to bring

the system up to temperature (300 Kelvin) for 450 picoseconds, and LINCS constraints on

hydrogen bonds.

1 ; VARIOUS PREPROCESSING OPTIONS

2 title = PKA_prod

3 ; Turning on position restraints

4 define = -DPOSRES_WEAKEST

5 ; RUN CONTROL PARAMETERS

6 integrator = sd

7 ; Start time and timestep in ps

8 tinit = 0

9 dt = 0.002 ; 2 fs

10 nsteps = 50000000 ; 100 ns

11 ; mode for center of mass motion removal

12 comm -mode = Linear

13 ; number of steps for center of mass motion removal

14 nstcomm = 1000 ; 2 ps

15 ; Output Control Paramteres

16 ; Output frequency for coords (x), i

17 ; velocities (v) and forces (f)

18 nstxout = 0 ; none

19 nstvout = 0 ; none

20 nstfout = 0 ; none

21 ; Checkpointing if the MD stop , 2 or 3 times

22 nstcheckpoint = 50000 ; 1000 checkpoints

23 ; Output frequency to log file and energy file ; ... 1/(100 ps)

24 nstlog = 5000 ; 10 ps

25 nstenergy = 5000 ; 10 ps

26 ; Output frequency and precision for xtc file

27 nstxout -compressed = 1000 ; 2 ps

28 compressed -x-precision = 1000

29 energygrps = System

30 ; cutoff scheme

31 cutoff -scheme = Verlet

32 ; nblist update frequency

33 nstlist = 10

34 Verlet -buffer -tolerance = 0.005
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35 ; ns algorithm (simple or grid)

36 ns-type = grid

37 ; Periodic boundary conditions: xyz (default), no (vacuum)

38 ; or full (infinite systems only)

39 pbc = xyz

40 ; nblist cut -off

41 rlist = 1.0

42 ; OPTIONS FOR ELECTROSTATICS/VDW/PME

43 ; Method for doing electrostatics

44 coulombtype = pme

45 rcoulomb -switch = 0

46 rcoulomb = 1.0

47 ; Dielectric constant (DC) for cut -off or DC of reaction field

48 ; Method for doing Van der Waals

49 vdw -type = Cut -off

50 ; cut -off lengths

51 rvdw = 1.0

52 ; Ewald parameters

53 fourier -spacing = 0.12

54 pme -order = 4

55 ewald -rtol = 1e-5

56 ewald -rtol -lj = 1e-3

57 ; Dispersion Correction

58 DispCorr = EnerPres

59 ; OPTIONS FOR WEAK COUPLING ALGORITHMS

60 ; Temperature coupling

61 tcoupl = no

62 ; Groups to couple separately

63 tc-grps = System

64 ; Time constant (ps) and reference temperature (K)

65 tau_t = 2.0

66 ref_t = 298

67 ; Random seed for v-scale algorithm

68 ld_seed = 1191993

69 ; SIMULATED ANNEALING

70 ; type of annealing

71 annealing = yes

72 ; number of annealing reference/control points

73 annealing -npoints = 10

74 ; times for the annealing reference/control points

75 annealing -time = 0 50 100 150 200 250 300 350 400 450
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76 ;reference temperatures

77 annealing -temp = 30 60 90 120 150 180 210 240 270 300

78 ; GENERATE VELOCITIES FOR STARTUP RUN

79 gen_vel = yes

80 gen_temp = 300

81 gen_seed = 1993

82 ; OPTIONS FOR BONDS

83 constraints = h-bonds

84 ; Type of constraint algorithm

85 constraint -algorithm = lincs

86 ; Do not constrain the start configuration

87 continuation = no

88 ; Highest order in the expansion of the constraint coupling matrix

89 lincs -order = 4

90 lincs -iter = 1

91 ; Number of iterations in the final step of LINCS. 1 is fine for

92 ; normal simulations , but use 2 to conserve energy in NVE runs.

93 ; For energy minimization with constraints it should be 4 to 8.

94 ; Lincs will write a warning to the stderr if in one step a bond

95 ; rotates over more degrees than

96 lincs -warnangle = 90
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