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A B S T R A C T   

Early detection of neurodegeneration, and prediction of when neurodegenerative diseases will lead to symptoms, 
are critical for developing and initiating disease modifying treatments for these disorders. While each neuro-
degenerative disease has a typical pattern of early changes in the brain, these disorders are heterogeneous, and 
early manifestations can vary greatly across people. Methods for detecting emerging neurodegeneration in any 
part of the brain are therefore needed. Prior publications have described the use of Bayesian linear mixed-effects 
(BLME) modeling for characterizing the trajectory of change across the brain in healthy controls and patients 
with neurodegenerative disease. Here, we use an extension of such a model to detect emerging neuro-
degeneration in cognitively healthy individuals at risk for dementia. We use BLME to quantify individualized 
rates of volume loss across the cerebral cortex from the first two MRIs in each person and then extend the BLME 
model to predict future values for each voxel. We then compare observed values at subsequent time points with 
the values that were expected from the initial rates of change and identify voxels that are lower than the expected 
values, indicating accelerated volume loss and neurodegeneration. We apply the model to longitudinal imaging 
data from cognitively normal participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI), some of 
whom subsequently developed dementia, and two cognitively normal cases who developed pathology-proven 
frontotemporal lobar degeneration (FTLD). These analyses identified regions of accelerated volume loss prior 
to or accompanying the earliest symptoms, and expanding across the brain over time, in all cases. The changes 
were detected in regions that are typical for the likely diseases affecting each patient, including medial temporal 
regions in patients at risk for Alzheimer’s disease, and insular, frontal, and/or anterior/inferior temporal regions 
in patients with likely or proven FTLD. In the cases where detailed histories were available, the first regions 
identified were consistent with early symptoms. Furthermore, survival analysis in the ADNI cases demonstrated 
that the rate of spread of accelerated volume loss across the brain was a statistically significant predictor of time 
to conversion to dementia. This method for detection of neurodegeneration is a potentially promising approach 
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for identifying early changes due to a variety of diseases, without prior assumptions about what regions are most 
likely to be affected first in an individual.   

1. Introduction 

Neurodegenerative disorders are increasingly common causes of 
disability and death in the population Association (2019). Extensive 
efforts to develop new treatments for these disorders are underway, and 
such treatments may be most effective if they are initiated early in the 
course of disease Sperling et al. (2014); Boxer et al. (2020). The bio-
logical processes underlying neurodegenerative diseases begin many 
years before the development of symptoms Jack et al. (2013); Rosen 
et al. (2020b); Weiner et al. (2017). Intervention during the asymp-
tomatic phase offers the possibility of delaying or preventing onset of 
symptoms Sperling et al. (2014); Boxer et al. (2020). Implementation of 
such a preventative approach, either in research or clinical care, requires 
measurements to detect that the neurodegenerative process has begun 
and symptoms are on the horizon. In the case where a drug has adverse 
effects, a reasonable strategy might be to delay treatment until near the 
end of the presymptomatic phase. Commonly cited models, supported 
by empirical data Staffaroni et al. (2020b); McDade et al. (2018) stip-
ulate that many biological markers (biomarkers) of neurodegenerative 
disease evolve to become more abnormal over time, with slow rates of 
change when people are healthy and/or in the early phase of disease, 
and acceleration preceding or accompanying symptom onset Jack et al. 
(2013); Araque Caballero et al. (2015). Identifying when biomarkers 
enter this phase of accelerated change may be particularly valuable for 
predicting oncoming symptoms. 

Among the growing list of biomarkers, regional brain volume (rBV) 
measured from T1-weighted MRI is an attractive measure for detecting 
neurodegeneration Jack et al. (2016) and oncoming symptoms. A vast 
body of literature has demonstrated that rBV is correlated with a variety 
of symptoms in neurodegenerative disease Rosen et al. (2005); Kramer 
et al. (2005); Rosen and Levenson (2009); Krueger et al. (2011), and that 
both the degree of accumulated brain volume loss Dickerson et al. 
(2011); McEvoy et al. (2011); Staffaroni et al. (2020a); Paulsen et al. 
(2014) and rate of brain volume loss Dodge et al. (2014); Chen et al. 
(2020); Chen et al. (2019), are valuable for predicting decline in 
cognition in patients at increased risk for neurodegeneration (due to 
aging, genetics, or other factors). Many of these studies have optimized 
the use of rBV for prediction by focusing on à priori or empirically 
identified regions based on the tendency for specific diseases to affect 
particular brain regions. For example, hippocampal volume (HV), which 
is commonly reduced in Alzheimer’s disease (AD), has been highlighted 
as a useful measure for predicting clinical decline in those at high risk for 
AD Hill et al. (2014); Yu et al. (2014). Many studies have also high-
lighted the utility of other brain regions in AD McEvoy et al. (2011) and 
other neurodegenerative disorders Staffaroni et al. (2019), but most 
have assumed that a given set of regions would be utilized to detect 
oncoming symptoms in all patients with that disease. Yet, it is well 
established that the nature of early symptoms in neurodegenerative 
disorders varies across people. In AD, for example, a substantial subset of 
patients, particularly those with early age of onset, first develop lan-
guage, dysexecutive, behavioral, or visuospatial symptoms reflecting 
early frontal and parietal changes, rather than memory loss indicative of 
medial temporal/hippocampal involvement Ossenkoppele et al. (2015). 
In frontotemporal lobar degeneration (FTLD), the same pathology can 
present with behavioral, dysexecutive, or movement symptoms, or with 
multiple forms of language dysfunction Olney et al. (2017). Given that 
the earliest symptom for a given patient cannot be predicted, there is a 
need for individualized measures that detect emergence of neuro-
degeneration in any part of the brain without ̀a priori assumptions about 
where the disease will begin. 

Although early detection might be improved with individualized 

approaches, exclusive focus on the earliest region of involvement may 
limit the prediction of symptoms. Many biological models of neuro-
degeneration propose the spread of toxic proteins across functionally 
specialized brain networks Seeley et al. (2009); Raj et al. (2012); Jones 
et al. (2017). Indeed, studies have indicated that brain network archi-
tecture predicts spread of atrophy from the earliest site of involvement 
to other regions of the brain Brown et al. (2019). While limited changes 
in any part of the brain may account for early symptoms, impairments 
with significant impact on daily function (i.e. dementia) result from 
progressive involvement of more brain regions over time McEvoy et al. 
(2011); Staffaroni et al. (2020a). An approach that is sensitive to the 
earliest changes but also quantifies the spread of disease to additional 
brain regions might therefore provide the best method for predicting 
symptom onset, in addition to predicting which symptoms will occur 
first. 

A prior publication by Ziegler and colleagues introduced a frame-
work to quantify longitudinal trajectories of brain volume using hier-
archical linear mixed-effects models with Bayesian inference Ziegler 
et al. (2015). The approach was applied to group-level data to create 
probabilistic maps of the mean and variance in rates, and acceleration, 
of volume loss at every location in the brain. Here, we describe an 
extension of the method that uses the Bayesian framework to estimate 
the rate of gray matter loss at every region in the brain from MRIs in 
individuals who are cognitively normal, and to identify regions in sub-
sequent MRIs where gray matter loss exceeds expectations in those in-
dividuals (based on the estimates from the initial MRIs), indicating 
accelerated gray matter loss and emerging neurodegeneration. While 
the chief purpose of this paper is to describe the method, we also sought 
to illustrate its use in a relevant population. Therefore, after describing 
the method, we report on the application of the method in a group of 
research participants who were followed longitudinally, some of whom 
went on to develop dementia, to test whether this approach can be used 
to predict the development of dementia without à priori assumptions 
about where in the brain atrophy is likely to occur. For this purpose, we 
used participants at risk for AD who enrolled in the Alzheimer’s disease 
neuroimaging initiative (ADNI). Although there are many methods for 
predicting dementia in people at risk for AD, ADNI is an ideal resource 
for testing our model because of the large number of participants with 
prolonged followup. We then proceed to illustrate how this approach 
can be useful in other dementias where prediction methods are less well- 
developed, using case examples. 

2. Materials and Methods 

2.1. Overview 

Our approach uses Bayesian modeling to estimate and predict the 
trajectory of changes in gray matter content from T1-weighted MRIs at 
every volume element (voxel) in the gray matter in individual partici-
pants of interest. In this study, participants of interest are individuals at 
risk for neurodegeneration who are cognitively normal at the time they 
are initially studied. Estimation of the rate of gray matter loss in each 
individual is accomplished by including their first two longitudinal MRIs 
in a linear mixed-effects (LME) model, along with longitudinal MRIs 
from a group of demographically matched participants (in this case, a 
group of cognitively normal individuals whose age range includes the 
age of the individual of interest), to estimate the relationship between 
gray matter content at each voxel and time for the group as a whole and 
for each individual. 

Estimating the trajectory of changes in regional volumes for a single 
individual from an LME model, instead of using only the observed data 
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from this individual, provides an improved estimate for predicting 
future values of brain volume because the estimated group effects, and 
uncertainties, are used to provide additional group level information to 
the individual estimates. “Borrowing strength” in this way lessens the 
impact of random factors that could affect an individual observation, 
such as movement and other artifacts that negatively influence image 
quality and image summary estimation. In this study, we use the 
Bayesian framework to estimate model parameters. This framework uses 
à priori beliefs to define prior probability distributions for the parame-
ters of interest, and the prior probability distribution is updated using 
the data to provide posterior probability distributions. In contrast to 
classical statistical approaches, the Bayesian framework quantifies un-
certainty by estimating the model fit for all possible values of all pa-
rameters, rather than optimizing them to produce a single best estimate 
vector (e.g. Maximum Likelihood). Therefore, information about the 
parameters is carried forward in the form of a probability density dis-
tribution that captures all the knowledge, including uncertainty, about 
the parameter. Given that our goal is to identify regions that are lower in 
volume than expected based on the initial observations from each in-
dividual, these probability density functions are ideal for our purposes 
because they can be used to create probability estimates for each po-
tential value at future observations, as described below.Because the 
parameters are constrained or regularized by the priors, this approach is 
also one method to avoid overfitting Ghahramani (2001). 

Once the model posterior parameters are established from the initial 
observations, the Bayesian framework is used to establish the predictive 
probability density functions for future observations based on the pre-
viously modeled rate of change Gelman et al. (2013); Beal (2003). In 
order to evaluate the state of gray matter content at each time point for 
each person, we can compare the observed gray matter content at each 
voxel from subsequent observations in that person that were not 
included as data in the Bayesian LME (BLME) model with the predictive 
probability density functions for gray matter content at those time 
points. Regions where the probability densities for the calculated values 
are at the extremes of the probability distribution represent locations 
where the gray matter content is far from values that would have been 
most likely if gray matter loss had proceeded at the originally estimated 
rate. 

If there are a number of individuals for whom one wishes to predict 

future observations, the process of estimating and predicting probability 
distributions for observations of every voxel in the brain is done sepa-
rately for each individual of interest by including each one in a BLME 
model with a group of matched cases. If the group of matched cases is 
appropriately chosen to span the range of age and other relevant vari-
ables for all of the individuals of interest, the same group of matched 
cases can be used for all individuals of interest. This produces individ-
ualized estimates of change across the gray matter voxels from each 
subject’s initial images, and maps of voxels with unexpectedly large 
amounts of gray matter loss at later time points for each person, 
considering the prior estimate of rate of change in that individual. The 
process is illustrated for one individual in the schematic in Fig. 1. As a 
form of linear mixed-effects modeling, BLME supports inhomogeneous 
time series with different numbers of time points and irregular time 
spacing between acquisitions. 

In the following sections, we briefly review the BLME model using 
the same notations and formulas as those in the original description, and 
refer the reader to prior publications for a more thorough description 
Ziegler et al. (2015). We then describe the extension of the model to 
extract the Bayesian prediction models for single subjects. The BLME 
and prediction algorithms were implemented in C++ using the Insight 
Toolkit (ITK, version 4.9) library Johnson et al. (2015a); Johnson et al. 
(2015b), and linear algebra components were developed using Eigen3 
C++ headers Guennebaud and Jacob (2010). The source code will be 
freely available on github. 

2.2. BLME and Posterior Distribution Calculation 

In order to estimate the trajectory of volume change at each voxel for 
each individual from their first two images, we incorporated their im-
ages into Bayesian linear mixed-effects models using the approach 
described by Ziegler et al. (2015). Here, we provide only the information 
necessary for understanding the calculations used to implement our 
extension of the model for prediction of future voxel volumes that is 
described in the next section. Full details regarding the calculations 
necessary for implementing the model to estimate initial trajectories are 
provided in Section 7.1. For each individual, the trajectory y is fitted as a 
straight line with a random intercept and slope, Eq. (7). We modeled a 
hierarchical structure with two levels. The first level is defined by the 

Fig. 1. Schematic depicting the method for identifying voxels affected by neurodegeneration using longitudinal imaging. In this depiction, the first two time points 
(TP1, TP2) from a participant of interest (P1) are introduced into the BLME model along with three time points from three control participants (C1, C2, C3). The 
BLME parameters are used to estimate the rate of volume loss at every voxel for every individual, and these estimates are used to predict the volumes for each voxel at 
time points 3 and 4 for P1. The predicted values are compared with the observed values, and observed values that are far lower than the predicted values (darker 
regions in TP4) are assumed to be undergoing neurodegeneration. 
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trajectory model with the design matrix X(1), representing the temporal 
elements from each subject (constant, first, second, …, orders of the 
temporal polynomial). The second level design matrix X(2) represents 
the contribution of subject’s covariates, e.g. total intracranial volume 
(TIV). 

y =
[

X(1) X(1)X(2)
]
[

∊(2)

θ(2)

]

+∊(1).

At each level, the noise is considered as a centered Gaussian distri-
bution: ∊(l) ∼ N (0,C(l)

∊ ), where C(l)
∊ is the level (l) covariance matrix. The 

parameter vector θ(2) represents the fraction of trajectory parameters 
carried by the covariates. A more elaborate description of this parameter 
vector is given in Section 7.1. In our model, we included TIV for each 
image as a covariate. An augmented model, y = Xθ+∊ Eq. (11), was 
proposed for two levels by Friston et al. (2002) to ensure the simulta-
neous estimation of the hyper-parameters in a computationally efficient 
manner. We adopt the approach in Ziegler et al. (2015) and use Gaussian 
conjugate forms for the likelihood, P(y|θ), and the prior, P(θ), providing 
a Gaussian posterior probability distribution Eq. (12): 
⎧
⎪⎪⎨

⎪⎪⎩

P(θ|y) = N
(
θ; ηθ|y,Cθ|y

)

Cθ|y =
(
XT C− 1

∊ X
)− 1

ηθ|y = Cθ|y
(
XT C− 1

∊ y
)

where C∊ =

(
C(1)

∊ 0
0 Cθ

)

, and Cθ =

(
C(2)

∊ 0
0 C(2)

θ

)

ηθ|y and Cθ|y are the mean and the covariance of the Gaussian pos-
terior distribution given the data y. The estimation is based on inferring 
the covariance components of a parametric empirical Bayes model at the 
final level through an Expectation–Maximization optimization algo-
rithm described in Section 7.1.3. 

2.3. Posterior Predictive Distribution 

In this section, we are interested in making predictions on newly 
acquired values, ŷ, from each participant of interest at future time 
points. These new time points compose the subject design matrix X̂. 
Making these predictions requires estimating the predictive probability 
distribution, P(ŷ|X̂,y), at each voxel for the participant of interest. We 
propose an evaluation of P(ŷ|X̂, y) given by the Eq. (1). First, the subject 
pooled estimate of the conditional mean, η(1)θ|y , and covariance, C(1)

θ|y , are 

extracted from the group posterior probability using η(l− 1)
θ|y =

X(l)η(l)θ|y +η(l)∊|y and C(l− 1)
θ|y = C(l)

∊|y formulas at level (l) from Friston et al. 
(2002). Under the assumption that the likelihood and the prior are 
Gaussian probability distributions, the two moments previously derived 
are enough to build the prediction distribution Bishop (2006). 

P(ŷ|X̂, y) =
∫

dθP(ŷ|θ, X̂)P(θ|X̂, y)

= N

(
ŷ; X̂ηθ|y, σ2

θ|y

)
(1)  

where σ2
θ|y = C(1)

∊ + X̂Cθ|y X̂
T
. 

In order to estimate how much a new measure ŷ deviates from its 
expected value X̂ηθ|y, we integrate the area of the predictive density up 
to the probability score associated with the observed measure using Eq. 
(2). In a Gaussian representation, this integral is the error function erf. 
The erf is bounded in the interval [-1,1]. If the new measurement is close 
to the value that was associated with the highest probability, the error 
function will produce values around 0. On the other hand, if new mea-
surements are far over or under the most likely value, the error function 

will produce, respectively, positive or negative values close to the 
bounding values. 

erf

(
z
̅̅̅
2

√ =
ŷ − X̂ηθ|y

σθ|y
̅̅̅
2

√

)

=
2

σθ|y
̅̅̅̅̅
2π

√

∫ z

0
exp

(

−

(
u − X̂ηθ|y

)2

2σ2
θ|y

)

du. (2) 

Given that neurodegeneration is associated with reduction in brain 
volume, we are interested in voxels with negative erf values, and those 
voxels where the observed value is far below the expected value are 
interpreted as undergoing neurodegeneration. Maps of these regions for 
each individual and time point are created by thresholding the erf maps 
to include voxels whose volume estimates are far from the expected 
value. Given that the choice of threshold may influence the sensitivity of 
the maps for predicting onset of symptoms, in the implementation 
described below that uses ADNI participants, we examined the utility of 
several different thresholds on prediction of dementia, ranging from erf 
values of − 0.7 to − 0.99. 

2.4. Application of the Model to Empirical Data 

2.4.1. ADNI Cohort 
In order to examine the utility of this method in a relevant context, 

we applied it to data from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI; http://adni.loni.usc.edu), which was first launched in 
2003. The primary goal of ADNI has been to test whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other 
biological markers, and clinical and neuropsychological assessment can 
be combined to measure progression in elders at risk for, or suffering 
from early AD. ADNI participants must be at least 55 years of age and 
enrollees include cognitively normal individuals, people with a diag-
nosis of mild cognitive impairment (MCI Petersen (2016)), defined as 
progressive memory or other cognitive changes without significant 
functional impact, and patients with Alzheimer’s type dementia. 
Because of the long duration of ADNI, the study database contains 
participants who have been followed for many years. Imaging methods 
for ADNI have evolved over time. For this analysis, we included only 
those who were scanned at 1.5 Tesla on MRI scanners from one of three 
vendors: Philips Medical Systems, Siemens, or General Electric Medical 
Systems. The current analysis used the T1-weighted images, which were 
acquired as Magnetization Prepared Rapid Gradient Echo (MP-RAGE) 
images using the following parameters: 240 × 256 × 256 matrix; about 
170 slices; voxel size = 1.05 × 1.05 × 1.2 mm3; flip angle, TE and TR 
varied by vendor. 

Because one of the proposed uses of our approach is to track the 
emergence and evolution of neurodegenerative changes from the 
earliest point possible, we elected to study people who were first 
assessed during a phase of normal cognition and then followed until they 
either eventually progressed to the point of dementia or continued to 
have normal cognition. We hypothesized that progression to dementia 
would be preceded over time by the appearance of brain regions that 
show unexpectedly small volume estimates based on their initial rate of 
change, indicating accelerated atrophy, and that the faster such regions 
accumulate across the brain the sooner the participant would develop 
dementia. Conversely, we hypothesized that individuals at high risk for 
dementia that did not develop dementia during the period of observa-
tion would have slower accumulation of voxels with unexpected degrees 
of atrophy. In ADNI, individuals at high risk can be identified based on 
significant accumulation of brain amyloid on PET scanning. In order to 
categorize patients as having or not having significant accumulation of 
amyloid, we used the standard uptake value ratios (SUVRs) provided by 
ADNI Jagust et al. (2010); Jagust et al. (2015) and applied published 
cutoffs appropriate for the type of scan that was acquired: 1.5 for 
Pittsburgh Compound B (cerebellar grey matter normalization) Jagust 
et al. (2010), 1.11 for AV-45 (whole cerebellum normalization) Landau 
et al. (2014), and 1.08 for Florbetaben (whole cerebellum normaliza-
tion; https://ida.loni.usc.edu). We chose dementia as the outcome for 
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prediction because many prior studies have shown that structural im-
aging can predict the onset of dementia in patients at risk Toledo et al. 
(2014), and dementia represents a more reliable outcome compared 
with MCI, because a portion of MCI patients revert to normal, indicating 
that their symptoms at that time might not be due to neurodegeneration 
Bondi et al. (2014). Symptom severity for each ADNI participant at each 
time point was quantified using the Clinical Dementia Rating Scale 
(CDR®) variable provided by ADNI Morris et al. (1997), with CDR® =
0 being cognitively normal, CDR® = 0.5 being defined as MCI, and 
CDR® ⩾1 being defined as dementia. 

In order to model time-dependent changes in brain volume in par-
ticipants of interest, we assumed that a well selected group of healthy 
controls have a stable rate of brain atrophy as they age, without accel-
eration. Under this assumption, it is a reasonable approximation to fit 
brain atrophy rates in a group of healthy controls using a linear model 
Ziegler et al. (2015), and to use this group of controls to model brain 
volumes in our participants of interest who were not demented for at 
least the first two visits after enrollment. Longitudinally studied amyloid 
negative individuals from ADNI who remained cognitively normal 
during the period of study were used as the healthy controls to model 
normal rates of change. 

2.5. Illustrative Cases of Patients with FTLD 

In order to illustrate the performance of the model in patients with 
non-AD pathology, we analyzed imaging data from two patients who 
were followed for several years at UCSF beginning in a phase of normal 
cognition and who progressed to dementia and death, and whose au-
topsies demonstrated FTLD pathology. These patients were studied 
through various research projects on FTLD and normal aging 
(AG019724, AG032306, AG045390, NS092089, Hillblom Network) and 
had MRI acquired on a Siemens Tim Trio 3 Tesla scanner using the local 
protocol, which acquired T1-weighted imaging using an MP-RAGE 
sequence using the following parameters: 160 × 240 × 256 matrix; 
voxel size = 1 × 1 × 1 mm3; flip angle 9◦, TE 2.98 ms, TR 2300 ms. 
Clinical assessments for these studies have been described in other 
publications Kramer et al. (2003). The normal control dataset used for 
the BLME model for these cases consisted of 139 control subjects whose 
imaging parameters matched those of these two participants. Twenty- 
nine were studied at University of California San Francisco, through 
the projects referenced above, and an additional 110 were drawn from 
cognitively normal control participants in two other longitudinal studies 
of neurodegeneration: 34 were drawn from the Parkinson’s Progressive 
Markers Initiative Marek et al. (2018); 76 were cognitively normal in-
dividuals from Dominantly Inherited Alzheimer Network (DIAN 
McDade et al. (2018)) who did not carry dementia-causing mutations. 
These additional participants were included in order to have the control 
group span a larger age range that included potential ages of patients 
with FTLD, who often present at a younger age than patients with spo-
radic AD Olney et al. (2017). The mean age for the control group was 
49.76(14.20) years old (the standard deviation is expressed between 
parentheses). Functional status was quantified using the CDR® for one 
case, but for the other we had additional data sufficient to complete the 
CDR® plus NACC FTLD module (CDRnFTLD) rating scale, which aug-
ments the traditional CDR® with ratings for language and behavior. 
Total score for the CDRnFTLD was created based on a recently published 
algorithm Miyagawa et al. (2020). Neuropsychological testing proced-
ures are described in the Supplementary Materials Section 7.3. 

2.6. Image Processing and Quantification of Neurodegeneration 

Before preprocessing of the images, all T1-weighted images were 
visually inspected for quality. Images with excessive motion or other 
artifacts were excluded. T1-weighted images underwent bias field 
correction using the N3 algorithm, and segmentation was performed 
using the SPM12 (Wellcome Trust Center for Neuroimaging, London, 

UK) unified segmentation Ashburner and Friston (2005). An intra- 
subject template was created by non-linear diffeomorphic and rigid- 
body registration using the symmetric diffeomorphic registration for 
longitudinal MRI framework Ashburner and Ridgway (2012). The intra- 
subject template was also segmented using SPM12’s unified segmenta-
tion. A within-subject modulation was applied by multiplying each time 
point’s Jacobian with the intra-subject averaged tissues Ziegler et al. 
(2015). A group template was generated from the within-subject 
average gray and white matter tissues and cerebrospinal fluid using 
the Large Deformation Diffeomorphic Metric Mapping framework Ash-
burner and Friston (2011). Modulated intra-subject gray and white 
matter were geometrically normalized and smoothed (10 mm full width 
half maximum Gaussian kernel) in the group template. Every step of the 
transformation was carefully inspected from the native space to the 
group template. 

The modulated intra-subject gray matter density maps, normalized 
to the group template, for each participant were used for the BLME 
models and for comparison of observed with predicted values. This 
allowed estimation of trajectories at the voxel level, and identification of 
deviations from expected trajectories at time points beyond the set of 
initial time points used to calculate trajectory (c.f. methods above). For 
the healthy control groups used to establish the estimates of change at 
each voxel in the BLME model, we used all available images acquired 
over time in order to generate the best possible estimates. For partici-
pants of interest in whom the goal was to identify the signs of neuro-
degeneration as early as possible, we entered the first two images 
acquired at a time when they were cognitively normal into the BLME 
model to establish their rates of change, leaving the rest of their images 
for potential detection of voxels that deviate from expected volumes. 
This approach emulates what might be used in practice to minimize 
expense and time. 

For each image that was used to compare regional gray matter 
density against expected values, the number of voxels showing unex-
pectedly low gray matter densities (identified by the erf, c.f. Fig. 3) was 
multiplied by the voxel size to create an atrophy cluster, quantified in 
cubic centimeters (cc). All volumetric calculations were carried out 
using statistical image analysis tools from the FSL Smith et al. (2004) 
and ANTs Avants et al. (2014) packages. To quantify the rate of spread of 
atrophy across the brain, we calculated the difference in size between 
each atrophy cluster and the atrophy cluster from the prior image and 
divided by the elapsed time to create a growth rate (in cc/year) for the 
period between the two scans. 

Given that the goal of our analysis was to use individualized mea-
surement of gray matter atrophy to predict conversion to dementia, we 
also compared the results of our method for prediction with the results of 
using an established individualized measure of brain atrophy that has 
been previously been shown to be useful for predicting onset of de-
mentia in AD. To accomplish this, we derived estimates of bilateral 
hippocampal volumes (HV) using the segmentation method described 
above normalized in the group template and modulated to recover the 
participant’s hippocampal volume in native space. Regions of interest 
(ROI) were defined by the Desikan atlas Desikan et al. (2006), which was 
warped to group template space. We also calculated a rate of change for 
hippocampal volume (HR) by calculating the difference between each 
HV and the HV from the prior image. To allow comparison of effect sizes 
between HV, HR, cluster volume and cluster growth, the variables were 
converted to z-scores based on the means and standard deviations for 
each of these variables for all the participants of interest. 

2.7. Statistical Analysis 

Once the map of voxels affected by neurodegeneration was estab-
lished for each participant, these maps were used in subsequent analysis 
to examine how they behaved in those who eventually converted to 
dementia vs. those who did not. To assess whether cluster growth rates 
were faster in patients who convert to dementia compared with those 
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who did not convert during the period of observation, cluster volumes at 
different thresholds in the negative spectrum of the erf maps were 
compared between subjects that converted from cognitively normal to 
dementia (Converters) and amyloid positive individuals who remained 
cognitively normal throughout the course of study (+amyloid cogni-
tively normal, or  + ACN). We defined the volume as the binarized map 
of the clusters in cc. Cluster volume z-scores for each participant at each 
acquisition time were entered into a LME analysis along with time and 
group G (Conveters vs. +ACN), and the group-by-time interaction, as 
predictors. Although ADNI was designed to use conversion to dementia 
as an outcome rather than predictor, this approach permits comparison 
of differences in rates of volume loss over time in those who are near 
conversion versus those who are not. The model is described in 
following equation: 

Vij = α0i +α1iΔj + εij (3)  

where Vij is the cluster volume for the individual i, j at the acquisition 
time, and Δj is the time lag between the measured cluster volume at the 
time j until the last event for that participant. For Converters, the last 
event was the time of conversion to dementia. For  + ACN participants, 
the last event was the last available observation for that individual. The 
vector α is the set of parameters in the model. To assess the parameters 
of the group-by-time interaction, we decompose the coefficient α1i =

β10 + β11 × G + u1i, where β1 is the parameter set and the coefficient u is 
the random effect on the parameter β11 given the subject. The models 
were fitted using the robustlmm R package. 

In order to assess the ability of spreading neurodegeneration to 
predict onset of dementia, the cluster volumes at different erf thresholds 
at each acquisition and the rate of cluster growth between each set of 

scans were used as a predictors in separate time varying Cox propor-
tional hazard models that used time to dementia diagnosis as the sur-
vival outcome. All participants were cognitively normal at the initial 
time points entered into the analysis. For Converters the conversion to 
dementia was entered as the event at the visit where this occurred. 
+ACN participants were censored at their last observation. Cox regres-
sion was carried out using the lifelines package in Python (https:// 
zenodo.org/record/3969500). Cox regressions were also run using 
bilateral HV and HR divided by the subject’s TIV (HVT & HRT) as pre-
dictors of dementia conversion. Because of the z-score standardization, 
hazard ratios (HR) estimated by the time varying Cox model can be 
interpreted as increasing, or reducing, the risk of dementia for each 
standard deviation increase in the predictor. Age and gender were used 
as covariates for all the Cox regressions. 

3. Results 

3.1. ADNI Cohort: 

We were able to identify a total of 71 longitudinally studied in-
dividuals from ADNI with suitable T1-weighted images (Table 1). These 
included 16 Converters, 13 of whom were amyloid positive, 22  + ACN 
participants, and 33 amyloid negative individuals who remained 
cognitively normal over the period of study (- amyloid cognitively 
normal, or -ACN) and who served as controls for the BLME model. The 
-ACN participants had a mean of 5.48 images available to be entered into 
the BLME model. 

Cases in both the Converter and  + ACN groups showed the emer-
gence of clusters of accelerated brain volume loss, with increasing 

Fig. 3. Maps of accelerated atrophy, represented as estimated erf value for each voxel, for three visits (columns) that occurred after the first two that were included in 
the BLME model, in three subjects (rows): an amyloid negative Converter (top row); an amyloid positive Converter (middle row); an amyloid positive non- 
converter (+ACN). 
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cluster volume at later periods of observation (Fig. 2). We noted one 
individual that had a dramatic increase in cluster volume between their 
first and second images outside of the BLME (left panel Fig. 2). Inspec-
tion of all raw and processed images and available clinical data for this 
participant did not identify any meaningful differences between this 
individual’s data and the data from the rest of the group, so they were 
included in the primary analysis along with the other Converters, but we 
also ran the analyses excluding this participant. 

The Converter group achieved higher rates of cluster volume growth, 
compared with the  + ACN group. The group-by-time interaction coef-
ficient increase volume rate between Converters and +ACN was statis-
tically significant (p < 0.05), for all of the thresholds applied on the erf 
maps. A summary of the results is given in the Table 2. 

In order to examine how this method performs in individuals with 
low risk for neurodegeneration, we ran a supplementary analysis where 
each of the -ACN controls was treated as a person of interest, using their 
first two images for the BLME model and looking for accelerated volume 
loss in their subsequent images, and this analysis produced relatively 
small clusters with low rates of growth over time (see supplementary 
materials 7.2). 

In many cases, the regions where the earliest clusters were identified 
included the medial temporal regions, and subsequent images demon-
strated spread to adjacent brain areas (Supplementary Fig. 7). However, 

in one case, the first cluster appeared in the left insula, and changes 
spread to the adjacent left frontal lobe and striatum. Although the 
clinical diagnosis for this case was AD and limited clinical information 
was available, this individual’s amyloid scan was negative. Fig. 3 shows 
the cluster maps in representative cases, including an amyloid positive 
Converter, the amyloid negative Converter discussed above, and a  +
ACN case. 

The cluster growth rates, but not cluster volumes, were statistically 
significant predictors of conversion to dementia onset in the Cox re-
gressions for erf values less than − 0.90, Table 3. HVT and HRT were not 
statistically significant predictors in the model that included Converters 
and  + ACN participants, although the effects were in the expected di-
rection, with larger HVT being associated with lower likelihood of 
conversion at the next observation (HR  = 0.86, p  = 0.53 and CI =
[0.54,1.38]) and faster HRT being associated with higher likelihood of 
conversion (HR  = 1.20, p  = 0.55 and CI = [0.65,2.23]). To examine 
whether HVT predicted dementia in a larger sample with more vari-
ability, we also ran a Cox regression that included the -ACN group. In 
this model, HVT became a stronger predictor of conversion, as would be 
expected, and the effect was statistically significant (HR  = 0.67, p  =
0.05 and CI = [0.44,1.01]). HRT was not a statistically significant pre-
dictor in this model (HR  = 0.93, p  = 0.82 and CI = [0.49,1.75]). 

We also re-ran these Cox regressions after excluding the participant 
with the unusual pattern of change in left panel of Fig. 2. In these ana-
lyses both cluster volume and cluster growth rate were significant pre-
dictors of conversion, Table 3. HVT and HRT were not statistically 
significant predictors in these models, but all estimated effects were 
similar in magnitude to the estimates in the main Cox regression and in 
the correct directions (HR  = 0.84, p  = 0.46 and CI = [0.52,1.34] for 
HVT, and HR  = 1.16, p  = 0.62 and CI = [0.63,2.14] for HRT). 

We were also interested in whether the clusters detected with our 
approach could have predictive value early in the evolution of disease, 
even before mild symptoms developed. We therefore ran a survival 
analysis where any observations collected at a time when a participant 
was diagnosed with MCI were excluded. We had to remove two Con-
verters from the model looking at cluster growth rate because they had 
only one observation as a normal participant outside of the two obser-
vations used for the BLME. Cluster volume was a statistically significant 
predictor of eventual dementia onset in this model, and the hazard ratio 
for cluster growth was close to being statistically significant (volume: 
HR  = 1.52, p  = 0.05 and CI = [1.00,2.33]; growth: HR  = 1.72, p  =
0.06 and CI = [0.98, 3.00]). HVT and HRT were not statistically sig-
nificant predictors (HR  = 1.47, p  = 0.32 and CI = [0.69,3.15] for the 
HVT; HR  = 1.83, p  = 0.16 and CI = [0.79,4.24] for HRT), even when 

Table 1 
ADNI Participant Demographics.   

Converters -ACN(†) þ ACN(††) All 

N 16 33 22 71 
Age range at Baseline 

(min–max) 
71–82 66–90 71–86 66–90 

Average Baseline Age 
(SD) (y) 

76.44 ±
3.46 

72.21 ±
5.80 

75.45 ±
4.24 

76.96 ±
4.99 

Sex (M/F) 6/10 20/13 13/9 39/32 
Avg. number of scans* 4.19 3.76 5.48 3.89 
Avg. time between 

scans (d) 
357 ± 302 346 ± 286 479 ± 234 357 ± 298 

Amyloid +/- 13/3 0/33 22/0 35/36 

* number of scans beyond the first two entered in the BLME model, except in the 
case of -ACN, 
for whom all images were used in the BLME model. 
(†) amyloid negative individuals who remained cognitively normal throughout 
the period of observation. 
(††) amyloid positive individuals who remained cognitively normal throughout 
the period of observation.  

Fig. 2. Sizes of clusters of accelerated atrophy over time in ADNI participants. The y-axis represents the cluster size (cm3) from the prediction model for each patient 
in images beyond the two time points used in the BLME model, and the x-axis represents the number of days relative to time of dementia diagnosis (for Converters), 
or time to last clinical diagnosis (for  + ACN), in both cases denoted as 0. 
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-ACN participants were included (HR  = 1.26, p  = 0.59 and CI =
[0.55,2.84] for HVT; HR  = 1.76, p  = 0.22 and CI = [0.71,4.37] for 
HRT). 

3.2. FTLD Cases: 

Case1:This participant was initially enrolled at the age of 85 in a 
study of normal aging at our center, and clinical history, exam and 
cognitive testing confirmed that they were cognitively normal for their 
age (see Table 4 for selected scores). At the seventh visit, they com-
plained of mild word finding difficulties, such as names of famous 
people, and also trouble with details of events from a movie they had 
seen a few days earlier, which they said had been worsening over the 
prior year-and-a-half. At their 8th visit, the participant complained that 
their memory had “plummeted downhill” during the prior year. Over the 
next few months, the participant’s memory continued to decline and 
they progressively stopped eating, and they died about eight months 
after the last assessment. Amyloid scans in their first and seventh visits 
were both negative. Autopsy revealed a gross pattern of left greater than 
right temporal lobe atrophy. Microscopic examination revealed gliosis 
that was most prominent in the left entorhinal cortex, amygdala and 
inferior temporal gyrus, and there were numerous cortical neuritic in-
clusions, and long TDP-43 positive dystrophic neurites, consistent with a 

primary pathological diagnosis of TDP-43 Type C pathology Mackenzie 
et al. (2009). Incidental AD type pathology, with moderate amyloid 
plaque burden and neurofibrillary tangles limited to the entorhinal 
cortex (Braak Stage 1), was also identified. Case1 had five MRIs avail-
able for analysis. The first was associated with visit 1, the second was 
obtained at a visit for an experimental imaging protocol without clinical 
data, and the rest were obtained at visits 4, 5 and 7 (Table 4). The first 
two images were used to model volume changes over time using the 
BLME framework. The subsequent images, thresholded at an erf of − 0.9, 
demonstrate expanding regions of accelerated atrophy, beginning in the 
left anterior medial temporal and inferior temporal regions in the 
earliest post-model images, and expanding to adjacent temporal regions 
and to contralateral temporal regions over time (Fig. 4). 

Case2:This participant was initially enrolled at age 65 in a study of 
FTLD at our center because of a family history of FTLD in siblings and a 
parent. Genetic testing revealed a pathogenic GRN variant Ramos et al. 
(2020). At the initial assessment, the participant complained of mild, 
occasional word finding trouble that was not having any impact on 
function, and the remainder of the history, exam, and cognitive testing 
confirmed normal cognitive and behavioral function (Table 5). Over the 
next three visits, they complained of stable, mild word finding trouble, 
not noted by others in their family, and their cognitive performance 
remained stable, except for some trouble enunciating words during 

Table 2 
Cluster growth rates, in cc/year, for different thresholds applied on the erf maps for the Converter and the  + ACN groups cluster calculation. The values between 
brackets represents the confidence interval at 95%. The rate βG∗ Δ represents the interaction rate between the group G and the duration Δ.  

erf − 0.7 − 0.8 − 0.9 − 0.95 − 0.99 − 0.999 

βG∗ Δ − 1.54[ − 3.33,0.26] − 1.79[ − 3.59,0.13] − 2.05[ − 3.97, − 0.03] − 2.18[ − 4.23, − 0.13] − 2.43[ − 4.74,0.00] − 2.31[ − 5.00,0.26]
βConverters 7.04[3.46,10.38] 6.92[3.33,10.50] 6.79[2.69,10.76] 6.92[2.69,11.14] 7.43[2.56,12.30] 7.56[2.18,12.81]

β+ACN 4.48[2.69,6.40] 3.71[2.05,5.51] 3.07[1.28,4.74] 2.81[1.02,4.61] 2.56[0.51,4.61] 2.05[0.13,4.36]

Table 3 
Hazard ratio at different threshold of the erf map in the negative spectrum. The hazard ratio (HR) is expressed with the confidence interval at 95% between brackets. 
Size indicates the volume values; Rate indicates the temporal variation of the two metric volume. Bold values are statistically significant at p < 0.05. The lines noted 
with O present the statistics including the outlier; lines with N present the statistics without the outlier.  

erf thr. − 0.7 − 0.8 − 0.9 − 0.95 − 0.99 − 0.999 

HR Size O 1.26[0.87–1.82] 1.24[0.88–1.76] 1.23[0.88–1.70] 1.22[0.89–1.68] 1.23[0.91–1.67] 1.25[0.92–1.67]  
N 2.02[1.25–3.27] 1.95[1.26–3.01] 1.82[1.25–2.66] 1.72[1.22–2.43] 1.55[1.13–2.11] 1.42[1.05–1.92] 

HR Rate O 1.93[0.79–4.75] 2.13[0.89–5.09] 2.34[1.05–5.21] 2.43[1.17–5.07] 2.15[1.19–3.87] 1.81[1.06–3.11]  
N 1.57[1.09–3.47] 1.68[0.92–3.07] 1.86[1.06–3.26] 2.04[1.183.52] 2.09[1.093.65] 1.95[1.16–3.30  

Table 4 
Case1 – medical assessment per visit.    

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8 

Years from Initial Visit  0.00 0.75 1.42 2.59 3.17 4.08 5.42 6.42 
Domain Measure         
General Cognition MMSE 29 - 29 28 28 27 27 24 
Memory CVLT-Long Delay (16 word list) 12 - 10 12 10 5 - -  

Benson Recall (max 17) 13 - - 13 15 12 16 8 
Frontal/Executive Digits BW 6 - - 6 - 5 - 5  

Phonemic Fluency 12 - - 17 15 8 - 15  
Category Fluency 24 - - 25 19 18 13 10 

Visuospatial Benson Copy (max 17) 16 - - 17 15 16 16 13 
Language Boston Naming Test 15 - 15 15 14 12 12 7 
Function (CDR)* Memory 0 - 0 0 - 0 0.5 0.5  

Orientation 0 - 0 0 - 0 0 0  
Judgment and Problem Solving 0 - 0 0 - 0 0 0  
Community Affairs 0 - 0 0 - 0 0 0.5  
Home and Hobbies 0 - 0 0 - 0 0 0  
Personal Care 0 - 0 0 - 0 0 0  
CDR Total Rating 0 - 0 0 - 0 0.5 0.5 

Imaging MRI X** X**  X X  X   
Amyloid PET X      X  

* Details in Supplementary Materials Section 7.3. 
** Image used in BLME Model. 
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cognitive testing at the fourth visit (suggesting possible apraxia of 
speech). At the fifth visit, the participant endorsed significant changes in 
language over the prior year, including “stumbling” over words, 
particularly those that are difficult to pronounce. The examination at 
that visit showed fragmented, effortful speech with pronunciation errors 
and good comprehension, consistent with apraxia of speech and non- 
fluent progressive aphasia. At subsequent visits, the speech output dif-
ficulties had worsened and the participant developed parkinsonian 
features, particularly on the left side, and the speech difficulties forced 
them to stop work by the seventh visit, at which point they were nearly 
mute. At the last visit, cognitive changes had extended to executive 
function by history, and physical function had declined significantly. 
Formal cognitive testing could not be completed. The participant 
continued to decline at home and died two years after the last research 

visit. Autopsy identified frontal, anterior temporal, anterior parietal, 
striatal and thalamic atrophy. Microscopic examination revealed gliosis 
that was most prominent in the frontal and parietal cortex, striatum and 
thalamus, and large numbers of TDP-43 neuronal cytoplasmic inclusions 
in cortical and subcortical regions, more abundant in the upper cortical 
layers, which is consistent with FTLD TDP-43 type A pathology Mack-
enzie et al. (2009). Incidental AD pathology in the form of moderate 
neuritic plaque burden and mild neurofibrillary tangle pathology (Braak 
Stage 2) was also identified. Case2 had seven MRIs available for anal-
ysis. The first two were associated with visits 1 and 2 in Table 5, and 
were used to model volume changes over time using the BLME frame-
work. The subsequent images correspond to visits 3 through 7. These 
images, thresholded at an erf of − 0.9, demonstrate expanding regions of 
accelerated atrophy, beginning in the left greater than right insula and 

Fig. 4. Case1 – Regions of accelerated atrophy over three visits (see Table 4).  

Table 5 
Case2 – medical assessment per visit.    

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8 

Years Since Initial Visit  0.00 0.92 1.92 2.92 3.92 4.84 5.84 6.92 
Domain Measure*         
General Cognition MMSE 28 30 30 29 30 29 23 - 
Memory CVLT-SF-Long Delay (9 word list) 9 9 9 9 9 9 9 -  

Benson Recall (max 17) 11 12 10 11 12 9 9 - 
Frontal/Executive Digits BW 4 4 3 5 5 3 4 -  

Phonemic Fluency 31 23 27 33 23 23 16 -  
Category Fluency 40 37 37 42 33 27 12 - 

Visuospatial Benson Copy (max 17) 16 16 16 16 16 15 13 - 
Language Boston Naming Test 15 15 15 15 15 15 15 - 
Function (CDRnFTLD) Memory 0 0 0 0 0 0 0 0  

Orientation 0 0 0 0 0 0 0 0.5  
Judgment and Problem Solving 0 0 0 0 0 0.5 0.5 1  
Community Affairs 0 0 0 0 0 0 0 2  
Home and Hobbies 0 0 0 0 0 0 0 2  
Personal Care 0 0 0 0 0 0 0 2  
Language 0 0 0 0 1 1 2 2  
Behavior 0 0 0 0 0 0.5 0.5 0.5  
CDR Total Rating 0 0 0 0 0 0 0 0.5  
CDRnFTLD Total Rating 0 0 0 0 0.5 0.5 1 2 

Imaging MRI X** X** X X X X X  

* Details in Supplementary Materials Section 7.3. 
** Image used in BLME model. 
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operculum, along with involvement of the dorsal medial frontal region, 
and expanding to include bilateral insula, operculum, striatum, dorsal 
and medial frontal cortex and temporal lobes by visit 7 (Fig. 5). 

4. Discussion 

In the present study, we have described the use of a Bayesian lon-
gitudinal modeling framework to identify brain regions that are un-
dergoing accelerated loss of brain volume, indicating 
neurodegeneration, in individual cases, using only two initial images to 
model baseline rates of change for each participant of interest. Appli-
cation of this model to cognitively normal individuals, some of whom 
eventually developed dementia, identified focal regions of neuro-
degeneration either before or accompanying the earliest symptoms. 
Continued longitudinal observation revealed expansion of neuro-
degeneration to contiguous brain regions as well as distant regions, 
including homologous locations in the opposite hemisphere. Spread of 
these regions across the brain was more rapid in patients that ultimately 
converted to dementia compared with those who remained cognitively 
normal during extended observation, and the rate of this spread was a 
statistically significant predictor of the likelihood of developing de-
mentia. Lastly, the brain regions where these abnormalities appeared 
varied across people, including early involvement of insular, frontal, and 
striatal regions in patients who had proven, or likely non-AD 
pathologies. 

This approach has many potential uses for research and care of pa-
tients with neurodegenerative disease. The application we examined, 
prediction of dementia onset, can be used in intervention trials designed 
to prevent onset of symptoms by helping with selection of patients more 
likely to develop symptoms within the proposed duration of the study, 
improving efficiency Boxer et al. (2020); Rosen et al. (2020b). Once 
effective preventative treatments have been developed, patients at 
elevated risk of neurodegenerative disease, based on monogenic, poly-
genic, or other biomarker profiles, can be tracked using this technique to 
identify when the risk is beginning to manifest in early signs of neuro-
degeneration, and treatment can be initiated. Beyond the application to 
prediction of dementia onset, the same method of identifying voxels that 
are likely to be undergoing neurodegeneration can be used in other types 

of analyses. For instance, the changes detected using this approach can 
also be used to track the effects of treatment in multiple ways. One 
approach would be to compare the rate of spread in placebo versus 
treatment groups, which would be similar to our analysis comparing 
converters with non-converters, only with à priori grouping based on 
treatment assignment. The method could also be used to track individ-
ualized responses to treatment. Once the rates of change in each region 
and spread across the brain have been quantified in an individual, the 
predictions from this algorithm could be used to identify regions that 
have better than expected values (e.g. higher gray matter content than 
expected), which may be used to support a response to treatment Frost 
et al. (2008). Both of these approaches can be used in trials with 
symptomatic patients, but may be particularly important in prevention 
trials, when symptoms cannot be used to detect the effect of an inter-
vention, increasing the importance of biomarker outcomes Rosen et al. 
(2020b). The estimates generated by this method can also be used for 
other types of predictions besides time to dementia. For instance, the 
maps of neurodegeneration can be compared with known patterns of 
atrophy associated with different dementia syndromes in order to pre-
dict what symptoms a person might develop, or to interpret the meaning 
of mild changes in cognitive performance in a person that has thus far 
been asymptomatic. Each of these applications could use the same 
approach for estimation of voxel health, but would use a different 
approach in place of our Cox regression in order to address the question 
of interest. Furthermore, the utility of this technique extends well 
beyond measures of brain volume. Current models of neurodegenerative 
disease stipulate that many biomarkers and clinical effects of these 
disorders enter a phase of accelerated change Jack et al. (2013). For 
many of these measurements, the power of this technique to identify a 
subset of observations (e.g. from among many voxels, body fluid mea-
surements, or cognitive tests) using a reproducible threshold without à 
priori assumptions could provide increased sensitivity to early neuro-
degenerative change in diverse groups of patients. 

The majority of participants included in this analysis were from 
ADNI, and therefore likely to have AD pathology and neurodegeneration 
beginning in the medial temporal region, which was true for most of the 
cases in this study. One case from the ADNI cohort, however, along with 
two cases from the UCSF cohort, reinforce the sensitivity of this 

Fig. 5. Case2 – Regions of accelerated atrophy over four visits (see Table 5).  
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technique to the effects of pathologies and clinical presentations beyond 
typical AD. An ADNI case showed the emergence of changes in the left 
insular region that progressed to involve frontal cortex and striatum. 
The pattern of brain atrophy from this case is typical for the non-fluent 
variant of primary progressive aphasia (nfvPPA) Gorno-Tempini et al. 
(2004). The existence of this case is consistent with prior work that 
highlighted the presence of participants with suspected non-AD pa-
thology in ADNI Caroli et al. (2015). Although the reported clinical 
diagnosis in this case was AD, this participant’s amyloid scan was 
negative, and there is a reasonably high likelihood that this case had 
FTLD pathology. Case1 from UCSF showed the emergence of left ante-
rior and inferior temporal changes, which was consistent with the par-
ticipant’s early word finding and episodic memory complaints. The final 
pathological diagnosis was TDP-43 Type C, which is typically associated 
with the semantic variant of PPA and manifests with early atrophy in the 
left anterior temporal and inferior temporal region Seeley et al. (2005), 
consistent with results from the BLME model. This patient may have 
been just entering a phase of significant semantic loss before they died, 
as indicated by significant drops in picture naming and category fluency 
scores at their last visit (more targeted assessments of semantic pro-
cessing were not available). Case2 showed early left greater than right 
insular and frontal opercular changes, which is consistent with the signs 
of speech apraxia that were noted at the next visit, and prior studies 
localizing speech apraxia to the left insular region Dronkers (1996). 
Case2 subsequently developed a full nfvPPA syndrome, which has been 
localized to left frontal opercular region in prior studies Gorno-Tempini 
et al. (2004). Furthermore, the identification of dorsomedial frontal 
changes in Case2 is consistent with prior observations indicating that 
spread to this region occurs nfvPPA Mandelli et al. (2016). These ob-
servations support the idea that this technique is sensitive to the emer-
gence of neurodegeneration due to a variety pathologies and affecting 
diverse neural systems. In patients at risk for AD, the technique may 
allow the detection of degeneration even in patients with young onset 
and atypical syndromes, which are often associated with prominent 
involvement of frontal and parietal, rather than medial temporal regions 
Ossenkoppele et al. (2015). In FTLD, the same pathology can present 
with several clinical syndromes, and no current methods allow predic-
tion of which one will occur in a given person Olney et al. (2017). 
Ongoing studies of FTLD due to autosomal dominant mutations Rohrer 
et al. (2015); Rosen et al. (2020a) will provide the opportunity to more 
formally assess the sensitivity and predictive value of this technique for 
specific syndromes as more patients within these cohorts develop 
symptoms Chen et al. (2019); Chen et al. (2020). Similar questions also 
arise in patients at risk for synucleinopathies, where the emergence of 
Parkinson’s disease and diffuse Lewy body syndromes are important to 
detect as early as possible Marek et al. (2018). In all of the cases studied, 
the anatomical changes were identified at a time when there were either 
no symptoms or very mild symptoms of questionable significance, sug-
gesting that this technique can have great value in helping to decide 
when mild symptoms are an indicator of neurodegeneration versus not. 

The purpose of this initial report is primarily a description of this 
method and demonstration of potential utility. There are many possible 
modifications and expansions that should be considered in order to 
develop this technique for maximum value. For instance, we used only 
two images for the BLME to estimate the initial rates of change, but if 
larger datasets with more time points in a period of normal cognition 
become available, it may be possible to examine the value of more time 
points for the initial estimates. Similarly, our model assumed linear 
change at baseline, but studies have identified non-linear components of 
change even in normal aging Schuff et al. (2012). Exploration of non- 
linear components in our models may improve the sensitivity and 
specificity of detection, and use of more than two images in the BLME 
model would be important for this assessment. Our analysis also in-
dicates that, although this method does not appear to identify many 
voxels in people who are unlikely to be experiencing neurodegeneration 
(see supplemental materials 7.2), the choice of threshold for defining 

voxels of neurodegeneration may have some impact on the utility of the 
technique for predicting symptom onset. Selection of a threshold could 
be optimized to empirically identify the thresholds that are best for the 
intended use of the procedure. In the example above the outcome of 
symptom onset time could be used, but this would best be accomplished 
when larger datasets that include more observed conversions become 
available. The resulting optimized threshold might be different than if 
the technique was used for other purposes such as tracking of treatment 
effects or prediction of types of symptoms. The choice of control group is 
also an important consideration. We chose the -ACN group because, for 
studies seeking to replicate our findings, it would be easier to assemble 
such a group than to identify a  + ACN group with similar numbers of 
imaging and clinical features. Also, our analysis tested the value of our 
model under the assumption that any amyloid positive individual could 
potentially develop dementia, which is what must be assumed when a 
participant is first entered into a study or a patient is evaluated in a 
clinic. That said, use of an appropriately representative  + ACN group 
that has been followed for several years without progression to dementia 
might ultimately improve the model’s predictive value. Expansion of 
this method to account for multiple modes of imaging simultaneously, as 
well as additional biomarkers, offers additional opportunities. 

Lastly, the utility of this approach must be considered in light of 
existing measures with proven utility in predicting and tracking symp-
toms. Although in this small dataset, our method was a more useful 
predictor of dementia than HV, there are many studies showing that HV, 
volumetric measurements of other brain regions, and many other bio-
markers, have value in predicting onset of symptoms, in both AD Weiner 
et al. (2017) and other dementias Staffaroni et al. (2020a). Prior studies 
have established the value of HV for predicting dementia in larger co-
horts (> 100 cases) of individuals with MCI who were amyloid positive 
Jack et al. (2010); van et al. (2012); Ten et al. (2017); Jang et al. (2019). 
The effect size for the cluster growth rate in our study (100% change in 
HR for each standard deviation) was larger than the effect size for HV 
(about 15% change in HR). In addition, our study suggested that cluster 
growth may have predictive value in asymptomatic people. However, 
larger studies would need to be done to better establish whether this 
method for detection of neurodegeneration is more valuable for pre-
diction of dementia in AD compared with established measures such as 
HV, to establish the magnitude of the improved prediction, and to make 
this comparison in other types of dementia where the value of à priori 
regions of interest are less well established. Furthermore, several studies 
have used deep learning and related techniques to characterize various 
patterns of brain abnormalities associated with established dementia 
syndromes Weiner et al. (2017); Rathore et al. (2017); Young et al. 
(2018). These types of methods can potentially be used to interpret 
emerging patterns detected with the technique described here in order 
to improve prediction of both what specific symptoms to expect and 
when those symptoms will develop. 

5. Conclusion 

BLME models designed to identify brain regions that depart from 
their expected trajectory appear to be a promising method for detecting 
the emergence of neurodegeneration in normal individuals at increased 
risk for neurodegenerative disease. The initial application of this 
approach suggests that it is useful for detecting changes due to a variety 
of pathologies in multiple neurological systems, and that the speed at 
which these changes spread across the brain can be used to predict onset 
of dementia. In addition, the location where the changes are identified 
might be useful for predicting which symptoms an individual will 
develop first, and for confirming when very mild symptoms are due to 
neurodegeneration. Further work to refine and expand this technique is 
required to define its best use for intervention trials and for management 
of neurodegenerative diseases. 
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