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ABSTRACT OF THE DISSERTATION

LDPC Codes – Structural Analysis and Decoding Techniques

by

Xiaojie Zhang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California, San Diego, 2012

Professor Paul H. Siegel, Chair

Low-density parity-check (LDPC) codes have been the focus of much research over the

past decade thanks to their near Shannon limit performance and to their efficient message-passing

(MP) decoding algorithms. However, the error floor phenomenon observed in MP decoding,

which manifests itself as an abrupt change in the slope of the error-rate curve, has hindered the

adoption of LDPC codes and MP decoders in some applications requiring very low error rates.

As an alternative to MP decoding, linear programming (LP) decoding is an approxima-

tion to maximum-likelihood decoding by relaxing the optimal decoding problem into a linear

optimization problem. It has been noticed that, when the symbols error probability in chan-

nel output is low, LP decoding has superior error correction performance. However, due to the

inefficiency of general-purpose LP solvers which are not optimized for solving LP problems,

xiv



LP decoding is computationally more complex than MP decoding, especially for codes of large

block size.

In this dissertation, we first design an efficient exhaustive search algorithm to find all

small error-prone substructures, some of which are commonly blamed for certain decoding fail-

ures of MP decoding. Then, we investigate the cause of error floors in LDPC codes from the

perspective of the MP decoder implementation, with special attention to limitations that decrease

the numerical accuracy of messages passed during decoding, and propose a quantization method

for fixed-point implementation of MP decoding which significantly improves the error-floor per-

formance by overcoming the limitations of standard quantization rules.

For LP decoding, we improve the error-correcting capability of LP decoding by using

an effective algorithm to generate additional redundant parity-check constraints which eliminate

certain undesired solutions to LP decoding problem. We further propose an efficient message-

passing algorithm to solve the LP decoding problem. This algorithm is based on the alternating

direction method of multipliers (ADMM), a classic technique in convex optimization theory,

and our key contribution is a novel, efficient projection algorithm that can improve the decoding

speed of the ADMM-based LP decoder.

The last part of this dissertation is a separate piece of work on optimizing video trans-

mission over distributed cognitive radio network.
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Chapter 1

Introduction

1.1 Background

The human civilization is developed generation by generation, based on learning old

knowledge from previous generations and creating new for current and future generations. In

modern society, the amount of knowledge and information grows exponentially, and people are

interacting with each other more often. Thanks to the digital revolution, almost all of the in-

formation in our daily lives is digitalized. At work, people write emails on their cell phones

and send them through wireless networks. At home, people watch high definition movies from

DVDs or even in realtime streaming through the internet. At school, many textbooks have their

electronic version and students read books on their computers and tablets. Digital media and

digital communication systems are required to store and transmit such digital information. Ex-

amples of digital media include data-storage devices such as magnetic disk drives, optical disk

drives and flash drives, etc. Digital communication examples include but are not limited to cell

phones in cellular networks, digital TV via satellite or cable, wireless or wired connection to the

internet.

All of these examples of storage systems and digital communication systems, while

wildly distinct in implementation method and apparatus, are generally based on a common foun-

dation established by Claude Shannon in 1948 [1]. Fig. 1.1, although much simplified, shows

the essentials of a digital system. The information from the source is first converted into code-

words by an encoder before being sent through the channel. At the user side, in order to recover

the actual information sent from the source, the outputs of the channel have to be decoded by a

decoder. Any digital media or digital communication system can be considered as a transmission

1
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Source Encoder Channel Decoder User 

Figure 1.1: A simplified communication (or storage) system block diagram.

of information through a communication channel. For example, a DVD can be viewed as the

channel that carriers the information of a movie between the movie maker and audiences; and

electromagnetic waves are the channels that transmit cellular phones calls. In almost all of the

communication channels, information cannot be perfectly transmitted, and a distorted (or noisy)

version is often received. A scratch on a DVD will corrupt the information stored in that area on

the DVD, and any natural source such as weather conditions, radiation, and thermal effects can

cause the distortion of electromagnetic waves that carry modulated and coded information.

To transmit information reliably over an unreliable channel has been one of the crucial

topics in information theory. On the basis of the model described in Fig. 1.1, Shannon showed

that every noisy channel has a parameter, C, called the channel capacity, which is a measure of

how much information can be reliably transmitted through the channel and is determined by the

statistics of the channel. This is much like the capacity of an elevator to carry people. It was

also recognized that errors that occur in some parts of the data can be recovered from the rest by

introducing redundancy into the stream of digital data bits. This method is call channel coding,

and the data stream with redundant information capable of correcting errors is called an error-

correction code. The ratio of the number of information bits (without redundancy) to the total

number of information and redundant bits is call the code rate, commonly denoted by R, with

R ∈ [0, 1]. When using the same unit as R to measure channel capacity C, i.e., information bits

per channel bit, Shannon’s coding theory indicated that there exist error-correction codes of any

rate R < C that provide arbitrarily reliable communication. This means that the decoder only

fails to recover the information bits with an arbitrarily small probability . Conversely, reliable

communication can not be realized with codes of rate greater than the channel capacity.

When Shannon proved in his celebrated 1948 paper A Mathematical Theory of Commu-

nication that there exist good codes that achieve the channel capacity, he also pointed out that a

randomly chosen code is asymptotically good enough on average to achieve the channel capac-

ity with high probability. However, it remains unclear how to find such good codes and how to

encode and decode them in practice with reasonable complexity. Since then, finding good codes

that achieve channel capacity has been the focus of much research in coding theory. In 1955,

Elias [2] showed that the capacity of a discrete memoryless channel can be achieved even with
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linear codes, which is a set of vectors from a linear vector subspace and can be described as

the kernel of a parity-check matrix. The linear codes can be efficiently encoded by multiplying

the source information vector with a generator matrix, which is a basis for the linear subspace

and also a parity-check matrix for the dual code. Since then, the focus of coding theory has

been on capacity-achieving code constructions and corresponding efficient decoding methods.

Since then until the 1990s, many classic codes have been designed. Although none of them

were able to provide performance close to Shannon’s limit, some of them are still of great suc-

cess and widely implemented even today. Examples are Bose-Chaudhuri-Hocquenghem (BCH)

codes [3–5], Reed-Solomon codes [6], and convolutional codes [7, 8].

In the 1990s, there were significant breakthroughs in coding theory and application.

The first breakthrough came in 1993 with the discovery of turbo codes, the first class of codes

with performance near Shannon’s theoretical limit [9, 10]. A couple of years after the discov-

ery of turbo codes, another breakthrough came with the rediscovery of low-density parity-check

(LDPC) codes, which also closely approach Shannon’s capacity limit in practice [11–13]. Al-

though LDPC codes were first invented by Gallager in the 1960s [14, 15], due to the limit of

computational power at that time, they stayed mostly unnoticed for more than forty years. Turbo

codes and LDPC codes both have random-like code construction with well structured partial

descriptions and large length, and efficient and effective suboptimal decoding algorithms. The

randomness provides vast choices of codes that are likely to provide good performance with a

reasonable large block size, while partial descriptions allow the decoding being based on a set

of “constituent decoders” that iteratively process and exchange their local information obtained

from partial descriptions. The decoding of constituent codes in turbo decoding and the updates

of messages in parity-checks of LDPC codes are examples of the constituent decoders. Although

for most turbo or LDPC codes there is no guarantee that such a decoding process will converge to

a codeword, or will converge at all, these iterative decoders in general perform extremely well in

practice. However, both of these classes of codes suffer from the error floor phenomenon, which

manifests itself as an abrupt change in the slope of the error-rate curve. It has been known that

the low-weight codewords in turbo codes determine the error floor. However, for general memo-

ryless binary-input output-symmetric (MBIOS) channels such as the binary symmetric channel

(BSC) and the additive white gaussian noise channel (AWGNC), it is still not clear what causes

and determines the error floor of LDPC codes.
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1.2 Dissertation Overview

In this dissertation, we focus on the structural analysis and decoding techniques of binary

LDPC codes.

Chapter 2 provides background about LDPC codes and most frequently encountered

memoryless channels. It also introduces two major types of decoding algorithms for LDPC codes

– iterative message-passing (MP) decoding algorithms and linear programming (LP) decoding

algorithms.

The error floor phenomenon observed with LDPC codes and their graph-based, iterative

MP decoders is commonly attributed to the existence of error-prone substructures in a Tan-

ner graph representation of the code. However, exhaustively enumerating all small error-prone

substructures in arbitrary, finite-length LDPC codes has been proven to be NP-complete. In

Chapter 3, we present two efficient exhaustive search algorithms that are able to find all small

error-prone substructures of an arbitrary LDPC code given its parity-check matrix up to a certain

given size.

The study of error floors with MP decoding is continued in Chapter 4. In contrast to

many observations, we show that the source of the error floors observed in the literature could

be partially due to imprecise implementation of the iterative MP decoding algorithms and the

message quantization rules used. We then propose a new quantization method to overcome the

limitations of conventional quantization rules. Performance simulation results for two LDPC

codes commonly found to have high error floors when used with fixed-point iterative MP decod-

ing algorithms provide an example of the practical application of our idealized theoretical results

and the effectiveness of the proposed quantization method.

We continue our study with LP decoders for LDPC codes. In Chapter 5, we first de-

rive a necessary condition and a sufficient condition for a violated parity inequality constraint,

or “cut,” at a point in the unit hypercube. Then, we propose a new and effective algorithm to

generate parity inequalities derived from certain additional redundant parity check constraints

that can eliminate pseudocodewords produced by the LP decoder, often significantly improv-

ing the decoder error-rate performance. The cut-generating algorithm is based upon a specific

transformation of an initial parity-check matrix of the linear block code. We also design two

variations of the proposed decoder to make it more efficient when it is combined with the new

cut-generating algorithm.

To reduce the complexity of LP decoding, in Chapter 6 we propose an efficient message-

passing algorithm to solve the LP decoding problem. It is based on the alternating direction
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method of multipliers (ADMM), a classic technique in convex optimization theory that is de-

signed for parallel implementation. The computational complexity of ADMM-based LP decod-

ing is largely determined by the method used to project a vector of real values to some specific

polytopes. We proposed a novel, efficient projection algorithm that can substantially improve

the decoding speed of the ADMM-based LP decoder, and further improvement on decoding ef-

ficiency can be achieved by using early termination and some optimization techniques such as

over-relaxation which give superior convergence in practice.

Chapter 7 is a self-contained study on a cross-layer distributed power control framework

for reliably transmitting real-time videos on a distributed cognitive radio network using multi-

carrier direct-sequence code division multiple access (DS-CDMA) over frequency-selective fad-

ing channels. The framework exploits the relationship between transmission rate and quality of

the video when combined with a physical layer consisting of a multicarrier direct sequence wave-

form. We employ multiuser diversity on each subcarrier of a cognitive radio system to achieve

reliable video transmission subject to constraints on delay and limited system resources. We for-

mulate the reliability problem as minimizing the maximal end-to-end video distortion received

among all users. Compared to non-cross-layer schemes, where subcarriers and video rates are

assigned separately, our cross-layer algorithm provides substantial performance improvement,

in terms of the maximum distortion of all transmitted video streams.
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Chapter 2

Introduction to Low-Density

Parity-Check Codes

Shannon pointed out in his landmark paper [1] that a random code of large block length

with optimal decoding can achieve channel capacity. However, the optimal decoder alone is

prohibitively complex and impossible for practical implementation. In the 1960s, Gallager pro-

posed a class of linear block codes whose parity-check matrices have few non-zero entries, and

hence such codes are named low-density parity-check (LDPC) codes [2, 3]. He also provided a

decoding method for LDPC codes which consists of a set of constituent decoders of low com-

plexity that update and exchange information iteratively. Although this suboptimal iterative

message-passing (MP) decoding method is algorithmically simple, performance simulation was

still beyond the computational power of that age and its near-capacity performance in practice

on LDPC codes of large block length was not realized. As a result, LDPC codes were largely

forgotten until they were rediscovered by MacKay et al. in the 1990s [4, 5].

In this chapter, we will give an overview of binary LDPC codes, and introduce two major

classes of decoding algorithms.

2.1 Representation of LDPC Codes

A linear code of length n and dimension k is a linear subspace C with dimension k of

the vector space Fnq where Fq is the finite field with q elements. The vectors in C are called

codewords. When q = 2, the code is called binary code.

A binary linear block code generates a block of n coded bits from k information bits.

7
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We call this an (n, k) binary block code, and the rate of the code is R = k/n. The generator

matrix G, a k × n binary matrix, maps an information vector u ∈ Fk2 into a codeword c ∈ Fn2
such that

c = uG.

The rows of generator matrix form a basis for the codeword space C, and any k×nmatrix whose

rows form a basis for C can also be used as the generator matrix for the code.

An alternative way to define a linear block code of length n is to use an m × n parity-

check matrix H such that

C = {x ∈ Fn2 : HxT = 0}.

The code C is the kernel of H, and any set of vectors that span the row-space generated by H can

serve as the rows of a parity check matrix. The row rank of any parity-check matrices describing

an (n, k) coed should be n − k. For any generator matrix G and parity-check matrix H of the

same code, we have

HGT = 0.

Example 2.1 The following generator matrix G and parity-check matrix H describe the same

linear block code, which is known as the Hamming code of length 7 [6].

G =


1 0 0 0 1 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

 ,H =


1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

It can be verified in this example that HGT = 0.

A binary low-density parity-check (LDPC) code is a binary linear block code with a

parity-check matrix that has a low density of 1s. This property make it convenient to represent

an LDPC code described by parity-check matrix H with a bipartite graph, called a Tanner Graph

[7]. The two types of nodes in a Tanner graph are the variable nodes (VNs) and the check nodes

(CNs). The variable nodes are also known as bit nodes or left nodes, and the check nodes are

also known as constraint nodes or right nodes. Every variable node (or check node) corresponds

to a column (or row) of the parity-check matrix H. We denote by V = {v1, . . . , vn} the set of

variable nodes, and by C = {c1, . . . , cm} the set of check nodes. We also index each row of H

by J = {1, . . . ,m} and each column of H by I = {1, . . . , n}. In this dissertation, we shall use

both the notation CN i and VN j and the notation CN ci and VN vj , depending on the context.
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Figure 2.1: A Tanner grpah of the Hamming code of length 7.

In the Tanner graph, VN vi is connected to CN cj via an edge ifHj,i = 1, and the set of edges on

the Tanner graph is denoted by set E. The Tanner graph, G = (V ∪ C,E) , of the parity-check

matrix in Example 2.1 is shown in Fig. 2.1.

Two nodes connected by an edge in the Tanner graph are called neighboring nodes. The

degree of a node is the number of edges connected to it, i.e., the number of its neighboring nodes.

If the degrees of all VNs in the Tanner graph are the same, then the corresponding LDPC code is

called a variable-regular code, and the degree of VNs is called the variable degree or left degree.

If the degrees of all CNs are the same, then the code is called check-regular, and the degree of

CNs is called the check degree or right degree. If the degree of all VN is dv and the degree of all

CNs is dc, then the LDPC code is called a (dv, dc)-regular code; otherwise, the code is called an

irregular LDPC code.

The following notation will be frequently used throughout this dissertation. We denote

by Nj = {i ∈ I : Hij = 1} the index set of neighboring VNs of CN j ∈ J , and analogously

denote by Ni = {j ∈ J : Hij = 1} the index set of neighboring CNs of VN i ∈ I. The degree

of CN j is denoted by dj = |Nj |, and the degree of VN i is di = |Ni|, where | · | denotes the

cardinality of a set. Denote by Nj(k) ∈ Nj the kth element in Nj , 1 6 k 6 |Nj |.
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2.2 Channel Models

In this dissertation, we focus our study on memoryless binary-input output-symmetric

(MBIOS) channels, such as the binary erasure channel (BEC), the binary symmetric channel

(BSC), and the additive white gaussian noise channel (AWGNC). For simplicity, it is assumed

that each encoded bit ci ∈ {0, 1} is transmitted over the MBIOS channel as a binary antipodal

symbol xi ∈ {−1, 1} such that

xi = 1− 2ci.

For the MBIOS channel, if the transmitted vector is x = [x1, . . . , xn], the probability of

receiving vector y = [y1, . . . , yn] can be computed as

Pr(y|x) =

n∏
i=1

Pr(Yi = yi|Xi = xi) ,
n∏
i=1

PYi|Xi
(yi|xi).

Hence, without loss of generality, we focus on computing the log-likelihood ratio (LLR) of the

ith channel output symbol, Lchi , which is defined as

Lchi = log

(
PYi|Xi

(yi|xi = 1)

PYi|Xi
(yi|xi = −1)

)
= log

(
PYi|Ci

(yi|ci = 0)

PYi|Ci
(yi|ci = 1)

)
.

We consider the following three widely studied cases of MBIOS channels.

2.2.1 BEC

The received symbol of BEC is shown in Fig. 2.2(a), where yi ∈ {−1, 1, e}. We define

ε = Pr(yi = e|xi = b) to be the erasure probability, where b ∈ {−1, 1}. The LLR of BEC

output yi can be computed as

Lchi =


+∞ if yi = 1,

−∞ if yi = −1,

0 if yi = e.

2.2.2 BSC

The received symbol of BSC is shown in Fig. 2.2(b), where yi ∈ {−1, 1}. We define

p = Pr(yi = −b|xi = b) to be the channel error probability, where b ∈ {−1, 1}. The LLR of

BSC output yi can be computed as

Lchi = yi log

(
1− p
p

)
.
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Figure 2.2: A schematic illustration of the BEC, the BSC, and the AWGNC.
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We can see that, for a fixed p, the LLRs of BSC outputs have the same magnitude.

2.2.3 AWGNC

The AWGNC is shown in Fig. 2.2(c). The received symbol yi = xi + ni is a real value,

where ni is independent and identically-distributed (i.i.d.) Gaussian noise of zero-mean and

variance σ2. Then, the conditional probability between the transmitted and received symbol is

PYi|Xi
(yi|xi) =

1√
2πσ

exp

(
−(yi − xi)2

2σ2

)
.

Hence, the LLR of AWGNC output yi can be computed as

Lchi = log

 1√
2πσ

exp
(
− (yi−1)2

2σ2

)
1√
2πσ

exp
(
− (yi+1)2

2σ2

)
 =

2yi
σ2
.

2.3 Iterative Message-Passing Decoding

The idea of iterative message-passing (MP) is that, once the decoder gets the LLRs of

every received codeword symbol, every node updates its messages only based on the messages

received from its neighboring node in the Tanner graph. If the parity-check matrix is sparse, each

node only has a small number of neighbors and the complexity of computing the updated mes-

sages is hence low. Although there is no guarantee that such iterative updating and exchanging

of messages with neighbors will eventually make messages in all VNs satisfy every parity-check

constraint so that they correspond to a valid codeword, the iterative MP decoding performs ex-

tremely well in practice with well-designed LDPC codes and their properly chosen Tanner graph

representations.

The iterative MP decoder alternates between two phases, a “VN-to-CN” phase during

which VNs send messages to CNs along their adjacent edges, and a “CN-to-VN” phase during

which CNs send messages to their adjacent VNs. The message update rules, whose details will

be given later in this section, are depicted schematically in Figs. 2.3 and 2.4, respectively. In

the initialization step of the decoding process, VN vi forwards the same message to all of its

neighboring CNs in Ni, namely the LLR Lchi derived from the corresponding channel output.

In the CN-to-VN message update phase, CN cj uses the incoming messages and CN update

rule to compute and forward, to VN vi in Nj , a new “CN-to-VN” message, Lj→i. VN vi then

processes its incoming messages according to VN update rule and forwards to each adjacent CN

an updated “VN-to-CN” message, Li→j . After a prespecified number of iterations, VN vi sums
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jiL→

cj 

vi 

ijL →

Figure 2.3: CN-to-VN message update: Each CN receives LLR information from all of its

neighboring VNs. For each such VN, it generates an updated “check-to-variable” message

using the inputs from all other neighboring VNs.

jiL→

cj 

vi

ijL →

ch
iL

Figure 2.4: VN-to-CN message update: Each VN receives LLR information from all of its

neighboring CNs. For each such VN, it generates an updated “variable-to-check” message

using the inputs from all other neighboring CNs.
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all of the incoming LLR messages to produce an estimate of the corresponding code bit i. Note

that all of the “CN-to-VN” message updates can be done in parallel, as can all of the “VN-to-CN”

message updates. This enables efficient, high-speed software and hardware implementations of

the iterative MP decoding algorithms. In the remaining part of this section, we will introduce

two classes of widely adopted iterative MP decoding algorithms, the sum-product algorithm and

the min-sum algorithm.

2.3.1 Sum-Product Algorithm

When Gallager introduced LDPC codes in 1960s, he also proposed a suboptimal decod-

ing algorithm which provides near-optimal decoding performance. This algorithm is now called

the sum-product algorithm (SPA) [8], or belief-propagation (BP) algorithm [9].

The VN update rule of SPA is as follow

Li→j = Lchi +
∑

j′∈Ni\j

Lj′→i , (2.1)

and the CN update rule is

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 · min
i′∈Nj\i

|Li′→j |. (2.2)

In practical implementations of the SPA, the following equivalent CN update rule is

often used

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 · φ−1

 ∑
i′∈Nj\i

φ(|Li′→j |)

 (2.3)

where φ(x) = − log[tanh(x/2)] and φ−1(x) = φ(x). In Chapter 4, we will discuss more about

the CN update rule of SPA.

2.3.2 Min-Sum Algorithm

The min-sum algorithm (MSA) can be viewed as a simple approximation of the sum-

product algorithm [5]. Its VN update rule is the same as that of SPA, given by

Li→j = Lchi +
∑

j′∈Ni\j

Lj′→i , (2.4)

and its CN update rule is

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 · min
i′∈Nj\i

|Li′→j |. (2.5)
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It can been seen from (2.4) and (2.5) that the min-sum decoding algorithm is insensitive

to linear scaling, meaning that linearly scaling all input messages from the channel would not

affect the decoding performance.

In general, the error-rate performance of min-sum decoding is not as good as the more

complicated SPA decoding. However, there are several quite simple but effective ways to adjust

the CN update rule of min-sum decoding to get comparable performance to SPA decoding. One

method is attenuated-min-sum (AMS) decoding [10], where the magnitudes of messages are

attenuated at CNs. The corresponding CN update rule of AMS is as follows

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 · α · min
i′∈Nj\i

|Li′→j |, (2.6)

where 0 < α < 1 is the attenuation factor, which can be a fixed constant or adaptively adjusted.

Another way to improve the error-rate performance of min-sum decoding is offset-min-

sum (OMS) decoding, which applies an offset to reduce the magnitudes of CN output messages.

The resulting CN update equation is

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 ·max{ min
i′∈Nj\i

|Li′→j | − β, 0}, (2.7)

where β > 0 is the offset which, like the attenuation factor, can be a fixed constant or adaptively

adjusted. In some implementations, for additional simplicity, the attenuation factor or offset is

set to be the same fixed constant for all CNs and all iterations [10].

2.4 Linear Programming Decoding

Despite the unparalleled success of iterative MP decoding in practice, it is quite difficult

to analyze the performance of such iterative MP decoders due to the heuristic nature of their

message update rules and their local nature. An alternative approach, linear programming (LP)

decoding, was introduced by Feldman et al. [11] as an approximation to maximum-likelihood

(ML) decoding.

Many theoretical and empirical observations suggest similarities between the perfor-

mance of LP and MP decoding methods. For example, graph-cover decoding can be used as a

theoretical tool to show the connection between LP decoding and iterative MP decoding [12].

However, there are some key differences that distinguish LP decoding from iterative MP

decoding. One of these differences is that the LP decoder has the ML certificate property, i.e.,
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it is detectable if the decoding algorithm fails to find an ML codeword. When it fails to find an

ML codeword, the LP decoder finds a non-integer solution, commonly called a pseudocodeword.

Another difference is that while adding redundant parity checks satisfied by all the codewords

can only improve LP decoding, adding redundant parity checks may have a negative effect on

MP decoding, especially in the waterfall region, due to the creation of short cycles in the Tanner

graph. This property of LP decoding allows improvements by tightening the LP relaxation, i.e.,

reducing the feasible space of the LP problem by adding more linear constraints from redun-

dant parity checks, as will be discussed in details in Chapter 5. In this section, we will briefly

introduce the LP decoding technique.

It is well-known that the ML decoder finds the solution to the following optimization

problem
minimize γTu

subject to u ∈ C
(2.8)

where ui ∈ {0, 1}, and γ is the vector of LLR of each received codeword symbol. Since the

ML decoding problem (2.8) is an integer programming problem, it is desirable to replace its

integrality constraints with a set of linear constraints, transforming the IP problem into a more

readily solved LP problem. The desired feasible space of the corresponding LP problem should

be the codeword polytope, i.e., the convex hull of all the codewords in C. With this, unless the

cost vector of the LP decoding problem is orthogonal to a face of the constraint polytope, the

optimal solution is one integral vertex of its codeword polytope, in which case it is the same as

the output of the ML decoder. When the LP solution is not unique, there is at least one integral

vertex corresponding to an ML codeword. However, the number of linear constraints typically

needed to represent the codeword polytope increases exponentially with the code length, which

makes such a relaxation impractical.

As an approximation to ML decoding, Feldman et al. [11] relaxed the codeword poly-

tope to a polytope now known as the fundamental polytope [12], denoted as P(H), which de-

pends on the parity-check matrix H.

Definition 2.1 Let us define

Cj , {x ∈ Fn2 |〈x,hj〉 = 0 (in F2)} (2.9)

where hj is the jth row of the parity-check matrix H and 1 6 j 6 m. Thus, Cj is the set of

all binary vectors satisfying the jth parity-check constraint. We denote by conv(Cj) the convex

hull of Cj in Rn, which consists of all possible real convex combinations of the points in Cj ,
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now regarded as points in Rn. The fundamental polytope P(H) of the parity-check matrix H is

defined to be the set

P (H) =
m⋂
j=1

conv (Cj). (2.10)

Therefore, LP decoding can be written as the following optimization problem:

minimize γTu

subject to u ∈ P(H).
(2.11)

The solution of the above LP problem corresponds to a vertex of the fundamental polytope that

minimizes the cost function. Since the fundamental polytope has both integral and nonintegral

vertices, with the integral vertices corresponding exactly to the codewords of C [11, 12], if the

LP solver outputs an integral solution, it must be a valid codeword and is guaranteed to be an

ML solution. Since the fundamental polytope is a function of the parity-check matrix H used

to represent the code C, different parity-check matrices for C may have different fundamental

polytopes. Therefore, a given code has many possible LP-based relaxations, and some may be

better than others when used for LP decoding.

The fundamental polytope can also be described by a set of linear inequalities, obtained

as follows. First of all, for a point u within the fundamental polytope, it should satisfy the

box constraints such that 0 6 ui 6 1, for i = 1, . . . , n. For each row j = 1, . . . ,m of the

parity-check matrix, corresponding to a check node in the associated Tanner graph, the linear

inequalities used to form the fundamental polytope P(H) are given by∑
i∈V

(1− ui) +
∑

i∈Nj\V

ui > 1, ∀V ⊆ Nj , with |V| odd (2.12)

where for a set X , |X | denotes its cardinality. It is easy to see that (2.12) is equivalent to∑
i∈V

ui −
∑

i∈Nj\V

ui 6 |V| − 1, ∀V ⊆ Nj , with |V| odd. (2.13)

Note that, for each check node j, the corresponding inequalities in (2.12) or (2.13) and the linear

box constraints exactly describe the convex hull of the set Cj .
The linear constraints in (2.12) (and therefore also (2.13)) are referred to as parity in-

equalities, which are also known as forbidden set inequalities [1]. It can be easily verified that

these linear constraints are equivalent to the original parity-check constraints when each ui takes

on binary values only.
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Proposition 2.2 (Theorem 4 in [11]) The parity inequalities of the form (2.12) derived from all

rows of the parity-check matrix H and the box constraints completely describe the fundamental

polytope P(H).

With this, LP decoding can also be formulated as follows

minimize γTu

subject to 0 6 ui 6 1, for all i;∑
i∈V

(1− ui) +
∑

i∈Nj\V
ui > 1

for all j,V ⊆ Nj , with |V| odd.

(2.14)

In this dissertation, we refer to the above formulation of LP decoding problem based on

the fundamental polytope of the original parity-check matrix as the original LP decoding.
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Chapter 3

Efficient Algorithms to Find All Small

Error-Prone Substructures

Low-density parity-check (LDPC) codes have been the focus of much research over

the past decade thanks to their near Shannon limit performance and to their efficient message-

passing (MP) decoders. However, some properties of LDPC codes are still not fully understood.

One of the most important open problems is the phenomenon of the error floor. Roughly speak-

ing, the error floor is an abrupt change in the error-rate performance of a MP decoder in the high

SNR region. It is known that the error floor performance of a finite-length LDPC code is dom-

inated by certain error-prone substructures (EPS) within the Tanner graph used to represent the

code. For the binary erasure channel (BEC), the class of EPS known as stopping sets determine

the error floor performance as well as the error-rate performance [1]. For general memoryless

binary-input output-symmetric (MBIOS) channels, the EPS that dominate the error floor perfor-

mance have not yet been fully characterized, although some classes of EPS have been identified

and, depending upon the context and performance analysis techniques being used, given names

such as near-codewords [2], trapping sets [3], absorbing sets, fully absorbing sets [4], and pseu-

docodewords [5].

Generally, the error floor of LDPC codes occurs at a bit error rate (BER) of around 10−5

to 10−7, but many important applications, such as data storage, require a very low error floor,

in the range of 10−12 to 10−15. This makes estimating error floors by Monte Carlo simulation

virtually impossible. With importance sampling, the error floor of LDPC codes can be semi-

analytically estimated by characterizing and enumerating the trapping sets [3]. Moreover, with

even a partial list of trapping sets of an LDPC code, new LDPC codes having a low error floor can

20
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be designed [6]; alternatively post-processing decoding can be used to reduce the error floor [7].

In [8], it was proven that exhaustively enumerating all small k-out trapping sets in an

arbitrary, finite-length LDPC code is NP-complete. This result was extended to different kinds

of EPS [9]. In spite of the hardness of finding all EPS, some practical search algorithms have

been proposed recently for limited-length LDPC codes. In [10], a non-exhaustive search algo-

rithm based upon the impulse approach was proposed. It can find a portion of the trapping sets

efficiently, but can not guarantee a complete enumeration of all the trapping sets. An exhaustive

search algorithm based on a branch-and-bound approach was proposed in [11], which can find

all small-sized fully absorbing sets for LDPC codes with moderate length (< 1000).

In this paper, we introduce two practical, exhaustive search algorithms based upon the

branch-and-bound principle which was previously used in [11] and [12]. During the bounding

step, we formulate two new and different linear programming (LP) problems for our EPS enu-

meration algorithm and FAS enumeration algorithm, respectively. By solving the LP problem,

we can decide the minimum size of EPS and FAS under given constraints, and thereby bound

the search. In comparison to the EPS search algorithm in [10], our EPS enumeration algorithm

can find all small EPS rather than only a subset of them. Moreover, as we will show later in this

paper, our FAS enumeration algorithm is more efficient than a recently proposed exhaustive FAS

search algorithm [11]. Finally, for quasi-cyclic (QC) LDPC codes, we can further improve the

efficiency for both algorithms by exploiting the cyclicity properties of the code.

The remainder of the paper is organized as follows. In Section 3.1, we give some basic

notation and definitions. Section 3.2 describes our proposed exhaustive search algorithms. In

Section 3.3, we apply our algorithms to some well-documented LDPC codes, and compare the

efficiency and accuracy with that of other algorithms. Section 3.4 concludes the paper.

3.1 Error-Prone Substructures

Several classes of EPS have been identified in the literature. On the BEC, it is stopping

sets, clearly defined substructure within the Tanner graph of an LDPC code, that dominate the

error-rate performance of the message-passing (MP) decoder: the decoder fails if and only if the

set of erased bits contains a stopping set [1]. However, for general MBIOS channels such as the

binary symmetric channel (BSC) and the additive white Gaussian noise channel (AWGNC), the

exact substructures that cause the error-floor are still not fully understood. The most prevalent

term for such a substructure is trapping set (TS), which is operationally defined as a subset

of variable nodes that is susceptible to errors under iterative decoding. However, this concept
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depends on both the channel and the decoding algorithm.

To facilitate our discussion, we define the term error-prone substructure from a graph-

theoretic perspective, independent of the channel and the decoder.

Definition 3.1 A subset of V is an (a, b) error-prone substructure (EPS) if in the induced sub-

graph, there are a variable nodes and b odd degree check nodes as neighbors. Correspondingly,

a binary indicator vector t ∈ {0, 1}n is also called an EPS if it has weight a and its syndrome s

has weight b, where s = Ht.

Remark 3.1 Unlike the conventional definition of trapping set, the subgraph corresponding to

an EPS is not necessarily a connected graph.

For a set of variable nodes A ⊆ V , denote by EA ⊆ C and OA ⊆ C the sets of check

nodes connected to A an even number or an odd number of times, respectively. Let EA(v) and

OA(v) be the sets of neighboring check nodes of v in EA and OA, respectively.

Definition 3.2 A set of variable nodesA ⊆ V is an absorbing set (AS) if |EA(v)| > |OA(v)| for

all v ∈ A; and a set of variable nodesA ⊆ V is a fully absorbing set (FAS) if |EA(v)| > |OA(v)|
for all v ∈ V . An AS (or FAS) is also called an (a, b) AS (or FAS) where a = |A| and b = |OA|.

From Definitions 4.1 and 3.2, it is easy to see that all trapping sets are EPS, and all

the absorbing sets and fully absorbing sets defined in [4] are also EPS. Actually, any subset of

variable nodes can be considered as an (a, b) EPS, but the EPS of most interest are those with

small a and b values, and/or small b/a ratio.

3.2 Algorithm Description

In the following description of the proposed algorithms, we use an extension of the

notion of indicator vector that we call a candidate vector. Specifically, a candidate vector

f = [f1, . . . , fn]T ∈ {0, 1, ∗}n is a vector of length n, where 1 and 0 indicate that the corre-

sponding VN is included or excluded from a subset of V , respectively, and ∗ means the position

is unconstrained, i.e., not yet set to a ”0” or ”1” value. Let supp(f) = {i : fi = 1} be the support

set of the candidate vector f , and wt(f) = |supp(f)| be the weight of f . Let f |p,0 and f |p,1 be the

candidate vectors obtained by setting the p-th position of f to 0 and 1 while keeping other posi-

tions unchanged, respectively. Let S be the set of row indexes whose corresponding check nodes
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have at least one unconstrained neighbor VN and an odd number of 1-valued neighbor VNs, ac-

cording to f . Finally, let T be the set of column indexes corresponding to the unconstrained

positions of f . Define the operation ⊗ between a binary vector h = [h1, . . . , hn] ∈ {0, 1}n and

f as

h⊗ f =


0, if ∃i : fi = ∗ and hi = 1;∑
i:hi=1

hifi (over F2), otherwise.

Note that h⊗ f ∈ {0, 1}. We can extend this operation to a matrix and a vector, i.e., applying ⊗
on each row of the matrix, and get a binary vector, such that H⊗ f = {h1⊗ f , . . . ,hm⊗ f}T ∈
{0, 1}m where hi is the i-th row of H. Hence, the weight of H⊗ f is the number of unsatisfied

CNs which have no unconstrained neighbor VNs.

3.2.1 EPS Search Algorithm

The proposed exhaustive search procedure for EPS is given in Algorithm 5.1 , which

finds all (a, b) EPS such that a 6 amax and b 6 bmax. The object denoted STACK is a last-

in first-out (LIFO) stack that keeps candidate vectors. The tightness of the computed lower

bound in line 9 and the selection of an unconstrained position in line 11 determine the number

of candidate sets (or the number of nodes in the binary search tree in the branch-and-bound

approach) considered in the algorithm.

3.2.1.1 Computing Lower Bound in line 9 (Bound Step)

The quantity ω(f) is a lower bound on the minimum increase in the value of α + β,

given all fixed positions in f , where α and β are defined in line 4. Define Ĥ , [H]S,T , the

submatrix of H consisting of elements in the rows and columns determined by the sets S and T ,

respectively. If set S is empty, we set lower bound ω(f) to be zero. Let x = {x1, . . . , x|T |} be

the optimization variables. The lower bound on the increase of α + β can be found by solving

the following integer programming (IP) problem:

min
∑
i∈T

xi (3.1)

s. t. Ĥx > (1, 1, . . . , 1)T ,

xi ∈ {0, 1}.

The constraint Ĥx > (1, 1, . . . , 1)T arises from the fact that each row of Ĥ corresponds to an

unsatisfied CN which has at least one unconstrained neighbor VN. Consider an unsatisfied CN
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Algorithm 3.1 Exhaustive Search Algorithm for EPS

Input: parity-check matrix H, integer amax and bmax.

Output: the exhaustive list L of all (a, b) EPS with a 6 amax and b 6 bmax.

1: L ← ∅, STACK← ∅, and push (∗, . . . , ∗) into STACK.

2: while STACK 6= ∅ do

3: f ← pop STACK.

4: α← |supp(f)| and β ←wt(H⊗ f).

5: if α 6 amax and β 6 bmax then

6: if there is no unconstrained position in f then

7: L ← L ∪ {supp(f)}
8: else

9: Compute lower bound ω(f).

10: if α+ β + ω(f) 6 amax + bmax then

11: Choose position p ∈ {i : fi = ∗}.
12: Push f |p,0 and f |p,1 into STACK.

13: end if

14: end if

15: end if

16: end while
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which has only one unconstrained neighbor VN. Such a CN will increase the value of α+ β by

one, because if we include this VN into the set the value of α will increase by one, and if we do

not include it, the value of β will increase by one. Therefore, the purpose of the IP problem above

is to find a lower bound of the minimum number of unconstrained VNs that could eliminate all

the unsatisfied CNs in S if they are set to the value 1.

The IP problem (3.1) can be relaxed by allowing xi to be a nonnegative real value,

transforming the optimization problem into an LP problem:

min
∑
i∈T

xi (3.2)

s. t. Ĥx > (1, 1, . . . , 1)T ,

x > 0.

Therefore, the lower bound ω(f) is the optimal value of the objective function of LP

problem (3.2), i.e., ω(f) =
∑
i∈T

x∗i =
∑
i∈T +

x∗i , where T + = {i : i ∈ T , x∗i > 0}.

3.2.1.2 Position Selection in line 11 (Branch Step)

Following [12], the principle of the position selection in line 11 is to find a VN that has

the largest number of neighbor CNs connected to the smallest number of unconstrained VNs.

Therefore, we choose position p ∈ T + such that

(Np(1), Np(2), . . . , Np(dp)) � (Nq(1), Nq(2), . . . , Nq(dq)) (3.3)

for all q ∈ T + and q 6= p, where Nq(k) is the number of neighboring CNs of the q-th VN

that are connected to k unconstrained VNs, and � denotes lexicographical order under which

(x1, x2, . . . , xl) � (y1, y2, . . . , yl) if xj > yj and xi = yi for 1 6 i 6 j − 1, or xi = yi for

1 6 i 6 l. If dp 6= dq, the vector in (3.3) corresponding to the smaller of the two is padded with

zeros. If there is more than one position p satisfying (3.3), then we choose the one with greater

column weight in Ĥ. If S = ∅, we choose an unconstrained position with maximum column

weight in H.

As we noted previously, our definition of EPS may include unconnected subgraphs es-

pecially when bmax increases. However, since most EPS of interested are of small b where the

number of such ”degenerated” substructures is small if they exist, it is easy to add an additional

step after each EPS being found to filter out these undesired substructures, and the computational

complexity of such filtering is negligible.
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3.2.2 FAS Search Algorithm

The exhaustive search procedure for FAS is given in Algorithm 5.2 , which is based on

the EPS search algorithm. The key differences are in line 9 and line 10, where we compute and

apply a lower bound, µ(f), on the minimum number of unconstrained positions in f that should

be set to 1 in order to get a valid FAS.

In line 9, before computing the lower bound, we first check the unsatisfied CNs with all

known neighboring VNs to see whether the subgraph is a FAS, i.e., no VN has more unsatisfied

neighboring CNs than satisfied neighboring CNs. If the definition of FAS has already been

violated by f , the lower bound µ(f) is set to be amax, implying that the condition in line 10 will

not hold; otherwise, the following approach is applied to compute the lower bound.

Let C1(f) be the set of all unsatisfied CNs represented by f , i.e., the set of CNs that

connect to VNs in supp(f) an odd number of times. Let Uk , N(k) ∩ C1(f) be the set of

unsatisfied neighboring CNs of the k-th VN. The lower bound µ(f) can be found by solving the

following LP problem:

min
∑
i∈T

xi

s. t. θ(xk) +
∑
j∈Uk

∑
i∈Nj∩T /{k}

xi

> 1 + |Uk| − d
dk
2
e for all k ∈ V, (3.4)

xi > 0 for all i ∈ T

where θ(xk) is defined as

θ(xk) =

 (|Uk| − |Sk|)xk, if k ∈ T ;

0, otherwise,

and Sk is the set of satisfied check nodes whose only unknown neighboring variable node is vk.

Note that we can remove the constraints in (3.4) if the right-hand side is less than or

equal to zero. The optimal value of the LP problem is the lower bound, i.e., µ(f) =
∑
i∈T +

x∗i , and

the subsequent position selection step in line 11 is the same as in Algorithm 5.1 .

From the definition of FAS, each VN has to connect to more satisfied neighboring CNs

than the unsatisfied. Given candidate vector f and a VN position k, 1 6 k 6 n, the VN has |Uk|
unsatisfied neighbor CNs, and we have to have

dk − |Uk| > |Uk| (3.5)
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Algorithm 3.2 Exhaustive Search Algorithm for FAS

Input: parity-check matrix H, integer amax and bmax.

Output: the exhaustive list L of all (a, b) FAS with a 6 amax and b 6 bmax.

1: L ← ∅, STACK← ∅, and push (∗, . . . , ∗) into STACK.

2: while STACK 6= ∅ do

3: f ← pop STACK.

4: α← |supp(f)| and β ←wt(H⊗ f).

5: if α 6 amax and β 6 bmax then

6: if there is no unconstrained position in f then

7: L ← L ∪ {supp(f)}
8: else

9: Compute lower bound µ(f).

10: if α+ µ(f) 6 amax then

11: Choose position p ∈ {i : fi = ∗}.
12: Push f |p,0 and f |p,1 into STACK.

13: end if

14: end if

15: end if

16: end while
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in order to get a valid FAS. If this inequality does not hold for a VN, we have to set itself and/or

some of its neighboring VNs (2-step neighbors on the Tanner graph) to one to let the inequality

hold. The LP problem in (3.4) gives a lower bound on the minimum number of unconstrained

positions in f needed to further be set to one in order to have (3.5) hold for every VN.

By comparing Algorithm 5.1 and Algorithm 5.2 , we can see that the value of amax +

bmax dominates the computational complexity of Algorithm 5.1 in the search for general EPS,

whereas in Algorithm 5.2 , where we restrict the search to FAS, it is amax alone that determines

the running time.

3.2.3 The Exhaustiveness of Proposed Algorithms

The searches for EPS and FAS preformed in Algorithm 5.1 and Algorithm 5.2 can be

seen as a search on a binary tree, whose root is the first VN position that the algorithms pick to

start with. If no branch-and-bound is performed, the leaves of the binary tree are all 2n binary

vectors of length n. The proposed exhaustive search algorithms traverse the binary tree in an

efficient way such that they compute the lower bound on a + b for EPS or a for FAS on all

children of the current node. If the lower bound on such parameters exceeds thresholds on a

certain node, the algorithms cut the branch from this node off the binary tree. With branch-

and-bound, the search algorithms avoid going through all 2n leaves of the binary tree, but still

traverse the whole binary tree; therefore, our proposed algorithms is an exhaustive search. Note

that, using different ways to compute the lower bounds and to select next position p does not

affect the exhaustiveness of the search algorithm, it only affects the efficiency of the search.

3.2.4 Efficiency Improvement for QC Codes

Consider a vector of length βt where both β and t are positive integers,

v = (v1,v2, . . . ,vt) = (v1,1, . . . , v1,β, . . . , vt,1, . . . , vt,β).

Let v
(l)
i = (vi,β−l+1, . . . , vi,β−l) be the (right) cyclic-shift of vi by l positions. The vector

v[l] = (v
(l)
1 , . . . ,v

(l)
t ) is called the t-section cyclic-shift of v.

Definition 3.3 Let β and t be positive integers. A linear block code Cqc of length βt is called a

quasi-cyclic (QC) code if the following conditions hold: (1) each codeword consists of t sections

of β bits each; and (2) every t-section cyclic-shift of a codeword in Cqc is also a codeword in Cqc.
Such a QC code is also called a t-section QC code.
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Table 3.1: (a, b) EPS enumerators for the (155,64) Tanner code

(a, b) count (a, b) count (a, b) count

(5,3) 155 (6,4) 2790 (7,3) 930

(8,2) 465 (8,4) 14415 (9,3) 5580

(10,2) 1395 (10,4) 83235 (11,3) 17360

(12,2) 930 (12,4) 36280 (13,3) 43245

From the definition above, we can see that if an indicator vector s of length βt cor-

responds to an (a, b) EPS (or FAS) of a t-section QC code, the t-section cyclic-shift of s is

also an (a, b) EPS (or FAS). In this case, we can initialize the STACK with t candidate vectors,

f i = (f i1, . . . , f
i
βt), 0 6 i 6 t− 1, where

f ij =


0, if j = kβ + l + 1, 0 6 k 6 i− 1, 0 6 l 6 λ

1, if j = iβ + λ+ 1

∗, otherwise

and λ , max
(
d β
amax
e − 1, 0

)
.

Moreover, we can further reduce the search space by initialize the STACK with more

properly designed candidate vectors. The EPS (or FAS) found using such an initialization are

then quasi-cyclically shifted and the number of distinct ones are counted. In comparison to

the initialization proposed in [12], our method generates initialization vectors with more fixed

positions, and therefore, it more efficiently reduces the search space.

3.3 Numerical Results

In this section, we provide some numerical results for several well-documented LDPC

codes. By comparing our results with existing results in the literature, we demonstrate the com-

pleteness and efficiency of our proposed search algorithms.

3.3.1 Results of EPS Search Algorithm

3.3.1.1 The (3,5)-Regular (155,64) QC Tanner Code [13]

In Table 3.1, we list the number all (a, b) EPS where a 6 13 and b 6 4. To demonstrate

the efficiency of the proposed algorithm, consider the case of finding all EPS for amax = 9 and
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Table 3.2: (a, b) EPS enumerators for the M816 code

(a, b) EPS FAS analytical search [15]

(3,3) 132 126 132

(4,2) 3 3 0

(4,4) 3459 1350 1372

(5,3) 120 86 41

Table 3.3: (a, b) EPS enumerators for the M1008 code

(a, b) EPS FAS analytical search [15]

(3,3) 165 153 165

(4,2) 6 6 0

(4,4) 3701 1130 1215

(5,3) 160 92 14

bmax = 3. With a brute force exhaustive search, we would be required to check
9∑
i=1

(
155
i

)
≈

1.2 × 1014 sets in order to find all EPS of size up to 9. In contrast, the proposed algorithm

only searchers through 6.8 × 106 candidate vectors if initialized with an empty STACK. If we

further take advantage of the QC property of the Tanner (155,64) code and initialize the STACK

with 5 candidate vectors, the number of candidate vectors the algorithm has to consider drops to

6.0× 105.

3.3.1.2 The (3,6)-Regular (816,408) M816 and (1008,504) M1008 LDPC Codes [14]

M816 and M1008 are two random (3,6)-regular LDPC codes generated by MacKay. In

Table 3.2 and Table 3.3, we compare the number of EPS and FAS (amax 6 5) found by our

proposed algorithms with the number of trapping sets found by the analytical search method

in [15] for the M816 and M1008 code, respectively. According to the definition of trapping

set in [15] (i.e., if an error vector stays the same after one iteration of Gallager B decoding, it

corresponds to a trapping set), although all EPS in the tables above can not be correctly decoded

by the Gallager B decoder, some of them are not trapping sets since they decode to error vectors

corresponding to trapping sets of other sizes. Interestingly, for the parameters listed in Table 3.2

and Table 3.3, the FAS correspond precisely to the set of all trapping sets. The analytical method
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Table 3.4: (a, b) EPS enumerators for (256,128) LDPC code

(a, b) exhaustive non-exhaustive [10]

(5,3) 32 32

(7,3) 32 32

(8,2) 32 32

(8,4) 544 540

(9,3) 192 191

(10,4) 2304 1600

(11,3) 128 117

(12,2) 32 32

(12,4) 6304 1645

(13,3) 864 457

(14,2) 96 91

(14,4) 28896 2466

(19,1) 64 38

Table 3.5: Simulation time comparison for FAS of PEGR504 code (amax = bmax = 5)

Algorithm 5.1 Algorithm 5.2 EFSA [11]

59 min 3 min 6 hr 55 min

in [15], which counts cycles and cycle interactions on the Tanner graph, is intended to enumerate

all the trapping sets, but as can be seen, the results obtained are not always accurate.

3.3.1.3 The (256, 128) CCSDS QC-LDPC Code [10]

Table 3.4 compares the number of EPS found by our algorithm with that found by a

non-exhaustive approach proposed in [10], which tries to find as many EPS as possible. This

code has irregular variable degree, such that some VNs are of degree 3 and others have degree

5. We can see that the non-exhaustive approach works well when searching for EPS with small

a and b, but the accuracy decreases dramatically as the size of EPS increases.
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3.3.2 Results of FAS Search Algorithm

Due to space limitations and the fact that the FAS form a subset of EPS, we do not

include here the number of FAS found using our exhaustive search algorithm. We provide instead

only some numerical results that demonstrate the efficiency of our proposed algorithms. The

algorithms were implemented with VC++ and GLPK as the LP solver [16]. Note that we do

not use any coding optimization techniques to accelerate the execution of our C++ code. The

running times were obtained on a standard desktop PC with a 2.67GHz processor.

For the comparison, we examined the PEGR504 code, which is a (3,6)-regular (504,252)

LDPC code taken from [14]. We found the same number of FAS for this code as was reported

in [11]. Table 3.5 compares the running times of our proposed algorithms with that of the

exhaustive FAS search algorithm (EFSA) in [11] for the case where amax = bmax = 5. We can

see that both of our proposed algorithms are significantly faster than EFSA. Algorithm 5.2 , in

particular, reduced the execution time by more than two orders of magnitude. The improvement

on efficiency comes from two parts. One is that our algorithms have a more efficient ways

to estimate the lower bound and to select next constraint position. The other is that, when

computing the lower bound, our algorithms only need to solve an LP problem which can be

efficiently solved, but EFSA has to solve an IP problem which is generally more computational

complicated and requires more CPU running time. Note that the PEGR504 code is not quasi-

cyclic, so we could not take the advantage of QC codes as described in Section 3.2.4. However,

we can expect even more efficiency improvement with our proposed algorithms for QC-LDPC

codes.

3.4 Conclusion

In this chapter, we proposed efficient, exhaustive search algorithms for EPS and FAS. By

properly initializing the algorithms, we further improved the execution-time efficiency for QC-

LDPC codes. A comparison of our results to those obtained with previously proposed full and

partial search algorithms confirms the relative efficiency of our algorithms, while identifying

weaknesses in some of the others. The dissertation author was the primary investigator and

author of this paper.
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Chapter 4

Quantized Iterative Message Passing

Decoders with Low Error Floor for

LDPC Codes

One common way to improve the error floor performance of LDPC codes has been to

redesign the codes to have Tanner graphs with large girth and without small EPSs [1–3]. How-

ever, for LDPC codes that have been standardized, approaches are needed that do not modify the

codes. In the literature, many modifications to the iterative MP decoding algorithms have been

proposed in order to improve high SNR performance, such as averaged decoders [4], reordered

decoders [5, 6], and decoders with post processing [7–11]. In [4], the authors noticed that the

emergence of errors in EPSs is heuristically related to a sudden magnitude change in the values

of certain variable nodes (VNs). Hence, it was proposed to average the messages in a belief-

propagation (BP) decoder over several iterations to avoid such sudden changes and therefore

slow down the convergence rate for variable nodes in a trapping set and decrease the frequency

of trapping set errors. Another heuristic approach is to process messages based on the order of

node reliabilities computed at each iteration [5], and it was suggested that the scheduled decoders

are able to resolve some standard trapping set errors [6]. Although these general approaches are

capable of improving the average error rate performance to some extent, the resulting decoders

still fail on small EPSs and their effect on the error floor is not significant.

To further improve the error floor behavior, decoders that make use of the prior knowl-

edge of some small size EPSs are designed to reduce the decoding failures due to such EPSs.

In [7] and [8], the authors proposed a post-processing decoder that matches the configuration

35
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of unsatisfied check nodes (CNs) to trapping sets in a precomputed list after conventional MP

decoding has failed. The size and completeness of the trapping set list directly affect the per-

formance gain of such decoders, but to obtain a complete list of small trapping sets of a given

LDPC code is generally quite computationally complex. A symbol-selecting post-processing

technique was also developed in [9]. It saturates the channel messages on a set of selected vari-

able nodes at each stage after the conventional MP algorithms fails. In [10], Han and Ryan

proposed a bi-mode erasure decoder that combines several problematic check nodes into a gen-

eralized constraint processor, to which a corresponding maximum a posteriori (MAP) algorithm,

such as the BCJR algorithm, is then applied. Another post-processing approach that utilizes the

graph-theoretic structure of absorbing sets, proposed in [11], adjusts the appropriate messages in

the iterative MP decoding once the decoder enters and remains in the absorbing set of interest.

All the above approaches either change the message update rules of MP decoders or

require extra processing steps after conventional MP decoding fails, both of which increase

the decoding complexity relative to the original iterative MP algorithms. Moreover, the post-

processing approaches that require prior knowledge of the set of EPSs causing the error floor are

only effective when applied to LDPC codes whose EPSs have been carefully studied.

In fixed-point implementation of iterative MP decoding, efforts have also been made

to improve the error-rate performance in the waterfall region and/or error-floor region by opti-

mizing parameters of uniform quantization [12–15]. In [12], Zhao et al. studied the effect of

message clipping and uniform quantization on the performance of the min-sum decoder in the

waterfall region and heuristically optimized the number of quantization bits and the quantization

step size for selected LDPC codes. In [13], a dual-mode adaptive uniform quantization scheme

was proposed to better approximate the log-tanh function used in sum-product algorithm (SPA)

decoding. Specifically, for magnitudes less than 1, all quantization bits were used to represent

the fractional part; for magnitudes greater than or equal to 1, all bits were dedicated to the rep-

resentation of the integer part. In [14, 15], Zhang et al. proposed a conceptually similar idea to

increase precision in the quantization of the log-tanh function. Uniform quantization was applied

to messages generated by both variable nodes and check nodes, but the quantization step sizes

used in the two cases were separately optimized. We note, however, that none of these modified

quantization schemes were primarily intended to significantly increase the saturation level, or

range, of quantized messages, and in their reported simulation results, error floors can still be

clearly observed.

It was first noticed in [16] that the high error floors associated with certain EPSs of
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some LDPC codes are closely related to the saturation level imposed on messages passed in

the SPA decoder. In this work, we investigate the cause of error floors in binary LDPC codes

from the perspective of the MP decoder implementation, with special attention to limitations

that decrease the numerical accuracy of messages passed during decoding. We show that, under

certain assumptions, the EPSs which are commonly associated with high error floors of some

LDPC codes will not trap iterative MP decoders and cause high error floors if messages are

accurately represented and there is no limitation on the number of iterations. Based upon an

analysis of the growth rate of messages outsides an EPS in an idealized scenario, we propose

a novel quasi-uniform quantization method that captures the essence of messages in different

ranges of reliability. The proposed quantization method has an extremely large saturation level

which prevents iterative MP decoders from being trapped by an EPS. This property, to the best

of our knowledge, distinguishes if from other quantization techniques for iterative MP decoding

that have appeared in the literature. With the new quantization method, it is possible to have

a fixed point implementation of iterative MP decoders that achieves low error floors without

an additional post-processing stage or a modification of either the decoding update rules or the

graphical code representation upon which the iterative MP decoder operates. We present simu-

lation results for min-sum decoding, SPA decoding, and some of their variants, that demonstrate

a significant reduction in the error floors of two representative LDPC codes, with no increase in

decoding complexity.

The remainder of the chapter is organized as follows. Section 4.1 gives some nota-

tion and definitions used throughout this chapter. In Section 4.2, we analytically investigate

the impact that message quantization can have on MP decoder performance and the error floor

phenomenon. In Section 4.3, we propose an enhanced quantization method intended to over-

come the limitations of traditional quantization rules. In Section 4.4, we incorporate the new

quantizer into SPA and min-sum decoding and, through computer simulation of several LDPC

codes known for their high error floors, demonstrate the significant improvement in error-rate

performance that this new quantization approach can afford. Section 4.5 concludes the chapter.

4.1 Notation and Definitions

The study of the phenomenon of error floors began shortly after LDPC codes were re-

discovered about a decade ago. It has been shown that the EPSs known as stopping sets cause

the error floor in the binary erasure channel (BEC), and such EPSs have a clear combinatorial

description. Enumeration of these structures makes it possible to accurately estimate the error
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floor [17]. However, for other MBIOS channels such as the binary symmetric channel (BSC)

and the additive white gaussian noise channel (AWGNC), it is more difficult to establish the rela-

tionship between EPSs and error floors. In [18], it was first pointed out that the near-codewords

caused error floors in simulations of Margulis and Ramanujan-Margulis LDPC codes on the

AWGNC. The term trapping set proposed by Richardson [19] is operationally defined as a sub-

set of variable nodes (VNs) that is susceptible to errors under a certain iterative MP decoder

over an MBIOS channel. Hence, this concept depends on both the channel and the decoding

algorithm. In [20], the error floor is associated with some combinatorial substructures within

the Tanner graph, named absorbing sets, which are defined independently of the channel. The

absorbing sets correspond to a particular type of near codewords or trapping sets that are stable

under bit-flipping operations. All these EPSs have been believed to be the cause of error floors,

and for some LDPC codes, techniques such as importance sampling used to estimate the error

floor are based on the probability of decoding failures on such EPSs [19, 22]. In this section, we

will show that under certain assumptions about the correctness of variable nodes outside a given

EPS in the Tanner graph, conventional iterative decoders that accurately represent messages will

eventually correct errors supported by the EPS.

To facilitate our discussion, we define a substructure called an absolute trapping set

from a purely graph-theoretic perspective, independent of the channel and the decoder.

Definition 4.1 A stopping set of size a is a configuration of a variable nodes such that the

induced subgraph has no check nodes of degree-one. An (a, b) trapping set is a configuration

of a variable nodes, for which the induced subgraph is connected and has b odd-degree check

nodes. If the induced subgraph of an (a, b) trapping set does not contain a stopping set and has

at least one check node of degree one, it is called an absolute trapping set.

In the literature, all trapping sets of interest that cause the error floor of an LDPC code

are of size smaller than the minimum stopping set size of the code, since otherwise the stopping

sets would be the dominate contributor to the error floor [17]. By requiring at least one check

node of degree one, we exclude stopping sets from our definition of absolute trapping set. As we

will discuss later in this section, these degree-one check nodes are essential because they are able

to pass correct extrinsic messages into the trapping set. To the best of our knowledge, almost

all trapping sets of interest in the literature are absolute trapping sets. For example, both of the

well-known (5,3) trapping sets in the Tanner code of length 155, the notorious (12,4) trapping

sets in the (2640,1320) Margulis code, and the (5,5) trapping set in some codes of variable-

degree five are all elementary trapping sets. This can be seen in Fig. 4.1, where check nodes of
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(a) a = 5, b = 3

(b) a = 12, b = 4

(c) a = 5, b = 5

Figure 4.1: Examples of (a, b) absolute trapping sets. Check nodes in set C1 and variable

nodes in set V1 are shown shaded.
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degree-one are shaded. Unless otherwise indicated, all trapping sets referred to in this chapter

are elementary trapping sets, as well.

In analogy to the definition of computation tree in [23], we define a k-iteration compu-

tation tree as follows.

Definition 4.2 A k-iteration computation tree Tk(v) for an iterative decoder in the Tanner graph

G is a tree graph constructed by choosing variable node v ∈ V as its root and then recursively

adding edges and leaf nodes to the tree that participate in the iterative message-passing decoding

during k iterations. To each vertex that is created in Tk(v), we associate the corresponding node

update function in G.

Let S be the induced subgraph of an (a, b) trapping set contained in G, with VN set

VS ⊆ V and CN set CS ⊆ C. Let set C1 ⊆ CS be the set of degree-one CNs in the subgraph

S, and let set V1 ⊆ VS be the set of neighboring VNs of CNs in C1. In the (5,3), (12,4), and

(5,5) trapping sets shown in Fig. 4.1, the check nodes in set C1 and the variable nodes in set V1

are shaded. We refer to a message on an edge adjacent to VN v as a correct message if its sign

reflects the correct value of v, and as an incorrect message, otherwise. Let D(u) be the set of all

descendants of the vertex u in a given computation tree.

Definition 4.3 Given a Tanner graphG and an induced subgraph S of a trapping set, a variable

node v ∈ V1 is said to be k-separated if, for at least one of its neighboring degree-one check node

c ∈ C1 in S, no variable node v′ ∈ VS belongs toD(c) ⊂ Tk(v). If every v ∈ V1 is k-separated,

the induced subgraph S is said to satisfy the k-separation assumption.

In Fig. 4.2(a), we show the graph of a (4, 4) trapping set and some of its neighboring

nodes. The set of VNs in the trapping set is VS = {v1, v2, v3, v4}, represented as solid black

cycles. The set of CNs in the trapping set is CS = {ci}, 1 6 i 6 8. In this trapping set, every

VN has a neighboring degree-one CN, i.e., V1 = VS , and C1 = {c1, c2, c3, c4}. For example,

the 3-iteration computation tree of VN v1 is shown in Fig. 4.2(b). It can be verified from this

computation tree that v1 is 2-separated but not 3-separated, because v2 ∈ VS is a descendant of

c1 in T3(v1), but not in T2(v1). It is worth noting that whether or not a trapping set satisfies the

k-separation assumption depends on the Tanner graph outside the trapping set, not the trapping

set itself.

We want to point out that the k-separation assumption is much weaker than the isolation

assumption in [24]. The separation assumption here only applies to the VNs that have neigh-

boring degree-one CNs in the induced subgraph S, and these neighboring degree-one CNs do
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not have any VNs from the trapping set as their descendants in the corresponding k-iteration

computation tree. With the separation assumption, the descendants of c ∈ C1 are separated from

all the nodes in the trapping set, meaning that the incorrect messages passed in the trapping set

do not affect the extrinsic messages sent towards c in the computation tree.

4.2 Error Floors of LDPC Codes

4.2.1 Trapping Sets and Min-Sum Decoding

To get further insight into the connection between trapping sets and decoding failures

of iterative MP decoders, we first consider a simple iterative MP decoder, the min-sum (MS)

decoder.

Theorem 4.4 Let G be the Tanner graph of a variable-regular LDPC code that contains a sub-

graph S induced by a trapping set. When S satisfies the k-separation assumption and when the

messages from the BSC to all VNs outside S are correct, the min-sum decoder can successfully

correct all erroneous VNs in S, provided k is large enough.

Proof: Assume VN vr ∈ V1 ⊆ S is k-separated and the corresponding k-iteration computation

tree is Tk(vr). Let cr ∈ C1 be the neighboring degree-one CN of vr in S. From the separation

assumption and the assumed correctness of channel messages for VNs outside S, all descendants

of cr in Tk(vr) receive correct initial messages from the BSC. Like the LLRs of the BSC outputs,

all the initial messages in the decoder, Lchi , 1 6 i 6 n, have the same magnitude. Denote the

subtree starting with CN cr as T (cr). With the VN/CN update rules of the min-sum decoder,

we analyze the messages sent from the descendants of cr in T (cr). First, according to the CN

update rule described in (2.5), all messages received by a VN from its children CNs in T (cr)

must have the same sign as the message received from the channel by this VN, because all the

messages passed in T (cr) are correct. Therefore, the outgoing message from any VN vi to its

parent CN cj in T (cr) satisfies the following equality

|Li→j | =

∣∣∣∣∣Lchi +
∑

j′∈Ni\j
Lj′→i

∣∣∣∣∣
=
∣∣Lchi ∣∣+

∑
j′∈Ni\j

∣∣Lj′→i∣∣ . (4.1)

Moreover, since the LDPC code considered is variable-regular and all the channel mes-

sages from the BSC have the same magnitude, it can be shown that, for the min-sum decoder,
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all incoming messages received by a VN from its children CNs in T (cr) must have the same

magnitude as well. Therefore, the messages sent from VNs of the same level in the computation

tree T (cr) have the same magnitude. Let |Ll| be the magnitude of the messages sent by the

VNs whose shortest path to a leaf VN contains l CNs in T (cr). Hence, |L0| is the magnitude of

messages sent by leaf VNs, as well as the magnitude of channel inputs. Then, we have

|Ll| = |L0|+ (dv − 1)|Ll−1|
> (dv − 1)|Ll−1|
> (dv − 1)l|L0|

(4.2)

where dv is the variable node degree. Hence, it can be seen that the magnitudes of messages

sent towards the root CN cr of the computation tree T (cr) grow exponentially, with dv − 1 as

the base, in every upper VN level. Therefore, for l 6 k, the magnitude of the message sent from

cr to its parent node vr, the k-separated root VN of Tk(vr), in the l-th iteration is greater than

(dv − 1)l|L0|.
Now, let us consider a branch of the computation tree that starts from another child CN

c′ ∈ CS \ C1 of the root vr in Tk(vr), denoted by by T (c′). Suppose the message received by

vr from c′ after l iterations, denoted by L′l, has a different sign than the message received from

cr ∈ C1; otherwise, vr would already be corrected. Since the induced subgraph of the trapping

set is connected, there exists an integer t such that any t-level subtree starting from a VN v ∈ S
in T (c′), i.e., a subtree with t levels of VNs, must have at least one CN from the set C1 as

its descendant. Since the number of VNs in the trapping set is a, any two VNs in the induced

subgraph are connected by a path of length less than 2a. Hence, it is obvious that t 6 2a, and

a tighter upper bound is t 6 2 log a
log(dv−1) . Of course, the exact value of t depends on the structure

of the trapping set. For min-sum decoding, every CN in a computation tree takes the minimum

magnitude of messages received from its children VNs. Therefore, each t-level subtree can be

considered as a “super-node” with (dv − 1)t children VNs, and at least one of these children

VNs has descendants that all receive correct messages from the channel; this means that at least

one of the incorrect messages going into the super-node would be canceled out by one or more

correct messages. So if the output message, Lout, of such a super-node is incorrect, its magnitude

satisfies

|Lout| < ((dv − 1)t − 1)|Lin|+ |L̄ch|, (4.3)

where |Lin| is the largest magnitude of all incoming incorrect messages, and the second term

|L̄ch| , |L0|
t−1∑
i=0

(dv − 1)i is an upper bound on the sum of all channel input LLRs to the VNs

in the t-level subtree. Note that the leaf VNs of such t-level subtrees are not necessarily the leaf
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VNs of Tk(vr). Thus, we can upper bound the magnitude of the incorrect message sent from c′

to vr after l iterations by

|L′l| < |L0| ·
[
(dv − 1)t − 1

]dl/te
+ |L̄ch|

dl/te−1∑
i=0

[
(dv − 1)t − 1

]i
< |L̄ch| · |L0| ·

[
(dv − 1)t − 1

]dl/te (4.4)

where dxe is the smallest integer greater than x.

Therefore, by taking the logarithm of |Ll| in (4.2) and |L′l| in (4.4), respectively, we have

log |Ll| > log |L0|+ l log(dv − 1)

= log |L0|+ l · 1
t · log(dv − 1)t,

(4.5)

and
log |L′l| < log |L̄ch|+ log |L0|+ dl/te log

[
(dv − 1)t − 1

]
< log |L̄ch|+ log |L0|+ log

[
(dv − 1)t − 1

]
+l · 1

t · log
[
(dv − 1)t − 1

]
.

(4.6)

Note that the first term in (4.5) and the first three terms in (4.6) are constants and independent of

the number of iterations l.

Since log(dv − 1)t > log
[
(dv − 1)t − 1

]
, if l is large enough and there is no limitation

imposed on the magnitude of messages, it is easy to see from (4.5) and (4.6) that |Ll| would

be greater than |L′l| multiplied by any constant. This means that the correct messages coming

from outside of the trapping set to VNs in V1 through their neighboring CNs in C1 will even-

tually have greater magnitude than the sum of incorrect messages from other neighboring CNs,

i.e., |Ll| > (dv − 1)|L′l|. By letting the number of iterations further grow, the correct messages

would eventually be large enough to correct all erroneous VNs in the trapping set.

Remark 4.1 Note that the upper bound in (4.4) is extremely loose, and for most small-size

trapping sets, the upper bound is generally less than |L0|(dv − 2)l.

Corollary 4.5 Let G be the Tanner graph of a variable-regular LDPC code that contains a

subgraph S induced by a trapping set. When S satisfies the k-separation assumption and the

channel messages from the AWGNC to all VNs outside S are correct, the min-sum decoder can

successfully correct all erroneous VNs in S, provided k is large enough.

Proof: The input LLRs from the AWGNC to the decoder could have different magnitudes, so we

define |Lmin| and |Lmax| to be the minimum and maximum magnitude of all LLRs, respectively.
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Then, the bounds on log |Ll| in (4.5) and on log |L′l| in (4.6) can be extended to the AWGNC

setting as

log |Ll| > log |Lmin|+ l · 1

t
· log(dv − 1)t,

and
log |L′l| < log |L̄ch|+ log |Lmax|+ log

[
(dv − 1)t − 1

]
+l · 1

t · log
[
(dv − 1)t − 1

]
.

Since log |Lmin| and log |Lmax| are both constant terms and do not change as l increases, similar

to the BSC case, we can also conclude that the correct messages from outside the trapping set

will eventually have greater magnitude than the incorrect messages within the trapping set.

Theorem 4.4 and its corollary can be extended to both attenuated min-sum (AMS) and

offset min-sun decoding. For AMS, if the attenuation factor is a constant, the proof of Theo-

rem 4.4 can be directly applied. As for OMS, the proof follows the proof of Theorem 4.8 in the

next subsection.

4.2.2 Trapping Sets and Sum-Product Algorithm Decoding

In this subsection, we further extend Theorem 4.4 to sum-product algorithm decoding.

The optimality criterion in the design of the SPA decoder is symbol-wise maximum a posteriori

probability (MAP), and it is an optimal symbol-wise decoder on Tanner graphs without cycles.

Recall that, in the CN update rule of SPA decoding, the message sent from CN j to VN

i is computed as

Lj→i = 2tanh−1

 ∏
i′∈Nj\i

tanh
Li′→j

2

 . (4.7)

In practical implementations of the SPA, the following equivalent CN update rule is

often used

Lj→i =

 ∏
i′∈Nj\i

sign(Li′→j)

 · φ−1

 ∑
i′∈Nj\i

φ(|Li′→j |)

 (4.8)

where φ(x) = − log[tanh(x/2)] and φ−1(x) = φ(x), as shown in Fig. 4.3. In some fixed-point

implementations, in order to have better approximation, different look-up tables could be used

to compute φ(x) and φ−1(x) [15].

We want to point out that the hyperbolic tangent function, tanh(x), has numerical satu-

ration problems when computed with finite precision. For example, in double-precision floating-

point computer implementation (64-bit IEEE 754) [26], it can be shown that tanh(x/2) would
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Figure 4.3: A plot of the φ(x) function.

be rounded to 1 when x > 38, meaning that φ−1 (φ(x)) =∞ for x > 38 [27]. In order to avoid

such problems that can arise from limited precision, thresholds on the magnitudes of messages

must be applied in simulation studies [15].

In order to maintain the performance advantage of SPA decoding over min-sum decod-

ing, the quantization method has to preserve the self-inverse property of the φ(x) function and

to accurately compute the CN update function in (4.8). However, from Fig. 4.3, we can see that

it is difficult to have a good approximation of the φ(x) function with limited resolution, because

this requires both fine precision and large range. Efforts have been made to design quantization

methods that work effectively with the φ(x) function. For example, a variable-precision quan-

tization scheme proposed in [13] uses larger quantization step size for magnitudes greater than

1, and smaller step size for magnitudes less than 1. An adaptive uniform quantization method

proposed in [14] uses different quantization step sizes for the outputs of the φ(x) and the φ−1(x)

function in (4.8). Fig. 4.3 clearly shows that, if the output of the φ(x) function is quantized with

finite precision ε, inputs greater than φ−1(ε) can not be distinguished, and φ−1(ε) is quite small

even for extremely fine precision, e.g., φ−1(10−6) ≈ 14.5. Hence, the largest supported magni-
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1 + e−|x|
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tude during decoding depends on the finest precision of quantization. This means increasing the

quantization range without improving the precision is not beneficial.

In order to avoid dealing with the φ(x) function, a variety of other CN update rules, most

of which are approximations to the SPA, have been proposed. Some of these approximation are

based on the following equivalent version of the SPA CN update rule represented by (4.7) or

(4.8),

Lj→i = �
i′∈Nj\i

Li′→j (4.9)

where � is the pairwise “box-plus” operator defined as

U � V = log

(
1 + eU+V

eU + eV

)
= sign(U)sign(V ) · {min(|U |, |V |) + s(|U |, |V |)} (4.10)

= sign(U)sign(V ) min(|U |, |V |) + s(U, V ) (4.11)

and

s(x, y) = log
(

1 + e−|x+y|
)
− log

(
1 + e−|x−y|

)
. (4.12)

The proof of equivalence between (4.7) and (4.9) can be found in [28]. We call such

an implementation box-plus SPA decoding. The formulation above does not have the preci-

sion problem that (4.7) and (4.8) have, and, in fact, in 64-bit double-precision floating-point

implementation, the maximum magnitude of a message that can be supported is approximately

1.8 × 10308, which is the largest double-precision value supported by the IEEE 754 standard.
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Unlike the φ(x) function, the function log
(
1 + e−|x|

)
, as shown in Fig. 4.4, can be well quan-

tized or approximated with piecewise linear functions [27–29]. Moreover, if the term s(x, y)

is omitted, the box-plus SPA becomes the min-sum algorithm, and if we replace this term with

a constant, we get the offset min-sum algorithm. As we will show later, the magnitude of the

function s(x, y) is upper bounded by a constant.

From the CN update rule described in (4.9) and (4.11), it can be seen that box-plus SPA

decoding can be considered as min-sum decoding with a small correction factor. The following

lemma relating CN messages in min-sum and SPA decoding was first shown in [30] for SPA

decoding with the CN update equation described in (4.7). Although we know that the box-

plus SPA and the SPA using the φ(x) function are equivalent, we include here, for the sake of

completeness, a proof of the lemma for box-plus SPA, as follows.

Lemma 4.6 Given the same input messages, the CN output in box-plus SPA decoding has the

same sign as, but smaller magnitude, than that of min-sum decoding.

Proof: Since s(x, y) = 0 when xy = 0, it can be seen from (4.10) that the lemma is true if

the inequality min(x, y) + s(x, y) > 0 holds for any positive real values x and y. Assuming

x > y > 0, the following inequalities are equivalent

min(x, y) + s(x, y) > 0

⇔ log ey + log 1+e−x+y

1+e−x−y > 0

⇔ ey + e−x − 1− e−x+y > 0

⇔ (ey − 1)(1− e−x) > 0.

Since ey > 1 and e−x < 1, the final inequality holds. This proves the lemma.

From Lemma 4.6, we can see that SPA decoding can be thought of as min-sum decoding

with a small correction factor that does not change the sign of the CN output of the min-sum

algorithm.

Lemma 4.7 For any real values x and y, the magnitude of s(x, y) is bounded by a constant.

Specifically, − log 2 < s(x, y) < log 2.

Proof: If x and y have the same sign (i.e., xy > 0), we have |x + y| > |x − y| and hence
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s(x, y) < 0. Without loss of generality, if we assume x > y > 0, then

s(x, y) = log
1 + e−x−y

1 + e−x+y

= log
ex + e−y

ex + ey

> log
ex + e−x

ex + ex

> log
1

2
.

Therefore, when xy > 0, we have − log 2 < s(x, y) < 0. When xy < 0, it can also be similarly

shown that 0 < s(x, y) < log 2, and for the case xy = 0, we have s(x, y) = 0.

As we discussed earlier, no matter how one designs the fixed-point implementation of

the original SPA using the φ(x) function, or even with the floating-point implementation, the

function
∣∣x− φ−1 (φ(x))

∣∣ is unbounded. Even if we saturate both the input and the output of

the φ(x) function, the value of
∣∣x− φ−1 (φ(x))

∣∣ is still unbounded and linear in x. Therefore,

the CN output of a practical implementation of (4.7) or (4.8) can significantly differ from the true

computed value. However, since box-plus SPA decoding can be considered as min-sun decod-

ing with a correction factor, the implementation error mainly comes from the computation and

quantization of the correction factor, which is a small bounded value, as shown in Lemma 4.7.

With Lemma 4.6 and Lemma 4.7, we can now extend Theorem 4.4 to SPA decoding.

Theorem 4.8 Let G be the Tanner graph of a variable-regular LDPC code that contains a

subgraph S induced by a trapping set. When S satisfies the k-separation assumption and all

VNs outside S receive the correct transmitted symbols from the BSC, with proper scaling of all

initial LLRs, the SPA decoder can successfully correct all of the VNs in S that receive incorrect

symbols from the BSC, provided k is large enough.

Proof: From Lemma 4.6, we know that SPA decoding can be considered as min-sum decoding

with a small correction factor which does not change the sign of the original min-sum output.

Moreover, the magnitude of the CN output of SPA decoding is always less than or equal to

that of min-sum decoding. To compute the output for a CN of degree dc, the box-plus SPA

uses the pairwise box-plus operation (4.11) at most log(dc − 1) times. Hence, the difference

between output messages of the SPA and the min-sum algorithm is upper bounded by s̄ ,

dlog(dc − 1)e · log 2, where dxe is the smallest integer that is greater than x.
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By applying an approach similar to that used in the proof of Theorem 4.4, we can lower

bound the magnitude of messages Ll in SPA decoding as follows

|Ll| > |L0|+ (dv − 1) (|Ll−1| − s̄)

> (dv − 1) (|Ll−1| − s̄)

> (dv − 1)l|L0| − s̄
l∑

i=1

(dv − 1)i

= (dv − 1)l|L0| − s̄(dv − 1)
(dv − 1)l − 1

(dv − 1)− 1

= (dv − 1)l
(
|L0| −

dv − 1

dv − 2
s̄

)
+ s̄

dv − 1

dv − 2
.

Since all input messages to the decoder from the BSC have the same magnitude, if we

scale the magnitudes of all initial messages such that

|L0| >
dv − 1

dv − 2
s̄ =

dv − 1

dv − 2
· dlog(dc − 1)e · log 2, (4.13)

then the magnitudes of messages sent towards cr in the computation tree Tk(vr) grow exponen-

tially in the number of iterations, with base dv − 1. Hence, using the same reasoning as in the

proof of Theorem 4.4, it can be shown that, if k is large enough and there is no limit on the

magnitudes of messages, the correct messages outside the trapping set eventually overcome the

incorrect messages passed within the trapping set, thereby correcting all erroneous VNs in the

trapping set.

Remark 4.2 As will be shown in the simulation results, linear scaling of the input LLRs to the

SPA decoder will indeed affect the decoding performance, because the correction factor s(x, y)

is not linear in either x or y.

Remark 4.3 If an offset min-sum decoder has a constant or bounded offset value, the proof of

Theorem 4.8 can be directly applied to obtain a similar result.

The proof of Theorem 4.8 can be adapted to prove an analogous result for the AWGNC,

stated in the following corollary.

Corollary 4.9 Let G be the Tanner graph of a variable-regular LDPC code that contains a

subgraph S induced by a trapping set. When S satisfies the k-separation assumption and the

messages from the AWGNC to all VNs outside S are correct, with proper scaling of all initial
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LLRs, the SPA decoder can successfully correct all erroneous VNs in S, provided k is large

enough.

Proof: In analogy to the proof of Lemma 4.5, let |L0| be the minimum magnitude of all input

LLRs to the decoder from the AWGNC, and linearly scale magnitudes of all input messages such

that (4.13) is satisfied. Then, using reasoning along the lines of the proof of Theorem 4.8, we

can show that the magnitudes of correct messages outside the trapping set still grow exponen-

tially with dv−1 as the base, and eventually they correct all erroneous VNs in the trapping set.

In [16], by applying a linear system model and density evolution, the authors obtained

some statistical lower bounds on the exponential growth rate of correct messages in SPA decod-

ing on the AWGNC.

For most LDPC codes, the trapping sets typically satisfy the k-separation assumption

only for small values of k. Nevertheless, as described more fully in Section 4.4, in our 64-bit

double-precision floating-point computer simulations of min-sum decoding and box-plus SPA

decoding applied to several LDPC codes traditionally associated with high error floors, we have

not observed, in tens of billions of channel realizations of both the BSC and the AWGNC, any

decoding failure in which the error patterns correspond to the support of a small trapping set.

Moreover, when we force every VN in a trapping set to be in error and all other VNs to be

correct, the floating-point decoders can successfully decode, whereas a decoder implementation

that limits the magnitude of messages can not resolve the errors in the trapping set and fails to

decode to the correct codeword.

4.3 New Quantized Decoders with Low Error Floors

In hardware implementations of iterative MP decoding algorithms, a modest number of

bits are used to represent messages, precluding high-resolution representation of messages over

a large numerical range. As reported in the literature, most hardware implementations and their

computer-based simulations use some form of uniform quantization. We will consider uniform

quantizers with quantization step ∆ and q-bit representation of quantization levels, with one of

the q bits denoting the sign. The quantized values are l∆ for−N 6 l 6 N , whereN = 2q−1−1.

It has been noticed that error floors can be lowered when more bits are used to represent

messages, either by reducing the step size or by increasing the saturation level [15]. However,

as explained earlier in Section 4.2.2, the maximum magnitude of supported input to the φ(x)
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function depends on the quantization resolution at the output. Therefore, uniform quantization

can not support large values as inputs of the φ(x) function due to the limited output resolution.

Hence, substantially increasing the saturation level was not considered as a feasible mechanism

for reducing error floors.

Even for min-sum decoding, which does not have such a numerical problem caused by

the φ(x) function, there appears to be no quantization method in the literature that reduces er-

ror floors specifically by means of a deliberate, significant extension of the quantization range,

although it has been noticed that the saturation level could affect the error floor performance

of min-sum decoding. Although the authors of [12] claimed that four-bit uniform quantization

suffices to obtain close to the performance of floating-point min-sum decoder, which they con-

sider to be the ideal min-sum decoder, for most codes over a wide range of SNR, our simulation

results, shown in the next section, demonstrate that uniform-quantized min-sum decoding and

its variants still have high error floors even with eight quantization bits.

In the remaining part of this section, we propose a novel quantization method that sub-

stantially extends the quantization range while maintaining precision in the representation of val-

ues of small magnitude. Moreover, we will show that, even with a small number of quantization

bits, the new method provides significant improvement over the floating-point implementations.

As shown in the proof of Theorems 4.4 and 4.8 and their corollaries, when a trapping set

satisfies the k-separation assumption for a large value of k, the magnitudes of correct messages

outside the trapping set grow exponentially in the number of iterations. Therefore, it would be

desirable for the message quantizer to capture, at least to some extent, the exponential increase

of these message magnitudes while retaining precision in the representation of messages with

smaller magnitudes. To this end, we propose a new (q + 1)-bit quasi-uniform quantization

method that adds an additional bit to q-bit uniform quantization to indicate a change of step size

in the representation of large message magnitudes. Hence, the messages after quantization will

belong to an alphabet of size 2q+1 − 1. Specifically, the (q + 1)-bit quasi-uniform quantization
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rule is given by

Q(L) =



(l, 0), if l∆− ∆
2 < L 6 l∆ + ∆

2

(N, 0), if N∆− ∆
2 < L < dN∆

(−N, 0), if −dN∆ < L 6 −N∆ + ∆
2

(r, 1), if drN∆ 6 L < dr+1N∆

(−r, 1), if −dr+1N∆ < L 6 −drN∆

(N + 1, 1), if L > dN+1N∆

(−N − 1, 1), if L 6 −dN+1N∆

(4.14)

whereN = 2q−1−1,−N+1 6 l 6 N−1, 1 6 r 6 N , and d is a quantization parameter within

the range (1, dv − 1]. Generally, the values represented by the (q + 1)-bit quasi-uniform quanti-

zation messages (l, 0) are l∆, and the values of messages (±r, 1) are ±drN∆, respectively. For

messages within the range of [−N∆, N∆], the new quasi-uniform quantizer provides the same

precision as a q-bit uniform quantizer with quantization step ∆. For messages outside that range,

non-uniform quantization with exponentially increasing step sizes of the form drN∆ is used to

allow reliable messages to be more accurately represented. Hence, the extra bit in (q + 1)-bit

quantization can be viewed as an indicator bit, which indicates whether the quantized message

is in the uniform quantization range or in the non-uniform quantization range. Note that, in the

non-uniform quantization range, the value with smallest magnitude is used to represent quan-

tized values in each interval.

Table 4.1 shows an example of (3+1)-bit quasi-uniform quantization with ∆ = 1 and

d = 3. The first bit is the sign bit, and the last bit indicates whether the uniform or exponential

step size is used. The uniform quantization range in this example is from −3 to 3 with uniform

step size 1, and the exponential quantization range is above 3 or below−3 with nonuniform step

size 3 · (3r − 3r−1) for 1 6 r 6 4. For example, all values within the non-uniform quantization

interval [27, 81) would be quantized to 27. The decimal values are used in the VN and CN update

computations, and then the corresponding quantized binary messages are passed between VNs

and CNs.

In comparison to the modified and optimized quantization methods proposed in [12–14],

the (q + 1)-bit quasi-uniform quantizer can represent values of much greater magnitudes. Since

the range of uniformly quantized messages in MP decoders is small in practice, the correct

messages outside a trapping set could reach the saturation level within a few iterations. As a

result, even though correct, these messages may not be large enough to offset the contribution

of incorrect incoming messages for problematic VNs. Hence, even after optimization of the step
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Table 4.1: (3+1)-bit quasi-uniform quantization with ∆ = 1 and d = 3.

message range value message range value

0000 (-0.5,0.5] 0 1110 (-0.5,0.5] 0

0010 (0.5,1.5] 1 1100 (-1.5,-0.5] -1

0100 (1.5,2.5] 2 1010 (-2.5,-1.5] -2

0110 (2.5,9) 3 1000 (-9,-2.5] -3

0001 [9,27) 9 1111 (-27,-9] -9

0011 [27,81) 27 1101 (-81,-27] -27

0101 [81,243) 81 1011 (-243,-81] -81

0111 [243,∞) 243 1001 (−∞,-243] -243

and range of a uniform quantizer, the decoder may not produce the same error floor performance

as a floating-point MP decoder. In contrast, the saturation levels of the proposed (q+1)-bit quasi-

uniform quantizer are greatly extended, allowing the correct messages outside a trapping set to

grow large enough to overcome all incorrect messages reaching the problematic VNs from other

VNs within the trapping set. It should be noted, however, that the uniform quantization step

included in our quasi-uniform quantization affects the error-rate performance in the waterfall

region, where the magnitudes of messages are generally small and the precision of the messages

is important.

We can further extend the idea of (q+1)-bit quasi-uniform quantization to a more general

form. The (q+1)-bit quasi-uniform quantization has n = q+1 bits in total to representN = 2n−1

different levels of magnitudes, and as described in (4.14),N/2 levels are allocated to the uniform

quantization range and the other N/2 levels have exponential step sizes. The general symmetric

n-bit quasi-uniform quantization can also represent N = 2n−1 different magnitudes, but it can

have any number, sayNu, of levels in the uniform quantization range and the remainingN −Nu

levels in the exponential quantization range. With a quantization rule similar to (4.14), the

quantized values of the general n-bit quasi-uniform quantization are l∆ for −Nu < l < Nu,

dl−Nu+1Nu∆ for l > Nu, and−dl−Nu+1Nu∆ for l 6 −Nu. Unlike the (q+1)-bit quasi-uniform

quantization, the general n-bit quasi-uniform quantization does not have a specific indicator bit,

and therefore, it is more flexible in the sense that it can allocate more levels to the uniform range

or to the exponential rage to have best performance. Table 4.2 shows an example of the general

4-bit quasi-uniform quantization with Nu = 5, ∆ = 1, and d = 3. The uniform quantization

range in this example is from −4 to 4 with uniform step size 1, and the exponential range is
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Table 4.2: 4-bit quasi-uniform quantization with ∆ = 1 and d = 3.

message range value message range value

0000 (-0.5,0.5] 0 1111 (-0.5,0.5] 0

0001 (0.5,1.5] 1 1110 (-1.5,-0.5] -1

0010 (1.5,2.5] 2 1101 (-2.5,-1.5] -2

0011 (2.5,3.5] 3 1100 (-3.5,-2.5] -3

0100 (3.5,12) 4 1011 (-12,-3.5] -4

0101 [12,36) 12 1010 (-36,-12] -12

0110 [36,108) 36 1001 (-108,-36] -36

0111 [108,∞) 108 1000 (−∞,-108] -108

above 4 or below −4 with exponential step size 4 · (3r − 3r−1) for 1 6 r 6 3.

Although the motivation for the proposed quasi-uniform quantization method came from

an analysis of message-passing decoder behavior on trapping sets that satisfy the k-separation

assumption for large k, a property not satisfied by trapping sets in practical LDPC codes, the

simulation results in the next section demonstrate a significant reduction in the error floors of

three representative LDPC codes, with no increase in the decoding complexity.

4.4 Numerical Results

To demonstrate the improved performance offered by our proposed quasi-uniform quan-

tization method, we compare its error-rate performance to that of uniform quantization with sev-

eral types of MP decoders applied to three known LDPC codes on the BSC and the AWGNC.

The three LDPC codes we evaluated are a rate-0.3 (640,192) quasi-cyclic (QC) LDPC code [10],

the rate-0.5 (2640,1320) Margulis LDPC code [18], and MacKay’s (4095,3358) regular LDPC

code of rate 0.82 (the 4095.737.3.101 code in [32]). The frame error rate (FER) curves are based

on Monte Carlo simulations that generated at least 200 error frames for each point in the plots,

and the maximum number of decoding iterations was set to 200 unless otherwise indicated.

The (640,192) QC-LDPC code, designed by Han and Ryan [10], is a variable-regular

code with variable degree 5 and check degrees ranging from 5 to 9. It has 64 isomorphic (5,5)

trapping sets and 64 isomorphic (5,7) trapping sets. We applied our exhaustive trapping set

search algorithm [31] to this code, and these are the only two types of (a, b) trapping set for

a 6 15 and b 6 7. The error floor starts relatively high for MP decoders with limited message
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range, so it is quite easy to reach the error floor with Monte Carlo simulation.

Fig. 4.5 shows the probability density function (pdf) of the magnitude of messages

passed within the iterative message-passing decoders. Fig. 4.5(a) shows the pdf for the min-

sum decoder applied to the (640,192) QC-LDPC code on the BSC with p = 0.03, where the

magnitude of all input LLRs is scaled to 1. Fig. 4.5(b) shows the pdf of the SPA decoder applied

to the Margulis code of length 2640 on the AWGNC with Eb/N0 = 2.25 dB. The data in each

figure were obtained by using the corresponding floating-point MP decoders on sequences of re-

ceived symbols from more than 10 million channel realizations, and gathering all the messages

passed on all edges during all decoding iterations to generate the pdf. In the simulation, the

iterative MP decoder stops when a codeword is found or when it reaches the maximum number

of iterations, namely 200. We can see from the figures that there is a considerable number of

messages with large magnitude, which can be either favorable or unfavorable, and by further

examining the simulation data, we found that such strong messages, in general, help to success-

fully decode the received symbols, as suggested by the idealized theoretical analysis described

in Section 4.2.

Figs. 4.6–4.8 show simulation results for various types of quantized min-sum decoders

and floating-point MS decoders. For the BSC, we scaled the magnitudes of decoder input mes-

sages from the channel to 1, since, for linear decoders such as Gallager-B and min-sum, the

scaling of channel input messages does not affect the decoding performance. For attenuated and

offset min-sum decoding, we can compensate for the scaling by adjusting the attenuation and

the offset factor, respectively. The uniform quantization step size ∆ is set to 1 or 0.5. So, for

example, when ∆ = 1, the 3-bit uniform quantizer produces values {±3,±2,±1, 0}, and the

(3+1)-bit quasi-uniform quantizer with d = 3 yields the values described in Table 4.1. In the

simulation, the parameter d was heuristically chosen by testing different values, and when q is

large, a small d would be enough to represent a large range of magnitudes.

In Fig. 4.6, we see that the slopes of the error floors resulting from uniform quantization

are close to that of the Gallager-B decoder error floor. This is because, when most messages sat-

urate at the same magnitude, min-sum decoding essentially degenerates to Gallager-B decoding,

relying solely upon the signs of messages. Comparing uniform quantizers with the same number

of bits but different step sizes, we notice that smaller step size produces better waterfall perfor-

mance but higher error floor. This observation can be explained by the saturation level of these

quantizers. For example, 3-bit and 4-bit uniform quantization with step size ∆ = 1 saturates at

3 and 7, and with ∆ = 0.5 saturates at 1.5 and 3.5, respectively. The stronger messages, i.e.,
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(a) Min-sum decoder on the (640,192) QC-LDPC code over BSC of p = 0.03 and |LLR| = 1.
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(b) SPA decoder on the Margulis code of length 2640 over AWGNC of Eb/N0 = 2.25 dB.

Figure 4.5: Probability density function of magnitude of messages.
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Figure 4.6: FER results of min-sum (MS) decoder on the (640,192) QC-LDPC code on BSC.

Uniform quantization step ∆ = 1 or 0.5, and d = 3 in (q+1)-bit quasi-uniform quantization.
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Figure 4.7: FER results of min-sum (MS) decoder on the (640,192) QC-LDPC code on

AWGNC. The offset factor β = 0.5, uniform quantization step ∆ = 0.5, and d = 3 in (q+1)-bit

quasi-uniform quantization.
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Floating−point OMS
(4+1)−bit quasi−uniform OMS

Figure 4.8: FER results of offset min-sum (OMS) decoder on the (640,192) QC-LDPC code on

AWGNC. The offset factor β = 0.5, uniform quantization step ∆ = 0.5, and d = 2 in (q+1)-bit

quasi-uniform quantization.

messages with larger magnitudes, can be helpful or harmful to the decoding process, depending

on whether they are correct or not. The correct strong messages can help overcome the incor-

rectly received bits, but the strong incorrect messages would negatively influence the correctly

received bits. In the error-floor region, when the channel condition is good, very few bits are

received incorrectly, and as we showed in Theorems 4.4 and 4.8, large saturation levels allow

correct messages to build up and overcome the incorrect messages in trapping sets. Therefore,

in Fig. 4.6, the error floors produced by the different uniform quantizers are strictly in the order

of their corresponding saturation levels.

However, in the waterfall region where many bits are received incorrectly, reducing the

saturation level limits the propagation of strong incorrect messages. Moreover, in this specific

case, another reason for the better performance of the quantization with step size ∆ = 0.5 is

that, since the magnitudes of input LLRs to the min-sum decoder from the BSC are scaled to 1,

the appearance of nonintegral saturated messages, together with a small saturation level, reduces

the possibility of the summation of messages at a VN being zero, which could cause oscillatory

behavior in the decoder. We can see from Fig. 4.6 that MS decoding with (3+1)-bit quasi-

uniform quantization and ∆ = 0.5 performs even better than the floating-point MS decoder. This
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Figure 4.9: FER results of SPA decoder on the (640,192) QC-LDPC code on BSC. Uniform

quantization step ∆ = 0.25, and d = 1.3 in (q+1)-bit quasi-uniform quantization.

is because its inherent uniform quantization with small saturation level improves the waterfall

performance, as just explained, and the incorrect messages are not able to grow large enough

to reach the next non-uniform quantization level. In other words, the proposed quasi-uniform

quantization with carefully chosen parameters allows the correct messages to grow exponentially

and limits the growth of incorrect messages. Similar results can also be found in Fig. 4.7, where

(3+1)-bit quasi-uniform quantization also outperforms the floating-point MS decoder. However,

we want to point out that such gains are highly code-dependent, and we conjecture that codes of

higher variable degree would benefit more from the quasi-uniform quantization.

In Figs. 4.9 – Fig. 4.12, we show the simulation results of the quasi-uniform quantization

method applied to the SPA decoder. In the simulation of quantized SPA decoding, the input LLRs

and the messages passed between CNs and VNs are quantized values, but all the CN updates

are done with floating-point computation of the box-plus update rule in (4.9). Therefore, the

simulation results for SPA decoding with quantized messages shown here can be considered

the best error-rate performance possible with any fixed-point implementation of quantized SPA

decoding.

Figs. 4.9 and 4.10 show performance results for the (640,192) QC-LDPC code on the

BSC and AWGNC, where the non-uniform quantization parameter of the quasi-uniform quan-
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8−bit uniform SPA
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10−bit uniform SPA
Floating−point SPA
(5+1)−bit quasi−uniform SPA

Figure 4.10: FER results of SPA decoder on the (640,192) QC-LDPC code on AWGNC. The

uniform quantization step ∆ = 0.25, and d = 1.5 in (q+1)-bit quasi-uniform quantization.

tizer was set to d = 1.5 because, with q > 5, a large range of message values is covered, even

with such a small d. We see that, on both channels, the SPA decoder with quasi-uniform quanti-

zation yields FER results very close to those obtained with the float-point SPA implementation.

Decoding with uniform quantization, on the other hand, suffers from high error floors.

In Fig. 4.9, the magnitude of input LLRs from the BSC to quantized SPA decoders was

scaled to 2; as we pointed out in earlier sections, such scaling could have an impact on the error-

rate performance. The figure compares two floating-point SPA decoders that use different scal-

ings of the input LLR magnitude. One uses the exact LLR value whose magnitude is | log 1−p
p |,

where p is the channel error probability; the other scales the magnitude of all input LLRs to 2.

We can see from the figure that the floating-point SPA decoder with scaled input LLRs from the

BSC has slightly better performance, especially when the channel quality is good, i.e., where p

is small. We note that the choice of the input LLR magnitude is heuristic and depends on the

underlying LDPC code. Scaling the magnitude to 2 in this case may not be optimal, but we

indeed found that scaling the magnitude to 1 would greatly degrade the error-rate performance.

In Fig. 4.11, we show results for SPA decoding of the length-2640 Margulis code. For

this example, we adopted the following two-piece linear approximation from [29] in the compu-
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Figure 4.11: FER results of approximate-SPA decoder on the Margulis code of length 2640 on

AWGNC. Uniform quantization step ∆ = 0.25, and d = 1.3 in (q+1)-bit quasi-uniform

quantization.

tation of the s(x, y) function in (4.12) for box-plus SPA decoding,

ln
(

1 + e−|x|
)

=

 0.6− 0.24|x|, if |x| < 2.5

0, otherwise.
(4.15)

The approximated box-plus SPA decoder ran about five times faster than the floating-point SPA

decoder, with a performance penalty of less than 0.02 dB in the waterfall region. In Fig. 4.11,

we also include the dual quantization SPA decoding proposed by Zhang et al. [14], where the

φ(x) function is quantized into a mapping table, denoted as φ̄(x). Following the notation in [14],

we use dual quantization with parameters Q4.2/1.5, Q5.2/1.6, and Q6.2/1.7 for 6-bit, 7-bit, and

8-bit quantizers, respectively. The Qm.f quantizer uses uniform quantization to represent a

signed fixed-point number with m bits to the left of the radix point for the integer part and f

bits to the right of the radix point for the fractional part. For example, a Q4.2 quantizer has

uniform quantization step size of 0.25 and a range [−7.75, 7.75]. Hence, all the quantization

methods compared here have the same uniform step size of 0.25 when quantizing the channel

input LLRs.

From the plot of the φ(x) function in Fig. 4.3, we can see that the saturation level φ̄(0) is

limited by the quantization step size, because it is desirable to have φ̄(0) < x for all x satisfying
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Figure 4.12: FER results of approximate-SPA decoder on (4095,3358) LDPC code on

AWGNC, where ∆ = 0.5 and d = 1.3.

φ̄(x) = 0. In other words, in the dual quantization scheme, the saturation level has to match

the resolution of the quantizer; otherwise the error-rate performance in both the waterfall region

and the error-floor region will be significantly degraded. Based on error-rate simulations using

a range of saturation levels for dual quantization methods, we chose the saturation level for

φ̄(x) = 0 to be 5.5, 7, and 8 for the 6-bit, 7-bit, and 8-bit quantizers, respectively. Moreover, due

to the use of a mapping table with limited precision for the quantized φ(x) function, the error-

rate performance in the error-floor region of SPA decoding with any dual quantization scheme

is strictly worse than that of box-plus SPA decoding with uniform quantization, assuming the

same number of bits and the same quantization step size are used in the representation of the

channel LLR. The gap is greater when decoders are allowed to use more quantization bits, as

clearly shown in the simulation results.

In Figs. 4.10 and 4.11, the proposed (5+1)-bit quasi-uniform quantization again has the

best error-floor performance among all quantized decoders, and ever better than the double-

precision floating-point box-plus SPA decoder. We observed from the simulation data that the

floating-point SPA generally requires more iterations to decode a codeword than the quasi-

uniform quantized SPA, especially in the high SNR region. Since the maximum number of

iterations is set to 200, the quasi-uniform quantized SPA is able to outperform its floating-point
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counterpart. The fast convergence of the quasi-uniform quantized SPA derives from its non-

uniform step size. From the idealized theoretical analysis, we know that the exponential growth

rate of correct messages is larger than that of incorrect messages. In quasi-uniform quantization

with proper parameters, the correct messages can reach the higher magnitude level earlier than

the incorrect messages, and the incorrect messages are more likely to be quantized to lower mag-

nitude levels. Hence, the correct messages overcome incorrect messages faster, and the decoder

can converge to a codeword after fewer iterations.

Fig. 4.12 compares the error-rate performance of the floating-point SPA and the (5+1)-

bit quasi-uniform SPA for MacKay’s (4095,3358) LDPC code when the maximum number of

iterations is set to different values. This code has a high error floor when decoded with floating-

point SPA for maximum 200 iterations. We can see that the error floor is reduced when the num-

ber of iterations increases. This again confirms our idealized theoretical analysis that the correct

messages outside the trapping sets grow faster than incorrect messages within the trapping set.

The proposed quasi-uniform quantization provides superior error floor performance in this case,

and with only 200 iterations, it gives the same error floor as the floating-point one with 100,000

iterations. All the examples in this section indicate that the floating-point implementation of MP

decoding is not necessarily better than a quantized fixed-point implementation.

In all of the decoding failures observed when using the quasi-uniform quantizer with MS

decoding and SPA decoding, no error pattern corresponded to the support of a small trapping set.

With uniform quantization, on the other hand, almost all of the decoding failures corresponded

to small trapping sets when the channel error probability of the BSC was small or the SNR of the

AWGNC was high. We also compared decoder performance on sequences in which every VN in

a single trapping set of type (5,5) or (5,7) of the (640,192) code was incorrect, with all other VNs

set to correct values. In all cases, the large-range message-passing decoder and the message-

passing decoder with the proposed quasi-uniform quantization method decoded successfully,

while decoders with the uniform quantizer failed. The same results were also obtained for the

(12,4) and (14,4) trapping sets in the Margulis code.

We emphasize The analytical and numerical results in this chapter are only for variable-

regular LDPC codes. Extension of this analysis to variable-irregular LDPC codes does not ap-

pear to be straightforward. Moreover, partly due to the low error floor of well-designed irregular

LDPC codes, our simulation results using quasi-uniform quantizer do not show a significant im-

provement in error-rate performance over the uniform quantizer with the same number of bits.
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4.5 Conclusion

Trapping sets and other error-prone substructures are known to influence the error-rate

performance of LDPC codes with iterative message-passing decoding. In this chapter, we have

shown that the use of uniform quantization in iterative MP decoding can be a significant factor

contributing to the error floor phenomenon in LDPC code performance. An analysis of iterative

MP decoding in an idealized setting suggests that decoder message saturation plays a key role

in the occurrence of errors in small trapping sets, leading to observed error floor behaviors. To

address this problem, we proposed a novel quasi-uniform quantization method that effectively

extends the dynamic range of the quantizer. Without modifying the CN and VN update rules

or adding extra stages to standard iterative decoding algorithms, the use of this quantizer was

shown to significantly lower the error floors of several well-studied LDPC codes when used

with various iterative MP decoding algorithms on the BSC and AWGNC. Simulation results

confirmed that this new quantization method can significantly reduce the error floors of these

codes with essentially no increase in decoding complexity.
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Chapter 5

Adaptive Cut Generation Algorithm

for Improved Linear Programming

Decoding of Binary Linear Codes

In the original formulation of LP decoding proposed by Feldman et al. [1], the number

of constraints in the LP problem is linear in the block-length but exponential in the maximum

check node degree, and the authors also argued that the number of useful constraints could be

reduced to polynomial in code length. The computational complexity of the original LP formu-

lation therefore can be prohibitively high, motivating the design of computationally simplified

decoding algorithms that can achieve the same error-rate performance with a smaller number

of constraints. For example, efficient polynomial-time algorithms can be used for solving the

original LP formulation [2]. An alternative LP formulation whose size is linear in the check

node degree and code length can also be obtained by changing the graphical representation of

the code [3, 4]; namely, all check nodes of high degree are replaced by dendro-subgraphs (trees)

with an appropriate number of auxiliary degree-3 check nodes and degree-2 variable nodes. Sev-

eral other low-complexity LP decoders were also introduced in [5], suggesting that LP solvers

with complexity similar to the min-sum algorithm and the sum-product algorithm are feasible.

Another approach is to add linear constraints in an adaptive and selective way during

the LP formulation [6]. Such an adaptive linear programming (ALP) decoding approach also

allows the adaptive incorporation of linear constraints generated by redundant parity checks

(RPC) into the LP problem, making it possible to reduce the feasible space and improve the

system performance. A linear inequality derived from an RPC that eliminates a pseudocodeword

68
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solution is referred to as a “cut.”

An algorithm proposed in [6] uses a random walk on a subset of the code factor graph to

find these RPC cuts. However, the random nature of this algorithm limits its efficiency. In fact,

experiments show that the average number of random trials required to find an RPC cut grows

exponentially with the length of the code.

Recently, the authors of [7] proposed a separation algorithm that derives Gomory cuts

from the IP formulation of the decoding problem and finds cuts from RPCs which are generated

by applying Gaussian elimination to the original parity-check matrix. In [8], a cutting-plane

method was proposed to improve the fractional distance of a given binary parity-check matrix

– the minimum weight of nonzero vertices of the fundamental polytope – by adding redundant

rows obtained by converting the parity-check matrix into row echelon form after a certain col-

umn permutation. However, we have observed that the RPCs obtained by the approach in [8] are

not able to produce enough cuts to improve the error-rate performance relative to the separation

algorithm when they are used in conjunction with either ALP decoding or the separation algo-

rithm. A detailed survey on mathematical programming approaches for decoding binary linear

codes can be found in [9].

In this chapter, we greatly improve the error-correcting performance of LP decoding

by designing algorithms that can efficiently generate cut-inducing RPCs and find possible cuts

from such RPCs. First, we derive a new necessary condition and a new sufficient condition for

a parity-check to provide a cut at a given pseudocodeword. These conditions naturally suggest

an efficient algorithm that can be used to find, for a given pseudocodeword solution to an LP

problem, the unique cut (if it exists) among the parity inequalities associated with a parity check.

This algorithm was previously introduced by Taghavi et al. [10, Algorithm 2] and, independently

and in a slightly different form, by Wadayama [11, Fig. 6].

The conditions also serve as the motivation for a new, more efficient adaptive cut-

inducing RPC generation algorithm that identifies useful RPCs by performing specific elemen-

tary row operations on the original parity-check matrix of the binary linear code. By adding the

corresponding linear constraints into the LP problem, we can significantly improve the error-rate

performance of the LP decoder, even approaching the ML decoder performance in the high-SNR

region for some codes. Finally, we modify the ALP decoder to make it more efficient when be-

ing combined with the new cut-generating algorithm. Simulation results demonstrate that the

proposed decoding algorithms significantly improve the error-rate performance of the original

LP decoder.
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The remainder of the chapter is organized as follows. In Section 5.1, we review the

original formulation of LP decoding and several adaptive LP decoding algorithms. Section 5.2

presents the new necessary condition and new sufficient condition for a parity-check to induce a

cut, as well as their connection to the efficient cut-search algorithm. In Section 5.3, we describe

our proposed algorithm for finding RPC-based cuts. Section 5.4 presents our simulation results,

and Section 5.5 concludes the chapter.

5.1 Adaptive Linear Programming Decoding

In the original formulation of LP decoding presented in [1], every check node j gener-

ates 2|Nj |−1 parity inequalities that are used as linear constraints in the LP problem described in

(2.14). The total number of constraints and the complexity of the original LP decoding problem

grows exponentially with the maximum check node degree. So, even for binary linear codes

with moderate check degrees, the number of constraints in the original LP decoding could be

prohibitively large. In the literature, several approaches to reducing the complexity of the origi-

nal LP formulation have been described [2–6]. We will use adaptive linear programming (ALP)

decoding [6] as the foundation of the improved LP decoding algorithms presented in later sec-

tions. The ALP decoder exploits the structure of the LP decoding problem, reflected in the

statement of the following lemma.

Lemma 5.1 (Theorem 1 in [6]) If at any given point u ∈ [0, 1]n, one of the parity inequalities

introduced by a check node j is violated, the rest of the parity inequalities from this check node

are satisfied with strict inequality.

Definition 5.2 Given a parity-check node j, a set V ⊆ Nj of odd cardinality, and a vector

u ∈ [0, 1]n such that the corresponding parity inequality of the form (2.12) or (2.13) does not

hold, we say that the constraint is violated or, more succinctly, a cut at u. 1

In [6], an efficient algorithm for finding cuts at a vector u ∈ [0, 1]n was presented. It

relies on the observation that violation of a parity inequality (2.13) at u implies that

|V| − 1 <
∑
i∈V

ui 6 |V| (5.1)

1In the terminology of [9], if (2.13) does not hold for a pseudocodeword u, then the vector (r, t) ∈ Rn × R,
where ri = 1 for all i ∈ V, ri = −1 for all i ∈ Nj\V, ri = 0 otherwise, and t = |V| − 1, is a valid cut, separating
u from the codeword polytope.
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and

0 6
∑

i∈Nj\V

ui < uv, for all v ∈ V. (5.2)

where V is an odd-sized subset of Nj .
Given a parity check j, the algorithm first puts its neighboring variables in u into non-

increasing order, i.e., uj1 > . . . > ujn , for uji ∈ Nj . It then successively considers subsets

of odd cardinality having the form V = {uj1 , . . . , uj2k+1
} ⊆ Nj , increasing the size of V by

two each step, until a cut (if one exists) is found. This algorithm can find a cut among the

constraints corresponding to a check node j by examining at most |Nj |/2 inequalities, rather

than exhaustively checking all 2|Nj |−1 inequalities in the original formulation of LP decoding.

The ALP decoding algorithm starts by solving the LP problem with the same objective

function as the ML decoding, but with only the following constraints 0 6 ui if γi > 0

ui 6 1 if γi < 0.
(5.3)

The solution of this initial LP problem can be obtained simply by making a hard decision on the

components of a received vector. The ALP decoding algorithm starts with this point, searches

every check node for cuts, adds all the cuts found during the search as constraints into the LP

problem, and solves it again. This procedure is repeated until an optimal integer solution is

generated or no more cuts can be found (see [6] for more details). Adaptive LP decoding has

exactly the same error-correcting performance as the original LP decoding.

5.2 Cut Conditions

In this section, we derive a necessary condition and a sufficient condition for a parity

inequality to be a cut at u ∈ [0, 1]n. We also show their connection to the efficient cut-search al-

gorithm proposed by Taghavi et al. [10, Algorithm 2] and Wadayama [11, Fig. 6]. This algorithm

is more efficient than the search technique from [6] that was mentioned in Section 5.1.

Consider the original parity inequalities in (2.12) given by Feldman et al. in [1]. If a

parity inequality derived from check node j induces a cut at u, the cut can be written as∑
i∈V

(1− ui) +
∑

i∈Nj\V

ui < 1, (5.4)

for some V ⊆ Nj with |V| odd.

From (5.4) and Lemma 5.1, we can derive the following necessary condition for a parity-

check constraint to induce a cut.
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Theorem 5.3 Given a nonintegral vector u and a parity check j, let S = {i ∈ Nj |0 < ui < 1}
be the set of nonintegral neighbors of j in the Tanner graph, and let T = {i ∈ Nj |ui > 1

2}. A

necessary condition for parity check j to induce a cut at u is∑
i∈T

(1− ui) +
∑

i∈Nj\T

ui < 1. (5.5)

This is equivalent to ∑
i∈S

∣∣∣∣12 − ui
∣∣∣∣ > 1

2
· |S| − 1 (5.6)

where, for x ∈ R, |x| denotes the absolute value.

Proof: For a given vector u and a subset X ⊆ Nj , define the function

g (X ) =
∑
i∈X

(1− ui) +
∑

i∈Nj\X

ui.

If parity-check j incudes a cut at u, there must be a set V ⊆ Nj of odd cardinality such that (5.4)

holds. This means that g (Vcut) < 1. Now, it is easy to see that the set T minimizes the function

g (X ), from which it follows that g (T ) 6 g (Vcut) < 1. Therefore, inequality (5.5) must hold

in order for parity check j to induce a cut.

For 1
2 6 ui 6 1, we have

1

2
−
∣∣∣∣12 − ui

∣∣∣∣ =
1

2
−
(
ui −

1

2

)
= 1− ui,

and for 0 6 ui 6 1
2 , we have

1

2
−
∣∣∣∣12 − ui

∣∣∣∣ =
1

2
−
(

1

2
− ui

)
= ui.

Hence, (5.5) can be rewritten as ∑
i∈S

(
1

2
−
∣∣∣∣12 − ui

∣∣∣∣) < 1

or equivalently,
1

2
· |S| −

∑
i∈S

∣∣∣∣12 − ui
∣∣∣∣ < 1

which implies inequality (5.6).

Remark 5.1 Theorem 5.3 shows that to see whether a parity-check node could provide a cut at

a pseudocodeword u we only need to examine its fractional neighbors.
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Reasoning similar to that used in the proof of Theorem 5.3 yields a sufficient condition

for a parity-check node to induce a cut at u.

Theorem 5.4 Given a nonintegral vector u and a parity check j, let S = {i ∈ Nj |0 < ui < 1}
and T = {i ∈ Nj |ui > 1

2}. If the inequality∑
i∈T

(1− ui) +
∑

i∈Nj\T

ui + 2 ·min
i∈S

∣∣∣∣12 − ui
∣∣∣∣ < 1 (5.7)

holds, there must be a violated parity inequality derived from parity check j. This sufficient

condition can be written as∑
i∈S

∣∣∣∣12 − ui
∣∣∣∣− 2 ·min

i∈S

∣∣∣∣12 − ui
∣∣∣∣ > 1

2
· |S| − 1. (5.8)

Proof: Lemma 5.1 implies that, if parity check j gives a cut at u, then there is at most one odd-

sized set V ⊆ Nj that satisfies (5.4). From the proof of Theorem 5.3, we have g (T ) 6 g (X )

for all X ⊆ Nj . If |T | is even, we need to find one element i∗ ∈ Nj such that inserting it into

or removing it from T would result in the minimum increment to the value of g (T ). Obviously,

i∗ = arg min
i∈Nj

∣∣1
2 − ui

∣∣, and the increment is 2 ·
∣∣1

2 − ui∗
∣∣. If more than one i minimizes the

expression
∣∣1

2 − ui
∣∣, we choose one arbitrarily as i∗. Hence, setting

V =

 T \{i
∗}, if i∗ ∈ T

T ∪ {i∗}, if i∗ /∈ T

we have g (V) = g (T )+2·
∣∣1

2 − ui∗
∣∣ > g (T ). If inequality (5.7) holds, then g (T ) 6 g (V) < 1.

Since either |T | or |V| is odd, (5.7) is a sufficient condition for parity-check constraint j to in-

duce a cut at u. Arguing as in the latter part of the proof of Theorem 5.3, it can be shown that

(5.7) is equivalent to (5.8).

Theorem 5.3 and Theorem 5.4 provide a necessary condition and a sufficient condition,

respectively, for a parity-check node to produce a cut at any given vector u. It is worth pointing

out that (5.5) becomes a necessary and sufficient condition for a parity check to produce a cut

when |T | is odd, and (5.7) becomes a necessary and sufficient condition when |T | is even.

Together, they suggest a highly efficient technique for finding cuts, the Cut-Search Algorithm

(CSA) described in Algorithm 5.1 . If there is a violated parity inequality, the CSA returns the

set V corresponding to the cut; otherwise, it returns an empty set.

As mentioned above, the CSA was used by Taghavi et al. [10, Algorithm 2] in conjunc-

tion with ALP decoding, and by Wadayama [11, Fig. 6] as a feasibility check in the context of
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Algorithm 5.1 Cut-Search Algorithm (CSA)
Input: parity-check node j and vector u

Output: variable node set V
1: V ← T = {i ∈ Nj |ui > 1

2} and S ← {i ∈ Nj |0 < ui < 1}
2: if |V| is even then

3: if S 6= ∅ then

4: i∗ ← arg min
i∈S

∣∣1
2 − ui

∣∣
5: else

6: i∗ ← arbitrary i ∈ Nj
7: end if

8: if i∗ ∈ V then

9: V ← V \ {i∗}
10: else

11: V ← V ∪ {i∗}
12: end if

13: end if

14: if
∑
i∈V

(1− ui) +
∑

i∈Nj\V
ui < 1 then

15: Found the violated parity inequality on parity-check node j

16: else

17: There is no violated parity inequality on parity-check node j

18: V ← ∅
19: end if

20: return V

interior point decoding. In addition to providing another perspective on the CSA, the necessary

condition and sufficient condition proved in Theorems 1 and 2, respectively, serve as the basis

for a new adaptive approach to finding cut-inducing RPCs, as described in the next section.

5.3 LP Decoding with Adaptive Cut-Generating Algorithm

5.3.1 Generating Redundant Parity Checks

Although the addition of a redundant row to a parity-check matrix does not affect the F2-

nullspace and, therefore, the linear code it defines, different parity-check matrix representations
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of a linear code may give different fundamental polytopes underlying the corresponding LP

relaxation of the ML decoding problem. This fact inspires the use of cutting-plane techniques

to improve the error-correcting performance of the original LP and ALP decoders. Specifically,

when the LP decoder gives a nonintegral solution (i.e., a pseudocodeword), we try to find the

RPCs that introduce cuts at that point, if such RPCs exist. The cuts obtained in this manner are

called RPC cuts. The effectiveness of this method depends on how closely the new relaxation

approximates the ML decoding problem, as well as on the efficiency of the technique used to

search for the cut-inducing RPCs.

An RPC can be obtained by modulo-2 addition of some of the rows of the original

parity-check matrix, and this new check introduces a number of linear constraints that may give

a cut. In [6], a random walk on a cycle within the subgraph defined by the nonintegral entries in

a pseudocodeword served as the basis for a search for RPC cuts. However, there is no guarantee

that this method will find a cut (if one exists) within a finite number of iterations. In fact, the

average number of random trials needed to find an RPC cut grows exponentially with the code

length.

The IP-based separation algorithm in [7] performs Gaussian elimination on a submatrix

comprising the columns of the original parity-check matrix that correspond to the nonintegral

entries in a pseudocodeword in order to get redundant parity checks. In [8], the RPCs that

potentially provide cutting planes are obtained by transforming a column-permuted version of

the submatrix into row echelon form. The chosen permutation organizes the columns according

to descending order of their associated nonintegral pseudocodeword entries, with the exception

of the column corresponding to the largest nonintegral entry, which is placed in the rightmost

position of the submatrix [8, p. 1010]. This approach was motivated by the fact that a parity

check j provides a cut at a pseudocodeword if there exists a variable node in Nj whose value is

greater than the sum of the values of all of the other neighboring variable nodes [8, Lemma 2].

However, when combined with ALP decoding, the resulting “cutting-plane algorithm” does not

provide sufficiently many cuts to surpass the separation algorithm in error-rate performance.

Motivated by the new derivation of the CSA based on the conditions in Theorems 5.3 and

5.4, we next propose a new algorithm for generating cut-inducing RPCs. When used with ALP

decoding, the cuts have been found empirically to achieve near-ML decoding performance in

the high-SNR region for several short-to-moderate length LDPC codes. However, application of

these new techniques to codes with larger block lengths proved to be prohibitive computationally,

indicating that further work is required to develop practical methods for enhanced LP decoding
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of longer codes.

Given a nonintegral solution of the LP problem, we can see from Theorems 5.3 and

5.4 that an RPC with a small number of nonintegral neighboring variable nodes may be more

likely to satisfy the necessary condition for providing a cut at the pseudocodeword. Moreover,

the nonintegral neighbors should have values either close to 0 or close to 1; in other words, they

should be as far from 1
2 as possible.

Let p = (p1, p2, . . . , pn) ∈ [0, 1]n be a pseudocodeword solution to LP decoding, with

a nonintegral positions, b zeros, and n − a − b ones. We first group entries of p according to

whether their values are nonintegral, zero, or one. Then, we sort the nonintegral positions in

ascending order according to the value of
∣∣1

2 − pi
∣∣ and define the permuted vector p′ = Π(p)

satisfying the following ordering ∣∣∣∣12 − p′1
∣∣∣∣ 6 . . . 6 ∣∣∣∣12 − p′a

∣∣∣∣ , (5.9)

p′a+1 = · · · = p′a+b = 0,

and

p′a+b+1 = · · · = p′n = 1.

By applying the same permutation Π to the columns of the original parity-check matrix H, we

get

H′ , Π(H) =
(
H(f)|H(0)|H(1)

)
(5.10)

where H(f), H(0), and H(1) consist of columns of H corresponding to positions of p′ with

nonintegral values, zeros, and ones, respectively.

The following familiar definition from matrix theory will be useful [12, p. 10].

Definition 5.5 A matrix is in reduced row echelon form if its nonzero rows (i.e., rows with at

least one nonzero element) are above any all-zero rows, and the leading entry (i.e., the first

nonzero entry from the left) of a nonzero row is the only nonzero entry in its column and is

always strictly to the right of the leading entry of the row above it.

By applying a suitable sequence of elementary row operations Φ (over F2) to H′, we get

H̄ , Φ(H′) =
(
H̄(f)|H̄(0)|H̄(1)

)
, (5.11)

where H̄(f) is in reduced row echelon form. Applying the inverse permutation Π−1 to columns

of H̄, we get an equivalent parity-check matrix

H̃ = Π−1(H̄) (5.12)
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whose rows are likely to be cut-inducing RPCs, for the reasons stated above.

Multiple nonintegral positions in the pseudocodeword p could have values with the same

distance from 1
2 , i.e., |12 − pi| = |12 − pj | for some i 6= j. In such a case, the ordering of the

nonintegral positions in (5.9) is not uniquely determined. Hence, the set of RPCs generated by

operations (5.10)–(5.12) may depend upon the particular ordering reflected in the permutation Π.

Nevertheless, if the decoder uses a fixed, deterministic sorting rule such as, for example, a stable

sorting algorithm, then the decoding error probability will be independent of the transmitted

codeword.

The next theorem describes a situation in which a row of H̃ is guaranteed to provide a

cut.

Theorem 5.6 If there exists a weight-one row in submatrix H̄(f), the corresponding row of the

equivalent parity-check matrix H̃ is a cut-inducing RPC.

Proof: Given a pseudocodeword p, suppose the jth row of submatrix H̄(f) has weight one and

the corresponding nonintegral position in p is pi. Since it is the only nonintegral position inNj ,
the left-hand side of (5.8) is equal to −

∣∣1
2 − pi

∣∣. Since 0 < pi < 1, this is larger than −1
2 , the

right-hand side. Hence, according to Theorem 5.4, RPC j satisfies the sufficient condition for

providing a cut. In other words, there must be a violated parity inequality induced by RPC j.

Remark 5.2 Theorem 5.6 is equivalent to [7, Theorem 3.3]. The proof of the result shown here,

though, is considerably simpler, thanks to the application of Theorem 5.4.

Although Theorem 5.6 only ensures a cut for rows with weight one in submatrix H̄(f),

rows in H̄(f) of weight larger than one may also provide RPC cuts. Hence, the CSA should be

applied on every row of the redundant parity-check matrix H̃ to search for all possible RPC cuts.

The approach of generating a redundant parity-check matrix H̃ based on a given pseudocode-

word and applying the CSA on each row of this matrix is called adaptive cut generation (ACG).

Combining ACG with ALP decoding, we obtain the ACG-ALP decoding algorithm described

in Algorithm 5.2 . Beginning with the original parity-check matrix, the algorithm iteratively

applies ALP decoding. When a point is reached when no further cuts can be produced from the

original parity-check matrix, the ACG technique is invoked to see whether any RPC cuts can be

generated. The ACG-ALP decoding iteration stops when no more cuts can be found either from

the original parity-check matrix or in the form of redundant parity checks.
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Algorithm 5.2 Adaptive Linear Programming with Adaptive Cut-Generation (ACG-ALP) De-

coding Algorithm
Input: cost vector γ, original parity-check matrix H

Output: Optimal solution of current LP problem

1: Initialize the LP problem with the constraints in (5.3).

2: Solve the current LP problem, and get optimal solution x∗.

3: Apply Algorithm 1 (CSA) on each row of H.

4: if No cut is found and x∗ is nonintegral then

5: Construct H̃ associated with x∗ according to (5.10)–(5.12).

6: Apply Algorithm 1 (CSA) to each row of H̃.

7: end if

8: if No cut is found then

9: Terminate.

10: else

11: Add cuts that are found into the LP problem as constraints, and go to line 2.

12: end if

5.3.2 Reducing the Number of Constraints in the LP Problem

In the ALP decoding, the number of constraints in the LP problem grows as the number

of iterations grows, increasing the complexity of solving the LP problem. For ACG-ALP decod-

ing, this problem becomes more severe since the algorithm generates additional RPC cuts and

uses more iterations to successfully decode inputs on which the ALP decoder has failed.

From Lemma 5.1, we know that a binary parity-check constraint can provide at most one

cut. Hence, if a binary parity check gives a cut, all other linear inequalities introduced by this par-

ity check in previous iterations can be removed from the LP problem. The implementation of this

observation leads to a modified ALP (MALP) decoder referred to as the MALP-A decoder [10].

This decoder improves the efficiency of ALP decoding, where only cuts associated with the

original parity-check matrix are used. However, with ACG-ALP decoding, different RPCs may

be generated adaptively in every iteration and most of them give only one cut throughout the

sequence of decoding iterations. As a result, when MALP-A decoding is combined with the

ACG technique, only a small number of constraints are removed from the LP problem, and the

decoding complexity is only slightly reduced.

Definition 5.7 A linear inequality constraint of the form aTx > b is called active at point x∗ if
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it holds with equality, i.e., aTx∗ = b, and is called inactive otherwise.

For an LP problem with a set of linear inequality constraints, the optimal solution

x∗ ∈ [0, 1]n is a vertex of the polytope formed by the hyperplanes corresponding to all ac-

tive constraints. In other words, if we set up an LP problem with only those active constraints,

the optimal solution remains the same. Therefore, a simple and intuitive way to reduce the

number of constraints is to remove all inactive constraints from the LP problem at the end of

each iteration, regardless of whether or not the corresponding binary parity check generates a

cut. This approach is called MALP-B decoding [10]. By combining the ACG technique and

the MALP-B algorithm, we obtain the ACG-MALP-B decoding algorithm. It is similar to the

ACG-ALP algorithm described in Algorithm 5.2 but includes one additional step that removes

all inactive constraints from the LP problem, as indicated in Line 3 of Algorithm 5.3 .

Since adding further constraints into an LP problem reduces the feasible space, the min-

imum value of the cost function is non-decreasing as a function of the number of iterations. In

our computer simulations, the ACG-MALP-B decoding algorithm was terminated when no fur-

ther cuts could be found. (See Fig. 5.6 for statistics on the average number of iterations required

to decode one codeword of the (155,64) Tanner LDPC code.)

In our implementation of both MALP-B and ACG-MALP-B decoding, we have noticed

that a considerable number of the constraints deleted in previous iterations are added back into

the LP problem in later iterations, and, in fact, many of them are added and deleted several times.

We have observed that MALP-B-based decoding generally takes more iterations to decode a

codeword than ALP-based decoding, resulting in a tradeoff between the number of iterations

and the size of the constituent LP problems. MALP-B-based decoding has the largest number

of iterations and the smallest LP problems to solve in each iteration, while ALP-based decoding

has a smaller number of iterations but larger LP problems.

Although it is difficult to know in advance which inactive constraints might become cuts

in later iterations, there are several ways to find a better tradeoff between the MALP-B and ALP

techniques to speed up LP decoding. This tradeoff, however, is highly dependent on the LP

solver used in the implementation. For example, we used the Simplex solver from the open-

source GNU Linear Programming Kit (GLPK) [13], and found that the efficiency of iterative

ALP-based decoders is closely related to the total number of constraints used to decode one

codeword, i.e., the sum of the number of constraints used in all iterations. This suggests a new

criterion for the removal of inactive constraints whose implementation we call the MALP-C

decoder.
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Algorithm 5.3 ACG-MALP-B/C Decoding Algorithm
Input: cost vector γ, original parity-check matrix H

Output: Optimal solution of current LP problem

1: Initialize LP problem with the constraints in (5.3).

2: Solve the current LP problem, get optimal solution x∗.

3: ACG-MALP-B only: remove all inactive constraints from the LP problem.

4: ACG-MALP-C only: remove inactive constraints that have above-average slack values from

the LP problem.

5: Apply CSA only on rows of H that have not introduced constraints.

6: if No cut is found and x∗ is nonintegral then

7: Construct H̃ according to x∗

8: Apply CSA on each row of H̃.

9: end if

10: if No cut is found then

11: Terminate.

12: else

13: Add found cuts into LP problem as constraints, and go to line 2.

14: end if

In MALP-C decoding, instead of removing all inactive constraints from the LP problem

in each iteration, we remove only the linear inequality constraints with slack variables that have

above-average values, as indicated in Line 4 of Algorithm 5.3 . The ACG-MALP-B and ACG-

MALP-C decoding algorithms are both described in Algorithm 5.3 , differing only in the use

of Line 3 or Line 4. Although all three of the adaptive variations of LP decoding discussed in

this chapter – ALP, MALP-B, and MALP-C – have the exact same error-rate performance as the

original LP decoder, they may lead to different decoding results for a given received vector when

combined with the ACG technique, as shown in the next section.

5.4 Numerical Results

To demonstrate the improvement offered by our proposed decoding algorithms, we com-

pared their error-correcting performance to that of ALP decoding (which, again, has the same

performance as the original LP decoding), BP decoding (two cases, using the sum-product algo-

rithm with a maximum of 100 iterations and 1000 iterations, respectively), the separation algo-
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Figure 5.1: FER versus Eb/N0 for random (3,4)-regular LDPC code of length 100 on the

AWGN channel.

rithm (SA) [7], the random-walk-based RPC search algorithm [6], and ML decoding for various

LDPC codes on the additive white Gaussian noise (AWGN) channel. We use the Simplex al-

gorithm from the open-source GLPK [13] as our LP solver. The LDPC codes we evaluated are

MacKay’s rate-1
2 , (3,6)-regular LDPC codes with lengths 96 and 408, respectively [14]; a rate-1

4 ,

(3,4)-regular LDPC code of length 100; the rate-2
5 , (3,5)-regular Tanner code of length 155 [15];

and a rate-0.89, (3,27)-regular high-rate LDPC code of length 999 [14].

The proposed ACG-ALP, ACG-MALP-B, and ACG-MALP-C decoding algorithms are

all based on the underlying cut-searching algorithm (Algorithm 5.1 ) and the adaptive cut-

generation technique of Section 5.3.1. Therefore, their error-rate performance is very similar.

However, their performance may not be identical, because cuts are found adaptively from the

output pseudocodewords in each iteration and the different sets of constraints used in the three

proposed algorithms may lead to different solutions of the corresponding LP problems.

In our simulation, the LP solver uses double-precision floating-point arithmetic, and

therefore, due to this limited numerical resolution, it may round some small nonzero vector

coordinate values to 0 or output small nonzero values for vector coordinates which should be 0.

Similar rounding errors may occur for coordinate values close to 1. Coordinates whose values
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Table 5.1: Frame Errors of ACG-ALP decoder on MacKay’s random (3,6)-regular LDPC code

of length 96 on the AWGN channel.

Eb/N0 Transmitted Error Pseudo- Incorrect
(dB) Frames Frames codewords Codewords

3.0 1,136,597 3,000 857 2,143

3.5 4,569,667 3,000 395 2,605

4.0 16,724,921 3,000 103 2,897

4.5 54,952,664 3,000 12 2,988

5.0 185,366,246 3,000 0 3,000

5.5 665,851,530 3,000 0 3,000

get rounded to integers by the LP solver might lead to some “false” cuts – parity inequalities not

actually violated by the exact LP solution. This is because such rounding by the LP solver would

decrease the left-hand side of parity inequality (2.12). On the other hand, when coordinates that

should have integer values are given nonintegral values, the resulting errors would increase the

left-hand side of parity inequality (2.12), causing some cuts to be missed. Moreover, this would

also increase the size of the submatrix H(f) in (5.10), leading to higher complexity for the ACG-

ALP decoding algorithm.

To avoid such numerical problems in our implementation of the CSA, we used 1−10−6

instead of 1 on the right-hand side of the inequality in line 14 of Algorithm 5.1 . Whenever the

LP solver outputs a solution vector, coordinates with value less than 10−6 were rounded to 0

and coordinates with value larger than 1 − 10−6 were rounded to 1. The rounded values were

then used in the cut-search and RPC-generation steps in the decoding algorithms described in

previous sections. If such a procedure were not applied, and if, as a result, false cuts were to

be produced, the corresponding constraints, when added into the LP problem to be solved in the

next step, would leave the solution vector unchanged, causing the decoder to become stuck in an

endless loop. We saw no such behavior in our decoder simulations incorporating the prescribed

thresholding operations.

Finally, we want to point out that there exist LP solvers, such as QSopt ex Rational LP

Solver [16], that produce exact rational solutions to LP instances with rational input. However,

such solvers generally have higher computational overhead than their floating-point counterparts.

For this reason, we did not use an exact rational LP solver in our empirical studies.

Fig. 5.1 shows the simulation results for the length-100, regular-(3,4) LDPC code whose
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Figure 5.2: FER versus Eb/N0 for MacKay’s random (3,6)-regular LDPC code of length 96 on

the AWGN channel.
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Figure 5.3: FER versus Eb/N0 for (155,64) Tanner LDPC code on the AWGN channel.
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FER performance was also evalutated in [6] and [7]. We can see that the proposed algorithms

have a gain of about 2 dB over the original LP and ALP decoder. They also perform significantly

better than both the separation algorithm and the random-walk algorithm. The figure also shows

the results obtained with the Box-and-Match soft-decision decoding algorithm (BMA) [17],

whose FER performance is guaranteed to be within a factor of 1.05 times that of ML decod-

ing. We conclude that the performance gap between the proposed decoders and ML decoding is

less than 0.2 dB at an FER of 10−5.

In Fig. 5.2, we show simulation results for MacKay’s length-96, (3,6)-regular LDPC

code (the 96.33.964 code from [14]). Again, the proposed ALP-based decoders with ACG

demonstrate superior performance to the original LP, BP, and SA decoders over the range of

SNRs considered. Table 5.1 shows the actual frame error counts for the ACG-ALP decoder, with

frame errors classified as either pseudocodewords or incorrect codewords; the ACG-MALP-B

and ACG-MALP-C decoder simulations yielded very similar results. We used these counts to

obtain a lower bound on ML decoder performance, also shown in the figure, by dividing the num-

ber of times the ACG-ALP decoder converged to an incorrect codeword by the total number of

frames transmitted. Since the ML certificate property of LP decoding implies that ML decoding

would have produced the same incorrect codeword in all of these instances, this ratio represents

a lower bound on the FER of the ML decoder. We note that, when Eb/N0 is greater than 4.5 dB,

all decoding errors correspond to incorrect codewords, indicating that the ACG-ALP decoder

has achieved ML decoding performance for the transmitted frames.

Fig. 5.3 compares the performance of several different decoders applied to the (3,5)-

regular, (155,64) Tanner code, as well as the ML performance curve from [7]. It can be seen

that the proposed ACG-ALP-based algorithms narrow the 1.25 dB gap between the original LP

decoding and ML decoding to approximately 0.25 dB.

We also considered two longer codes, MacKay’s rate-1
2 , random (3,6)-regular LDPC

code of length 408 (the 408.33.844 code from [14]) and a rate-0.89 LDPC code of length 999

(the 999.111.3.5543 code from [14]). Because of the increased complexity of the constituent LP

problems, we only simulated the ACG-MALP-B and ACG-MALP-C decoders. In Fig. 5.4, it is

confirmed that the proposed decoding algorithms provide significant gain over the original LP

decoder and the BP decoder, especially in the high-SNR region. The results for the high-rate

LDPC code, as shown in Fig. 5.5, again show that the proposed decoding algorithms approaches

ML decoding performance for some codes, where the ML lower bound is obtained using the

same technique as in Fig. 5.2. However, for the code of length 408, we found that the majority



85

1 1.5 2 2.5 3 3.5 4 4.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

 

 

LP/ALP
BP (100 itr)
BP (1000 itr)
ACG−MALP−B
ACG−MALP−C

Figure 5.4: FER versus Eb/N0 for MacKay’s random (3,6)-regular LDPC code of length 408

on the AWGN channel.
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Figure 5.6: Average number of iterations for decoding one codeword of (155,64) Tanner LDPC

code.

of decoding failures corresponded to pseudocodewords, so, in constrast to the case of the length-

96 and length-999 MacKay codes discussed above, the frame error data do not provide a good

lower bound on ML decoder performance to use as a benchmark.

Since the observed improvements in ACG-ALP-based decoder performance comes from

the additional RPC cuts found in each iteration, these decoding algorithms generally require

more iterations and/or the solution of larger LP problems in comparison to ALP decoding. In

the remainder of this section, we empirically investigate the relative complexity of our proposed

algorithms in terms of such statistics as the average number of iterations, the average size of

constituent LP problems, and the average number of cuts found in each iteration. All statistical

data presented here were obtained from simulations of the Tanner (155,64) code on the AWGN

channel. We ran all simulations until at least 200 frame errors were counted.

In Fig. 5.6, we compare the average number of iterations needed, i.e., the average num-

ber of LP problems solved, to decode one codeword. Fig. 5.7(a) compares the average number

of constraints in the LP problem of the final iteration that results in either a valid codeword or a

pseudocodeword with no more cuts to be found. In Fig. 5.7(b), we show the average number of

cuts found and added into the LP problem in each iteration. Fig. 5.7(c) and Fig. 5.7(d) show the
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Figure 5.7: Average number of constraints/cuts during decoding iterations for decoding one

frame of (155,64) Tanner LDPC code.
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Table 5.2: The average accumulated number of constraints in all iterations of decoding one

codeword of (155,64) Tanner code on the AWGN channel

Eb/N0 (dB) ACG-ALP ACG-MALP-B ACG-MALP-C

1.83 5495.8 5223.3 4643.1

2.33 1401.2 1387.3 1217.0

2.83 339.7 326.9 300.9

3.33 111.0 106.4 105.4

3.83 64.3 58.8 62.8

average number of cuts found from the original parity-check matrix H and from the generated

RPCs, respectively.

From Fig. 5.6 and Fig. 5.7(a), we can see that, as expected, the ACG-ALP decoder

takes fewer iterations to decode a codeword on average than the ACG-MALP-B/C decoders,

but the ACG-MALP-B/C decoders have fewer constraints in each iteration, including the final

iteration. We have observed that the ACG-MALP-B/C decoders require a larger number of

iterations to decode than the ACG-ALP decoder, and fewer cuts are added into the constituent

LP problems in each iteration on average, as reflected in Fig. 5.7(b). This is because there

are some iterations in which the added constraints had been previously removed. Among all

three proposed ACG-based decoding algorithms, we can see that the ACG-ALP decoder has the

largest number of constraints in the final iteration and needs the least overall number of iterations

to decode, while ACG-MALP-B decoding has the smallest number of constraints but requires the

largest number of iterations. The ACG-MALP-C decoder offers a tradeoff between those two:

it has fewer constraints than the ACG-ALP decoder and requires fewer iterations than the ACG-

MALP-B decoder. If we use the accumulated number of constraints in all iterations to decode

one codeword as a criterion to judge the efficiency of these algorithms during simulation, then

ACG-MALP-C decoding is more efficient than the other two algorithms in the low and moderate

SNR regions, as shown in Table 5.2. Note that the ACG-MALP-B decoder is most efficient at

high SNR where the decoding of most codewords succeeds in a few iterations and the chance

of a previously removed inactive constraint being added back in later iterations is quite small.

Hence, ACG-MALP-B decoding is preferred in the high-SNR region.

Fig. 5.8 presents an alternative way of comparing the complexity of the decoding algo-

rithms. It shows the average decoding time when we implement the algorithms using C++ code
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Figure 5.8: Average simulation time for decoding one codeword of (155,64) Tanner LDPC

code.

on a desktop PC, with GLPK as the LP solver. The BP decoder is implemented in software with

messages represented as double-precision floating-point numbers, and the exact computation of

sum-product algorithm is used, without any simplification or approximation. The BP decoder

iterations stop as soon as a codeword is found, or when the maximum allowable number of iter-

ations – here set to 100 and 1000 – have been attempted without convergence. The simulation

time is averaged over the number of transmitted codewords required for the decoder to fail on

200 codewords.

We observe that the ACG-MALP-B and ACG-MALP-C decoders are both uniformly

faster than ACG-ALP over the range of SNR values considered, and, as expected from Table 5.2,

ACG-MALP-C decoding is slightly more efficient than ACG-MALP-B decoding in terms of ac-

tual running time. Of course, the decoding time depends both on the number of LP problems

solved and the size of these LP problems, and the preferred trade-off depends heavily upon the

implementation, particularly the LP solver that is used. Obviously, the improvement in error-

rate performance provided by all three ACG-based decoding algorithms over the ALP decoding

comes at the cost of increased decoding complexity. As SNR increases, however, the average

decoding complexity per codeword of the proposed algorithms approaches that of the ALP de-
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coder. This is because, at higher SNR, the decoders can often successfully decode the received

frames without generating RPC cuts.

Fig. 5.6 shows that the ACG-ALP decoder requires, on average, more iterations than the

SA decoder. Our observations suggest that this is a result of the fact that the ACG-ALP decoder

can continue to generate new RPC cuts after the number of iterations at which the SA decoder

can no longer do so and, hence, stops decoding. The simulation data showed that the additional

iterations of the ACG-ALP decoder often resulted in a valid codeword, thus contributing to its

superiority in perfomance relative to the SA decoder.

From Fig. 5.7(b), it can be seen that the ACG-ALP-based decoding algorithms generate,

on average, fewer cuts per iteration than the SA decoder. Moreover, as reflected in Fig. 5.7(c)

and 5.7(d), the ACG-ALP decoders find more cuts from the original parity-check matrix and

generate fewer RPC cuts per codeword. These observations suggest that the CSA is very efficient

in finding cuts from a given parity check, while the SA decoder tends to generate RPCs even

when there are still some cuts other than the Gomory cuts that can be found from the original

parity-check matrix. This accounts for the fact, reflected in Fig. 5.8, that the SA becomes less

efficient as SNR increases, when the original parity-check matrix usually can provide enough

cuts to decode a codeword. The effectiveness of our cut-search algorithm permits the ACG-

ALP-based decoders to successfully decode most codewords in the high-SNR region without

generating RPCs, resulting in better overall decoder efficiency.

Due to limitations on our computing capability, we have not yet tested our proposed

algorithms on LDPC codes of length greater than 1000. We note that, in contrast to [6] and [10],

we cannot give an upper bound on the maximum number of iterations required by the ACG-

ALP-based decoding algorithms because RPCs and their corresponding parity inequalities are

generated adaptively as a function of intermediate pseudocodewords arising during the decoding

process. Consequently, even though the decoding of short-to-moderate length LDPC codes was

found empirically to converge after an acceptable number of interations, some sort of constraint

on the maximum number of iterations allowed may have to be imposed when decoding longer

codes. Finally, we point out that the complexity of the algorithm for generating cut-inducing

RPCs lies mainly in the Gaussian elimination step, but as applied to binary matrices, this requires

only logical operations which can be executed quite efficiently.
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5.5 Conclusion

In this chapter, we derived a new necessary condition and a new sufficient condition for

a parity-check constraint in a linear block code parity-check matrix to provide a violated parity

inequality, or cut, at a pseudocodeword produced by LP decoding. Using these results, we pre-

sented an efficient algorithm to search for such cuts and proposed an effective approach to gen-

erating cut-inducing redundant parity checks (RPCs). The key innovation in the cut-generating

approach is a particular transformation of the parity-check matrix used in the definition of the

LP decoding problem. By properly re-ordering the columns of the original parity-check matrix

and transforming the resulting matrix into a “partial” reduced row echelon form, we could effi-

ciently identify RPC cuts that were found empirically to significantly improve the LP decoder

performance. We combined the new cut-generation technique with three variations of adaptive

LP decoding, providing a tradeoff between the number of iterations required and the number of

constraints in the constituent LP problems. Frame-error-rate (FER) simulation results for several

LDPC codes of length up to 999 show that the proposed adaptive cut-generation, adaptive LP

(ACG-ALP) decoding algorithms outperform other enhanced LP decoders, such as the separa-

tion algorithm (SA) decoder, and significantly narrow the gap to ML decoding performance for

LDPC codes with short-to-moderate block lengths.
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Chapter 6

Efficient Iterative LP Decoding of

LDPC Codes with Alternating

Direction Method of Multipliers

The existing general-purpose LP solvers do not take advantage of the structure in LP

decoding problem for LDPC codes which has very sparse linear inequalities as constraints. As a

result, the use of off-the-shelf LP solver is computationally inefficient in this application. More-

over, for practical hardware implementations, the comparability of the LP decoding algorithm

with parallel computation with values of coarse precision is highly appreciated. Therefore, an ef-

ficient LP solver that is specially designed for LP decoding problem of LDPC codes is needed. It

should support parallel implementation, operate with values of coarse precision, and be flexible

to accommodate different complexity requirement for various applications and scenario.

Alternating direction method of multipliers (ADMM) is a classic optimization technique

that was developed in the 1970s [1], which combines the benefits of dual decomposition and aug-

mented Lagrangian methods for constrained optimization [2,3]. Unlike optimization algorithms

such as interior-point methods for constrained problems, ADMM could be very slow to converge

to solutions of high accuracy. However, it usually converges very fast to moderate accuracy,

which is sufficient for many applications such as LP decoding of LDPC codes, where only in-

tegral solutions are of importance and proper rounding can be applied to non-integral solutions.

The use of ADMM in LP decoding was first suggested by Barman et al. [5]. The LP problem in

decoding LDPC codes is a constrained convex optimization problem, which is readily solved by

ADMM techniques [2, Chapter 5]. The key part in solve constraints optimization problems with
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ADMM is the method used to project a vector of real values to the constrained convex space,

which is known as the fundamental polytope for LP decoding [4]. In [5], Barman et al. proposed

a projection algorithm, which was further improved in [6]. This algorithm is based on the fact

that a constrained convex polytope defined by a parity check can be expressed as the convex

hull of a set of “slices,” where each slice is the convex hull of all binary vectors of the same

even weight. Hence, for a given vector, the algorithm first sorts the coordinates of a vector in

descending order and characterizes two slices whose convex hull contains the projection; then, it

finds the projection of the ordered vector by solving a quadratic program. However, the ordering

of all coordinates that is required to project any given vector increases the complexity of the

algorithm.

In this chapter, we propose a novel and more efficient projection algorithm for ADMM-

based LP decoding. Based on the cut search algorithm (CSA) introduced in [7], the proposed

algorithm can efficiently determine whether a vector is inside the check polytope without first

ordering its coordinates. At the same time, it give the hyperplane that the projection must be

on if the vector is outside the polytope. Our software implementation of ADMM-based LP

decoding demonstrate that the proposed projection algorithm is far more computational efficient

than the “two-slice” projection algorithm proposed in [5] and [6]. Based on the property of

pseudocodeword we found, several methods can be applied to ADMM-based LP decoding to

further improve the decoding efficiency for practical implementation. We also extend the method

of penalizing the objective function of LP decoding [8] into a more general form as well as

the way of combing it with ADMM-based LP decoding. Comparing to the penalty functions

proposed in [8], our new approach provides better error-rate performance, especially on irregular

LDPC codes, without any complexity increase.

The remainder of the chapter is organized as follows. In Section 6.1, we review the for-

mulation of LP decoding and its ADMM presentation. In Section 6.2, we describe the proposed

projection algorithm. Section 6.3 discusses several methods of further improving the decoding

efficiency as well as the error-rate performance. Section 6.4 presents some complexity analysis

and numerical results, and Section 6.5 concludes the chapter.

6.1 ADMM Formulation of LP Decoding Problem

In order to facilitate the formulation of ADMM-base LP decoding, we first introduce

some useful definitions.
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Definition 6.1 Let the dj × n binary matrix Tj be the transfer matrix corresponding to check j

such that

Tj(k,l) =

 1 if Nj(k) = l

0 otherwise.

The transfer matrix Tj selects out all dj neighboring variables of check j. For exam-

ple, if the jth row of parity-check matrix H is hj = (0, 1, 0, 1, 0, 1, 0), then the corresponding

transfer matrix is

Tj =


0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

 .
Hence, Tjx has the dimension of |Nj |, where for a set X , |X | denotes its cardinality.

Definition 6.2 The check polytope, Pd, is the convex hull of all binary vectors of length d with

an even number of 1s, i.e.,

Pd , conv
({

x ∈ {0, 1}d | x has an even number of 1s
})

.

Note that the definition of check polytope is similar to that of parity polytope [9] where

the number of 1s in x is odd instead.

With these notations, we can rewrite the LP decoding problem (2.11) into the following

form

minimize γTu (6.1)

subject to Tju ∈ Pdj ∀j ∈ J .

Beside using general-purpose LP solvers, another way to solve the optimization problem

(6.1) is to use ADMM, which is intended to combine the decomposability of dual ascent with

the superior convergence properties of the method of multipliers [2]. In order to make the LP

decoding problem perfectly fit the ADMM template given in [2, p. 33], we first rewrite (6.1) as

follows

minimize γTx (6.2)

subject to Tjx = zj , zj ∈ Pdj , ∀j ∈ J .

Then, the augmented Lagrangian of (6.2) is

Lρ(x, z,λ) = γTx +
∑
j∈J

λTj (Tjx− zj) +
ρ

2

∑
j∈J
‖Tjx− zj‖22, (6.3)
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where λj ∈ Rdj is dual variable and ρ > 0 is called the penalty parameter.

So, the ADMM solves this problem by iterating the following equations on k:

xk+1 := argmin
x

Lρ

(
x, zk,λk

)
(6.4)

zk+1 := argmin
∀j:zj∈Pdj

Lρ

(
xk+1, z,λk

)
(6.5)

λk+1
j := λkj + ρ

(
Tjx

k+1 − zk+1
j

)
, ∀j ∈ J (6.6)

In words, the augmented Lagrangian Lρ is first minimized with respect to x while keeping z and

λ fixed at zk and λk, respectively. Then, by fixing x at the new value xk+1 and λ still at λk, Lρ

is minimized with respect to z such that zj ∈ Pdj for all j ∈ J . Lastly, the scaled dual variable

λ is updated with the new xk+1 and zk+1. It has been proved in [3, p. 256] that, for optimization

problem (6.2), the xk, λk, and zk in the ADMM iterates all converge to their unique optimal

values.

Denote by y = λ/ρ the scaled dual variable, the augmented Lagrangian can be ex-

pressed as

Lρ(x, z,y) = γTx +
ρ

2

∑
j∈J
‖Tjx− zj + yj‖22 −

ρ

2

∑
j∈J
‖yj‖22. (6.7)

Using the scaled dual variable, the ADMM iterates described in (6.4)–(6.6) can be further sim-

plified as

xk+1 := argmin
x

γTx +
ρ

2

∑
j∈J
‖Tjx− zkj + ykj ‖22

 (6.8)

zk+1
j := argmin

zj∈Pdj

‖Tjx
k+1 + ykj − zj‖22, ∀j ∈ J (6.9)

yk+1
j := ykj + Tjx

k+1 − zk+1
j , ∀j ∈ J , (6.10)

To compute the minimum in (6.8), differentiating (6.8) with respect to x and setting the

result to zero, we obtain

γ + ρ
∑
j∈J

TT
j

(
Tjx− zkj + ykj

)
= 0,

which implies ∑
j∈J

TT
j Tjx =

∑
j∈J

TT
j

(
zkj − ykj

)
− γ

ρ
.

We then replace the update rule for x in (6.8) as

xk+1 := T−1 ×

∑
j∈J

TT
j

(
zkj − ykj

)
− γ

ρ

 , (6.11)
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where T =
∑

j∈J TT
j Tj . From Definition 6.1, it is easy to see that T is an n × n diagonal

matrix with T(i,i) = di, i ∈ I. Therefore, T−1 is also an n× n diagonal matrix, with T−1
(i,i) =

1/di, i ∈ I. In (6.9), the minimization of zj is actually finding the Euclidean projection of

vector (Tjx
k+1 + ykj ) ∈ Rdj in the check polytope Pdj . We denote by ΠPd

(u) the Euclidean

projection of vector u on Pd.

From (6.9) and (6.10), it can be seen that, since Tjx selects variable xi in x which are

neighbors of check j in the Tanner graph, i.e., i ∈ Nj , the update of zj and yj is analogues

to a check update in message-passing decoding, which requires only local information from

neighboring nodes. Let (zj)i, i ∈ Nj ⊆ I, be the element of zj that corresponds to xi, i.e., the

ith coordinate of TT
j zj . Note that (zj)i is not the ith element of zj but the element corresponding

to the ith element in x. We define (yj)i similarly. Then, we can rewrite (6.11) in the form of

update rule for each coordinate of x as follows

xk+1
i :=

1

di

∑
j∈Ni

(
(zj)

k
i − (yj)

k
i

)
− γi
ρ

 . (6.12)

From (6.12), we can see that the update of xi only requires information from neighboring checks

of variable i.

Hence, we can express the ADMM decoding in the form of an iterative message-passing

algorithm, as described in Algorithm 6.1 . Each check j updates its outgoing messages based

on the received messages from its neighboring variables (i.e., xi for i ∈ Nj), and its locally

stored yj from previous iteration. For the variable update, as shown in (6.17), the computation

on each variable only involves the incoming messages from neighboring checks. Similar to

other message-passing decoding algorithms, one can compute the updates for all the checks

simultaneously, as well as for all the variables.

In Step 1 of Algorithm 6.1 , there can be different ways to initialize x. For example, we

can set

xi =

 0 if γi > 0

1 if γi < 0.
(6.20)

If this x is not a valid codeword, then one starts the ADMM decoding; otherwise, it is the ML

codeword. The scaled dual variable yj can be set to be all zeros for all j ∈ J . The initialization

of zj does not affect the ADMM decoding. Note that different initializations of x, zj , and yj can

only affect the number of iterations required to converge, and they would not change the optimal

solution obtained by ADMM (within the feasibility tolerances).
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Algorithm 6.1 Iterative ADMM-based LP decoding algorithm

1: Initialization: Properly initialize x, zj , and yj ∀j ∈ J .

2: Check update: For each check j ∈ J , update zj and yj using (6.9) and (6.10), respectively.

We rewrite them as follows

w← Tjx + yj (6.13)

zj ← ΠPdj
(w) (6.14)

yj ← w − zj , (6.15)

where (6.13) uses only the values of neighboring variables of check j. So, Tjx can also

be viewed as vector [xi]i∈Nj which has xi, i ∈ Nj , as it elements. Then, the message

transmitted to neighboring variables is

Lj→i ← (zj)i − (yj)i. (6.16)

3: Variable update: For each variable i ∈ I, the messages transmitted to its neighboring

checks are the same, and is computed as (6.12) which can be rewritten as follows

xi ←
1

di

∑
j′∈Ni

Lj′→i −
γi
ρ

 . (6.17)

4: Stopping criteria: If ∑
j∈J
‖Tjx− zj‖2 < εpri (6.18)

and ∑
j∈J
‖zkj − zk−1

j ‖2 < εdual, (6.19)

where εpri > 0 and εdual > 0 are feasibility tolerances, the ADMM converges and x is the

optimal solution; otherwise, go to Step 2.
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In Algorithm 6.1 , except for the projection Πdj in (6.14), the computations are quite

straightforward, involving only additions and multiplications, and are standard update proce-

dures of ADMM taken from [2]. However, the projection Πdj of a given vector onto the check

polytope of dimension dj has to be specially designed, and the efficiency of the projection algo-

rithm directly determines the complexity of ADMM decoding. In next section, we will introduce

the key contribution in this chapter, which is an efficient Euclidean projection algorithm which

projects any given vector onto the check polytope.

6.2 Efficient Projection onto Check Polytope

In [5] and [6], two projection algorithms were proposed, based on the so-called “two-

slice” representation of any vector in the check polytope, according to which any given vector

can be expressed as a convex combination of two binary vectors of Hamming weight r and r+2,

for some even integer r. The Majorization Theorem [10] is used to characterize the convex hull

of the two slices, where a sorting on all coordinates of the given vector is required to decide

whether it is within the check polytope. If the given vector is outside the polytope, the projection

algorithm includes two steps: first projected the vector onto a scaled version of one of the two

slices, and then project the residual onto another scaled slice [5]. However, it is complex to

find the proper scaling value. This projection was further improved in [6], where the projection

problem is then expressed as a quadratic program after the two slices have been characterized by

the majorization method.

In this section, we proposed a novel and more efficient projection algorithm which uti-

lizes the cut search algorithm (CSA) introduced in [7], and we will show that the cut found by

CSA is the facet of the polytope on which the projection point must be located. Then, we will

give an efficient algorithm that projects the vector onto this facet.

6.2.1 Cut Search Algorithm

As we mentioned in Chapter 2, the check polytope Pd of dimension d can be described

by a set of box constraints and parity inequalities as follows

0 6 ui 6 1, ∀i ∈ [d] (6.21)∑
i∈V

ui −
∑
i∈Vc

ui 6 |V| − 1, ∀V ⊆ [d] with |V| odd. (6.22)
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Algorithm 6.2 Cut search algorithm

Input: vector u ∈ [0, 1]d.

Output: indicator vector θ ∈ {−1, 1}d of cutting set V (if exists)

1: θi ←

 1 if ui > 1
2

−1 otherwise
2: if the cardinality of set {i : θi > 0} is even then

3: i∗ ← argmin
i

∣∣1
2 − ui

∣∣.
4: θi∗ ← −θi∗ .
5: end if

6: V = {i : θi > 0}.
7: if θTu > |V| − 1 then

8: return θ is the indicator vector of cutting set V , and u /∈ Pd.

9: else

10: return No cut found, and u ∈ Pd.

11: end if

Define by θV the indicator vector of set V such that

θV,i =

 1 if i ∈ V

−1 if i ∈ Vc,

where Vc = [d] \ V is the complement of V . Then, the inequality (6.22) can be written as

θTVu 6 |V| − 1.

For a given vector u ∈ [0, 1]d, if there exists a set V ∈ [d] of odd cardinality such that

θTVu > |V| − 1, (6.23)

then u is outside the check polytope. The violated parity inequality (6.23) is called a cut on u,

and the corresponding V of odd cardinality is called a cutting set. The following result shows

that, for a give vector, there exists at most one cutting set.

Proposition 6.3 (Th. 1 in [11]) If at any given point u ∈ [0, 1]d, one of the parity inequalities

in (6.22) is violated, the rest of them are satisfied with strict inequality.

With the notation introduced in this chapter, the efficient cut search algorithm, described

in Chapter 5, can be rewritten as Algorithm 6.2 . It is obvious that, to determine whether a given
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vector is inside the check polytope or not, the algorithm only needs to visit every coordinate

once, and no ordering of the coordinates is required.

6.2.2 Projection to Check Polytope

It can be seen from Definition 6.2 that the check polytope Pd lies inside the [0, 1]d

hypercube, i.e., Pd ⊂ [0, 1]d. This means that all points outside the hypercube are also outside

the check polytope. To find the check polytope projection of a vector outside the hypercube, we

first check with CSA whether or not its projection on the hypercube is also in the check polytope.

If the hypercube projection is outside the check polytope, the cut found by CSA can be further

used to find the check polytope projection, as will be shown later in this subsection.

The projection of any vector onto the hypercube can be done easily by applying a thresh-

old on all coordinates. Let z = Π[0,1]d (u) be the [0, 1]d projection of vector u ∈ Rd; then we

have

zi =


1 if ui > 1

0 if ui < 0

ui otherwise.

(6.24)

It is easy to verify that the z computed in (6.24) is indeed the Euclidean projection of u to the

[0, 1]d hypercube. If z ∈ Pd, then z is exactly the Euclidean projection of u to the check polytope

Pd, and the projection is done. Therefore, in the remaining part of this subsection, we focus on

vectors whose [0, 1]d projection z = Π[0,1]d (u) is outside the check polytope, i.e., z /∈ Pd. From

Proposition 6.3, there exists only one set V of odd cardinality such that θTVz > |V|− 1. We have

the following relationship between u and its [0, 1]d projection z.

Proposition 6.4 Given a vector u ∈ Rd, let z = Π[0,1]d (u). If there exits a cut θTVz > |V| − 1,

then ui > zi for all i ∈ V and ui 6 zi for all i ∈ Vc. This implies θTVu > θTVz, where the

equality holds if and only if z = u.

Proof: Suppose there exists j ∈ V such that uj < zj . Then by (6.24), zj = 0. Since 0 6 zi 6 1

for all i ∈ [d], we have θTVz 6
∑

i∈V zi 6 |V| − 1. This contradicts the assumption that

θTVz > |V| − 1; hence ui > zi for all i ∈ V . Similarly, we can show that ui 6 zi for all i ∈ Vc.

Proposition 6.4 can be extended in the following corollary.
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Corollary 6.5 If V is the cutting set on z = Π[0,1]d (u), then uk >
∑

i∈Vc ui holds for any

k ∈ V .

Proof: Notice that zk >
∑

i∈Vc zi for any k ∈ V , because |V| − 1 <
∑

i∈V zi −
∑

i∈Vc zi 6∑
i∈V zi 6 |V| holds for cutting set V . Then, by Proposition 6.4, the corollary is proved.

The proposed efficient projection algorithm is based on the following result.

Theorem 6.6 For a given vector u ∈ Rd, let z = Π[0,1]d (u). If there exists a cutting set V on z

such that θTVz > |V| − 1, then the Euclidean projection of u to the check polytope Pd must be

on the facet of Pd given by V , i.e., ΠPd
(u) ∈ FV ,

{
x ∈ [0, 1]d | θTVx = |V| − 1

}
.

Proof: First of all, from Proposition 6.3, we know that the cutting set V that gives a cut

on z is unique, and x ∈ Pd if x ∈ FV ∩ [0, 1]d. Suppose that w ∈ Pd is the projection of u to

Pd but it is not on the facet FV ; then, it must satisfy θTVw < |V| − 1.

Let a = θTVz− |V|+ 1 > 0, b = |V|− 1−θTVw > 0, and let vector v = b
a+bz + a

a+bw.

Then,

θTVv =
b

a+ b
θTVz +

a

a+ b
θTVw = |V| − 1,

which implies v ∈ FV . The vector v is also in [0, 1]d because both z and w are in the convex

set [0, 1]d. Hence, by Proposition 6.3, we have v ∈ Pd.

Since z is the projection of u on the [0, 1]d hypercube, then for any x ∈ [0, 1]d, we have

the following equality from (6.24),

|ui − xi| = |ui − zi|+ |zi − xi|, 1 6 i 6 d. (6.25)

From the definition of v, we have

zi − vi =
a

a+ b
(zi − wi), 1 6 i 6 d. (6.26)

Setting x = v and substituting (6.26) into (6.25), we get

|ui − vi| = |ui − zi|+
a

a+ b
|zi − wi|

6 |ui − zi|+ |zi − wi|

= |ui − wi|.

Since z 6= w, the above inequality can not hold with equality for all i, hence ‖u − v‖22 <

‖u−w‖22. This contradicts the assumption that w is the Euclidean projection of u on Pd.
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Remark 6.1 Since the check polytope is convex, the Euclidean projection of any vector on it is

unique.

Now the only thing needed to complete the projection is an efficient algorithm to solve

the following optimization problem for any given vector u /∈ Pd,

minimize ‖u− x‖22 (6.27)

subject to 0 6 xi 6 1, i = 1, . . . , d

θTx = b,

where θ is the indicator vector of cutting set V (here we omitted the subscript V of θV to simply

the notation) and b = |V| − 1.

Since the optimization problem (6.27) has differentiable convex objective and constraint

functions, any points that satisfy the Karush-Kuhn-Tucker (KKT) conditions are optimal so-

lutions [12]. Introducing Lagrange multipliers λ ∈ Rd for the inequality constraints x > 0,

µ ∈ Rd for the inequality constraints x 6 1, and a multiplier ν ∈ R for the equality constraint

θTx = b, we obtain the KKT conditions

x > 0, x 6 1, θTx = b, λ > 0, µ > 0,

λixi = 0, i = 1, . . . , d,

µi(xi − 1) = 0, i = 1, . . . , d, (6.28)

(xi − ui)− λi + µi + νθi = 0, i = 1, . . . , d, (6.29)

where all the multipliers have been scaled by 1/2 to normalize the coefficient of the term (xi −
ui). The solutions of x, λ, µ, and ν can be found by directly solving the above equations. We

can see that µ acts as a slack variable in (6.29), so it can be eliminated by plugging it into (6.28),

leaving

x > 0, x 6 1, θTx = b, λ > 0,

λixi = 0, i = 1, . . . , d, (6.30)

(λi − xi + ui − νθi) (xi − 1) = 0, i = 1, . . . , d, (6.31)

λi − xi + ui − νθi > 0, i = 1, . . . , d, (6.32)

For (6.30) to hold, either xi = 0 or λi = 0. From (6.32) we have xi 6 λi + ui − νθi.
When ui − νθi 6 0, xi = 0 must hold because of the constraint xi > 0. If xi = 0, we have
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Algorithm 6.3 Solving optimization problem (6.27)

Input: vector u ∈ Rd, vector θ ∈ {−1, 1}d, and scaler b > 0.

Output: solution of optimization problem (6.27) in terms of ν∗.

1: T ← {ui − 1 | ui > 1} ∪ {−ui | ui < 0}, δ ← θTu− b, and ζ = d.

2: if T 6= ∅ then

3: Sort elements in T = {ti} such that ti > ti+1.

4: for i = 1 to |T | do

5: if δ/ζ > ti then

6: Exit to line 12.

7: else

8: δ ← δ − ti and ζ ← ζ − 1.

9: end if

10: end for

11: end if

12: return ν∗ ← δ/ζ is optimal solution.

0 6 λi = xi − (ui − νθi) by (6.31), which implies ui − νθi 6 xi = 0. Hence, xi = 0 if and

only if ui − νθi 6 0.

For (6.31) to be satisfied, either xi = 1 or xi = λi + ui − νθi must hold. Since xi 6 1

and λi > 0, if ui − νθi > 1, we must have xi = 1. If xi = 1, we have λi = 0 by (6.30) and

ui − νθi > xi = 1 by (6.32). So, xi = 1 if and only if ui − νθi > 1.

When 0 < ui − νθi < 1, from (6.30) and (6.31), we have λi = 0 and xi = ui − νθi.
Therefore, the solution to the optimization problem (6.27) is

x∗i =


1 if ui − νθi > 1

0 if ui − νθi 6 0

ui − νθi otherwise.

(6.33)

The above solution can be simply written as

x∗ = Π[0,1]d (u− ν∗θ) , (6.34)

where ν∗ is chosen such that θx∗ = b.

We specifically design an efficient algorithm to compute the ν∗, as described in Algo-

rithm 6.3 , which makes use of the following special relationship among the inputs θ, u, and b.

First, we use the indicator vector θV of the cutting set V on z = Π[0,1]d (u) as the input vector
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Algorithm 6.4 Efficient check polytope projection algorithm

Input: vector u ∈ Rd.

Output: the projection ΠPd
(u) ∈ Pd.

1: Run Algorithm 6.2 with input Π[0,1]d (u).

2: if cutting set V is found then

3: Run Algorithm 6.3 with input parameters u, θV , and |V| − 1, then get output ν∗.

4: return Π[0,1]d (u− ν∗θV).

5: else

6: return Π[0,1]d (u).

7: end if

θ. Then from Proposition 6.4, we know the input b = |V| − 1 < θTVz 6 θTVu; moreover, θi = 1

for any ui > 1 and θi = −1 for any ui < 0. Finally, if we let v1 = min
i∈V
{ui} and v2 = min

i∈Vc
{ui},

then from Corollary 6.5, v1 > v2 and ν∗ 6 (v1 − v2)/2. Based on these conditions, the optimal

ν∗ can always be found by Algorithm 6.3 .

By combining Algorithms 6.2 and 6.3 , the projection of any given point to the check

polytope can be done as described in Algorithm 6.4 , which is used in (6.14) of Algorithm 6.1 .

Comparing Algorithm 6.4 with the two-slice projection algorithm proposed in [6] whose ef-

ficiency has already been improved over its precursor in [5], it is obvious that the proposed

projection algorithm is simpler and more efficient. In the two-slice algorithm, in order to check

whether a given point is inside the check polytope, all the coordinates of the point have to be

sorted in descending order. In contrast, the proposed algorithm can find the cutting facet on

which the projection point is located, by simply visiting all coordinates only once. As for the

projection of a point outside the check polytope, although the two-slice algorithm uses a similar

format as in (6.34), its more complicated underlying optimization problem requires the ordering

of a set of size 2d+2 and potentially needs to check all elements in the set before finding the op-

timal ν∗ [6, Algorithm. 2]. However, in the proposed Algorithm 6.3 , only the coordinates whose

values are outside the [0, 1] range need to be taken into account, and the required computation is

also much simpler then the two-slice algorithm. As we will show in Section ??, with the same

ADMM parameters, the iterative ADMM-based LP decoder with the proposed algorithm runs at

least 3 times faster than the one with the improved two-slice projection algorithm in [6].
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6.3 Improving the Performance of ADMM-based LP Decoding

The ADMM-based LP decoding described in the previous section is more efficient than

the LP decoding with general-purpose LP solvers, but there are still several improvements that

can be made to further speed up the decoding. In this section, we will discuss some of these

methods that can significantly reduce the number of iterations required to decode a codeword.

6.3.1 Early Termination

In this subsection, we will show that the ADMM-based LP decoding can declare a de-

coding success even before the stopping criteria (6.18) and (6.19) are satisfied.

Definition 6.7 The fundamental polytope P(H) of the parity-check matrix H is defined to be

the set

P (H) =
⋂
j∈J

{
x | Tjx ∈ Pdj

}
. (6.35)

The solution of LP problem (6.1) corresponds to a vertex of the fundamental polytope

that minimizes the objective function. Codewords correspond to the vertices with all integral

coordinates, and pseudocodewords correspond to the vertices that have non-integral coordinates.

Theorem 6.8 For a codeword c of a binary linear block code defined by parity-check matrix H,

any pseudocodeword p that corresponds to a nonintegral vertex of P(H) must have at least one

coordinate i satisfying |pi − ci| > 1
2 .

Proof: For a binary linear block code, we can assume without loss of generality that c is the

all-zero codeword. Then, we need to show that all pseudocodewords must have at least one

coordinate with value greater then 1
2 .

It is obvious that every vertex of the fundamental polytope must sit on a facet that does

not contain the all-zero vertex. Therefore, from (2.12), any vertex p of the fundamental polytope

must satisfy the following equation∑
i∈V

(1− pi) +
∑

i∈Nj\V

pi = 1, (6.36)

for some check j and V ⊆ Nj with |V| > 1 and |V| odd. It can be seen that, if |V| > 1, (6.36)

does not hold for any non-zero vector whose coordinates all have values less than 1/2. This

means that any non-zero vertex of the fundamental polytope must have at least one coordinate
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with value greater than 1/2. This proves the theorem.

From Theorem 6.8, we can see that the precision of the solution to the LP problem (6.1)

can be coarse. Define hard decision function Γt(x) such that

Γa(xi) =

 1 if xi > t

0 if xi < t.
(6.37)

where t is the hard decision threshold. Then, we have the following corollary.

Corollary 6.9 Let xk be the variable values after k ADMM iterations, and let x∗ be the solution

to the LP problem (6.2). If it can be guaranteed that max
i
|xki − x∗i | < 1

4 , and if max
i
{1

2 − |x
k
i −

1
2 |} <

1
4 and Γ 1

2
(xk) is a valid codeword, then x∗ = Γ 1

2
(xk).

Although it is not easy to guarantee that max
i
|xki − x∗i | < 1

4 after k iterations, the

following proposition from optimization theory shows that xk converges to x∗.

Proposition 6.10 ( [2, 3]) For the optimization problem (6.2), the xk, yk, and zk in the ADMM

iterates all converge to their unique optimal values, and the following inequality holds

V k − V k+1 > ρ
∑
j∈J

(
‖Tjx

k+1 − zk+1
j ‖22 + ‖zk+1

j − zkj ‖22
)
, (6.38)

where V k is the Lyapunov function

V k = ρ
∑
j∈J

(
‖ykj − y∗j‖22 + ‖zkj − z∗j‖22

)
, (6.39)

and y∗ and z∗ are the corresponding optimal points.

From (6.38), we know that the Lyapunov function V k decreases in each iteration, and

hence y and z are bounded. It follows (6.38) and (6.39) that

V 0 > ρ
∞∑
k=0

∑
j∈J

(
‖Tjx

k+1 − zk+1
j ‖22 + ‖zk+1

j − zkj ‖22
)
.

Because V 0 is finite, the primal residual Tjx
k − zkj → 0 and the dual residual zkj − zk−1

j → 0

as k → 0 for all j ∈ J . This shows that both of the stopping criteria (6.18) and (6.19) in

Algorithm 6.1 will eventually hold.

When using early termination in ADMM-based LP decoding, the variable vector x goes

through a hard decision Γ 1
2

at the end of each iteration. If the binary vector Γ 1
2
(x) is a valid
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codeword, the decoder declares success and outputs Γ 1
2
(x) as the decoded codeword. With

the initialization of x described in (6.46), we have not observed, in millions of received code

frames, any cases where the variables satisfied the condition for early termination during the

ADMM iterations but later converged to another codeword or pseudocodeword. If the accuracy

of pseudocodeword solution is not of interest, the two stopping criteria in Algorithm 6.1 can be

replaced by a limit on the maximum number of iterations when early termination is used.

6.3.2 Varying Penalty Parameter and Over-Relaxation

There are many variations on the standard ADMM algorithm proposed in the literature,

and some of them can provide superior convergence in practice. In this subsection, we introduce

two of these extensions, which have been rigorously studied by optimization theorist and the

convergence results are still valid [2].

The first variation is to vary penalty parameter ρ in each iteration. Varying the penalty

parameter makes the convergence less dependent on the initial choice of the penalty parameter,

and hence improve the performance in practice. One simple and practical scheme [13] involves

setting

ρk+1 =


τ incρk if ‖Tjx

k − zkj ‖2 > µρk‖zkj − zk−1
j ‖2

ρk/τ dec if ρk‖zkj − zk−1
j ‖2 > µ‖Tjx

k − zkj ‖2

ρk otherwise,

(6.40)

where the typical choices of the parameters might be µ = 10 and τ inc = τ dec = 2. The idea

behind this method is to try to keep the primal and dual residual norms close to one anther as

they both converge to zero [2]. Note that, when the penalty parameter is changed during the

ADMM iteration, the scaled dual variable yk = λk/ρ must also be adjusted accordingly.

The other variation is called over-relaxation. It replaces the quantity Tjx
k in the z- and

y-updates in (6.9) and (6.10) with

αkTjx
k + (1− αk)zkj ,

where 1 6 αk 6 2 is a relaxation parameter. Analysis and experiments suggest that the con-

vergence of ADMM can be improved with properly chosen relaxation parameter αk. To include

the over-relaxation into the ADMM-base LP decoding, one only needs to replace (6.13) with

w← αkTjx
k + (1− αk)zkj + yj . (6.41)

In our implementation of over-relaxation, a fixed α is used throughout all iterations, and in the

initialization step, all elements of zj are set to 1
2 for all j ∈ J .
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6.3.3 Symmetric Implementation of ADMM-based LP Decoding

In conventional LP decoding, the feasible space of variables is the fundamental polytope

(6.35) which is inside the hypercube [0, 1]n. Since the ADMM-based LP decoding can be im-

plemented as a message-passing technique and the early termination applies a hard decision on

all variables at the end of each iteration, it would be desirable to have the range of variables be

symmetric about zero, such that xi ∈ [−a, a] for some a > 0. Such a symmetric implementation

could also simplify some computations during the ADMM iterations, as will be shown in the

following part of this subsection.

Define bijection Φa : [0, 1]n → [−a, a]n such that

Φa(x) = a(2x− 1), x ∈ [0, 1]n (6.42)

and

Φ−1
a (y) =

1

2

(y

a
+ 1
)
, y ∈ [−a, a]n (6.43)

where 1 is the all-one vector.

Theorem 6.11 The vector x∗ ∈ [0, 1]n is the solution to the optimization problem (6.2) if and

only if Φa(x
∗) ∈ [−a, a]n is the solution to the following LP problem

minimize γTx (6.44)

subject to Tjx = zj , zj ∈ Φa(Pdj ), ∀j ∈ J .

Proof: Since Φa is a bijection, for all z ∈ Φa (P(H)), we have Φ−1
a (z) ∈ P(H). To show

sufficiency, suppose x′ is the solution to (6.44) such that γTx′ < γTΦa(x
∗). Then, by simple

algebra, we have γTΦ−1
a (x′) < γTx∗. This contradicts the assumption that x∗ is the solution to

(6.1), because Φ−1
a (x′) ∈ P(H). Therefore, Φa(x

∗) is the solution to (6.44). The necessity can

be proved in a similar way.

Comparing LP problems (6.2) and (6.44), we can see that the only difference is the poly-

tope constraint. Hence, the ADMM-based LP decoding procedure described in Algorithm 6.1

remains the same, while only the check polytope projection algorithm in (6.13) needs to be

adjusted.

It is easy to verify that the projected check polytope Φa(Pdj ) can be described by the

following box constraints and linear inequalities

−a 6 ui 6 a, ∀i ∈ [d]
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Algorithm 6.5 Cut search algorithm for Φa(Pd)

Input: vector u ∈ [−a, a]d.

Output: indicator vector θ ∈ {−1, 1}d of the cut (if exists)

1: θi ←

 1 if ui > 0

−1 otherwise
2: if the cardinality of set {i : θi > 0} is even then

3: i∗ ← argmin
i
|ui|.

4: θi∗ ← −θi∗ .
5: end if

6: if θTu > a(d− 2) then

7: return θ, and u /∈ Φa(Pd).

8: else

9: return No cut found, and u ∈ Φa(Pd).

10: end if

and ∑
i∈V

ui −
∑
i∈Vc

ui 6 a(d− 2), ∀V ⊆ [d] with |V| odd.

Therefore, the cut search algorithm needs to be modified accordingly, as described in Algo-

rithm 6.5 . As for the computation of ν∗ when a cut is found, Algorithm 6.3 remains almost the

same except that the set T defined in line 1 becomes

T ← {ui − a | ui > a} ∪ {a− ui | ui < −a}. (6.45)

The check polytope projection algorithm for Φa(Pd) also needs to be modified, as shown in

Algorithm 6.6 . Although, theoretically, the initial values of x, y, and z do not affect the optimal

solution found by ADMM, to have better convergence performance in practice, we initialize yj

and zj to be all-zero vectors for all j ∈ J , and initialize x as follows

xi =

−a if γi > 0

a if γi < 0.
(6.46)

6.3.4 Improving Error-Rate Performance of LP Decoding

From the ML certificate of LP decoding, we know that if the solution to the optimiza-

tion problem (6.2) is integral, it is an ML codeword. Therefore, it is desirable to modify the
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Algorithm 6.6 Efficient check polytope projection algorithm for Φa(Pd)

Input: vector u ∈ Rd.

Output: the projection ΠΦa(Pd) (u) ∈ Φa(Pd).

1: Run Algorithm 6.5 with input Π[−a,a]d (u).

2: if cutting set V is found then

3: Run modified Algorithm 6.3 with input parameters u, θV , and a(d− 2), then get output

ν∗.

4: return Π[−a,a]d (u− ν∗θV).

5: else

6: return Π[−a,a]d (u).

7: end if

objective function to favor the integral solution while keeping the optimal solution unchanged.

In [8], it was proposed that adding penalty terms with certain properties to the objective function

can improve the error rate performance, although the extra penalty terms change the original

LP problem into a nonlinear and non-convex optimization problem for which the ADMM is not

guaranteed to find the global optimal. We have observed from our simulation results that, al-

though the method proposed in [8] improves the error-rate performance in waterfall region, it

also causes high error floors for some codes and has inferior performance in the high signal-to-

noise ratio (SNR) region to that of LP decoding with the original objective function.

With the proposed symmetric implementation, the penalty terms in [8] can be easily

extended into more general terms. We extend the `2 penalty function α‖x − 0.5‖22 proposed

in [8], which was found to have good performance, into a more general quadratic penalty term

−xTAx, where A is a diagonal matrix with αi, 1 6 i 6 n, as its diagonal elements. Hence, the

LP problem (6.44) with proposed penalty term can be written as

minimize γTx− xTAx (6.47)

subject to Tjx = zj , zj ∈ Φa(Pdj ), ∀j ∈ J .

Our simulation results show that having different αi for each variable node can signifi-

cantly improve the error-rate performance, especially for irregular LDPC codes.

Theorem 6.12 A codeword c∗ ∈ {0, 1}n is the solution to LP problem (6.2) if and only if

Φa(c
∗) ∈ {−a, a}n is the solution to optimization problem (6.47).

Proof: To prove necessity, assume codeword c∗ is the solution to (6.2). Then γT c∗ 6 γTu
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for all u ∈ P(H). Let v∗ = γTΦa(c
∗). From Theorem 6.11, we know γTv∗ 6 γTv for all

v ∈ Φa(P(H)). Since v∗ ∈ {−a, a}n and P is a diagonal matrix, −v∗TAv∗ 6 −vTAv for

all v ∈ [−a, a]n, and hence γTv∗ − v∗TAv∗ 6 γTv − vTAv for all v ∈ Φa(P(H)). This

proves the condition is necessary, and sufficiency can be similarly proved.

Theorem 6.12 shows that if the solution to (6.47) found by ADMM corresponds to a

globally optimal codeword, which can be verified by running ADMM on LP problem (6.44)

with the solution as initial x, then the codeword is ML.

To apply ADMM to the optimization problem (6.47), only the x-update (6.17) in Algo-

rithm 6.1 needs to be modified, as follows:

xi ←
1

di − βi

∑
j′∈Ni

Lj′→i −
γi
ρ

 , (6.48)

where βi = 2αi/ρ. Note that, since the optimization problem (6.47) with quadratic penalty

term is non-convex, the solution found by ADMM is a local optimal but might not be the global

optimal. Hence, the choice of initial values of x affects the ADMM solution of the penalized

non-convex optimization problem (6.47). We propose that the penalty term should not be added

to the objective function until after a certain number of iterations or until the ADMM converges

to a pseudocodeword, and our simulation results show that such a decoding scheme provides

a substantial improvement over the penalized LP decoders whose penalty term is added before

decoding starts. Such improvement is especially evident in high SNR region where adding a

penalty term before decoding starts could have an error floor. Although the authors of [8] also

suggested a two-stage decoder which concatenates an LP decoder with the original objective

function followed by the penalized decoder, their purpose in using such a two-stage decoder

is merely to provide for theoretical reasons a scheme whose decoding failures are independent

of the transmitted codeword, without any intention to improve the error-rate performance of

the penalized decoder. Therefore, the error-rate performance of the two-stage decoder was not

discussed in [8].

Another way to further improve the error correction performance of LP decoding is to

use the adaptive cut generation algorithm proposed in [7]. Although it can be directly applied

after the ADMM-based LP decoding converges to a pseudocodeword, it would be interesting to

find a way to include the cut generation scheme within the ADMM iterations. However, this is

beyond the scope of this discussion.
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6.4 Numerical Results

To demonstrate the improved performance offered by the ADMM-based LP decoding

with the proposed projection algorithm and the implementation extensions introduced in the

previous section, we compare their computational complexity and error-rate performance to that

of other LDPC decoders such as the ADMM-based LP decoder with two-slice projection algo-

rithm [6], adaptive LP (ALP) decoder [14], and floating-point box-plus SPA decoder [15]. We

apply these decoders to several LDPC codes of various lengths, rates, and degree distributions,

including a rate-0.77, (3,13)-regular LDPC codes of length 1057 [16]; a rate-1
3 irregular LDPC

code of length 1920 [16]; a rate-0.82, variable-regular LDPC code of length 4095 [16]; and a

rate-1
2 irregular QC-LDPC code of length 576 from the IEEE 802.16e standard. The frame error

rate (FER) curves are based on Monte Carlo simulations that generated at least 100 error frames

for each point in the plots.

As we mentioned earlier in Chapter 2, unlike SPA decoding, LP decoding is insensitive

to the scaling of input channel LLRs. This means that the input channel messages of LP decoding

need not to be scaled according to the SNR to precisely represent the LLR of each symbol.

Let ti = (−1)ci be the transmitted binary symbol of the ith code bit. For the additive white

Gaussian noise channel (AWGNC), the corresponding received symbol is ri = ti + ni, where

ni is independent and identically-distributed (i.i.d.) Gaussian noise of zero-mean and variance

σ2. Then, the LLR of ith received symbol can be computed as 2ri/σ
2. If we scale the LLRs

of all received symbols by multiplying by σ2/2, the coefficient of the objective function of LP

decoding becomes γi = ri. This means that, with LP decoding, the information of channel SNR

is not required. Similar argument also holds for the binary symmetric channel (BSC).

We know that the ADMM-based LP decoder can be viewed as a message-passing de-

coder, so the maximum number of allowed iterations, Tmax, affects its error-rate performance.

Fig. 6.1 compares the ADMM decoder for various Tmax with the floating-point box-plus SPA

decoding and the ALP decoding with general-purpose LP solver. We applied the early termi-

nation and over-relaxation methods discussed in the previous section to the ADMM-based LP

decoding to reduce the computational complexity, and we fix the penalty parameter ρ = 1 and

the relaxation parameter α = 1.9 throughout all iterations. If the early termination condition

is not satisfied, the ADMM keeps iterating until the maximum number of iterations is reached.

The error-rate of ALP decoder can be viewed as the best performance that ADMM-based LP

decoders can achieve by solving the standard LP problem (6.2). It can be seen that the error-rate

performance of ADMM with Tmax = 100 is already very close to that of ALP decoding, and



114

3 3.5 4 4.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

F
ra

m
e 

E
rr

or
 R

at
e 

(F
E

R
)

 

 

ADMM Tmax = 20
ADMM Tmax = 30
ADMM Tmax = 50
ADMM Tmax = 100
ADMM Tmax = 200
ADMM Tmax = 500
ALP
Floating-point SPA

Figure 6.1: FER comparison of ADMM-base LP decoder with various maximum number of

iterations for (1057,833) LDPC code on AWGNC.

the ADMM-based LP decoder with Tmax = 200 almost achieves the best error-rate performance

of standard LP decoding. We can also see that all LP decoders have error-rate curves of steeper

slope than the SPA decoder, and a similar phenomenon has been observed on all LDPC codes

we tested [7]. We believe that LP-based decoders have better error correction performance than

the SPA decoder in good channel conditions.

Fig. 6.2 presents an intuitive way of comparing the computational complexity of dif-

ferent decoding algorithms. It shows the average decoding time when we implement these al-

gorithms using C++ code on a desktop PC. The SPA decoder is implemented in software with

messages represented as double-precision floating-point numbers, and the pair-wise box-plus

SPA is computed in the way described in [17]. The SPA decoder iterations stop as soon as a

codeword is found, or when the maximum allowable number of iterations Tmax = 200 have

been attempted. To avoid possible implementation variation, the C++ code of the two-slice

projection algorithm [6] is obtained from one author’s website [18] and plugged into our C++

platform for ADMM-based LP decoders. For ADMM-based LP decoders, the simulation pa-

rameters are set to be the same, i.e., Tmax = 200, ρ = 1, and εprim = 10−4, where only (6.18)

is used as the stopping criterion. The simulation time is averaged over one million frames for
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Figure 6.2: Average simulation time for decoding one codeword.
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each decoder, and the channel condition is set to let all decoders achieve approximately the same

frame-error rates as indicated in the figures. We can see that, compared to the two-slice pro-

jection algorithm in [6], the proposed projection algorithm significantly improves the efficiency

of the ADMM-based LP decoder, especially for low-rate codes. The modified ALP (MALP)

decoding algorithm [14], which is much faster than the standard LP decoder proposed by Feld-

man et al. in [?], uses the open-source GNU Linear Programming Kit (GLPK) [19] as its LP

solver. From the simulation results, we can see that all ADMM-based LP decoders are faster

than MALP, especially on low-rate codes, where the gain is more than 2 orders of magnitudes.

This is because the general-purpose LP solver used in MALP does not take advantage of the

sparsity in the constraints of the LP problem of decoding LDPC codes. The ADMM with early

termination and over-relaxation is the most efficient LP decoding algorithm, further improving

the decoding speed of the ADMM-based LP decoder by a factor of 3.

In our simulation data obtained from billions of decoded codewords, we never found any

codeword satisfying the early termination condition discussed in Section 6.3.1 that was not an

ML codeword, and we believe that early termination should always be applied to avoid unnec-

essary iterations. Hence, all ADMM-based LP decoders discussed in the remainder part of this

section use early termination. We also found that the method of varying the penalty parameter

discussed in Section 6.3.2 can not improve the decoding efficiency when early termination is

used. However, the over-relaxation technique introduced in the same section can still substan-

tially improve the convergence of ADMM. Hence, with the maximum number of iterations Tmax

fixed, the penalty parameter ρ and the over-relaxation parameter α can affect both the error-rate

and the convergence performance of ADMM-based LP decoding, as shown by Figs. 6.3 and

6.4. Although not shown here, we found that the best choice of parameters α and ρ may vary

as a function of channel SNR. It is not clear whether there is an analytical way to find the best

ADMM channel parameters, and we chose the parameters empirically based on our simulation

data.

Figs. 6.5 and 6.6 show the error-rate performance of ADMM-based LP decoding with

penalty terms added to objective function. We compare the proposed general quadratic penalty

with the so-called `1 and `2 penalty functions from [8]. The coefficients βi in our general

quadratic penalty are chosen according to the degree of each variable i such that βi = αdi where

α is a constant parameter depending on codes and other ADMM parameters. The parameters of

the penalty functions plotted here are chosen from a range of values tested in our simulations

based on the error-rate performance. We would like to point out that, due to the limited range
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Figure 6.3: ADMM parameter comparison for LDPC code of rate 0.77 and length 1057 on

AWGNC, Tmax = 200 and Eb/N0 = 3.75 dB.
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Figure 6.4: ADMM parameter comparison for LDPC code of rate 0.33 and length 1920 on

AWGNC, Tmax = 200 and Eb/N0 = 2 dB.
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Figure 6.5: FER comparison of ADMM-base LP decoders with additional penalty terms in

objective function for (576,288) LDPC code on AWGNC. Tmax is set to 200 for all decoders.

α = 0.12 for the `1 penalty, α = 0.1 for the `2 penalty, and βi = 0.78di for the general `2

penalty.
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Figure 6.6: FER comparison of ADMM-base LP decoders with additional penalty terms in

objective function for (4095,3358) LDPC code on AWGNC. Tmax is set to 200 for all decoders.

α = 0.08 for the `1 penalty, α = 0.13 for `2 penalty, and βi = 0.78di for the general `2 penalty.



120

of parameters we tested, there could possibly be other choices of penalty parameters that give

better performance. It can be seen from these figures that, for the `1 and `2 penalty function,

parameters giving strong penalty improve the error-rate performance in the waterfall region but

introduce an error floor in the high SNR region, while weak penalties have a low error floor but

inferior waterfall performance. With the proposed general quadratic penalty, which is added into

the objective function after a certain number of iterations or after the ADMM has converged

to a pseudocodeword, the error-rate performance in both waterfall and error-floor regions is

substantially improved. To be specific, we used the original objective function for the first 100

iterations (or less if the decoder converges), and if no codeword is found, the general quadratic

penalty is added for the remaining iterations by simply changing the x-update from (6.17) to

(6.48), without any complexity increase. Comparing Figs. 6.5 and 6.6, we can see that the error-

rate improvement provided by the `1 and `2 penalty functions is smaller for the (576,288) code

than for the (4095,3358) code. This is because the former code is irregular and its variable

degrees vary from 2 to 7, but the `1 or `2 penalty remains the same for all variables.

For the irregular (576,288) IEEE 802.16 standard code of rate 0.5, our simulation data

show that, when Eb/N0 is 4 dB or larger, all decoding errors of the ADMM-base LP decoder

with proposed quadratic penalty are valid codewords. By further examining these decoded code-

words, we found that more than 99% of them are ML codewords. This means that the proposed

decoder almost achieves ML performance for this code in the high SNR region. As shown in

Fig. 6.6, the floating-point box-plus SPA decoder has an obvious error floor, which is caused by

the limited number of iterations and could be improved by increasing Tmax. However, with the

same Tmax as the SPA, the ADMM-based LP decoder does not have such a high error floor and

has steeper slope in its error-rate curve.

The superior error-correction performance of LP decoding makes it a promising candi-

date for many important applications that require extremely low error rates, such as data storage

and high-speed digital communication. With the proposed efficient ADMM-based LP decoding

algorithm, it becomes a potential candidate for implementation in practical applications. We

conjecture that the inferior performance in the waterfall region of LP decoding with the original

objective function could be caused by the chosen parity-check matrix which is often optimized

for iterative belief-propagation decoding. Adding the penalty term can improve the error-rate

performance, so optimizing parity-check matrices for LP decoding could also be a interesting

future research topic.
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6.5 Conclusion

The high complexity of general-purpose LP solvers, which are not optimized for solving

LP problems with sparse constraints, makes LP decoding computationally more complex than

widely used iterative message-passing decoding algorithms, especially for codes of large block

size. In this paper, we propose an efficient message-passing algorithm to solve the LP decod-

ing problem. It is based on the alternating direction method of multipliers (ADMM), a classic

technique in convex optimization theory that is designed for parallel implementation. The com-

putational complexity of ADMM-based LP decoding is largely determined by the method used

to project a vector of real values to the parity polytope of a given parity check. We proposed

a novel, efficient projection algorithm that can substantially improve the decoding speed of the

ADMM-based LP decoder, and further improvement on decoding efficiency can be achieved by

using early termination conditions, as well as optimization techniques such as over-relaxation

that give faster convergence in practice. We also generalized the existing method of adding a

quadratic penalty term, and our simulation results show that this generalized approach substan-

tially improves the error-rate performance, especially for irregular LDPC codes.
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Chapter 7

Reliable Video Streaming over

Distributed Cognitive Radio Networks

7.1 Introduction

Distributed wireless networks are characterized by scarce radio spectrum, unreliable

propagation channels, strong interference, and user mobility. An important application over

these networks is bandwidth-intense video streaming, e.g., transmitting surveillance video among

mobile units in a battlefield. Such applications may have strict delay constraints, and may re-

quire a cross-layer mechanism that can effectively allocate its resources to each user in time. For

the radio resource, we want the cognitive radio framework to be able to provide high data rates

to accommodate video streams and to adaptively distribute radio resources according to users’

requirements and channel conditions. For video streams, the video codec should have high

scalability to adjust the coding rates according to required quality and available data rates. In

this paper, we study the problem of dynamic, distributed, cross-layer resource allocation across

multiple users transmitting real-time video over a multicarrier-based wireless cognitive radio

network in a reliable way.

Radio resource allocation, i.e., subcarrier and power allocation, for multiple users has

been widely studied in the literature [1–4]. By taking advantage of the time-varying property of

wireless channels, knowledge of channel state information (CSI) can be used to exploit the mul-

ticarrier and multiuser diversity [1]. Multiuser resource allocation based on multicarrier mod-

ulation such as orthogonal frequency division multiplexing (OFDM) attracted extensive atten-

tion [2–4]. However, the results of this research are limited, since they are typically intended for
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systems where the available frequency spectrum has been given and multiple users synchronize

to a central controller such as a base station which coordinates the cooperation between different

users and optimally distributes the radio resources according to system requirements. More-

over, due to the large peak-to-average power ratio (PAPR) and its vulnerability to interference

and jamming, OFDM is not as suitable as multicarrier direct sequence code-division multiple

access (multicarrier DS-CDMA) [5] for applications such as military wireless communication

systems. In challenging scenarios that have high demand for reliability of real-time communica-

tion, multi-hop relays might introduce unacceptable delay, so that users might have to transmit

directly to their destination. Hence, a sophisticated distributed subcarrier and power allocation

algorithm is needed. The conventional distributed power control algorithms [6,7] allocate power

levels for multiple users on one single subcarrier. In [8–10], multiuser power control algorithms

are proposed for frequency-selective channels, which can jointly allocate subcarriers and power

levels. However, all these algorithms have target signal-to-interference-plus-noise ratio (SINR)

or rate requirements which have been carefully designed based on the network conditions, that

were assumed to be known a priori.

The cross-layer resource allocation algorithm proposed in this paper can adaptively con-

trol the joint subcarrier and power allocation according to the physical layer conditions and the

video contents. To improve the overall performance for video streaming over a wireless network,

joint source and channel coding has appeared in several recent works and has been shown to be

an effective approach [11–14]. However, these papers typically focus on the downlink of an

OFDM system, where a central controller is in charge of coordinating the cooperation between

the users and optimally (or sub-optimally) distributing the system resources. Moreover, they

assume that users have spectral utilization information via the aid of a base station, which is not

realistic in scenarios such as distributed networks, where infrastructure is not available.

In this paper, we propose a reliable video transmission framework based on distributed

cognitive radio ad-hoc networks. To deal with a severe near-far problem in such a framework,

and in order to transmit video streams reliably, we propose a distributed cross-layer resource al-

location algorithm that jointly allocates channel resources and video encoding rates to minimize

the distortion of all transmitted video streams. The conventional rate-sum or utility-sum maxi-

mization algorithms sacrifice the performance of some users in order to increase the average rate

or utility.

The rest of the paper is organized as follows. In Section II, we describe our wireless

channel and network model, as well as the video distortion model, and formulate the cross-
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Figure 7.1: A cognitive radio network with 8 users (4 pairs).

layer resource allocation problem. The distributed cross-layer resource allocation algorithm

is proposed in Section III. Section IV presents our simulation scenario and results. Finally,

conclusions are provided in Section V.

7.2 System Description

7.2.1 Cognitive Radio Network Description

Let us consider a distributed ad-hoc wireless network with its users randomly deployed

in a region. Each user is either a transmitter or a receiver. One transmitter and one receiver form

a one-to-one pair and communicate with each other in a single-hop manner. Therefore, there

may exist severe interference (near-far problem) among different user-pairs. Fig. 7.1 shows an

example of such a system with 8 users (4 pairs).

The solid arrows in Fig. 7.1 are video signals to desired receivers, and the dashed arrows

represent the interference to other receivers. The channel gain of user-pair i is denoted as hii,

and the interference channel from transmitter i to receiver j (i 6= j) is denoted as hij . Each user-

pair is only able to estimate the channel gain between its transmitter and receiver, i.e., user-pair

i can only know hii.
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For simplicity, we assume that the available frequency spectrum is divided into an inte-

ger number of subcarriers with equi-width frequency bands. We also assume that each subcarrier

experiences flat fading, as in [5], by an appropriate choice of subcarrier width. In addition, band

limited multicarrier waveforms are utilized in order to eliminate interference between subcarri-

ers.

Transmission time is divided into equal-length time-frames, as shown in Fig. 7.2. We

assume channels change sufficiently slowly such that the channel gain can be considered fixed

during each time-frame, but channels may vary from frame to frame. At the beginning of each

time-frame, every user performs spectrum sensing to detect the available subcarriers. Each re-

ceiver measures the total noise-plus-interference power it experiences, and feeds back the mea-

sured SINR to its own transmitter. It is assumed that this feedback is performed error free. All

users cooperate with each other during spectrum sensing [15]. The sensing algorithm will be

explained in Section 7.3. The proposed cross-layer resource allocation algorithm is performed

during the power/rate control time slot, and this is followed by the actual video transmission.

The distributed network employs multicarrier DS-CDMA. Any user-pair can stream

video content over any number of available subcarriers. Assume that at a given time instant

t, there are K subcarriers and L user-pairs. On the k-th subcarrier, the received signal of user-

pair l can be expressed as

y
(k)
l (t) =

√
p

(k)
l (t)h

(k)
ll (t)b

(k)
l (t) sl (t)

+
L∑

i 6=l,i=1

√
p

(k)
i (t+ ∆til)h

(k)
il (t+ ∆til)b

(k)
i (t+ ∆til) si (t+ ∆til) + n

(k)
l (t)

(7.1)

where b(k)
l (t) and p

(k)
l (t) are user-pair l’s transmitted information symbol and transmission

power on the k-th subcarrier at time t, respectively. The information symbol can be modulated

with M -ary quadrature amplitude modulation (MQAM) as in this paper, but other modulation

schemes are also applicable. The parameter h(k)
il (t) is the channel power gain between the trans-

mitter of user-pair i and the receiver of user-pair l; sl(t) is the spreading sequence for user-pair

l; ∆til is the time offset between user-pairs i and l; and n
(k)
l (t) denotes the noise vector for user-

pair l on the k-th subcarrier which is assumed to be zero-mean additive white Gaussian noise

(AWGN) with two-sided power spectral density of η0/2 such that the noise power within each

subcarrier bandwidth is σ2. In (7.1), the received signal consists of three parts: desired signal,

interference from other transmitters, and noise. We assume that each transmitter has a maximum
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transmit power:
K∑
k=1

p
(k)
l 6 p

max
l (7.2)

7.2.2 Video Distortion Model

Operational Rate-Distortion (R-D) models [22, 23] describe the achievable quality of

a video codec as a function of data rate. Studies have shown that partitioning video packets

into different priority classes and adjusting rates for each class correspondingly can significantly

improve overall received quality for given rates [24, 25]. In this paper, we will use a widely

adopted parametric model for video distortion as a function of the output rate of the encoder [23].

For each user i, we associate a mean square error (MSE) distortion Di when its video stream is

encoded at rate ri as

Di (ri) = D0i +
θi

ri +R0i
(7.3)

where D0i, R0i, and θi are parameters which depend on the video sequence characteristics and

the operational encoder-selected parameters. Note that the rate ri can be zero, which means the

user does not transmit at all in a time-frame. If that occurs, then a part of a new frame, or the

whole frame, is missing at the receiver side, and the video decoder can take the corresponding

part, or frame, from the last successfully decoded video frame to replace the missing new one.

Hence, the distortion at zero rate is calculated at the transmitter side by comparing the new video

frame with the one that the decoder should be able to rebuild with previously transmitted data.

For example, if the video scene is rather static, i.e., the contents of successive video frames are

almost the same, the decoder can rebuild the new frame with fairly low distortion from previous

transmitted frames even if the whole new frame is missing (for example, if rate ri is zero).

However, if there are high-motion contents or a scene-cut in the new frame, the loss of even a

part of the new frame will cause significant distortion when decoding.

Typically, video quality is measured by Peak Signal-to-Noise Ratio (PSNR), which is

related to the MSE distortion as

PSNR = 10 log10

2552

MSE
= 10 log10

2552

D(ri)
(7.4)

Substituting (7.3) into (7.4), and letting Qi(ri) denote the PSNR of user-pair i as a function of

data rate ri, the Quality-Rate (Q-R) model can be written as

Qi (ri) = 10 log10

2552 (ri +R0i)

D0i (ri +R0i) + θi
(7.5)
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In practical video codecs, the Q-R model is generally discrete. The continuity of our Q-

R model can be considered as an ideal case for fine granularity. Note that, as shown in Section

III-C, our proposed resource allocation algorithm will work with any Q-R model.

7.2.3 Problem Formulation

For reliable video transmission where all users are of the same importance, we consider

how to achieve fair video quality among all users and formulate this problem as a max-min

problem. Assume that there are 2L users paired into L pairs, and that the total bandwidth is

divided into K subcarriers. The resource allocation algorithm wants to maximize the minimum

received video quality among all user-pairs as follows:

max
p

{
min

i=1,...,L
Qi(ri)

}
subject to:

K∑
k=1

p
(k)
i 6 p

max
i ,∀i;

ri =
K∑
k=1

r
(k)
i ,∀i;

(7.6)

where p is the power assignment matrix whose ik-th element is p(k)
i , and r(k)

i is the bit rate of

user-pair i on the k-th subcarrier. Note that each user only has the knowledge of the Q-R function

of its own video stream.

This problem has both continuous and integer parameters, and non-convex constraints;

therefore, it is NP-hard [13]. Even with a genie who knows every parameter of every user,

it is still extremely difficult to find the optimum. In the distributed ad-hoc wireless network

considered in this paper, each user only has the information about its own pair, such as CSI and

SINR of each available subcarrier, and the Q-R function of its video stream, which are not shared

with other users. Hence, finding a practical solution close to the optimum in a limited time is of

more interest. A framework for cross-layer resource allocation in a distributed cognitive ad-hoc

network is needed and will be described in the next section.

7.3 Proposed Cross-layer Resource Allocation Framework

The framework is designed from a cognitive radio perspective, where each time-frame

starts with a channel sensing interval, as shown in Fig. 7.2. Passive channel sensing of the RF

stimuli for each subcarrier band is intended to determine if a subcarrier is occupied. After decid-

ing the set of available subcarriers, the noise power and channel gain at each available subcarrier
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can be measured at the receiver side. With all necessary information fed back via a reliable chan-

nel, the transmitter performs the cross-layer resource allocation to allocate appropriate spectral

bands with associated power levels and to determine the bit rate for the video encoder. In this

section, we first describe a cognitive-radio-based mechanism for channel sensing and estima-

tion, then a distributed-spectrum and power-allocation algorithm will be presented, and finally,

the cross-layer resource allocation algorithm will be proposed.

7.3.1 Detection and Estimation of Physical Channel Parameters

To detect the availability of a subcarrier, the multitaper spectrum estimation method

(MTM) is employed with singular value decomposition (SVD) in order to have accurate and

near-optimal performance [15, 17]. Each user first uses MTM to obtain the expansion coeffi-

cients [18], which are defined as follows:

ym (f) =

N−1∑
n=0

x (n) ν(m)
n e−j2πfn, m = 0, 1, . . . ,M − 1 (7.7)

where N is the number of time series samples, x(n) is the n-th sample of the time series, v(k)
n

is the n-th sample of the k-th Slepian sequence with parameters N and resolution bandwidth

2ω (which is a parameter used to control the estimation variance [18]), and M = 2ωN is the

number of Slepian sequences. So, the expansion coefficients in (7.7) are obtained by windowing

the samples with a Slepian sequence and then Fourier transforming them.

The computed expansion coefficients contain both the energy of the background noise

and the signal if present. To detect the signal in the presence of the noise, and to account for

variations of spectrum at different spatial locations, and thus to improve the detection reliability,

cognitive radio users exchange the computed expansion coefficients with their neighbors [15,19].

Assuming one user receives N − 1 sets of expansion coefficients from its neighbors, y(n)
m (f),

n = 1, . . . , N − 1, it can form a spatial-temporal N ×M matrix [17] as follows:

A (f) =


y

(1)
0 (f) y

(1)
1 (f) . . . y

(1)
M−1 (f)

y
(2)
0 (f) y

(2)
1 (f) . . . y

(2)
M−1 (f)

...
...

. . .
...

y
(N)
0 (f) y

(N)
1 (f) . . . y

(N)
M−1 (f)

 (7.8)

where row entries are from different spatial points and column entries are obtained with dif-

ferent Slepian sequences. By performing SVD upon A(f) and keeping the largest singular-

value η0(f), we can significantly reduce the background noise while retaining most of the signal
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power [20]. The detection statistic D can be calculated as

D =

∫
B
|η0 (f)|2 df (7.9)

where B is the bandwidth of the subcarrier. Then, by comparing the detection statistic D with a

predefined threshold, cognitive radio users can decide whether a particular subcarrier is occupied

by primary users.

7.3.2 Distributed Spectrum Management and Power Control Algorithm

In a cognitive-radio-based multiuser ad-hoc network where real-time video transmis-

sion has very strict delay constraints, multi-hop relays may not be able to meet the delay and

reliability requirement. To avoid this problem, users may have to transmit their video streams

via a single hop, which may induce a severe near-far problem when employing multicarrier DS-

CDMA modulation. Hence, dynamic spectrum management and power control plays a central

role in interference mitigation. To overcome the lack of central coordination, we will present a

distributed algorithm, named adaptive distributed water-filling (ADWF), which adjusts the spec-

trum and power allocation in an iterative way. The distributed water-filling algorithm was first

proposed in [8] for digital subscriber lines (DSL), and then extended to wireless Gaussian inter-

ference channels in [9,16]. However, these algorithms all have to know the pre-determined target

signal-to-interference-plus-noise ratio (SINR) or rate requirements, which have to be carefully

chosen based on full knowledge of all channel and interference coefficients [8] in order to let all

distributed users be able to achieve their targets. In this section, we modify the conventional dis-

tributed water-filling algorithm such that it is suitable for cross-layer resource allocation where

target rates are not pre-fixed, and there is both a total power constraint on each user as well as a

rate constraint on each subcarrier due to the limited modulation alphabet size.

The distributed power control algorithms work in an iterative way. Each user updates

its subcarrier and power profile in every iteration based on the latest local measured information

such as interference-plus-noise power level on each subcarrier. Assume the total number of

subcarriers is K, and Ki is the set of subcarriers considered to be available to user-pair i after

the sensing interval. The achievable bit rate of user-pair i on the k-th subcarrier is given by

r
(k)
i = log2

1 +
h

(k)
ii p

(k)
i

Γ
(k)
i

(
I

(k)
i +N

(k)
i

)
 (7.10)

where h(k)
ii , I(k)

i , and N (k)
i are the associated channel gain, interference power and noise power,

respectively. Γ
(k)
i is the SNR-gap of user-pair i on the k-th subcarrier defining the gap between
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the achievable rate and the channel capacity, which depends on the symbol error rate (SER)

requirement and modulation technique used [27]. For example, if MQAM is used as in this

paper, the SNR-gap can be defined as follows [15]:

Γ
(k)
i =

1

3

[
Q−1

(
SER

(k)
i

4

)]2

(7.11)

where Q(·) is the Gaussian tail function.

Let us define ν(k)
i as the indicator of the channel quality of the k-th subcarrier of user-

pair i:

ν
(k)
i =

h
(k)
ii

Γ
(k)
i

(
I

(k)
i +N

(k)
i

) (7.12)

Denote the target rate of user-pair i and the rate constraint on each subcarrier as rtarget
i and

rmax, respectively. Then each transmitter solves the following optimization problem based on

its local information, which is, for user-pair i, the available subcarrier set Ki and channel quality

indicator ν(k)
i :

min
p
(k)
i ,k∈Ki

∑
k∈Ki

p
(k)
i

subject to: rtarget
i =

K∑
k=1

r
(k)
i ;

r
(k)
i = log2

(
1 + ν

(k)
i p

(k)
i

)
,∀k ∈ Ki;

r
(k)
i 6 rmax, ∀k ∈ Ki;∑
k∈Ki

p
(k)
i 6 p

max
i

(7.13)

The solution to the above problem is the well-known water-filling solution with rate con-

straints [28], where the effective interference-plus-noise power on each subcarrier is 1

ν
(k)
i

,∀k ∈
Ki. An example is illustrated in Fig. 7.3. The water level is indicated by λ, which is chosen

such that the target rate can be achieved while the power constraints are satisfied. Subcarrier 2 is

saturated, i.e., it reaches its maximum supported bit rate due to the bits-per-symbol limit of the

modulation scheme. Subcarriers 7 and 8 are not utilized by this user since the interference-plus-

noise power exceeds the water level.

For user-pair i, denote the set of all saturated subcarriers as Si, and the set of all utilized

subcarriers that are not saturated asNi. Note that both sets are subsets of the available subcarrier

set of user-pair i, i.e., Si ⊆ Ki and Ni ⊆ Ki. For any saturated subcarrier k ∈ Si, since it

reaches its maximum supported rate, i.e, rmax = r
(k)
i = log2

(
1 + ν

(k)
i p

(k)
i

)
, the signal power

p
(k)
i can be computed as

p
(k)
i =

1

νi

(
2r

max−1
)

(7.14)
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Figure 7.2: Transmission time-frame structure.

Figure 7.3: An example of water-filling solution for 8 subcarriers.
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Algorithm 7.1 ADWF Algorithm
FOR n = 1 : number of iterations

1) Receiver of user-pair i estimates the channel quality ν(k)
i , ∀k ∈ Ki, for every

available subcarrier and feeds back this information to its transmitter.
2) Transmitter of user-pair i calculates the power level p(k)

i for every subcarrier
k ∈ Ki, as in (7.13).

3) If the transmit power exceeds the power constraint, i.e.,
∑
k∈Ki

p
(k)
i > pmax

i , reduce

the water level λi such that
∑
k∈Ki

p
(k)
i = pmax

i .

4) Begin transmitting training sequence with updated power profile
{p(k)
i }.

END

For the unsaturated subcarriers k /∈ Si, the signal power is found by water-filling [28]

p
(k)
i =

(
λi −

1

ν
(k)
i

)+

(7.15)

where (x)+ denotes max(x, 0).

The solution can be written as follows:

p
(k)
i =


λi − 1

ν
(k)
i

for k ∈ Ni
1
νi

(
2r

max−1
)

for k ∈ Si
0 otherwise

(7.16)

with the water level λi chosen to satisfy the target rate rtarget
i .

The proposed ADWF algorithm for spectrum management and power control is de-

scribed in Algorithm 7.1 . Each user-pair employs ADWF simultaneously, such that in each

iteration, they update their spectrum and power allocation and transmit training sequences at

their target rates in synchronized iteration time slots. We assume that the time-slot synchroniza-

tion offsets between different user-pairs are much smaller than the length of an iteration time

slot, so they do not affect the estimation of interference-plus-noise power at the receiver side [7].

At the end of each iteration time slot, all transmitters update their spectrum and power profile

according to the interference-plus-noise power information estimated and fed back from their re-

ceivers. However, such information can be outdated in the next iteration since other transmitters

probably also change their transmission spectrum and power profile, so the actual interference

at receivers would differ from the last iteration, and the target rates might no longer be reached

if the interference power increases.
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Now, the question is whether every user-pair is able to converge to their target rates while

satisfying the rate and power constraints. Sufficient conditions were found in [9,10], but finding

the necessary conditions is still an open problem. Even the sufficient conditions are based on

global information, which is not available to any user in the distributed ad-hoc network. So,

distributed users will not know whether their target rates are achievable until they finish the fixed

number of iterations. At the end of the last iteration of the ADWF algorithm, if the SINR of the

received training sequence is larger than or equal to the minimum SINR required for the allowed

bit error rate (BER), the user-pair achieves its target rate; otherwise, it will broadcast a distress

signal [7] to inform others that not all user-pairs have reached their target rates. Then, some

or all of the users would reduce their target or temporarily stop transmission according to the

cross-layer resource allocation algorithm that will be discussed in the next section.

7.3.3 Distributed Cross-layer Resource Allocation Algorithm

As illustrated by the flowchart in Fig. 7.4, we propose a distributed cross-layer resource

allocation algorithm that aims to maximize the minimum PSNR among all user-pairs. We define

µ0 to be a PSNR value below which the video quality is not acceptable. Each user-pair sets the

initial target PSNR to µ0, which is taken to be 25 dB in our simulation in Section 7.4.

With the inverse function of the Q-R model in (7.5), the target PSNR of user-pair i is

mapped into data rate rtarget
i that will be used as the target rate in the ADWF algorithm. After

each user-pair individually employs the ADWF algorithm for the same number of iterations, if

all user-pairs converge to their target rates, i.e., no distress signal is detected, they will increase

their target PSNR by ∆µ and repeat the outer loop until at least one user cannot achieve its target

rate and broadcasts a distress signal. Then every user-pair employs the previously converged-to

spectrum/power profile and video coding parameter (i.e., target PSNR) to begin video trans-

mission. It is worth pointing out that, for user-pairs whose PSNRs at zero rate are larger than

the initial target PSNR µ0 (which may occur for very low motion scenes), they will not start

transmission until the target PSNR rises above their PSNRs at zero rate.

When there are too many users competing for the limited system resource so that they

cannot even converge at the end of the first outer loop, i.e., some user-pairs are not able to achieve

target rates after the fixed number of ADWF iterations, each user-pair i will continue the ADWF

algorithm for an additional ∆ni iterations before turning off until the end of the current time-

frame. The parameter ∆ni is a function of the video quality at zero rate, given by Qi(0) in (7.5).

Note that for the video decoder, if there is no incoming data, it will hold the whole or part of the
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Figure 7.4: Flowchart of distributed cross-layer resource allocation algorithm.
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last successfully decoded video frame as the corresponding new one that is missed due to the

temporary transmission stop of its transmitter. Hence, the smaller that Qi(0) is, the worse the

decoded video quality will be if the transmitter turns off. So, we define ∆ni as follows:

∆ni =
⌊
α (µ0 −Qi(0))+⌋ (7.17)

where α > 0, and b·c denotes the integer part of its argument. Note that this function is decreas-

ing in its argument, capturing the intuition that the smaller that user-pair i’s PSNR is at zero rate

(i.e., the smaller the Qi(0) is), the longer user-pair i should continue ADWF iterations before

turning off until the end of the current time-frame. For user-pairs which have turned off for more

than one time-frame, their PSNR at zero rate is calculated by comparing the last transmitted

video frame and the current one. Generally, if a user has not transmitted for a long time, that

user’s PSNR at zero rate will be small because the video contents will tend to continue diverging

away from the last transmitted frame. Therefore, that user would continue the ADWF iterations

and attempt to converge for a longer time before being required to turn off, as defined in (7.17).

If one user has stopped transmission for a very long time, its PSNR at zero rate would probably

be the smallest among all users such that it could still be on while others have turned off; there-

fore, it would have the opportunity to transmit in the new time-frame. In other words, no user

would be kept from transmission forever.

By using the additional number of iterations defined in (7.17) to govern when to turn

off, the user-pair with the largest PSNR at zero rate, i.e., user-pair j = arg max
i:Qi(0)<µ0

Qi(0),

will be the first to turn off its transmission until the end of the current time-frame, while the

other active user-pairs continue the ADWF iterations and attempt to reach convergence. If they

still cannot converge, the user-pair with the second largest PSNR at zero rate would turn itself

off. This procedure continues until all active user-pairs are able to reach their target rate. Thus,

by using the proposed distributed cross-layer resource allocation algorithm, each user-pair can

independently adjust its spectrum usage and power level, and perform distributed video coding

rate control with only its local SINR measurements, and therefore, the video distortion of the

worst-case user is improved.

This algorithm could experience a highly stressful situation if one user-pair has a very

poor channel, for example, with the transmitter located very far from the receiver, and the user-

pair also has unusually complex video so their video contents require high data rate to reach even

minimally acceptable quality. In such a situation, this user could take most of the resources and

force many other users to have very low quality for protracted periods of time. The possibility

of this type of outcome is a result of our goal of helping the quality of the worst-case user.
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Although it is not within the scope of this paper, one could avoid this type of outcome by partially

abandoning the goal of helping the worst-case user, forcing certain very unfavorable users to

back off for a while and give other users an opportunity to transmit.

7.4 Simulation Results

The simulations are set up as follows. The distributed network has its users randomly

located in an area of size 500×500 m2. Each subcarrier experiences independent, flat Rayleigh

fading. The processing gain for the multicarrier DS-CDMA system is 64. The thermal noise

power density of each carrier is -145 dBm/Hz, while the maximum transmit power of each user

is set to be 100 mW [26]. For simplicity, the number of subcarriers available to each cognitive

user is assumed to be the same, and every available subcarrier has the same bandwidth. The

distributed water-filling algorithm generally converges in a small number of iterations when the

target rates are achievable [10]. Based upon the results of many runs of the simulation, we chose

the fixed number of iterations of the ADWF algorithm to be 10. The parameter α in (7.17) is

taken to be 10 as well. The maximum supported data per subcarrier is usually smaller than the

preferred data rate of most users, thus a user-pair typically employs multiple subcarriers for its

transmission. MQAM is used here, and the number of bits that can be transmitted by user-pair l

over subcarrier k is [15]

b
(k)
l = min

{
bmax,

⌈
log2

(
1 +

ζ
(k)
l

Γ
(k)
l

)⌉}
(7.18)

where bmax is determined by the maximum allowable signal constellation which is set to be 7;

ζ
(k)
l denotes the output SINR for the k-th subcarrier of user-pair l, dxe denotes the minimum

integer larger than or equal to x, and Γ
(k)
l is the SNR-gap defined in (7.11).

The video sequences used for generating the R-D curves were taken from travel doc-

umentaries at a resolution of 352×240 pixels (SIF) and at 30 frames per second. These video

sequences contained various types of scenes, including high motion and low motion scenes. For

each group of pictures (GOP), one R-D curve, i.e., one set of the R-D model coefficients D0,

R0, and θ in (7.3), is generated by curve-fitting with the unconstrained nonlinear minimization

approach [23]. The GOP size is 15 frames, and the frames inside are encoded using H.264 rate

control. There are 60 sequences, and each sequence is 50 seconds in length. The ranges of video

quality of R-D curves are within 20 to 40 dB in terms of PSNR. In the simulation, every user-pair

randomly picks one video sequence to generate its R-D curves and the maximum data rate that

each user-pair can require is 400kbps.
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We compare the proposed cross-layer resource allocation algorithm with two non-cross-

layer allocation algorithms. For optimization of the resource allocation using only application

layer information, each user is randomly allocated the same number of subcarriers, and is not

allowed to switch to other subcarriers or add subcarriers. Then, every user performs the ADWF

algorithm within their assigned subcarriers according to the R-D curves of their video streams

similar to the cross-layer algorithm. The difference between the application layer optimization

and the proposed cross-layer algorithm is that in application layer optimization users are not

allowed to change the number of allocated subcarriers or switch to other unassigned subcarriers.

For optimization using only physical layer information, each user is allowed to use any subset

of subcarriers, but without the knowledge of the video contents, i.e., the R-D curves. Each user

starts with a pre-defined target transmission rate which is usually set to be the highest rate needed

for typical video streaming. Then, according to the initial target rate and the CSIs of subcarriers,

each user selects a subset of subcarrier and performs the distributed power allocation algorithm

in [7] to obtain an achievable transmission rate which is then mapped into PSNR value for

comparison.

In Fig. 7.5, we compare the PSNR of the worst-case user-pair for 16 and 32 available

subcarriers. As expected, the worst-case PSNR decreases as the number of user-pairs increases,

because more users are competing for the limited resources. For the application layer optimiza-

tion algorithm, each user is randomly assigned the same number of subcarriers which is set to be

4 here. For the physical layer optimization algorithm, each user’s initial target rate is 400kbps.

It is evident from the simulation results that the video quality of the worst-case user is greatly

improved with our proposed cross-layer resource allocation algorithm. There is about a 3 to 6

dB gain in terms of PSNR. Note that the PSNR values from the simulation highly depend on

the transmitted video contents. The gain of the cross-layer algorithm may vary according to

different types of video content. So during the simulation, we randomly pick the video content

for each user from the test videos and repeat this procedure 10000 times in order to average the

differences in PSNR caused by different videos.

An interesting observation is that, when the number of user-pairs is relatively small, the

physical layer optimization performs better than the application layer one, but the application

layer optimization outperforms the physical layer one when the number of user-pairs is large. In

order to explain this, we first show a typical Q-R curve in Fig. 7.6. In this Q-R curve, the PSNR

is about 22 dB when the rate is zero. As discussed in Section II-B, the video decoder at the

receiver side will hold over the previous video frame when transmission stops temporally. So if
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Figure 7.5: Worst-case distortion comparison for 16 and 32 available subcarriers with various

number of active user-pairs.
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Figure 7.6: Video quality versus coding bit rate.

the video content were a more static scene, the PSNR by holding the previous video frame could

still be relatively high. In a typical R-D curve, we can see that in the low-rate region, with even a

slight increase of rate, the PSNR can have a significant improvement; however, for the high rate

region, the increase of rate does not have as much impact on video quality. When there are fewer

users in the cognitive radio ad-hoc network, each user can achieve relatively high transmission

data rate (i.e., function on the relatively flat part of the Q-R curve), so the knowledge of video

contents (Q-R information) is not of much value for improving the PSNR of the worst-case user,

while joint spectrum and power allocation can significantly increase the data rate. However,

when the number of user-pairs is large, each user can only transmit with a relatively low data

rate, and the Q-R information is of great importance, because users with steeper curves deserve

more resources, since even a small increase in data rate can significantly improve the PSNR.

In Fig. 7.7, the average turned-off time percentage during the total transmission period

using the proposed cross-layer algorithm for 16 and 32 available subcarriers are plotted. As

expected, the least turned-off user never turns off for the range of active user-pairs shown. We

can see that when the number of active user-pairs is relatively small compared to the available

number of available subcarriers, all the users can transmit almost all the time without having to

temporally turn off. The user-pair that is forced to turn off most often only has to turn off about
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Figure 7.7: Percentage of turned-off time. Note that the least turned-off user never turns off for

the range of active user-pairs shown here.
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0.1% time, i.e., only one video frame out of a thousand frames. However, as the number of

active user-pairs increases, some users tend to temporally turn off more often than others. This

is because these users have more static videos than do the others, so when these users temporally

turn off their transmission, they still have relatively good PSNRs, and so other users can have

better channel quality and thus achieve higher throughput and better PSNRs.

7.5 Conclusion

In this paper, we presented a cognitive radio based cross-layer resource allocation frame-

work for video streaming over distributed networks using multicarrier DS-CDMA modulation

with a frequency selective fading channel. In particular, we considered multiple video streams in

the distributed network and performed joint resource allocation over both the application layer

and the physical layer. The objective is to minimize the maximum distortion of all transmitted

video streams. Our simulation results showed a significant performance gain over schemes that

allocate subcarriers and video rates individually, improving the video quality of the worst-case

user by 3 to 6 dB in PSNR.
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