
UC Davis
UC Davis Previously Published Works

Title
A Static Formulation of the History Bound Problem

Permalink
https://escholarship.org/uc/item/3741t064

Author
Matsieva, Julia

Publication Date
2014-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3741t064
https://escholarship.org
http://www.cdlib.org/

A Static Formulation of the History Bound Problem

By

JULIA MATSIEVA
B.S. (Harvey Mudd College) 2011

THESIS

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Daniel M. Gusfield, Chair

Todd J. Green

Zhendong Su

Committee in Charge

2014

i

Contents

Abstract iii

1. Introduction 1

1.1. Recombination Graphs and Reticulation Networks 2

1.2. Lower Bounds on Numbers of Recombination Nodes 4

1.3. Research Contribution 5

1.4. Organization 6

2. Definitions 7

2.1. Reticulation Networks and Clusters 7

2.2. The History Bound 10

2.3. ST-Set Sequences 11

3. Bound Equivalence 14

4. A Static Definition of the History Bound 20

4.1. Network.Build 20

4.2. Correctness 27

4.3. Minimizing Reticulations 29

5. A DP Algorithm for Constructing Ret-Minimum Networks 35

6. Conclusion 39

6.1. Future work 39

Appendix A. Source of Network.Build 43

References 52

ii

Abstract

Biologists working with DNA or character data are often interested in modeling the

evolution of biological change present in their samples. The biological processes that create

diversity are traditionally represented as branching events in the lineages of species. However,

branching alone is insufficient to model all real-world data, hence there is an interest in

constructing phylogenetic networks, or rooted DAGs, that simultaneously display multiple

evolutionary trees or sometimes model biological processes, such as recombination. We often

require that these networks fulfill an optimization criteria, such as having a minimum number

of recombination or reticulation nodes.

In this work, we prove that the History Bound, a value previously computed as a

lower bound on the minimum number of recombinations in a set of DNA data, is such an

optimization criterion on phylogenetic networks; specifically, it is the minimum number of

reticulation nodes in a particular type of network. This was stated earlier without a proof by

other researchers. We also give an algorithm for constructing the network with this number

of nodes and show that a network of this type with fewer reticulation nodes cannot exist.

iii

1. Introduction

Many types of biological data can be intuitively represented by labeled, directed trees

that model the diversity observed in a set of specimens, or taxa, with a sequence of branching

events, in a way that is consistent with our current understanding of biological change. More

specifically, phylogenetic trees are used to model the string of mutations that cause a single

ancestor DNA sequence to change incrementally to finally generate an input set of observed

DNA sequences. It must be possible to label internal edges in the tree with the index of the

character at which mutations occur, such that the resulting DNA sequences represent the

input data. More generally, phylogenetic trees can be used to model the evolution history

of any set of characters, or observed traits and sequences, in a collection of taxa. The

inputs to the problem of constructing a phylogenetic tree are several subsets of the taxa,

each consisting of those taxa that share a certain trait. These subsets, called clusters or

clades, must be the leaf descendants of some edge in the phylogenetic tree that represents

the data. On the surface, the sequence and cluster problems appear quite similar, and indeed

it is known that they are almost equivalent in the instances where a solution exists. These

problems are formally defined in Section 2.1.

However, many real-world data sets cannot be represented by a tree, i.e. there is

no perfect phylogeny, or tree where each character is allowed to mutate only once, that

represents the data (cf. Section 2.1). This is because the perfect phylogeny model is not

general enough to represent all possible data sets. Indeed, a known result in the literature

gives a narrow set of criteria that a set of data must exhibit for a solution to exist [2]. To

handle these cases, the requirement that the data be placed on a tree is relaxed to allow

joining events, in addition to branching, as a mechanism for increasing diversity, which

1

results in the creation of phylogenetic networks. In a phylogenetic network, two lineages

are allowed to combine to form a lineage that could not be obtained by branching events

alone. With no further restrictions, the problem of finding a network to represent a set of

data can be computed in polynomial time; however, our current understanding of biology

suggests that these joining, or reticulation, events occur relatively infrequently in nature.

Thus, we often seek to construct plausible networks that have a minimum number of nodes

with in-degree > 1, at which point the problems become computationally hard.

The creation of such networks is not without justification, as many biological mecha-

nisms exhibit this sort of merging behavior. In the DNA setting, the merging of lineages is

consistent with the biological process of recombination in meiosis, or the creation of gametes,

in which two corresponding, but not necessarily identical, chromosomal sequences recombine

to create a new sequence consisting of alternating segments. In the general character setting,

the converging branches can indicate the point of independent evolution of similar observed

traits in different species or the creation of hybrid species. Due to the differences in bio-

logical models and the additional complexity involved in the development of networks, the

objectives, terminology and techniques involved in these problems differ in subtle but often

significant ways. We discuss these differences in more detail in the following section.

1.1. Recombination Graphs and Reticulation Networks

An ancestral recombination graph, or ARG, is a particular kind of network constructed

to represent the derivation of a set of DNA sequences. ARGs are created from a collection

of input sequences over a binary alphabet representing single nucleotide polymorphisms

(SNPs). This set is compactly represented in a binary matrix, with each row representing

the DNA sequence of each taxon. The model assumes that the input set of sequences was

2

generated from a single ancestral sequence; thus, the goal is to generate a rooted DAG

with the ancestral sequence (usually all zero) at the root, whose leaves are labeled with the

input sequences that abides by the following rules: Each character in the ARG is allowed

to mutate exactly once at each site, or index, and a mutation is represented in the graph

by a labeled edge. Typically such an edge has a parent node with two outgoing edges. The

DNA sequences are also allowed to recombine, resulting in nodes of in-degree two. Under

the single-crossover model, which will be the default assumption for the rest of this thesis,

the resulting DNA sequence is only allowed to take a prefix from one sequence and a suffix

from the other. It is also possible to construct ARGs using multiple-crossover; under this

assumption, intervals of the parent sequences can be interwoven multiple times. (Note that,

under both assumptions, ARGs have recombination nodes with in-degree 2.) It is especially

desirable to construct a minARG, or an ARG with the fewest number of recombination

nodes, for a given set of data. This problem is known to be NP-hard, so research has focused

on computing and evaluating lower bounds on Rmin, the number of recombination nodes in

a minARG.

In contrast, reticulation networks (also sometimes referred to as hybridization or phy-

logenetic networks) do not usually model actual sequences. Rather, the input is a set of

clusters (also called clades), which are subsets of the taxa, although sets of trees or triplets

are also used in other problem settings, as summarized by van Iersel and Kelk [7]. The ob-

jective is to construct a network such that the taxa in each cluster are the leaf descendants

of some tree topologically embedded in the network, and that the network has the fewest

number of reticulation events, which will be formally defined in Section 2.1. An instance of

the reticulation network problem, and its conversion to a matrix is shown in Figure 1. One

3

important difference from the ARG scenario, whose inputs are binary sequences, meaning

the sites have a fixed ordering, is that the inputs to this problem are usually unordered.

However, it is easy to see that a set of clusters can be converted into an input matrix by

imposing an arbitrary ordering on the clusters and using 1’s to denote membership in a

cluster and 0’s to denote exclusion. Thus, an ARG for a set of DNA sequences will be a

valid reticulation network for the underlying clusters, but it is likely to have reticulation

nodes that are only necessary due to the choice of ordering. Reticulation networks also do

not place any restrictions on the in-degrees of the reticulation nodes in the network.

1.2. Lower Bounds on Numbers of Recombination Nodes

As mentioned in the previous section, numerous methods have been developed for

computing lower bounds on Rmin, such as the Haplotype Bound, the Forest Bound, etc.

[2]. These methods all operate on the input matrix of binary SNP sequences, but generally

have a combinatorial interpretation. For example, the Forest bound is characterized as the

solution to the Minimum Perfect Phylogenetic Forest (MPPF) Problem, which is defined

as the smallest partition of the input matrix such into subsets with perfect phylogenies [2].

Unlike the Forest bound, the History Bound was originally formulated as the output of an

algorithm [6], and did not have a static interpretation [2]. The algorithm that computes a

candidate for the History Bound works on the input matrix by first successively removing

columns that contain at most a single 1 and collapsing identical rows until neither operation is

possible. Then, the algorithm removes a row arbitrarily, and restarts the previous procedure

(see Algorithm 1). The resulting candidate for the History Bound is the number of times

an arbitrary row removal occurs; the History Bound was originally defined as the minimum

over all the candidate values [6].

4

As given, the algorithm to compute the History Bound runs in time that is super-

exponential in the size of the input, but a dynamic programming version speeds up the

computation time to exponential [1]. However, we also know that the problem of computing

the History Bound is NP-hard [1], so the development of an asymptotically more efficient

algorithm is not expected. Nevertheless, tools like integer linear programming are repeatedly

shown to be efficient in practice for NP-hard problems, so a static formulation of the History

Bound as an optimization problem is desirable for use on real-life biological data.

1.3. Research Contribution

In Kelk et al. [4], the authors develop a theory to describe and analyze structures in

cluster input data. Their analysis sheds some light on the underlying meaning of the number

computed by the History Bound algorithm. In fact, they claim that the construction given

in their work is equivalent to the algorithm that computes the History Bound. The main

contribution of this thesis is the detailed proof that this is indeed the case.

The main contribution of this thesis is a proof of an orally stated conjecture by the

same authors that the History Bound is the minimum number of reticulation nodes in a

reticulation network that represents the clusters encoded by an input matrix [5]. In this

thesis, we prove this conjecture by using the equivalence from Kelk et al. [4] to give an

algorithm that constructs the corresponding reticulation network when given as input the

intermediate values computed by the history bound algorithm. We then show this network

to have the fewest number of reticulation nodes possible when run on the intermediate

values of the minimum run of the candidate algorithm. This result naturally extends to

an exponential-time dynamic programming algorithm for constructing the network with the

minimum number of reticulation nodes.

5

1.4. Organization

Section 2 gives formal definitions of the relevant mathematical objects involved in the

study of phylogenetic networks, and outlines the relevant concepts developed in [4]. These

are then used in Section 3 to explicitly prove a claim from [4], and as in Section 4 to prove

the main conjecture outlined in Section 1.3. We give the dynamic programming solution for

constructing reticulation networks in Section 5. Conclusion and future work are in Section

6. The Python source code for the algorithm from Section 4 is given in the Appendix.

6

2. Definitions

Section 2.1 discusses standard definitions and relevant theorems from the phylogenetic

networks literature that are needed in this thesis. In Section 2.2, we describe the algorithm

that defines the History bound. In Section 2.3, we recall definitions from Kelk et al. [4],

which we will use in later sections to prove the main results of this thesis.

2.1. Reticulation Networks and Clusters

The motivating work for this thesis focuses on the development of reticulation networks

in the cluster setting, so we start with the general concepts related to that problem. A

reticulation network on a finite set X of taxa (specimens described by the data) is a rooted,

connected DAG with no nodes having both in-degree and out-degree 1, whose leaves are

the elements of X. A node of in-degree of 2 or greater is a reticulation node and incoming

edges into such a node are called reticulation edges. This branch of the literature is often

concerned with counting reticulation “events”, which is why the reticulation number (also

sometimes called hybridization number) of a network N = (V,E) is defined in [4] as

r(N) =
∑

v∈V :din(v)>0

(din(v)− 1) = |E| − |V |+ 1

where din(v) denotes the in-degree of a node v. However, throughout this thesis, we will

be more concerned with counting the number of reticulation nodes in a network N , with no

regard for the degree of each reticulation node.

A cluster C ⊆ X is a subset of the taxa. We say that two clusters C1 and C2 are

compatible if either C1 ⊆ C2, C2 ⊆ C1 or C1 ∩ C2 = ∅, and incompatible otherwise. A

collection C of clusters is compatible if all the clusters in C are pairwise compatible. Then,

7

according to the matrix equivalence mentioned in Section 1.1: a collection C of clusters can

be converted to a matrix M by choosing an arbitrary ordering on X and C, filling the matrix

by placing 1 into the row corresponding to taxon x and the column corresponding to cluster

C, if x ∈ C, and placing 0 there otherwise. Thus, in the matrix setting, when the ancestral

sequence is the all-zero sequence, two columns C1, C2 are incompatible if the set of pairs

constructed by pairing column entries in corresponding rows contains all of the pairs (1, 0),

(0, 1) and (1, 1).

The concept of compatibility relates directly to the perfect phylogeny problem, which

is the problem of finding a tree that represents the data encoded in a binary matrix M . In

order to represent M , a tree T must have the properties that all of its leaves correspond

to the rows of M , each column of M labels exactly one edge of T , every interior edge of

T is labeled by at least one column of M , and for each leaf x in T , the edge labels on the

path from the root to x must correspond to those columns that have state 1 in M [2]. This

definition assumes that T is constructed with an all-zero ancestral sequence, which we will

assume throughout this thesis. The conditions for when a solution to the problem exists

are well-understood; the Perfect Phylogeny theorem states that the problem does not have

a solution, that is, a tree that represents the data, in the presence of the so-called Three

Gametes condition, which occurs when there is at least one pair of incompatible columns

in M , and recombination must be used to generate the data [2]. Equivalently, if a set of

clusters can be represented by a tree, then all of the clusters must be compatible. The Perfect

Phylogeny Theorem also states the converse: if a no pair of columns of M is incompatible,

then there does exist a perfect phylogeny that represents the data.

8

(a) A set of subsets of X. C5 is a single-
ton cluster because it only contains one
taxon. Such clusters, and their corre-
sponding columns, are sometimes called
uninformative.

C =

C1 1 2 3
C2 1 3
C3 1 4 5
C4 3 4 5
C5 5

(b) Matrix equivalent of cluster set C. Each row of M
represents a taxon of X and each column represents a
cluster in C. A entry with value 1 in row x of column
i correspond to membership of x in cluster Ci.

M =

1 1 1 0 0
1 0 1 0 0
1 0 0 1 1
0 0 1 1 1
0 0 0 0 1

Figure 1. An example set of clusters C on the taxon set X = {1, 2, 3, 4, 5} and its corresponding matrix
representation.

In contrast, the input to the reticulation network problem is a set X of taxa and a

collection C of clusters, where each C ∈ C is a proper subset of X. A network N represents

a cluster C in the hardwired sense if there exists a tree edge (u, v) such that the set of leaf

descendants of v is exactly equal to C. N represents a cluster C in the softwired sense

if N contains an edge e such that C ∈ C(e), where C(e) is formed as follows: For each

reticulation node, choose one incoming edge to remain on and turn all others “off”; then,

for each set of choices, a cluster is in C(e) if it is exactly equal to the set of taxa accessible

from e without following any edges that have been turned off [3]. The operation of turning

on one reticulation edge and turning all others off is referred to as the construction of a

switching of N in [4]. In this thesis, we will say that a network N represents a collection

of clusters C if it represents each C ∈ C in the softwired sense, unless otherwise specified.

These networks are usually subject to some optimality criterion, such as the minimization of

reticulation number. In this thesis, we will often seek networks with the minimum number

of reticulation nodes, so we define a network N to be ret-minimum for a set C of clusters

if N has the fewest number of reticulation nodes over all networks that represent C (in the

softwired sense).

9

Figure 2. A reticulation network that represents the cluster set C in the softwired sense from the example
in Figure 1. It has 2 reticulation nodes and reticulation number 3.

2.2. The History Bound

The algorithm that defines the History Bound was first given by Myers and Griffiths

in [6]. This algorithm operates on a binary input matrix M and computes a lower bound

on Rmin, the number of recombination events necessary to represent M with an ARG. We

give the version of the algorithm as explained in [2], where it is split into two procedures,

one for generating a candidate for the History Bound, which is shown as Algorithm 1, and

another procedure (referred to as CHB-Branch) for selecting the minimum value over all

the candidates. The first algorithm reduces the matrix by iterating the following procedure:

remove columns with at most one 1 entry and collapse identical rows together until neither

is possible, then choose an arbitrary row to delete. The algorithm applies this procedure

repeatedly until the matrix is empty. The number of row deletions shown on line 8 of

Algorithm 1 is the candidate for the History Bound; the smallest candidate over all possible

executions of CHB is defined as the History Bound.

10

Algorithm 1: CHB algorithm that computes a candidate for the History Bound as
given in [2].

Input: A binary matrix M
Output: A candidate value H for the History Bound

1 set M̃ = M

2 set chb = 0

3 while M̃ is not empty do
4 while possible do

5 Dr: collapse together any duplicate rows of M̃

6 Dc: remove any columns with at most 1 entry from M̃

7 end

8 Dt: remove an arbitrary row r from M̃

9 H = H + 1

10 end

11 return H

Since the binary matrix input to the algorithm can be thought of as representing a

set of clusters C, we can describe how the algorithm would operate directly on a set of

clusters. The column removal operation corresponds to the removal of singleton or empty

clusters from C, while the row removal can be thought of as collapsing two taxa with identical

cluster memberships into a single meta-taxon. Furthermore, the History Bound algorithm

will produce the same result for any ordering of the rows and columns of the input matrix,

because the value is computed as the minimum over all possible executions of CHB. This

property suggests a closer relationship of the History Bound to the clusters represented by

M rather than the specific binary sequences that M contains.

2.3. ST-Set Sequences

Kelk et al. [4] define a central concept called an ST-set, which is a subset of the taxa

with some special, “treelike” properties. Informally, an ST-set of C can be thought of as a

union of some compatible clusters of C or the compatible subsets of clusters.

11

Given a subset S of taxa, let C \ S denote the result of removing S from each cluster

C ∈ C, and let C | S denote the restriction of C to S (or C \ (X \ S)). Formally, S ⊆ X is

an ST-set with respect to a collection C of clusters if

(1) S is compatible with C.

(2) all pairs of clusters C1, C2 ∈ C | S are compatible.

An ST-set S is maximal if there is no other ST-set S ′ such that S (S ′. It is shown in [4]

that the maximal ST-sets of a collection of clusters can be computed in time polynomial in

the size of the input.

A sequence S = {S1, S2, . . . , Sp} is an ST-set sequence if each Si ∈ S is an ST-set of

C̃ = C \ (S1 ∪ S2 ∪ . . . ∪ Si−1); S is a maximal ST-set sequence if each Si is a maximal

ST-set of C̃. S is a maximal ST-set tree sequence, if all the clusters in I = C \ (S1 ∪ . . .∪Sp)

are pairwise compatible. By the Perfect Phylogeny Theorem, this means that all the taxa

in I can be represented by a tree. Kelk et al. then define the MST lower bound on the

1

3

2

4

5

Figure 3. The clusters set C from Figure 1 has only one non-singleton, non-trivial maximal ST-set {4, 5}.
The other maximal ST-sets are {1}, {2} and {3}; neither of them can be combined together into a set that
has a non-trivial intersection with all clusters in C. They are described in [4] as “islands of laminarity”. We
can see that 4 and 5 can be grouped together with no intersections.

12

reticulation number r(N) of a set of clusters C as the length p of the shortest maximal ST-

set tree sequence that can be computed for C, and show that it is a true lower bound. In

Section 4, we show that this value is equal to the minimum number of reticulation nodes in

a reticulation network that represents C in the softwired sense.

13

3. Bound Equivalence

After defining the concepts of maximal ST-set tree sequences and the MST lower

bound, the length of the shortest maximal ST-set tree sequence, the authors of [4] make the

claim that these concepts can be used to elaborate on the History Bound. They write

We highlight that the phylogenetic network model described [here] is in a
strong sense identical to the recombination network model under the assump-
tion of an all-0 root, the infinite sites model and multiple crossover recombi-
nation. The computational lower bound described in Algorithm 3 of [18] is,
taking this equivalence into account, essentially identical to the MST lower
bound.

where Algorithm 3 references the original History Bound algorithm presented by Myers and

Griffiths [6]. This claim can be restated as follows:

Claim 3.1. Given a collection of clusters C, the minimum execution of the Candidate History

Bound algorithm is equal to the length of the shortest maximal ST-set tree sequence for C.

This claim was not explicitly stated in [4]. We prove it here by demonstrating that every

run of the Candidate History Bound algorithm generates, through its intermediate values, a

valid maximal ST-set tree sequence, and that every maximal ST-set sequence corresponds

to an execution of CHB.

Lemma 3.2. Let {r1, . . . , rp} be the sequence of rows that are deleted by an execution of

Algorithm 2. For each ri, let Ri denote the set of rows that were collapsed together with ri by

rule Dr during previous iterations of the algorithm. Let Si = Ri ∪ {ri}. Then, {S1, . . . , Sp}

is a maximal ST-set tree sequence of the cluster set encoded by M .

To make the proofs clearer, we slightly modify Algorithm 1 to save the relevant inter-

mediate states. The modified version is restated in Algorithm 2. When rule Dt selects row r

14

Algorithm 2: An equivalent formulation of CHB, which removes all collapsed rows

from M̃ at the same time as the corresponding row removal of ri.
Input: A binary matrix M
Output: A candidate value H for the History Bound

1 set M̃ = M ; set H = 0

2 set X ′ = rows(M)

3 set C ′ = cols(M)

4 while M̃ is not empty do
5 while possible do
6 if two unmarked rows ri and rj are identical and i < j then
7 Dr: mark X ′[rj] = ri
8 /* update rows found identical in previous iteratons to always be

marked with the lowest-index marker */

9 for all rows r such that X ′[r] == rj do
10 update the marker to X ′[r] = ri
11 end

12 end

13 if an unmarked column c contains only one 1 then Dc: mark C ′[c] = 1 ;

14 end

15 if C ′ and X ′ aren’t completely marked then

16 Dt: delete an arbitrary unmarked row r from M̃

17 delete all rows marked r in X ′ from M̃

18 delete all marked columns in C (now empty)

19 H = H + 1

20 end

21 end

22 return H

for deletion, we remove at that moment but not before, all the other rows that were labeled r

in previous iterations. However, it should be clear that the modified algorithm is equivalent

to the original, since all the rules still operate on the unmarked portion of the matrix M̃ ,

which is the same as having deleted those rows and columns immediately. The set of rows in

X ′ marked ri in Algorithm 2, when rule Dt executes, corresponds to Ri from the definition

in Lemma 3.2; therefore, we can see that after iteration i of Algorithm 2, the original matrix

M has been modified by the algorithm to encode the set of clusters C̃i = C \ (S1∪ . . .∪Si−1),

since all the members of set Si are removed at the end of iteration i. We use M̃i to denote

the state of the matrix after iteration i.

15

In order to prove Lemma 3.2, we must first establish that every set Si is a maximal ST-set

of C̃i, which means we must prove that:

(1) Si is compatible with C̃i, the set of clusters encoded by M̃i.

(2) any pair of clusters C1, C2 ⊂ Si in C̃ are pairwise compatible.

(3) there does not exist another element e in C̃i such that Si ∪ {e} is also an ST-set.

Proof. Suppose toward a contradiction that Si is not compatible with C̃i. This would imply

that there must exist some cluster C ∈ C̃i and at least three distinct elements x, y, z such that

x, z ∈ Si but x /∈ C, and y, z are in cluster C but y /∈ Si. Since, z and x are in Si they are

identical when ignoring marked columns. However, z is also a member of C, which cannot

be a marked column because it also contains another distinct unmarked element y. But then

x and z are not identical on unmarked columns. Therefore, in order for the algorithm to

place x and y into Si, x must agree on column C and so it must also be a member of C,

which contradicts the assumption that x /∈ C, so (1) holds.

Similarly, suppose that there are two incompatible clusters C1, C2 ∈ C̃i | Si, the restric-

tion of C̃i to Si. We know that all the elements in Si must have been found by Algorithm 2 to

be identical when ignoring marked columns; however, the assumed incompatibility of C1, C2

implies that there exist at least three elements x, y, z such that x, z ∈ C1 and x /∈ C2; and

y, z ∈ C2 and y /∈ C1. Neither column C1 nor C2 would have been marked by the algorithm

because they both contain two rows with 1 entries, so x and y are not identical with respect

to unmarked columns, so they would not have been placed in Si, a contradiction. Therefore

C1 and C2 must be compatible and (2) holds, so Si is an ST-set of C̃i.

Furthermore, Si is a maximal ST-set. Suppose that Si is not maximal, so there exists

an element e such that S ′i = Si ∪ {e} is also an ST-set of C̃i. If e was identical to ri with

16

respect to unmarked columns, then it would have had to be collapsted together with ri and

so would be in Si. So if e is not identical to ri when ri is removed, then either

(a) there exists a cluster C ∈ C̃i such that e ∈ C and ri /∈ C,

(b) or there exists a cluster C ∈ C̃i such that e /∈ C and ri ∈ C.

In case (a), in order for S ′i to still be compatible with Ci, cluster C must be a singleton

cluster that only contains e. Otherwise, if C contains some other element d /∈ S ′i then its

existence will give rise to the Three Gametes condition in C and S ′i, because ri ∈ S ′i but

not in C, d ∈ C but not in S ′i and e is in both. So if C is not a singleton cluster, then C

and S ′i are incompatible. But if C is a singleton cluster, then its column will be marked in

M̃i by rule Dc before ri is removed and so case (a) leads to a contradiction. In case (b),

since S ′i is assumed to be compatible with C, and ri ∈ C, this means that C ⊂ S ′i because

if C contained an element d /∈ S ′i, then the taxa ri, e and d would create the Three Gametes

condition in M̃i in sets C and Si. To see this, note that e is in S ′i but not in C, and d is in

C but not in S ′i and ri is in both, so S ′i and C would be incompatible. But if C ⊂ Si, then

C would be a column with a single 1 in row i of M̃i because, at that point, all of the taxa

in Si are collapsed together into ri. So C would have been marked before ri was removed, a

contradiction. So we conclude that there is no e 6= ri that can be added to Si and maintain

its ST-set properties and Si is maximal. Thus, property (3) holds as well.

In order to show that {S1, . . . , Sp}, as defined in the statement of Lemma 3.2, is a

maximal ST-set tree sequence, it remains to show that all the clusters in I = C\(S1∪. . .∪Sp)

are compatible. We know that after rp is deleted by rule Dt then the Dr and Dc operations

mark all remaining rows and columns in M̃ . Otherwise, it would be necessary to apply Dt

again and rp would not have been the last row the sequenece. All the clusters in I must

17

be compatible, because otherwise there would be two clusters C1, C2 ⊆ I with a non-trivial

intersection, and neither rules Dc and Dr could have applied again since neither cluster can

be a singleton and there are elements in these clusters whose memberships are not identical.

Therefore, {S1, . . . , Sp} is a maximal ST-set tree sequence of the clusters encoded by M . �

This implies that the History Bound, the minimum value produced by the CHB algo-

rith, is greater than or equal to the length of the shortest maximal ST-set sequence. But

there may exist ST-set sequences that do not have corresponding executions of CHB. In

order to prove Claim 3.1, we must also prove:

Lemma 3.3. For every maximal ST-set tree sequence S = {S1, . . . , Sp}, there exists an

execution of Algorithm 2 that removes row sequence {r1, . . . , rp} by rule Dt such that ri ∈ Si,

for i ∈ {1, . . . , p}.

Proof. For this proof, we refer to the version of CHB shown in Algorithm 2. Note that in

this version of the algorithm, when rule Dr combines two rows together, it leaves the row

with the smaller index in M unmarked (shown on line 6) and marks the row with the larger

index with the index of the smaller. Since rule Dt chooses rows arbitrarily, there exists an

execution of CHB that chooses a row r ∈ M̃i at iteration i, provided that r is not marked

or deleted at that point. Therefore, in order to show that there exists an execution of CHB

that chooses rows {r1, . . . , rp} with each ri ∈ Si, we need to show that the row of Si with the

lowest index in M is still present and unmarked in M̃i when rule Dt executes in Algorithm

2.

Let S = {S1, . . . , Sp} be a maximal ST-set tree sequence and suppose the row sequence

R = {r1, . . . , rj−1} is chosen for deletion by rule Dt in the first j−1 iterations of an execution

of Algorithm 2, such that each row ri ∈ R for all 1 ≤ i ≤ j − 1 is the row of Si with the

18

lowest index in M . We want to show that, before rule Dt executes on the jth iteration of

CHB, the row r in Sj with the lowest index in M is available in M̃j−1 to be chosen by for

deletion. Therefore, we must show that, right before rule Dt executes in iteration j of CHB,

row r is neither marked nor deleted in M̃j−1. Row r cannot be marked in Mj−1, since if it

were, it would be marked by CHB with a row r′ that has a lower index in M . However, this

means that all the elements of Sj would also be marked with r′, as that would imply that

r′ ∈ Sj has a lower index than r because CHB updates all the markers to the lowest index

(shown in lines 8-10). This contradicts the assumption that r has the lowest index in Sj,

so r cannot be marked in M̃j. Next, suppose that, at iteration j of Algorithm 2, row r is

not present in M̃j. This means that r was deleted in a previous iteration i of the algorithm.

However, we already inductively assumed that the algorithm removes each maximal ST-set

Si ∈ S at iteration i < j and, since Si is maximal, Si ∪ {r} cannot also be an ST-set of

C̃i. Furthermore, it is shown in [4] that the maximal ST-sets of C partition X, so r cannot

belong to both Si and Sj. Therefore, the row r in Sj with the lowest index, could not be

missing or marked in iteration j of Algorithm 2; hence, rj = r and the induction argument

is complete. This proves Lemma 3.3. �

Since we have proved Lemmas 3.2 and 3.3, every run of the CHB algorithm corresponds

to a maximal ST-set tree sequence and every maximal-ST-set corresponds to an execution

of CHB, it follows that an execution of CHB that produces the minimum value corresponds

to a shortest maximal ST-set tree sequence, so Claim 3.1 is proved.

19

4. A Static Definition of the History Bound

In this section, we will prove a conjecture [5] using the properties of maximal ST-set

tree sequences developed in [4].

Conjecture 4.1. Given a set of clusters C over a set of taxa X, the History Bound is the

minimum number of reticulation nodes that must be present in a network that represents C

in the softwired sense.

To prove this conjecture, we first give an algorithm that takes as input the set of clusters C

and a maximal ST-set tree sequence S = {S1, . . . , Sp} and constructs a reticulation network

N with at most p reticulation nodes that represents the clusters. We show that this algorithm

would produce a network with exactly p reticulation nodes when executed on a sequence S

of minimum length. We then show that there cannot exist a network with fewer reticulation

nodes than the length of shortest maximal ST-set tree sequence.

4.1. Network.Build

In this section, we describe the Network.Build algorithm, which will iteratively con-

struct a network to represent a set of input clusters, guided by an input maximal ST-set

tree sequence S of length p. At each iteration, Network.Build will insert an ST-set Si of

S into the network N , maintaining the invariant that, after each iteration, N represents

C̃i = C | (I ∪ Sp ∪ Sp−1 ∪ . . . ∪ Si). As mentioned in Section 2.1, network N represents a

cluster C in the softwired sense if some switching of N contains a tree edge whose set of

leaf descendants is exactly the set of taxa in C. Thus, it helps to introduce a cluster data

structure that, in addition to storing the subset of taxa of a cluster C ∈ C, will also keep

track of its tree edge in N and a set of off edges. When the set C.off edges is removed

20

from the network, the subtree of C.tree edge will form a tree and the leaf descendants of

C.tree edge will be exactly the set of taxa in C. The graph N − C.off edges might not

be a tree because some reticulation edges may not be on a path from C.tree edge to a leaf.

However, any reticulation nodes in the subtree of C.tree edge will have no other incoming

edges except the one from C.tree edge. Additionally, each cluster C will contain its origi-

nal taxa in the variable C.taxa, but it will also have a C.restrict to(S) procedure that

takes as input S ⊆ X and causes C to return C | S as its taxa when C participates in set

operations. The C.restriction procedure will output the most recent set S that C been

restricted to.

We will also assume that a data structure representing an empty graph is initialized

using graph, as shown on line 2 of Algorithm 3. A graph G is populated using procedures

G.add nodes which takes either a list or a single node as input, and G.add edge which

requires two node arguments. An edge can be removed from a graph G using G.remove edge.

The outer abstraction layer of Network.Build is shown as Algorithm 3. Since the

input S is a maximal ST-set tree sequence, we know that after we perform the restriction to

I on line 6, all the clusters in C̃ will be pairwise compatible. So C̃ can be represented by a tree,

built by the well-known algorithm shown in the pseudocode as Tree.Build in Algorithm 4.

It is equivalent to the solution to the Perfect Phylogeny problem in Section 2.1.2 of [2]. We

will also use Algorithm 4 to extend a network N by adding a tree to N at a specified node.

We give a specific implementation in Algorithm 4, which takes as input a network N , a node

inputRoot of N , and a set of compatible input clusters C, and outputs the updated network

N with a new subtree rooted at inputRoot that represents C. More important, it also sets

the tree edge values for all the input clusters, even those whose restriction is empty. Thus,

21

Algorithm 3: Algorithm that constructs a reticulation network N with ≤ p nodes
when given a valid maximal ST-set tree sequence S of length p.

1 Function Network.Build(C, S)
Input: A set of clusters C and a maximal ST-set tree sequence S of length p
Output: A network N that represents C with ≤ p reticulation nodes

2 N = graph(); N.add nodes(root);

3 X =
⋃
C∈C

C

4 I = X \
⋃
S∈S

S

5 set nonSubsets = {C ∈ C | C 6⊂ Si for any Si ∈ S}

6 /* create C̃ that contains the clusters restricted to the taxa in I */

7 C̃ = {}
8 for C ∈ C do

9 C̃ = C̃ ∪ { C.restrict to(I) }
10 end

11 set N = Tree.Build(N , root, nonSubsets);

12 set S = S.reverse();

13 for Si ∈ S do
14 /* widen the restriction for all the clusters */

15 for C ∈ C̃ do C.restrict to (C.restriction ∪ Si) ;

16 /* add ST-set Si into the network */

17 N = Network.Add(N , C, Si);

18 end

19 return N ;

20 end

after line 11 of Algorithm 3 executes, all the clusters in nonSubsets will have tree edge

values set, which means that for each C in nonSubsets, the subtree of C.tree edge in N

will be be the set of taxa C | I. After building the initial tree for C | I, Network.Build

reverses the maximal ST-set tree sequence S and iteratively adds ST-sets into N by calling

the procedure Network.Add, shown in Algorithm 5.

After a set of clusters has been processed by Tree.Build, each of the processed clus-

ters C will have a non-null C.tree edge value. Thus, we can describe a cluster C1 to be

downstream from cluster C2 in a network N if there is a directed path from C2.tree edge

22

Algorithm 4: Algorithm for adding a tree to network N that represents a set of
compatible clusters C.
1 Function Tree.Build(N , root, C)

Input: A network N , a node inputRoot in N and a collection of compatible clusters C
Output: The updated network N where the node inputRoot has a subtree below it

that represents C
2 /* sort the clusters by size in decreasing order */

3 C = C.sort();

4 for C ∈ C do
5 N.add nodes(newNode)

6 Σ = the smallest cluster that is a superset of C

7 if Σ exists then
8 (u, v) = Σ.tree edge

9 for x ∈ C do
10 N.delete edge(v, x)

11 end

12 set treeEdge = (v, newNode)

13 else
14 /* C is disjoint from all the processed clusters */

15 set treeEdge = (inputRoot, newNode);

16 for x ∈ C do
17 N.add nodes(x)

18 end

19 end

20 /* hang the taxa in C off the new node */

21 for x ∈ C do
22 N.add edge(newNode, x)

23 end

24 N.add edge(treeEdge)

25 set C.tree edge = treeEdge

26 end

27 return N

28 end

to C1.tree edge in the graph N −C2.off edges. Naturally, C2 is upstream from C1 in N if

C1 is downstream from C2.

When processing maximal ST-set Si, the Network.Add program works by first parti-

tioning the input clusters into three subsets – the set of clusters Supersets that contain the

current ST-set Si, the set of clusters Disjoint that are disjoint from Si, and the clusters Sub-

sets that are proper subsets of Si. This creates a partition of C̃ because Si is an ST-set and

23

Algorithm 5: Procedure that inserts ST-set Si into N , maintaining the property

that N represents C̃i.
1 Function Network.Add(N, C, Si)

Input: A network N , a set of clusters C and a maximal ST-set Si
Output: Modified network N such that N represents C containing Si

2 N.add nodes(internalNode)

3 set Disjoint = {C ∈ C | Si ∩ C = ∅}
4 set Supersets = {C ∈ C | Si ⊆ C}
5 set Subsets = {C ∈ C | C ⊂ Si}

6 MaxDownstream = {}; IsUpstreamFrom = {};
7 for (C,K) ∈ Supersets × Supersets do
8 if K is downstream from C then
9 MaxDownstream.add(K)

10 IsUpstreamFrom[K].add(C)

11 else if C is downstream from K then
12 MaxDownstream.add(C)

13 IsUpstreamFrom[C].add(K)

14 end

15 end

16 N = Tree.Build(N , internalNode, Subsets)

17 for x ∈
(
Si −

⋃
CεSubsets

)
do

18 N.add nodes(x)

19 N.add edge(internalNode, x)

20 end

21 for C ∈ MaxDownstream do
22 set (u, v) = C.tree edge

23 N.add edge(internalNode, x)

24 for K 6= C ∈ MaxDownstream do
25 K.off edges .add(v, internalNode)

26 for Q ∈ IsUpstreamFrom[K] do Q.off edges .add(v, internalNode) ;

27 end

28 end

29 for (D,C) ∈ Disjoint × MaxDownstream do
30 if C is downstream from D then
31 set (u, v) = C.tree edge

32 D.off edges .add(v, internalNode)

33 if D is upstream from all C ∈ Supersets then
34 if (v, internalNode) /∈ N then N.add edge(root, internalNode) ;

35 for Q ∈ IsUpstreamFrom[C] do Q.off edges .add(root, internalNode) ;

36 end

37 end

38 end

39 return N

40 end

24

must be compatible with all the clusters in C̃; that is, no cluster has a non-trivial intersection

with Si. The procedure then adds a node called internalNode to the network and attaches

the taxa contained in Si to internalNode in the following steps: Let P ⊆ C be the set of

clusters that are properly contained in Si. All clusters in P are guaranteed to be pairwise

compatible, by the definition of ST-set. So is safe to call the Tree.Build procedure on P ,

with inputRoot set to be the newly created internalNode. The program then processes any

remaining taxa in L = Si \
⋃
C∈P

C by creating an individual node x for each taxon in L and

inserting it into N by adding an edge from internalNode to each x ∈ L, directed by lines

17-19 of Network.Add. Therefore, at this point, N represents all clusters C ⊂ Si.

After the set P of taxa is processed, Network.Add uses depth-first search to efficiently

compute the set K of clusters where each is a superset of Si, whose tree edges are maximally

downstream of all the superset clusters. K is computed in lines 7-15 and the clusters are

stored in the MaxDownstream data structure. During this computation, Network.Build

also computes the set of clusters isUpstreamFrom[K] for each K ∈ K, the set of clusters

that are upstream from K in N . Since the clusters in K contain Si, the procedure adds

an edge from the endpoint of K.tree edge to internalNode of each K ∈ K, so the subtree

that represents Si is on a a directed path from C.tree edge of all C ⊇ Si. After this step

is performed, any cluster C ⊇ Si that is upstream of a cluster in K ∈ K will now contains

the taxa in Si as leaf descendants, because C has a directed path to K and the endpoint of

K.tree edge now has an edge to internalNode whose subtree has leaf descendants Si. Finally,

Network.Build iterates through all clusters C in isUpstreamFrom[K] for each K ∈ K, and

adds all the incoming edges of internalNode to C.off edges except for the edge incident to

K.tree edge. This step is shown in lines 21-28. Therefore, after line 28 executes, all clusters

25

Figure 4. The intermediate states of the Network.Build procedure when building the network in Figure 2
to represent C = {{1, 2, 3}, {1, 3}, {1, 4, 5}, {3, 4, 5}, {5}} with input maximal ST-set sequence S = {{1}, {2}}.

(a) Tree constructed to represent C | I
where I = {3, 4, 5} using Tree.Build.
The C4 node is highest in the tree be-
cause C4 | I has the largest size of all

C ∈ C̃.

(b) Result of calling Network.Add on the last ST-
set {2} of S and the tree from Fig.4a. The pro-
cedure adds node X2 as a leaf child of the new
internalNode labeled ST1. The set K of most
downstream clusters containing {2} is just {C1}
There is an edge from the root R to ST1 because,
without it, the tree below the C4 node would be
disconnected since C4 does not contain 2.

(c) Result of calling Network.Add on the ST-
set {1} of S and the network from Fig. 4b.
Network.Add creates new internal node ST2 with
leaf child X1 and adds edges to ST2 from the
tree edges of C2 and C3 because the clusters
C1, C2, C3 all contain {1}, which means they are
the contents of the Supersets structure in this it-
eration. K = {C2, C3} because C1 is upstream
from C2, so it obtains {1} automatically from C2.
Meanwhile, C4 is in Disjoint because it does not
contain {1}, so there is another edge from the
root to ST2, as in Fig. 4b to give C4 a connected
switching that bypasses the path through ST2.

C ⊇ Si will have a directed path to internalNode, and will have all the taxa in Si as leaf

descendants.

26

However, there are still some clusters that are disjoint from Si but might be upstream

in N from a cluster in K ∈ K. This is a problem, because it means that after lines 21-

28 execute, all of these disjoint clusters have had the taxa of Si added to them as leaf

descendants through the directed path from K.tree edge to internalNode. Therefore, for

each cluster D ∈ Disjoint that is upstream from a cluster in K ∈ K, the edge e from the

endpoint of K.tree edge to internalNode is added to the set D.off edges, to make sure

that there exists a switching of N that does not contain a directed path from D.tree edge

to internalNode. However, it is possible for a disjoint cluster D to be upstream from all the

clusters in K, which means that adding all of the incoming edges incident upon internalNode

to D.off edges will disconnect the subtree of D.tree edge from the network. In this case,

Network.Build creates a new edge from the root of N to internalNode, and then adds this

edge to C.off edges for all clusters C ∈ Supersets that are downstream of D on lines 34-35.

After this step, no cluster D that is disjoint from Si has a directed path to internalNode in

the graph N −D.off edges, which is now guaranteed to be connected.

4.2. Correctness

It is clear from the pseudocode of Algorithm 3 that it generates a DAG using the input

data. Therefore, we first prove:

Claim 4.2. The Network.Add procedure produces a valid reticulation network that represents

the input clusters.

Proof. The set I is correctly represented by N by the correctness of the known Tree.Build

algorithm. Suppose that, when Network.Add is called on input N and Si, the network

correctly represents the clusters C̃ = C | (I ∪ Sp ∪ Sp−1 ∪ . . . ∪ Si+1). Let C be a clusters

27

in C̃. First, we need to show that after network.add finishes processing ST-set Si, cluster

C contains all of its taxa. A cluster C ⊂ Si will be correctly represented by N after

network.add runs by the correctness of Tree.Build, and if a taxon x ∈ C is not in Si,

then it is already a leaf descendant of C.tree edge by the induction hypothesis. Similarly,

if x ∈ Si and C ∈ K then the algorithm will add an edge from the endpoint of C.tree edge

to the internalNode, so x will be a leaf descendent of C.tree edge. If the algorithm instead

attaches internalNode to the tree edges of a set of clusters K such that C /∈ K, then by lines

9-17 there is some other cluster C ′ ∈ K downstream of C. By the definition of downstream,

this means that N has a directed path from C.tree edge to C ′.tree edge, so x will be a

leaf descendant of C.tree edge.

Next, we show that if C does not contain any taxa in Si, then the algorithm does not

force any x ∈ Si to be a leaf descendant of C.tree edge. Indeed, on line 32, the algorithm

adds the edges into the internalNode to D’s set of off edges. In some ways, this is just a

book-keeping step to illustrate that N still displays the tree that represents C; however, it is

possible that all of the edges into the internalNode are downstream of C. This would mean

that creating the switching that represents C from N would require disconnecting the graph.

Therefore, on line 34, Network.Build takes care of this possibility by adding an edge from

the root to the internalNode, which keeps the switching graph intact. Thus, even if C does

not contain any taxa in Si, the Network.Add procedure maintains the property that N is a

connected network that represents C. �

Therefore, we have shown that when the Network.Build is run on a set of clusters C

and a valid maximal ST-set tree sequence S, it produces a connected reticulation network

N that properly represents C in the softwired sense.

28

4.3. Minimizing Reticulations

It is clear from the pseudocode and description of the Network.Add procedure that

Network.Build adds only one non-leaf node, called internalNode, to the network in each

iteration. It remains to demonstrate that internalNode really is a reticulation node, meaning

it has in-degree of at least two. It turns out that there are some valid maximal ST-set tree

sequences that produce internal nodes with in-degree equal to one. An example of such a

sequence is shown in Figure 5. However, we will show:

Lemma 4.3. If Network.Build creates a network N with m < p reticulation nodes when

executed on a maximal ST-set tree sequence S of length p, then there exists a maximal ST-set

tree sequence S ′ of length m.

Figure 5. Two almost-isomorphic networks produced by the Network.Build algorithm on the input cluster
set {1, 9, 2, 4}, {1, 9, 2}, {1, 9, 2, 6, 8}, {1, 9, 4, 7}.

(a) Network produced using the ST-set se-
quence {{4}, {1, 9}, {6, 8}, {7}}. The node la-
beled ST3 has only one incoming edge.

(b) Network produced using the ST-set sequence
{{4}, {6, 8}, {7}}

29

Proof. Suppose that, after the Network.Add procedure processes an ST-set Si, the internalN-

ode added during its execution has in-degree one. This happens if there is only one cluster in

K, the set of maximally downstream clusters that contain Si, meaning that the tree edges of

all clusters C ⊇ Si lie on a single path in N . Since the tree edges of all clusters C ⊆ I were

placed by the Tree.Build procedure and the taxa in Si were added to the tree constructed

by Tree.Build via an edge from C.tree edge to the internalNode, which we assumed to

have in-degree one, then the set of clusters C | (I ∪Si) can be arranged a tree. Therefore, all

the clusters in C | (I ∪ Si) are pairwise compatible by the Perfect Phylogeny Theorem. This

means that it is unnecessary to include Si in the ST-set tree sequence, because the sequence

{S1, . . . , Si−1, Si+1, . . . , Sp} is a maximal ST-set tree sequence with length p − 1. Thus, if

a sequence S of length p is the shortest maximal ST-set tree sequence for a set of clusters

C, then each internalNode will have in-degree of at least two. Hence, Network.Build will

produce a reticulation network N with exactly p reticulation nodes. �

A reticulation network N that represents a set of clusters C is called ret-minimum

with respect to C if it has the fewest number of reticulation nodes over all the networks that

represent C. To complete the proof of Conjecture 4.1, we show that

Lemma 4.4. The Network.Build algorithm constructs a ret-minimum network for C when

given as input a shortest maximal ST-set tree sequence.

Proof. Let N be the network constructed by Network.Build for a set of clusters C on S, a

shortest maximal ST-set tree sequence for C, of length p. Suppose toward a contradiction

that there exists a network N ′ with m < p reticulation nodes that is ret-minimum for C. If N ′

had a reticulation node r such that all paths from r to a leaf go through another reticulation

node r′, then we could remove r and redirect the incoming edges of r into r′ thus creating

30

a network N ′′ with fewer reticulation nodes. This operation would not modify the taxa, so

N ′′ would still represent C. Therefore, a every reticulation node in a ret-minimum network

N ′ must have at least one path to a leaf that does not go through another reticulation node.

Let r1 be a reticulation node of N ′ such that no path from r1 to a leaf goes through

another reticulation node. We know that at least one such reticulation node must exist in

N ′, because otherwise N ′ would either be a tree or would contain a directed cycle. Let Σ′1

be the set of taxa that are direct descendants of r1 and G1 be the subgraph composed of

rj, its subtree and its incoming edges. Then, inductively define rj to be a reticulation node

of N ′ −G1 − . . .−Gj−1 such that no path from rj to a leaf contains any other reticulation

nodes, where Gj is defined to be the subtree containing rj, its subtree and its incoming edges,

as before. Let Sj be the set of leaf descendants of rj. Do this until N ′ has no remaining

reticulation nodes. We argue that the sequence S ′ = {Σm, . . . ,Σ1} is a maximal ST-set tree

sequence; specifically,

(1) The graph N ′ −G1 − . . .−Gm is a tree.

(2) Each Σj ∈ S ′ is an ST-set of C \ (Σ1∪ . . .∪Σj−1), which means Σj is compatible with

all clusters C ∈ C \ (Σ1∪ . . .∪Σj−1) and all clusters C ⊂ Σj are pairwise compatible.

(3) Each Σj ∈ S ′ is a maximal ST-set.

Property (1) follows from the construction of Gj; no more reticulation nodes remain after

all m reticulation nodes are removed from N ′, so all remaining taxa are arranged on a tree.

We also know that Σj was arranged on a tree rooted at rj before it was removed

from N ′, which means that all the clusters C ⊂ Σj are pairwise compatible by the Perfect

Phylogeny Theorem. Suppose that some set Σj ∈ S ′ is not compatible with C̃ = C \ (Σ1 ∪

. . .∪Σj−1), which means there is some cluster C ∈ C̃ in N ′ that has a nontrivial intersection

31

with Σj. Since N ′ represents C, the tree edge corresponding to C cannot be downstream of

rj in N ′, since this would indicate that C ⊂ Σj and thus compatible with Σj. Therefore,

the tree edge corresponding to C would either be upstream from rj in the network or not on

any path from the tree edge of C. In order for N ′ to represent C, there would have to be a

path from the endpoint of C in N ′ to the subtree containing the taxa in C∩Σj, which would

mean that there is another reticulation node r′ in Gj, which is a contradiction. Therefore

Σj must be compatible with all the clusters in C̃ and so property (2) holds as well.

It remains to show that S ′ is a maximal ST-set tree sequence. Suppose that Σj is

not a maximal ST-set of C \ (Σ1 ∪ . . .Σj−1) and that there exists some taxon x /∈ Σj that

such that Σ = Σj ∪ {x} is also an ST-set. This means that Σ must be compatible with all

the clusters in C \ (Σ1 ∪ . . . ∪ Σj−1), which means that all the clusters C ⊇ Σj must either

be equal to Σj or must also contain x. Otherwise, a cluster C ⊃ Σj and Σ would have be

incompatible, since C would contain elements not in Σj and Σ contains contain x. Let K be

the set of clusters C ⊃ Σ. The tree edges of the clusters in K must lie on several different

paths from the root of N ′ to rj, because N ′ is assumed to be ret-minimum for C, so it cannot

have “unnecessary” reticulation nodes. If the clusters in K did lie on the same path, then rj

would have in-degree one and would not be a reticulation node.

Since the tree edges of the clusters in K do not lie on a single path, but all the clusters

in K contain x /∈ Σj, then there must be another reticulation node r such the tree edge

endpoint of each cluster in K has an path to r, and the subtree S of r contains x. However,

this means that all the clusters in K contain Σj ∪ S, which means that Σj ∪ S is compatible

with K. This means that the reticulation node r is unnecessary and we can modify N ′ to

create a network N ′′ with one fewer reticulation node, by removing the subtree of r and its

32

incoming edges from N ′ and then calling Tree.Build on cluster set C | Σj ∪ S with input

root rj. However, this is a contradiction since N ′ is ret-minimum for C; therefore, Σj must

be a maximal ST-set and so property (3) also holds.

Therefore, if a network N ′ with m < p is ret-minimum for C, then we can construct

maximal ST-set tree sequence S ′ of length m. However, this is a contradiction, since we

claimed that the sequence S of length p that we passed as input to the Network.Build algo-

rithm was already a shortest maximal ST-set tree sequence for C. Therefore Network.Build

produces a ret-minimum network when executed on a shortest maximal ST-set tree sequence

for C. �

We conclude the proof of Conjecture 4.1, which states that the History Bound algo-

rithm computes the minimum number of reticulation nodes needed for a reticulation network

to represent a set of clusters C in the softwired sense. We give a procedure that uses the ex-

ecution history of the CHB algorithm with output R to construct a reticulation network N ,

which represents C in the softwired sense and has at most R reticulation nodes. Then, using

the theory developed in [4] we argue that the procedure generates a ret-minimum network

when given as input the execution history of CHB that produces the minimum value, or the

History Bound, for C.

However, we note that the number of reticulation nodes necessary for a network N to

represent a set of clusters C in the hardwired sense is greater than or equal to the History

Bound. Consider the set of taxa X = {1, 2, 3} and cluster set C containing {1, 2}, {1, 3} and

{2, 3}. C is incompatible, so it cannot be represented by a tree, so at least one reticulation

node will have to be present in any network that represents C. Only one reticulation node is

required for a network that represents C in the softwired sense, because any singleton subset

33

Figure 6. Network constructed by Network.Build for C with tree edges shown for each cluster.

of X is a maximal ST-set. Without loss of generality, if we choose {1} to be the ST-set we

remove, then the remaining cluster set C̃ is {2}, {3} and {2, 3}, which is compatible, so no

more reticulation nodes are necessary for N . The network representing this input is shown

in Figure 6.

Suppose there exists a network N with leaf set X that has a single reticulation node

r. We will show that it cannot represent C in the hardwired sense. If two of the leaves (for

example, 1 and 2), are leaf descendants of the r, then all upstream edges will have {1, 2} as

leaf children, because we can no longer “switch off” edges when representing clusters in the

hardwired sense. This means that no upstream edges can be the tree edges that correspond

to clusters {1, 3} or {2, 3}. Therefore, N does not represent C. Otherwise, suppose one leaf

child (taxon 1) is a descendant of the reticulation node in N , then none of the upstream

edges can be tree edges of cluster {2, 3}, because all upstream edges of r have leaf descendant

1 /∈ {2, 3}. This shows that N cannot represent C in the hardwired sense in this case either,

which means that a network requires at least two reticulation nodes to represent C in the

hardwired sense.

34

5. A DP Algorithm for Constructing Ret-Minimum Networks

Now that we have established via Lemmas 4.3 and 4.4 that Network.Build produces a

ret-minimum network N when executed on a shortest maximal ST-set tree sequence, whose

length is equal to the History Bound, we can combine the two known algorithms to produce

a procedure that will generate a ret-minimum network for a set of clusters C, or an equivalent

matrix M , in exponential time.

The original DP formulation of the History Bound algorithm was given by [1], and it

runs in time O(mn2n) where |X| = n, |C| = m. The presentation in Algorithm 6 is the same

as the one given in [2]. The dynamic programming variant of the algorithm computes the

History Bound for all subsets K ⊆ X of size k. The key insight is that the History Bound

value for K is one more than the minimum value of the History Bound over all subsets of K

that have size k − 1.

Once again, in order to extract the ST-set sequence from the intermediate values

computed by Algorithm 6, we need to save all the rows that are collapsed by rule Dr into

Algorithm 6: The dynamic programming equivalent of the History Bound algorithm.
Input: A binary matrix M representing cluster set C on taxon set X
Output: The value of the History Bound for M

1 for x ∈ X do set H[{x}] = 0;

2 for k ∈ {2, . . . , |X|} do
3 for each subset K ⊆ X of size k do
4 set MK to be the submatrix of M with row set K

5 while MK contains duplicate rows or single-entry columns do
6 Dr: collapse together any duplicate rows of MK

7 Dc: remove any columns with a single 1 entry from MK

8 end

9 /* choose which row removal minimizes the score for K ⊆ X */

10 set H[K] = min
x∈K

(1 + H[K − {x}])

11 end

12 end

13 return H[X]

35

Algorithm 7: An equivalent DP algorithm to compute the History Bound that saves
away relevant history; namely the ST-sets that are removed to achieve each value.

Input: A binary matrix M representing cluster set C on taxon set X
Output: A table containing History Bound value for all subsets of X and the ST-set

deletions that resulted in that value, for backtracking.
1 /* initialize the table H : P(X)→ N× P(X) for subsets of size 1 */

2 for x ∈ X do set H[{x}] = (0, ∅);
3 for k ∈ {2, . . . , |X|} do
4 for each subset K ⊆ X of size k do
5 /* initialize the X ′ list for marking duplicate taxa for deletion */

6 for x ∈ X ′ do set X ′[r] = ∅;

7 set MK to be the submatrix of M with row set K

8 while MK contains duplicate rows or single-entry columns do
9 Dr:

10 if two unmarked rows r1 and r2 are identical then
11 mark X ′[r2] = r1 for all rows r such that X ′[r] == r2 do
12 update the marker to X ′[r] = r1

13 end

14 end

15 Dc: remove any columns with a single unmarked 1 entry from MK

16 end

17 /* collect all the marked rows into sets indexed by their markers */

18 for x ∈ X do
19 set S[x] = {x} ∪ {r ∈ X such that X ′[x] = r}
20 end

21 set f(x) = 1 + H[K − S[x]].first()

22 set (h, r) =
(

min
x∈K

f(x), argmin
x∈K

f(x)
)

; /* save the row that minimizes f */

23 set H[K] = (h, S[r]) ; /* save ST-set corresponding to argmin f */

24 end

25 end

26 return H

the DP table. Therefore, we make a change similar to the the one made to Algorithm 1.

This is shown in Algorithm 7, and it will allow us to backtrack once the minimum value of

H is computed. Note that the table H no longer maps from the subset of X to the integer

value of the History Bound for that subset of X, but to pairs that save the ST-set that whose

removal achieves the optimal value, in addition to the value itself.

36

Algorithm 8: The backtracking algorithm for constructing a ret-minimum network
using the intermediate values of the History Bound computation.

Input: Table H containing the History Bound value for all subsets of X and the ST-set
deletions that resulted in that value.

Output: Ret-minimum network N representing cluster set C on taxon set X
1 /* extract the ST-set sequence S in reverse from the DP table */

2 set K = X; set S = {} ;

3 while K 6= ∅ do
4 get (, Si) = H[K] ;

5 S.append(Si) ;

6 set K = K − Si
7 end

8 set nonSubsets = {C ∈ C | C 6⊂ Si for any Si ∈ S} ;

9 set I = X −
⋃
S∈S S ;

10 /* restrict all the clusters to the initial set of taxa */

11 for C ∈ C do C.restrict to(I);

12 N = graph();

13 N.add nodes(root) ;

14 N = Tree.Build(N , root, nonSubsets) ;

15 for Si ∈ S do
16 for C ∈ C do C.restrict to (C.restriction ∪ Si);

17 N = Network.Add(N , C, Si);

18 end

19 return N

The new algorithm also changes the way subsets are mapped by H. In the previous

procedure, the clean-up rules Dr and Dc were allowed to run on all the rows and columns

of the matrix MK , while in the modified algorithm, we only explicitly remove the rows

from MK after a taxon is chosen that minimizes the History Bound score. Nevertheless,

these algorithms are equivalent, because the clean-up rules are deterministic [2], so there is

a bijection between collapsing all other maximal ST-sets into meta-taxa and leaving all but

one uncollapsed.

In Algorithm 8 we show the procedure for extracting the maximal ST-set tree sequence

from the values recorded in H, and for using those to construct the ret-minimum network

for the clusters encoded by M . The sequence is assembled from the second value of the pair

37

recorded at H[K] for each K ⊂ X, starting from K = X. Otherwise, this algorithm is very

similar to Network.Build, given in Algorithm 3; it first constructs a tree from the clusters

restricted to I and then iteratively inserts each ST-set into the tree using Network.Add.

38

6. Conclusion

One of the interesting things about this work is the way our understanding of the Ret-

Network problem progressed almost entirely backwards from the way NP-hard problems

are typically presented in classrooms and textbooks. That is, the algorithm to compute a

lower bound on Rmin, was known first. Although the algorithm appeared to be performing

some common-sense operations on the underlying networks that represent the data, a clear

understanding of the combinatorial property of reticulation networks counted by algorithm

was not known. The hardness of computing this value was shown by a nontrivial reduction

that did not involve the underlying network.

To summarize, we explicitly proved the statement from [4] that every maximal ST-set

tree sequence corresponds to an execution of the Candidate History Bound algorithm, and

conversely that every execution of CHB generates a maximal ST-set tree sequence, thereby

demonstrating that the length of the shortest maximal ST-set tree sequence for a set of

clusters is equal to the value of the History Bound. Then, we proved the conjecture that the

History Bound algorithm counts the minimum number of reticulation nodes in a network that

represents the input clusters in the softwired sense. This was done by giving an algorithm

that constructs the network in question and showing that a network with fewer reticulation

nodes does not exist. We argued that this result does not apply to networks that represent

clusters in the hardwired sense.

6.1. Future work

This new understanding of the combinatorial properties of the History Bound raises

additional questions about its relationship to other desirable properties of reticulation net-

works and ARGs. The static formulation also allows us to propose standard analyses that

39

are typically used to grapple with NP-hard problems, such as ILP formulations, heuristics

and approximation algorithms. We describe some of these questions in more detail in the

following sections.

6.1.1. Relationship to Reticulation Number. In Section 1.1, we mentioned that computa-

tional biologists are often interested in minimizing the number of reticulation events in a

network – a computation that also involves the edges of the resulting network. This thesis

does not currently address any relationship between between the History Bound and reticu-

lation number ; however, the Network.Build algorithm does try to create “nice” reticulation

nodes that do not have obviously redundant incoming edges. The iteration on lines 7-15 of

Algorithm 3 attaches the new node to only the most downstream set of clusters, even though

the network would still correctly represent the input if the reticulation node had incoming

edges from the tree edges of all the relevant clusters, not just the downstream ones. We do

not claim that this choice by Network.Build produces a network with minimum reticulation

number. However, this raises the question of whether a ret-minimum network N also has

minimum reticulation number r(N), or if there are networks with lower reticulation number

that contain more reticulation nodes than N .

6.1.2. Relationship to Rmin. As described in Section 1.2, the History Bound algorithm orig-

inated in the ARG setting as a way to compute a lower bound on Rmin. Although this work

has explained the relationship of the History Bound to reticulation networks, it remains

unclear whether the value has any direct combinatorial relationship to the minARGs that

represent a binary matrix. Thus, a natural extension of this work would be to investigate

the following conjecture by Gusfield:

40

Conjecture 6.1. There exists a minARG that represents a binary matrix M whose number

of visible recombination nodes is equal to the History Bound.

where a recombination node is visible in an ARG if no path from that node to a leaf goes

through another recombination node. We know that every ARG is a (softwired) reticulation

network; perhaps there is a way to combine recombination nodes until none are left and

show that the resulting graph is a ret-minimum network.

6.1.3. Hardwired vs Softwired. We point out that the History Bound counts the number of

reticulation nodes that represents a set of clusters in the softwired sense. It appears that the

flexibility provided by the softwired definition is what allows the Network.Add procedure to

use one reticulation node per ST-set. Similarly, it also allows the tree edges of the initial

clusters to be arranged in a somewhat careless order, because a cluster that does not contain

an ST-set S that is located upstream in the network from a cluster that does contain S

can always “bypass” S using the root-edge trick described in lines 33-35 of Algorithm 5

and shown in Figure 4. In contrast, the hardwired definition requires that all the leaf

children of a cluster’s tree edge be considered, not just those in a particular switching, so

the “bypassing trick” does not work in that setting. Nevertheless, it is possible that we can

use the insights developed in this work to develop an algorithm that will count the minimum

number of reticulation nodes needed to represent a set of clusters in the hardwired sense,

and investigate the relationship of this value to Rmin and reticulation number.

6.1.4. Approximation Algorithms and Kernels. Another area of exploration related to this

topic is the development of more efficient approximation algorithms that are guaranteed to

compute a value that can be bounded by a constant factor of optimum. Indeed, from a

human perspective, there are some situations where it seems that certain taxa are obviously

41

better to remove than others during the execution of the CHB algorithm, so it be desirable

to formalize how well those heuristics would behave in practice, or whether they only work

on some data sets. The structure of the networks produced by Network.Build also suggests

that the order of the ST-sets in the sequences might not be as important as currently stated,

and there may re-orderings of ST-set sequences that produce equivalent networks. Similarly,

the example in Figure 5 suggests that some ST-set sequences are equivalent, so partitioning

the space of ST-sequences into equivalence classes to shrink the search space may be desirable

as well.

42

Appendix A. Source of Network.Build

This appendix contains the Python source of the Network.Build algorithm, and all its

related data structures. Below, we show the data structure for encoding clusters as described

in Section 4.1.

Listing 1. Python implementation of the Cluster data structure.

1 #! /usr/bin/python

2

3 class Cluster:

4 # need to have the taxa for initialization

5 def __init__(self, name, S):

6 self.name = name

7 self.taxa = S

8 self.restriction = set()

9 self.ct = self.taxa & self.restriction

10 # network things

11 self.off_edges = set()

12 self.cut_edge = None

13

14 def __repr__(self):

15 return self.name + "(" + str(list(self.ct)) + ")"

16

17 def __str__(self): return self.__repr__()

18

19 def size(self): return len(self.ct)

20

21 def is_empty(self): return self.size() == 0

22

23 def single(self):

24 if self.size() == 1:

25 return list(self.ct)[0]

26 return None

27

28 def current_taxa(self): return (self.ct)

29

30 def restrict_to(self, S):

31 self.restriction = S

32 self.ct = self.taxa & self.restriction

43

Below is the code for the Tree.Build algorithm, which takes a set of compatible clusters

and creates a tree.

Listing 2. Python implementation of the Tree.Build algorithm.

1 #! /usr/bin/python

2

3 import cluster

4

5 from copy import copy

6 from pygraph.classes.digraph import digraph as graph

7

8 # build a tree of out a set of compatible clusters and a subset of the taxa

9 # that displays C

10 def build(T, clusters, root):

11

12 # process largest to smallest

13 C = sorted(clusters, key = lambda c: c.size(), reverse = True)

14

15 for i in range(0, len(C)):

16 c = C[i]

17

18 node = c.name

19 leaves = ["X" + x for x in c.current_taxa()]

20

21 print "\n=====> TREE: Processing " + node

22

23 # check the already processed clusters if they’re a superset of c

24 superset = None

25 for j in range(0, i):

26 p = C[j]

27 if c.current_taxa() <= p.current_taxa():

28 superset = p # grab the smallest superset of c

29 elif not c.current_taxa().isdisjoint(p.current_taxa()):

30 exit("ERROR: clusters " + str(c) + " and " + str(p) + "are not

compatible.")

31

32 if superset != None:

33 (u, v) = superset.cut_edge

34

35 # otherwise, put a new node and hook the leaves onto it instead

36 for n in leaves:

37 print "deleting edge (" + v + ", " + n + ")"

38 T.del_edge((v,n))

39 edge = (v, node)

40 else:

44

41 # disjoint from all the processed clusters -- new edge from the root

42 edge = (root, node)

43 T.add_nodes(leaves)

44

45 T.add_node(node)

46 for x in leaves: T.add_edge((node, x))

47

48 T.add_edge(edge); c.cut_edge = edge

49 print "Cluster " + node + " now has cut edge " + str(c.cut_edge)

50

51 return T

45

The following listing gives the code that adds a single ST-set into a reticulation network.

This code contains some helper functions, such as verify function that draws all the trees

displayed by a given network that represent a set of clusters. Although this function al-

lows the networks to be human-verified, it can be easily modified to verify the networks

automatically.

Listing 3. Python implementation of the Network.Add algorithm, and helper functions.

1 #! /usr/bin/python

2 import sys

3 sys.path.append(’..’)

4 sys.path.append(’/usr/lib/graphviz/python/’)

5 sys.path.append(’/usr/lib64/graphviz/python/’)

6 import gv

7

8 # my files

9 import cluster

10 import tree

11

12 from sys import argv

13

14 from pygraph.classes.digraph import digraph as graph

15 from pygraph.algorithms.sorting import topological_sorting as topsort

16 from pygraph.algorithms.searching import depth_first_search as dfs

17 from pygraph.readwrite.dot import write

18

19 def draw(G, name):

20 dot = write(G)

21 pic = gv.readstring(dot)

22 gv.layout(pic, "dot")

23 gv.render(pic, "png", name + ".png")

24

25 def personalize_dfs(N, C):

26 D = {}

27 for c in C:

28 for e in c.off_edges: N.del_edge(e)

29 (_, pre, post) = dfs(N, root="R")

30 D[c.name] = (pre, post)

31 for e in c.off_edges: N.add_edge(e)

32

33 return D

34

35 def verify(N, clusters):

46

36 V = graph()

37 for i in range(0, len(clusters)):

38 c = clusters[i]

39 prefix = "." * (i+1)

40 color = "red"

41

42 for n in N.nodes():

43 attrs = []

44 if n[0] == "X" : attrs += [("color", color)]

45 V.add_node(prefix + n, attrs)

46 for e in N.edges():

47 attrs = []; (x, y) = e

48 if e in c.off_edges: attrs += [("style","dotted")]

49 if e == c.cut_edge: attrs += [("style", "bold"), ("color", color)]

50

51 new_edge = (prefix + x, prefix + y)

52 V.add_edge(new_edge, attrs=attrs)

53 return V

54

55 # given c1’s traversal, is c1’s cut edge downstream from c1?

56 def downstream(c1, c2, traversal):

57 (pre, post) = traversal

58 (_, v) = c1.cut_edge

59 (_, u) = c2.cut_edge

60

61 # this means v is a descendant (downstream) of u

62 return pre.index(u) < pre.index(v) and post.index(v) < post.index(u)

63

64 def build(N, clusters, st_set, label):

65

66 print "\n=====> NETWORK " + label + ": Processing " + str(st_set)

67

68 # compute the traversals for each cluster’s tree

69 traversals = personalize_dfs(N, clusters)

70

71 supersets = [] # most downstream clusters that contain S

72 subsets = [] # clusters that are subsets of S

73 disjoint = [] # clusters that don’t contain S

74 upstream = {} # clusters that contain S but don’t get any edges added

75

76 print "Sifting clusters that contain set " + str(st_set)

77 for c in clusters:

78 upstream[c.name] = []

79 if st_set <= c.current_taxa():

80 supersets.append(c)

81 for k in supersets:

47

82 if k != c:

83 if downstream(c, k, traversals[k.name]):

84 print " Removing " + k.name + " since it is upstream of

" + c.name

85 supersets.remove(k)

86 upstream[c.name] += [k]

87 elif downstream(k, c, traversals[c.name]):

88 print " Removing " + c.name + " since it is upstream of

" + k.name

89 supersets.remove(c)

90 upstream[k.name] += [c]

91 break

92

93 elif st_set.isdisjoint(c.current_taxa()):

94 disjoint.append(c)

95 elif c.current_taxa() < st_set:

96 subsets.append(c)

97 else:

98 exit("The " + str(st_set) + " is not a valid ST-set.\nIt has a

nontrivial intersection with " + str(c) + ".\nQuitting ...")

99

100 # add the new node and leaves

101 rec_node = "ST" + label

102 N.add_node(rec_node)

103

104 # these subset guys don’t have cut edges, so we need to set them first

105 N = tree.build(N, subsets, rec_node)

106

107 for x in st_set:

108 n = "X" + x

109 if not N.has_node(n):

110 N.add_node(n)

111 N.add_edge((rec_node, n))

112

113 for d in disjoint:

114 print "Processing disjoint cluster " + d.name

115

116 # if this guy has no cut edge yet, that means it’s the subset of

117 # some other st-set further in the sequence, so it hasn’t even been

added yet

118 if d.cut_edge == None: continue

119

120 # find out if d is disjoint from all -- then we need to add a root edge

121 d_upstream = []

122 for c in supersets: d_upstream += [downstream(c, d, traversals[d.name])]

123 d_upstream_from_all = all(d_upstream)

48

124

125 root_edge = ("R", rec_node)

126 if d_upstream_from_all and not N.has_edge(root_edge):

127 # need an edge from the root to create the tree that doesn’t break c

128 print " Upstream from all; adding root edge " + str(root_edge)

129 N.add_edge(root_edge)

130

131 # see if d conflicts with any of the clusters containing S

132 for c in supersets:

133 (_, has_s) = c.cut_edge

134

135 if downstream(c, d, traversals[d.name]):

136 # it’s bad for the containing cluster to be downstream of the

non-containing

137 # one because then the non-containing one automatically includes

the new st-set

138 print " Adding OFF edge " + str((has_s, rec_node)) + " to " +

d.name

139 d.off_edges.add((has_s, rec_node))

140

141 # if cluster is disjoint, N will be disconnected when all its

off edges are turned off.

142 if d_upstream_from_all:

143 print " Adding OFF edge " + str(root_edge) + " to " + c.name

144 c.off_edges.add(root_edge)

145 for q in upstream[c.name]: q.off_edges.add(root_edge)

146

147 for c in supersets:

148 print "Adding recombination edge to " + c.name

149 (u, v) = c.cut_edge

150 N.add_edge((v, rec_node))

151

152 # edge that we just added needs to be turned off in the other clusters

that have this node

153 for k in supersets:

154 if k != c:

155 print " Adding OFF edge " + str((v, rec_node)) + " to " + k.name

156 k.off_edges.add((v, rec_node))

157 for q in upstream[k.name]: q.off_edges.add((v, rec_node))

158 return N

49

Finally, this listing gives the code for Network.Build, which iteratively adds ST-sets from

an input sequence into a tree to create a reticulation networks.

Listing 4. Python implementation of the Network.Build algorithm.

1 #! /usr/bin/python

2

3 import cluster

4 import tree

5 import network

6

7 import os

8 from sys import argv

9 from pygraph.classes.digraph import digraph as graph

10

11 if len(argv) != 2:

12 exit("Usage: process.py input")

13

14 filename = argv[1]

15 f = open(filename)

16

17 clusters = []; st_set_sequence = []; X = set(); i = 1

18 for line in f:

19 line = line.strip()

20 if line == ’’: break

21 name = "C" + str(i); i += 1

22 clusters += [cluster.Cluster(name, set(line.split(" ")))]

23

24 for line in f:

25 line = line.strip()

26 st_set_sequence += map(lambda x: set(x.split(" ")), line.split(", "))

27 f.close()

28

29 # the set of taxa is the union of all the clusters.

30 for c in clusters: X = X | c.taxa

31 print "X: " + str(X)

32

33 for c in clusters: c.restrict_to(X)

34 print "clusters: " + str(clusters)

35

36 # initial set of taxa we need to build a tree for

37 I = X

38 for st_set in st_set_sequence: I = I - st_set

39

40 print "I " + str(I)

41

50

42 # grab the clusters that aren’t strictly contained in any ST-seti

43 # or are disjoint from all ST-sets

44 non_subsets = []

45 for c in clusters:

46 c.restrict_to(I)

47 subset_of_s = map(lambda s: c.taxa < s, st_set_sequence)

48 disjoint_from_s = map(lambda s: s.isdisjoint(c.taxa), st_set_sequence)

49

50 if not any(subset_of_s) or all(disjoint_from_s):

51 non_subsets.append(c)

52

53 st_set_sequence.reverse()

54

55 # dump this into the folder with the input name

56 folder = filename.split(".")[0] + "/"

57 if not os.path.isdir(folder): os.mkdir(folder)

58

59 # make a tree

60 N = graph(); N.add_node("R")

61 N = tree.build(N, list(non_subsets), "R")

62

63 network.draw(N, folder + "network0")

64

65 for i in range(0, len(st_set_sequence)):

66 st_set = st_set_sequence[i]

67 label = str(i+1)

68

69 for c in clusters: c.restrict_to(c.restriction | st_set)

70

71 N = network.build(N, clusters, st_set, label)

72 V = network.verify(N, clusters)

73 network.draw(N, folder + "network" + label)

74 network.draw(V, folder + "verify" + label)

75

76 print

77

78 # for c in clusters:

79 # print str(c) + " with cut edge " + str(c.cut_edge)

80 # print "OFF: " + str(list(c.off_edges)) + "\n"

51

References

[1] V. Bafna and V. Bansal. Inference about recombination from haplotype data: Lower

bounds and recombination hotspots. Journal of Computational Biology, 13(1):501–521,

2006.

[2] Dan Gusfield. ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs

and Explicit Phylogenetic Networks. MIT Press, 2014.

[3] D.H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms

and Applications. Phylogenetic Networks: Concepts, Algorithms and Applications. Cam-

bridge University Press, 2010. ISBN 9781139492874.

[4] Steven Kelk, Celine Scornavacca, and Leo van Iersel. On the elusiveness of clusters.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(2):517–534, March 2012. ISSN 1545-

5963.

[5] Steven Kelk, Leo van Iersel, and Christopher Whidden. Personal communication, October

2012.

[6] S. R. Myers and R. C. Griffiths. Bounds on the minimum number of recombination events

in a sample history. Genetics, 163(1):375–394, 2003.

[7] Leo van Iersel and Steven Kelk. When two trees go to war. Journal of Theoretical Biology,

269(1):245 – 255, 2011. ISSN 0022-5193.

52

