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 19 
ABSTRACT 20 
Rapid advances in soil biology are increasingly reflected in mathematical models. From 21 
molecular to global scales, models contribute to fundamental understanding and prediction of 22 
critical soil processes, such as carbon sequestration. Recent models explicitly incorporate 23 
microbial control over soil carbon and nutrient cycling, an approach that offers greater 24 
biological realism but raises new challenges in model parameterization and stability. Although 25 
they have proliferated at community and ecosystem scales, microbial-explicit models have yet 26 
to be incorporated into most Earth system models. Applying soil models across scales requires 27 
integration with data to support parameterization and validation using approaches such as 28 
Bayesian data assimilation. To catalyze future progress, we recommend breaking down barriers 29 
between modeling and empirical disciplines while broadening access to the computational 30 
infrastructure that supports soil biological modeling. 31 
 32 
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I  INTRODUCTION 38 
Soils host diverse biological communities, including plants, animals, and microbes. Together, 39 
these communities provide benefits essential for ecosystem functioning and human well-being. 40 
Decomposition of organic matter—primarily driven by microbes—regenerates nutrients that 41 
support plant growth in agricultural and unmanaged systems. In turn, plant growth and 42 
microbial transformations of organic matter enhance soil carbon (C) sequestration that 43 
mitigates greenhouse gas emissions from human activities. 44 
 45 
At the same time, the biological services provided by soils are vulnerable to human-caused 46 
environmental change (Cavicchioli et al., 2019; Jansson and Hofmockel, 2020). For example, 47 
there is concern that global warming will stimulate metabolic activity in soils, weakening C 48 
sequestration and potentially turning soils into a net source of greenhouse gases (Davidson and 49 
Janssens, 2006). Given these concerns, soil microbes and biological processes are topics of 50 
intense research interest. 51 
 52 
Improvements in sequencing technologies and other approaches for probing biological diversity 53 
and functioning have led to rapid advances in fundamental knowledge of soil ecology (Bahram 54 
et al., 2018). In parallel with these empirical advances, mathematical models of soil systems 55 
have blossomed recently (Allison, 2017; Wieder et al., 2015). Foundational models of soil 56 
biogeochemistry developed during the 1980s and 1990s have been joined by a new generation 57 
of biologically-inspired models starting in the early 2000s. Since then, these models have 58 
increased in scale and complexity. 59 
 60 
Still, there is room for additional model improvement and intellectual development. Large-scale 61 
models fail to replicate fundamental patterns in soil biogeochemical pools and fluxes (Todd-62 
Brown et al., 2014, 2013; Wu et al., 2018). Many of the most recent models with updated 63 
biological mechanisms have not been tested extensively. The field of soil ecological modeling 64 
has come a long way, but the pathway to addressing soil-relevant challenges with models 65 
remains uncertain. 66 
 67 
In an effort to elevate the relevance and impact of soil modeling, this chapter aims to 68 
summarize the current state of the art while providing guidance for next steps to advance the 69 
field. We discuss some of the main reasons for engaging in soil modeling and then review 70 
selected modeling approaches from molecular to global scales. This review does not attempt to 71 
be exhaustive, and we focus our attention primarily on advances from the past 5-10 years, 72 
especially since the publication of Parton et al. (2015). The chapter concludes with 73 
recommendations for model-data integration and future intellectual development. 74 
 75 
II  JUSTIFICATION FOR MODELING 76 
As with empirical approaches, soil scientists use models to address a range of different goals 77 
and questions. Models play an important role in advancing fundamental understanding of soil 78 
processes by representing concepts and mechanisms in a quantitative framework. For instance, 79 
the priming effect is a common biological mechanism in soil whereby addition of fresh organic 80 
matter stimulates, or “primes,” the decomposition of existing soil C that may be older and more 81 
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resistant to decay (Fontaine et al., 2004). Soil researchers have developed models that 82 
represent this mechanism, thereby quantifying the magnitude and impact of priming effects in 83 
soil systems (Guenet et al., 2016). 84 
 85 
Models are also useful for generating hypotheses. Koven et al. (2015) used a depth-resolved 86 
version of the Community Land Model (CLM4.5BGC) to simulate permafrost thaw and its effects 87 
on ecosystem C balance. This version of the model is notable for incorporating fundamental 88 
understanding of how soil processes vary with depth, a crucial concept in frozen soils with 89 
seasonal changes in active layer thickness. Moreover, CLM4.5 represents nitrogen (N) dynamics 90 
which likely play into C-climate feedbacks. In response to climate warming, Koven et al.’s (2015) 91 
modeling study suggested that the positive effects of N release on plant productivity and 92 
associated C storage would be outweighed by the negative effects of permafrost thaw and 93 
increased microbial metabolism with soil warming. This outcome is a testable hypothesis that 94 
can be addressed with laboratory, field, and global change experiments (Mack et al., 2004; Xue 95 
et al., 2016). 96 
 97 
More broadly, models can help guide experimental work. A conceptual paradigm proposed by 98 
Blankinship et al. (2018) calls for better integration between theory, models, and 99 
measurements. This aim could be partially achieved by aligning modeled mechanisms and 100 
outcomes with experimental data. For example, models of soil biogeochemistry include a wide 101 
array of pools ranging from largely inert to mineral-associated organic matter and highly 102 
dynamic microbial biomass. Aligning these pools with the chemical composition of real soils 103 
provides a rationale for exploiting cutting-edge organic matter fractionation and 104 
characterization approaches, such as NMR, X-ray microspectroscopy, and pyrolysis gas 105 
chromatography-mass spectroscopy (Kalbitz et al., 2003; Lehmann et al., 2008; Quideau et al., 106 
2005). Likewise, recent advances in modeling microbial diversity can drive new approaches for 107 
analyzing sequencing and other datasets that probe the functioning of microbial communities. 108 
Building a model can generate practical guidelines for distilling, organizing, and processing the 109 
information contained in complex ‘omics datasets. 110 
 111 
Scaling is another relevant application of soil models (Allison, 2017; Wieder et al., 2015). Nearly 112 
all of the grand challenges facing soils at the global scale require knowledge of emergent 113 
properties arising from smaller spatial scales and shorter time scales. At the molecular level, 114 
cells exchange metabolites, enzymes catalyze reactions, and organic compounds interact with 115 
mineral surfaces. At cellular to ecosystem scales, these molecular processes combine into 116 
emergent biological properties such as growth and respiration. All the way up to the global 117 
scale, biological systems interact with soil physical properties to determine outcomes like C and 118 
nutrient balance. Modeling offers a quantitative, rational approach for representing key 119 
emergent properties at ever-increasing scales. Nested sets of models can, for example, provide 120 
insight on how Michaelis-Menten enzyme kinetics at the molecular level scale up to control 121 
organic matter decomposition rates at the community scale (Tang and Riley, 2013; Wang and 122 
Allison, 2019). 123 
 124 
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Models are also the primary tool available to scientists for making predictions, particularly in 125 
the context of global environmental change (Bradford et al., 2016; Todd-Brown et al., 2012). In 126 
many studies, the goal of prediction complements other modeling aims such as advancing 127 
fundamental understanding, generating hypotheses, and scaling up. Although predictions 128 
remain highly uncertain, soil models offer the potential to apply empirical and theoretical 129 
advances to simulate C and nutrient pools at the scale of the entire planet, decades or centuries 130 
into the future. Such models can provide answers to scientists and decision makers concerned 131 
about the future state of soils, including the capacity to store C in the face of climate and land 132 
use change (IPCC, 2019). The increasing prominence of model outputs in Intergovernmental 133 
Panel on Climate Change reports and policy making emphasizes prediction as a relevant, if not 134 
always singular, goal of model development. 135 
 136 
III  MODELING APPROACHES 137 
Across scales, including the ecosystem scale, differential equation models are often applied to 138 
track soil biogeochemical pools and fluxes. Sierra and Müller (2015) described a general 139 
framework for this type of soil model based on first principles of mass balance, substrate 140 
dependence, heterogeneity of decomposition rates, chemical transformations, variation in 141 
environmental drivers, and interactions among soil pools. Nearly all existing models of soil 142 
biogeochemistry fit under this general framework, allowing for rigorous comparison of stability 143 
and mathematical properties across models. 144 
 145 
Differential equation models like RothC and CENTURY emerged in the late 1970s and 1980s 146 
(Jenkinson and Rayner, 1977; Parton et al., 1988), embracing the principles of mass balance and 147 
substrate dependence as envisioned by Olson (1963) with organic matter decaying in 148 
proportion to its concentration. These models further included the principle of heterogeneity 149 
by representing different pools of organic matter with different decay rates. Transfers among 150 
the pools were allowed, following the principle of chemical transformations, and decay rates 151 
were functions of temperature and moisture levels, consistent with the principle of varying 152 
environmental drivers. Bosatta and Ågren (1985, 1999) generalized the principle of 153 
heterogeneous decomposition in their theory of continuous organic matter quality which was 154 
intended to better reflect the complexity and diversity of soil organic compounds. 155 
 156 
Models like RothC and CENTURY have some convenient mathematical properties, but they omit 157 
the fundamental principle of interacting soil pools in Sierra and Müller’s (2015) framework. 158 
Commonly known as “linear” or “first-order,” differential equation models without complex 159 
dependencies among pools can be readily represented in matrix form and solved analytically 160 
(Xia et al., 2013). They also tend to be mathematically stable, meaning that pool sizes and fluxes 161 
do not oscillate as the system returns to steady-state following perturbation. Despite these 162 
advantages, linear models simplify or omit mechanisms of interaction among organic matter 163 
pools, such as enzymatic degradation driven by microbial decomposers. Rather, the biological 164 
roles of microbes in linear models are assumed to be “implicit” (Schimel, 2001). 165 
  166 
An alternative approach to account for the principle of soil pool interactions is to make 167 
microbial mechanisms mathematically “explicit.” The idea of microbial control over soil 168 
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biogeochemical processes dates back to at least Waksman (1927). In the late 1970s, O. L. Smith 169 
proposed a complex model of soil microbial biogeochemistry that included many of the 170 
features described by Sierra and Müller’s (2015) general framework but did not receive much 171 
attention (Smith, 1979a, 1979b). More recently, there has been an explosion of microbially 172 
explicit model development and applications (Abramoff et al., 2018; Allison et al., 2010; 173 
Fontaine and Barot, 2005; Schimel and Weintraub, 2003). Although they attempt to represent 174 
biological mechanisms with higher fidelity, challenges remain with the stability, interpretability, 175 
and scaling of microbially-explicit models (Wang et al., 2014). Efforts to analyze microbial 176 
processes with models at different scales could help address some of these challenges (Allison, 177 
2012; Kaiser et al., 2014). 178 
 179 
Dynamical differential equation models are valuable for representing fundamental processes, 180 
but predictive statistical models are a valuable alternative approach. Process-based models 181 
with many differential equations require careful parameterization, otherwise they may be 182 
mathematically unstable or generate inaccurate predictions. If accurate prediction is the goal, 183 
rather than representing mechanisms, statistical models can be very useful, assuming sufficient 184 
training data are available. Rapid development of machine learning techniques has made it 185 
possible to extrapolate soil properties across time and space based on training data and 186 
algorithms such as neural networks and random forest. For example, this approach has been 187 
used to determine the global age of soil C based on radiocarbon profiles (Shi et al., 2020) and to 188 
map soil C stocks across Scotland (Aitkenhead and Coull, 2016). 189 
 190 
New approaches have started to combine features of process-based and probabilistic modeling. 191 
Rather than representing explicit pools of C, Waring et al.’s (2020) PROMISE model tracks the 192 
flow of individual C molecules through a heterogeneous soil system. Molecules undergo 193 
transformations and movements based on soil parameters, proximity to microbes and 194 
enzymes, and stochastic processes. In this way, molecules with different chemical properties 195 
vary in transit time such that the total soil C pool contains a distribution of residence times. This 196 
modeling framework requires relatively few assumptions and parameters while replicating 197 
emergent properties of soil C more accurately than pool-based models. It also incorporates 198 
mass balance and interactions among soil compounds, consistent with the six key principles 199 
identified by Sierra and Müller (2015). 200 
 201 
IV  MODELING ACROSS SCALES 202 
A  Cellular/Molecular 203 
Molecular interactions, both within and outside cells, underlie all soil biotic and abiotic 204 
processes. Key interactions include metabolic pathways within microbial cells along with 205 
sorption/desorption, enzymatic catalysis, and molecular diffusion outside of cells. Molecular-206 
scale interactions between organic molecules and soil minerals contribute to the physical 207 
protection of soil organic matter (Schmidt et al., 2011), whereas extracellular enzyme activity 208 
catalyzes decomposition of polymeric molecules (Burns et al., 2013). Many of these interactions 209 
are represented in models at larger scales. 210 
 211 
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Metabolic pathways can be represented with flux balance models that simulate how specific 212 
substrates are metabolized in microbial cells. In 13C metabolic flux analysis (13C-MFA), isotopic 213 
labeling experiments provide models with information to estimate intracellular metabolic 214 
fluxes. Together with 13C fingerprinting to pinpoint central metabolic pathways and RNA-seq to 215 
complement the results of 13C-MFA, Varman et al. (2016) uncovered the lignin degradation 216 
pathway of the bacterium Sphingobium sp. SYK-6. Environmental constraints and microbial 217 
community interactions must also be considered when modeling microbial metabolism. Jansson 218 
and Hofmockel (2018) defined the term metaphenome as the product of microbial functions 219 
that are expressed given abiotic and biotic environmental constraints. Flux balance models can 220 
be used to determine how microbial metaphenomes will respond to different environmental 221 
conditions and perturbations. 222 
 223 
Information on molecular mechanisms can be used to quantify and better represent emergent 224 
properties in models. Carbon use efficiency (CUE) describes the proportion of C converted to 225 
microbial biomass and results from a combination of multiple metabolic processes. Hagerty et 226 
al. (2018) suggested modeling CUE explicitly to account for its dependence on microbial growth 227 
and C allocation processes, including costs of extracellular enzyme production and substrate 228 
assimilation. By representing these additional cellular processes, the accuracy of larger-scale 229 
models with static CUE parameters could be improved. 230 
 231 
Enzymes are biochemical catalysts involved in many molecular transformations that occur in 232 
soil (Burns et al., 2013). Microbes secrete extracellular enzymes outside the cell to obtain 233 
resources from complex biopolymers which are abundant in soils and litter. Given their role as 234 
bio-catalysts targeting soil organic matter, extracellular enzyme activity represents a 235 
mechanism of interaction between soil pools, namely microbial biomass and organic polymers. 236 
The Michaelis-Menten equation describes this activity, which often represents the initial and 237 
rate-limiting step in microbial decomposition. The Michaelis-Menten equation predicts reaction 238 
velocity (dC/dt) as a function substrate concentration (C) based on two parameters: the 239 
maximum velocity (Vmax) at unlimited substrate concentration and the half-saturation constant 240 
(KM), which is the substrate concentration at ½ Vmax: 241 
 242 
 dC/dt = Vmax·C/(KM + C) 243 
 244 
Vmax and KM can be experimentally determined and used to parameterize models. German et al. 245 
(2012) used experimental data on Michaelis-Menten enzyme kinetics obtained from enzyme 246 
assays to build a decomposition model and determine the temperature sensitivity of 247 
extracellular enzymes. They found that both Vmax and KM are temperature-sensitive and the 248 
level of sensitivity is enzyme-specific. 249 
 250 
Michaelis-Menten theory was extended in the Dual Arrhenius Michaelis-Menten (DAMM) 251 
model (Davidson et al., 2012). DAMM represents the interaction between Arrhenius and 252 
Michaelis-Menten kinetics at the scale of enzyme active sites to predict CO2 production from 253 
soil. The model accounts for temperature, moisture, and oxygen limitation effects on the 254 
metabolism of soluble C substrates. Model predictions aligned well with laboratory 255 
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measurements of extracellular enzyme activity at different temperatures and field 256 
measurements of soil respiration across seasons. DAMM was later extended to incorporate 257 
microsite variation in substrate concentrations and applied to predict not only soil respiration 258 
but also CH4 and N2O fluxes (Sihi et al., 2020). 259 
 260 
The Reverse Michaelis Menten (RMM) and Equilibrium Chemistry Approximation (ECA) 261 
equations have emerged as additional options to explicitly model enzyme kinetics (Moorhead 262 
and Weintraub, 2018; Tang, 2015). The RMM equation describes the reaction velocity as a 263 
function of enzyme concentration (E) where KE is the enzyme concentration at ½ Vmax: 264 
 265 
dC/dt = Vmax·E/(KE + E) 266 
 267 
This equation is a better fit for situations in which substrate available for enzyme binding is 268 
limiting. Such situations may be common in soils, and therefore RMM was included in one of 269 
the first microbial-explicit models of soil C and N dynamics (Weintraub and Schimel, 2003). 270 
 271 
The ECA considers both free substrate and enzyme limitations by accounting for mass balance 272 
constraints. Michaelis-Menten and RMM kinetics are special cases of the ECA (Tang, 2015): 273 
 274 
 dC/dt = k·E·C/(KES + C + E) 275 
 276 
where k is a rate constant, and 1/KES is the apparent substrate affinity of the enzyme. The ECA is 277 
more widely applicable than the Michaelis-Menten and RMM due to its ability to consider a 278 
wider range of substrate-to-enzyme ratios. These ratios can shift in soil systems, and the ECA 279 
accounts for those changes by converging to either Michaelis-Menten or RMM kinetics (Wang 280 
and Allison, 2019). However, the ECA is more complex and requires additional data for 281 
parameterization, so the simpler Michaelis-Menten and RMM formulations may be better fits 282 
in some environmental contexts. 283 
 284 
B  Population 285 
As microbes consume substrates to obtain energy and nutrients, population size increases, 286 
resulting in changes in substrate demand and decomposition ability. Monod growth is an 287 
established model used to describe microbial growth given substrate availability (Parton et al., 288 
2015). Analogous to Michaelis-Menten kinetics, the specific growth rate (μ’) is a function of 289 
substrate concentration (S), where μmax is the maximum potential growth rate and Kt is the 290 
Monod constant, or substrate concentration at ½ μmax: 291 
 292 
μ’ = μmax·S/(Kt + S) 293 
 294 
Under the assumption that initial microbial biomass is much greater than initial substrate 295 
concentration, the Monod equation can be simplified to the Michaelis-Menten equation. The 296 
Monod equation does not account for density dependence, so other models such as the logistic 297 
equation may be more appropriate if resources limit microbial population growth. 298 
 299 
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C  Community 300 
Moving up in scale, multiple models represent interacting populations of microbes, and many 301 
of those also include physical features of the environment. Georgiou et al. (2017) found that 302 
introducing density-dependent growth of microbial biomass in decomposition models of 303 
varying complexity reduced divergence between model predictions and experimental 304 
observations. Density-dependent growth accounts for community-level mechanisms, such as 305 
competition and spatial limitations, though the exact parameterization may vary across biomes 306 
and should be experimentally determined. 307 
 308 
Multiple community-scale models have adopted trait-based approaches that focus on the 309 
physiological characteristics of microbes. Analogous to some vegetation models, the Guild 310 
Decomposition Model (GDM) represents three distinct microbial functional groups involved in 311 
litter decomposition: opportunists that process available organic matter, decomposers that 312 
break down holocellulose, and miners that degrade more chemically-resistant lignin polymers 313 
(Moorhead and Sinsabaugh, 2006). The GDM is a differential equation model with explicit 314 
degradation of substrate pools by the microbial functional groups following Michaelis-Menten 315 
kinetics. The model also includes N which is often a limiting nutrient for fresh litter 316 
decomposition. Overall, the GDM successfully simulated decomposition and successional 317 
patterns consistent with observations. 318 
 319 
The MIcrobial-MIneral Carbon Stabilization (MIMICS) model also represents microbial 320 
functional groups along with mineral stabilization, making it suitable for application to soil 321 
systems (Wieder et al., 2014). The functional groups in MIMICS distinguish r- versus K-selected 322 
life histories, where r-strategists specialize on the degradation of low molecular weight 323 
compounds and K-strategists process structural litter and chemically-protected compounds 324 
relatively more efficiently. Like the GDM, MIMICS assumes Michaelis-Menten kinetics and 325 
reproduces observed patterns, including litter decomposition rates and soil response to 326 
disturbance. 327 
 328 
Building on the idea of functional traits, other community-scale models represent interacting 329 
populations and even individuals. The DEMENT model (Allison, 2012) assigns traits at random to 330 
tens or hundreds of individual microbial taxa that compete and interact on a spatial grid (Fig. 331 
16.1). Rather than assigning taxa to functional groups a priori, taxa with favorable trait 332 
combinations for a given set of environmental conditions increase in abundance in the model 333 
simulations. The model is individual-based, meaning that it tracks the locations of individual 334 
cells or colonies that grow, divide, and disperse according to model assumptions and 335 
parameters. DEMENT’s unique structure allows for simulation of “virtual microbiome” 336 
composition and functioning, including the cycling of C, N, and phosphorus. Once assigned, the 337 
traits of individual taxa in DEMENT are fixed, but related models have allowed for trait 338 
evolution within taxa (Allison, 2005; Folse and Allison, 2012). 339 
 340 
[Insert Fig. 16.1 here] 341 
 342 
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Other models also represent microbial traits at the community scale. For example, an 343 
individual-based model with trait-based functional groups interacting on a spatial grid predicted 344 
tight cycling of N during litter decomposition, allowing the microbial community to maintain 345 
CUE by overcoming stoichiometric imbalances (Kaiser et al., 2014). These findings, along with 346 
applications of DEMENT (Allison, 2014), show that community-scale models are essential for 347 
predicting emergent, and sometimes unexpected, properties of community functioning. At the 348 
same time, challenges remain in translating genomic and physiological datasets into the trait 349 
distributions required to parameterize these models. 350 
 351 
Spatially-explicit models like DEMENT are designed to represent enzyme kinetics and microbial 352 
interactions at appropriately small scales. Simulations with these models have provided insight 353 
into the emergent properties of heterogeneous enzyme-substrate interactions occurring at sub-354 
micron scales, which could be useful for refining differential equation models operating at 355 
larger scales (Wang and Allison, 2019). Similarly, modeling the heterogeneous spatial structure 356 
of soil aggregates and associated microbial communities leads to more mechanistic prediction 357 
of trace gas fluxes (Ebrahimi and Or, 2016). Like individual-based models, aggregate-based 358 
models are useful for determining the scaling rules needed to incorporate heterogeneous soil 359 
properties and microbial communities into larger-scale models (Wang et al., 2019). 360 
 361 
D  Ecosystem 362 
Ecosystem-scale models of soil microbial and biological processes often include community-363 
level processes as well as inputs and outputs that interact with other ecosystem components 364 
such as plants and minerals. Classical models such as RothC and CENTURY have long been 365 
applied in an ecosystem context, and now microbial-explicit models are also being used at 366 
ecosystem scales. Efforts to integrate these approaches are likewise gathering momentum. The 367 
Millennial model combines the best of both classical and microbial-explicit models, including 368 
microbial processes, mineral stabilization, aggregate dynamics, and soil pools that can actually 369 
be measured (Abramoff et al., 2018). 370 
 371 
Compared to classical ecosystem models, the techniques for developing and analyzing 372 
microbial-explicit models are relatively similar. Like classical models, microbial-explicit models 373 
require technical expertise to formulate differential equations that represent soil pools, fluxes, 374 
and mechanisms of interest. For microbial-explicit models, those equations typically include 375 
non-linear terms to represent the interaction between microbial or enzyme biomass and other 376 
soil pools (Sierra and Müller, 2015). Microbial-explicit models should be evaluated for stability 377 
and behavior across a range of relevant parameter values, much like classical linear models. For 378 
some models, the mathematics involved in these analyses may be more complicated, especially 379 
if there are no analytical solutions. However, complex microbial models can be solved 380 
numerically, much like their classical counterparts. Therefore, researchers developing 381 
microbial-explicit models will likely find the process familiar if they have experience with 382 
classical models. 383 
 384 
[Insert Fig. 16.2 here] 385 
 386 
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Microbial-explicit models represent key microbial traits such as CUE, microbial turnover, and 387 
enzyme production that lead to different behaviors and predictions compared to microbial-388 
implicit models (Fig. 16.2). The Allison-Wallenstein-Bradford (AWB) model was proposed as a 389 
relatively simple microbial-explicit model of soil C cycling at the ecosystem scale. In contrast to 390 
the MIMICS model (as described in the Community section), the AWB model does not include 391 
functional groups. Instead, it represents average traits of the whole microbial community, such 392 
as CUE, enzyme kinetic parameters, and temperature sensitivities. Simulations with AWB 393 
showed that the soil C response to 5°C warming depends on the temperature sensitivity of CUE. 394 
Greater temperature sensitivity of CUE results in more stable soil C pools in response to 395 
warming due to reductions in the biomass of microbial decomposers. 396 
 397 
The Microbial-Enzyme-mediated Decomposition (MEND) model, developed by Wang et al. 398 
(2013), is similar in structure to AWB but also accounts for mineral stabilization mechanisms. 399 
MEND splits soil organic C (SOC) into particulate organic C (POC) and mineral-associated organic 400 
C (MOC), both of which are converted into DOC via enzyme activity. DOC can adsorb onto or 401 
desorb from MOC. The rate of breakdown into DOC is lower for MOC than POC, representing 402 
the physical protection of soil organic matter (Schmidt et al., 2011). Still, MOC and POC respond 403 
similarly to a step increase in temperature, meaning that MEND and AWB end up predicting 404 
comparable SOC responses to warming. 405 
 406 
Sulman et al. (2014) developed the Carbon, Organisms, Rhizosphere, and Protection in the Soil 407 
Environment (CORPSE) model, which also explicitly represents microbes but has a somewhat 408 
unique structure. Carbon in CORPSE can move between physically protected and unprotected 409 
pools, but unlike in MEND, only unprotected C pools can be decomposed. Another difference 410 
between CORPSE and MEND is that protected C pool sizes in CORPSE increase with clay 411 
content. These differences emphasize a need for additional empirical studies that quantify 412 
physical protection and the decomposition rates of protected SOC. 413 
 414 
Soil models at the ecosystem scale differ substantially in their responses to plant C inputs. 415 
Microbial-explicit models like AWB and CORPSE represent the priming effect, or increased 416 
turnover of SOC in response to the addition of fresh plant C, documented in many empirical 417 
studies (Bernal et al., 2016; Perveen et al., 2019). For example, Sulman et al. (2014) fitted 418 
CORPSE to empirical data from free-air CO2 enrichment experiments at Duke Forest and Oak 419 
Ridge National Laboratory (ORNL). They found that the priming effect almost completely offset 420 
increased litter input at Duke Forest. However, the model predicted that physical protection 421 
was stronger at ORNL while the priming effect was much weaker, which corresponds with 422 
observations at ORNL showing increased protection of SOC in soil microaggregates. 423 
 424 
Ecosystem model development remains a very active area of research. Although there are 425 
multiple microbial-explicit models available now, many of them still lack key mechanisms such 426 
as spatial heterogeneity and cycling of N and other nutrients. When these mechanisms are 427 
incorporated, model outcomes may change substantially. For example, the SCAMPS model 428 
includes N dynamics and allows for variable C:N within the microbial community (Sistla et al., 429 
2014). This stoichiometric flexibility allows the microbial community to acclimate to warming, 430 
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resulting in greater losses of soil C through decomposition, especially in winter. The implication 431 
is that soil C dynamics likely depend on interactions with nutrients mediated by decomposers 432 
and plants. 433 
 434 
E  Earth system 435 
Most Earth system models (ESMs) do not explicitly represent microbial communities. Of the 11 436 
ESMs in the 6th Coupled Model Intercomparison Project (CMIP6), only one ESM explicitly 437 
represents microbes (Arora et al., 2020). That model—GFDL-ESM4.1 from NOAA’s Geophysical 438 
Fluid Dynamics Laboratory—represents soil C cycling using CORPSE. 439 
 440 
Although they are not fully coupled, there have been efforts to run microbial-explicit models on 441 
a global grid, forced with output from ESMs. Wieder et al. (2013) created a microbial-explicit 442 
version of the Community Land Model (CLM) and compared its outputs with those from the 443 
Daily CENTURY (DAYCENT) model and CLM4cn, a version of CLM with N cycling. Compared to 444 
microbial-implicit CLM4cn and DAYCENT, microbial CLM predicted spatial patterns of steady-445 
state soil C that better aligned with global observations. Furthermore, a 20% increase in litter 446 
inputs only increased global soil C temporarily due to priming effects in microbial CLM (Fig. 447 
16.3). In contrast, soil C steadily increased in the microbial-implicit models CLM4cn and 448 
DAYCENT. Global soil C responses to warming were also variable and mediated by the 449 
temperature sensitivity of CUE as observed with the AWB model at the ecosystem level. 450 
 451 
[Insert Fig. 16.3 here] 452 
 453 
Hararuk et al. (2015) ran AWB and an ecosystem model by German et al. (2012)—which the 454 
study called the GER model—on a global grid. Both models simulated steady-state global soil C 455 
more accurately than the microbial-implicit CLM-CASA model. After calibrating the models 456 
using a global soil C database, AWB and GER predicted faster declines in soil C compared to 457 
CLM-CASA under the RCP 8.5 climate forcing scenario. Hararuk et al.’s (2015) analysis also 458 
quantified the net outcome of decreasing CUE and the priming effect, allowing for key insights 459 
into how these opposing processes ultimately influence soil C predictions. 460 
 461 
V  MODEL-DATA INTEGRATION 462 
A  Uncertainty quantification 463 
As soil models continue to advance, they should be evaluated systematically for their 464 
effectiveness in achieving research goals (Fig. 16.4). The process of reviewing and stress-testing 465 
models against observations is termed “model validation” (Marzouk and Willcox, 2015). 466 
Uncertainty quantification is a core part of model validation that involves assessment of model 467 
variation, biases, limitations, and constraints that lead to deviations between the model and 468 
the true, underlying data-generating processes. Uncertainty may arise from unknown values 469 
and meanings of system parameters and inputs, potentially because parameters do not 470 
correspond to measurable quantities. Related to parameter uncertainty, parametric variability 471 
concerns the unknown effects of varying conditions on parameter and input values. Uncertainty 472 
also stems from model discrepancy, or the intentional and unintentional assumptions and 473 
simplifications separating a model from the actual processes it aims to represent.     474 
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 475 
[Insert Fig. 16.4 here] 476 
 477 
Parameter uncertainty, parametric variability, and model discrepancy continue to be high for 478 
soil biogeochemical models (Shi et al., 2018). Some soil models have parameters that facilitate 479 
the functionality of the model, but do not have clear biological interpretations. For instance, 480 
the AWB model assumes Arrhenius temperature dependence for SOC transformations, but the 481 
associated activation energy parameters are not easy to measure directly (Allison et al., 2010; 482 
Xie et al., 2020). Modeling temperature dependence also introduces parametric variability and 483 
model discrepancy. Empirical studies confirm that parameters such as CUE and enzyme Vmax 484 
and KM are temperature sensitive (Sinsabaugh et al., 2017, 2013), but the magnitude and 485 
functional form of temperature dependency is still an active area of investigation (Alster et al., 486 
2020; Davidson et al., 2006).  487 
 488 
Complex models have many parameters that may covary, making it difficult to constrain 489 
parameter uncertainty (Sierra et al., 2015). Reducing this uncertainty requires that model 490 
parameters are identifiable, such that change in parameter value causes an associated change 491 
in variables predicted by the model. Sierra et al. (2015) proposed a collinearity index to quantify 492 
the identifiability of a model—the higher the index, the lower the identifiability, and the more 493 
difficult it is to find the true parameter values. Increasing the number of datasets used to 494 
parameterize a model can increase identifiability of linear models and reduce overfitting, 495 
thereby improving predictive accuracy. For microbial-explicit models, additional datasets 496 
including microbial variables (e.g. soil enzyme activities, microbial biomass) might be needed to 497 
increase parameter identifiability and reduce uncertainty. 498 
 499 
Bayesian probabilistic frameworks are increasingly applied to interpret uncertainty in soil 500 
models. Central to Bayesian uncertainty quantification and model validation are the processes 501 
of Bayesian parameter estimation and inference, also known as data assimilation and 502 
probabilistic/Bayesian inversion in the geosciences (Lahoz and Schneider, 2014). With these 503 
approaches, the likely distribution of model parameter values for a given data set is estimated 504 
and characterized. The numerical approximation of parameter distributions and model 505 
likelihood estimation is carried out through Markov chain Monte Carlo (MCMC) simulation 506 
methods (Christensen et al., 2006). Although the exact Monte Carlo simulation algorithm may 507 
vary, most data assimilation frameworks include the following steps: 508 
1. Choose model types and specific models to evaluate. In the case of soil biogeochemistry, 509 

the assimilation of linear and non-linear ordinary differential equation models can be 510 
compared (Xie et al., 2020).  511 

2. Choose a dataset for comparison with model outputs. 512 
3. Establish pre-inference probability density functions of model parameter values (known as 513 

the “prior distributions” or “priors”).  514 
4. Iteratively propose model parameter values to generate model outputs for computing 515 

model likelihood for the given data set. 516 
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5. Approximate the distributions and probability density functions of parameter values that 517 
correspond to better model fits to the data set (known as the “posterior distributions” or 518 
“posteriors”). 519 

6. Compare model likelihoods conditional on the data set with available and desired goodness-520 
of-fit metrics. The specific Monte Carlo algorithm will dictate the options available for 521 
goodness-of-fit metrics.   522 

 523 
“Exact” Bayesian Monte Carlo schemes comprehensively sample parameter values to compute 524 
posterior distributions. These methods include traditional Gaussian random walk Metropolis-525 
Hastings MCMC and Gibbs samplers (McElreath, 2020), adaptive approaches derived from 526 
evolutionary optimization algorithms such as differential adaptive evolution Metropolis (Vrugt, 527 
2016), and the physics-inspired, momentum-driven family of Hamiltonian Monte Carlo 528 
algorithms (Neal, 2011). 529 
 530 
Statisticians have also been investigating “non-exact” Bayesian inference schemes that seek to 531 
increase speed through approximation and simplification of parameter spaces. Non-exact 532 
approaches include the approximate Bayesian computation (Alahmadi et al., 2021; Csilléry et 533 
al., 2010) and variational Bayesian classes of methodologies (Blei et al., 2017; Ryder et al., 534 
2018). Goodness-of-fit methods range from simpler frequentist computations such as 535 
coefficient of determination and maximum likelihood estimation to Bayesian metrics including 536 
information criteria and cross-validation computations (Gelman et al., 2013). Fully Bayesian 537 
goodness-of-fit metrics can be more stable than their frequentist counterparts and provide 538 
more diagnostic information about overfitting and inference validity (Vehtari et al., 2016), 539 
though there may be higher computational resource demands.  540 
 541 
There have been several powerful applications of Bayesian parameter estimation to soil 542 
biogeochemical models. Hararuk et al. (2014) integrated global soil C data into the C-only 543 
version of the Community Land Model coupled with the Carnegie-Ames-Stanford Approach 544 
submodel (CLM-CASA), while Ťupek et al. (2019) integrated respiration data from boreal forests 545 
in Finland into the Yasso07, Yasso15, and CENTURY models. Both studies compared model 546 
outputs before and after using a Bayesian data assimilation process to constrain model 547 
parameters. In all cases, data integration resulted in model predictions that more closely 548 
matched observations. 549 
 550 
However, each of these studies has caveats. The soil C database used by Hararuk et al. (2014) 551 
did not include time-series data, thereby necessitating a steady-state assumption about C pool 552 
sizes. If this assumption is not accurate, estimates of model uncertainty may be difficult to 553 
interpret. Ťupek et al. (2019) calibrated models with observed data but did not use an 554 
independent dataset to validate model predictions, which can lead to model overfitting. 555 
Maintaining separate training and validation datasets, a common practice in machine learning 556 
approaches, can help avoid this problem (Botu et al., 2017). 557 
 558 
Approaches like Bayesian data assimilation are most effective when extensive, multivariate 559 
datasets are available for model calibration and validation across a range of ecosystems. For 560 
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example, field measurements of dryland soils have improved biogeochemical models of 561 
ecosystem-specific C-cycling dynamics (Shen et al., 2016; Zhang et al., 2014). Going forward, 562 
rapid advancements in remote and in situ environmental sensing tools like light detection and 563 
ranging (LiDAR) (Kemppinen et al., 2018) and soil nutrient sensors (Burton et al., 2020) can 564 
increase the availability of ecosystem-specific measurements at lower cost, higher resolution, 565 
and greater sampling intensity than ever before. 566 
 567 
B  Model intercomparison 568 
Model intercomparison goes hand-in-hand with model selection and data assimilation to 569 
evaluate the behaviors and performance of different models relative to one another. For 570 
instance, Li et al. (2014) compared 3 microbial-explicit models with a classical first order model 571 
and found that steady-state SOC was much more responsive to varying temperature sensitivity 572 
of CUE in the microbial-explicit models. In contrast, SOC stocks were largely independent of 573 
microbial CUE in the first order model. This analysis points toward a need for additional 574 
empirical research on how microbial CUE varies with temperature and other factors. 575 
 576 
The application of Bayesian approaches to model calibration and selection can readily be 577 
extended to model intercomparison. In their global analysis of soil C responses under RCP8.5, 578 
Hararuk et al. (2015) used a Bayesian approach to show that the microbial-explicit models AWB 579 
and GER better explained the spatial variation of steady-state soil C compared to the CLM-CASA 580 
model. However, at least with some parameter values, the microbial-explicit models simulated 581 
oscillations in soil C over time, which is an unrealistic behavior at ecosystem to global scales. 582 
 583 
Xie et al. (2020) also applied a Bayesian approach to compare AWB with a classical model (Fig. 584 
16.2). Both models were fit to a meta-analysis dataset on soil respiration response to warming 585 
(Romero-Olivares et al., 2017) and compared using Bayesian goodness-of-fit metrics such as the 586 
widely applicable information criterion (WAIC) and leave-one-out-cross validation (LOO). These 587 
metrics account for the posterior distributions of parameter values after model fitting, and LOO 588 
is a useful metric when limited data are available for model selection. Both models fit the meta-589 
analysis data reasonably well, but the simpler structure of the classical model led to slightly 590 
better WAIC and LOO scores. These findings emphasize that model selection involves tradeoffs. 591 
Simple models with few parameters may be calibrated to match observational datasets with 592 
good validation scores, but these models may fall short in capturing the mechanistic details 593 
needed to make accurate predictions across a broader range of soil ecosystems. 594 
 595 
VI  RECOMMENDATIONS TO ADVANCE SOIL MODELS 596 
Despite recent progress, substantial barriers still prevent the widespread application of models 597 
to grand challenges in soil biology. In particular, specialized language, expertise, and skill sets 598 
can make it challenging to integrate modeling with other scientific approaches. This 599 
specialization can be a barrier to information flow between modeling and empirical analyses. 600 
Such issues can exacerbate the challenge of collecting data in a form that supports model 601 
development, calibration, and validation. In addition, models can be difficult to access and 602 
apply if recent versions, adequate documentation, and user interfaces are not available. Scaling 603 
up models, for example to make Earth system predictions, can be limited by insufficient tools 604 
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for model selection and intercomparison. Approaches for model validation are still under 605 
development and involve specialized knowledge of computational and statistical tools.  606 
 607 
Overcoming these barriers would be beneficial. Predictive accuracy would increase for models 608 
applied to simulate future soil C stocks, nutrient cycling, and climate change. Given that models 609 
have multiple uses beyond prediction, broader community engagement in the science of 610 
modeling would also advance fundamental knowledge across the disciplines of soil science, 611 
biology, and biochemistry. To reap these benefits, we recommend the following steps: 612 
● Integrate modeling and empirical approaches. Rather than viewing modeling and empirical 613 

activities as separate, we recommend co-developing models and empirical research. 614 
Operationally, this means reconfiguring science teams so that researchers with modeling 615 
expertise interact directly and frequently with empirical researchers. From the proposal 616 
writing stage through model development and manuscript publication, scientists creating 617 
models and collecting data should create spaces to develop a common language and align 618 
research goals. By co-creating models and experiments, researchers can ensure that models 619 
represent key processes, critical model parameters are measurable, and both model and 620 
experimental outcomes are relevant to one another. Such cooperation would be 621 
particularly helpful for incorporating complex ‘omics datasets into trait-based community 622 
models.  623 

● Collect more data. Relatively few time-series datasets are available for some soil variables, 624 
such as C stocks, making it difficult to evaluate or avoid the steady-state assumptions often 625 
made in biogeochemical models. Sparse data can also limit the possibility of separating data 626 
into training versus validation subsets. Better integration between modeling and empirical 627 
research could help fill some of these data gaps. 628 

● Cross-train researchers in modeling. To enable the interactions necessary for integration, 629 
researchers should receive training in modeling perspectives and approaches. For example, 630 
training activities such as workshops, short courses, and online modules can help students 631 
acquire common vocabulary used in modeling. Conversely, students with a modeling 632 
background can benefit from training activities focused on theory and empirical work. If 633 
designed thoughtfully, seminars and courses can provide opportunities for students to get 634 
comfortable communicating and collaborating across the modeling-empirical divide. 635 

● Improve accessibility to model code and analysis tools. The principles of F.A.I.R. data should 636 
also apply to model code and outputs: findable, accessible, interoperable, and reusable 637 
(Wilkinson et al., 2016). Code repositories such as GitHub and platforms such as the 638 
Department of Energy’s KBase can host code along with input/output files and user 639 
interfaces to make models accessible. For new models, writing and documenting code in 640 
widely-used, open-source formats such as R Markdown, Java, C++, and Jupyter Notebooks 641 
for Python and other computer languages can promote interoperability and reusability. A 642 
version control system is also important to ensure analyses from a prior model version can 643 
be replicated. Regardless of the model or platform, researchers should always strive to 644 
make model code and analyses publicly available with guidelines for reuse so that others 645 
may validate, build upon, and broaden applications of existing models. 646 

● Plug-and-play models and datasets. Taking the principle of interoperability to another level, 647 
we encourage the development of model testbeds that enable mixing and matching of 648 



17 

different models and datasets (Wieder et al., 2018). Ideally, such testbeds should allow for 649 
modifications of model structure and input datasets. Testbeds can also facilitate 650 
standardization of input/output protocols and datasets to enhance interoperability, thereby 651 
avoiding tedious data reformatting procedures while also providing guidance on standards 652 
that could be adopted by the broader soil science community. 653 

● Develop improved model selection and intercomparison tools. Moving beyond testbeds, the 654 
research community would benefit from wider availability of model selection and 655 
intercomparison resources. For example, the soilR package enables users to run simulations 656 
with an array of differential equation models, including some that represent soil 657 
radiocarbon (Sierra et al., 2012). Global intercomparison initiatives such as the Coupled 658 
Model Intercomparison Project (CMIP) have also been tremendously valuable for comparing 659 
Earth system models by establishing a standardized set of simulation scenarios and output 660 
variables (Arora et al., 2020; Todd-Brown et al., 2013). As new tools for model inference 661 
become available, they should be incorporated into intercomparison projects to enable 662 
one-stop-shopping for model comparison and selection (Xie et al., 2020). 663 

 664 
VII  CONCLUSION 665 
Within the last decade, models of soil systems have advanced substantially. There are now 666 
many new approaches for representing microbial and biochemical processes in soil models. As 667 
these new models came online, synthesis efforts placed them in the context of broad principles 668 
that guide quantitative soil science across scales and ecosystems. We anticipate that these 669 
advances will support further integration and unification of soil biological modeling in the next 670 
5-10 years. Still, another modeling renaissance faces some significant challenges. Disciplinary 671 
silos as well as difficulties in scaling models from genes to ecosystems must be overcome to 672 
maximize the impact of recent model advances. Breaking down these barriers will require 673 
better integration of modeling approaches into all branches of soil science. Our 674 
recommendations to build computational infrastructure and train a new generation of 675 
researchers well-versed in modeling can serve as an initial roadmap for integration. Following 676 
our roadmap should help elevate models as powerful tools for tackling soil-related grand 677 
challenges facing society, from food security to climate change. 678 
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 975 
 976 
Fig. 16.1. Schematic of the Decomposition Model of Enzymatic Traits (DEMENT). Traits are 977 
assigned to microbial taxa by drawing at random from empirically-based distributions. Taxa are 978 
placed randomly on a spatial grid where they consume substrates, reproduce, disperse, and 979 
interact over time. The model predicts community composition and function as taxon 980 
abundances change due to environmental selection. Adapted from Allison (2012). 981 
 982 
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 984 
Fig. 16.2. A) Classical first-order linear model with microbial implicit transfers among pools. B) 985 
Allison-Wallenstein-Bradford (AWB) model with microbial-explicit interactions among pools of 986 
soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (MIC), and 987 
extracellular enzymes (ENZ). In the classical model, pool turnover depends on first-order decay 988 
constants (kS for SOC, kD for DOC, kM for MIC) as well as DOC uptake by MIC (rU). Turnover also 989 
depends on temperature (T). In the AWB model, SOC turnover is represented as a Michaelis-990 
Menten process dependent on T and ENZ with parameters Vmax and KM. An analogous process 991 
describes DOC uptake by MIC with parameters VmaxU and KMU. Carbon uptake is allocated to 992 
biomass versus respiration according to a carbon use efficiency parameter EC. Enzymes are 993 
produced in proportion to MIC biomass at rate rEP and are lost to the DOC pool at rate rEL. MIC 994 
biomass dies at rate rD and is partitioned into SOC versus DOC according to coefficient a. 995 
Partition coefficients are used in the conventional model but omitted from the figure for clarity. 996 
Adapted from Allison et al. (2010). 997 
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 999 
Fig. 16.3. Soil carbon response of first-order and microbial-explicit models to A) increased litter 1000 
inputs and B) warming at the global scale. Warming response in the microbial model depends 1001 
on whether carbon use efficiency (CUE) declines or remains constant with increasing 1002 
temperature. Adapted from Wieder et al. (2013). 1003 
 1004 
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 1006 
Fig. 16.4. Framework for model-data integration. Observations are used for validating model 1007 
outputs or calibrating model parameters via data assimilation. Bayesian approaches can be 1008 
used for data assimilation and model validation to obtain posterior parameter distributions and 1009 
calculate indices of model fit that aid in model selection. Adapted from Wieder et al. (2015). 1010 
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