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ABSTRACT OF THE DISSERTATION

Essays in Empirical Asset Pricing

by

Riccardo Sabbatucci

Doctor of Philosophy in Management

University of California, San Diego, 2016

Professor Allan Timmermann, Chair

The focus of my dissertation is the study of stock market predictability. More

precisely, I use econometric tools to understand, explain, and predict aggregate and

cross-sectional patterns in stock prices. Predictability of aggregate stock market returns

and dividend growth is a widely studied topic, of great interest to both academics and

practitioners. It is related to theories of market efficiency and information diffusion,

both rational and behavioral. It also allows us to determine which types of informa-

tion generate the movements in stock prices that we observe. Understanding why stock

prices move and what factors drive their variation is critical from theoretical and policy-

making perspectives. Chapter 1 of my dissertation revisits one of the main findings of

xiii



the predictability literature, namely that all variation in aggregate stock prices is ex-

plained by changes in aggregate risk through discount rates and none by news about

firms’ expected cash flows. I propose a more comprehensive measure of dividends that

includes M&A cash flows and show that dividend growth is predictable and that cash

flow news explains around 60% of the observed variation in prices, while the remaining

40% is accounted for by discount rate news. Chapter 2 shows that information about

fundamentals of the aggregate economy derived from closely held firms help predict

stock returns of public firms. A common feature of most stock market predictors is that

they are constructed using financial data of public firms. I construct a new economy-

wide dividend-price ratio that takes into account dividends and market capitalization of

both listed (public) and non-listed (private) U.S. companies and show that it strongly

predicts stock returns both in-sample and out-of-sample. I also find that changes in div-

idends of private firms lead those of public firms and that the economy-wide dividend-

price ratio subsumes the standard dividend-price ratio in predictive regressions. Chapter

3, co-authored with Christopher A. Parsons and Sheridan Titman, explores geographic

momentum: a positive lead-lag stock return relation between neighboring firms oper-

ating in different sectors. It shows that a portfolio of firms headquartered in the same

area, but operating in different sectors, strongly forecasts individual stock returns up to

one year ahead. The economic significance of a city-momentum trading strategy is of

similar magnitude to that observed with industry momentum. However, while industry

momentum is strongest among thinly traded, small firms, and/or those with scant analyst

following, geographic momentum is unrelated to these proxies for information process-

ing. We propose an explanation linking this to the structure of the investment analyst

business, which is organized by sector, rather than by geographic region.

xiv



Chapter 1

Are Dividends and Stock Returns

Predictable? New Evidence Using

M&A Cash Flows

1
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Abstract

The lack of predictability of aggregate dividends has long been considered a

puzzle - “the dog that did not bark”, Cochrane (2008). I show that this empirical find-

ing is related to the measurement of dividends. If M&A cash flows are taken into ac-

count, the adjusted R2 from a regression of dividend growth on the dividend-price ratio

goes from being negative (-1.18%) to being positive (17.54%) and coefficients become

highly statistically significant. Strong improvements are also found for consumption

growth (2.10% to 11.76%) and returns (1.86% to 4.40%). Out-of-sample R2 for divi-

dend growth and returns are large and statistically significant. I also show that dividend-

price variation is fundamentally linked to cash flows news and not only to discount rate

news. Lastly, I find stronger predictability in industries with the largest M&A activity.

1.1 Introduction

Conventional wisdom holds that aggregate dividend growth is largely unpre-

dictable. Following the present value decomposition in Campbell and Shiller (1988b),

the dividend-price ratio is used as predictor of expected stock returns and dividend

growth. Standard asset pricing models imply that time variation in the dividend-price

ratio must be accompanied by either time-varying risk premia or time-varying expected

dividend growth. As a consequence, either returns or dividend growth (or both) must be

predictable if the conventional present value model holds.

Predictability of dividend growth is economically important for several reasons.1

Showing that dividend growth is predictable is equivalent to stating that cash flow news

affects stock prices (Cochrane (2008)). Moreover, testing asset pricing and present value

1 Shiller recently highlighted the importance of dividend growth while discussing stock price volatility
during the Nobel Prize Lecture on the 8th December 2013.



3

models with better measures of dividend growth is important in order to assess their

validity.2 Market makers and equity investors require good dividend estimates when

pricing equity options, futures and forwards, while the recently created market for divi-

dend options and futures requires forecasts of future dividends and pricing of their term

structure since it enables investors to trade dividends independently from the underlying

asset. Asset managers focusing on industry allocations or dividend/cash flow strategies

require a good estimate of future cash flows in order to improve their portfolio alloca-

tion. Last but not least, we care about dividend growth predictability because it could be

possible to infer companies’ future earnings from their past dividends, given that man-

agers may observe industry practice selecting a target constant payout ratio (see Lintner

(1956) or Marsh and Merton (1987)).

As discussed in Koijen and Nieuwerburgh (2011), most of the studies on stock

market predictability focus on the return component.3 Only recently the literature has

shifted attention to dividend growth predictability4 which is both important on its own -

since dividend growth plays an essential role in asset pricing models - and because it is

an implied outcome of the present value models that jointly analyze return and dividend

dynamics (Lettau and Nieuwerburgh (2008), Cochrane (2008), Bollerslev et al. (2013),

Piatti and Trojani (2013)).

The general finding of many empirical studies, sometimes accepted as a styl-

ized fact, is that aggregate stock returns are predictable by the dividend-price ratio but

2 Recently many authors have used present value models to analyze the joint dynamics of expected
returns and dividend growth. See van Binsbergen and Koijen (2010), Kelly and Pruitt (2013), Piatti and
Trojani (2013), Bollerslev et al. (2013) and Golez (2014).

3 Pesaran and Timmermann (1995), Kothari and Shanken (1997), Lettau and Ludvigson (2001),
Lewellen (2004), Robertson and Wright (2006), Campbell and Yogo (2006), Boudoukh et al. (2007),
Goyal and Welch (2008), Campbell and Thompson (2008), Lettau and Nieuwerburgh (2008), Ferreira
and Santa-Clara (2011), Shanken and Tamayo (2012), Li et al. (2013) and Johannes et al. (2014) amongst
others.

4 See, for example, Campbell and Shiller (1988a), Cochrane (1992), Goyal and Welch (2003), Menzly
et al. (2004), Lettau and Ludvigson (2005), Ang and Bekaert (2007), Cochrane (2008), Chen (2009), van
Binsbergen and Koijen (2010), Engsted and Pedersen (2010), Golez (2014) and Rangvid et al. (2014).
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dividend growth is not (Cochrane (1992), Cochrane (2008), Lettau and Nieuwerburgh

(2008), Cochrane (2011)). I will refer to this empirical evidence as the dividend growth

predictability puzzle, since claiming that stock prices react only to variation in discount

rates and not to news about future cash flows is, to say the least, counterintuitive.

More precisely, quoting Cochrane (2008), this lack of dividend growth pre-

dictability is puzzling because “our lives would be much easier if we could trace price

movements back to visible news about dividends or cash flows...if market price-dividend

ratio variation comes from varying expected returns and none from varying expected

growth in dividends or earnings, much of the rest of finance still needs to be rewritten.”

I find that, luckily, this is not necessary. I introduce a more precise and comprehensive

measure of cash flows containing M&A cash dividends and show that dividend growth,

consumption growth and excess returns are strongly predictable, at both annual and

quarterly frequencies, using standard predictive regressions. Most theories underlying

the dividend-price ratio’s usefulness in predicting either stock returns or dividend growth

do not specify how cash is transferred between firms and their shareholders and this is

probably why researchers have not focused on this important cash flow component.

Figure 1.1 shows the aggregate cash flows received by equity investors decom-

posed into four different categories, namely ordinary and liquidation dividends, M&A

cash dividends, stock repurchases and new equity issues. It is immediately clear that

cash flows from M&A activity together with repurchases are a very important compo-

nent of shareholders’ total payout starting from the 1970s, as highlighted by Allen and

Michaely (2003). In fact, in many years (e.g., during the dot-com bubble period) these

cash flows account for the great majority of the total cash flows received by shareholders.

M&A cash flows include, in general, both cash and stock distributions originating from

a merger or acquisition. I only add M&A cash dividends to adjust the standard dividend

measures. This M&A cash component is not included in the measures of dividends com-
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Figure 1.1: Total cash flows received by shareholders at the aggregate macro level.
Ordinary dividends are from CRSP. M&A cash dividends are from CRSP pre-1980 and
SDC post-1980. Stock repurchases and equity issues are from Compustat (buybacks:
entry 115 plus reduction in 56; equity issues: entry 108 minus increase in 56). A
positive (negative) bar represent a positive (negative) flow of funds to shareholders.
All figures are nominal amount in bln dollars. Annual data, 1970-2012.

monly found in the literature for a trivial reason: only ordinary and liquidation dividends

can be extracted “top-down” from the CRSP index.5

I motivate this chapter with an example highlighting the economic importance

of M&A cash flows. At t = 0 an investor buys 1 share in firm X for $40 each. At

t = 1 this investor receives a $2 dividend per share, resulting in a 5% dividend yield.

At t = 2 firm X gets acquired by firm Y in an all cash takeover for $100 per share, and

the investor tenders his share. As a consequence, he receives $100 as a “liquidation”

dividend in order to give up his ownership of firm X. This liquidation dividend does not

appear in the standard dividend measures used in the literature. But, as this example

shows, the majority of the cash flows realized by the investor are in the form of M&A

dividends at t = 2. This chapter revisits the predictability of the dividend-price ratio,

taking into account both cash flows realized in the form of ordinary dividends (t = 1), as

5 See Section 1.3.3 for a detailed discussion.
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well as cash flows realized in the form of cash dividends from M&A (t = 2). As I show,

this second consideration dramatically changes the ability of the dividend-price ratio to

forecast future dividend growth, consumption growth and excess returns.

To the best of my knowledge, this chapter is the first to explicitly analyze the

impact of M&A cash dividends for asset pricing. In so doing, I provide several contri-

butions to the predictability literature.

First, I describe the problem of using dividends extracted from the CRSP value-

weighted Index for the construction of both dividend growth and dividend-price ratios

and discuss why a measure of cash flows should include M&A cash dividends.

Second, I construct a new dividend-price ratio (e.g., adjusting the numerator of

the ratio) and dividend growth measure (e.g., adjusting both the numerator and denomi-

nator) that take into account M&A cash dividends. I highlight the importance of M&A

cash dividends by showing their impact on dividend growth, consumption growth and

excess return predictability.

I find adjusted R2 values of 17.54% (8.22%) over the full sample period, 77.08%

(42.63%) pre-1945 and 4.34% (1.84%) post-war in predictive regressions of dividend

growth at annual (quarterly) frequency. Out-of-sample I find a statistically significant

R2 of 6.82% (1.73%). I also find strong consumption growth predictability, with an ad-

justed R2 of 11.77% over the full sample and 6.75% (10.03%) post-war at the annual

(quarterly) frequency. Dividend growth predictability means that cash flow news ex-

plain stock price variation and M&A cash flows are arguably the main cash flow news

available in the market. I also show that dividend-price variation is fundamentally linked

to cash flows news and not only to discount rate news within the long-run predictability

framework of Cochrane (2008).

As far as return predictability is concerned, I report adjusted R2 values of 4.40%

(1.59%) over the full sample period and 10.62% (2.83%) post-war at annual (quarterly)
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frequency. Out-of-sample I find a statistically significant R2 of 7.73% (2.16%). My

predictor performs better, post-war and out-of-sample, than both the net payout yield

of Boudoukh et al. (2007) and the total payout price ratio of Robertson and Wright

(2006). I also gauge the importance of each individual cash flow component for re-

turn predictability and show that M&A cash dividends are the only component with

explanatory power for future returns, while net equity issues are irrelevant if M&A cash

dividends are accounted for. Moreover, I find strong out-of-sample return predictability

only during periods of low M&A activity, which are related to recessions.

Lastly, I analyze the impact of M&A cash dividends on dividend growth and

return predictability at the industry level. I find return predictability mainly in those

industries that have the largest M&A activity (e.g., consumer non-durables, manufac-

turing, wholesale and retail), while dividend growth predictability is strong for every

industry over the full sample, pre- and post-war. Using industry data has the potential

of highlighting economic cross-dependencies amongst related industries and observe

industry specific patterns absent at the aggregate level (Hong et al. (2007), Cohen and

Frazzini (2008)).

A few recent papers discuss evidence on US dividend growth predictability.

Chen (2009) shows that dividend growth predictability from the dividend-price ratio

is present only pre-1945 if dividends are measured without reinvestment. This means

that dividends paid out during the year by companies should be reinvested at the risk free

rate or not reinvested at all. However, he does not find evidence of dividend growth pre-

dictability post-war or over the full sample. van Binsbergen and Koijen (2010) model

expected returns and dividend growth rates as latent processes and use filtering tech-

niques to show that both of them are predictable within a present value model, but they

do not find any dividend growth predictability using OLS predictive regressions. Chen
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et al. (2013) find that there is a significant component of cash flow news in stock returns

and that its importance increases with the investment horizon. They do not use predic-

tive regressions but back out cash flow news by using a return decomposition based on

the implied cost of equity capital and do not discuss dividend growth predictability. van

Binsbergen et al. (2013) show that equity yields are able to predict dividend growth, but

this does not address the dividend growth predictability puzzle.6 Golez (2014) adjusts

the standard dividend-price ratio for changes in expected dividend growth using esti-

mates implied by the derivatives market and finds that dividend growth is predictable

by an implied dividend growth rate, but not by the unadjusted dividend-price ratio.

Maio and Santa-Clara (2014) find that dividend growth is predictable using the stan-

dard dividend-price ratio in a predictive regression framework only for small and value

stocks, but not for large and growth stocks. International evidence on dividend growth

predictability is discussed in Engsted and Pedersen (2010) and Rangvid et al. (2014).

This chapter is also closely related to the work of Robertson and Wright (2006)

and Boudoukh et al. (2007). Robertson and Wright (2006) use aggregate total payout

data from the Federal Reserve Financial Accounts (Flow of Funds) tables, but only look

at return predictability. Moreover, differently from this chapter, they do not provide

a split of the total payout measure into each individual component, which allows us

to understand the impact of M&A cash dividends on predictability. Boudoukh et al.

(2007) show that taking into account repurchases and issues results in stronger return

predictability. However, they do not discuss dividend growth predictability nor take into

account M&A cash dividends in their analysis.

The remainder of the chapter is organized as follows. Section 1.2 presents a

cash flow measure inclusive of M&A cash dividends and reports descriptive statistics.

Section 1.3 provides details of M&A cash flows, repurchases and equity issues and sum-

6 The equity yields are a linear function of expected dividend growth and maturity-specific risk premia.
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marizes possible concerns related to the use of CRSP-extracted dividends. Section 1.4

reports empirical results of dividend growth, consumption growth and return predictive

regressions at the aggregate level, long run predictability, predictability during M&A

waves and predictability of individual cash flow components. It also compares my div-

idend measure against other payout measures that have been proposed in the literature.

Section 1.5 discusses predictability at the industry level. Section 1.6 presents a trad-

ing strategy that exploits my dividend-price ratio inclusive of M&A cash dividends to

improve out-of-sample portfolio returns and Sharpe ratios. Section 1.7 concludes.
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1.2 A New Dividend Measure that Includes Cash from

M&A

Given the shortcomings of the existing dividend measures, I construct a novel

measure of dividends that, in addition to ordinary and liquidation dividends, takes into

account M&A cash flows received by shareholders. At the aggregate level, I get data

on ordinary and liquidation dividends7 by looking at the distributions paid by the in-

dividual issues in the CRSP dataset.8 Data for M&A cash dividends are from CRSP

before 1980 and from the SDC Platinum dataset9 after 1980. CRSP cash M&A data

include all dividends with distributions codes between 3000 and 3400. Using SDC Plat-

inum data, I aggregate by calendar year or quarter10 all cash dividends generated by

M&A transactions financed completely or partially with cash (e.g., both cash-only and

cash plus stock) having US public buyer and US target.11 The SDC dataset allows us

to take also into account the cash reserves that US listed companies utilize to acquire

non-listed companies, which are omitted from CRSP, but still constitute a substantial

chunk of the US aggregate economy and shareholders’ cash flows. Finally, using this

new measure of dividends I re-construct the dividend growth rates and dividend-price

ratio12 that are used in the following sections of the chapter. Real data are constructed

using the Consumer Price Index-All Urban Consumers (CPI-U) found in the Federal

Reserve Economics Dataset (FRED) to deflate nominal dividends. The market excess

return is calculated by subtracting the risk free rate in the Goyal and Welch (2008)

dataset from the CRSP value-weighted cum dividend index return (e.g., WVRETD) that

7 CRSP distribution codes 1xxx, 2xx2/2xx8.
8 Results using only common stocks (share codes 10 and 11) instead of the whole CRSP universe are

qualitatively the same.
9 SDC is the standard data source on mergers. It is used, for example, in the Payout Policy handbook

chapter by Allen and Michaely (2003). Results using CRSP-only M&A data are qualitatively the same.
10 I select the cash flows distributed when the deal status is completed and not at announcement date.
11 This is to ensure consistency with the CRSP database that only includes listed US companies.
12 I use the total market cap of the stocks in CRSP at the end of December.
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includes stocks in NYSE, AMEX, NASDAQ. Consumption expenditure is the sum of

non durable consumption plus services from Table 2.3.513 of the National Income and

Product Accounts (NIPAs), available on the Bureau of Economic Analysis (BEA) web-

site, as it is standard in the literature. Gross National Product data used in Section 1.4.4

are from FRED. For the industry section, I construct my dividend and return dataset

using the 10 industry definitions of Fama and French using M&A cash dividends from

CRSP pre-1980 and SDC post-1980.

I compare my measure with the two standard dividend measures extracted from

the CRSP value-weighted index. The first is extracted from the CRSP value-weighted

index at the annual frequency, and it is affected by the reinvestment of the dividends in

the market. The second is constructed by summing up the monthly dividends extracted

from the monthly CRSP value-weighted index and it is not subject to the reinvestment

problem. Table 1.1 reports descriptive statistics and correlations of dividend growth

measures over the full sample, pre-war and post-war. Figure 1.2 shows the dividend

growth series graphically.

Looking at at the table, we see that adding M&A cash dividends increases both

the mean and volatility of the dividend growth rate over the various sample periods.

This is expected, since M&A activity is volatile and tends to happen in waves (Harford

(2005)). We also note that pre-war most of the statistics are very similar, while post-war

they tend to be different. This is because M&A cash dividends become substantial, both

in absolute amounts and relative to ordinary cash dividends, only post-war. The full-

sample correlation between the CRSP dividend growth measures with and without the

reinvestment issue is only 42%, as already discussed by Chen (2009). The contempo-

raneous correlation between the dividend growth measures and stock returns is positive

but small for my dividend measure (between 5% and 7% across sub-samples) whereas it

13 Personal Consumption Expenditures by Major Type of Product.
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is above 60% for the measure with the reinvestment of dividends. These facts highlight

the importance of reinvestments. Time variation in the correlation of dividend growth

with stock returns is, however, limited for all three dividend measures.

The correlation between the dividend growth measure without reinvestment and

the one that includes M&A cash dividends is 73% over the full sample and 55% post-

war, confirming that M&A cash flows became relevant over the last 40 years. Most

interestingly, the AR(1) coefficient of the dividend growth measure with reinvestment

is negative, while slightly positive for the two other measures. This is due to the fact

that the AR(1) of the returns series is negative post-war (-0.07) and therefore impacts

the dividend growth dynamics when dividends are reinvested in the market.

Looking at the statistical properties of the dividend-price ratios (Table 1.2 and

Figure 1.3), we see that adding M&A cash dividends to the dividend-price ratio slightly

increases its mean (from 3.75% to 4.13%) and decreases its volatility (1.58% to 1.35%).

The correlation with the standard dividend-price ratios is around 70% over the various

sample periods. However, the most important result is the relatively small autocorre-

lation of my dividend-price ratio, 0.67 (0.71) over the full sample (post-war), far from

the very high estimates found in the literature (e.g., Ang and Bekaert (2007), Lettau

and Nieuwerburgh (2008), Cochrane (2008), Cochrane (2011)). As a consequence, its

limited persistence should alleviate some of the problems with statistical inference of

predictive regressions in the presence of near-integrated regressors (Stambaugh (1999),

Campbell and Yogo (2006), Moon and Velasco (2014)).
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Table 1.1: Dividend growth: descriptive statistics. Panel A: full sample statistics
(1926-2012). Panel B: pre-war sample statistics (1926-1945). Panel C: post-war sam-
ple statistics (1945-2012). The table reports the mean (column 1), standard deviation
(column 2), minimum (column 3), maximum (column 4), skewness (column 5), kur-
tosis (column 6), first-order autoregressive coefficient AR(1) (column 7), correlation
between dividend growth and stock returns (column 8) and the correlations amongst
the three measures. Annual nominal data.

Panel A: 1926-2012
mean std min max skew kurt AR(1) ρ(dg,ret) correlations

1. Dividends with reinvestment 1.06 0.15 0.69 1.45 0.31 0.28 -0.09 0.62 1
2. Dividends without reinvestment 1.05 0.12 0.60 1.53 -0.50 5.85 0.28 0.09 0.42 1
3. Dividends inclusive of M&A cash 1.09 0.17 0.62 1.60 -0.14 1.09 0.13 0.07 0.26 0.73 1

Panel B: 1926-1945
mean std min max skew kurt AR(1) ρ(dg,ret) correlations

1. Dividends with reinvestment 1.01 0.18 0.69 1.40 0.29 0.28 0.26 0.67 1
2. Dividends without reinvestment 1.02 0.21 0.60 1.53 -0.06 1.18 0.25 0.11 0.50 1
3. Dividends inclusive of M&A cash 1.05 0.22 0.62 1.55 -0.10 0.63 0.22 0.05 0.46 0.97 1

Panel C: 1946-2012
mean std min max skew kurt AR(1) ρ(dg,ret) correlations

1. Dividends with reinvestment 1.07 0.14 0.75 1.45 0.47 0.29 -0.28 0.61 1
2. Dividends without reinvestment 1.06 0.07 0.83 1.30 0.56 2.32 0.31 0.06 0.39 1
3. Dividends inclusive of M&A cash 1.10 0.15 0.75 1.60 0.08 0.96 0.05 0.07 0.10 0.54 1
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Table 1.2: Dividend-price ratio: descriptive statistics. Panel A: full sample statis-
tics (1926-2012). Panel B: pre-war sample statistics (1926-1945). Panel C: post-war
sample statistics (1945-2012). The table reports the mean (column 1), standard devi-
ation (column 2), minimum (column 3), maximum (column 4), skewness (column 5),
kurtosis (column 6), first-order autoregressive coefficient AR(1) (column 7) and the
correlations amongst the three measures. Annual data.

Panel A: 1926-2012
mean std min max skew kurt AR(1) correlations

1. Dividends with reinvestment 3.88% 1.49% 1.11% 7.23% 0.31 -0.41 0.90 1
2. Dividends without reinvestment 3.75% 1.58% 1.14% 9.47% 0.79 1.06 0.79 0.94 1
3. Dividends inclusive of M&A cash 4.15% 1.35% 2.16% 9.70% 1.16 1.98 0.67 0.73 0.84 1

Panel B: 1926-1945
mean std min max skew kurt AR(1) correlations

1. Dividends with reinvestment 5.15% 1.04% 3.83% 7.23% 0.76 -0.46 0.48 1
2. Dividends without reinvestment 5.15% 1.61% 3.32% 9.47% 1.01 0.90 0.35 0.79 1
3. Dividends inclusive of M&A cash 4.89% 1.64% 3.01% 9.70% 1.25 2.00 0.38 0.79 0.99 1

Panel C: 1946-2012
mean std min max skew kurt AR(1) correlations

1. Dividends with reinvestment 3.50% 1.40% 1.11% 7.16% 0.56 -0.02 0.94 1
2. Dividends without reinvestment 3.33% 1.31% 1.14% 6.51% 0.42 -0.34 0.89 0.98 1
3. Dividends inclusive of M&A cash 3.93% 1.16% 2.16% 6.84% 0.66 -0.59 0.71 0.70 0.75 1
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Figure 1.2: Dividend growth rates (logs)

Figure 1.3: Dividend-price ratios
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1.3 Other Cash Flow Measures

Distribution events occurring during a company’s lifecycle can be divided into

ordinary and non ordinary ones. Ordinary distributions are usually considered to be re-

curring cash dividends14 and some liquidation dividends.15 Non ordinary distributions

include cash and stock dividends originating from an acquisition or reorganization of a

company, subscription rights, stock dividends of any kind and buybacks and issuances.

Which cash flows to include in the dividend measure has a substantial impact on divi-

dend growth and return (when using the dividend-price ratio as predictor) predictability.

Most authors (e.g., Chen (2009), van Binsbergen and Koijen (2010)) hold the traditional

“shareholder view,” which implies that the relevant cash flows are those effectively

received by the individual shareholders, in contrast to the recent “macro” perspective

where aggregate economy’s cash flows, such as repurchases and issuances of equity or

debt, are also included (Robertson and Wright (2006), Boudoukh et al. (2007), Larrain

and Yogo (2008)).

1.3.1 The role of M&A cash dividends

The present value relationship of Campbell and Shiller (1988a) suggests that

the price of a security today is the infinite sum of expected future dividends discounted

at a rate that can be time-varying. Most studies use only ordinary dividends and find

dividend growth to be unpredictable by the dividend-price ratio (Cochrane (2008)). As

a consequence, some authors (Robertson and Wright (2006), Boudoukh et al. (2007),

Larrain and Yogo (2008)) recently proposed to use aggregate cash flows.

Critics of the macro view argue that buybacks and issues are cash flows at the

14 CRSP distribution codes 1xxx.
15 CRSP distribution codes 2xxx
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aggregate economy level, but not necessarily for the individual investors.16 That is,

fewer or more shares today only affects the future dividend per share amount in the

present value equation.

Allen and Michaely (2003) note that both measures, either using only ordinary

dividends or including repurchases and issues, are incomplete. In fact, shareholders also

receive cash payouts and stock dividends from corporations through mergers and acqui-

sitions that are accomplished through cash or stock transactions. That is, shareholders

of the acquired firms receive either a cash or stock payment that can be viewed as a

liquidating or final dividend. This amount is non trivial and it is time-varying. Allen

and Michaely (2003) state that “these types of liquidating dividends seem to have a

significant weight in the aggregate payout of US corporations. For example, in 1999,

proceeds from cash M&As were more than the combined cash distributed to sharehold-

ers through dividends and repurchases combined...this component of payout has been

largely ignored in the literature. Over the last decade such (M&A cash) payments have

been around $240bn per year, or over 50% of aggregate payout if we also include divi-

dends and repurchases. Measuring and understanding this component of payout policy

is an important task for future research.”

Figure 1.4 shows the dynamics of an M&A transaction financed only with cash.

It is clear that cash financed mergers are like a liquidating dividend for the target share-

holders. Figures 1.5 and 1.6 show how M&A transactions can be financed with buy-

backs and stock issues, respectively. Figure 1.5 shows that the compensation paid to

target investors often comes directly from the existing assets of the buyer firm, directly

in the form of stocks to the target shareholders or indirectly in the form of cash to the

buyers’ shareholders.17 The choice of how to finance an M&A transaction is a function

16 Remaining shareholders receive compensation in the form of capital appreciation and are not re-
quired to participate in a secondary equity offering.

17 This holds unless the acquiring company issues debt or stock, receives the cash and pay target
investors with that cash.
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of other variables (e.g., tax regime, ownership control, etc.) and is beyond the scope of

this chapter. In conclusion, M&A cash dividends are an important source of investors’

cash flows.



19

Figure 1.4: Dynamics of a M&A transaction financed only with cash.
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Figure 1.5: Dynamics of a stock M&A transaction financed with buybacks.
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Figure 1.6: Dynamics of a M&A transaction financed by issuing stock.
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1.3.2 Stock M&A cash flows versus repurchases and issues

In this section I discuss the empirical evidence on M&A stock dividends, repur-

chases and issues.

M&A stock dividends are also cash flows at the aggregate level if the acquir-

ing company first repurchases its own shares and reissues them to target shareholders

(see Figure 1.5). As discussed in Fama and French (2001), “share repurchases are of-

ten treated as non-cash dividends, but this is not the case when repurchased stock is

reissued to the acquired firm in a merger,” in the form of stock dividends to the target

shareholders. Shareholders of the acquiring company do not put up any additional cash,

the firm’s cash is used to repurchase shares that are then given to the shareholders of

the target company, who ultimately get a stock dividend that can be liquidated to a new

stock market participant netting a positive cash flow.18

Fama and French (2001) report that cash dividends are disappearing and that

repurchases are often used to finance stock M&A deals (pages 35-37). Boudoukh et al.

(2007) propose an aggregate cash flow measure that includes repurchases and issues

and suggest that repurchases might have been substituting cash dividends over the last

20 years following the institution of SEC rule 10b-18 in 1982 and for tax reasons.19

Stock issues and their cash flow implications are also worth discussing. If a stock

issue happens today, there is a negative cash flow at the aggregate shareholder level.

However, if these stocks’ cash flows are later used to finance an M&A transaction, then

the “net” aggregate shareholders’ cash flows are zero. This net effect is not caught in the

net payout measure of Boudoukh et al. (2007), which only considers the aggregate value

of issues.20 This implies that only the net issues “kept within the company” (that is, not

18 The only exception is if the acquirer finances an acquisition of a target company by issuing stocks
reissued as stock dividend to the target shareholders. In this case the net aggregate effect would be null
(see Figure 1.6).

19 The Tax Reform Act was enacted in 1986.
20 Boudoukh et al. (2007) acknowledge that “the drawback of this measure is that it captures issuances
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used to finance M&A activities later on) are cash flows at the aggregate shareholder

level and should be taken into account.

Moreover, a measure of dividends that takes into account repurchases and issues,

such that used by Boudoukh et al. (2007), but not M&A cash dividends, is sometimes

negative (e.g. that is, in some years or months the net payout value is negative) and

therefore cannot be used to calculate dividend growth or a dividend-price ratio.21

The implications of these facts is that asset pricing tests employing incomplete

measures of cash distributions to shareholders are less likely to accurately capture eco-

nomic effects if M&A cash dividends, a fundamental source of individual shareholders’

and aggregate cash flows, are ignored in the dividend-price ratio and dividend growth

measures.

I next review the standard methodology used to calculate dividend data and point

out why M&A cash flows are excluded.

1.3.3 Methodology and dividends for CRSP index

Several authors use the CRSP NYSE-AMEX-NASDAQ value-weighted market

index to extract aggregate dividends. Most researchers extract dividends “top-down”

from the CRSP index as the difference between the cum dividend return (VWRETD)

minus the ex dividend return (VWRETX) multiplied by the previous ex dividend index

level. That is, Dt = (Rcum
t − Rex

t )× Pex
t−1. Some studies (e.g., Campbell and Shiller

(1988b), Goyal and Welch (2003), Ang and Bekaert (2007), Chen (2009)) first calculate

CRSP monthly dividends and sum them up to construct an annual measure. Others (e.g.,

Cochrane (1992), Boudoukh et al. (2007), Cochrane (2008), Koijen and Nieuwerburgh

not generating cash flows (e.g., acquisitions and stock grants).”
21 Boudoukh et al. (2007) adjust the npy by adding 0.1 to the yield.
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(2011)) back out CRSP dividends using directly the annual index.

However, it is important to notice a few points. First, the CRSP value-weighted

index is a value-weighted portfolio built using all issues listed on the NYSE-NASDAQ-

AMEX exchanges, except ADRs.22 It is therefore a proxy for the overall market index.

This implies that the constituents of the index are not only US common stocks, but other

securities such as certificates, SBIs, units, ETFs and closed-end funds listed on those

exchanges are also included. In fact, around 12.55% (474,894) of the total monthly

observations (3,782,752) from 1926 up to 2012 downloaded from the CRSP stock files

database, excluding ADRs and issues listed on ARCA, refer to non-US common stocks

(share codes 10 and 11). More precisely, 4% of the observations refer to common shares

of non-US companies (share code 13), 3% refer to closed-end funds and unit investment

trusts (share code 14), 3% refer to SBIs and Units (share codes 4x and 7x, except 73),

around 1% to ETFs (share code 73), 0.2% to closed-end fund companies incorporated

outside the US (share code 15), around 1% refer to REITs, 0.2% refer to certificates.

These non common stock issues average 5.30% of the CRSP market capitalization over

the full sample period, but over the last decade their weight increased to around 17%, a

non trivial amount.

As a consequence, the dividend measure extracted from the index is a noisy

proxy for common stock dividends, resembling more a measure of the aggregate divi-

dends within the CRSP universe. Moreover, this is potentially biased because a security

that contains a common stock (e.g., ETFs) and receives a dividend from it, does not

necessarily distribute the full gross amount of that dividend back to the investors.23

22 http://www.crsp.com/documentation/product/stkind/index_methodologies/stock_
file_indices.html.

23 As an example, the ProShares Ultra S&P500 2x leveraged ETF (ticker: SSO) is included in the CRSP
database (permno: 91307). As stated on the company website, only investment income and capital gains,
net of expenses, are distributed. Moreover, also short ETFs such as the ProShares Short SmallCap600
(ticker: SBB) are present in CRSP (permno: 91717). This will result in even more biased distribution
amounts.

http://www.crsp.com/documentation/product/stkind/index_methodologies/stock_file_indices.html.
http://www.crsp.com/documentation/product/stkind/index_methodologies/stock_file_indices.html.
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Second, and most importantly, dividends extracted from the CRSP value-weighted

index only include ordinary and liquidation dividends.24 This implies that a series of

cash flows, such as cash dividends received during a takeover, are not taken into ac-

count in the dividend measure. More precisely, the returns of the cum dividend and ex

dividend CRSP value-weighted indices are the same in those non-ordinary distribution

cases. However, ignoring such sources of dividends, especially in recent years where

cash dividends have been substituted by other forms of cash flows (Boudoukh et al.

(2007)) is hardly justifiable.

Lastly, as highlighted by Chen (2009), there is the issue of reinvestment of div-

idends that appears when extracting dividends from the CRSP index at the annual fre-

quency. CRSP computes quarterly or annual return series by reinvesting the dividends

at the cum-dividend stock market return. As a consequence, the dividend amounts ex-

tracted by the CRSP annual index are contaminated by the return dynamics and the

dividend growth measure inherits the behavior of stock returns. Given the fact that

returns are more volatile than dividends, dividend growth predictability is severely im-

pacted. As noted by Koijen and Nieuwerburgh (2011), the discrepancy in the dividend

growth and dividend-price ratio series resulting from different reinvestment assumptions

is substantial.

1.4 Predictive Regressions

Campbell and Shiller (1988a) derive the present value identity

d pt = c+Et

[
∞

∑
j=1

ρ
j−1(rt+ j)

]
−Et

[
∞

∑
j=1

ρ
j−1(∆dt+ j)

]
(1.1)

24 Specifically, only CRSP distribution codes 1xxx, 2xx2/2xx8 and, if available, 6xx2/6xx8 are in-
cluded. CRSP also requires all these entries to have a factor to adjust price (facpr) equal to 0 or -1.
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where rt+ j = log
[

Pt+ j+Dt+ j
Pt+ j−1

]
is the log return, ∆dt+ j = log

[
Dt+ j

Dt+ j−1

]
is log div-

idend growth rate, d pt = log
[

Dt
Pt

]
is the log dividend-price ratio and c is a constant.

Equation (1.1) is the theoretical justification for why the dividend-price ratio should

predict expected returns or dividend growth rates (or both), and it can be interpreted as

a dynamic generalization of the constant dividend-price ratio in the Gordon model.

1.4.1 Dividend and consumption growth predictability

I estimate standard dividend and consumption growth predictability regressions

∆dt+1 = ad +bd(dt− pt)+ εdg,t+1 (1.2)

∆ct+1 = ac +bc(dt− pt)+ εcg,t+1 (1.3)

where ∆dt+1 = ln(Dt+1/Dt) is the real25 log dividend growth, Dt+1 is the dividend

amount at time t + 1, ∆ct+1 is the real log consumption growth, dt − pt = ln(Dt/Pt) is

the log dividend-price ratio and Pt is the price at time t.

Panel A in Table 1.3 and Table 1.4 reports the results of regression (1.2) at annual

and quarterly frequencies, respectively. Panel C reports the results of the consumption

growth regression (1.3).26

In Panel A, the dividend growth and dividend-price ratio are always constructed

using the same dividend specification (e.g., if the dividend growth includes M&A cash

dividends, so will the dividend-price ratio). Over the full sample we see that there

is no predictability using the standard dividend measures used in the literature (mea-

sures 1 and 2). However, adding M&A cash dividends to both dividend growth and the

25 The regressions in this section based on nominal data yield very similar results.
26 Panels A-B-C of Table 1.5 show the results of the same regressions using public-only M&A cash

dividends. The results are qualitatively the same, except for return predictability, which is slightly weaker.
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dividend-price ratio results in strong predictability. Contrary to Chen (2009)27, I find

predictability post-war. The adjusted R2 of my measure is always higher than those of

the other dividend measures and the coefficients always significant. It seems therefore

that the absence of dividend growth predictability reported so far, both pre- and post-

war, reflects the incompleteness of the standard measures of cash flow employed in the

literature which do not take into account M&A cash dividends.28 Lastly, the sign on the

coefficient of the dividend-price ratio of my measure inclusive of M&A cash dividends

is, as it should be, negative. This is not the case with the coefficients of the first measure

where dividends are reinvested.

As far as consumption growth predictability is concerned, we see that it is sub-

stantially predictable by my dividend-price ratio. I find an adjusted R2 of 11.77% over

the full sample and 6.75% (10.03%) post-war at the annual (quarterly) frequency with

statistically significant coefficients, in contrast with both the standard dividend-price ra-

tios. This is consistent with the predictions of the long-run risk asset pricing model

(Beeler and Campbell (2012), Bansal et al. (2012), Jagannathan and Marakani (2015)).

In conclusion, these results suggest that M&A cash dividends help solve the div-

idend growth predictability puzzle described by Cochrane (2008). Moreover, they have

substantial explanatory power for aggregate consumption growth. Taking into account

these dividends results in a more complete measure of actual cash flows received by

investors. Not considering cash dividends from mergers and acquisitions reduces pre-

dictability. These dividends are important not only because their amount is cyclical and

non trivial in recent years, when their relative proportion of total aggregate cash flows

becomes relevant, but especially because the presence of dividend growth predictability

implies that cash flow news help explain the volatility of stock prices. Stock price vari-

27 His sample ends in 2005 and misses the market turmoil of 2007-2011 where cash flow amounts have
been subject to substantial shocks due to the financial crisis.

28 Table 1.5 Panel D reports the regression of the standard dividend growth on my dividend-price ratio
inclusive of M&A cash dividends. Results are now significant post-war.
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ation, often thought to be only justified by discount rate news (e.g., Cochrane (2011)),

can thus be traced back to cash flow news. I explore this issue more in detail in Sec-

tion 1.4.3, which discusses the fraction of the dividend-price ratio variance that can be

attributed, respectively, to time-varying expected returns and dividend growth.

Out-of-sample analysis

Following Goyal and Welch (2008) and Ferreira and Santa-Clara (2011), we

generate real-time, out-of-sample forecasts of dividend growth using a sequence of ex-

panding estimation windows.29 More precisely, we take a subsample of the first s ob-

servations t = 1,2, ...,s of the entire sample of T observations and estimate our dividend

growth regression (1.2). We denote the expected dividend growth conditional on time

s information by gs+1 = Es+1|s(∆ds+1). We then take the coefficients âi
s, b̂i

s estimated

using information available up to time s and predict the dividend growth at time s+1:

ĝs+1 = âi
s + b̂i

s(d
i
s− ps) (1.4)

where i = 1,2,3 indicate the cash flow measures described in the previous sections.

We follow this process for s = s0, ...,T − 1, generating a sequence of out-of-

sample dividend growth forecasts. In order to start the procedure, we set the initial

sample size s0 equal to half of the full sample (e.g., 45 years30). Using out-of-sample

forecasts based on previously available information replicates what a forecaster could

have done in real time. We evaluate the performance of the out-of-sample forecasts

29 The literature focuses on out-of-sample excess returns predictability, but the methodology can be
applied to dividend growth as well.

30 We choose s0 = 45 (e.g. 1926-1971) in order to have enough initial data to get a reliable estimate
at the start of evaluation period (45 years, approximately half of the sample, from 1966-2012) and to be
consistent with Goyal and Welch (2008) who also choose an evaluation period of half the sample in their
out-of-sample analysis.
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through the out-of-sample (OOS) R2:

OOS R2 = 1− MSEP

MSEM
, (1.5)

where MSEP is the mean square error of the out-of-sample predictions from the model:

MSEP =
1

T − s0

T−1

∑
s=s0

(∆ds+1− ĝs+1)
2 (1.6)

and MSEM is the mean square error of the historical sample mean:

MSEM =
1

T − s0

T−1

∑
s=s0

(∆ds+1− ¯∆ds)2 (1.7)

where ∆d̄s is the historical mean of dividend growth up to time s. This out-of-sample

R2 is positive (negative) when the model with the lagged dividend-price ratio predicts

dividend growth better (worse) than the historical average of dividend growth. We eval-

uate the statistical significance of the results using the MSE-F statistic proposed by

McCracken (2007),

MSE−F = (T − s0)(
MSEM−MSEP

MSEP
) (1.8)

which tests for the equality of the two MSEs and takes into account nested fore-

cast models. Table 1.6 (top panel) reports the results. We see that the only measure

with strong out-of-sample dividend growth predictability is the one that takes into ac-

count M&A cash dividends. OOS R2 values are positive and equal to 6.82% (1.73%)

at annual (quarterly) frequency for that measure, while those of the other measures are

all negative. Moreover, the MSE-F statistic is 3.00 (3.02), significant at the 5% level.

Using other values for s0 as a robustness check results in even stronger out-of-sample

predictability. Figures 1.7 and 1.8 (top panel) show the cumulative squared prediction
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errors of the prevailing mean minus the cumulative squared prediction errors of the al-

ternative model (Equation (1.4)) at the annual and quarterly frequency, respectively. We

see that using my measure the out-of-sample performance is always strong except during

the period 2000-2005 at quarterly frequency, where the historical mean performs better.

The performance of the standard dividend measures are flat or negative, confirming that

the alternative model does not improve on a forecast based on the prevailing mean for

those measures. Overall, this confirms the in-sample results and suggests that M&A

cash dividends are a fundamental component of aggregate cash flows both statistically

and economically.

In conclusion, using my M&A cash dividends in the construction of both divi-

dend growth and the dividend-price ratio, we have strong dividend growth predictability

both in-sample and out-of-sample, in contrast to the results obtained using standard div-

idend measures.

1.4.2 Return predictability

We estimate the following standard return predictive regression:

rt+1 = ar +br(dt− pt)+ εr,t+1 (1.9)

where rt+1 is the CRSP cum dividend log excess return (e.g., ln(RCRSP)− ln(R f ), with

RCRSP
t+1 is the CRSP cum dividend gross return (e.g., VWRETD) and R f is the gross risk-

free rate.) and dt − pt is the lagged dividend-price ratio constructed using the various

dividend measures. Annual (quarterly) results are reported in Panel B of Table 1.3 (Ta-

ble 1.4).

Over the full sample my predictor has an annual (quarterly) adjusted R2 of 4.40%

(1.59%), the highest, but it is post-war, when M&A cash dividends become substantial,
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that we have the largest predictability with an adjusted (annual) R2 of 10.62% (2.83%),

almost 5% (1.5%) more than those of the standard dividend measures. All coefficients

are statistically significant at the 5% level. As already discussed by Chen (2009), there

is no return predictability pre-war. I also calculate the Stambaugh (1999) coefficient bias

for my cash M&A measure to avoid possible criticisms related to statistical inference

in the presence of near-integrated regressors (e.g., Ferson et al. (2003), Campbell and

Yogo (2006), Moon and Velasco (2014)). The bias is extremely small (0.02) because

both the autocorrelation of my cash M&A dividend-price ratio and the error covariance

(correlation) are small, 0.67 (Table 1.2) and -0.033 (-0.75), respectively, over the full

sample.

Out-of-sample analysis

We follow the same procedure adopted in the out-of-sample analysis of dividend

growth31 to forecast the excess return equation (1.9).32 Results are reported in Table 1.6

(bottom panel). We see that out-of-sample my dividend measure is the only one that is

strongly significant with a MSE-F statistic of 3.44 (3.79) and with an out-of-sample R2

of 7.73% (2.16%) at annual (quarterly) frequency. The standard dividend-price ratios

perform badly out-of-sample, as already reported by Goyal and Welch (2008). It is

important to note that my dividend measure beats both measures out-of-sample using

any initial estimation sample s0.

Figures 1.7 and 1.8 (bottom panel) show the cumulative squared prediction er-

rors of the prevailing mean minus the cumulative squared prediction errors of the alter-

31 A vast literature discusses out-of-sample excess returns predictability. See, for example, Goyal and
Welch (2008), Campbell and Thompson (2008), Rapach et al. (2010), Cenesizoglu and Timmermann
(2012), Johannes et al. (2014).

32 Campbell and Thompson (2008) state that all forecasts tend to underpredict returns when log returns
are used. This suggests that our forecasts are conservative.
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native model (1.9). We see that my M&A cash dividend measure does not undergo any

dry spells with poor out-of-sample performance, in constrast with the standard dividend

measures which have an extremely weak out-of-sample performance over the period

1994-1999. All measures perform well from 1999 to 2003, but only my cash M&A

measure performs well after that. Goyal and Welch (2008) (p. 1456) report that out-of-

sample predictability is dependent on years up to and especially during the years of the

Oil Shock 1973-1975. We see that this is only partially true for my predictor. In fact,

both at annual and quarterly frequency, the alternative model performs very well during

the period 1998-2005. Goyal and Welch (2008) and Campbell and Thompson (2008)

note that the ability of valuation ratios to forecast stock returns is weakest in the period

post-1980, which includes the great equity bull market at the end of the twentieth cen-

tury. My measure performs best over that period, suggesting that today merger activity

has a strong impact on future stock returns.

In conclusion, using my M&A cash dividends in the construction of the dividend-

price ratio results in strong evidence of return predictability, both in-sample and out-of-

sample.
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Figure 1.7: Out-of-sample dividend growth and excess return predictability (annual).
This figure plots the cumulative squared prediction errors of the null minus the cumu-
lative squared prediction error of the alternative. The alternative are models (1.4) and
(1.9). The null is the prevailing mean.

Figure 1.8: Out-of-sample dividend growth and excess return predictability (quar-
terly). This figure plots the cumulative squared prediction errors of the null minus
the cumulative squared prediction error of the alternative. The alternative are models
(1.4) and (1.9). The null is the prevailing mean.
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Table 1.3: Predictive regressions of excess returns, dividend and consumption growth
at annual frequency. Panel A: ∆dt+1 is the real dividend log growth between t and
t +1, dt − pt is the log dividend-price ratio. Panel B: rt+1 is the CRSP cum dividend
log excess return (e.g., ln(RCRSP

t+1 )− ln(R f )), dt − pt is the log dividend-price. RCRSP
t+1 is

the CRSP cum dividend gross return (VWRETD), R f is the gross risk-free rate. Panel
C: ∆ct+1 is the real (log) consumption growth. Annual real data, sample 1926-2012
(1929-2012 for consumption growth). Newey West (5 lags) standard errors. ***, **
and * denote significance at the 1%, 5% and 10% level, respectively.

Annual 1926-2012 1926-1945 1946-2012

Panel A: ∆dt+1 = ad +bd(dt− pt)+ εdg,t+1

bd adj. R2(%) bd adj. R2(%) bd adj. R2(%)
1. Dividends with reinvestment .00 -1.18% -.05 -5.47% .02 -0.99%
(t-stat) (0.12) (-0.24) (0.83)
2. Dividends without reinvestment -.07 8.03% -.61*** 77.54% -.01 -1.07%
(t-stat) (-1.67) (-7.78) (-0.48)
3. Dividends inclusive of M&A cash -.23*** 17.54% -.60*** 77.08% -.12* 4.34%
(t-stat) (-3.09) (-9.82) (-1.97)

Panel B: rt+1 = ar +br(dt− pt)+ εr,t+1

br adj. R2(%) br adj. R2(%) br adj. R2(%)
1. Dividends with reinvestment .10*** 3.58% .53** 7.69% .11*** 5.99%
(t-stat) (2.82) (2.44) (3.19)
2. Dividends without reinvestment .08* 1.86% .02 -5.82% .11** 6.67%
(t-stat) (1.73) (0.17) (3.12)
3. Dividends inclusive of M&A cash .15** 4.40% 0.07 -5.20% .20*** 10.62%
(t-stat) (2.40) (0.57) (3.59)

Panel C: ∆ct+1 = ac +bc(dt− pt)+ εcg,t+1

bc adj. R2(%) bc adj. R2(%) bc adj. R2(%)
1. Dividends with reinvestment -.00 -1.21% -.02 -6.12% -.00 -1.56%
(t-stat) (-0.11) (-0.33) (-0.00)
2. Dividends without reinvestment -.01 2.10% -.10** 30.73% -.00 -0.81%
(t-stat) (-0.88) (-2.45) (-0.65)
3. Dividends inclusive of M&A cash -.03* 11.77% -.10*** 32.19% -.02** 6.75%
(t-stat) (-1.74) (-2.92) (-2.30)
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Table 1.4: Predictive regressions of excess returns, dividend and consumption growth
at quarterly frequency. Panel A: ∆dt+1 is the 4-quarters rolling real dividend growth,
dt − pt is the log dividend-price ratio. Panel B: rt+1 is the CRSP cum dividend log
excess return (e.g., ln(RCRSP

t+1 )− ln(R f )), dt − pt is the log dividend-price. RCRSP
t+1 is the

CRSP cum dividend gross return, R f is the gross risk-free rate. Panel C: ∆ct+1 is the
4-quarters rolling real consumption growth. Quarterly real data, sample 1926-2012
(1947-2012 for consumption growth). Newey West (5 lags) standard errors. ***, **
and * denote significance at the 1%, 5% and 10% level, respectively.

Quarterly 1926-2012 1926-1945 1946-2012

Panel A: ∆dt+1 = ad +bd(dt− pt)+ εdg,t+1

bd adj. R2(%) bd adj. R2(%) bd adj. R2(%)
1. Dividends with reinvestment -.01 2.90% -.12*** 33.85% -.00 -0.36%
(t-stat) (-1.57) (-5.48) (-0.12)
2. Dividends without reinvestment -.02* 4.53% -.12*** 38.64% -.00 -0.06%
(t-stat) (-1.88) (-6.49) (-0.49)
3. Dividends inclusive of M&A cash -.05*** 8.22% -.13*** 42.63% -.03* 1.84%
(t-stat) (-3.50) (-8.30) (-1.66)

Panel B: rt+1 = ar +br(dt− pt)+ εr,t+1

br adj. R2(%) br adj. R2(%) br adj. R2(%)
1. Dividends with reinvestment .02 0.69% .05 -0.52% .03** 1.60%
(t-stat) (1.51) (0.66) (2.27)
2. Dividends without reinvestment .02 0.63% .05 -0.68% .03** 1.49%
(t-stat) (1.48) (0.62) (2.20)
3. Dividends inclusive of M&A cash .05** 1.59% .06 -0.18% .05*** 2.83%
(t-stat) (2.00) (0.77) (3.25)

Panel C: ∆ct+1 = ac +bc(dt− pt)+ εcg,t+1

bc adj. R2(%) bc adj. R2(%) bc adj. R2(%)
1. Dividends with reinvestment -.00 0.05% - - -.00 0.05%
(t-stat) (-0.61) - (-0.61)
2. Dividends without reinvestment -.00 0.44% - - -.00 0.44%
(t-stat) (-0.84) - (-0.84)
3. Dividends inclusive of M&A cash -.01*** 10.03% - - -.01*** 10.03%
(t-stat) (-2.89) - (-2.89)
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Table 1.5: Predictability: Robustness checks. Panel A: Predictive regressions of divi-
dend growth using a dividend measure that includes only CRSP M&A cash dividends.
∆dt+1 is the real dividend log growth between t and t + 1, dt − pt is the log dividend-
price ratio. Panel B: Predictive regressions of excess returns using a dividend measure
that includes only CRSP M&A cash dividends. rt+1 is the CRSP cum dividend log
excess return (e.g., ln(RCRSP

t+1 )− ln(R f )), dt − pt is the log dividend-price. RCRSP
t+1 is the

CRSP cum dividend gross return (VWRETD), R f is the gross risk-free rate. Panel C:
Predictive regressions of consumption growth using a dividend measure that includes
only CRSP M&A cash dividends. ∆ct+1 is the real (log) consumption growth. Panel
D: Predictive regressions of standard dividend growth (CRSP with reinvestment) using
a dividend-price ratio that includes M&A cash dividends.

1926-2012 1926-1945 1946-2012

Panel A: ∆dt+1 = ad +bd(dt− pt)+ εdg,t+1

bd adj. R2(%) bd adj. R2(%) bd adj. R2(%)
Dividends inclusive of public-only M&A cash (annual) -.21*** 17.86% -.60*** 77.08% -.14** 7.79%
(t-stat) (-3.38) (-9.82) (-2.37)
Dividends inclusive of public-only M&A cash (quarterly) -.04*** 7.18% -.13*** 42.63% -.03* 2.46%
(t-stat) (-3.29) (-8.30) (-1.87)

Panel B: rt+1 = ar +br(dt− pt)+ εr,t+1

br adj. R2(%) br adj. R2(%) br adj. R2(%)
Dividends inclusive of public-only M&A cash (annual) .10* 1.94% .08 -5.20% .11** 4.33%
(t-stat) (1.85) (0.57) (2.26)
Dividends inclusive of public-only M&A cash (quarterly) .03* 0.86% .06 -0.18% .03** 1.27%
(t-stat) (1.68) (0.77) (2.13)

Panel C: ∆ct+1 = ac +bc(dt− pt)+ εcg,t+1

bc adj. R2(%) bc adj. R2(%) bc adj. R2(%)
Dividends inclusive of public-only M&A cash (annual) -.02 9.16% -.10*** 32.19% -.01* 5.17%
(t-stat) (-1.63) (-2.92) (-1.79)
Dividends inclusive of public-only M&A cash (quarterly) -.00** 8.29% - - -.00** 8.29%
(t-stat) (-2.51) - (-2.51)

Panel D: ∆dCRSP
t+1 = ad +bd(dt− pt)+ εdg,t+1

bd adj. R2(%) bd adj. R2(%) bd adj. R2(%)
Dividends inclusive of M&A cash (annual) .06 0.55% -.06 -4.53% 0.12** 5.20%
t-stat (1.37) (-0.64) (2.51)
Dividends inclusive of M&A cash (quarterly) -.03** 4.99% -.10*** 33.23% 0.00 -0.37%
t-stat (-2.13) (-5.43) (0.10)
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Table 1.6: Out-of-sample dividend growth and excess return predictability. OOS R2 =
1− MSEP

MSEM
. The MSE-F statistic of McCracken (2007) is defined as MSE−F = (T −

s0)(
MSEM−MSEP

MSEP
). The cash flows in (1) are the dividends extracted from the annual

CRSP index return (e.g., VWRETD, subject to the reinvestment issue), in (2) are the
sum of monthly dividends extracted from CRSP index returns (no reinvestment issue),
in (3) are the sum of all the dividends present in CRSP database with distribution codes
1xxx, 2xxx with M&A cash dividends being CRSP dividends with distribution codes
from 3xxx up to 3400 before 1980 and SDC M&A cash dividends with US public buyer
and US target post 1980. Annual and quarterly real data, estimation sample s0 = 45
(s0 = 172) years (quarters) from 1926-1971, forecasting sample 1972-2012. ***, **
and * denote significance at the 1%, 5% and 10% level, respectively.

Panel A: Dividend Growth
Annual Quarterly

OOS R2 MSE-F OOS R2 MSE-F
1. Dividends with reinvestment -4.76% -1.86 -16.50% -24.36
2. Dividends without reinvestment -63.81% -15.97 -25.23% -34.65
3. Dividends inclusive of M&A cash 6.82% 3.00** 1.73% 3.02**

Panel B: Returns
Annual Quarterly

OOS R2 MSE-F OOS R2 MSE-F
1. Dividends with reinvestment -7.97% -3.02 -0.23% -0.40
2. Dividends without reinvestment -0.06% -0.02 -0.15% -0.27
3. Dividends inclusive of M&A cash 7.73% 3.44*** 2.16% 3.79***
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1.4.3 Long run predictability

Following Cochrane (2008), we look at long-horizon coefficients implied from

the one-year regression coefficients in order to determine how much of the variation in

the dividend-price ratio is explained by changes in dividends and discount rates.

Consider a first-order VAR represention of log returns, log dividend-price ratios and log

dividend growth

rt+1 = ar +br(dt− pt)+ ε
r
t+1 (1.10)

∆dt+1 = ad +bd(dt− pt)+ ε
d
t+1 (1.11)

dt+1− pt+1 = ad p +φ(dt− pt)+ ε
d p
t+1 (1.12)

The Campbell and Shiller (1988a) present value identity (1.1) implies that the regression

coefficients in (1.10)-(1.12) are related by

br ≈ 1−ρφ +bd (1.13)

where ρ is defined as ρ = exp(−d p)
1+exp(−d p)

, where d p is the mean log dividend-price ratio. If

we divide (1.13) by 1−ρφ we obtain

br

1−ρφ
− bd

1−ρφ
≈ 1 (1.14)

blr
r −blr

d ≈ 1 (1.15)

It is clear that one of (1.10)-(1.12) is redundant, as one can infer the data, coefficients

and error of any one equation from those of the other two. The long run coefficients

blr
r and blr

d in (1.15) are, respectively, the regression coefficients of long-run returns

∑
∞
j=1 ρ j−1rt+ j and dividend growths ∑

∞
j=1 ρ j−1∆dt+ j on the dividend-price ratio at time

t. More precisely, by combining the VAR described above with the present value relation
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(1.1), we can calculate the VAR implied long-horizon coefficients for each horizon K as

bK
r =

br(1−ρKφ K)

1−ρφ

bK
d =

bd(1−ρKφ K)

1−ρφ

bK
d p = ρ

K
φ

K

Note that when K = ∞ we obtain again equation (1.15). blr
r and blr

d represent the fraction

of the variance of the dividend-price ratio that can be attributed, respectively, to time-

varying expected returns and dividend growth (see Cochrane (2008), van Binsbergen

and Koijen (2010), Golez (2014)). Table 1.7 reports the estimates of the VAR system

and long run coefficients, along with the t-statistics of two null (joint) hypotheses. The

first tests blr
r = 0,blr

d =−1, while the second blr
r = 1,blr

d = 0 as done in Cochrane (2008)

and Maio and Santa-Clara (2014). The standard errors of the long-run coefficients blr
r

and blr
d are calculated by the delta method.

Looking at blr
r and blr

d for the measure with reinvestment of dividends, we find

that approximately all the variation in the dividend-price ratio is accounted for by changes

in the discount rate and none by news about future cash flows, consistent with Cochrane

(2008) and Golez (2014), and the null of no return predictability is rejected with a t-

stat value of 2.65. Using the measure without reinvestment of dividends, we see that

changes in the dividend-price ratio are equally explained by variation in discount rates

and dividend growth, but both tests reject the statistical significance of the coefficients.

However, when we use my dividend measure that includes M&A cash dividends we

see a different result. Both expected returns and expected dividend growth help explain

the variation in the dividend-price ratio. Expected dividend growth explains approx-

imately 60% of the variation in the dividend-price ratio, while time-varying discount



40

Table 1.7: OLS forecasting regressions of returns, dividend growth and dividend-
price ratio on the lagged dividend-price ratio using the various dividend measures.
The first row presents the regression rt+1 = ar + br(dt − pt) + εr

t+1, the second row
∆dt+1 = ad +bd(dt− pt)+εd

t+1 and the third row dt+1− pt+1 = ad p+φ(dt− pt)+ε
d p
t+1.

rt+1 is the CRSP cum dividend log return (e.g., ln(Rt+1)), dt − pt is the log dividend-
price. The lagged dividend-price ratio used as regressor includes in columns (1)-(3) the
dividends extracted from the annual CRSP index return (e.g., VWRETD, subject to the
reinvestment issue), in columns (4)-(6) the sum of monthly dividends extracted from
CRSP index returns (no reinvestment issue), in columns (7)-(9) the sum of all the div-
idends present in CRSP database with distribution codes 1xxx, 2xxx with M&A cash
dividends being CRSP dividends with distribution codes from 3xxx up to 3400 before
1980 and SDC M&A cash dividends with US public buyer and US target post 1980.
The “implied” column calculates each coefficient based on the other two coefficients
and the identity br = 1−ρφ + bd . ρ is calculated as ρ = exp(−d p)

1+exp(−d p)
, with the mean

log dividend-price ratio being constructed under the different dividend measures. The
long-run returns forecast coefficient blr

r is computed as blr
r = br

1−ρφ
and the long-run

dividend-growth forecast coefficient blr
d as blr

d = bd
1−ρφ

. Annual nominal data, sample
1926-2012. Newey West (5 lags) standard errors.

Divs with reinv. Divs w/o reinv. Divs incl. M&A cash
b̂, φ̂ σ(b̂) implied b̂, φ̂ σ(b̂) implied b̂, φ̂ σ(b̂) implied

r 0.096 0.036 0.099 0.071 0.048 0.071 0.154 0.066 0.121
∆ d 0.003 0.030 0.001 -0.082 0.059 -0.081 -0.234 0.089 -0.201
dp 0.936 0.040 0.938 0.876 0.054 0.876 0.670 0.069 0.636
ρ 0.966 0.967 0.962

blr
r 1.004 0.38 0.467 0.31 0.432 0.19

blr
d 0.027 0.32 -0.534 0.38 -0.66 0.25

t(H0 : blr
r = 0,blr

d =−1) 2.65*** 1.50 2.33**
t(H0 : blr

r = 1,blr
d = 0) 0.08 -1.39 -2.61***

rates account for the remaining 40%. Moreover, we see that both (joint) hypotheses are

rejected, implying that both expected return and dividend growth help explain variation

in the dividend-price ratio. These results show that expectations about future cash flows

affect today’s stock prices, even more than news about future discount rates. This is

not completely unexpected, as news on mergers and acquisitions is amongst the most

price-sensitive information available on the market and it is reassuring to know that us-

ing a more comprehensive measure of dividends we can link cash flows news and stock

market volatility.
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1.4.4 Predictability during M&A waves

It is a well known fact that M&A activity seems to happen in waves (e.g.,

Mitchell and Mulherin (1996), Mulherin and Boone (2000), Andrade et al. (2001),

Brealey and Myers (2003)). We also know that evidence of return predictability is

stronger during recessions, as recently suggested by Rapach et al. (2010), Henkel et al.

(2011), Dangl and Halling (2012) and Gargano et al. (2014). Therefore, a natural ques-

tion is whether there exists a link between these M&A waves and business cycles. In

other words, is high (low) M&A activity related to expansions (recessions)? Is pre-

dictability higher during periods of low M&A activity?

To answer the first question, I define periods of high M&A activity to be those years

above the 80% percentile of my nominal M&A cash dividends timeseries standardized

by the US nominal GNP to account for the non-stationarity of the series.33 Since we

deal with annual data starting from 1926, this results in 18 years of high M&A activity,

all of them post-1972. The remaining years are labeled periods of low M&A activ-

ity. I use data from the NBER US Business Cycle Expansions and Contractions table

to define the recession periods. I establish the link between M&A activity and expan-

sions/recessions by looking at the degree of association, φ 34, and at Pearson’s χ2 test

between the (binary) variables NBER recessions and periods of low M&A activity post-

1972. I find φ = 0.23 over the full sample with a statistically significant χ2 statistic

of 4.80, rejecting the null hypothesis of independence between the two variables. This

positive relationship between periods of low M&A activity and recessions can also be

noted by looking at years 2002 and 2009 when M&A activity was extremely low. This

result is unsurprising, as companies prefer to use cash for acquisitions when capital mar-

33 Using other top percentiles (e.g., 90% or 70%) or real M&A cash dividends the results are qualita-
tively the same.

34 φ =

√
χ2

N where N is the grand total of observations (e.g., 87). In a 2x2 case the φ coefficient
coincides with the Pearson correlation coefficient.
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kets are liquid, debt issuance is easier, and equity valuations are high (Harford (2005)).

In order to analyze the relationship between recessions and cash M&A activity, we can

also look at the mean and median dividend-price ratio under the two regimes. The me-

dian log dividend-price ratios are -3.45 and -3.19 during the high M&A and low M&A

periods, respectively. The ratio is therefore countercyclical (Campbell et al. (1996),

Ch.7), higher during periods of low M&A activity, which are positively correlated with

recessions. During recessions market prices are low and dividends are sticky (Fama and

French (2002)), resulting in higher dividend-price ratios.

I now look at both in-sample and out-of-sample excess return predictability. I run the

following predictive regressions over the full sample:

rt+1 = α +β (dt− pt)I{t=high_M&A}+ γ(dt− pt)(1− I{t=high_M&A})+ εt+1 (1.16)

rt+1 = a+η(dt− pt)+φ(dt− pt)I{t=high_M&A}+ εt+1 (1.17)

where rt+1 is the CRSP cum dividend log excess return35 and dt − pt is the lagged

dividend-price ratio constructed using my cash M&A measure.

Equation (1.17) allows us to test the H0 : φ = β − γ = 0 (e.g., whether there is dif-

ferent in-sample predictability between the two periods), while equation (1.16) shows

the individual high versus low M&A period coefficients. We notice that in-sample

both coefficients are statistically significant, with the coefficient of the high M&A pe-

riod (0.15) approximately equal to the low M&A period one (0.15). Since dividend-

price ratios are slightly higher during the low M&A periods, the total effects (e.g.,

β (dt − pt)I{t=high_M&A} and γ(dt − pt)(1− I{t=high_M&A})) are similar. We cannot re-

ject the null hypothesis that the φ coefficient is different from 0. In other words, these

results confirm our previous finding that adding M&A cash dividends improves (excess)

35 e.g., ln(RCRSP)− ln(R f ). RCRSP
t+1 is the CRSP cum dividend gross return (e.g., VWRETD) and R f is

the gross risk-free rate.
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returns predictability in general, but there is not much difference between the two peri-

ods for (in-sample) predictability. However, the most interesting results appear out-of-

sample. I compute R2 values separately for the recession and expansion samples. I find

an out-of-sample R2 of 12.47% during low cash M&A periods (e.g., recessions), while

the R2 during expansions is 3.12%.36 This suggests that most of the out-of-sample re-

turn predictability comes from periods of low M&A cash flows. This is consistent with

Rapach et al. (2010), Henkel et al. (2011), who find a similar result using a regime-

switching VAR methodology (p.576, “in recessions, ... the VAR or the RSVAR would

be preferable (out-of-sample) to the historical average”) and with Dangl and Halling

(2012). Summing up, our results suggest that we have strong out-of-sample return pre-

dictability during periods of low M&A activity, related to recessions, but relatively little

during periods of high M&A activity, related to expansion periods.

1.4.5 Predictability from individual components

In the previous section we looked at the predictability of “complete” dividend-

price or payout ratios. We now look at the impact of the individual cash flow components

on return predictability. We run the following regression:

rt+1 = α +β (dCRSP
t − pt)+ γ(dcash_M&A

t − pt)+δ (neyt)+ εt+1 (1.18)

where rt+1 is the CRSP cum dividend log excess return (e.g., ln(RCRSP
t+1 )−ln(R f )),

RCRSP
t+1 is the CRSP cum dividend gross return (VWRETD), R f is the gross risk-free rate,

dCRSP
t − pt is the log CRSP without reinvestment dividend-price ratio, dcash_M&A

t − pt is

the cash M&A only log dividend-price ratio and neyt = ln(1+NP) is the net issues ratio

36 Our out-of-sample analysis runs from 1972 up to 2012 (40 years), with 17 years of high M&A and
23 years of low M&A. Results using different initial estimation samples are qualitatively similar.
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of Boudoukh et al. (2007) that includes only repurchases and issues.37 Our full sample

starts in 1961 since M&A cash dividends are zero during some years before that date

and end in 2010, the last available date for ney. Table 1.8 reports the results of the re-

gression of the excess return on the various cash flow components. We notice that when

taken individually, none of the components is statistically significant, which suggests

an omitted variable bias. However, when we include all the predictors in the regression

we see that the only significant component is the cash M&A dividend-price ratio. In

other words, M&A cash dividends have substantial predictive power for excess returns

compared to the ordinary dividends or repurchases and issues. It is also interesting that

the net equity yield is never significant, neither by itself nor when pooled with the other

predictors, consistent with the findings of Eaton and Paye (2013), who argue that this is

mainly due to the issuance component. This suggests that repurchases and issues tend

to be less important than M&A cash dividends for return predictability. Overall, these

results confirm the importance of the M&A cash dividends: M&A activity has a big

impact on stock prices, not only ex-ante (e.g., stock prices incorporate the probability

of a takeover) but also ex-post (e.g., higher M&A activity today predicts higher returns

tomorrow).

37 They add 1 because the ratio can be negative.
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Table 1.8: Excess return predictability regressions on the individual cash flow compo-
nents. rCRSP

t+1 is the CRSP cum dividend log excess return (e.g., ln(RCRSP
t+1 )− ln(R f )),

di
t − pt is the log dividend-price. RCRSP

t+1 is the CRSP cum dividend gross return
(VWRETD), R f is the gross risk-free rate. dCRSP

t − pt is the log CRSP without rein-
vestment dividend-price ratio, dcash_M&A− pt is the cash M&A only log dividend-price
ratio and neyt = ln(1+NP) is the net issues ratio of Boudoukh et al. (2007) that in-
cludes only repurchases and issues. Annual data, sample 1961-2010. Newey West (3
lags) standard errors. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively.

dCRSP
t − pt .09 .12** .08 .09

(1.67) (2.25) (1.11) (1.27)
dcash_M&A

t − pt .01 .02** .02* .02**
(1.49) (2.17) (1.99) (2.30)

neyt -1.63 -.44 -2.60 -1.27
(-1.03) (-0.22) (-1.56) (-0.59)

adj. R2 1.94% 0.86% -0.24% 5.68% -0.14% 3.13% 4.34%
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1.4.6 Comparison with additional cash flow measures

I now look at alternative total cash flow predictors that have been recently pro-

posed to address the conflicting evidence on return predictability. I focus on the net

payout yield of Boudoukh et al. (2007)38, which includes repurchases and issues and

the payout price ratio of Robertson and Wright (2006), which uses the total payout (e.g.,

repurchases, issues, M&A, private equity transactions) of the economy based on FED

data.39 None of these predictors addresses the dividend growth predictability puzzle,

because repurchases and net issues are not dividends.

Net Payout Yield

Table 1.9 reports the in-sample predictability results.40 We see that the net pay-

out yield performs better over the full sample. However, the performance is sensitive

to the inclusion of data from the years 1929-1930, when the net payout measure per-

forms extremely well, consistent with the findings of Cochrane (2008) and Eaton and

Paye (2013). Post-war the net payout yield, as suggested by the adjusted R2, has sub-

stantially less explanatory power than my dividend-price ratio. As reported in Figure

1 of Boudoukh et al. (2007), the share repurchases and issues start to be relevant only

post-1970. As a consequence, one would expect the net payout yield to perform better

when repurchases and issues start to be a substantial amount. This does not seem to be

the case. In other words, as reported in Figure 1.1, both M&A and repurchases/issues

cash flows boom post-war, but the M&A cash dividends tend to explain excess return

predictability the most. We now analyze out-of-sample predictability (Table 1.10 and

Figure 1.9 (top panel)), using half of the sample (e.g., 45 years) for initial estimation.

We see that the net payout yield performs relatively poorly out-of-sample, with an OOS

38 We use their “lcrspnpy” variable, their best measure, which is available monthly up to 2010.
39 The FED does not provide a clear split of the components nor details on how they compute them.
40 Their data are available only for the period 1927-2010.
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R2 of -17.03%. My measure instead has an OOS R2 of 8.35% and a large and significant

MSE-F statistic of 3.65.

In conclusion, my cash M&A measure seems to perform better than the net

payout yield both in-sample (post-war) and out-of-sample.

Payout Price Ratio

The CRSP database does not take into account intercorporate cross-holdings. As

a consequence, using it to extract dividends might result in a positive biased amount of

ordinary dividends that could affect predictability results. Robertson and Wright (2006)

therefore propose to use a total payout ratio using the total nonfinancial U.S. corporate

sector data from the Federal Reserve Board Financial Accounts Tables.41 We follow

their approach and use Table B.102 line 36 (Market Value of equities outstanding) for

the market value of equities, Table F.102 line 39 (net new equity issues)42 for the net

equity issues (it includes cash M&A plus repurchases minus public and private equity

issues) and Table F.102 line 3 (net dividends) for the ordinary cash dividends. We con-

struct annual total payout summing the net dividends and the net equity issues every

year. Table 1.9 reports the in-sample predictability results. Data are available only post-

war starting from 1946, so our full sample has 66 observations. The total payout price

ratio has a barely statistically significant coefficient at the 5% level and an adjusted R2

of 5.34% compared to the 10.62% of our measure. Out-of-sample (initial estimation

sample s0 = 45, thus forecasts start in 1991) we see that my measure has more explana-

tory power than the payout price measure, which has an OOS R2 of -8.56% (Table 1.10).

Figure 1.9 (bottom panel) reports the cumulative squared prediction errors of the null

minus the alternative model. We see that the performance of the total payout price ratio

is good for the first few years and then collapses in 2007 at the beginning of the recent

41 also known as Flow of Funds tables.
42 equivalently, Table R.102 line 10.
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Table 1.9: Comparison of excess return predictability between my dividend-price ratio
inclusive of M&A cash dividends versus (1) the net payout yield measure of Boudoukh
et al. (2007), (2) the payout price ratio proposed by Robertson and Wright (2006).
rCRSP

t+1 is the CRSP cum dividend log excess return (e.g., ln(RCRSP
t+1 )− ln(R f )), di

t − pt is
the log dividend-price. RCRSP

t+1 is the CRSP cum dividend gross return (VWRETD), R f

is the gross risk-free rate. (1) is the net payout yield measure (“lcrspnpy” variable) of
Boudoukh et al. (2007). The lagged dividend-price ratio used in (3) includes the sum
of all the dividends present in CRSP database with distribution codes 1xxx, 2xxx with
M&A cash dividends being CRSP dividends with distribution codes from 3xxx up to
3400 before 1980 and SDC M&A cash dividends with US public buyer and US target
post 1980. Annual data, sample 1927-2010. Newey West (5 lags) standard errors. ***,
** and * denote significance at the 1%, 5% and 10% level, respectively.

Annual 1927-2010 1927-1945 1946-2010 1946-2012

Panel A: rt+1 = ar +br(dt− pt)+ εr,t+1

bd adj. R2(%) bd adj. R2(%) bd adj. R2(%) bd adj. R2(%)
1. Net Payout ratio .29*** 9.39 .73*** 27.07 .22*** 5.71 - -
t-stat (2.84) (7.79) (3.07) -
2. Payout Price ratio - - - - - - .09** 5.34
t-stat - - - (2.01)
3. Dividends incl. M&A cash .15** 4.47 .08 −5.35 .20*** 10.98 .20*** 10.62
t-stat (2.40) (0.65) (3.66) (3.59)

financial crisis. Overall, my dividend-price ratio inclusive of M&A cash dividends has

stronger performance than the payout price ratio both in-sample and out-of-sample.



49

Table 1.10: Out-of-sample excess return predictability. OOS R2 = 1− MSEP
MSEM

. The
MSE-F statistic of McCracken (2007) is defined as MSE−F = (T − s0)(

MSEM−MSEP
MSEP

).
(1) is the net payout yield measure (“lcrspnpy” variable) of Boudoukh et al. (2007), (2)
is the payout price ratio of Robertson and Wright (2006), (3) the dividend-price ratio
inclusive of M&A cash dividends. Estimation sample: (1) s0 = 45 years from 1926-
1971, forecasting sample 1972-2011; (2) s0 = 45 years from 1946-1991, forecasting
sample 1992-2012; (3) s0 = 45 years from 1926-1971, forecasting sample 1972-2011.
Annual data. ***, ** and * denote significance at the 1%, 5% and 10% level, respec-
tively.

OOS R2(%) MSE-F
1. Net Payout ratio -17.03 -5.82
2. Payout Price ratio -8.56 -1.66
3. Dividends inclusive of M&A cash 8.35 3.65***

Figure 1.9: Comparison of out-of-sample predictability between the net payout yield,
the payout price ratio and my dp ratio. This figure plots the cumulative squared predic-
tion errors of the null minus the cumulative squared prediction error of the alternative
for the net payout yield, the payout price ratio and my dividend-price ratio inclusive of
M&A cash dividends. The alternative is model (1.9). The null is the prevailing mean.
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1.5 Industries

In this section I discuss evidence of return and dividend predictability at the

industry level. I showed in the previous sections that M&A cash flows matter for pre-

dictability at the aggregate level. Therefore, given the fact that some industries are

subject to more M&A activity than others, a natural question is whether there is more

predictability in those industries.

Figure 1.10 shows the relative weight of the M&A cash dividends for each indus-

try. We notice that the relative industry proportions change over time. Some industries

M&A dividends are concentrated during specific years (e.g., Hitech industry during the

early ’90s and over the last 10 years). Over the post-1970 period, the consumer non-

durables, manufacturing, Hitech and Wholesale/Retail industries account for the lion’s

share of these cash flows, respectively, with 12.44%, 18.09%, 17.28% and 20.07% me-

dian weight.43

1.5.1 Predictive regressions

We run the following timeseries predictive regressions

∆di
t+1 = a+bi(di

t − pi
t)+ ε

i
t+1 (1.19)

ri
t+1 = α +β

i(di
t − pi

t)+ ε
i
t+1 (1.20)

and panel regressions

∆di,t+1 = ai +b(di,t− pi,t)+ εi,t+1 (1.21)

43 Using the mean gives approximately the same ranking, but given the number of outliers for some
industries, the median is a better descriptive measure.
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ri,t+1 = αi +β (di,t− pi,t)+ εi,t+1 (1.22)

where i = 1,2, ..9 represent the industries.44 Tables 1.11 and 1.12 report the re-

sults.45 Dividend growth predictability seems robust across industries and subperiods,

with the only exception of the healthcare industry pre-war. Similarly to the aggregate

level analysis, dividend growth predictability is stronger pre-war. Moreover, the co-

efficients on the dividend-price ratio are all statistically significant and negative, as it

should be, for every industry. The panel regression, using the standard errors suggested

by Petersen (2009) in order to account for both industry and time effects46, confirms the

statistical significance of the results.

Looking at return predictability, we see that over the full sample there is some pre-

dictability for the industries with the largest concentration of M&A cash flows. How-

ever, post-war we observe substantial in-sample return predictability for those industries

that have higher M&A cash dividends. Consumer non-durables, manufacturing and

wholesale/retail healthcare industries have large adjusted R2 and statistically significant

coefficients. Those are the industries that, together with the Hitech industry, have the

largest share of M&A cash dividends.47

A possible explanation for this presence of dividend growth and return pre-

dictability at the industry level is the fact that my dividend-price ratios are less per-

sistent than the standard ones traditionally considered in the literature (see Koijen and

Nieuwerburgh (2011)). In fact, the maximum autoregressive coefficient AR(1) over the

full sample is 0.746 for industry 8 and post-war is 0.73, still for industry 8, substantially

44 I exclude the “Others” industry because it is not a proper industry.
45 Running equations (1.19) and (1.20) with de-meaned variables, as suggested by Koijen and Nieuwer-

burgh (2011), gives similar results.
46 We also run the panel with fixed effects, which implies clustering by industry effect only, as a

robustness check. The results are even more statistically significant than the ones reported here.
47 We also tried to predict the aggregate stock market return using the dividend-price ratios of the

individual industries, but we find that no specific industry has predictive power for the aggregate stock
market.
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Table 1.11: Panel A: Predictive regressions of dividend growth inclusive of M&A cash
dividends at the industry level. Panel B: Predictive regressions of dividend growth
(standard measure, without M&A cash dividends) at the industry level. Time-series
regressions are based on (1.19). Panel indicates the panel regression (1.21) with all
the industries. Standard errors are clustered on both industry and time dimensions to
account for both firm and time effects in the panel dataset (Petersen (2009)). Newey
West standard errors (3 lags) are used for individual timeseries regressions. ***, **
and * denote significance at the 1%, 5% and 10% level, respectively. Annual data,
1926-2012.

Panel A Panel B
1926-2012 1926-1945 1946-2012 1926-2012 1926-1945 1946-2012
b R2(%) b R2(%) b R2(%) b R2(%) b R2(%) b R2(%)

1. Consumer Non-Durables -.31*** 16.85% -.38*** 46.22% -.30*** 14.35% -.09*** 8.07% -.38*** 46.22% -.06** 3.40%
t-stat (-3.37) (-3.68) (-2.87) (-3.30) (-3.68) (-2.55)
2. Consumer Durables -.53*** 34.53% -.83*** 70.79% -.47*** 28.08% -.23*** 14.33% -.83*** 71.01% -.14** 5.30%
t-stat (-4.84) (-4.94) (-3.63) (-3.19) (-4.96) (-2.26)
3. Manufacturing -.42*** 27.30% -.71*** 75.68% -.33*** 16.56% -.19** 15.44% -.71*** 75.71% -.06 1.19%
t-stat (-4.39) (-8.50) (-2.99) (-2.25) (-8.44) (-1.15)
4. Energy -.46*** 25.72% -.59*** 44.38% -.40*** 18.97% -.16** 10.69% -.59*** 44.38% -.05 1.04%
t-stat (-4.19) (-4.41) (-3.05) (-2.12) (-4.41) (-1.35)
5. HiTech -.28*** 16.48% -.61*** 59.19% -.24** 11.54% -.08* 5.37% -.60*** 57.99% -.06 2.55%
t-stat (-2.91) (-4.38) (-2.23) (-1.73) (-4.13) (-1.18)
6. Telecom -.27*** 12.74% -.17** 15.76% -.30** 12.93% -.02 0.45% -.17** 15.76% -.02 -0.40%
t-stat (-2.79) (-2.09) (-2.61) (0.92) (-2.09) (-0.69)
7. Wholesale and Retail -.27*** 14.45% -.40*** 53.49% -.25*** 11.04% -.06* 4.73% -.40*** 53.49% -.05 3.48%
t-stat (-3.66) (-5.31) (-2.95) (-1.92) (-5.31) (-1.49)
8. Healthcare -.15*** 6.22% -.13 -0.71% -.18** 6.76% -.04 1.48% -.13 -0.71% -.03 1.05%
t-stat (-2.79) (-1.62) (-2.62) (-1.55) (-1.62) (-1.31)
9. Utilities -.22*** 17.10% -.37*** 70.31% -.16** 6.85% -.14*** 19.42% -.37*** 70.31% -.03 -0.31%
t-stat (-3.87) (-8.35) (-2.19) (-2.82) (-8.35) (-1.13)
Panel -.27*** 16.81% -.45*** 44.69% -.23*** 12.87% -.08*** 6.92% -.45*** 44.57% -.05*** 3.24%
t-stat (-4.31) (-6.19) (-3.55) (-3.25) (-6.14) (-3.05)

lower than the near unity value previously found at the aggregate level in the literature.

Structurally adjusting the dividend-price ratios (e.g., Lettau and Nieuwerburgh (2008))

results in similar values.

In conclusion, it seems that M&A cash dividends not only matter at the aggre-

gate level, but also have a notable impact at the industry level, especially post-war, when

these cash flows start to be a non-trivial amount.
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Table 1.12: Panel A: Predictive regressions of excess returns at the industry level (dp
ratio inclusive of M&A cash dividends). Panel B: Predictive regressions of excess
returns at the industry level (standard dp ratio). Time-series regressions are based
on (1.20). The “% weight” column represent the median of the M&A cash dividends
proportion over the sample 1971-2012. Panel indicates the panel regression (1.22) with
all the industries. Standard errors are clustered on both industry and time dimensions
to account for both firm and time effects in the panel dataset (Petersen (2009)). Newey
West standard errors (3 lags) are used for individual timeseries regressions. ***, **
and * denote significance at the 1%, 5% and 10% level, respectively. Annual data,
1926-2012.

Panel A Panel B
1926-2012 1926-1945 1946-2012 1971-2012 1926-2012 1926-1945 1946-2012
β R2(%) β R2(%) β R2(%) % weight β R2(%) β R2(%) β R2(%)

1. Consumer Non-Durables .14*** 9.40% .13* -2.88% .14*** 12.87% 12.44% .08* 2.47% .12* -2.88% .11** 4.98%
t-stat (4.08) (1.88) (3.63) (1.83) (1.88) (2.20)
2. Consumer Durables .08 0.52% -.03 -5.74% .10* 2.11% 4.31% .05 -0.45% -.03 -5.74% .06 0.09%
t-stat (1.58) (-0.31) (1.69) (0.92) (-0.31) (1.13)
3. Manufacturing .09* 1.53% -.06 -5.36% .13** 8.31% 18.09% .07 0.58% -.06 -5.38% .13** 6.56%
t-stat (1.73) (-0.42) (2.62) (1.03) (-0.41) (2.36)
4. Energy .14*** 4.29% .21** 2.74% .11* 2.55% 6.66% .09* 2.09% .21** 2.74% .08 1.61%
t-stat (2.65) (2.62) (1.66) (1.81) (2.62) (1.55)
5. HiTech .06 0.49% -.08 -4.86% .08 2.39% 17.28% .03 0.03% -.07 -5.01% .05 1.79%
t-stat (1.22) (-0.50) (1.51) (0.76) (-0.46) (1.13)
6. Telecom .16*** 7.21% .43*** 18.10% .13*** 4.93% 4.09% .11** 8.05% .43*** 18.10% .10* 7.99%
t-stat (3.34) (3.06) (2.76) (2.25) (3.06) (1.91)
7. Wholesale and Retail .09** 3.80% .17 -0.80% .08** 4.43% 20.07% .06* 1.79% .17 -0.80% .06** 2.72%
t-stat (2.34) (1.50) (2.01) (1.94) (1.50) (2.12)
8. Healthcare .08* 3.13% .13 -1.34% .12*** 6.73% 5.58% .06 1.65% .13 -1.34% .13** 6.42%
t-stat (1.72) (0.74) (2.75) (1.26) (0.74) (2.50)
9. Utilities .11* 3.05% .18 0.16% .08* 1.83% 3.15% .13** 3.78% .18 0.16% .10** 3.53%
t-stat (1.97) (1.22) (1.76) (2.27) (1.22) (2.10)
Panel .08*** 2.76% .07 1.01% .08*** 3.98% .05* 1.59% .07 1.02% .05** 2.59%
t-stat (3.05) (0.84) (3.13) (1.88) (0.85) (2.29)

1.6 Trading Strategy

I now assess the economic importance of my dividend-price ratio inclusive of

M&A cash dividends by executing an out-of-sample trading strategy that combines the

stock market with the risk-free asset, following Ferreira and Santa-Clara (2011). This

strategy could have been exploited in real-time by investors. We assume investors have

the standard mean-variance utility function and can invest either in the stock market or

in the risk-free asset. They maximize expected utility, each period, using out-of-sample

estimates of expected returns constructed using the standard return predictive regression

described in Section 1.4.2 and calculate the optimal portfolio weights. More precisely,
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Figure 1.10: Relative weight of M&A cash dividends for each of the 9 industries. The
sample consists of the SDC M&A cash dividends for each industry. All figures are in
percentages.

the investor’s problem is

max
w

EU(rp) = max
w

E(rp)−
γ

2
σ

2
p = max

w
wµE +(1−w)r f −w2 γ

2
σ

2
E

where w are the optimal weight on the stock market, µE is the expected return on the

stock market, r f is the risk free return, γ is the risk-aversion coefficient and σ2
E is the

variance of the stock market. Every period we calculate the optimal weights

ws =
µ̂s− r fs+1

γσ̂2s

where µ̂s is the forecast of the market return between s and s+1 based on the various

predictors, r fs+1 denotes the risk-free return from time s to s+1 (known at time s), γ is

assumed to be 248, and σ̂2s is the variance of the stock market returns estimated using

48 as in Ferreira and Santa-Clara (2011). Results are similar using other values of γ .
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data up to time s. We then calculate the portfolio return at the end of each period as

rps+1 = wsrs+1 +(1−ws)r fs+1

where rs+1 is the realized stock market return. We start our out-of-sample analysis as

always at half the sample s0 = 45 and iterate the process until the end of the sample,

resulting in time series of returns for portfolios constructed exploiting information in

the predictors. We evaluate the performance of each predictor calculating the Sharpe

ratio and the certainty equivalent returns

ce = rp− γ

2
σ

2(rp)

where rp is the sample mean portfolio return and σ2(rp) is the sample variance port-

folio return. We report the change in certainty equivalents relative to investing with the

prevailing mean forecast of the equity risk premium, as done in Campbell and Thomp-

son (2008), Ferreira and Santa-Clara (2011), Cenesizoglu and Timmermann (2012).49

The certainty equivalent gain can be interpreted as the fee an investor would be willing

to pay to exploit the information in the predictor variable. We also report the Sharpe

ratio values and gains. Table 1.13 summarizes the results.

We notice that the portfolios constructed using my cash M&A dividend-price

ratio as predictor outperform both those formed using the standard dividend-price ra-

tios and those formed using the prevailing mean by a substantial amount. The certainty

equivalent gain is 1.88% for our trading strategy while negative for the other two. Look-

ing at the Sharpe ratio gains we confirm the great performance of my measure. The

Sharpe ratio of our trading strategy (26.55%) is almost twice that of a strategy based

49 Marquering and Verbeek (2004) report the average realized utility in absolute terms, while Shanken
and Tamayo (2012) and Johannes et al. (2014) report the statistics within a Bayesian framework.
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Table 1.13: Certainty equivalent gains, Sharpe ratios and Sharpe ratio Gains of the
various trading strategies. This table presents out-of-sample portfolio choice results at
annual frequencies from predictive regressions of the standard CRSP dividend-price
ratios (measures 1 and 2) and of my cash M&A measure (measure 3). The certainty
equivalent (Sharpe ratio) gains are the difference between the CE (Sharpe Ratios) using
the equity risk premium forecast of the various predictors relative to using the historical
mean as forecast and setting γ = 2. Annual data, out-of-sample 1972-2012.

Predictor CE Gains Sharpe Ratio Sharpe ratio gains
1. Dividends with reinvestment -0.79% 1.99% -0.1182
2. Dividends without reinvestment 0.10% 8.94% -0.0487
3. Dividends inclusive of M&A cash 1.88% 26.55% 0.1274

on the historical mean (13.81%). Both trading strategies that exploit the information in

the standard dividend-price ratios underperform the simple trading strategy based on the

historical mean, as already noted by Ferreira and Santa-Clara (2011).

In conclusion, a real-time trading strategy that uses excess returns predicted with

my dividend-price ratio inclusive of M&A cash dividends outperforms trading strategies

that use the prevailing mean or excess return forecasts implied by standard dividend-

price ratios to construct portfolios.
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1.7 Conclusions

M&A cash dividends have become an important component of total cash flows

received by shareholders over the last 45 years. When these cash flows are taken into

account, I find strong dividend growth, consumption growth and return predictability

at the aggregate level, both in-sample and out-of-sample. In this chapter I show that

variation in the dividend-price ratio is substantially explained by changes in expected

dividend growth, in contrast to previous findings. This implies that we can now trace

price movements back to news about future cash flows. Related to this point, I find that

M&A cash dividends are the only component with explanatory power for future returns,

while net equity issues are irrelevant when M&A cash dividends are taken into account.

I also find that return predictability is stronger during periods of low M&A activity,

related to recessions, and that a dividend-price ratio that includes M&A cash dividends

performs better, both in-sample and out-of-sample, than the payout ratios of Boudoukh

et al. (2007) and Robertson and Wright (2006).

At the industry level I find return predictability only for those industries with the

largest M&A cash dividends, while dividend growth predictability is pervasive across

all industries. Evaluating predictability jointly as suggested by Cochrane (2008), it is

clear that cash dividends from mergers and acquisitions cannot be neglected because

they play a fundamental role in explaining variation in stock market prices and cash

flows, both at the aggregate and industry levels.
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Abstract

In this chapter I show that information about fundamentals of the aggregate

economy derived from closely held firms help predict stock returns. I construct a new

economy-wide dividend-price ratio that takes into account dividends and market capi-

talization of both listed (public) and non-listed (private) U.S. companies and show that

it strongly predicts stock returns with in-sample and out-of-sample annual adjusted R2

of 15.35% and 16.28%, compared to the standard dividend-price ratio values of 5.32%

and -1.14%, respectively. I also find that changes in dividends of private firms lead those

of public firms and that the economy-wide dividend-price ratio subsumes the standard

dividend-price ratio.

2.1 Introduction

A large literature in asset pricing addresses whether stock returns are predictable

by a set of economic variables.1 Following the influential work of Campbell and Shiller

(1988), the dividend-price ratio has been the most widely used predictor of stock re-

turns.2 However, the evidence on the ability of the standard dividend-price ratio to

predict returns, whether in-sample or out-of-sample, is mixed.3 A common feature of

most of the stock market predictors proposed in the literature is that they are constructed

using financial data of public firms. Yet private firms are a substantial component of the

U.S. economy. Asker et al. (2015) estimate that in 2010 private U.S. firms accounted

1 Cochrane (1992), Lettau and Ludvigson (2001), Goyal and Welch (2003), Lewellen (2004), Menzly
et al. (2004), Lettau and Ludvigson (2005), Robertson and Wright (2006), Campbell and Yogo (2006),
Ang and Bekaert (2007), Boudoukh et al. (2007), Cochrane (2008a), Goyal and Welch (2008), Campbell
and Thompson (2008), Lettau and Nieuwerburgh (2008), Chen (2009) van Binsbergen and Koijen (2010),
Ferreira and Santa-Clara (2011), Shanken and Tamayo (2012), Li et al. (2013), Golez (2014), Johannes
et al. (2014), Huang et al. (2015) amongst others.

2 Several dividend-price ratios have been proposed. See, for example, Lettau and Nieuwerburgh
(2008), Chen (2009), Golez (2014).

3 See Rapach and Zhou (2013) for an overview.
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for 52.8% of aggregate non-residential fixed investment, 68.7% of private-sector em-

ployment, 58.7% of sales, and 48.9% of aggregate pre-tax profits. They also find that

nearly all of the 5.7 million firms in the U.S. are private (only 0.06% are listed) and

that private firms predominate even amongst larger ones: 86.4% of firms with 500 or

more employees were privately held in 2010. Private firms employ workers, who con-

sume goods, invest in machinery and human capital. Perhaps unsurprisingly, it is often

small privately-held startups that develop disruptive technologies leading to aggregate

productivity shocks (e.g., Uber, Dropbox).

If macroeconomic factors such as consumption, investment or productivity drive

risk premia in financial markets (Cochrane (2008b)), then stock market predictors that

use aggregate economic information should perform well. Moreover, if stock markets

are indeed intertwined with the real economy and reflect its fundamentals, it is important

to incorporate information about the status of the aggregate economy by taking into

account data on private firms such as dividends or investments in the construction of

stock market predictors.

Financial and accounting information on private firms are, however, either un-

available or incomplete. Only recently datasets containing such information (e.g., Cap-

ital IQ, Sageworks) have been released. Unfortunately their data coverage is limited in

scope and time4 and therefore information about individual private firms cannot yet be

used in empirical studies. Private firms, by law, are not required to make their financial

statements public, unless they are SEC-filers.5 However, private SEC-filers firms are

only a few hundreds and are amongst the largest private firms, inducing a strong sample

bias. A solution to this problem is to use financial information of private firms, both S-

and C-corporations, available from the Federal Reserve Flow of Funds Tables. Using the

4 For example, Sageworks has data starting from 2001.
5 These are private firms that meet one of two requirements: (a) they have $10 millions or more in

assets and 500 or more shareholders (2000 after passage of the JOBS Act in 2012); (b) they have public
debt outstanding.
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Flow of Funds data, I extract private firms’ dividends and “implicit” market capitaliza-

tion and construct an economy-wide dividend-price ratio, d peconomy. Data construction

is described in detail in Section 2.2.

This chapter is the first to estimate dividends and valuations of private firms and

to use them, jointly with public firms’ data, in the construction of an economy-wide

dividend-price ratio. This economy-wide dividend-price ratio differs from the standard

dividend-price ratio in two ways: it represents the total U.S. economy, rather than the

subset of listed companies, and excludes intercorporate holdings in the calculation of

aggregate net dividends and non-financial sector market capitalization.

The main contribution of this chapter is to highlight the fundamental role of

private firms’ financial information in predicting (public) stock market returns. Most

of the predictors proposed in the literature are based on public firms’ information (e.g.,

earnings-price ratio, svar, book-to-market, yield spreads), while only a few of them (e.g.,

ik, cay) look at aggregate economy dynamics, without explicitly disentangling the ef-

fects of the public and private components. I show that the predictive performance of

the economy-wide dividend-price ratio is strong both in-sample and out-of-sample, at

annual and quarterly frequency, compared to the set of cash flow predictors proposed in

the literature6 (Goyal and Welch (2008), Boudoukh et al. (2007)). I find an in-sample

adjusted R2 of 15.35% (2.86%) at the annual (quarterly) frequency. Out-of-sample R2

is 16.28% (2.43%). I also construct a dividend-price ratio for private firms and find that

most of the predictive power of the economy-wide one is attributable to private firms and

that the former subsumes the public dividend-price ratio in predictive regressions. These

empirical results suggest that there is valuable information in the real private economy

that substantially affects stock markets’ risk premia. In other words, there is a news

6 In non tabulated results I show that d peconomy forecasts the equity risk premium better than a set of
22 predictors proposed in the literature. Results are available upon request.
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component in the private sector of the economy that is not immediately incorporated in

the stock market and therefore helps predicting it. Moreover, I find that lagged values

of the dividend growth of private firms Granger-cause the dividend growth of public

firms, consistent with private firms being more flexible than public firms in setting their

dividend policy in response to cash flow shocks. Lastly, I show that a trading strategy,

rebalanced annually (quarterly), that exploits the predictive power of the economy-wide

dividend-price ratio is extremely profitable with a Sharpe ratio of 36.02% (41.86%) and

large certainty equivalent gains.

This chapter is related to the vast return predictability literature and, specifically,

to those papers discussing the dividend-price ratio as predictor of stock returns. Lettau

and Nieuwerburgh (2008) show that return predictability by financial ratios is weak

due to parameter instability and propose to adjust the dividend-price ratio for shifts in

the steady-state of the economy. Chen (2009) discusses the importance of dividend

reinvestment in the construction of the dividend-price ratio and show that returns are

predictable only post-war. van Binsbergen and Koijen (2010) highlight the importance

of the dividend reinvestment issue for return predictability within a present value where

both expected returns and dividends growth are modeled as latent processes. Golez

(2014) adjusts the standard dividend-price ratio for changes in expected dividend growth

using estimates implied by the derivatives market and show that it predicts future stock

returns better both in-sample and out-of-sample. Sabbatucci (2015) shows that including

dividends from M&A activity in the dividend-price ratio results in stronger predictability

both in-sample and out-of-sample. Boudoukh et al. (2007) adjust the dividend-price

ratio for buybacks and issues, while Robertson and Wright (2006) use data from the

Flow of Funds in the construction of a total payout ratio.

This chapter also fits into the recent and growing literature on private firms,
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which account for a substantial share of the economy (Michaely and Roberts (2012),

Asker et al. (2015), Ferre-Mensa (2015)). Michaely and Roberts (2012) compare the

dividend policy of U.K. private and public firms and find that private firms smooth div-

idends significantly less than their public counterparts. Gao et al. (2013) compare the

cash policies of public and private U.S. firms and show that despite higher financing fric-

tions, private firms hold, on average, about half as much cash as public firms do. Asker

et al. (2015) investigate whether short-termism distorts the investment decision of public

firms by comparing them to private firms and find that public firms invest substantially

less and are less responsive to changes in investment opportunities than private firms.

Ferre-Mensa (2015) investigate the private firms’ ability to disclose confidential infor-

mation to selected investors and find that private firms hold lower levels of precautionary

cash than similar-sized public firms.

The chapter proceeds as follows. Section 2.2 describes the data. Section 2.3

shows the predictability results, discusses the lead-lag relationship between private and

public firms’ dividends and compare the economy-wide dividend-price ratio with other

aggregate predictors. Section 2.4 presents a trading strategy that exploits the predictive

performance of the economy-wide dividend-price ratio. Section 2.5 concludes.

2.2 Data Description

I use data on public and private firms from the Federal Reserve Flow of Funds

Tables over the period 1945-2013. The Federal Reserve Flow of Funds Tables report,

separately, data for the financial and non-financial corporate sectors. It is thus possible

to construct a “total” dividend-price ratio defined as

d ptotal= corporate dividends
MV Equity non f in+MV Equity f in
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The numerator, the corporate business dividends (series: FA096121073), includes U.S.

dividends paid by the financial business (series: FA796121073), non-financial corporate

sector (series: FA106121075) and dividends paid by U.S. financial and non-financial

firms to the rest of the world (series: FA266121073). These dividends include, as I will

discuss later, dividends paid by private firms.

As far as the denominator is concerned, the Flow of Funds Tables decompose

the market value of equity of the non-financial corporate sector (series: FL103164103)

as the market value of publicly listed non-financial firms (series: FL103164113) less in-

tercorporate holdings (series: FL103164193) plus the market value of equity of closely

held non-financial firms (series: FL103164123).7 Similarly, the market value of equity

of the financial sector (series: FL793164105) can be decomposed as the sum of four

components: the market value of equity of public financial firms (series: FL793164113),

the market value of equity of closely held financial firms (series: FL793164123), the

Federal Government equity ownership (series: FL313064105) and the Monetary Au-

thority equity ownership (series: FL713064103). As a consequence, The d ptotal can be

rewritten as

corporate dividends
MV publ non f in− intercorp holdings+MV priv non f in+MV publ f in+MV priv f in+MV govt +MV mon

The market value of private firms is directly calculated by the Federal Reserve by multi-

plying the net worth (revenues) data of S-corps (C-corps) by the correspondent financial
7 Beginning in 1996, it is estimated as the sum of the market value of non-financial C-corporations

and S-corporations. The market value of S-corporations is estimated by multiplying the net worth data
of S-corporations in nonfinancial industries (identified by 2-digit NAICS codes) from the IRS, SOI Table
S-Corporation Returns: Balance Sheet and Income Statement Items, by Major Industry, by the average
ratio of market value to net worth from Standard and Poor’s Compustat for public companies in the same
nonfinancial industries. The market value of C-corporations is estimated by multiplying the revenue data
of companies that appear on Forbes’ annual list of America’s Largest Private Companies by the ratio
of total market value to total revenue of public companies from Standard and Poor’s Compustat with
similar industry, employment, and revenue profiles. The total market value of C-corporations is split
between financial and nonfinancial corporations using the same splits available from the S-corporations
calculations. The total market value of C-corporations and S-corporations is adjusted downward by 25
percent to reflect the lack of liquidity of closely held shares. Prior to 1996, nonfinancial business’ closely
held equity is included with nonfinancial business’ public corporate equities.
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multiples of public firms and adjusting for the lack of liquidity. This estimate of the mar-

ket value of private firms is arguably the most accurate one, given the private informa-

tion available to the Federal Reserve, and it is unbiased in the sense that no discretionary

assumptions have been made in order to calculate it.

I further rearrange the terms in the denominator noting that the market value of

equity of public financial firms plus the market value of equity of public non-financial

(net of intercorporate holdings) is the total market value of equity of public firms. Simi-

larly, the market value of equity of closely held non-financial firms plus the market value

of equity of closely held financial firms is equal to the total market value of equity of

closely held firms. Pooling the Government and Monetary authority holdings together

(e.g., “others”), it is possible to rewrite d ptotal as

d ptotal= corporate dividends
MV public+MV private+MV others

The corporate dividends (series: FA096121073) are the sum of public and private firms

dividends, since the Flow of Funds dividends data are taken from the NIPA Tables8,

which cover the whole U.S. corporate universe. We note that the market value of gov-

ernment and monetary authority is negligible for most of the sample period (it is non

zero only for the last 24 quarters, accounting for 1-2% over the 2009-2011 period, with

a peak of 10.54% in Q1 2009 when the U.S. Government bailed out the financial sec-

tor, and now less than 0.5% after the Government disinvestment). As a consequence, I

define an economy-wide dividend-price ratio as

d peconomy=Divs public+Divs private
MV public+MV private

8 http://www.bea.gov/faq/index.cfm?faq_id=200. Net dividends is measured as gross div-
idends paid by U.S. corporations in cash or other assets, plus U.S. receipts of dividends from the
rest of the world, net of dividend payments to the rest of the world, less dividends received by U.S.
corporations. Quarterly dividends are seasonally adjusted at annual rates. For additional details, see
http://www.bea.gov/scb/pdf/2011/03%20March/0311_profits.pdf

http://www.bea.gov/faq/index.cfm?faq_id=200
http://www.bea.gov/scb/pdf/2011/03%20March/0311_profits.pdf
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In other words, the economy-wide dividend-price ratio is the sum of public and private

firms’ dividends divided by the total market capitalization of public and private firms.

The aggregate stock market return is the excess market return, computed as the

log return on the value-weighted CRSP index with dividends (e.g., VWRETD) minus

the log risk-free rate. I compare the d peconomy with other cash flow ratios, namely the

log dividend-price ratio (d ppublic), log dividend-yield (DY) and the log net payout yield

(NPY). I also compare the d peconomy with other “economy-wide” predictors, such as the

log investment-to-capital ratio (IK) and the log consumption-wealth ratio (CAY).9

Table 2.1 reports the summary statistics of the data. The d peconomy has a higher

mean and a lower volatility than the dividend-price ratio of the public firms. This implies

that the relative (to market capitalization) amount of dividends paid out by private firms

is greater than that paid out by public firms. This is confirmed by looking at Figures

2.1 and 2.2 (top panels), which show the nominal dividend amounts of both public

and private firms, extracted as the difference from the total economy dividends and the

public10 dividends at annual and quarterly frequency, respectively. It is evident that

starting from the mid-90s the dividends of private firms start to be larger than those

distributed by U.S. public firms, consistent with Fama and French (2001).

2.3 Empirical Results

2.3.1 Lead-lag relationship

Dividends of public firms are known to be sticky (Fama and French (2002)). A

common explanation is public scrutiny related to the principal-agent conflict between

managers and shareholders. Managers are reluctant to change dividend payout policy

9 The data on these measures are available from Amit Goyal and Michael R. Roberts’s websites.
10 from CRSP.
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Table 2.1: This table provides summary statistics for the dividend-price ratio of the
economy (d peconomy), dividend-price ratio of public firms (d ppublic), dividend yield
(dy), net payout yield (npy), investment-to-capital ratio (ik) and consumption-wealth
ratio (cay). For each variable, the time-series average (Mean), standard deviation (Std),
skewness (Skew), kurtosis (Kurt), minimum (Min) and maximum (Max) are reported.
The sample period is 1946-2013.

Mean Std Skew Kurt Min Max

dpeconomy 3.93% 1.10% 0.550 -0.381 1.99% 6.66%
dppublic 3.42% 1.41% 0.530 -0.191 1.14% 7.20%
dy 3.68% 1.57% 0.756 0.666 1.11% 8.77%
npy 11.59% 2.16% -0.439 0.976 4.84% 16.73%

ik 3.50% 0.36% 0.284 -0.475 2.80% 4.32%
cay 0.06% 2.63% 0.383 0.006 -4.85% 7.41%

when profitability declines because they fear being punished by the market. An im-

plication of this is that managers also tend to avoid raising dividend payments when

profitability rises in order to limit future dividend cuts. An interesting yet unexplored

question is whether private firms, which are not subject to the public scrutiny of in-

vestors and therefore should be more flexible in setting dividend policy, change their

dividend policy more often than public firms. Unfortunately the data needed to answer

this question, a long-enough time-series of dividends paid by individual private firms,

is not available yet. However, if private firms have more flexibility in setting dividend

policy, when the aggregate economy is hit by a shock they should be the first to change

their dividend policy. In other words, we can test whether aggregate changes in private

firms’ dividend policy lead those of public firms.

Let zt =

∆dpublic
t

∆dprivate
t

, where dt = log(dt/dt−1) for annual data and dt = log(dt/dt−4)

for quarterly data. We can write down the following VAR model

zt = A0 +∑
i

Aizt−i + εt (2.1)
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Table 2.2: This table reports the coefficients of the VAR system zt = A0+∑
i

Aizt−i+εt .

Annual data, sample 1947-2013. Quarterly data, sample 1952Q1-2013Q4. ***, ** and
* denote significance at the 1%, 5% and 10% level, respectively.

Annual Quarterly

i=1 i=2 i=3 i=5 i=9 i=13
A11,i .134 -.018 -.056 .166** -.011 -.174***

(1.06) (-0.14) (-0.44) (2.31) (-0.15) (-2.63)
A12,i -.011 -.073 -.121** .045** -.073*** -.084***

(-0.19) (-1.38) (-2.19) (2.03) (-3.10) (-3.54)
A21,i .507* -.386 -.028 .011 .009 -.056

(1.68) (-1.21) (-0.09) (0.05) (0.04) (-0.28)
A22,i -.055 .164 -.057 -.223*** -.081 -.082

(-0.42) (1.30) (-0.43) (-3.28) (-1.14) (-1.13)

Obs. 64 232

where Ai =

A11,i A12,i

A21,i A22,i

, and i=1,2,3 for yearly data (i=5,9,13 for quarterly data11).

I then test the null hypothesis that lagged values of ∆dprivate
t do not Granger-cause

∆dpublic
t , which is equivalent to testing that the coefficients A12,i are jointly equal to zero.

Table 2.2 reports the VAR coefficients. The null hypothesis of no Granger-causality is

rejected with a p-value of 0 at the quarterly frequency (χ2 statistic of 26.9), and at the

10% level at the annual frequency (χ2 statistic of 6.8). It is interesting to note the sign

of the quarterly coefficients: the 1-year lagged private dividend growth loads positively

on future public dividend growth while the 2- and 3-year coefficients’ sign is flipped,

which suggests public firms initially respond by increasing their dividends’ payout but

later reduce it. Figures 2.1 and 2.2 (bottom panels) compare the public and private firms’

dividend growths. The dividend growth of private firms is highly volatile, indicating that

private firms might have greater flexibility than public firms in adjusting their dividend

policy.

11 This is to ensure non-overlapping quarterly data.
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Figure 2.1: Aggregate dividends and dividend growth (annual data). Split between
private and public firms’ dividends. Sample: 1946-2013.

2.3.2 Forecasting the market

I consider the standard predictive regression model,

rt+1 = α +βXt + εt+1 (2.2)

where rt+1 is the excess market return (e.g., CRSP value-weighted log return minus the

log risk free rate) and Xt are four cash flow and two “economy-wide” predictors used
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Figure 2.2: Aggregate dividends and dividend growth (quarterly data). Split between
private and public firms’ dividends. Sample: 1951Q4-2013Q4.

in the literature. Table 2.3 reports the results. The economy-wide dividend-price ratio

substantially outperforms any other predictor at annual frequency with an adjusted R2

of 15.35% and a statistically significant β of 0.25 (Newey-West t-statistic of 4.72). The

d ppublic and dy have approximately one-third of the explanatory power and economic

magnitude of d peconomy, but the coefficients are still statistically significant (2.50 and

2.26, respectively). The investment-to-capital, cay and npy also perform quite well,

with adjusted R2 of 8.09%, 4.10% and 5.71%, respectively. Correcting the coefficients
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for the Stambaugh’s bias, the d ppublic becomes insignificant, while the other predictors

are unaffected. At quarterly frequency, the d peconomy performance is still strong with a

coefficient equal to 6% (t-stat of 2.80) and an adjusted R2 of 2.86%. The performances

of the investment-to-capital ratio (adj. R2 of 2.74%) and cay (adj. R2 of 2.74%) are also

good at quarterly frequency, although these predictors are only available on a shorter

sample period. Moreover, the weight parameters of cay are estimated using full sam-

ple information, generating a look-ahead bias. The d ppublic and dy performs poorly,

with statistically insignificant coefficients (at the 5% confidence level) and adjusted R2

around 1%.

It is important to note that d peconomy, ik and cay ratios are the only predictors to

use information from the aggregate economy. More precisely, the investment-to-capital

ratio is the ratio of aggregate (private nonresidential fixed) investment to aggregate cap-

ital for the whole economy (Cochrane (1991)). The cay is constructed using aggregate

consumption (e.g., “c”), aggregate wealth (e.g., “a”), and aggregate income (e.g., “y”)

(Lettau and Ludvigson (2001)). Overall, this seems to suggest that there might be a

news component in the private sector of the economy that is not incorporated in the

stock market and therefore helps predicting it. In Section 2.3.5 I compare these three

economy-wide predictors and show that the d peconomy is the most important one for

predictability.

2.3.3 Out-of-sample forecasts

The in-sample analysis provides more efficient and stable parameter estimates

since it utilizes all available information. However, in-sample predictability cannot be

exploited in real-time, since it induces a look-ahead bias, and is subject to over-fitting.

In addition, out-of-sample tests are less affected by small-sample size distortions such
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Table 2.3: Comparison of in-sample excess return predictive regressions. The excess
return is the CRSP value-weighted return over the risk free rate. Predictors data is from
Goyal and Welch (2008), except the net payout yield (Boudoukh et al. (2007)). †: only
66 annual data; † † †: only 247 quarterly data; ?: only 65 annual and 237 quarterly
data; •: 66 annual data and 247 quarterly data. Annual data: 1946-2013. Quarterly
data: 1951Q4-2013Q4. Newey West 3 lags (5 lags) standard errors for annual (quar-
terly) regressions. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively.

Annual Quarterly

β R2 β R2

1.dpeconomy .25*** 15.35% .06*** 2.86%
t-stat (4.72) (2.80)
2.dppublic .10** 5.32% .02 0.77%
t-stat (2.50) (1.65)
3. dy• .08** 3.16% .03* 1.10%
t-stat (2.26) (1.81)
4. npy? 0.22*** 5.71% .04 0.48%
t-stat (2.85) (1.34)
5. ik† -.52** 8.09% -.15*** 2.74%
t-stat (-2.62) (-2.87)
6. cay† † † 1.52** 4.10% .70*** 2.74%
t-stat (2.18) (2.92)

as the Stambaugh bias. Hence, I investigate the out-of-sample performance of the same

set of predictors discussed in the previous section.

Following Goyal and Welch (2008) and Ferreira and Santa-Clara (2011), I gen-

erate real-time, out-of-sample forecasts of excess returns using a sequence of expand-

ing estimation windows. More precisely, I take a subsample of the first s observations

t = 1,2, ...,s of the entire sample of T observations and forecast the equity risk premium

using Equation 2.2. I denote the expected equity risk premium conditional on time s

information by gs+1 = Es+1|s(rs+1). I then take the coefficients âi
s, b̂i

s estimated using

information available up to time s and predict the equity risk premium at time s+1:

ĝs+1 = âi
s + b̂i

sX
i
s (2.3)
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where i indicate each of the twenty-one predictors. I follow this process for s= s0, ...,T−

1, generating a sequence of out-of-sample forecasts. In order to start the procedure, I set

the initial sample size s0 equal to one third (one fifth) of the full sample using annual

(quarterly) data (e.g., 22 years and 50 quarters). Using out-of-sample forecasts based

on previously available information replicates what a forecaster could have done in real

time. I evaluate the performance of the out-of-sample forecasts based on the widely

used Campbell and Thompson (2008) out-of-sample (OOS) R2:

OOS R2 = 1− MSEP

MSEM
, (2.4)

where MSEP is the mean square error of the out-of-sample predictions from the model:

MSEP =
1

T − s0

T−1

∑
s=s0

(rs+1− ĝs+1)
2 (2.5)

and MSEM is the mean square error of the historical sample mean:

MSEM =
1

T − s0

T−1

∑
s=s0

(rs+1− r̄s)
2 (2.6)

where r̄s is the historical mean of the equity risk premium up to time s. The OOS R2

is positive (negative) when the model estimated with predictor Xi predicts the equity

risk premium better (worse) than the historical average risk premium. In other words,

it measures the proportional reduction in mean squared forecast error for the predictive

regression forecast relative to the historical average benchmark, where the latter cor-

responds to the constant expected return model (rs = α + εs) and r̄s =
1
s ∑

s
t=1 rt . The

statistical significance of the forecasts is evaluated using the MSE-F statistic proposed
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by McCracken (2007),

MSE−F = (T − s0)(
MSEM−MSEP

MSEP
) (2.7)

which tests for the equality of the two MSEs and takes into account nested forecast

models. As discussed in Goyal and Welch (2008), Campbell and Thompson (2008) and

Rapach et al. (2010) amongst others, most of the standard predictors perform poorly

out-of-sample. This is not the case with d peconomy. Table 2.4 and Figures 2.3 and 2.4

show that d peconomy performs well both at the annual and quarterly frequency. It gen-

erates a positive OOS R2 of 16.28% (2.43%) at the annual (quarterly) frequency with a

statistically significant MSE-F statistic of 8.75 (4.91). Amongst the other predictors, at

the annual frequency the ik and cay are the only predictors to have positive OOS R2. The

former has a positive R2 of 7.87%, while the latter of 3.96%. At quarterly frequency, the

ik still has a positive and statistically significant OOS R2 of 1.78%, while the cay OOS

R2 is not statistically meaningful. The out-of-sample performance of all the other pre-

dictors is weak, consistent with the results of Goyal and Welch (2008). In other words,

the great majority of the predictors does not improve on a forecast based on the pre-

vailing mean of the equity risk premium. Overall, the out-of-sample results confirm the

ones in-sample and suggest that private firms contain fundamental information affecting

the stock market.

2.3.4 Predictability attribution: public or private dividend-price ra-

tios?

The economy-wide dividend-price ratio d peconomy strongly predicts the equity

risk premium both in-sample and out-of-sample. It is therefore important to understand
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Table 2.4: Out-of-sample excess return predictability. OOS R2 = 1− MSEP
MSEM

. The MSE-
F statistic of McCracken (2007) is defined as MSE−F = (T − s0)(

MSEM−MSEP
MSEP

). rt+1

is the CRSP cum dividend log excess return (e.g., ln(RCRSP
t+1 )− ln(R f )), d pt is the log

dividend-price. RCRSP
t+1 is the CRSP cum dividend gross return (VWRETD), R f is the

gross risk-free rate. Estimation sample s0 = 22 years (one third of the sample) at annual
frequency (s0 = 21 for ik) and s0 = 50 quarters (one fifth of the sample) at quarterly
frequency. ***, ** and * denote significance at the 1%, 5% and 10% level, respectively.

Annual Quarterly

OOS R2 MSE-F OOS R2 MSE-F
1. d peconomy 16.28% 8.75*** 2.43% 4.91***
2. d ppublic -1.14% -0.51 -0.58% -1.14
3. dy -0.89% -0.40 -0.62% -1.21
4. npy -0.45% -0.19 -2.14% -3.90
5. ik 7.87% 3.85** 1.78% 3.57**
6. cay 3.96% 1.86* 0.44% 0.86

whether this result is driven by the additional information content of private firms. I

decompose the d peconomy into two components: the standard public dividend-price ratio

d ppublic and a private dividend-price ratio, d pprivate, which summarizes cash flow and

valuation information of non-listed firms. The private economy dividend-price ratio is

obtained as the orthogonal residual εt from the contemporaneous regression

d peconomy
t = α +βd ppublic

t + εt (2.8)

Unfortunately the dividends of private firms are not publicly available and the market

values of private firms are available only starting from 1996. In principle, it could be

possible to estimate both the dividends and market capitalization of private firms as the

difference between the total economy quantities and those of the public firms. How-

ever, there is an inconsistency that arises using this approach to calculate d pprivate since

CRSP does not adjust for intercorporate holdings, neither in dividends nor in market

capitalization. As a consequence, the resulting “difference-based” d pprivate ratio is es-

timated with significant noise and measurement error. The regression-based approach
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avoids this issue and generates a d pprivate that is less volatile (0.19 vs 0.65) and orthog-

onal to d ppublic. Moreover, the regression-based d pprivate has a 83% correlation with

the “difference-based” one.12 Figure 2.5 shows the time-series of the three dividend-

price ratios at annual and quarterly frequency, respectively. The time-series pattern is

similar for all three dividend-price ratios until the 90s, when the d ppublic and d peconomy

start to diverge with the former shifting down. The d pprivate remains stable, causing

the d peconomy to decline modestly up to 2000 and then bouncing back up. The d ppublic

bounces back towards the most recent period, but its mean value is still below the one

of the 80s.

In order to gauge the importance of the three dividend-price ratios, I run univari-

ate and bivariate predictive regressions of the equity risk premium using d ppublic and

d pprivate. I also run the following encompassing test

rt+1 = α +β1d peconomy
t +β2d ppublic

t + εt+1 (2.9)

to determine whether the d peconomy ratio subsumes the standard d ppublic, which is equiv-

alent to testing the null hypothesis H0 : β1 = 0 and β2 6= 0. Table 2.5 reports the regres-

sion results.

The results show that the predictive power of the d ppublic, while being important

at the annual frequency, disappears once the d peconomy is accounted for, suggesting that

the information content of the public firm is incorporated in the d peconomy. The d ppublic

has no predictive power using quarterly data, while the results for the d pprivate and

d peconomy are similar.

Overall, the results suggest that private firms have important information content

12 The difference-based d pprivate is still strongly significant in a bivariate predictive regression together
with the d ppublic at the annual frequency, but not at quarterly frequency.
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Table 2.5: Decomposition of in-sample return predictability: d ppublic vs. d pprivate.
Encompassing test: rt+1 = α +β1d peconomy

t +β2d ppublic
t + εt+1. Excess return rt+1 is

the CRSP value-weighted return minus the risk-free rate. Annual data, sample 1947-
2013. Quarterly data, sample 1952Q1-2013Q4. Newey West standard errors (3 lags
annual, 5 lags quarterly). ***, ** and * denote significance at the 1%, 5% and 10%
level, respectively.

Annual Quarterly

d ppublic .10** 0.10** -.03 .02 .02 -.00
(2.50) (2.40) (-0.42) (1.65) (1.64) (-0.14)

d pprivate 0.28** 0.28*** 0.06** 0.06**
(2.65) (2.81) (1.99) (2.02)

d peconomy .28*** .06**
(2.81) (2.02)

adj. R2 5.32% 9.03% 14.32% 14.32% 0.77% 1.71% 2.47% 2.47%
Obs. 67 67 67 67 248 248 248 248

that is slowly incorporated into market prices and therefore generates predictability.

2.3.5 Comparison with “economy-wide” predictors

Section 2.3.2 provides evidence suggesting that the predictors with the largest

economic and statistical predictive power, namely d peconomy, ik and cay ratios, are con-

structed with information related to the aggregate economy. In order to determine which

aggregate economy information is truly important for predicting the stock market, I in-

vestigate the joint predictability of d peconomy, ik and cay. Table 2.6 reports the regression

results. The d peconomy ratio still performs well even after controlling for the other pre-

dictors, both at annual and quarterly level. The adjusted R2 ranges from 14.50% to

18.22% when including the d peconomy, but it is only 11.64% without it. The cay and

ik performances are weak at annual frequency when controlling for the d peconomy, with

non statistically significant coefficients. However, at quarterly frequency both the cay

and ik perform similarly to the d peconomy, with R2 slightly above 4%.

Overall, these results show that fundamentals about the aggregate economy have

strong predictive power for the equity risk premium, whether these fundamentals reflect



83

Table 2.6: Comparison of in-sample return predictability performance of the
“economy-wide” predictors: d peconomy, cay and ik. Excess return rt+1 is the CRSP
value-weighted return minus the risk-free rate. Annual data, sample 1947-2013. Quar-
terly data, sample 1952Q1-2013Q4. Newey West standard errors (3 lags for annual
data, 5 lags for quarterly data). ***, ** and * denote significance at the 1%, 5% and
10% level, respectively.

Annual Quarterly

d peconomy .23*** 0.21*** 0.19*** .05** .05** .04
(3.69) (5.05) (3.46) (2.02) (2.23) (1.64)

cay 0.48 1.48** 0.69 .53** .57** .45
(0.54) (2.25) (0.78) (1.98) (2.48) (1.74)

ik -0.33* -0.48** -0.34* -0.12** -0.11** -0.10**
(-1.84) (-2.59) (-1.95) (-2.18) (-2.45) (-2.01)

adj. R2 14.50% 18.22% 11.64% 17.83% 4.08% 4.27% 4.30% 5.01%
Obs. 67 66 66 66 247 248 247 247

aggregate consumption, aggregate investments or financial information of private firms.

2.4 Trading Strategy

I now assess the economic value of stock market forecasts based on d peconomy

by executing an out-of-sample trading strategy that combines the stock market with the

risk-free asset, following Ferreira and Santa-Clara (2011). This strategy could have

been exploited in real-time by investors. I assume investors have the standard mean-

variance utility function and can invest either in the stock market or in the risk-free asset.

They maximize expected utility, each period, using out-of-sample estimates of expected

returns constructed using the standard return predictive regression described in Section

2.3.2 and calculate the optimal portfolio weights. More precisely, the investor’s problem

is

max
w

EU(rp) = max
w

E(rp)−
γ

2
σ

2
p = max

w
wµE +(1−w)r f −w2 γ

2
σ

2
E
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where w are the optimal weight on the stock market, µE is the expected return on the

stock market, r f is the risk free return, γ is the risk-aversion coefficient and σ2
E is the

variance of the stock market. Every period I calculate the optimal weights

ws =
µ̂s− r fs+1

γσ̂2s

where µ̂s is the forecast of the market return between s and s+1 based on the various

predictors, r fs+1 denotes the risk-free return from time s to s+1 (known at time s), γ can

assume different values (e.g., 1,2,3) and σ̂2s is the variance of the stock market returns

estimated using data up to time s. I then calculate the portfolio return at the end of each

period as

rps+1 = wsrs+1 +(1−ws)r fs+1

where rs+1 is the realized stock market return. I start our out-of-sample analysis at

s0 = 20 (s0 = 50) for annual (quarterly) data and iterate the process until the end of

the sample, resulting in time series of returns for portfolios constructed exploiting the

information content of the d peconomy. I evaluate the performance of the trading strategy

by calculating the Sharpe ratio and certainty equivalent returns

ce = rp− γ

2
σ

2(rp)

where rp is the sample mean portfolio return and σ2(rp) is the sample variance port-

folio return. I report the average portfolio return and the gain in certainty equivalent

relative to investing with the prevailing mean forecast of the equity risk premium, as

done in Campbell and Thompson (2008), Ferreira and Santa-Clara (2011), Cenesizoglu

and Timmermann (2012).13 The certainty equivalent gain can be interpreted as the fee

13 Marquering and Verbeek (2004) report the average realized utility in absolute terms, while Shanken
and Tamayo (2012) and Johannes et al. (2014) report the statistics within a Bayesian framework.
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Table 2.7: Average portfolio returns, certainty equivalent gains, Sharpe ratios and
Sharpe ratios gains. This table presents out-of-sample portfolio choice results at an-
nual and quarterly frequencies from predictive regressions of the equity returns on the
lagged d peconomy. The certainty equivalent (Sharpe ratio) gains are the difference be-
tween the certainty equivalent (Sharpe ratios) using the equity risk premium forecast
predicted by d peconomy relative to using the historical mean. Estimation period: 20
years (one third of the sample) or 50 quarters (one fifth of the sample). Quarterly data
are not annualized.

Annual Quarterly

rp CE Gains SR SR Gains rp CE Gains SR SR Gains
γ = 1 27.12% 8.29% 36.02% 17.21% 7.70% 1.37% 20.93% 8.13%
γ = 2 16.04% 4.10% 36.03% 17.15% 4.49% 0.69% 20.93% 8.13%
γ = 3 12.34% 2.70% 35.95% 17.07% 3.41% 0.46% 20.93% 8.14%

an investor would be willing to pay to exploit the information in the predictor variable.

I also report the Sharpe ratio values and gains. Table 2.7 summarizes the results.

The trading strategy based on the predictive power of the d peconomy performs

incredibly well. The average portfolio return ranges from 12.34% to 27.12% (3.41% to

7.70%) per year (per quarter). The certainty equivalent gain is always positive, ranging

from 2.70% to 8.29% (0.46% to 1.37%) per year (per quarter). The Sharpe ratio of our

trading strategy (36.02%) is more than twice that of a strategy based on the historical

mean (18.95%).

In conclusion, a real-time trading strategy that uses forecasts of returns based on

d peconomy is highly profitable and outperforms trading strategies based on the prevailing

mean of returns for standard values of risk aversion γ .

2.5 Conclusions

Is information about the aggregate economy important for stock market pre-

dictability? In this chapter I show that this is indeed the case. I construct an economy-

wide dividend-price ratio, d peconomy, and show that it strongly predicts the equity risk
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premium, both in-sample and out-of-sample. Further, I present evidence of changes in

private firms’ dividends leading those of public firms, consistent with the hypothesis of

private firms being more flexible in setting their dividend policy in response to cash flow

shocks. I also show that d peconomy subsumes the standard d ppublic in predictive regres-

sions and that the predictive power of d peconomy depends on the information content of

private firms.

Overall, the results presented in this chapter suggest that the aggregate economy

contains valuable information for stock market predictability that is neither reflected in

market prices nor incorporated in market-based predictors. This predictability, stem-

ming from information about aggregate economy fundamentals, might have several ex-

planations. For example, risk premia might be time-varying. Alternatively, it might be

that news about these private firms’ fundamentals diffuses with delay generating pre-

dictable patterns, consistent with a theory of slow diffusion of information. In other

words, market participants might not understand the relevance or, simply, pay atten-

tion to aggregate economy fundamentals such as private firms’ dividends. When such

information is finally fully understood by the market, prices adjust, inducing predictabil-

ity. Understanding why aggregate economy and, specifically, information about private

firms’ fundamentals generate stock market predictability is left for future research.
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Figure 2.3: Out-of-sample predictability of excess return by the various cash flow and
economy-wide predictors (annual data). Initial estimation sample for each predictor is
one third of the total sample size.
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Figure 2.4: Out-of-sample predictability of excess return by the various cash flow and
economy-wide predictors (quarterly data). Initial estimation sample for each predictor
is one fifth of the total sample size.
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Figure 2.5: Dividend-price ratios. d peconomy, d ppublic and d pprivate. Top (bottom)
panel: annual (quarterly) data. d pprivate is scaled on the right y-axis. Annual data:
1946-2013. Quarterly data: 1951Q4-2013Q4
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Abstract

We document geographic momentum: a positive lead-lag stock return relation

between neighboring firms operating in different sectors. Geographic momentum yields

risk-adjusted returns of 5-6% per year, about half that observed for industry momen-

tum. However, while industry momentum is strongest among thinly traded, small firms,

and/or those with scant analyst following, geographic momentum is unrelated to these

proxies for information processing. We propose an explanation linking this to the struc-

ture of the investment analyst business, which is organized by sector, rather than by

geographic region.

3.1 Introduction

Stock prices of firms with similar characteristics tend to move together. How-

ever, empirical studies document significant lead-lag relationships, indicating that, even

among related firms, some stocks react to information before others. Indeed, the popu-

lar pairs trading strategy used by many quantitative hedge funds exploits, but apparently

does not completely eliminate, this mispricing.

An important ingredient of any lead-lag strategy is categorization – i.e., sorting

firms into groups based on one or more similar attributes. These attributes generally

proxy for common sources of cash flow variation, and because investor clienteles tend

to arise based on these attributes, they may also proxy for common sources of discount

rate variation. In this chapter, we explore the possibility that common clienteles create

a type of ‘echo chamber,’ whereby information is rapidly disseminated within groups,

but less so outside them. Our main hypothesis is that scrutiny by a common set of

investors and analysts facilitates the incorporation of information into prices, but that

(even intense) scrutiny by non-overlapping sets of individuals lead to incomplete price
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reactions, and generates lead-lag effects.

We illustrate our intuition with a simple, descriptive model where one firm an-

nounces its earnings early (at date 1), with two others announcing later (date 2). Earn-

ings are generated by an industry factor, a location factor, and a firm-specific factor. The

early announcer shares (only) an industry factor with one of the late announcers, and

(only) a location factor with the other late announcer. If markets are completely effi-

cient, both late announcers’ stock prices will respond to the earnings release of the early

announcer. Generalizing this case to multiple firms, portfolios sorted by either location

or industry will not exhibit momentum.

Consider now the polar opposite case, where late announcers’ stock prices react

only when they disclose earnings, i.e., late announcers fail to react when early announc-

ers’ earnings are released. This will generate both industry and geographic momentum,

since the returns of the early announcers will lead the returns of the late announcers.

Our focus is on an intermediate case, where only some firms underreact. The key source

of heterogeneity is the extent to which two firms are scrutinized by a common set of

investors: more overlap hastens the incorporation of common information into prices,

thereby weakening any lead-lag relation in stock returns.

Our empirical tests are guided by the structure of the institutional investment

business. In particular, both sell-side and buy-side analysts are typically organized along

industrial, rather than geographic, lines. As a result, our model predicts lead-lag within

industry groups only for the smallest, most thinly traded companies. In these cases, the

potential for overlap is (trivially) limited by the small number of analysts covering any

one stock. However, this is not the case for geographic peers in different sectors, for

which analyst overlap is minimal, even between firms scrutinized by a large number of

industry-focused analysts. Among such firms, the model assumes limited awareness of

and/or communication between their respective analysts, leading to lead-lag between
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geographic peers, irrespective of how many analysts follow each firm individually.

To test these hypotheses, we run predictive regressions that include the lagged

returns of a stock’s industry (non-local) peers, as well as those of its local (non-industry)

neighbors. Both regressors are significant. Within industry groups, we find that a 1%

change in the prior month’s returns forecasts continuation of about 20 basis points the

following month, consistent with Moskowitz and Grinblatt (1999)’s original documen-

tation of industry momentum. Among geographic peers we find similar patterns, with

magnitudes roughly one-half to one-third the magnitude generated in our industry-sorted

regressions.

Importantly however, industry momentum decreases in firm size, with the largest

firms exhibiting less than half the predictability of small firms. Likewise, the magnitude

of the abnormal returns displays a strong, decreasing relation with both trading volume

and analyst coverage. These findings are consistent with our model: as the number

of analysts following a firm increases, so too does the chance of overlap between one

or more industry peers. Thus, industry momentum is expected (and is found) to be

strongest for small firms with few analysts, and weaker or even absent among firms with

high analyst following.

A starkly different picture emerges when examining lead-lags between geo-

graphic peers. Rather, geographic momentum appears to be completely unrelated to

proxies for the richness of the information environment, a key distinction not only with

industry momentum, but also with most other asset pricing anomalies. For example,

when attempting to predict a firm’s one-month returns from the one-month lagged area

returns of its geographic neighbors, we estimate a sensitivity of 0.072 (t = 3.78) for the

quartile with lowest trading volume, and 0.100 (t = 4.94) for the quartile with the most.

With analyst coverage, the quartiles with strongest area-level predictability are those

with the third (0.071, t = 3.75) and fourth (0.066, t = 2.51) highest levels. Cuts on firm
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size produce similar patterns, with geographic momentum being significant and stable

in every quartile.

These non-results are likewise consistent with our stylized model, combined

with our observations about the structure of the analyst business. For, even among

industry leaders headquartered nearby – e.g., Google and Genetech (Bay Area), Target

and General Mills (Twin Cities), or Home Depot and Coca Cola (Atlanta) – the lack of

industry overlap means that few, if any analysts, will simultaneously cover both firms

in the respective local pair. Thus, the recognition and/or transmission of area-level in-

formation is retarded just as much for large, heavily scrutinized large firms as it is for

small, less scrutinized ones. The result is a trading strategy that, unlike anomalies in-

volving stocks with high transactions cost and/or price impact (most of them), would

appear profitable even were a large amount of capital deployed.

As an illustration, we calculate the returns of investment strategies that are imple-

mented on a set of 20×12 = 240 city-industry portfolios, e.g., Denver-Manufacturing,

Seattle-Health Care, Philadelphia-Telecommunications, and Boston-Utilities. Within

every month, we rank each portfolio based on the average, one-month lagged returns

of the eleven portfolios constructed in the same area, but outside the industry. The

long-short hedge portfolio that buys (shorts) city/industry portfolios ranked in the top

(bottom) 20% yields monthly profits of about 42 basis points per month, with a Fama-

French (FF-3) alpha of 5.4% per year. Repeating this exercise, but focusing only on

the top 20% of firms when ranked by market capitalization, we find profits of 43 basis

points per month and a nearly identical FF-3 alpha of 5.6%.

Although our focus on geographically sorted lead-lags is novel, there is a large

literature that explores non-synchronous return patterns. Atchison et al. (1987) was

among the earliest to consider how these patterns generate serial correlation in portfolio

returns. Lo and MacKinlay (1990) showed that size is a determinant of lead-lag effects
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across securities, with large firms leading small firms. Brennan et al. (1993), Badrinath

et al. (1995) and Chordia and Swaminathan (2000) linked lead-lag return patterns to

analyst coverage, institutional ownership and trading volume, respectively.1 Relative to

these earlier papers, our contribution is to more explicitly understand the channel linking

the level of scrutiny to observed lead-lag relationships.

We are also not the first to lead-lag effects are generated by slow information

diffusion. Hong et al. (2000), for example, finds that momentum – particularly when

firms with negative returns are involved – weakens sharply with firm size and analyst

coverage. This suggests that delayed awareness of, or reaction to, information is respon-

sible for the sluggish price reaction observed in momentum. Other prominent examples

include Cohen and Frazzini (2008), which examines the lead-lag relation between the

stock returns of firms in a supply chain, and Cohen and Lou (2012), which documents

underreaction between focused firms and conglomerates. We, however, are the first to

explicitly tie the nature of the lead-lag relation to the organization of the analyst com-

munity, to examine how the lead-lag relation depends on investor scrutiny in alternative

settings, and to document momentum within geographically-sorted portfolios.

Our focus on regional patterns in stock returns builds on Pirinsky and Wang

(2006), which documents comovement (but not lead-lags) among firms headquartered

in the same location, and on Korniotis and Kumar (2013), which uses fluctuations in

state-level economic variables (e.g., house prices) as forecasting variables.2 Both papers

emphasize that discount rates may be influenced by local factors, particularly when a

1 Numerous prior studies have examined lead-lag relationships in stock returns. Jegadeesh and Titman
(1995) found that delayed reactions to common factors give rise to a size-related lead-lag effect in stock
returns, while Mech (1993) and McQueen et al. (1996) showed that lead-lag effects can also be the
result of non-synchronous trading or time-varying expected returns. Hou (2007) found that the lead-
lag relationship between large and small firms found in the literature is predominantly an intra-industry
phenomenon. Within the same industry, big firms lead small firms, and this effect is more important than
the effect across industries.

2 Other papers that examine the impact of location on asset prices and firm policies include Hong et al.
(2008), Becker et al. (2011), John et al. (2011), Garcia and Norli (2012), Kumar et al. (2013), Tuzel and
Zhang (2015) and Bernile et al. (2015).
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firm’s investors are geographically concentrated and undiversified. Our work suggests

that common variation in cash flows may also be important for neighboring firms, and

that the market’s awareness of these regional linkages may be incomplete.

The chapter is organized as follows. Section 3.2 begins with a simple model of

underreaction. The key assumption is that when two firms are covered by a common

analyst, common sources of information are incorporates quickly into prices, compared

to two firms with non-overlapping analysts. The remainder of the chapter is empirical,

comparing lead-lag effects between industry peers (who are more likely to have common

analysts) and firms headquartered nearby, but in different sectors (where analyst overlap

is unlikely). In Section 3.3 we describe our sample, and in Section 3.4, we present our

main results: significant lead-lags both at the industry and geographical level. How

these sources of return predictability differ, one of our main interests, is described in

Section 3.4.3. Specifically, while industry-level under-reaction is limited to small, thinly

traded firms, area-level under-reaction persists even among large, highly scrutinized

firms. Section 3.5 provides some alternative specifications and robustness checks. We

conclude in Section 3.6.

3.2 Background and Theoretical Motivation

This section provides institutional details and a simple model that motivates our

empirical analysis. Our characterization of the investment analyst business, discussed

in subsection 3.2.1, describes prior research as well as stylized facts that demonstrate

the high degree of sector concentration/focus observed among equity analysts. We then

draw on these insights in subsection 3.2.2 to develop a simple model that generates

cross-serial correlation at both the regional and industry level.
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3.2.1 Analyst specialization by industry

Sell-side equity analysts tend to specialize by industry. This is not particularly

surprising given the evidence of industry factors generating both investment rates and

profitability.3 Academic research confirms the importance of industry affiliation in the

day-to-day operations, evaluation, and career paths of analysts. Kadan et al. (2012) doc-

ument, for example, that industry expertise is a key dimension that defines an analyst’s

skill. Being recognized by institutional clients as an “all star” depends on a ranking

between analysts covering firms in a given sector (Stickel (1992), Clement (1999)).

Figure 3.2 provides an indication of the importance of industry affiliation in the

analyst community. The figure plots the percentage of firms (from 1993-2013) that

are in an analyst’s modal industry sector. For example, in 1995, the graph indicates

that for the median analyst, about 83% of covered stocks were in the same industry. The

interquartile range is also informative, indicating that on average, 75% of analysts spend

two-thirds of their time on a single sector, with more than 25% being fully concentrated

in one industry. A direct implication is that firms within the same industry tend to be

covered largely by a common set of analysts. As we illustrate in the model below, this

overlap in analyst coverage has an important effect on the lead-lag relation between the

returns of individual stocks.

3.2.2 Industry and geographic momentum: a stylized model

We begin with a stylized model that explicitly links overlapping analyst cov-

erage for a pair of stocks and lead-lag effects in their respective returns. The model

3 Schmalensee (1985)’s seminal study used cross-sectional data from the year 1975 to decompose the
rates of return on assets into industry, firm, and market-specific factors. Industry factors were identified
as the most important in generating differences in performance between firms. Though the findings and
interpretation have been challenged – most prominently by Rumelt (1991) – subsequent work, e.g., Mc-
Gahan and Porter (1997) continues to identify industry affiliation as a key source of variation between
business units.
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assumes that in addition to firm specific shocks, there are two sources of potentially

common variation – industry and regional factors. The workhorse assumption is a type

of industry focused limited attention resulting from stock analysts’ disproportionate fo-

cus on a small number of industry sectors. As our model illustrates, this focus implies

that prices tend to more efficiently reflect common industry factors, especially for large,

highly scrutinized firms. In contrast, the model predicts that prices may not immedi-

ately reflect regional shocks, but this mispricing will not depend on firm size or analyst

coverage. The latter effect is exhibited as a lead-lag relation between neighboring firms

operating in different industries.

Timing and Payoffs

The model has three dates, t = 0,1,2, and involves three firms i ∈ {1,2,3}. The

interest rate is zero, and all investors are risk neutral. Each firm i realizes a liquidating

dividend πi at t = 2. The realization of the liquidating dividend depends on three factors:

1) an industry factor I, 2) a local factor L, and 3) a firm-specific factor ε .

There are two industries A and B, and two locations, X and Y . Firms 1 and 2

are in the same industry, and thus share industry shocks (IA), but realize different values

of the local shock, denoted LX and LY , respectively. Firms 2 and 3, on the other hand,

are both headquartered in location Y , but because they operate in different industries,

are exposed, respectively, to IA and IB. Combining these assumptions, the realization of

firm i’s liquidating dividend at t = 2 is:

π1 = IA +LX + ε1

π2 = IA +LY + ε2

π3 = IB +LY + ε3.

(3.1)

Industry, area, and firm-specific shocks are all normally distributed, i.e., (IA, IB) ∼
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N(0,σ2
I = 1

τI
), (LX ,LY ) ∼ N(0,σ2

L = 1
τL
), and (ε1,ε2,ε3) ∼ N(0,σ2

ε = 1
τε
). The co-

variance between all signals, both within and across groups, is zero.

The relevant timing is shown in the timeline below. Initially, at t = 0, the ex-

pected liquidating dividends for each firm, and thus prices, are zero, i.e., P1
t=0 = P2

t=0 =

P3
t=0 = 0. At t = 1, firms 1 and 3 both announce earnings, information which can be

used to update the stock price of firm 2. The model ends at t = 2, where the realization

of π2 is observed.

t = 0

Pi = 0,∀i

t = 1

π1,π3 observed

t = 2

π2 observed

Figure 3.1: Timeline

Analyst reports

The model focuses on the stock price of firm 2, which shares an industry linkage

(and only an industry linkage) with firm 1, and (only) a location linkage with firm 3.

Analysts play an important role in the way stock prices are determined. Specifically,

there exist a set of analysts indexed by n ∈ {1,2,3, ....N} that cover stock 2, each of

which may or may not also cover its industry peer (firm 1) or geographic neighbor (firm

3). Investors read analysts reports, and set the price of firm 2 as the expectation of π2,

conditional on the information produced by analysts that cover firm 2. Denoting the

report produced by analyst n as rn,

P2
t=1 = E[π2|(r1,r2,r3, ...rN)]. (3.2)
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The model takes a stylized view of analyst reports. In reality, analysts and in-

vestors collect and analyze information from a wide variety of sources, many of which

are specific to firm being covered (e.g., talking with management, surveying customers,

etc.). However, because we are interested in cross-serial correlation between firms,

rather than within them, we focus on information about other companies that analysts

may view as relevant. In particular, analyst n may choose to report π1, the profit of firm

2’s industry peer, and/or π3, the profit of firm 2’s geographic neighbor. There are thus

four possible reports each analyst can produce: {π1,π3},{π1},{π3},{}.

The first would correspond to an analyst that followed both firms 1 and 3, in

addition to firm 2 (the subject of his report). The second and third, respectively, corre-

spond to analysts that cover only firm 2’s industry peer (firm 1) and geographic neighbor

(firm 3). In the last case, the analyst covers neither firm 1 nor 3, and therefore reports

neither’s profits in his report.

Because investors of firm 2 read all available reports, they form expectations

using the union of all information produced by the analyst community. Thus, from a

pricing standpoint, it would make no difference whether all the information came from

one analyst (e.g., r1 = {π1,π3},r2 = {}), or whether the information is spread across

analysts (e.g., r1 = {π1},r2 = {π3}). The same intuition applies for more than two

analysts, and for different values for the union of all reports. For example, the price

formed with the set of reports (r1 = {π1},r2 = {π1},r3 = {π1},r4 = {π1}) would be the

same as that formed as with reports (r1 = {π1},r2 = {},r3 = {},r4 = {}).
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Price and returns

Using the factor structure in Equation 3.1 as given, the stock price of firm 2 at

t = 1 can take on four possible values:

P2
t=1 =



0 if neither π1 nor π3 reported,

π1

(
σ2

I
σ2

I +σ2
L+σ2

ε

)
if only π1 reported,

π3

(
σ2

L
σ2

I +σ2
L+σ2

ε

)
if only π3 reported,

π1

(
σ2

I
σ2

I +σ2
L+σ2

ε

)
+π3

(
σ2

L
σ2

I +σ2
L+σ2

ε

)
if both π1 and π3 reported.

In the first case when neither π1 nor π3 is reported by the analyst community, no updating

occurs, and P2
t=1 = 0. In the second case, only the industry signal is reported; here, P2

t=1

is efficient with respect to industry information (π1), but inefficient with respect to the

geographical shock reflected by π3. The third case is the converse, with P2
t=1 capturing

the impact of geographic, but not industry, information. The final case corresponds to

the fully efficient case, where both industry and geographic shocks are appropriately

incorporated into the stock price of firm 2.

We wish to characterize the conditional expected return of firm 2 from t = 1 to

t = 2, using either the t = 0 to t = 1 return of firm 1 as the conditioning variable, E[P2
t=2−

P2
t=1|P1

t=1], or the return of firm 3 over the same horizon, E[P2
t=2−P2

t=1|P3
t=1]. The first

corresponds to cross-serial correlation between industry peers (industry momentum),

and the second to cross-serial correlation between local neighbors that are in different

industries (geographic momentum).

Calculating these quantities requires the probabilities for the prices given above.

However, the fact that π1 and π3 are statistically independent allows us to take a no-

tational shortcut. Rather than having to specify prices for each price realization (four
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probabilities), all that is needed is the probability of π1 being reported, irrespective of

whether π3 is reported, and vice versa. Denote these, respectively, as p1(N) and p3(N).

We will later be explicit about how p1(N) and p3(N) are expected to vary with the num-

ber of analysts N, as well as potentially with firm size, but for now we treat them as

constant.

Industry momentum occurs when cov(P1
t=1−P1

t=0,P
2
t=2−P2

t=1) = cov(π1,π2−

P2
t=1)> 0. Expanding this using the factor structure given in Equation 3.1, we have

cov(π1−0,π2−P2
t=1) = cov(π1,π2)− cov(π1,P2

t=1)

= σ
2
I − cov

(
π1,

σ2
I

σ2
I +σ2

L +σ2
ε

p1(N)π1 +
σ2

L

σ2
I +σ2

L +σ2
ε

p3(N)π3

)
= σ

2
I (1− p1(N)).

Regional momentum takes a similar form:

cov(π3−0,π2−P2
t=1) = cov(π3,π2)− cov(π3,P2

t=1)

= σ
2
L − cov

(
π3,

σ2
L

σ2
I +σ2

L +σ2
ε

p1(N)π1 +
σ2

I

σ2
I +σ2

L +σ2
ε

p3(N)π3

)
= σ

2
L(1− p3(N)).

Proposition 1. The magnitude of industry and regional momentum 1) decreases with the

probability that the relevant signal is observed, p, and 2) increases with the variance of

the shock, σ .

For any mispricing (in expectation) to occur at t = 1, there must be some prob-

ability that investors of firm 2 ignore relevant information conveyed in the profits of its

industry (p1 < 1) and/or geographic peers (p3 < 1). High values for these probabilities

– i.e., when investors are more attentive – imply a more efficient stock price for firm

2 at t = 1, and accordingly, less return predictability between t = 1 and t = 2. More-

over, shocks arising from a more volatile distribution are associated, in expectation,
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with stronger predictability. Intuitively, for a given probability that a signal is ignored

(1− p), shocks with higher volatility create a larger wedge between prices and funda-

mental value.

These observations will be useful when we compare the magnitudes of indus-

try and geographic momentum in our empirical tests. We generally expect industry

shocks to have more influence on cash flows than geographic shocks (σI > σL), but

the probability that regional shocks are reported by analysts is probably less (p1 < p3).

Consequently, it is an empirical question which effect dominates.

Varying the number of analysts N

To this point, we have taken p1(N) and p3(N) as given, so as to simplify the

return predictability expressions. We now attempt to be more explicit about their re-

lationship with the number of analysts (N) covering firm 2. In addition to comparing

the average magnitudes observed for industry and geographic momentum, an important

part of our empirical work will explore the impact of analyst coverage on both types of

return predictability. As we now show, the number of analysts following a given stock

has potential implications for any lead-lag relation its return may have with respect to

industry and/or regional portfolios.

Recall that a report may take on four possible values: {π1,π3},{π1},{π3},{}.

Denote the probability of each, respectively, as x, y, z, and 1− x− y− z. Let us assume

that reports are written independently. Then, with N reports, the aggregate probability

that π1 is reported by at least one analyst, p1(N), is equal to 1− (1− x− y)N . Likewise,

the analogous expression for π3 is 1− (1− x− z)N = p3(N).

One of our key assumptions is that analysts are unlikely to cover firms operating

in fundamentally different sectors, consistent with the patterns observed in Figure 3.2.

Applied to the probabilities above, this implies that x≈ z≈ 0, which in turn implies that
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p1(N)≈ 1− (1− y)N and that p3(N)≈ 0.

Two empirical implications follow. First, industry momentum should decline

with analyst coverage. The intuition is that because analysts tend to specialize by indus-

try, a larger number of analysts increases the probability that π1 is reported by at least

one of them. Consequently, the chance that investors of firm 2 will become aware of

firm 1’s earnings – allowing them to incorporate this information into prices – increases

with N.

The expression allows us to be even more specific. Noting that ∂ p1(N)
∂N =−log(1−

x− y)N(1− x− y)N ≈ −log(1− y)N(1− y)N , we can see that the relation between p1

and N depends crucially on y. When the per-analyst probability of overlap (y) is high,

even a small number of analysts will virtually ensure that π1 is reported, i.e., p1 ≈ 1. On

the other hand, for moderate or small probabilities of overlap, p1 continues to increase

even for relatively large N. For example, if y = .15, then p1(10) = 56%, but increases

to 96% if 20 analysts are involved.

The second implication is that geographical momentum should be relatively in-

sensitive to analyst following. If the probability that a given analyst covers both 2 and

3 is sufficiently small, then not only is p3 similarly small, but is relatively insensitive to

changes in N. As the mirror image to p1, ∂ p3(N)
∂N = −log(1− x− z)N(1− x− z)N ≈ 0.

For example, if x+ y = .01, then with five analysts (beyond the 90th percentile in the

data), p3 is still less than 5%, and for ten analysts (98th percentile), the probability that

π3 is reported is less than 10%. The lack of sensitivity to N implies that geographical

lead-lags may remain significant, even for firms covered by a large number of analysts.

The remainder of the chapter is empirical. After first describing the data in

the section immediately following, we document the presence of geographic lead-lag

relationships, and benchmark them against lead-lags between industry peers. We then

test both empirical implications above, asking how analyst following (or other proxies
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for investor scrutiny) impact the magnitude of these estimated lead-lags.

3.3 Data and Descriptive Statistics

Firm location. Our analysis pertains to stocks headquartered in, or immediately

proximate to, the twenty largest urban centers in the United States. To construct our

sample, we begin with the universe of domestic common stocks (codes 10 and 11) traded

on the NYSE, NASDAQ, AMEX over the period 1970-2013. Then, we assign to each

firm a location variable, based on the zip code (ZIP) corresponding to its headquarter

location in the COMPUSTAT database. Because COMPUSTAT lists only the zip code

of the firm’s current headquarters, we will misclassify firms that have relocated, such as

Boeing, which moved its HQ from Seattle to Chicago in 2001. Though this introduces

measurement error into our analysis, this works against us, i.e., the effects we estimate

will be closer to zero than they would be absent headquarter misclassification.4

Headquarter locations are grouped by economic areas (EA), as defined by the

Bureau of Economic Analysis. EAs are intended to capture local nodes of economic

activity, and typically involve a main metropolitan area, along with smaller surrounding

regions from which workers may commute. Examples of EAs include San Jose-San

Francisco-Oakland (CA), Atlanta-Sandy Springs-Gainesville, (GA-AL) and Houston-

Baytown-Huntsville (TX).5

Industry Classification. In addition to categorizing firms by headquarter loca-

tion, we also group them by industry affiliation. Every month, we link each firm to a

single Fama-French 12 industry, which groups firms by SIC designations. The indus-

4 In Section 3.5.1, we perform some robustness checks by showing that misclassifying a small per-
centage of locations does not affect our results.

5 Further details on the definition and characteristics of EAs can be found at http://www.bea.gov/
newsreleases/regional/rea/rea1104.htm.

http://www.bea.gov/newsreleases/regional/rea/rea1104.htm
http://www.bea.gov/newsreleases/regional/rea/rea1104.htm
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tries are non-durables (1), durables (2), manufacturing (3), energy (4), chemicals (5),

business equipment (6), telecommunications (7), utilities (8), shops (9), healthcare (10),

finance (11), and other (12). We intentionally select such relatively broad groupings in

order to reduce the extent of overlap between firms classified in different industries.

Summary Statistics. Table 3.1 presents summary statistics for our sample, bro-

ken down by decade. Panel A shows the results by city (EA), and Panel B by industry.

Progressing from the left to right, we see a steady increase in the number of publicly

traded firms, with an average (per city) of 73 in the 1970s to 178 in the 2000s. However,

this growth is unequally distributed among both cities and industries.

As shown in Panel B, “old economy” industries have dwindled since the 1970s,

with declines in the number of publicly traded firms observed for non-durables, durables,

manufacturing, and utilities (chemicals is virtually flat). In contrast, rapid growth is ob-

served in business equipment (341% increase in public companies from the 1970s to

2000s), telecommunications (+273%), healthcare (+585%) and finance (+629%). Many

of these same patterns are reflected in Panel A, which indicates stagnation for tradi-

tional manufacturing hubs like Detroit, St. Louis, Cleveland and Indianapolis, and a

burgeoning among technology centers like Boston, Denver, Seattle, and San Francisco.

The last four columns present average monthly returns by decade for cities

(Panel A) and industries (Panel B). Across industries, we observe substantial hetero-

geneity with, for example, the energy sector having among the highest average return

of any industry in the 1970s (2.64%) and again after 2000 (1.47%), the intermediate

decades being dominated by telecommunications (2.14% in the 1980s) and business

equipment (2.59% in the 1990s). To some extent, these industrial patterns are reflected

geographically, e.g., Houston-based firms performed very well in the 1970s and 2000s.

However, the data seem to indicate regional differences in stock returns beyond in-

dustrial clustering. For example, in the 1990s, monthly stock returns of Washington
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D.C.-based firms averaged almost one-half percent higher than those headquartered in

Chicago (1.51% vs. 1.09%), despite neither area being heavily concentrated in a single

industry. Similar geographical heterogeneity is observed in other decades, e.g., Min-

neapolis (1.30%) vs. Miami (0.79%) in the 2000s, Los Angeles (1.51%) vs. Atlanta

(1.06%) in the 1970s, and St. Louis (1.60%) vs. Boston (0.99%) in the 1980s. Such

regional differences are the foundation of our analysis.

Other variables. In our empirical analysis, we also incorporate a number of

firm-specific variables, most of which are standard. Summary values are tabulated in

Panel C of Table 3.1. The source of variation is at the panel level, creating variation

both across firms and over time. The average firm in our sample has been public for 10.4

years, and returns 1.17% per month, with a (monthly) volatility of 18.84%. Averages for

size, book-to-market and trading volume are also shown, and are consistent with prior

literature (e.g., variables’ breakpoints from Ken French’s website). Finally, the average

firm is covered by 3 analysts.6

6 This is based on the number of EPS forecasts by unique analysts for a given firm-quarter.
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Figure 3.2: Distribution of analyst coverage by cities and industries. These graphs
show the time series distribution of city (top panel) and industry (bottom panel) con-
centration of analyst coverage. For each analyst in every year, we identify the modal
(i.e., most commonly represented) industry and city. Then, for each analyst, we iden-
tify the fraction of covered firms in these modal industries and cities and sort the an-
alysts according to these fractions. For example, in the top panel, less than 28% of
the firms covered by the median analyst in 1995 are headquartered in the same city.
As another example, in the bottom panel, at least a quarter of the analysts, every year,
cover only firms that belong to the same industry. Sample: 1993-2013.
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Table 3.1: Descriptive statistics. Panel A: Average number of firms, cross-sectional
mean and volatility of monthly stock returns for the twenty largest U.S. cities, by
decade. Panel B: Average number of firms, cross-sectional mean and volatility of
monthly stock returns for the twelve Fama and French (1992) industries, by decade.
Panel C: Cross-sectional distribution of monthly returns, monthly trading volume (e.g.,
the total number of shares traded within a month), size (in thousands, in December
2013 dollars), number of unique analysts covering a firm (within a quarter). Monthly
data, 1970-2013.

PANEL A: CITIES

Average # of firms Average return (volatility)
1970-1979 1980-1989 1990-1999 2000-2013 1970-1979 1980-1989 1990-1999 2000-2013

Atlanta 44 90 163 140 1.06% (13.76%) 1.39% (15.78%) 1.41% (18.28%) 0.89% (18.67%)
Boston 100 210 355 303 1.44% (14.87%) 0.99% (15.10%) 1.75% (18.46%) 1.01% (18.96%)
Chicago 122 173 298 296 1.12% (12.64%) 1.49% (13.50%) 1.09% (14.73%) 0.85% (13.42%)
Cleveland 58 72 93 68 1.10% (13.51%) 1.32% (13.71%) 1.15% (16.85%) 1.31% (15.39%)
Dallas 89 183 243 174 1.60% (14.75%) 0.77% (17.13%) 1.16% (20.10%) 1.14% (18.65%)
Denver 32 122 141 108 2.12% (17.29%) -0.10% (22.48%) 1.40% (22.00%) 0.96% (19.81%)
Detroit 58 73 92 70 1.22% (13.49%) 1.26% (14.10%) 1.28% (17.15%) 1.07% (19.15%)
Houston 77 144 206 193 1.89% (13.67%) 0.60% (18.98%) 1.04% (19.28%) 1.55% (19.30%)
Indianapolis 17 29 51 40 1.10% (11.76%) 1.12% (13.21%) 1.30% (14.36%) 1.08% (15.62%)
Los Angeles 127 287 403 291 1.51% (16.90%) 1.07% (18.58%) 1.23% (23.89%) 0.93% (21.22%)
Miami 46 113 170 102 1.22% (17.10%) 0.83% (20.02%) 1.15% (24.93%) 0.79% (22.30%)
Minneapolis 45 108 181 114 1.49% (13.91%) 1.27% (16.43%) 1.42% (18.14%) 1.30% (18.07%)
New York 372 674 856 666 1.26% (15.13%) 1.14% (18.07%) 1.27% (20.39%) 0.92% (18.37%)
Orlando 13 33 39 26 1.54% (18.77%) 0.81% (16.60%) 1.80% (24.94%) 0.86% (22.19%)
Philadelphia 74 127 227 240 1.31% (14.07%) 1.38% (15.46%) 1.42% (18.02%) 0.89% (15.38%)
Phoenix 24 48 71 55 1.51% (16.37%) 0.52% (19.90%) 1.48% (21.10%) 1.16% (20.15%)
San Francisco 54 172 338 356 1.61% (14.93%) 0.75% (17.07%) 2.31% (22.94%) 0.86% (18.67%)
Seattle 14 37 63 69 1.90% (15.36%) 1.15% (15.69%) 1.81% (19.98%) 0.94% (22.34%)
St. Louis 31 42 61 49 1.04% (12.27%) 1.60% (15.15%) 1.22% (14.20%) 1.45% (18.71%)
Washington, DC 55 132 214 191 1.27% (15.45%) 1.04% (16.78%) 1.51% (19.32%) 1.17% (20.64%)

PANEL B: INDUSTRIES

Average # of firms Average return (volatility)
1970-1979 1980-1989 1990-1999 2000-2013 1970-1979 1980-1989 1990-1999 2000-2013

Consumer Non Durables 166 178 211 135 1.07% (14.07%) 1.62% (15.03%) 0.65% (19.18%) 1.22% (16.45%)
Consumer Durables 66 79 87 55 1.16% (13.86%) 1.20% (16.70%) 0.97% (19.64%) 0.88% (21.03%)
Manufacturing 278 347 357 236 1.43% (14.52%) 1.21% (16.45%) 1.09% (18.29%) 1.36% (17.70%)
Energy 64 172 147 123 2.64% (15.22%) -0.11% (21.83%) 0.89% (18.68%) 1.47% (17.21%)
Chemicals 63 80 92 68 1.13% (12.89%) 1.35% (14.32%) 0.98% (16.52%) 1.18% (17.70%)
Business Equipment 152 469 736 671 2.01% (18.17%) 0.69% (19.54%) 2.59% (25.35%) 0.80% (24.53%)
Telecoms 26 57 114 97 1.39% (14.00%) 2.14% (16.88%) 2.24% (23.24%) 0.28% (25.38%)
Utilities 61 76 74 55 0.92% (7.45%) 1.62% (8.10%) 1.13% (8.26%) 1.14% (9.64%)
Wholesale and Retail 187 320 414 274 1.10% (14.77%) 1.04% (17.52%) 0.89% (21.23%) 1.17% (18.78%)
Healthcare 55 182 412 377 1.41% (15.64%) 1.13% (20.05%) 1.51% (22.49%) 1.51% (24.92%)
Finance 148 492 1,085 1,079 1.10% (13.80%) 1.02% (13.44%) 1.23% (13.54%) 0.87% (11.32%)
Others 187 414 536 382 1.37% (16.12%) 1.07% (18.65%) 1.10% (22.92%) 0.85% (20.23%)

PANEL C: FIRMS-MONTH

10th 25th 50th 75th 90th Mean Stdev
Returns -15.98% -6.66% 0.00% 7.04% 17.65% 1.17% 18.64%
Trading Volume 30,900 119,900 564,000 2,855,800 11,843,200 7,831,805 68,543,163
Size 13,911 41,153 154,983 645,053 2,602,622 1,856,786 11,821,009
Book-to-Market 0.148 0.318 0.603 1.031 1.63 0.786 0.718
Analysts 0 0 0 4 11 3.22 5.87
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3.4 Lead-lag Effects: Industry versus Regional Groups

This section describes our main empirical results. Subsection 3.4.1 uses Fama

and MacBeth (1973) regressions to establish the presence of lead-lag effects, both be-

tween industry peers as well as between regional neighbors operating in different sec-

tors. We then show how these lead-lags can be used to create profitable trading strategies

in subsection 3.4.2. In the final subsection 3.4.3, we compare the cross-sectional patterns

between industry and geographic momentum. Consistent with the model’s predictions,

we observe industry lead-lag effects most strongly among small, thinly traded compa-

nies, but regional predictability even (and equally) among large, heavily traded firms

with substantial analyst coverage.

3.4.1 Fama-MacBeth regressions

Observations defined at the firm-month

Our benchmark specification predicts firm-level monthly stock returns using two

predictors: (1) the lagged returns of a portfolio consisting of non-local industry peers,

and (2) the lagged returns of a portfolio consisting of non-industry, local peers. The

former portfolio is intended to capture lead-lag effects within industries (Moskowitz

and Grinblatt (1999)), and the latter cross-industry lead-lag effects within cities.

We estimate the following stock-level predictive regression at the monthly level

using the Fama and MacBeth (1973) methodology:

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈c, j,t + εi,c, j,t+1, (3.3)

where ri,c, j,t+1 is the month t + 1 excess return of firm i, headquartered in city c, and
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operating in industry j. There are two predictor variables, both measured at time t. The

first is rc,/∈ j,t , the equally-weighted, lagged return of firms headquartered in city c, but

operating outside firm i’s industry (/∈ j). Coefficient β1 thus estimates the lead-lag effect

within cities, but across industrial sectors. The second predictor is r/∈c, j,t , capturing the

lagged returns of firm i′s industry peers ( j) located outside its city (/∈ c). Thus, β2

measures lead-lag effects between industry (but not local) peers.7

Table 3.2 shows the results of estimating (3.3), with successive panels corre-

sponding to increasing horizons of the forecasting variables. In Panel A, both the in-

dustry and area portfolios are measured over the preceding month. For example, if

the dependent variable is the July 2007 return of Coca-Cola (NYSE:KO), the city port-

folio would include the June 2007 returns of such Atlanta peers as Home-Depot, and

the industry portfolio would include the June 2007 return of non-local bottlers such as

Pepsi-Cola, headquartered in New York City.

Starting with the first column of Panel A, we see that both β1 and β2 are signif-

icant, with lead-lags within cities being around one-third as strong as those within in-

dustry groups. A one percent increase in a firm’s lagged industry portfolio is associated

with a positive return of twenty basis points the following month (t=8.21), compared to

seven basis points (t=5.64) for the same change in a firm’s lagged city portfolio over the

full sample. Both coefficients are highly significant.

Moving down the table, the horizon over which the forecasting variable is con-

structed increases. For example, in Panel B, Coca-Cola’s July 2007 return would be pre-

dicted from Home-Depot’s 3-month return from April to June 2007, as well as Pepsi’s

3-month return over the same horizon. Results from six- and twelve-month horizons are
7 A further restriction, which we impose for interpretational simplicity, is that industry portfolios are

constructed excluding firms in any of the 20 cities we consider in our analysis. This ensures that for
firms within a given industry j, β2 is estimated against an identical portfolio of industry peers. Although
we prefer this specification, we note that operationally, this restriction makes almost no difference in our
estimates. If industry portfolios are instead constructed from firm i’s industry neighbors using only those
headquartered in the 19 other cities (/∈ c), we obtain nearly identical estimated for β1 and β2.
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shown in Panel C and D, respectively.

Generally, expanding the horizon reduces forecasting ability, reflected in both

smaller point estimates and, to a smaller extent, statistical significance. At three months,

the sensitivity to lagged returns is less than half that observed for the one-month horizon,

both at the area and industry level. However, even using trailing twelve month returns to

form our forecasting variable, we still observe statistically significant lead-lags at both

the industry and geographic level. But, the magnitudes (0.025 and 0.013, respectively)

are relatively modest.

Columns 2 and 3 show the results separately for the first (1970-1990) and second

half (1991-2013), respectively, of our sample period. Regardless of the predictive hori-

zon, both the area- and industry-level predictors remain significant in both sub-samples.

We note, however, that lead-lags between geographic peers appear to have weakened

somewhat over the last two decades, whereas industry momentum has maintained rel-

atively constant. As we will see shortly, industry momentum is driven primarily by

smaller firms, whereas geographic momentum is relatively constant for firms across the

size distribution. Thus, it is possible that the results in columns 2 and 3 reflect high,

persistent limits to arbitrage for small firms (thus allowing industry-level mispricing to

persist for decades), but gradually more efficient pricing over time for large, liquid firms.

Observations defined at the industry-city-month

An alternative way of testing for lead-lag relationships is to combine firms within

the same industry and city into a single portfolio, rather then consider each firm sepa-

rately. Doing so allows us to construct observations at the city-industry-month level, and

then run a regression similar to equation 3.3, except that now the dependent variable is

a portfolio return. Note that this aggregation reduces the number of observations to a

little over 100,000, corresponding roughly to the product of the number of industries
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(12), the number of cities (20), and the number of months in our sample (527). We

lose about 15,000 possible city-industry-month observations to cases when a potential

city-industry-month group contains zero firms.

Table 3.3 shows the results. Compared to the firm-level results, city-industry

portfolio regressions give similar estimates. Industry-level lead-lags are about 10%

smaller across the board, while area-level lead-lags grow by about the same amount.

Consequently, when we compare the respective magnitudes, the coefficients on the ge-

ographic portfolios varies between being about one-half (panel A) to two-thirds (panel

D) the size of the industry coefficients.

It is also worth noting that despite reducing the number of observations by over

an order of magnitude, the statistical significance is similar between Tables 3.2 and 3.3.

This suggests that the reduction in statistical power – all else equal our estimated t-

statistics should decrease by about
√

1,611,9731
111,942 ≈ 3.8 – is compensated for by portfolio

returns measured with less noise. In any event, the results here confirm the firm-level

analysis, and provide strong evidence that for at least some firms, area-level information

is incorporated into stock prices with a delay.

3.4.2 Trading profits

The results above lead themselves to a trading strategy that exploits cross-serially

correlated returns between geographic neighbors. Every month, we rank each firm i

not by its own lagged return (as we would in a simple momentum strategy), but by

rc,/∈ j,t , the average lagged return of firms headquartered in the same region, but operating

in different sectors. We use a one month horizon both for the sorting criterion (i.e.,

area-level stock returns are measured over a month) as well as the holding period (i.e.,

portfolios are reformed at the end of every month).

In Figure 3.3, we plot the value of a hypothetical dollar invested in each of three
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portfolios. The first, shown in blue, shows the evolution of a dollar invested in the market

portfolio. Dividends are assumed to be reinvested. Against this benchmark, we also plot

the 20% of firms with the highest lagged 1-month area returns (green), as well as the

20% of firms with the lowest lagged 1-month area returns (red). Note that the y-axis

is displayed in natural logarithms. While the market portfolio grows by a (log) factor

of over 4 during the four decades in our sample, bringing $1 invested in the market to

around $70, $1 invested in the lowest quintile barely exceeds $20. On the other hand,

a $1 investment in the highest quintile performs almost an order of magnitude better,

growing to approximately $185 by 2013.

Table 3.4 makes these comparisons more formally. Starting with the first row, we

see that the average monthly return for the quintile of firms surrounded by the poorest

lagged returns is 74 basis points. Regressing the average returns of this portfolio against

the market yields a statistically significant intercept of -26 basis points (t = −3.21),

nearly identical to that obtained from a regression that also includes Fama and French

(1993)’s size and value factors (-24 basis points, t =−3.00). The resulting Sharpe ratio

is about 0.2, less than half what one would obtain by simply holding a market portfolio.

Proceeding down the table, we see that average returns increases steadily. The

middle three groups appear fairly representative of the market as a whole, with similar

average returns (CAPM alphas are small and insignificant for each group) and Sharpe

ratios. However, outperformance is observed for the highest quintile, with raw monthly

returns of 116 basis points, and statistically significant alphas relative to both the CAPM

(t=3.19) and Fama-French three factor model (t=3.03). The Sharpe ratio for this portfo-

lio is 0.53. (See also nearly identical results in Appendix Table A1, which displays the

results when portfolios are sorted into ten, rather than five, groups.)

Foreshadowing results in the following section, the most remarkable aspect of

Table 3.4 is the apparent orthogonality to traditional risk factors. To see this, note that the
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difference in raw returns between the first and fifth quintiles (42 basis points, t = 3.64)

is nearly identical to the intercept estimated from either a regression against the market

(47 basis points, t = 4.15) or against the FF-3 factors (45 basis points, t = 3.99).8

Further evidence against a risk-based explanation can be inferred from the av-

erage portfolio characteristics within each quintile, shown in the far right-hand side of

the table. Here, too, we observe no trends relevant for the pattern in average returns.

Firm-specific volatility is highest among the quintile with the lowest returns, followed

by the second-highest quintile, then the second-lowest, highest, and then median. Size is

humped shaped, with average market capitalization being highest for the middle group;

indeed, we find almost identical results for a trading strategy that focuses only on the

largest 20% of firms in each period (see Appendix Table A2). Book-to-market ratios

display the opposite patterns, dipping in the center. These results indicate that adjust-

ing for characteristics rather than factor loadings as in Daniel and Titman (1997), tells

the same story: a geographic momentum strategy is profitable, but appears unrelated to

standard risk factors.

3.4.3 Richness of the information environment

In the last section, we presented evidence of significant lead-lag effects, both

at the industry and geographic level. While underreaction to industry news has been

recognized since Moskowitz and Grinblatt (1999), finding a significant lead-lags within

regions between sectors suggests an additional source of information not (completely at

least) appreciated by investors. In this section, we attempt to be more precise about the

specific reasons why area-level return predictability might persist.

Returning to the stylized model described in Section 3.2, the key assumption is

8 Adjusting for momentum (Carhart (1997)), not reported in the table, likewise makes almost no
difference.
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that information disseminates rapidly within industries, and less so within geographic

regions. The mechanism we proposed is based on overlapping coverage between equity

analysts, i.e., the extent to which two firms are commonly scrutinized by a common set

of individuals. Our intuition is that when two firms share multiple analysts, common

sources of information are more rapidly reflected in stock prices, compared to when two

firms have little if any overlap. In these latter cases, lead-lag effects can persist, whereby

some firms react early to information, and others react with a delay.

One of the model’s important cross-sectional predictions is that at the industry

level, returns are predictable only for firms with low analyst following. The intuition is

that, with few analysts following a firm, the chance of overlap – even with industry peers

– is small. In contrast, the model predicts that between geographic neighbors operating

in different sectors, the magnitude of lead-lags is not expected to depend (much at least)

on the number of analysts. As described in subsection 3.2.2, because the chance that

any one analyst co-covers two (local) firms in different sectors is so small, then even

with a large number of analysts, local neighbors in different sectors are unlikely to be

commonly covered. Hence, whatever return predictability exists between local peers

is expected to be relatively invariant to firm size, analyst coverage, trading volume, or

other proxies for investor scrutiny.

To test this hypothesis, Table 3.5, Panel A presents the results of estimating

Equation 3.3, but stratified by the number of analysts. The predictive horizon is one

month, so that we are predicting the returns of firm i in month t, using the one-month

lagged (t − 1) returns of either its non-local, industry (INDUST RY ) or local, non-

industry (CITY ) peers. Note also that the cross-sectional filters apply only to the left-

hand side of Equation 3.3. By holding the explanatory portfolios constant across columns,

we can relate any mispricing (reflected in the coefficients) to the variables used to parti-

tion firms in consecutive columns.
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Starting first with industry-level predictability, we see a strong, declining rela-

tion with analyst coverage. Stock returns of firms with either zero (column 1) or one

(column 2) identifiable analyst are most sensitive to lagged industry returns, with signif-

icantly estimated coefficients of 0.268 (t = 7.31) and 0.272 (t = 6.43) respectively. The

magnitude drops by almost half to 0.158 (t = 4.77) for firms with between two and nine

analysts, and by over half again for firms with at the ten following analysts (0.064), the

latter of which is marginally significant (t = 1.83). The last column tests for equality

between the coefficient in the first quartile (zero analysts) and that in the fourth (10 or

more analysts), rejecting this at far better than the 1% level.

A different picture emerges for lead-lags at the regional level. Firms with zero

analyst following actually have the smallest magnitude (0.057, t = 2.79) of any group,

though this is not significantly different from that in any other column. The coefficient

on the lagged area portfolio is fairly stable across columns, with sensitivities of 0.063

(t = 1.76), 0.071 (t = 3.75), and 0.066 (t = 2.51) for firms with progressively more

analyst coverage. In contrast to the industry-level comparison, the final column indicates

a p-value of 0.74, suggesting no statistically significant difference in area lead-lags for

firms with low (column 1) and high (column 4) analyst coverage.

We next present cross-sectional results based on firm size (market capitalization)

and trading volume.9 There are three reasons we perform these additional sorts. First,

both are strongly related to analyst coverage, but are available for the entire sample pe-

riod. Second, even after 1980 (when I/B/E/S data begin), we lack a complete account of

analysts that may follow and/or publish reports about specific firms. For example, buy-

side analysts are not included in I/B/E/S (Cheng et al. (2006), Groysberg et al. (2013)).

Finally, the I/B/E/S database is subject to alterations of recommendations, additions and

deletions of records, and removal of analyst names (Ljungqvist et al. (2009)). Our hope

9 Sorting by alternative size proxies such as book value of assets or sales gives very similar results.
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therefore, is that size and trading volume capture cross-sectional variation for the gen-

eral “scrutiny” of the investing community, even when data on analyst coverage is absent

or unreliable.

Both Panels B and C reveal a strong, declining relation for industry momentum,

similar to what we observed for analyst coverage. Industry lead-lags are very strong for

the first three quartiles, with coefficients of 0.243 (t = 7.55), 0.232 (t = 7.61), and 0.189,

(t = 6.94) respectively. In the fourth quartile however, the magnitude drops sharply.

While still significant, the effect for the largest 25% of firms – representing 94% of

the average total market capitalization – is less than half that observed in the first three

groups (0.104, t = 4.36). As with Panel A, the difference in the industry coefficient

between columns one and four is highly significant, as indicated in the final column.

Almost identical patterns are observed for trading volume (Panel C). Within each

month, we rank firms by total trading volume, and form quartiles. The least (most) heav-

ily traded firms are presented on the left-hand (right-hand) side of the table. The point

estimates are very similar for the first three groups, with magnitudes of about 0.2, and

t-statistics above seven. However, the estimate drops by almost half to 0.128 (t=4.73)

in column four, indicating that industry lead-lags are weaker when trading volume is

higher. This difference, too, is significant at the 1% level.

Lead-lags at the regional level, however, show little relation to either firm size

(Panel B) or trading volume (Panel C). With respect to firm size, the largest point esti-

mate is 0.101 (t=4.11), corresponding to the smallest quartile when ranked by firm size.

The second largest effect is the largest quartile (0.069, t=4.30), followed by the second

(0.068, t=4.03) and third (0.047, t=2.93) groups. As indicated by the last column, the

difference between the coefficient estimated for the quartile of largest firms (column 1)

and smallest firms (column 4), is not statistically significant (p=0.197).

Likewise, geographic momentum appears to have no discernible relation to trad-
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ing volume. The strongest effect is observed among the most heavily traded firms (0.100,

t = 4.94), with the second strongest coming from the lowest quartile (0.072, t=3.78).

This difference is not statistically significant (p=0.247). We observe significant, though

weaker effects in the second (0.056, t=2.62) and third (0.055, t=2.93) quartiles.

Figure 3.4 provides a visual summary of the results in Table 3.5. For all three

cross-sectional cuts, the magnitude of the industry coefficient (red bars) declines, with

the most pronounced decline coinciding with the highest quartiles. In contrast, the blue

bars – representing the geographic coefficients – display no clear relation with the sort-

ing variables. Taken together, the results in this section provide broad support for the

model’s predictions. While predictability at the industry level is – when it occurs – gen-

erally larger than that at the regional level, it is mainly restricted among small firms,

and those with low analyst coverage and trading volume. Predictability at the regional

level, though smaller on average, seems to apply equally well to firms of differing sizes,

trading volumes, and analyst coverage.
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Table 3.2: Predictability of individual stock returns by area and industry porfolios
(Fama-MacBeth). This table reports the coefficients of the Fama-MacBeth predictive
regression

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

where ri,c, j,t+1 is the stock return of firm i, in city c, industry j, rc,/∈ j,t is the equally-
weighted lagged return of firms located in city c, outside industry j (city portfolio), and
r/∈C, j,t is the equally-weighted lagged return of firms in the same industry j, but outside
of the 20 cities (industry portfolio). The predictors are the 1-month (Panel A), and
cumulative 3-months (Panel B), 6-months (Panel C) and 12-months (Panel D) lagged
city and industry portfolio returns. Column 1: 1970-2013 (full sample). Column 2:
1970-1990. Column 3: 1991-2013. ***, ** and * denote significance at the 1%, 5%
and 10% level, respectively. Newey-West standard errors (5 lags). Monthly data.

PANEL A: 1-month predictors

full sample 1970-1990 1991-2013
βCITY .073*** .092*** .057***

(5.64) (4.82) (3.26)
βINDUST RY .199*** .185*** .212***

(8.21) (6.42) (5.56)

Avg R2 1.03% 0.79% 1.24%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL B: 3-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .035*** .047*** .024**

(4.90) (4.56) (2.51)
βINDUST RY .087*** .091*** .084***

(7.27) (5.60) (4.79)

Avg R2 1.03% 0.92% 1.13%
Observations 1,583,404 539,563 1,043,841
# time clusters 525 249 276

PANEL C: 6-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .023*** .028*** .018**

(4.37) (3.66) (2.57)
βINDUST RY .043*** .041*** .046***

(5.43) (4.02) (3.77)

Avg R2 1.03% 0.89% 1.15%
Observations 1,541,127 519,667 1,021,460
# time clusters 522 246 276

PANEL D: 12-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .013*** .019*** .008*

(3.83) (3.49) (1.96)
βINDUST RY .025*** .029*** .021***

(5.13) (5.09) (2.80)

Avg R2 1.09% 0.94% 1.21%
Observations 1,458,783 481,729 977,054
# time clusters 516 240 276
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Table 3.3: Predictability of city-industry portfolios (Fama-MacBeth). This table re-
ports the coefficients of the Fama-MacBeth predictive regression

r j,c,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

where r j,c,t+1 is the return of industry j, in city c, rc,/∈ j,t is the equally-weighted lagged
return of firms located in city c, outside industry j (city portfolio), and r/∈C, j,t is the
equally-weighted lagged return of firms in the same industry j, but outside of the 20
cities (industry portfolio). The predictors are the 1-month (Panel A), and cumulative
3-months (Panel B), 6-months (Panel C) and 12-months (Panel D) lagged city and
industry portfolio returns. Column 1: 1970-2013 (full sample). Column 2: 1970-1990.
Column 3: 1991-2013. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively. Newey-West standard errors (5 lags). Monthly data.

PANEL A: 1-month predictors

full sample 1970-1990 1991-2013
βCITY .082*** .081*** .082***

(5.90) (3.69) (4.82)
βINDUST RY .173*** .166*** .179***

(8.56) (5.93) (6.19)

Avg R2 3.72% 3.12% 4.27%
Observations 111,942 52,001 59,941
# time clusters 527 251 276

PANEL B: 3-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .043*** .051*** .036***

(4.82) (3.81) (3.04)
βINDUST RY .078*** .082*** .074***

(7.66) (4.99) (5.96)

Avg R2 3.81% 3.79% 3.82%
Observations 109,063 50,160 58,903
# time clusters 525 249 276

PANEL C: 6-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .026*** .031*** .021***

(4.73) (3.79) (2.93)
βINDUST RY .038*** .039*** .038***

(5.71) (3.82) (4.23)

Avg R2 3.70% 3.68% 3.71%
Observations 106,037 48,137 57,900
# time clusters 522 246 276

PANEL D: 12-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .014*** .021*** .008

(3.85) (4.02) (1.38)
βINDUST RY .022*** .028*** .018***

(5.15) (5.02) (2.72)

Avg R2 3.84% 3.92% 3.77%
Observations 100,174 44,277 55,897
# time clusters 516 240 276
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Table 3.4: Area momentum trading strategy. This table reports the performance of a
trading strategy that exploits return continuation at the geographic level. Every month,
we rank each firm i by the equally-weighted lagged return of firms headquartered in the
same city, outside its industry. We then construct quintile value-weighted portfolios of
the sorted firms, and hold them for one month. Portfolios are rebalanced every month.
Displayed are mean returns, CAPM α , FF-3 α of each quintile portfolio. Volatility is
the monthly standard deviation of the portfolio returns, Mkt share is the proportional
market share of the individual portfolios, Size is the natural logarithm of the market
value of the portfolios (in thousands), B/M is the book-to-market ratio of the portfolios.
***, ** and * denote significance at the 1%, 5% and 10% level, respectively. Newey-
West (5 lags) standard errors. Monthly data, 1971-2013.

Momentum Trading Strategy - Quantiles

returns portfolio characteristics
Mean (%) CAPM α t-stat FF-3 α t-stat Sharpe Ratio Volatility (%) Mkt share (%) Size B/M

lowest city return 0.736 -0.257 -3.213 -0.242 -2.997 0.207 5.291 0.181 15.313 0.597
0.876 -0.077 -1.117 -0.037 -0.525 0.318 4.985 0.212 15.682 0.567
1.026 0.108 1.425 0.126 1.576 0.452 4.660 0.218 15.777 0.564
0.949 -0.009 -0.098 -0.001 -0.019 0.366 5.030 0.206 15.625 0.571

highest city return 1.157 0.212 3.193 0.211 3.026 0.526 4.862 0.180 15.264 0.590
5-1 spread 0.421 [3.64] 0.469 [4.148] 0.453 [3.988] 2.628
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Figure 3.3: Cumulative performance of the trading strategy. This graph shows the time
series evolution of a $1 investment in each of three trading strategies. The blue line is
a market (S&P500) strategy, where dividends are reinvested in the market. The green
(red) line represents a long-only strategy that value-weights the top (bottom) 20% of
firms, when ranked by area-level stock returns the prior month. Monthly rebalancing.
Numbers are in logs. Sample period: February 1971 - December 2013.
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Table 3.5: Predictive regressions with cross-sectional cuts (Fama-MacBeth). This ta-
ble reports the coefficients of the Fama-MacBeth predictive regression

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

conditioning on the number of analysts following a firm post-1985 (Panel A) and quar-
tiles based on firm size (Panel B) and trading volume (Panel C). ri,c, j,t+1 is the stock
return of firm i, in city c, industry j, rc,/∈ j,t is the equally-weighted lagged return of
firms located in city c, outside industry j (city portfolio), and r/∈C, j,t is the equally-
weighted lagged return of firms in the same industry j, but outside of the 20 cities
(industry portfolio). Quartiles are estimated within every month. Quartile 1 is the
smallest quartile. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively. Newey-West (5 lags) standard errors. Monthly data, 1970-2013.

PANEL A: Number of analysts

(0) (1) (2-9) ( ≥ 10) High/Low Diff
βCITY .057*** .063* .071*** .066**

(2.79) (1.76) (3.75) (2.51) [0.7375]
βINDUST RY .268*** .272*** .158*** .064*

(7.31) (6.43) (4.77) (1.83) [0.00***]

Avg R2 1.09% 1.63% 1.39% 3.00%
Observations 561,460 127,602 401,220 172,803
# time clusters 336 336 336 336

PANEL B: Firm Size

(1) (2) (3) (4) Big/Small Diff
βCITY .101*** .068*** .047*** .069***

(4.11) (4.03) (2.93) (4.30) [0.1974]
βINDUST RY .243*** .232*** .189*** .102***

(7.55) (7.61) (6.94) (4.30) [0.00***]

Avg R2 0.83% 1.50% 1.88% 2.52%
Observations 400,088 403,689 404,079 404,117
# time clusters 527 527 527 527

PANEL C: Trading Volume

(1) (2) (3) (4) High/Low Diff
βCITY .072*** .056*** .055*** .100***

(3.78) (2.62) (2.93) (4.94) [0.2469]
βINDUST RY .216*** .212*** .209*** .128***

(8.90) (7.65) (7.66) (4.73) [0.0035***]

Avg R2 0.96% 1.21% 1.35% 1.99%
Observations 380,839 380,929 381,466 381,322
# time clusters 527 527 527 527
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Figure 3.4: Plot of cross-sectional lead-lag coefficients. This graph corresponds to Ta-
ble 3.5, and plots the lead-lag coefficients for industry (red) and area (blue) portfolios,
which are estimated from one-month Fama-MacBeth predictive regressions. Cross-
sectional cuts are obtained by splitting the sample into four groups based on number of
analysts following a firm (top figure) and quartiles based on firm size (middle figure)
and trading volume (bottom figure).
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3.5 Robustness and Extensions

In this section, we present the results of a number of robustness checks and speci-

fication alternatives to our main results. The first two subsections address the possibility

that our measure of a firm’s headquarters may be an imperfect proxy for its location,

and therefore, its sensitivity to local factors. Subsection 3.5.1 quantifies the potential

impact of mis-measured headquarter locations, which may arise when firms relocate,

and subsection 3.5.2 expands beyond headquarters to consider, e.g., the location of a

companies’ operations, manufacturing, etc. Finally, we present our main predictability

results under several alternative specifications in subsection 3.5.3.

3.5.1 Misclassified headquarter locations

Our measure of firm location is its headquarters, as inferred by the ADDZIP vari-

able in COMPUSTAT, which reports the zip code of the firm’s most recent headquarters.

Consequently and unfortunately, in most cases, we do not observe when a firm changes

headquarters, resulting in a type of look-ahead bias. For example, General Dynamics

moved from St. Louis to the Washington D.C. area in 1992, but the ADDZIP variable

takes a value of 22042, corresponding to Falls Church, Virginia (near Washington D.C.),

both for years prior to its move (pre-1992), as well as afterward (1992 and beyond).

Comprehensive data on firm headquarter changes is conspicuously absent in the

finance literature, but audit studies indicate that they are fairly uncommon. Pirinsky

and Wang (2006), for example, use news data to track headquarter changes from 1992-

1997. Excluding firms that moved as a result of mergers or other major restructuring,

as well as those moving within the same MSA, the authors estimate that between 2-

3% of firms moved during this five year period, or about 0.5% per year. If we assume

that all firms have this rate of relocation, then over 40 years, we expect to for about
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0.99543 ≈ 80.6% of firms to still be correctly classified in 2013, the last year of our

sample. However, because the location reported in 2013 would be correct, on average,

half the time (as for General Dynamics post-1992), we should expect error rates by

firm-year in the range of perhaps 0.5 ∗ (100%− 80.6%) = 9.7%. Even this, however,

is probably conservative. Because our panel is disproportionately represented by large

firms with long histories, and because large firms are less likely to move than small ones

(as Pirinsky and Wang (2006) also shows), the percentage of misclassification is likely

even lower. Most importantly, bad location data biases against our findings.

Because we have some uncertainty about the true misclassification rate, Table

3.6 presents our one-month predictive regressions under various scenarios. In the first

panel, 1% of the headquarter locations are scrambled randomly, followed by succes-

sively higher percentages in each panel. For misclassification rates of 1% and 5%, the

impact on the area coefficient is trivial, and are only slightly affected by misclassifica-

tions of 10%. For 20%, the magnitude is cut by one-third, although it remains statisti-

cally significant for the full sample (but not for the latter half). With half the locations

assigned incorrectly (Panel E), the result vanishes entirely.

Given Pirinsky and Wang (2006)’s estimates, along with our intuition about the

composition of firms throughout the sample, our best guess is an error rate in the 5-10%

rate over all firm-years in the panel. If so, this suggests that the reported estimates in

our prior tables are not meaningfully affected by misclassifications. On the other hand,

if we are wrong by a factor of (10-20%), then our reported results should be grossed up

by about 30% to account for measurement error.

3.5.2 Location beyond a firm’s headquarters

Throughout the chapter, we have identified a firm’s location using its headquar-

ters. While this is both simple and observable for every firm in the sample, it ignores
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clear differences in the extent to which a firm’s facilities, customer base, or labor force

are concentrated in a particular geographic region. For example, at one end of the spec-

trum are retail firms with a national (or even global) presence, e.g., Wal-Mart, Home

Depot, Whole Foods, and Costco which have highly dispersed stores, customers, and

workers. At the other extreme are companies with most or all their operations conducted

at a single location. DTE Energy, a Michigan-based utility company mentioning only

Michigan and Indiana in its annual reports, and AutoDesk (mentioning only California)

are at other other extreme.

The question we explore in this section is whether regional predictability is

stronger for more regionally concentrated firms (e.g., AutoDesk) compared to one with

a more disperse presence (e.g., Whole Foods). To obtain a more general measure of a

firm’s geographical presence, Garcia and Norli (2012) utilize a text-based parsing algo-

rithm that counts the number of unique state names mentioned in the annual reports of

publicly traded firms from 1994-2008. As Garcia and Norli describe, state names are

often listed when describing/discussing the locations of stores, manufacturing facilities,

or other operations. We follow their approach, after downloading the relevant dataset

from Diego Garcia’s website. For each firm we calculate the time-series average of state

names over the available time period (1994-2008), and apply this measure to all years

(including before 1994 or after 2008) in which data are available.10

Table 3.7 presents the results of our one-month Fama-MacBeth predictive re-

gressions, when sorted by the above/below median level of geographic concentration.

The first two columns correspond to the entire sample, with columns 3 and 4 (5 and 6)

10 Because Garcia and Norli (2012) data are available only for 15 years of our 43 year panel, an
extrapolative approach is required in order to apply the concentration measure to our entire sample period.
Taking the time-series average of state names for each state, unfortunately, ignores dynamics. However, it
is unusual for firms to become dramatically more or less concentrated over time, leading us to believe that
the ranking obtained from 1994-2008 provides a good proxy for its ranking across all years. For example,
the median time-series standard deviation of state counts for firms in Garcia and Norli (2012) sample is
1.34, suggesting little aggregate time-variation of geographical concentration.



132

to small (large) firms.11 Firms above the median list nine states on average, compared to

three states for firms below it. Note that because we use the same cutoff (5.46 states) for

each of the sub-samples, the corresponding sub-sample averages are similar, but need

not be identical to the aggregate sample.

In all cases, the point estimates for the more regionally concentrated firms are

somewhat larger compared to their less concentrated counterparts. Small firms are asso-

ciated with the biggest differential, with highly concentrated firms being twice as sen-

sitive to lagged area returns (0.102, t=3.07) compared to firms that mention more states

in their annual reports (0.052, t = 1.92). Although this difference is not statistically sig-

nificant at conventional levels, we have experimented with other specifications and find

stronger results. For example, a Fama-MacBeth regression (one month horizon) that

interacts the number of states mentioned with the lagged city portfolio returns yields a

p-value less than 3%. Given these suggestive results using a fairly coarse measure of re-

gional concentration, we hypothesize that more refined measures – using establishment

data from the U.S. Census would seem promising – would give even stronger results.

3.5.3 Alternative regression specifications

Panel regressions with time fixed effects

Our main empirical tests use Fama-MacBeth cross-sectional regressions. By

construction, this procedure sweeps out any common “time effect” through a date-

specfic intercept applied to each cross-sectional regression. However, as discussed in

Petersen (2009), three potential problems remain. First, Fama and MacBeth’s procedure

does not address serial correlation in residuals. Second, although a unique intercept for

each (year×month) controls for a uniform effect across stocks, it is possible for sub-

11 Note that the sample size is reduced by about 500,000 firm-month observations, corresponding to
firms not in the Garcia-Norli database.
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samples to be more or less sensitive to a given shocks. For example, in September 2001,

airline stocks suffered far worse than did, say, stocks of food or defense firms. Third and

finally, Fama-MacBeth regressions give equal weight to each cross-sectional regression

when calculating the standard error of β1 (the sensitivity to lagged area returns), thus

ignoring the fact that some periods contain more information than others.

Table 3.8 shows the results of re-estimating equation 3.3, but with date fixed

effects, and residuals double-clustered by firm and date (Petersen (2009)). When com-

paring these to the area-level lead lags to the Fama-MacBeth estimates shown in Table

3.2, we observe similar point estimates, but weaker statistical significance. As an ex-

ample, the full sample coefficient (t-statistic) for our one-month predictive regression

is 0.063 (3.66) in panel regressions, and 0.073 (5.64) with Fama-MacBeth. Results are

also slightly stronger at the 3-month and 6-month predictive horizon, and nearly identi-

cal at the 12-month window. Note, however, that although weaker, geographic lead-lags

remain significant at all horizons.

Industry momentum also weakens from a significance perspective. In the double-

clustered panel estimation for example, industry lead-lags are profitable only at rela-

tively short horizons (within three months), and all but disappears in the second half of

the sample. In Fama-MacBeth regressions however, the anomaly continues to work after

1990 (though with a smaller magnitude), and remains profitable through twelve months

after the sort date.

We have experimented with various specifications, in an attempt to better un-

derstand which of the three factors mentioned at the beginning of this section are most

responsible for the weakened results. It turns out that firm-clustering is relatively in-

significant; the standard errors reported in Table 3.8 are almost identical if this clus-

ter is removed. Rather, the additional clustering by time is most responsible for the

differences. This exercise thus indicates that accounting for remaining cross-sectional
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correlation within time may be relevant, and likewise suggests that our panel-generated

estimates are considerably more conservative than Fama-MacBeth’s methodology.

Delayed portfolio formation

In this section we examine the time it takes the information in one firm’s stock

price to be incorporated in the stock prices of its industry and location peers. Specif-

ically, we examine whether there is still predictability when we skip a month between

when the past returns are measured, and when the strategy is implemented. If infor-

mation is transmitted relatively quickly, we expect that predictability should be largely

eliminated.

Table 3.9 reports Fama-MacBeth regressions that are identical to the one-month

predictive regressions reported in first panel of Table 3.2, save for the one-month skip.

As the table reveals, area- and industry-level lead-lags are weaker, but they remain sta-

tistically significant. The impact of delayed portfolio formation is most severe when the

predictor variables are measured over short horizons. For example, the coefficient on the

area-level predictor drops from 0.073 to 0.037 (t=3.06), and that on the industry-level

predictor drops from 0.199 to 0.118 (t=4.59). At longer horizons, the impact of delayed

portfolio formation is less pronounced. For example, when month t−13 to t−1 returns

are used to forecast stock returns beginning at month t, the coefficient on the area portfo-

lio is nearly identical (0.011, t=3.43) to that estimated without the one-month skip (i.e.,

month t−12 to t returns are used as predictors). Industry momentum suffers a similarly

modest decline, dropping from 0.025 to 0.019 (t=3.52).

Together, these results suggest that prices remain inefficient for at least a month

after portfolio formation, suggestive a fairly long delay in processing industry or area-

specific information.
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Value-Weighted Portfolios

In the main results of Table 3.8 we construct the local and industry portfolios by

equally weighting firms within each group, similar to Pirinsky and Wang (2006). As a

robustness check, in Table 3.10 we re-estimate our one-month Fama-MacBeth predictive

regression using value-weighted local and industry portfolios. Whereas both industry

and geographic momentum remain statistically significant, the magnitudes are 30-40%

smaller, depending on the horizon. In retrospect, this result is intuitive. If the goal is to

measure local economic fundamentals using portfolio returns, an equally-weighted bas-

ket is more likely to be informative, compared to one that puts disproportionate weight

on a few large firms (e.g., Dallas’s ExxonMobil, Seattle’s Amazon, etc.), especially

given that they are less likely to be regionally concentrated.
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Table 3.6: Misclassified locations. This table reports the coefficients of the Fama-
MacBeth predictive regression

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

where ri,c, j,t+1 is the stock return of firm i, in city c, industry j, rc,/∈ j,t is the equally-
weighted lagged return of firms located in city c, outside industry j (city portfolio),
and r/∈C, j,t is the equally-weighted lagged return of firms in the same industry j, but
outside of the 20 cities (industry portfolio). In every panel, the predictors are the 1-
month lagged “random” city and industry portfolio returns. 1% of the locations are
randomized in Panel A, 5% in Panel B, 10% in Panel C, 20% in Panel D, 50% in Panel
E. Column 1: 1970-2013 (full sample). Column 2: 1970-1990. Column 3: 1991-
2013. ***, ** and * denote significance at the 1%, 5% and 10% level, respectively.
Newey-West standard errors (5 lags). Monthly data.

PANEL A: 1% misclassified locations

full sample 1970-1990 1991-2013
βCITY .073*** .090*** .057***

(5.61) (4.66) (3.34)
βINDUST RY .199*** .185*** .212***

(8.21) (6.41) (5.57)

Avg R2 1.03% 0.79% 1.24%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL B: 5% misclassified locations

full sample 1970-1990 1991-2013
βCITY .064*** .076*** .054***

(5.28) (4.09) (3.40)
βINDUST RY .199*** .184*** .212***

(8.20) (6.35) (5.58)

Avg R2 1.02% 0.78% 1.23%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL C: 10% misclassified locations

full sample 1970-1990 1991-2013
βCITY .057*** .062*** .052***

(4.71) (3.56) (3.13)
βINDUST RY .199** .185*** .212***

(8.21) (6.37) (5.58)

Avg R2 1.01% 0.76% 1.23%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL D: 20% misclassified locations

full sample 1970-1990 1991-2013
βCITY .037*** .050*** .026*

(3.34) (2.97) (1.75)
βINDUST RY .198*** .185*** .211***

(8.21) (6.37) (5.58)

Avg R2 0.99% 0.76% 1.21%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL E: 50% misclassified locations

full sample 1970-1990 1991-2013
βCITY -.003 .008 -.014

(-0.28) (0.56) (-0.76)
βINDUST RY .197*** .186*** .208***

(8.29) (6.35) (5.64)

Avg R2 0.97% 0.72% 1.20%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276
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Table 3.7: Geographic Concentration. This table reports the coefficients of the Fama-
MacBeth predictive regression

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

conditioning on geographic concentration. ri,c, j,t+1 is the stock return of firm i, in city
c, industry j, rc,/∈ j,t is the equally-weighted lagged return of firms located in city c,
outside industry j (city portfolio), and r/∈C, j,t is the equally-weighted lagged return of
firms in the same industry j, but outside of the 20 cities (industry portfolio). Geo-
graphic concentration is defined as in Garcia and Norli (2012), based on the number
of states mentioned in the 10K. The first column of every block (“Low”) indicates the
least geographic concentrated firms. The second column of every block (“High”) indi-
cates the most geographic concentrated firms. Columns 3-4 (5-6) report the geographic
concentration results for small (large) firms. ***, ** and * denote significance at the
1%, 5% and 10% level, respectively. Newey-West standard errors (5 lags). Monthly
data, 1970-2013.

Geographic Concentration

Full Sample Small Firms Large Firms
Low High Low High Low High

βCITY .056*** .083*** .052* .102*** .059** .076***
(3.57) (3.93) (1.92) (3.07) (2.61) (3.72)

βINDUST RY .161*** .198*** .190*** .233*** .132*** .143***
(7.40) (7.66) (6.30) (7.14) (5.66) (5.28)

Avg R2 1.38% 1.20% 1.53% 1.32% 2.26% 2.33%
Observations 526,278 528,599 188,966 307,598 337,312 221,001
# time clusters 527 527 527 527 527 527
avg. # of states 9 3 8 3 10 4
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Table 3.8: Predictability of individual stock returns by area and industry portfolios
(pooled OLS). This table reports the coefficients of the panel predictive regression
with fixed effects

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

where ri,c, j,t+1 is the stock return of firm i, in city c, industry j, rc,/∈ j,t is the equally-
weighted lagged return of firms located in city c, outside industry j (city portfolio), and
r/∈C, j,t is the equally-weighted lagged return of firms in the same industry j, but outside
of the 20 cities (industry portfolio). The predictors are the 1-month (Panel A), and
cumulative 3-months (Panel B), 6-months (Panel C) and 12-months (Panel D) lagged
city and industry portfolio returns. Column 1: 1970-2013 (full sample). Column 2:
1970-1990. Column 3: 1991-2013. ***, ** and * denote significance at the 1%,
5% and 10% level, respectively. Standard errors are clustered on both time and firm
dimensions following Petersen (2009). Monthly data.

PANEL A: 1-month predictors

full sample 1970-1990 1991-2013
βCITY .063*** .101*** .048**

(3.66) (4.62) (2.11)
βINDUST RY .155** .175*** .147*

(2.30) (5.65) (1.71)

Adj R2 10.47% 14.27% 8.96%
Adj R2 w/o time fixed effect 0.58% 0.87% 0.46%

Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276
# firm clusters 12,998 5,978 10,519

PANEL B: 3-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .027*** .047*** .019

(2.86) (3.54) (1.42)
βINDUST RY .065* .076*** .062

(1.80) (4.42) (1.30)

Adj R2 10.45% 14.38% 8.92%
Adj R2 w/o time fixed effect 0.10% 0.18% 0.06%

Observations 1,583,404 539,563 1,043,841
# time clusters 525 249 276
# firm clusters 12,930 5,942 10,459

PANEL C: 6-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .018*** .025*** .015*

(2.87) (3.23) (1.67)
βINDUST RY .026 .032*** .023

(1.24) (3.21) (0.85)

Adj R2 10.36% 14.31% 8.86%
Adj R2 w/o time fixed effect 0.00% 0.05% 0.00%

Observations 1,541,127 519,667 1,021,460
# time clusters 522 246 276
# firm clusters 12,821 5,828 10,375

PANEL D: 12-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .014*** .016*** .011**

(4.11) (3.51) (2.51)
βINDUST RY .014 .022*** .011

(1.41) (3.42) (0.82)

Adj R2 10.27% 14.46% 8.76%
Adj R2 w/o time fixed effect 0.00% 0.03% 0.00%

Observations 1,458,783 481,729 977,054
# time clusters 516 240 276
# firm clusters 12,480 5,571 10,132
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Table 3.9: Predictability of individual stock returns by area and industry portfolios
skipping 1-month (Fama-MacBeth). This table reports the coefficients of the Fama-
MacBeth predictive regression

ri,c, j,t+2 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+2

where ri,c, j,t+2 is the stock return of firm i, in city c, industry j, rc,/∈ j,t is the equally-
weighted lagged return of firms located in city c, outside industry j (city portfolio),
and r/∈C, j,t is the equally-weighted lagged return of firms in the same industry j, but
outside of the 20 cities (industry portfolio). The predictors are the 1-month (column
1), and cumulative 3-months (column 2), 6-months (column 3) and 12-months (column
4) lagged city and industry portfolio returns. ***, ** and * denote significance at the
1%, 5% and 10% level, respectively. Newey-West standard errors (5 lags). Monthly
data, 1970-2013.

PANEL: Skipping 1-month

1-month return 3-months return 6-months return 12-months return
βCITY .037*** .025*** .017*** .011***

(3.06) (3.15) (3.49) (3.43)
βINDUST RY .118*** .062*** .025*** .019***

(4.59) (4.68) (2.75) (3.52)

Avg R2 0.97% 0.98% 0.97% 1.06%
Observations 1,598,268 1,569,804 1,527,731 1,445,822
# time clusters 526 524 521 515
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Table 3.10: Predictability of individual stock returns by area and industry portfolios
(value-weighted portfolios). This table reports the coefficients of the Fama-MacBeth
predictive regression

ri,c, j,t+1 = α +β1rc,/∈ j,t +β2r/∈C, j,t + εi,c, j,t+1

where ri,c, j,t+1 is the stock return of firm i, in city c, industry j, rc,/∈ j,t is the value-
weighted lagged return of firms located in city c, outside industry j (city portfolio), and
r/∈C, j,t is the value-weighted lagged return of firms in the same industry j, but outside
of the 20 cities (industry portfolio). The predictors are the 1-month (Panel A), and
cumulative 3-months (Panel B), 6-months (Panel C) and 12-months (Panel D) lagged
city and industry portfolio returns. Column 1: 1970-2013 (full sample). Column 2:
1970-1990. Column 3: 1991-2013. ***, ** and * denote significance at the 1%, 5%
and 10% level, respectively. Newey-West standard errors (5 lags). Monthly data.

PANEL A: 1-month predictors

full sample 1970-1990 1991-2013
βCITY .036*** .041*** .032**

(3.97) (3.34) (2.38)
βINDUST RY .145*** .177*** .117***

(7.55) (7.24) (4.07)

Avg R2 0.76% 0.61% 0.89%
Observations 1,611,973 553,127 1,058,846
# time clusters 527 251 276

PANEL B: 3-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .019*** .018** .021***

(4.01) (2.43) (3.28)
βINDUST RY .059*** .063*** .055***

(5.53) (4.70) (3.39)

Avg R2 0.80% 0.73% 0.86%
Observations 1,583,404 539,563 1,043,841
# time clusters 525 249 276

PANEL C: 6-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .016*** .018*** .015***

(4.04) (2.80) (2.91)
βINDUST RY .033*** .034*** .032***

(4.74) (3.77) (3.07)

Avg R2 0.83% 0.70% 0.94%
Observations 1,541,127 519,667 1,021,460
# time clusters 522 246 276

PANEL D: 12-months cumulative predictors

full sample 1970-1990 1991-2013
βCITY .006** .011*** .002

(2.28) (2.63) (0.51)
βINDUST RY .025*** .027*** .023***

(5.45) (5.85) (3.08)

Avg R2 0.93% 0.79% 1.05%
Observations 1,458,783 481,729 977,054
# time clusters 516 240 276
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3.6 Conclusions

Analyzing lead-lag effects between related securities provides a useful way to

gauge the efficiency of financial markets. Prior research has identified a number of

ways to identify “similar” firms including relationships between companies in the same

industry, between customers and suppliers, and between focused firms and conglomer-

ates. Such classifications play an important role in the trading strategies of quantitative

hedge funds, which exploit lead-lag effects between related stocks, bonds, options, and

other derivatives. The underlying rationale is that although similar firms are exposed to

common fundamental shocks, there may still exist variation in the rate at which this in-

formation is reflected in prices. Naturally, stocks with the highest (lowest) informational

efficiency react the quickest (slowest).

This chapter contributes to this literature by identifying geography – using firm

headquarters – as a source of fundamental value. We show that under a variety of empir-

ical specifications, regionally-sorted portfolios generate trading profits that are a third

to half as large as those using industry sorts. Note that in addition to documenting an

apparent pricing inefficiency, these results point to the presence of locally-derived fun-

damentals that have a meaningful impact on neighboring firms, even those in vastly

different lines of business.

Our most important contribution is a non-result. When we analyze lead-lags

between industry peers, trading profits decline sharply for highly scrutinized firms –

specifically large firms, those with significant trading volume, or with high analyst fol-

lowing.12 In contrast, we observe no relation between trading profits and the same vari-

ables among regionally sorted portfolios. In addition to being relatively unusual among

asset pricing anomalies, this finding suggests that a regional trading strategy might be

12 Likewise, Cohen and Frazzini (2008) find that predictability between firms with economic linkages
declines with proxies for informational efficiency.
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profitably deployed even with large amounts of capital.

The mechanism we propose is a refinement of limited attention. Our intuition

is that when an investor simultaneously monitors two stocks, he/she is more likely to

recognize common relevant sources of information, and through simultaneous trading,

reduce lead-lag effects. Within an industry, it is the largest firms who are more likely

to have more analysts in common with other industrial peers, making it difficult to use

industry-based information to predict the returns of large firms. On the other hand,

within a geographic region, the chance of overlap between neighboring firms in different

sector is very small, even among (large or heavily traded) firms with substantial analyst

followings individually. As we illustrate in a simple model, industry-focused analysts

permit regional lead-lags among virtually all firms (which we observe), but industry

lead-lags only for those with the least scrutiny (which we also observe).

It should be stressed that our analysis, which suggests that the organization of

the analyst community affects the co-movement of securities, takes that organization as

given. Of course, the organizational structure of the analyst community is endogenous,

and takes into account the synergies associated with analyzing a closely related group of

firms. While we cannot conclude that our analysis indicates that analysts should engage

in the collection of costly information by location as well as industry, our analysis does

indicate that location-based return information, which is virtually free, can be used to

supplement the industry information of stock market analysts. Indeed, one implication,

in light of our findings, is a potential role for regionally focused analysts in the invest-

ment community. Given the trend toward urbanization, and the increased importance of

spillovers and other city-level dynamics (Moretti (2012)), an institutional shift toward

recognizing these factors seem worth exploring.

Chapter 3, in full, is currently being prepared for submission for publication of

the material. Parsons, Christopher A.; Sabbatucci, Riccardo; Titman, Sheridan. The
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dissertation author was the primary investigator and author of this paper.
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3.7 Supplementary Results

Table A1: Area momentum trading strategy (deciles). This table reports the perfor-
mance of a trading strategy that exploits return continuation at the geographic level.
Every month, we rank each firm i by the equally-weighted lagged return of firms head-
quartered in the same city, outside its industry. We then construct decile value-weighted
portfolios of the sorted firms, and hold them for one month. Portfolios are rebalanced
every month. Displayed are mean returns, CAPM α , FF-3 α of each decile portfo-
lio. Volatility is the monthly standard deviation of the portfolio returns, Mkt share is
the proportional market share of the individual portfolios, Size is the natural logarithm
of the market value of the portfolios (in thousands), B/M is the book-to-market ratio
of the portfolios. ***, ** and * denote significance at the 1%, 5% and 10% level,
respectively. Newey-West (5 lags) standard errors. Monthly data, 1971-2013.

Momentum Trading Strategy - Deciles

returns portfolio characteristics
Mean (%) CAPM α t-stat FF-3 α t-stat Sharpe Ratio Volatility (%) Mkt share (%) Size B/M

lowest city return 0.721 -0.253 -2.554 -0.276 -2.809 0.199 5.274 0.087 15.109 0.613
0.788 -0.206 -1.799 -0.188 -1.709 0.233 5.508 0.094 15.282 0.597
0.854 -0.097 -0.954 -0.116 -1.029 0.294 5.130 0.102 15.453 0.581
0.937 -0.024 -0.235 0.046 0.475 0.336 5.348 0.109 15.616 0.568
0.980 0.050 0.495 0.070 0.639 0.388 5.009 0.110 15.636 0.565
1.096 0.167 1.548 0.182 1.615 0.468 5.015 0.108 15.586 0.575
1.008 0.071 0.776 0.042 0.446 0.408 5.003 0.105 15.543 0.573
0.930 -0.041 -0.394 -0.040 -0.367 0.331 5.356 0.100 15.445 0.579
1.104 0.138 1.398 0.084 0.759 0.451 5.264 0.094 15.273 0.592

highest city return 1.132 0.190 2.021 0.191 2.136 0.487 5.071 0.086 15.042 0.602
10-1 spread 0.410 [2.88] 0.444 [3.167] 0.467 [3.301] 3.198
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Table A2: Area momentum trading strategy with the 20% largest firms. This table
reports the performance of a trading strategy that exploits return continuation at the
geographic level only using the top 20% firms by market capitalization. Every month,
we rank each firm i by its market capitalization and keep the top 20%. We then re-rank
those firms by the equally-weighted lagged return of firms headquartered in the same
city, outside its industry. We then construct quintile value-weighted portfolios of the
sorted firms, and hold them for one month. Portfolios are rebalanced every month.
Displayed are mean returns, CAPM α , FF-3 α of each quintile portfolio. Volatility is
the monthly standard deviation of the portfolio returns, Mkt share is the proportional
market share of the individual portfolios, Size is the natural logarithm of the market
value of the portfolios (in thousands), B/M is the book-to-market ratio of the portfolios.
***, ** and * denote significance at the 1%, 5% and 10% level, respectively. Newey-
West (5 lags) standard errors. Monthly data, 1971-2013.

Momentum Trading Strategy - Only 20% Largest Firms

returns portfolio characteristics
Mean (%) CAPM α t-stat FF-3 α t-stat Sharpe Ratio Volatility (%) Mkt share (%) Size B/M

lowest city return 0.778 -0.198 -2.214 -0.191 -2.210 0.238 5.225 0.169 15.679 0.591
0.829 -0.114 -1.313 -0.032 -0.396 0.289 4.926 0.213 16.054 0.564
0.972 0.055 0.667 0.102 1.219 0.408 4.701 0.221 16.131 0.554
0.902 -0.047 -0.525 -0.001 -0.012 0.336 4.982 0.210 16.043 0.565

highest city return 1.208 0.271 3.187 0.302 3.193 0.557 4.909 0.187 15.770 0.583
5-1 spread 0.429 [3.07] 0.468 [3.366] 0.493 [3.438] 2.963
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