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Abstract

We show that the zeta function for the dynamics generated by the map z — z2+c,
¢ < —2, can be estimated in terms of the dimension of the corresponding Julia
set. That implies a geometric upper bound on the number of its zeros, which
are interpreted as resonances for this dynamical systems. The method of proof
of the upper bound is used to construct a code for counting the number of zeros
of the zeta function. The numerical results support the conjecture that the upper
bound in terms of the dimension of the Julia set is optimal.

Mathematics Subject Classification: 37F10, 37C30, 37M99, 37N20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this note, we present theoretical upper bounds and numerical lower bounds for the number of
zeros of the Ruelle zeta function associated to a quadratic map with a real Cantor-like Julia set.

By adapting the methods of [9], which become easier for such maps, we show that for
s in strips parallel to the imaginary axis, the zeta function is bounded by exp(C|s|®) where 8
is the dimension of the Julia set. The proof of this upper bound suggests a fast algorithm for
computing the number of zeros. The numerical results computed with this algorithm indicate
that the upper bound is optimal and that the density of zeros in strips is related to the dimension
of the Julia set.

Our motivation comes from the study of the distribution of quantum resonances—see [23]
for a general introduction and [9, 13] for discussions of the specific bounds considered here.
The relation between the density of resonances and the fractal dimensions of classical trapped
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Figure 1. A three-well confining potential and a three-bump potential with the energy at which the
flow is hyperbolic. The density of resonances for the latter was studied numerically in [11,12].

Table 1. Analogies between the Schrodinger operator [20], convex co-compact hyperbolic quotient
[9,18,22] and z — z2 + c settings [4].

P(h) = —h2A +V(x) X =T\H" 1> 2t
Quantum resonances, z, of P(h),  Quantum resonances, s(n — 1 —s), ?
Rez~E,Imz > —Ch [Ims|~1/handRes > —C
of —Ax
? Zeros of the zeta function Zeros of Z(s)
Zr(s) coinciding with the with [Ims| ~ 1/h
quantum resonances of Ay andRes > —C
Trapped set at energy E Limit set of I', A(I") Julia set, J(c)
on a Poincaré section
Dimension, m, of the trapped m=2(+1),5 =dim(A()) m=26+1),
set for energies near E § =dim(J(c))

sets was first studied by Sjostrand [20] for quantum resonances associated to Schrédinger
operators, —h% A + V (x) for which the classical flow, associated to the Hamiltonian £ + V (x),
was hyperbolic. A typical example is the three-bump potential shown in figure 1. After we
define the relevant objects for z — z2 + ¢ we will present the analogy to this setting in table 1.

Motivated by [9], where the model was a Schottky quotient, we can consider the dynamical
system associated to

fo@) =2 +c, c<=2 (1.1)

as the simplest model for the relation between scattering resonances and chaotic dynamics:
the zeros of the dynamical zeta function provide a convenient model for quantum resonances.
It would be interesting to see if they do coincide with suitably defined resonances of hyperbolic
laminations [14].

The Ruelle zeta function is defined in terms of the Ruelle transfer operator

L(s)u(z) = Z LA w)] ™ u(w), (1.2)
fe(w)=z

where [ f/(w)] is the holomorphic continuation of | f/(w)| defined on the real axis and z™* is
the principal branch of the usual complex power function. On an appropriately chosen space
of functions, L£(s) is a trace class operator so the Ruelle zeta function can be defined by

Z(s) = det(I — L(s)). (1.3)
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An equivalent purely dynamical product representation, which converges for Res > 1, is
given by [10]

=1 (™Y @17*
V4 = — — _— | 1.4
(s) =exp ; n For s 1-— [(f{ﬂ})/(z)]—l (1.4)

Here, we have dropped the parameter ¢ from the notation and denoted by f"} = f o fI1—1},
10 = id, the n-fold composition of f with itself. We prove the following asymptotic upper
bound for Z in terms of the dimension § of the Julia set

J=tz: f"@) =2 (1.5)

n>1

of f.
Theorem 1. Let f be the quadratic map defined by (1.1), let § be the dimension of the Julia
set J defined by (1.5), and let Z be the dynamical zeta function defined by (1.4). Then, for any
Co, there exists Cy such that

|Z(5)] < C1 exp(Cils|*) (1.6)
for |Res| < C.

The proof of this result is quite simple; we design our spaces carefully and analyse the
determinant of the Ruelle transfer operator by L>-techniques. As in [9], more complicated
Cantor set repellers can be treated by a self-similarity argument based on the Koebe distortion
lemma in place of the cookie-cutter arguments used in section 3. However, for simplicity of
exposition we consider only the case z + z> + ¢. The case of general hyperbolic rational
function was recently proved by Christiansen [4].

Since the product representation (1.4) of the zeta function converges for Re s large, Jensen’s
theorem yields.

Corollary 2. Let m(s) be the multiplicity of the zero of Z at s and

n(r, x) :Z{m(s) :|Ims| <r,Res > x}. (1.7)
Then, for any real x,
n(r+1,x)—n(r,x)= Z{m(s) cr <|Ims|<r+1,Res > x} < Cr°, (1.8)
where § = dim J. By summation,

n(r, x) < Cor'*. (1.9)
As far as lower bounds are concerned we present the following

Conjecture 3. The bound (1.9) is optimal, in the sense that for x > xo, with some fixed
xo = xo(0),

n(r,x) = C3(x)r' (1.10)
for sufficiently large r.

Aswe will describe in section 6, this conjecture is strongly supported by the numerical evidence.
These numerical results provide further evidence for the existence of fractal Weyl laws in
situations with chaotic classical dynamics.

In view of the lack of rigorous examples for quantum resonances, it would be very
interesting to know whether this upper bound is optimal. When the Julia set is not a
Cantor set the upper bound may not be optimal, as in the simple example f(z) = z> where
J(f)={z:lz] =1}and Z(s) = 1-2°"1.
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2. The transfer operator on L? spaces

To connect the two definitions (1.3) and (1.4) of the zeta function, we modify the discussion
in [10]. Construct a neighbourhood D of the Julia set J by

D =Dy UD,, D; open neighbourhoods ofJ N (—=1)7(0, 00),

gi(D;) C D;, fogi(x) =z

More explicitly, g;(z) = (—1)/+/z — ¢ with a branch of the square root chosen to be positive
on the positive real axis. The D;s can be neighbourhoods of (= 1)/ [/—c — &, E.], where

1+ /T/A—c
=

2.1)

&

is the largest fixed point of f.
The Ruelle transfer operator (1.2) then becomes

2
L) =Y g u(gi(2), z€D; 22)
i=1

acting on functions u in
HZ(D) = {u holomorphic in D: // |u(z)|2 dm(z) < oo} .
D

The only difference from (1.2) and [10] lies in choosing L2-spaces of holomorphic functions
instead of Banach spaces. However, we can still prove the analogue of (a special case of) a
result of Ruelle [19] and Fried [7].

Proposition 1. Suppose that the Ruelle operator L(s) : H*(D) — H?(D) is defined by (2.2)
and ¢ < —=2. Then, for all s € C, the operator L(s) is trace-class and

|det(I — L(s))| < exp(C|s|?). (2.3)

Proof. The proof is based on estimates of the singular values w;(L(s)). We will show that
there exists C > 0 such that

i (L(s)) < erI=e, 2.4

First, we recall some basic properties of singular values of a compact operator
A : H — H, where the H;s are Hilbert spaces. We define

Al = po(A) = ui(A) = -+ = ue(A) - 0

to be the eigenvalues of (A*A)Y2 . H| — H, or equivalently of (AADH'Y? . H, — H,.
The min—-max principle shows that
ne(A) = min max ||Av|g,. 2.5)

V C H, veV
codimV =+¢ [vllm =1

The following rough estimate suffices: suppose that {pj}‘;io is an orthonormal basis of
H,. Then, ‘

o0

we(A) < ) APl a,- (2.6)
j=¢


s|−

Au: Please check if the lowercase `ell' in equation (2.4) should be the same as given elsewhere, which appear to be in script font


Zeta function and the dimension of the Julia set 5

Indeed, for v € V, = span{p; 30:13 in (2.5), the Cauchy—Schwartz inequality and the usual
22 C £ inequality yield

2

oo o0
1AV, = | > . pjym Api || < IvliF, | D 14p;la,
j=t j=t

from which (2.5) gives (2.6).
We will also need some more sophisticated results about singular values. The first is the
Weyl inequality [8]: if H = H, and X ;(A) are the eigenvalues of A, then
[Ao(A)| Z [M(A)| = -+ = A (A)] — 0,
then, for any N > 0,
N N

[T+ D <A+ (A,

=0 =0

In particular, if the operator A is trace-class so ), u¢(A) < oo, then the definition

det(I + A) := ]—[(1 +Ae(A))

=0
makes sense and
|det(/ + A)| < H(l + e (A)). 2.7
=0

We will also require the following standard inequality about singular values [8]:

Jerser (A + B) < pe, (A) + pey (B). 2.8)
We finish the review, as we started, with an obvious equality: suppose that A; : Hy; — Hy;

and we form @]]'zl Aj @]J-zl H; — @j{:l H,;, as usual, @]J.ZI Ao @ - ®vy) =
Avi®---@® Ayvy. Then,

00 J J oo
Do | DA =D mA). 2.9)
=0 j=1

j=1 =0

With these preliminary facts taken care of, we see that (2.4) implies (2.3). In fact (2.7)
shows that
oo

det(I — L(s)) < [ J(1 +eHI=4€) < eC1F,
=0
Hence, it remains to establish (2.4). For that we choose the Djs to be symmetric discs
containing (—1)/[(&. + c)'/2,&.] and disjoint from iR. We decompose

2
H*(D) = (D H*(D;)
j=1
and define
Lij(s): H*(D;) — H*(D;)
by
Lij(Huz) = [g/ () u(gi(2)
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for z € D;. The standard inequality (2.8) and a version of (2.9) then yield
we(L(s)) < max 2uqesa1(Lij(s)).
1<i,j<2

To estimate y(L;;(s)) we use the rough estimate (2.6), with an orthonormal basis {0} of
H?(D;) composed of the centred and scaled monomials

V2k+1 (z —ai)k

ri

ok(2) =

i

where D; = D(a;, r;) has centre a; and radius r;. Since g;(D;) C Dj,

((g,-(z) —a,»))k
ri

for some 0 < « < 1. Since |[gi(z)]°] < e€P!, we obtain

< Cok,

H2(D;)

4
g o (|—
pe(Lij () < c]; 1L () (o]l < € %eﬂ”a" < CePl—— < e,

for some C, which completes the proof of (2.4). |

The next proposition follows by an easy modification of the standard argument (see for
instance [10]).

Proposition 2. Let L(s) be defined by (1.2). Defining the determinant as in proposition 1
we have

=1 L) @1
det(/ = LGs) =exp | =Y~ > 1= [(fmy @11
[N )=z

for Res > 0. Hence, the left-hand side provides an entire analytic continuation of the
right-hand side.
Proof. Fix s € C. Then (2.4) and (2.7) imply that

h(A) :=det({ — LL(s)),

is an entire function of order 0. For || sufficiently small, the power series of log(I — AL(s))
converges [8] so

n=1

det(I — AL(s)) = exp(trlog(I — AL(s))) = exp (— Z );1—" tr(E(s))”) . (2.10)

n=1

To analyse the traces, we go back to the first definition (1.2) of the transfer operator:

LEu@E = Y Lf )] uw).
fw)=z
The Schwartz kernel of L(s)" can be written in terms of the Bergman kernel for the D;s,
so the evaluation of the trace! gives

0 [ @17
T f-w% L=y @17

' To see how it works, consider the simple case where f is holomorphic in the unit disc, £(0) = 0, and | £ (z)| <z
for z # 0. By Cauchy’s formula, pullback by f is an integral operator on H2(D(0, 1)) with kernel 7~ (1 — f(z)7) 2
and trace 7~} ffD(()J)(l — f(@2)2dm(z) = (1 — f/(0))~". In our case f'(0) is always real and we obtain an
absolute value as we move between different discs when f7(0) < 0.
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Returning to (2.10), we obtain for Re s sufficiently large,

3 [ @17

det(I — AL(s)) =exp | — — P TS w—
; no e Ty T

nl(z)=¢

Setting A = 1 and employing (1.4) proves the proposition. |

Note that the proof did not use any of the properties of the open sets D; other than the
ones given in (2.1).

3. Estimates in terms of the dimension of J

For the proof of the theorem 1, we will choose the D;s in the definition of L(s) to depend on
the size of s. Let h = 1/]s|. The self-similar structure of J suggests that D; = D;(h) should
be a union of O(h~?%) disjoint discs with radii » ~ h, separated from J by d@Dj,J) ~ h.
The argument used in the proof of proposition 1 will then give (1.6).

We begin with the following proposition.

Proposition 3. Ler J C R be the Julia set for (1.1). Then there exist constants &y and
K = K(c) such that for § < &y, the connected components of J + [—38, 8] have length at
most K 8.

Proof. The discussion of ‘cookie-cutter sets’ in [6] and in particular [6, corollary 4.4] show
that J is a quasi-self-similar set. More precisely, there exist ¢ > 0 and ry > 0 such that for
any xo € J and r < ry there exists amap g : [xo — r, xo + r] — R with the properties

g Nlxo—r,xo+r]) CJ,

_ 1 3.1
cr 1|x —yI<lgx)—gy) <c e 1|x -y, X,y € [xo—r,xo+r].

Hence, the proposition follows by a scaling argument. We remark that (3.1) also follows from
the Koebe distortion lemma [3, theorem 1.5]. O

Proof of theorem 1. As outlined in the beginning of the section, we put 2 = 1/|s|, where
[Im s| is large but |Re s| is uniformly bounded. We decompose the Julia set J into disjoint
subsets:

P;(h)
Lithy == J N D;+[=h.hl) = | JIx] —r). x]+7]], x!

VY | j J
prl — Tppt > X T,

p=1
so that the intervals [x é —r Z;, X 1’; +r ;;] contain the connected components of /; (h). Proposition 3

shows that r,]; < Khash — 0.
The open set D(h) is defined as

2 Py
D(h) = D), D) = Djp(h). Djy(h) = (x) — rl x] +rl) +i(—h, h)
j=1 p=1
and since g; : J N D? - JN D? we see that the condition (2.1) holds: for each D, there
exists a p’ = p(i, j, p) for which

d(dD;p (h), gi(Djp(h))) > (1 = B)h

for a fixed constant 0 < 8 < 1. From this we also see that P;(h) = P(h) is independent
of j=1,2.
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Itis a classic result that the Hausdorff measure of the Julia set is finite (see for instance [17]
and the references given there) and hence P (h) = O(h™?%).

We can now apply the same procedure as in the proof of proposition 1. What we have
gained is a bound on the weight: since |Re s| < C and g/ is real on the real axis

I[g; ()] < Cexp(ls]arg g;(z)]) < Cexp(Cils|[Imz|) < Cy, z € Dj(h).

We write £(s) as a sum of four operators £;; (s) each of which is a direct sum of P (h) operators.
The rectangles and the contracting properties of g;s are uniform after rescaling by 4 and hence
the singular values of each of these operators satisfy the bound ; < Cy', 0 < y < 1.
Using (2.7) and (2.9) we obtain the bound

log [det(I — L(s))| < CP(h) = O(h™?)
and this is (1.6).

Proof of corollary 2. Proposition 2 shows that Z(s) is given by (1.4) for Re s large. Hence,
for Res > C; we have |Z(s)| > % The Jensen formula then shows that the left-hand side
of (1.8) is bounded by

Z{m(s) s —ir—C1| <G} <2 max log|Z(s)| + Cs
Is| <r+GC;
[Res| < Co

and (1.8) follows from (1.6).

4. Numerical evaluation of the zeta function

We have carried out an extensive set of numerical computations which suggest that the upper
bound proved above is optimal. We have developed a fast algorithm for numerical evaluation
of the zeta function, which we use for large-scale parallel computations of its zero pattern. The
evaluation algorithm is based on the following convenient analytical set-up. We have defined
L(s) as an operator on holomorphic functions defined on an open neighbourhood D of the
Julia set: in the analysis above we chose D = Dy U D, with D; = (—1)/ (/=& — ¢, &),
where &, = (1 + /1 — 4c¢)/2 is the largest fixed point of f.. The Ruelle operator (1.2) is then
given by (2.2). For numerical computations, we would like to choose another domain D to
speed up the numerical evaluation of the determinant Z(s) = det( — L(s)).
Assume p = |c| > 4. Then, a first approximation to J is the union D° of two intervals
j 1 1 1+(1+4p)l/?
Dj = (-1)! ((p—sﬂ/z—z,mz), =t

Since
&) =6, fEP -9 =—¢,

the set of fixed points of iterates of f is contained in D = D, \J D,. Moreover,
gi(D)) C D, g;(D)Ngj(Dy) = 0.

Thus, this construction can be iterated. Let
D; = gj0---0g;,_ (D),

where the multi-index i is defined by i = (iy, ..., i,) € {1, 2}". Then,

D" = U D;

iefl,2)"
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approximates the Julia set accurately for large n. Since the g;s are monotone, each D; is
mapped into another by each g;:

8i(Di) C Do,y 0ty oosin) = (J, i1, e vy ine1)-
When p is large,

1+ (1+4p)'/? i Lop'?
- 7 ~ +—+ ,
d 2 PrTaTTy
1 p71/2

ez 2 1
(p—8"~p > 3

On D" the derivatives of g;;s are approximately p~'/2/2. Thus, the sizes of the subintervals
D;s are controlled by

|D;| ~27"p~"/2, ief{l1,2)"

The dimension should satisfy the following approximate relation

(size of the interval) ~® ~ number of intervals
or
N 2log?2
" 2log2+logp’
which agrees with rigorous estimates [10, 17].

4.1. Determinant evaluation

An efficient evaluation scheme chooses D = D" where n is large enough such that

D] = Is|™", ie{l,2y
assuming that the intervals in the partition have roughly the same size 2" p~"/>. We expand
each D; into a disc centred at the middle a; of D;, and radius r; equal to half of the length
of D;. We denote the expanded discs also as D; for convenience. They can be computed in
practice by mapping interval endpoints with the g functions and sorting the resulting intervals.

The transfer operator
Les): P H D) — P H* Dy
iefl,2) ie{1,2)

then becomes a sparse 2" x 2" matrix of operators defined by

(¢} u(g;(2),  ue€H(Dy), m=oa;k),
0, otherwise.

(L)) u(z) = {

Numerically, we approximate / — £ by a block matrix / — L such as the ones shown in figure 2.
Each matrix block approximates one operator L£(s)i, by a small matrix Ly, which
represents the compression of L(s),, onto the first P + 1 elements of each orthonormal basis

{ pf,} and {,oqm} for H Z(Dk )and H 2(Dﬂ), respectively. Thus, the matrix block Ly, has elements
an = [ PHIE @1 02520
Die

where m = o;(k). (Note: it would probably be nice to add the formula for Z as the determinant
of I — PG* H.) This integral could perhaps be evaluated exactly, since only powers, logarithms
and roots occur. However, exact formulae are likely to be cumbersome and expensive to
evaluate, so we apply numerical integration techniques instead. The standard 21-point formula
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2 5
5 10
4 10
10 15 20
6
20
8 15 30
2 4 6 8 5 10 15 5 10 15 20 10 20 30
10
5 10 20
20
10 20 30 40
40
15 30 60
5 10 15 10 20 30 20 40 20 40 60

Figure 2. Block structure of matrix / — L corresponding to Ruelle transfer operator for
N = 2" =8, 16 (first and second rows) and P = 1,2, 3 and 4 (left to right columns).

no. 25.4.61 on p 892 of [2] is highly accurate, integrating up to tenth-degree polynomials
exactly over a disc; adaptive quadrature could be used if even higher accuracy is desired.
Once the block matrix L is computed, we evaluate the determinant Z(s) by LU-factorization
via standard LAPACK routines [1]. Efficiency is improved by careful precomputation and
tabulation of common subexpressions. It could perhaps be improved further by sparse block
QR decomposition as in [21], in view of the simple regular block structure evident in figure 2.

4.2. Derivatives

The zero-counting algorithm we describe below requires not only Z values, but also the values
of the logarithmic derivative Z'/Z = (log Z)'. Fortunately, these can easily be evaluated with
the same apparatus used for Z itself. Indeed,

(logdet(I — L(5)))' = —tr((I — L(5))™' L'(s))

so each block of the matrix L’ involved in the evaluation of Z’(s) has elements
bpy = / Py (2)(loglg} (2)DIg} ()] pi(z) dz.
Dy

The matrix inverse (I —£(s)) ! is applied with the same LU-factorization (or QR-factorization)
that we used to evaluate the determinant, at essentially no additional expense. Thus, the total
cost of one evaluation of Z and its logarithmic derivative is O(N*P3) where N = 2" is
the number of matrix blocks per dimension and P is the number of basis functions per disc.
Usually, we take n in the range 3—-6 and P in the range 1-4, so the largest determinants and
LU-factorizations we need to compute are about 2562,

We verified the accuracy of the algorithm by an extensive series of refinement and
comparison tests. For example, we computed the dimension § for ¢ = —5 with a succession
of increasingly accurate parameter choicesn = 3,...,7and P = 1, ..., 4. The MATLAB zero-
finding function Fzero with default tolerance 10~'* was used to compute the dimensions shown
in table 2. Since the exact value is 0.484 798294 438 16, our evaluation scheme computes
dimensions accurate to full double-precision accuracy with n = 6 and P = 3, by evaluating
the determinants of 192 x 192 matrices. A preliminary implementation in the MATLAB rapid
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Table 2. Dimension § of the Julia set J for ¢ = —5, computed with our evaluation scheme using

n levels of intervals and P basis functions per disc.

1 2 3 4
n=3 0.484783487213 89 0.48479099537140 0.484798292945 10 0.484798293 728 83
=4 0.48479741542081 0.484797 840 894 45 0.484798294 424 33 0.484798294 43523
=5 0.484798238 85691 0.484798266 173 32 0.484798294438 15 0.484798294438 15
=6 0.484 798290986 09 0.48479829267778 0.484798294 438 16 0.484798294438 16
7 0.484 798294223 08 0.484798294 328 51 0.484798294438 16 0.484798294438 16

prototyping language [16] obtained 14-digit accuracy withn = 6 and P = 31in 12.45 s, running
on one processor of a dual 1.8 GHz Xeon workstation running Red Hat Linux version 8 and
MATLAB version 12. Three-digit accuracy required less than 1s, but our prototype MATLAB
implementation was still far too slow for the large-scale zero-counting, which we report in
section 6. Thus, the algorithm was rewritten in FORTRAN 77 and run on the UC Berkeley
‘Millennium’ cluster containing about 250 Intel CPUs arranged in about 100 nodes.

This should be compared to the numerical results of [10] where a different method of
evaluating the zeta function was used. It follows the cycle expansion method based on
rigorous results of Ruelle [19], and numerical investigations by Cvitanovi¢ and co-workers [5].
Although the cycle expansion method has been used successfully for the computation of zeros
(see [13] for a recent application), we found that our method allows larger values of Im s
(see [9] for the use of the cycle expansion method following [10] in the context of Schottky
groups).

Cycle expansions require careful grouping of large summands to detect the cancellations,
which becomes increasingly difficult and unstable, because as the imaginary part of s increases;
the summands grow exponentially.

5. Zero-counting algorithm

We apply a zero-counting algorithm to our FORTRAN implementation of Z(s) to count the
number of zeros to the right of a line Re z = x between two horizontal lines Im z = sy and
Imz = s;. Since Z is holomorphic, the argument principle counts the number N of zeros
inside a closed curve I" by the integral formula

1 Z'(s)
27 Jr Z(s)

Numerical implementation of this formula turns out to be surprisingly tricky, because zeros
of Z induce poles of the integrand (figures 3 and 4 suggest how complicated and interesting
the pole structure of Z’/Z can be). Thus, numerical integration over I with resolution 4 will
work only if the zeros of Z lie at a distance O(h) or more from I'. Since the unknown zero
locations may cluster anywhere, our choice of I' must take Z values into account. Thus, we
have adopted the following zero-counting technique. First, we approximate only the integral
over the vertical interval I = [x +1sg, x +is1] as the two horizontal lines contribute very little
to the total. Next, we enclose the vertical interval V by zigzag contours I'y, and I'r, which give
approximate upper and lower bounds Ny > Ny for the number N of zeros (see figures 3 and 4).

Finally, we integrate the logarithmic derivative exactly over each segment of the contour.
Each zigzag contour is a polygonal line connecting a sequence of grid points z,, =
x + I,h +i(so + mh), where h = 0.025 is the half-width of the band enclosing I". The indices
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Figure 3. Surface and contours of |Z'/Z| with ¢ = —10, over the rectangle —3 < Res < 1,
1960 < Ims < 2000 and its central subrectangle —2 < Res < 0, 1970 < Ims < 1990. The
zigzag contours shown in black steer to the right as much as possible, to avoid zeros and minimize
the value of |Z'/Z].
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Figure 4. Surface and contours of |Z'/Z| with ¢ = —160, over the rectangle —3 < Res < 1,
1960 < Ims < 2000 and its central subrectangle —2 < Res < 0, 1970 < Ims < 1990.
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I, are chosen between —Q and Q inclusive (usually Q = 5 or so) to minimize the integrand:
1Z' ()| . |Z'(x + gh +i(so + mh)|
| Z(zm)] \q\<Q |Z(x + gh +i(sg + mh))|’

Integrating over this contour gives exactly

L[ 20, 1§ ‘1 Z @)
27 Jr, Zo % = o Z(zm)

N, =

m=1

forJ =U,L.

6. Numerical conclusions

We used the above algorithm to compute the density of zeros of the zeta function Z(s) for
many values of the parameter ¢ < —2. The numerical results strongly support conjecture 3
stated after corollary 2 in section 1. We stress that our computations are empirical, that is
we cannot prove the convergence rigorously—we only see convergence when the parameters
which improve accuracy increase. The upper bounds techniques of section 2 give estimates
guaranteeing convergence but they are numerically feasible for small values of [Im s| only:
the size of L and P required grows too fast.

The zero-counting algorithm presented in section 5 gives us upper and lower bounds for
the number of zeros, n(r, x) withRes > —x and 0 < |[Ims| < r:

np(r, x) < n(r, x) < ny(r, x).

As seen in figures 3 and 4 the density of zeros is large and the distribution too irregular to
obtain a completely accurate evaluation of n(r, x) when r large. The upper bound given in
corollary 2 is the same as

logny(r,x) < (1+48)logr + By(x)
and ideally we would like to have
log ny.(r,x) = (1 +6)logr + Br(x) x > xo(c). 6.1)

For a given ¢ we calculate n,(r, x) for r < R using parameters L, P suggested by the proof
of the upper bound, that is ones for which the behaviour of the transfer operator is nicely
controlled for Im s ~ R. That means that we require 2* ~ |Im s|?, and we take P = 1 or 2.
As explained in section 4.1 the increase of L is very costly and we use larger values of the
parameters only to test the accuracy of our results. The plots of logn,(r, x) against log r for
different values of x are shown on the left of figure 5.

To see if (6.1) has a chance of being true we use the least squares method to approximate
log n, as a function of log r:

ne(r,x) >~ A,(x)logr + By(x) r <R,

where ¢ = L, U corresponds to the upper and lower bounds, respectively. Although
ny(r, x) < ny(r, x) itmay happen that Ay (x) > Ay(x) due to the irregularities in distributions.
The lower bound (6.1) can be loosely reformulated as

AL(x) @ Ay(x) @ 1+6 X = Xg.

That this happens for c = —10 and ¢ = —100 is shown in on the right of figure 5

These results are typical for what we obtained for other values of ¢. Although for larger
|c|s we can use a lower L to reach higher values of Im s accurately, we observe a phenomenon
of ‘conservation of difficulty’. That is seen in the comparison between figures 5(a) and (b):
convergence to the dimension for ¢ = —160 requires Im s ten times as large as for ¢ = —10.
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c=-10
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-0.4178 <x<0.3822 0 <y < 20000
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c=-160 L=5 P=1

-0.58534 <x <0.21466 0 <y < 200000

log n(r,x)

T 1.4 T T
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Figure 5.

log(r)

Number of zeros n(r, x) versus log r and corresponding exponents 1 + 6. (a) c = —10,

L=6P=20<r<20000,0.3822 > x > —0.4178 in 17 steps of 0.05. (b) ¢ = —160,

L=5P=10<r<200000,0.58534 > x > —0.285 34 in nine steps of 0.1.



G Gl

16 J Strain and M Zworski

7. Open questions suggested by numerical data

The code we produced offers possibilities for future research. Two directions are suggested by
recent developments. Naud’s [15] adaptation of Dolgopyat’s method to this setting of Schottky
quotients and Julia sets shows that there exists a constant € = €(c) such that Z(s) is zero-free
for s in the strip §(c) — €(c) < Res < §(c). In this paper, we have not attempted to analyse €
as a function of ¢, though some dependence is apparent in the figures.

Another direction is suggested by [13], where it was pointed out that zeros are denser near
a particular value Re s related to the classical escape rate. We have seen such a concentration
of zeros in figures 3 and 4, but we have not computed the classical escape rate for comparison.
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