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ABSTRACT OF THE THESIS

Leveraging Label Information in Representation Learning

for Multi-label Text Classification

by

Jiayu Wu

Master of Science in Statistics

University of California, Los Angeles, 2019

Professor Ying Nian Wu, Chair

The thesis studies the problem of multi-label text classification, and argues that it could

benefit from bringing the question into the stage of language understanding. In specific,

rather than limit the use of annotated labels to providing supervision in classification only, we

also rely on them as auxiliary information to guide the learning of an effective representation

that is tangent to the down-stream task. Two approaches are discussed: a) learn a label-

word attention layer for composition of word embedding into document vectors; b) learn

a high-level latent abstraction via an auto-encoder generative model with structured priors

conditional on labels. We introduce two designs of label-enhanced representation learning:

Label-embedding Attention Model (LEAM) and Conditional Variational Document model

(CVDM) with application on real-world datasets, in order to demonstrate their ability in

promoting the classification performances with improved interpretability.
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CHAPTER 1

Introduction

1.1 Motivation and Challenges

Multi-label classification is a common task in natural language processing (NLP). It assigns

the most relevant label(s) to a given text document, and is widely applied for review catego-

rization, tag recommendation, information retrieval, etc. The rapid growth in modern data

scale is making it increasingly important as well as challenging.

Conventionally, text data can be processed with manually designed label taxonomy and

naive labeling methods like regular expression matching. It is obviously not accurate nor

efficient enough, and fails to achieve a generalizable understanding of the language.

Going beyond keyword matching, most statistical models and machine learning tech-

niques favor well-defined, fix-length inputs, while the representation of textual data is non-

trivial in NLP. Word entities are discrete in form while rich in connotation, and the serial

correlation in natural utterances also makes feature extraction more difficult.

In addition, multi-label classification can be harder than the single-label multi-class prob-

lem, due to the huge solution space and the potential label structure. Traditional machine

learning techniques like binary relavence and label powerset suffers from a high computa-

tional cost and unbalanced label distributions. Meanwhile, deep learning methods usually

require considerable annotated training samples as well as high computational power, and

the model tend to be domain-specific and hard to interpret.

This thesis attempts to look into these challenges, and argues that using label information

as auxiliary knowledge in the learning of text representation can facilitate the down-stream

classification task and increase model interpretability. Intuitively, instead of assigning labels
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after finishing the reading, we make the algorithm ’aware of’ the task and the possible labels

to choose from even before it looks at the text. In this way, the representation of the messy

textual data is not only aided by contextual information, but also more tangent to the

classification task.

We introduce two approaches to this end: a) learn a label-attention layer after the word

embedding layer, and b) learn a latent semantic vector for each document via generative

model.

1.2 Outline and Contributions

This thesis is organized in five parts. In the first chapter, we introduce the multi-label

text classification task with its main challenges, and state the purpose of this thesis. In

Chapter 2, we formally define the task, and review previous literature on the learning of

text representation and the training of multi-label classification models respectively, with

specific interests in recent advances by using auxiliary knowledge in representation learn-

ing. The methodology will then be detailed in the next chapter. We discuss two models:

Lable-Embedding Attention Model (LEAM) and Conditional Variational Document Model

(CVDM). In Chapter 4, we assess both models on real-world datasets to demonstrate how the

classification is boosted and made more interpretable with the use of label-enhanced repre-

sentation, and some abalative analysis is also presented. Finally, conclusion and discussions

will be presented.

The contributions of our work are as follows:

1. argue that using labels information in the stage of text representation learning can

facilitate the multi-label classification tasks with improved model interpretability;

2. introduce two sorts of label-enhanced representation learning methods and construct

the models for multi-label classification:

• LEAM: multi-label extension of the multi-class LEAM [42] that introduces atten-

tion mechanism between word and label embedded in the same space
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• CVDM: latent variable model under the neural variational inference framework

with latent prior conditioned on labels.

3. demonstrate that LEAM significantly improves multi-label classification performances,

and the decision is made more interpretable due to the learnt attention weights, and

scales well to a large number of labels and unbalanced samples.

4. show that CVDM achieves classification performance comparable to benchmark gen-

erative methods as well as discriminative classification methods, with a more flexible

and generalizable neural network structure.
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CHAPTER 2

Preliminaries

2.1 Task Statement

Consider a corpus withN documents. Each document d is a sequence {w1,w2, ...,wi, ...,wm}

where w’s are word tokens, and m is the length of the document. In order to extract

numerical features from it, we denote the p-dimensional vector representing a word token w

as x, and the vector representation of a document Xd.

Since each document d is associated with an indefinite number of labels, we represent the

label with a binary vector Yd =
[
y1,y2, ...,yl, ...,yL

]ᵀ
,yl ∈ {0, 1} where L is the number

of potential labels in total. We drop the subscript d for simplicity, thus the objective is to

predict a set of most relevant labels Y for a document d represented by X.

The task could be decomposed into two phases in modeling: design or learn a quanti-

tative representation of the text documents, and perform multi-label classification on that

representation. We are especially interested in the mapping of a sequence of word entities to

a fixed length document vector or a latent variable Z with the help of the annotated labels:

X = f (x1,x2, ...,xi, ...,xm; Y) and/or Z = f (X; Y) .

2.2 Representation Learning

The representation of textual data is a prevalent challenge in modeling language. Natural

utterances are sequences of discrete entities of indefinite lengths, while the semantic nuances

as well as the syntactic rules entailed are hard for even human learners to command. In

contrast, most modeling and learning algorithms prefer well-defined, fixed-length numerical
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data and tend to be limited to differentiable functions. Therefore, an important problem

in language processing is to extract from the textual data numerical features capable of

representing various linguistic properties of the text [11].

2.2.1 Word representation

”Without grammar, very little can be conveyed; without vocabulary, nothing can be con-

veyed” [46] . Word tokens are commonly used as the lowest level modeling components in

NLP as the basic abstract units of meaning. Representing a word is the design or learning

of a mathematical object associated with each word, often a vector [40].

Discrete symbols

Regarding word tokens as discrete symbols, a generic way is to represent each word by

a one-hot vector, the vector dimension is then the size of the vocabulary denoted as |V |.

With a high volume of vocabulary, such representation is extremely sparse as well as high-

dimensional, and lacks a similarity measure between words.

To capture the relationship between words, graphically structured dictionary (taxonomy)

that links synonym and hypernym together are designed, an example is the word-net [23].

However, it requires massive human expertise and labor, as the constant development of

language is making an accurate and up-to-date dictionary hard to maintain. Nevertheless,

the similarity is still hard to quantify objectively.

Word embedding

In recent years, the pursuit of word embedding has become popular, especially deep

neural network models motivated by the development in computation power and the success

of pre-trained feature extractors in the field of computer vision. Empirical evidences have

shown that the effectiveness of word embedding can be the key to improvement on various

NLP task, including and not limited to text classification [3][26].

Word embedding is real-valued, fixed-length dense feature vector of the word, of which the

dimension is usually far more compact than the vocabulary size. It is also called distributed

representation [3][40], because it is usually learned unsupervised with the assumption known
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as distributional hypothesis [1][12], that is, similar words should have similar contexts. The

learnt representation not only is reduced in dimension, but also provides a simple word

similarity measure by distance or angle (ex. cosine similarity) between vectors. Hopefully,

each embedding dimension represents a meaningful latent syntactic or semantic feature of

the word [40], which even makes word analogy possible, such as man:woman ∼ king:queen.

In general, word embedding can be learnt from global or local co-occurence information.

The former is by factorization or low-rank approximation on a global relational matrix from

a general corpus. An example is Latent Semantic Analysis (LSA) [8] that applies SVD to a

term-document matrix. The later is to build a predictive model for the local context of each

word, where neural language models (NNLM) are prevalent. NNLM solve for a language

model that is capable of predicting the most probable word given its context, and the vector

representation (usually the first hidden layer) corresponding to each word can be output as

word embedding x.

Many efforts have been made towards higher efficiency and performance since the first

large NNLM proposed by Bengio in 2003 [3]. Word2Vector introduces two popular frame-

works, Skip-Gram and Continuous Bag-of-Words, which can be seen as a two-layer network

with an efficient architecture providing nice semantic properties [22]. Interestingly, there

is also a proven connection to the global embedding methods, as it implicitly factorizes

globally shifted word-context matrices with pair-wise information measures [18]. Another

prominent word embedding architecture, GloVe [26], leverages both the local context window

and the global co-occurrence matrix via a bilinear regression model. ELMO further model

the different usage of the same word by learning multiple levels of syntactic and semantic

information about words in-context [27]. A most recent advance in 2018, BERT, achieves

state-of-the-art performances on a vast of tasks via a transformer neural architecture and

two novel objectives: predict masked words and next sentences [9].

Word embedding is significant as a pre-train method widely used in NLP, which makes

learning transferable between various text domains and tasks. The embedded features can

be used directly for down-stream task, or fine-tuned over specific tasks [9][29]. It is notable

that, both the application of word embedding and the training of language models require the
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composition of the representations of single words into that of the training units - sentences

or documents.

2.2.2 Document representation

Bag-of-words

A simple way to represent document is to add up all one-hot word vectors, resulting

in a document vector that is an occurrence count of the vocabulary. It is called bag-of-

words (BoW), because only content is preserved and the order information discarded. It can

be generalized to n-gram model which counts all unique contiguous sequences of n tokens

instead of single words, such that some multi-word expressions can be identified.

Although BoW does not tap into the word-level nuances, it is still a simple and useful

feature extractor for documents. Intuitively, similar documents tend to have similar distri-

butions over the tokens, and occurrence of certain words can be indicative of the document

semantic. Representing the word distribution by count, however, can be biased by the vary-

ing lengths of documents and certain words frequent in the whole corpus (ex. ’the’, ’is’).

Therefore, Term Frequency Inverse Document Frequency (TFIDF) is motivated, which uses

the frequency normalized by length and rescaled by how often they appear in the whole

corpus to penalize words that dominate. The resulting value corresponding to each word

indicates how informative the word is in distinguishing this document from the others.

Neural networks and attention

As for the composition of word embedding, there are studies showing that simply averag-

ing [45] or max-pooling [31] achieves excellent performance given a good enough embedding.

Nonetheless, there are also more sophisticated methods attempting to incorporate structural

or temporal correlation. Neural networks, as powerful approximator for complex nonlinear

functions, are popular choices for not only learning of language models but also down-stream

NLP tasks.

The local context and serial correlation between words motivates the prevalent use of

convolutional networks (CNN) and recurrent networks (RNN) [27][53]. Long-short Term
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Memory (LSTM), a variant of RNN, stands out due to its ability to reduce the gradient

vanishing of signal faraway, which improves the performances over longer sentences. Bi-

direction LSTM benefits from the context after the word as well as that comes before it, by

concatenating two feature vectors learnt on both direction. It achieves excellent performances

in language model architectures like ELMO as well as in various NLP tasks [48][50]. However,

RNN has the drawback that the sequential computation cannot be parallelized, hence takes

longer time to train.

Attention mechanism is an important technique to promote the efficiency in modeling

distant dependency, while maintaining a simple, interpretable and parallelizable structure.

Attention models dynamically ’pay attention to’ (put more weight on) certain parts of the

input that is more relevant to the task at hand than others, and can be flexibly incorporated

to different levels of representation or threads of inputs [6]. Not only can it incorporates other

structures like RNNs [2], Transformer architecture bypasses the inefficient RNNs by modeling

sequences purely based on a stack of multi-head self-attention over position embedding and

content embedding [41].

In text classification tasks, attention models are mainly used for better document repre-

sentation. An example is HAN proposed by Yang et al. that achieves a SOTA performance

with both word-level and sentence-level attention [49].

2.2.3 Latent Variable Inference

Another way to extract a compact representation of messy raw data is via latent variable in-

ference or generative statistical models [25], which is useful not only for signal generation like

in machine translation or question answering, but also for obtaining efficient and hopefully

interpretable latent representations.

Latent variable models assumes that there exists a hidden variable underlying the ob-

served data X, denoted as Z. It can be considered as the hidden structure from which the

observed data are generated, or as a high-level abstraction of the data. Thus the marginal

data probability can be defined via Bayes rule: p(X) =
∫
p(Z,X)dZ. By introducing an
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approximator q(Z), the evidence lower bound (ELBO) can be derived by Jensen’s Inequality

(see appendix):

log p(X) ≥ ELBO = Eq[log p(X,Z)]− Eq[log q(Z)] = Eq[log p(X)]−DKL(q(Z) ‖ p(Z |X))

EM algorithm can be used to iteratively update q(Z) when the posterior distribution is

in a known form. However, the posterior is intractable in most cases, then Monte Carlo

sampling or Variational Bayes may be sought for approximation.

In language processing, topic models are widely explored, which explains text by a spec-

ified number of unobserved classes [5][13]. It considers document with BoW encoding, and

assumes a probabilistic generative process that each document corresponds to a topic sam-

pled from a corpus-specific multinomial distribution over all potential topics, then each word

in that document is sampled from a topic-specific multinomial distribution over the whole

vocabulary:

yl ∼ Multinomial (θθθ) , θθθ ∼ p(α0)

wi ∼ Multinomial (βl)

Here yl is the discrete latent variable indicating the l-th topic, θθθ is a corpus-level param-

eter sampled from the a prior distribution with hyperparameter α0, and βl parameterizes

the word distribution corresponding to the topic yl. It can also be generalized to document

models, where latent semantics are assumed represented by a continuous vectors instead of

discrete topic.

A successful model, Latent Dirichlet allocation (LDA) relies on the conjugate prior,

Dirichlet distribution θθθ ∼ Dirichlet(α0), α0 ≥ 0, for analytical computation to the poste-

rior over the discrete latent topics [5]. There are also extensions to incorporate annotated

labels and even multi-label information, like in semi-supervised LDA or Multi-label Topic

Model [33]. All these methods require certain assumption for approximation and meticulous

derivation for tractable computation.

Whereas, more expressive models are in increasing demand to accommodate more com-

plex and diverse problem with different sources of information, where closed-form derivation

are often non-trivial and hard to generalize. Variational auto-encoder (VAE) introduced
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the idea to learn a approximate posterior probability q(Z |X) parameterized by an neural

inference network, rather than rely on analytic approximation as in traditional variational

Bayes [16]. They propose a different variational lower bound that matches the approximate

posterior to a prior (see Appendix):

log p(X) ≥ LV AE = Eq(Z |X)[log p(X |Z)]]−DKL(q(Z |X) ‖ p(Z))

q(Z |X) and p(Z) are usually assumed to follow distributions easy to sample from, such

as gaussian or uniform distribution, thus it is capable of learning complicated non-linear

distributions with strong generalisation ability as well as simple computation.

The success of VAE motivates a vast of extensions under the Neural Variational Infer-

ence framework, for signal generation as well as latent variable inference [37]. Miao et al.

proposed several neural topic and document models (NVDM, NVTM), where the inference

is conditioned on easy samples from multivariate gaussian, and the model architectures are

designed to discretize the variable while preserving some conjugacy property [20][21]. How-

ever, a drawback to these models is that they are fully unsupervised, so the learning can not

make full use of the known context, and the learnt latent topics are not always coherent.

2.3 Multi-label Classification

Assigning multiple labels is natural for many real scenarios including text processing, as each

document usually belongs to more than one semantic categories. It is a more challenging

than single-label problem, as the solution space grows exponentially with the the size of the

labels L and the distribution of available samples over the labels can be very unbalanced. For

example, among the 90 labels in the benchmark dataset Reuters, some labels have thousands

of training sample, whereas the least populated label is seen only once in the training.

The related models can be categorized into two types: problem transformation methods,

and algorithm adaptation methods [38].

The former transform the multi-label task into single-label classification or regression

problems, and choose corresponding algorithm to solve it. A common example is the Binary

10



Relevance (BR), also referred to as one-vs-all, which independently train one binary classifier

per label to tell apart it against all the others. To further consider the label correlations, there

are label powerset (LP) that train a multi-class classifier on all unique label combinations

[39], and classifier chains (CC) that train a chain of binary classifiers [30]. They are mostly

strong baselines with simple intuition and implementation, however, the computational cost

usually scales with the label size.

Algorithm adaptation methods extend specific learning algorithms to handle multi-label

data directly. Ensemble tree methods are widely explored, Clare and King extend entropy

to multi-label scenario [7], and FastXML improves the accuracy by learning a hyperplane

to split instances rather than selecting a feature subset at each node [28]. Ranking-based

methods are also popular choices, such as Rank-SVM [10], ML-KNN [52]. They are more

computationally efficient than most problem transformation methods, yet the selection of a

decision threshold is usually required.

BP-MLL was one of the first to use neural network for multi-label tasks by a pairwise

ranking loss [51]. More recent research, however, reported that binary cross entropy loss with

rectified linear units (ReLU) outperforms the pairwise ranking loss with higher efficiency [24].

Such feed-forward architectures are easy to execute, yet they relied on the parameter itself

to exploit the dependency across labels.

More sophisticated architectures are proposed in many recent works. Wei et al. pro-

posed a modified architecture for multi-label image classification [44]. SGM use RNN to

sequentially generate label predictions in order to learn label correlation, and using label

co-occurrence statistic in network initialization is also proven to better capture label depen-

dencies [17]. Label embedding methods are greatly improves the efficient when the label

space is huge and sparse, which compress the label Y to a low dimensional latent space, and

decompress the predicted embedding to the original label space [4].
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CHAPTER 3

Methodology

3.1 Leveraging Label Information

We introduce two approaches to leverage the annotated labels Y in the representation of

textual data, in the scenarios of discriminative learning and generative learning respectively.

As illustrated in Figure 3.1, the former enhance the document representation by introducing

attention between label-word pairs, and the later imposes structure in latent representation

by matching the posterior to label-conditioned priors. Both are capable of producing repre-

sentation of the original document that are more tangent to the down-stream classification

task.

(a) Discriminative (b) Generative

Figure 3.1: Illustration of the use of label information

Label attention

As mentioned before, several text classification models use the attention mechanism for

a good representation of the text sequence [19][49]. Nevertheless, these model mainly focus
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on self-attention that applies attention to each word-word pair from the text itself, while

auxiliary information are less explored even though the attention between words and labels

is directly related to the target task.

Label-Embedding Attentive Model (LEAM) is a recent state-of-the-art text classification

model proposed by Wang et al.[42]. It embeds words and labels to the same latent space,

and aggregates the word embedding into the document representation attended by the label

embedding. Moreover, the prediction is made more interpretable by outputting the attention

weights for each word as a by-product, which may also provide informational anchors for

human speed reading and assessment.

Despite the novel idea and excellent results, the original work did not analyze the effect

of the pre-trained embedding and attention structures in the architecture. We will detail the

model in Section 3.2, and implement it for experiments on real-world multi-label tasks and

further compare some ablative methods.

Conditional VAE

The vanilla VAE framework has the drawback that its inference process is fully unsuper-

vised without leveraging auxiliary knowledge. It not only limits its interpretability, but also

reduces the inference ability. Namely, the inference network either matches all the latent

representations closely together to the one prior p(Z), though they can be multi-modal in na-

ture (ex. from different classes), or fail to learn an effective inference because the generative

objective dominates the objective function [54]. Many research have contributed to improv-

ing the quality of autoencoder-based representation learning [36][37], either by modifying

objective function [54] or imposing structured prior [14].

Conditional VAE (CVAE), is motivated by the need to generate more diverse signals

(images or answers) conditioned on certain context attributes [32][47][55]. It defines a prior

network to learn the prior distribution conditional on known attributes (ex. classes), and

the variational lower bound conditional on the attributes can be rewritten in accordance (see

Appendix) [34]. CVAE is also applied on the task of zero-shot image classification, to aid

the prediction of unseen classes by sharing prior network between the seen classes with the
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unseen ones [43].

We intend to incorporate the idea into NVDM to build a supervised generative model

for text categorization. The proposed model will be described in Section 3.3 and compare

with traditional supervised LDA in the experiments.

3.2 Multi-label LEAM Model

We denote the embedding of a word w as e-dimensional vector x, and construct a embedding

matrix concatenating all the words in the whole document as: Q = {x1, ...,xi, ...,xm} ∈

R(e×m). We also embed the labels Y into the same embedding space, denoted as C =

{c1, ..., cl, ..., cL} ∈ R(e×L). Then we align all the label-word pairs via the cosine similarity:

G =
CᵀQ

|C| · |Q|
(3.1)

G ∈ R(L×m) measures the similarity between each label and word token with respect to

the document, in order to determine how relevant a word is to each label. Nonetheless, the

local context can impact the word meaning, so an 1 − d convolution with ReLU activation

is added on to obtain an alignment between the label and each 2r + 1 gram window center

at word wi:

a = {a1, ..., ai, ..., am} ai = ReLU (Gi−r:i+rW + b) (3.2)

Then the attention ααα is obtained by max-pooling and softmax, resulting in the weights for

each word in the document, and finally the composition of the document vector is computed

as the weighted average:

ααα = {α1, ..., αi, ..., αm} αi = softmax (max-pooling (ai)) (3.3)

X =
m∑
i

αi xi (3.4)

The label-attended document representation X can be used as the input to a multi-label

classification algorithm, the embedding weights and attention parameters can be learnt or

fine-tuned simultaneously with the classifier. In our experiments, we compare on different
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datasets the effect of using a pre-trained word embedding and learn the embedding from

random initialization in the target corpus.

An interesting byproduct of LEAM, is the attention weights on each word ααα, such that

we may highlight the most ’important’ (more weights in the representation composition)

words in the document. It will also be exemplified in the experiments. In addition, there are

several potential variants of LEAM architecture. The word-label alignment can be computed

in alternative ways. Some of them will be compared in the experiments.

3.3 Conditional Variational Document Model

We propose Conditional Variational Document Model (CVDM) by introducing class-conditioned

priors into NVDM by Mian et al. [20], and use a KL-divergence based ranking score for clas-

sification prediction similar to VZSL by Wang et al.[43].

We denote the BoW encoded document as X, and assume there exists a high-level se-

mantic abstraction notated by a p-dimensional latent variable Z. The posterior distribution

p(Z |X) is approximated by a isotropic Gaussian distribution parameterized by an inference

network f(·;φ):

qφ(Z |X) ∼ N(fµ(X;φ), f 2
σ(X;φ)Ip) (3.5)

In order to leverage the label information, we assume the prior distribution of latent vari-

able Z is conditional on the label set Y, and the distribution parameters are learnt by a prior

network gµ(·;ψ), which can be a multi-layer perceptron or a simple linear transformation:

p(Z |Y,A) =
L∏
l

[
p(Z |yl)

]yl

=
L∏
l

[
N(gµ(al;ψ), g2σ(al;ψ)Ip)

]yl

(3.6)

Here A =
[
a1, ..., al, ..., aL

]
are the attributes associated with each label, they can be

learnt from random initialization or use additional features, for example, features extracted

by TF-IDF over all the documents associated with each label.

For better interpretability, we assume each document is generated over a mixture of labels

following a similar intuition to topic models. In specific, each label defines a multinomial
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distribution over the vocabulary parameterized by βl, and the occurrence of each label follows

a Bernoulli distribution parameterized by θθθ that is conditioned on samples from the latent

variable Ẑ:

 yl ∼ Bernoulli (θl) , θθθ = sigmoid(ẐU) = [θ1, ..., θl, ..., θL]

w ∼ Multinomial(βl), β = softmax(V ) = [β1, ..., βl, ..., βL]
(3.7)

where U ∈ R(p×L), V ∈ R(L×|V |) are learnable weight parameters. Therefore, by sampling Z̃

from the posterior and compute topic distribution parameter θ̃̃θ̃θ, the label indicator yl can be

integrated out as:

log p(X; θ̃̃θ̃θ, β) =
m∑
i

[
log p(wi; θ̃̃θ̃θ, β)

]
=

m∑
i

[
log

L∑
l

[
p(wi; βl)p(y

l; θ̃l)
]]

= log(θ̃̃θ̃θ · β) (3.8)

We may derive the variational lower bound as follows:

log p(X |Y,A) ≥ Eq(Z |X;φ) [log p(X;θθθ, β)]−DKL(q(Z |X;φ) ‖ p(Z |Y,A;ψ))

= Eq(Z |X;φ) [log p(X;θθθ, β)]− Eq(Z |X;φ) [log q(Z |X;φ)]

+
L∑
l

yl ·Eq(Z |X;φ)

[
log p(Z | al;ψ)

]
= Eq(Z |X;φ) [log p(X;θθθ, β)]−

L∑
l

yl ·DKL(q(Z |X;φ) ‖ p(Z | al;ψ)) + const.

Since the last term is an additive constant, we may formulate the CVAE Likelihood as:

LCV AE =
1

N

N∑
d

[
log(X;θθθ; θ, β)−

L∑
l

yld ·DKL(q(Zd |Xd;φ) ‖ p(Zd | ald;ψ))

]
(3.9)

A trivial solution to maximize LCV AE, however, is to learn the same prior distribution

p(Z |yl;ψ) for each label, which reduces the model to the original VAE with a standard

gaussian prior. Therefore, we augment the objective with a margin regularizer. We encourage

q(Z |X;φ) to be far away from irrelevant labels by penalizing the maximum-margin between

the next best label. Since the hard maximum is non-differentiable, we use the smooth

surrogate log-sum-exponential trick:

LREG = log
L∑
l

(1− yl) · exp
[
−DKL(q(z|X;φ) ‖ p(zd| ald;ψ))

]
(3.10)
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The final objective function to be optimized is:

L = 1
N

∑N
d {log p(Xd; θ, β)−

∑L
l yld ·DKL(q(Zd |Xd;φ) ‖ p(Zd | ald;ψ))

−λ · log
∑L

l (1− yl) · exp
[
−DKL(q(z|X;φ) ‖ p(zd| ald;ψ))

]
}

(3.11)

Given the trained model parameters, the prediction on a testing document X from that

corpus can be obtained by first encoding the feature X into variable Z, and sample a latent

variable or use the mean as Ẑ, then selecting the most probable labels. The generative

learning process has provided a natural choice of scoring: KL-divergence measuring the

distance between the latent variable to the label-conditioned priors:

ŷl = 1 [sigmoid(−DKL(q(Z |X;φ) ‖ p(Z | al;ψ))) > T ] (3.12)

Here T is a decision threshold. Since the KL-divergence term is greater than 0, the

resulting score is always less than .5, so we select T empirically by grid-search on the interval

(0, 0.5] to find a T with minimum macro-F1 score.
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CHAPTER 4

Experiments

4.1 Experiment setting

We evaluate LEAM and CVDM empirically on three English text datasets: Reuters, De-

licious and anon-Rev. The first two are public annotated datasets, and the last one is an

anonymous business review datasets provided by Stratifyd Inc. The data attributes are

listed in Table 4.1. Here we define Label Density (LD) as the average number of labels per

sample divided by the size of labels, in order to quantify to which a dataset is multi-label:

LD = 1
N

∑N
d=1

|Yd |
|L| .

Dataset #labels LD #train set %multi-label #test set #Vocab

Reuters 90 0.0137 7769 15.09 3019 11411

Delicious 20 0.1539 7764 87.77 3757 8520

anon-Rev 54 0.0390 14765 52.49 3692 9828

Table 4.1: Data Description

The Reuters is a benchmark financial newswire dataset for document classification, and

we use its ”ApteMod” subeset1, and keep only the alphabetic vocabulary appear at least

three times. The Delicious dataset2 [56] contains tagged web pages retrieved from the social

bookmarking site delicious.com with 20 common tags, we adopted the preprocessed and

partitioned version by Soleimani and Miller3 [33]. The anon-Rev dataset contains online

1http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

2http://nlp.uned.es/social-tagging/delicioust140/

3https://github.com/hsoleimani/MLTM/tree/master/Data
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reviews on banking services, labeled by the keyword matching method. In all experiments,

we split the training data into train and validation by a ratio of 4:1 for threshold selection

and tuning purpose.

For the Delicious dataset, we use the same preprocessing procedure by Soleimani and

Miller [33] for a fair comparison with their experiment results in section 4.4. This version

uses a larger stopword set, and performs word stemming in order to obtain a more compact

BoW representation. As a result, GloVe embedding is of little use and some sequential info

can be lost, so we will focus on CVDM for this dataset.

In LEAM implementation, we employ 300 dimensional word embedding and set the

convolution window size as 8, a maximum length of m = 100 is fixed for each document. We

train a two-layer MLP with 256 hidden units and binary cross entropy loss as the multi-label

classifier. In *LEAM, we learn the embedding weights from random initialization. In the pre-

trained version (GloVe-LEAM), we use 300− d GloVe embedding pre-trained on Wikipedia

2014 + Gigaword 5 as embeddings weights initialization, and the Out-Of-Vocabulary (OOV)

words are initialized from a mean embedding over the whole vocabulary.

As for CVDM, we set the inference network to be a two-layer MLP with 256 hidden

units each, and the latent variable dimension is set to p = 60. The prior net uses a simple

linear transformation, and in *CVDM, we learn a 128-dimension label attributes A from

random initialization while the TFIDF-CVDM uses 128-dimension TF-IDF features. The

regularization parameter λ is set to 1, and in each epoch we alternatively update the encoder

and the decoder.

We compare our models with two strong baselines based on neural network methods,

BoW-MLP and GloVe-MLP. The former takes BoW encoded documents as input, while the

later learns embedding weights from GloVe initialization and the document vector is built

by mean-pooling over word vectors. Both train two-layer MLP as classifiers.

We use Adam Optimizer [15] with an initial learning rate of 0.001 and a minibatch

size of 128, dropout regularization is employed on each hidden layer with a 0.5 rate. The

performances are evaluated on the testing set unseen in training if not specified otherwise.
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4.2 Evaluation metric

The evaluation for multi-label classification should be different than those for single-label

targets, since the prediction for each example can be partially right as well as being com-

pletely right or miss. We introduce several metrics to assess and compare the performance

in our experiments. The true label set is notated as binary vector Y, and similarily the

predicted as Ŷ.

If we consider only the complete right cases as accurate prediction, we have a simple and

strict measure Exact Match Ratio [35] :EMR = 1
N

∑N
d=1 1(Yd = Ŷd).

In order to account for partial correctness, Godbole et al. adopted Hamming Score to

measure Multilable Accuracy as a symmetric measure of the distance between two binary

vectors:

Accuracy =
1

N

N∑
d=1

|Yd ∩Ŷd|
|Yd ∪Ŷd|

and corresponding Precision, Recall and F1 measures:

Precision =
1

N

N∑
d=1

|Yd ∩ Ŷd|
|Ŷd|

Recall =
1

N

N∑
d=1

|Yd ∩Ŷd|
|Yd |

F1 =
1

N

N∑
d=1

2|Yd ∩Ŷd|
|Yd |+ |Ŷd|

These are also called Micro measures, where True Positive (TP) and False Positive (FP)

are counted globally and averaged per sample. Because they care more about positives then

negatives, more frequent labels may dominate the measure. To alleviate that, we also have

Macro measures, where statistics are computed for and averaged over each classes such that

they are given the same weight:

macro− F1 =
1

L

L∑
l=1

2|Yl ∩Ŷl|

|Yl |+ |Ŷ
l
|

As mentioned before, thresholding can affect the classification accuracy, especially for

ranking-based algorithms. Therefore, to assess and compare the ranking performance, ROC-

AUC can be used, which is the area under the receiver operating characteristic. Similarly,

it also has Micro and Macro measures [33].
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4.3 LEAM Results and Analysis

Table 4.2 compares the LEAM results on Reuters and anon-Rev. The performances over

training processes are plotted in Figure 4.1 and Figure 4.2 respectively, in which the middle

one display the testing macro-F1, the left one shows the micro-F1 and the right one training

macro-F1. It can be observed that micro-F1 hardly tells apart different models, while macro

measure is less biased by high-frequency labels.

Reuters anon-Rev

Model Macro-F1 Micro-F1 Accuracy macro-AUC Macro-F1 Micro-F1 Accuracy One-Error

BoW-MLP 0.4378 0.8396 0.8470 0.0891 0.4947 0.7118 0.6770 0.1153

GloVe-MLP 0.3593 0.8188 0.8191 0.1165 0.3987 0.6846 0.6517 0.1454

*LEAM 0.3860 0.8349 0.8351 0.1050 0.5358 0.7406 0.7106 0.0921

GloVe-LEAM 0.4798 0.8464 0.8580 0.0847 0.5129 0.7004 0.6696 0.1278

Table 4.2: LEAM Results Comparison

Figure 4.1: Reuters Performance over Training Epoches

Figure 4.2: anon-Rev Performance over Training Epoches

We can observe that LEAM achieves the best performances on both datasets.
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On Reuters, the pre-trained GloVe initialization greatly improves Macro-F1 that indi-

cates better predictions on rare classes, and is less prone to overfit. As for anon-Rev, *LEAM

is slightly better. We hypothesize that it is related to the difference in vocabulary domain.

GloVe is trained on newswire stories and encyclopedia, and is closer to the domain of Reuters

collection. Whereas, non-Rev tend to use informal language with a relative smaller vocabu-

lary, and the label distribution is more balanced, hence the word embedding can be learnt

more effectively within the corpus.

In Figure 4.1 it can be observed that GloVe-LEAM achieves the best testing macro-F1 by

a large margin, while the training performance and the micro measure of the strong baseline

BoW-MLP is almost as good if not better, which demonstrates that LEAM is less prone

to overfit or influenced by the unbalanced label distribution, even when the data sparsely

populates on a large number of labels in Reuters.

Compared to GloVe-MLP, GloVe-LEAM is only different in the one-layer label embedding

and the one-layer attention, however the improvement in performance is substantial. A good

word embedding itself does not suffice and the convergence can be very slow even though our

network is shallow, which further illustrates that the label attention mechanism effectively

promotes the representation of sequence with a simple and interpretable structure.

Table 4.3 shows some samples where the word is in a bold font if the learnt attention

weights is greater than 0.015 (among 100 in length). Keywords indicative of the label is

marked, even if they do not share the same etymology with label words. For example, ’crop’

is identified for label ’grain’, ’merge’ and ’profitable’ for label ’acq’, while some phrases are

less stressed such as time, places and prevalent transitions of ’someone said’. Comparison

between GloVe-LEAM and *LEAM on the same text (Line 1 and 2) indicates that the pre-

trained embedding facilitates the learning of more spiky attention weights, while *LEAM is

slightly inferior in distinguishing irrelevant words like ’osaka’ or ’japan’, probably because

the learnt embedding is not sufficient in capturing the distance between entities such that

the label-word alignments are harder to learn.

LEAM is also able to identify phrases even though we use single word embedding, for
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example, ’net loss’ is frequently recognized for the label ’earn’, likely due to the use of

convolution over label-word alignment. Interestingly, the prediction also seems to capture

some correlation between labels, for example, ’crude’ and ’oil-gas’ are predicted together

when the text is lack of evidence for ’crude’.

Ture Predicted Model Highlighted Content

Label Label

’acq’ ’acq’ GloVe-MLLEAM

sumitomo bank aims quick recovery merger sumitomo bank ltd lt sumi certain lose status

japan profitable bank result merger heiwa sogo bank financial analysts said osaka based

sumitomo around trillion yen ... interview said merger initially reduce sumitomo profitability ...

’acq’ ’acq’ ML-LEAM

sumitomo bank aims quick recovery merger sumitomo bank ltd lt certain lose status

japan profitable bank result merger heiwa sogo bank financial analysts said osaka based

sumitomo around trillion yen ... interview said merger initially reduce sumitomo profitability ...

’earn’ ’earn’ GloVe-MLLEAM
tribune swab fox cos inc lt th qtr loss shr loss cts vs nil net loss vs profit year shr loss cts

vs profit five cts net loss vs profit note earnings restated ... dividends company release revenues

’earn’

’crude’

’nat-gas’

’earn’ GloVe-MLLEAM

energy ... loss energy development partners ltd said operating loss ... non cash writeoff oil gas

properties taken first quarter resulted net loss mln dlrs dlrs per share ... reserves december

totaled mln barrels oil mln cubic feet natural gas

’grain’

’sugar’
’sugar’ GloVe-MLLEAM

rain boosts central queensland sugar cane crop good rains ... sugar cane crops ... sugarproducers

asociation spokesman said ... crops beginning look healthy greener putting growth since rains ...

Table 4.3: Reuters Highlight Samples

To further illustrate the inferred label correlation, in Figure 4.4 we compare the true

label correlation with the learnt. The correlation is computed as the co-occurrence matrix

divided by label counts by row, a subset of the most frequent 50 labels are selected and the

diagonal ones are set to zero for the sake of visualization. It is clear in the heatmap that the

learnt label correlation on the right reflects a similar pattern to the ground truth on testing

set and the training samples it learns from.

Ablative analysis

We also explore some ablative methods with the GloVe-LEAM structures, the results

with the same experiment setting is compared in Table 4.4.

Firstly we consider to modify the convolution layer, and it turns out to be important

to take into account the local context, as sparing it greatly affects the result. We also try

to change the convolution position from the attention layer to after word embedding for a

direct computation of label-phrase similarity, or use it to composite the attended single-word
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(a) Training labels (b) Testing labels (c) Predicted testing labels

Figure 4.3: Reuters label correlation heatmap (subset of 50)

GloVe- Convolutional Layer Attention

Reuters LEAM W/O Conv Emb Conv Comp Conv Emb + Att Emb + Comp mean-pooling multi-head

macro-F1 0.4798 0.3947 0.3718 0.4189 0.3907 0.4584 0.4696 0.3363

micro-F1 0.8464 0.8375 0.8313 0.8455 0.8333 0.8492 0.8503 0.7773

Table 4.4: Ablative Analysis on Reuters

embeddings into the document representation, neither achieves a result as good. Moreover,

adding extra convolution layer also does not boost the performance.

In LEAM we take the maximum over all label attentions assuming that each word is

associated with only one label. Since it is plausible to consider each word as realted to more

than one labels, we also experiment with alternative ways to compute attention. We try

mean-pooling over all label attentions, and for the Reuters dataset the result makes little

difference. Another possible architecture is to reserve the multiple label attention layers, and

use a Binary Relavance based MLP classffier. However, the results is not as good, the reason

might be that the optimization becomes harder with a larger number of parameters. It is

notable that You et al. achieved an excellent performance with such multi-representation

attention structure paired with bi-LSTM on datasets with more extreme label sizes [50], and

it is worthwhile to explore the interaction between network structure and data characteristics

in the future work.
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4.4 CVDM Results and Analysis

Since CVDM prediction is based on ranking loss, we compare the performances over the

ROC-AUC score in sync with realted works. In order to make the final label prediction,

we adopt the empirical method, that is, to find the optimal threshold on a validation set

or via cross-validation if the computational power is sufficient. Figure displays a sample

of threshold selection curve with maximum macro-F1 criterion, where a clear peak can be

observed.

(a) Training threshold (b) Validation threshold

Figure 4.4: Empirical threshold selection on Delicious

We compare CVDM on all three datasets in Table 4.5. CVDM achieves a comparable

performance to the discriminative baselines on the Delicious dataset, where the vocabulary

is cleaned and stemmed for better BoW representation. Meanwhile, the model performs

worse on Reuters and anon-Rev. The potential reasons can be that the their data processing

is more coarse with more words reserved for more local contextual information. Moreover,

CVDM may be harder to scale to a large number of labels, since a separate prior distribution

is required for each label.

*CVDM and TFIDF-CVDM makes only small differences, which indicates that the prior

distributions does not necessarily require concrete semantic information, but serves as an-

chors that separate examples with different labels. Nevertheless, more content-relevant fea-

tures can be useful when some labels are not seen during training in the situation of zero-shot

or few-shot learning, where the prior network helps transfer knowledge between classes.
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Reuters anon-Rev Delicious

Model Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC

BoW-MLP 0.9515 0.9839 0.9138 0.9553 0.7762 0.8015

*LEAM 0.9641 0.9879 0.8917 0.9465 0.7422 0.7713

*CVDM 0.9560 0.9834 0.8416 0.9268 0.7598 0.8016

TFIDF-CVDM 0.9478 0.9820 0.8479 0.9294 0.7724 0.8107

Table 4.5: General Comparison of Results

Our model is also comparable to other STOA generative models on the Delicious dataset

as illustrated in Table 4.6. The models other than ours are implemented by Soleimani and

Miller [33], and the code and results can be rechieved online4. They developed Multi-label

Topic Model (MLTM) where each label is associated with indefinite number of latent topics,

and compair it with Binary Relevance and also other supervised topic models (Partially

labeled LDA, semi-supervised LDA) with different model assumptions. It is notable that

these models approximate the analytical posterior estimates by Monte Carlo sampling, rather

than using neural network methods. We adopt the same data preprocessing procedure and

dimension of latent variable for a fair comparison.

Delicious BR PLLDA ssLDA MLTM *CVDM
CVDM

(TFIDF)

macro-AUC 0.6193 0.7009 0.7696 0.7756 0.7598 0.7724

micro-AUC 0.6551 0.7007 0.8104 0.8147 0.8016 0.8107

Table 4.6: Comparison between generative models

We display in Table 4.7 the label semantic inferred by TFIDF-CVDM, where the words

with the highest probability for each label-specific distribution (βl) are listed. Although the

top-words are mostly relevant to the label, they are also heavily influenced by high-frequency

words, for example, ’use’ is ranked high for most labels. It suggests that the reconstruction

4https://github.com/hsoleimani/MLTM
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model p(X |Z) is likely not good enough. Therefore, we also try optimizing only the KL-

divergence term with the margin regularizer, and the resulted macro-AUC is only about 0.1

lower than the original model. It could possibly be fixed by adjusting the weights of each

term in the objective function for better optimization, and another possible improvement is

to penalize the similarity between label distribution for more interpretable results.

Topic Top-words

internet use, see, page, web, document, name, type, system, click, applic

writing use, make, first, write, great, comment, year, mean, thing, post

reference work, free, list, take, realli, use, common, page, right, featur

education one, know, read, way, design, call, good, number, com, mean

Table 4.7: Top-words for some topics
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CHAPTER 5

Conclusion and Future Work

In conclusion, we study the problem of multi-label text classification, and argues that the

use of annotated labels should not limit to providing supervision for the classification task,

but also guiding the learning of natural language representation. We discuss two approaches

specifically, and empirically show that they promote the classification performances with

improved interpretability.

Label-embedding Attention Model (LEAM) learns a label-word attention layer for the

composition of word embedding into document vectors. It uses a simple and efficient ar-

chitecture to achieve excellent performances especially for unbalanced data, and the simple

structure also provides better interpretability with the attention weights on each word. In

our experiments, we analyze the architecture to explore the effect of the attention layer and

the convolution layer, and demonstrate its merits in identifying multi-word expressions and

capturing word-label and label-label correlations.

Conditional Variationl Document Model (CVDM) learns explicitly a probabilistic latent

variable, and encourages it to contain label information by minimizing its distance to a prior

distribution conditional on the label attributes, meanwhile the measure of distance - KL-

divergence also serves as ranking score for prediction. The variational scheme and sampling

procedure makes it more tolerant to noise, and the explicit high-level latent abstraction

also provide more interpretability. Our model achieves comparable ranking performance

to benchmark generative topic models, while being more flexible and generalizable with

neural variational inference rather than traditional variational bayes that relies on analytic

approximation.

We also identify the limitations of our methods:
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The training of LEAM is not stable enough as certain random seed gives poor results, so

cross-validation is needed in pratical use. Moreover, the effect of pre-trained word embedding

could be affect by the domain of the corpus, and we have not experiment on data with more

extreme number of labels (ex. over 100).

CVDM breaks down when the label amount grows, and it is possible that similar labels or

hierarchical label relationship is hard to be distinguish by the separately learned latent priors

and the coarse-grained BoW distribution. Another problem is that the current decision rule

is not disciplined since the classification score derived from a divergence measure is not well-

distributed. In addition, the topic generative model does not fit very well as we show in the

experiments.

Therefore, future works may consider the following aspects:

1. Use LEAM representation with more advanced classification algorithms, and extend

the experiments to extreme multi-label problems;

2. Explore variational attention mechanism on LEAM;

3. Re-construct CVAE with more realistic latent structures, such as hierarchical VAE or

semi-supervised VAE;

4. Modify CVAE objective function with different topic diversity regularization or diver-

gence measures such as wasserstein distance.
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CHAPTER 6

Appendix

Evidence Lower Bound (ELBO)

log p(X) = log

∫
Z

p(X,Z)

= log

∫
Z

p(X,Z)
q(Z)

q(Z)

= log

(
Eq
[
p(X,Z)

q(Z)

])
≥ Eq[log p(X,Z)]− Eq[log q(Z)] = ELBO by Jensen Inequality

= Eq[log p(X)]−DKL(q(Z) ‖ p(Z |X))

VAE Objective

log p(X) = log

∫
Z

p(X,Z)
q(Z |X)

q(Z |X)

= log

(
Eq(Z |X)

[
p(X,Z)

q(Z |X)

])
≥ Eq(Z |X)[log p(X |Z)]]−DKL(q(Z |X) ‖ p(Z)) = LV AE

CVAE Objective

LCV AE = log p(X |A) ≥ Eq(Z |X,A)[log p(X |Z,A)]]−DKL(q(Z |X,A) ‖ p(Z |A))

Complete experiment results
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Model Macro-F1 Micro-F1
Hamming

Score

Hamming

Loss
EMR Precision Recall One-Error Macro-AUC Micro-AUC

BoW-MLP 0.4378 0.8396 0.8470 0.0043 0.7906 0.8769 0.8765 0.0891 0.9515 0.9839

GloVe-MLP 0.3593 0.8188 0.8191 0.0048 0.7595 0.8498 0.8516 0.1165 0.9629 0.9883

*LEAM 0.3860 0.8349 0.8351 0.0043 0.7787 0.8614 0.8668 0.1050 0.9641 0.9897

GLoVe-LEAM 0.4798 0.8464 0.8580 0.0041 0.7940 0.8927 0.8894 0.0847 0.9752 0.9918

CVDM 0.2650 0.6811 0.7433 0.0102 0.6446 0.8519 0.7594 0.1785 0.9560 0.9833

CVDM (TFIDF) 0.2938 0.7285 0.7691 0.0079 0.6810 0.8390 0.7926 0.1765 0.9478 0.9820

Table 6.1: Reuters Results

Model Macro-F1 Micro-F1
Hamming

Score

Hamming

Loss
EMR Precision Recall One-Error Macro-AUC Micro-AUC

BoW-MLP 0.4947 0.7118 0.6770 0.0206 0.4672 0.7433 0.8059 0.1153 0.9138 0.9553

GloVe-MLP 0.3987 0.6846 0.6517 0.0232 0.4347 0.7370 0.7685 0.1454 0.8917 0.9465

*LEAM 0.5358 0.7406 0.7106 0.0192 0.4848 0.7920 0.8249 0.0921 0.9284 0.960

GLoVe-LEAM 0.5129 0.7004 0.6696 0.0226 0.4450 0.7662 0.7815 0.1278 0.9227 0.9567

CVDM 0.2955 0.5024 0.5166 0.0494 0.2985 0.7363 0.590 0.2725 0.8371 0.9261

CVDM (TFIDF) 0.2564 0.4937 0.4981 0.0485 0.2814 0.7123 0.5737 0.2963 0.9223 0.9224

Table 6.2: anon-Rev Results

Model Macro-F1 Micro-F1
Hamming

Score

Hamming

Loss
EMR Precision Recall One-Error Micro-AUC Macro-AUC

BoW-MLP 0.4361 0.4762 0.3347 0.1486 0.0511 0.4554 0.5072 0.3899 0.7762 0.8015

*LEAM 0.3958 0.4348 0.2987 0.1639 0.0391 0.4192 0.4523 0.4621 0.7422 0.7713

CVDM 0.4182 0.4590 0.3270 0.2490 0.0138 0.6958 0.3750 0.4679 0.7598 0.8016

CVDM (TFIDF) 0.4338 0.4704 0.3354 0.2432 0.0144 0.7089 0.3810 0.4493 0.7724 0.8107

Table 6.3: Delicious Results
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