
Lawrence Berkeley National Laboratory
LBL Publications

Title
Incorporating machine learning with building network analysis to predict multi-building 
energy use

Permalink
https://escholarship.org/uc/item/3311s42x

Authors
Xu, Xiaodong
Wang, Wei
Hong, Tianzhen
et al.

Publication Date
2019-03-01

DOI
10.1016/j.enbuild.2019.01.002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3311s42x
https://escholarship.org/uc/item/3311s42x#author
https://escholarship.org
http://www.cdlib.org/


Incorporating machine learning with social network analysis to

predict multi-building energy use

Xiaodong Xu a,, Wei Wang b, c, Tianzhen Hong c, , Jiayu Chen b

a School of Architecture, Southeast University, 2 Sipailou, Nanjing, 
Jiangsu Province，China
b Department of Architecture and Civil Engineering, City University of

Hong Kong, Y6621, AC1, Tat Chee Ave, Kowloon, Hong Kong

c  Building Technology and Urban Systems Division, Lawrence Berkeley

National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Abstract

Predicting  energy  use  of  campuses  or  city  district  buildings  has

recently  gained more  attention  due to  dynamic  large-scale  building

energy demands. This  data enlightens public’s  awareness of  energy

use and informs building energy policy. Understanding the correlation

of energy use patterns between buildings is a key issue to analyzing

multi-building energy use. Moreover, how to apply this inter-building

relationship to multi-building energy prediction, using significantly less

amount of building energy data, is still an open question. To solve such

problems, this study proposed an interdisciplinary research method to

predict multi-building energy use by integrating a social network (SN)

analysis  with  an  Artificial  Neural  Network  (ANN)  technique.  The  SN

method  was  used  to  identify  reference  buildings  and  determine

correlations between reference buildings and non-reference buildings.

The  ANN technique  was  applied  to  learn  correlations  and  historical

building energy use,  and then used to predict  multi-building energy

use. To validate the SN-ANN method,  17 buildings in the Southeast
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University  campus,  located  in  Nanjing,  China,  were  studied.  These

buildings have three years of actual monthly electricity use data, and

were  grouped  into  four  types:  office,  educational,  laboratory,  and

residential.  The  results  showed  the  integrated  SN-ANN  method

achieved an accuracy of 90.28% for the predicted energy use for all

building groups. Finally, this study provides insights into advancing the

interdisciplinary research on multi-building energy use prediction.  

Keywords: 

Multi-building; energy use prediction; social network analysis; artificial

neural networks; machine learning

1. Introduction

Buildings are a main energy consumer, demanding more than 40%

of primary energy usage [1]; while in cities, buildings can consume up

to 75% of total primary energy usage [2]. In particular, electricity use

is a main driver.  The latest Electric  Power Monthly data reported in

January 2018 by United States Department of Energy (DOE) indicated

that  electricity  consumption  from  both  commercial  and  residential

buildings represented 77.5% of all the electricity produced in the U.S.

[3].  The International Energy Agency (IEA)’s Energy in Buildings and

Communities (EBC) Programme annexes discussed methods to analyze

total  energy  use  in  buildings  to  reduce  energy  use  and  associated

emissions [4,5]. The use of building energy modeling has significantly

improved building energy efficiency and reduced environmental impact

[6,7].  A  considerable  number  of  studies  have  been  conducted  to

develop efficient energy models for single buildings  [8–10]. In recent

years,  some researchers have recognized the importance of  energy

use  studies  in  large-scale  areas  with  distributed  building  groups  to

analyze distributed building energy use patterns and optimize net-zero



building  or  distribution  energy  systems  [11,12],  also,  for  city-scale

buildings through benchmarking building energy use and reducing city

building  emissions  [13,14].  Focus  on  analyzing  and modeling  urban

building energy use at the large scale can potentially provide insights

into large-scale building energy use patterns and opportunities to save

energy [15,16]. Li et al. analyzed 51 high-performance office buildings

in the U.S.,  Europe,  and Asia  using portfolio  analysis  and individual

detailed  case studies  based on actual  energy use data of  buildings

[17]. Pang et al. brought together real-time data sharing, a database

for  assessing  past  and  present  weather  data,  a  network  for

communicating energy-saving strategies between building owners, and

a set of modeling tools for real-time building energy simulation, all in

an  effort  to  promote  large-scale  energy  efficiency  in  neighboring

buildings [18]. Fonseca and Schlueter proposed one integrated model

for the characterization of spatiotemporal building energy consumption

patterns in neighborhoods and city districts. The model calculated the

power and temperature requirements for residential, commercial, and

industrial  sectors  using  spatial  (building  location  using  geographic

information system, GIS) and temporal (hourly) dimensions of analysis

[19]. To predict energy use of a large group of buildings, Panao and

Brito presented a bottom-up building stock energy model [20]. They

predicted hourly  electricity  consumption of  residential  buildings  and

validated  the  model  by  using  smart  meter  data  of  roughly  250

dwellings  [20].  Kalogirou  et  al.  utilized  the  electricity  data  of  225

buildings and applied back propagation of neural networks to predict

the  required  heating  load of  buildings  [21].  Constantine  used  data-

driven prediction models, including linear regression,  random forest,

and  support  vector  regression,  to  predict  city-scale  electricity  and

natural  gas  usage  in  New  York  City  buildings  [22].  The  project

encompassed 23,000 buildings, with model validation at the building

and ZIP code levels  [22]. Similarly, Hsu studied multi-family buildings



in New York City and used clusterwise regression and cluster validation

methods to determine building energy use  [23]. Jain et al. applied a

sensor-based  forecasting  approach  coupled  with  support  vector

regression modeling and examined the impact of temporal and spatial

granularity on to energy consumption of multi-family buildings [24]. 

In modeling large-scale building energy use, more researchers have

started to realize  the impact  and interrelationship  between building

groups. The concept of the Inter-Building Effect (IBE) was introduced to

understand  the  complex  mutual  impacts  within  spatially  proximal

buildings [25–27]. Han et al. explored mutual shading and reflection for

IBE on building energy performance with two realistic urban contexts in

Perugia, Italy [28]. Han and Taylor further simulated the IBE on energy

consumption by embedding phase change materials into the building

envelopes [29]. 

Innovative  software  or  web-based  applications  have  been

developed to analyze and predict energy use of multiple buildings in

distributed or urban areas. For example, the City Building Energy Saver

(CityBES),  an  Energyplus-based  web  application,  provides  a

visualization platform, focusing on energy modeling and analysis of a

city's  building  stock to  support  district  or  city-scale  building energy

efficiency  programs  [30–32],  as  well  as  to  predict  energy  use  for

informing building retrofits. Based on CityBES, Chen et al. analyzed the

impacts  of  building  geometry  modeling  on  urban  building  energy

models to understand how a group of buildings perform together [33].

City Energy Analyst (CEA) provides a computational framework for the

analysis and optimization of energy systems in neighborhoods and city

districts.  CEA has a unique interface to facilitate the spatiotemporal

analysis of energy patterns for energy savings [34]. Usually, with these

software or web-based applications every building modeled is explicitly



done in EnergyPlus-based detail.  While it can be accurate, it is time

consuming and requires absorbent amounts of data. 

To reduce the complexity of urban building energy models, some

studies advocate  reduce-order building models or building prototype

models. Felsmann  used  reduced  order  building  energy  system

modeling,  e.g.,  district  heating  or  cooling  systems,  to  create  large-

scale urban energy simulations  [35]. Heidarinejad et al. developed a

framework to rapidly create urban scale reduced-order building energy

models relying on the contributions of different influential variables to

the  internal,  external,  and  system  thermal  loads  [36].  Then  the

framework was validated by applying typical building geometries for

simulations  [36].  Zhao  et  al.  developed  a  reduced  order  building

energy model  to estimate single  building energy performance;  then

applied  regression  and  Markov  chain  Monte  Carlo  techniques  to

integrate  physics-based  energy  modeling  to  replicate  the  single

building model [37]. The resulting model was an efficient energy model

development at the city scale [37]. 

One method to reduce data demands includes the development and

replication of prototype building models. The U.S. DOE has developed a

suite  of  prototype building models  covering 80% of  the commercial

building stock in the U.S. to support the analysis of urban energy use.

This database include 16 commercial reference building types across

different climate zones [38, 39]. Similarly, Mastrucci et al. analyzed six

types  of  dwellings  by  using  a  GIS-based  statistical  downscaling

approach  and  adopted  a  multiple  linear  regression  model  for

estimating energy savings at the city scale  [40]. Caputo et al. used

four archetypes to characterize the energy performance of the built

environment in a city or neighborhood, and to evaluate the effects of

different  energy  strategies  [41].  Such  prototype  buildings  or

archetypes  extend  the  knowledge  beyond  individual  buildings  for



efficient energy models of neighborhoods or cities. Furthermore, city-

scale building energy benchmarking policy provides a holistic dataset

foundation and enables comparison of  energy performance between

similar  buildings  [14,  42,  43].  Holistic  building  energy  consumption

data can be used for defining reference buildings by investigating the

closeness of building groups, for which, cluster analysis is one of the

most efficient methods. Deb and Lee [44] studied the determining key

variables  influencing  energy  consumption  in  56  office  buildings

through cluster analysis. The clustering  approach focused on a small

number  of  representative,  reference buildings  from a large building

dataset [45, 46]. Gaitani et al. [47] applied several variables, including

the heated floor area, building age, insulation of the building envelope,

number  of  classrooms  and  students,  operation  hours,  and  age  of

heating  system,  using  principal  component  and  cluster  analysis

methods to establish the reference buildings. Tardioli et al. developed

a novel  framework  utilizing  a  combination  of  building  classification,

clustering,  and  predictive  modelling  to  identify  a  total  of  67

representative buildings out of a dataset of 13,614 mixed-use buildings

in the city of Geneva [48]. 

One  challenge  in  defining  reference  buildings,  from  a  stock  of

existing ones, is how to efficiently create groups. One technique, that

has received limited attention, is to use machine learning to integrate

multi-buildings  into  an  energy  use  prediction  model.  With  this

complexity  arise,  such  as  how  to  (1)  capture  the  impact  and

interrelationship  between multi-buildings best and (2)  use reference

building  energy  datasets  to  learn  and  predict  multi-building  energy

use. 

To address these prediction gaps, this study presents a novel data-

driven interdisciplinary method, integrating social network analysis and

artificial neural network (SN-ANN) techniques, to predict multi-building



energy use. Energy use patterns between buildings are leveraged to

identify reference buildings and create a building network. Built on the

network,  the SN-ANN model  aims to apply  energy use and building

features from a small reference group (e.g., n buildings) to accurately

and  efficiently  predict  energy  use  of  a  larger  group  (e.g.,  n  +  m

buildings).  This  is  done  by  investigating  the  network  between  the

reference n-buildings group and the non-reference m-buildings group.

To validate the technique, the proposed approach was evaluated using

campus  buildings  at  Southeast  University,  China.  Three-years  of

monthly  energy use data from 2015 to 2017,  was used. Seventeen

buildings  were  selected,  covering  four  use  types  namely:  office

buildings,  educational  buildings,  laboratory buildings,  and residential

buildings.

The main contribution of this work is in the unique interdisciplinary

method of combining SN and ANN to create the building relationships

and  network  with  building  energy  use  patterns.  This  technique

efficiently  learns the building feature and network for  multi-building

energy use, and provides a framework for analyzing building energy

use patterns in large-scaled areas. Moreover, the proposed algorithm is

validated  using  building  groups  with  actual  data  to  demonstrate

significant accuracy in the results. While energy prediction is critical,

the data-driven energy modeling also opens many other applications,

such as performance monitoring, control and optimization of building

groups,  distributed energy systems and micro-grids  implementation,

which need co-operations between buildings.

The  remaining  sections  are  outlined  as  follows.  In  Section  2,

provides  an  introduction  to  the  methodology,  including  the  data-

processing,  network  extraction,  and  network-based  artificial  neural

network algorithm. The case study and model configuration are given

in Section 3. Section 4 presents the results on energy use patterns,



network  between  buildings,  energy  use  prediction  results,  and

prediction  accuracy  assessments.  In  Section  5,  discussions  of  the

findings, implications and the future work beyond the existing results

are deliberated. Finally, Section 6 concludes this study.

2. Methodology

To establish the SN-ANN relationship, three main components were

first  conducted:  (1)  the  feature  selection  for  building  energy  use

prediction,  (2)  the  extraction  of  the  reference  buildings  and  the

building of the network between buildings, and (3) the integration of

the social network based artificial neural network algorithm.

2.1 Feature selection 

Before implementing the SN-ANN method,  pre-processing of  raw

data is necessary to eliminate erroneous or missing measurements in

the  energy  use  data.  In  this  study,  the  Lagrange  polynomials  for

interpolation filter is  applied due to its computational  efficiency and

causality which are important in time-series applications. If  we have

time-series  data  as( x1 , y1) , ( x2 , y2) ,…, ( xn ,yn),  we  can  formulate  the

interpolation for the default measurement as shown in Eq. 1.

y=∑
i=0

n

y i ∏
j=0 , j≠ i

n x−x j

xi−x j

 (1)

Where,  y is the interpolation value and  n is the size of the data

used for interpolation. 

After the dataset is filtered, the time series data of energy use data

for one building can be described in Eq. 2.

X=(x1 , x2 ,…, xt ,…, xn)
T

(2)

Where, 1, 2, …, n is the discrete time step.

For  feature-based  prediction,  the  feature  is  a  variable  which

contains the information relevant for object recognition. In forecasting



energy  use,  it  should  include  the  use,  trend,  and  the  determined

factors  of  building  energy.  Therefore,  we  considered  two  kinds  of

features,  the  value  and  the  change  of  energy  use  parameter.  The

change of a parameter was equated using Eq. 3.

∆ x=x t−xt−1 (3)

To better predict building energy use, some determined factors are

also  considered  in  this  study,  including  the  year-built,  construction

type, number of stories, building area, and roof type. 

2.2 Network extraction

Predicting  the  total  energy  use  or  the  demand  in  a  distributed

building group is difficult and complicated, especially at the city scale.

Moreover,  the  task  of  collecting  historical  energy  use  datasets  for

large-scale building groups is a big issue. One way to overcome these

complexities is to exact typical  building geometries and simulate or

estimate the total energy use using typical buildings. However, such

methods ignore actual energy use patterns which are influenced not

only by building geometries, but also occupancy, operation mode, and

so on… 

This study uses the social network (SN) analysis method to extract

and enhance connections  between buildings  through  their  historical

energy  use  patterns.  SN  analysis  is  the  process  of  investigating

connections  between networked nodes (individual  actors,  people,  or

things) through the use of networks and graph theory. In an effort to

reduce the number of buildings used, we established connections and

relationships between buildings in a building group. From this the total

energy use of distributed buildings with part of the total building set is

inferred.  To  build  the  connections  of  individual  buildings  using  SN

analysis, two main approaches are used: (1) distance (e.g., Euclidean

distance), which is usually used to calculate the difference between



two objects, and (2) correlation (e.g., Pearson correlation coefficient),

which is usually used to find the similarity between the two objects. In

this  study,  we  use  the  Pearson  correlation  coefficient  method  to

calculate the connections between buildings shown in Eq. 4.

cEUi ,EU j
=

E (EUi EU j )−E (EU i )E (EU j)

√E (EUi
2 )−(E (EUi ))

2
−√E (EU j

2)−(E (EU j ))
2 (4)

Where, cbi ,b j
 is the correlation coefficient between building i and j.  EU i

and EU j are the energy use dataset of building i and j. 

Two steps are taken to extract the networks. The first step is to

identify the reference buildings by using Eq. 4. The reference buildings

are used to predict building energy use. The second step is to build

networks between reference building and non-reference buildings.

2.3 Social Network based Artificial Neural Network model (SN-

ANN model)

To predict the energy use of multi-buildings using a building subset,

this study proposed the Social Network based Artificial Neural Network

(SN-ANN) model shown in Fig.1. The ANN algorithm is used to solve

problems similar  to the human brain.  ANN consists  of  a network of

simple neuron elements connecting the output to the input with the

directed and weighted graph. The capabilities of the ANN algorithm fall

within the realm of regression analysis including time series prediction

and  modeling,  classification,  including  pattern  recognition  and

sequential  decision  making,  and so on.  Meanwhile,  since  this  study

considers multi-features in the prediction model, the ANN model is also

well fit to tackle the different scale of feature datasets.



Fig. 1 The construction of the SN-ANN model.

The SN- ANN algorithm has four  layers:  the feature layer,  input

layer,  hidden  layer,  and  the  output  layer.  In  the  feature  layer,  we

selected the building information property dataset and the SN dataset

to represent the compiled dataset composing the input vector for the

input layer of SN-ANN model.

Suppose that EU represents the energy use vector, ∆EU represents

the energy use difference vector, NS represents the number of building

story  vector,  YB represents  the  year-built  vector  for  buildings,  CT

represents  the  construction  type  vector,  and  C represents  the



correlation network vector between buildings, then, the input vector for

the input layer can be illustrated in Eq 5.  

X input=(x1 , x2 ,… ,x i ,…, xN)
T
=(EU ,∆ EU,NS ,YB,CT ,C )

T
(5)

Where, N is the size of input layers and n is the size of buildings.

EU = (e1 ,e2 ,… ,ei ,… ,en) (6)

∆EU = (∆e1 ,∆e2 ,… ,∆ei ,… ,∆en) (7)

NS = (ns1 ,ns2 ,… ,nsi ,…,nsn) (8)

YB = (yb1 , yb2 ,…, ybi ,…, ybn) (9)

CT = (ct1 ,ct2 ,…,ct i ,…,ctn) (10)

C = (c¿ ,c¿ ,…,c¿…,c¿ ,…,c¿) (11)

To eliminate the impact caused by different scales of the feature

dataset, we need to normalize the different feature vectors. The output

of the hidden layer, the output of the output layer, weights from the

hidden layer, and weights from the hidden layer to the output layer are

defined in Eq. 13, Eq. 14, Eq. 15, and Eq. 16, respectively.

X input=(x1 , x2 ,… ,x i ,…, xn)
T

(12)

Hhidden=(h1 ,h2 ,… ,h j ,… ,hm)
T

(13)

Y output=(y1 , y2 ,… , yk ,…, yl)
T

(14)

V=(v¿¿1 ,v2 ,…,v j ,…,vm)¿ (15)

W=(w¿¿1 ,w2 ,…,wk ,… ,w l)¿ (16)

Where, m and l are the length of the hidden layer and the output

layer, respectively. The  v j donates the weight vector of the  jth neural

cell of hidden layer and wk donates weight vector of the kth neural cell

of output the layer. The length of input  t layer is determined by the

number of elements of the input data while the length of the hidden

layer (m) is randomly selected. Four occupancy prediction objects are

used,  which  are  maximum,  average,  and  minimum  number  of



occupants and vacant. However, the ‘vacant’ status of occupancy is

defined  when  the  output  of  the  minimum  of  occupancy  is  zero.

Therefore, the length of output layer (l) which equals the number of

expected  output  elements  is  selected  as  3.  The  mathematic

information transfer between each layer can be expressed in Eq. 17

and Eq. 18. The activation function is shown in Eq. 19.

h j=f ¿ (17)

yk=f ¿ (18)

f ( x )=
1

1+e−x
(19)

The ground truth of energy, Eq. 20, assumes one output neuron,

with the squared error function shown in Eq. 21.

d=(d1 ,d2 ,… ,d k ,…,dl)
T

(20)

E=
1
2 ∑

k=1

l

(dk−yk)
2 (21)

The gradient descent approach computes the derivative of the

squared  error  function  and  iterates  through  different  weights  to

minimize the error shown in Eq. 22 and Eq. 23. This is discussed more

in Section 3.2.

∆v jk=η (∑
k=1

l

(dk−yk ) yk (1−yk )w jk )hi(1−hi)x i (22)

∆w ij=η (dk−yk)yk(1−yk)hi (23)

3. Case study

3.1 Description of the case study

A distributed  building  group  from Southeast  University  (SEU)  was

selected to validate the proposed multi-building energy consumption

prediction algorithm. The SEU is located in the center of Nanjing City,



Jiangsu  Province,  China.  The  SEU  has  a  total  area  of  3.9  km2 and

consists of 53 buildings on the main campus, including office buildings,

laboratories,  educational  buildings,  multiple-use buildings, residential

buildings, and other building types. A group of other buildings includes

some  auxiliary  service  buildings,  such  as  a  kindergarten,  an

elementary  school,  retail  stores,  canteen,  and so on.  The  multi-use

buildings usually consist of classrooms, research rooms, office rooms,

lab areas, etc. With only two multi-use buildings on the campus and

the pattern of their energy use hard to identify, the multi-use buildings

and  a  few  other  buildings  were  not  considered.  The  four  types  of

buildings  analyzed  include:  office,  educational,  laboratory,  and

residential. The dataset of the four building groups, provided by the

General  Affairs  Department of  SEU, includes energy use,  year built,

construction type, wall material, total building floor area, use type, and

the number of stories. Energy use data was collected monthly from

2015 to 2017. The buildings without complete three-year data were

excluded,  resulting  in:  six  office buildings  (O1-O6),  four  educational

buildings  (E1-E4),  four  laboratories  (L1-L4),  and  three  residential

buildings (R1-R3) being used for validation purposes (Fig. 2). Details of

each office, educational, laboratory and residential building groups are

presented in Tables 1, 2, 3, 4, respectively. 



Fig. 2 Diagram of the footprint and location of the building groups.

Table 1. Office building group

Building Type Year
Built

Construction
Type

No. of
story

Buildin
g Area Roof Type

Office Building 1 (O1) 1980
Reinforced
concrete
structure

16 16910 Flat roof

Office Building 2 (O2) 1927
Reinforced
concrete
structure

3 5072
Sloping

roof

Office Building 3 (O3) 1957 Brick-concrete
structure 4 3938 Sloping

roof

Office Building 4 (O4) 1922 Brick-concrete
structure 2 4500 Sloping

roof

Office Building 5 (O5 1990 Brick-concrete
structure 8 11748 Flat roof

Office Building 6 (O6) 1991
Reinforced
concrete
structure

4 7106 Flat roof

Table 2. Educational building group

Building Type
Year
Built

Construction
Type

No.
of

story

Buildin
g Area Roof Type

Education building 1
(E1) 1980 Brick-concrete

structure 3 3630 Sloping
roof

Education building 2
(E2) 1987 Brick-concrete

structure 6 5595 Flat roof



Education building 3
(E3)

1982 Brick-concrete
structure

6 7482 Flat roof

Education building 4
(E4)

1982 Brick-concrete
structure

3 2859 Flat roof

Table 3. Laboratory building group

Building Type
Year
Built

Construction
Type

No.
of

story

Buildin
g Area Roof Type

Laboratory 1 (L1) 1994 Brick-concrete
structure 4 2993 Flat roof

Laboratory 2 (L2) 1955
Reinforced
concrete
structure

6 10902 Flat roof

Laboratory 3 (L3) 1957
Reinforced
concrete
structure

1 949
Sloping

roof

Laboratory 4 (L4) 1957
Reinforced
concrete
structure

1 1421 Sloping
roof

Table 4. Residential building group

Building Type Year
Built

Construction
Type

No. of
story

Buildin
g Area

Roof Type

Residence building 1
(R1) 1980

Reinforced
concrete
structure

4 1313 Flat roof

Residence building 2
(R2) 1990

Reinforced
concrete
structure

16 12906 Flat roof

Residence building 3
(R3) 1980

Reinforced
concrete
structure

15 9980 Flat roof

3.2 Model configuration and assessment

To  eliminate  the  impact  of  different  scales  embedded  in  the

different building features, it was necessary to configure the inputs of

the SN-ANN model before model training. For the year-built  feature,

the age varied from 1922 to 1994 with a clear separation around 1960

to 1970. The model sets a binary value of 0 for buildings built before

year 1965, otherwise 1. Construction type also required two values.

The model sets the value of “reinforced concrete structure” as 0 and

the value of “brick-concrete structure” as 1. Similarly, the value of “flat

roof” and “sloping roof” was set as 0 and 1, respectively. The value of

the number of stories was normalized as in [0, 1], while the building



floor  area  was  used  to  calculate  the  building  energy  use  intensity.

Table 5 shows the details of different scales of feature data for model

input. Fig. 3 shows the learning process of the SN-ANN model. With the

EUI dataset, Eq. 4 was used to identify reference buildings. 

To dynamically update the network between buildings,  one time

window  with  length  ∆T  was  applied  in  the  model  to  calculate  the

correlations.  During  model  training,  the  initial  parameters  for  the

neural networks were defined randomly, including the weights and bias

of  each  neural  between each layer.  The  gradient  descent  rule  was

applied to learn and update the weights and bias shown in Eq. 22 and

23 until the errors between predicted values and actual values were

minimized. In validation, this study compared the predicted energy use

proposed  by  the  SN-ANN  and  ANN  models  with  actual  measured

energy use data. To assess the model performance, three indices were

used  to  compare  the  results  for  accuracy,  the  mean  absolute

percentage error (Eq. 24), the root mean squared error (Eq. 25) and

the Q-Q plot curve. 

(1) Mean  Absolute  Percentage  Error  (MAPE)  shows  the  mean

percentage error between the predicted occupant count and the

actual number of occupants.

MAPE (EUIp)=
1
N∑

i=1

N

|(EUIi
a−EUIi

p)/EUIi
a| (24)

(2) Root Mean Squared Error (RMSE) shows the magnitude of the

estimation error.

CV RMSE (EUIp ) :=
√∑

i=1

N

(EUIi
a
−EUIi

p
)
2
/N

∑
i=1

N

EUIi
a
/N

 (25)



Where, the  EUIa and  EUIp are the actual and predicted building EUI,

respectively. N is the sample size.

(3) Q-Q plot  curve  is  a graphical  plot  used to compare the true

positive  rate  and  the  false  positive  rate  as  the  criterion

changes.

Table 5. Details of the SN-ANN model input

Feature Source/Scope Description

Year Built Discrete, Binary

Construction Type
Reinforced concrete

structure, Brick-
concrete structure

Binary

No. of story [1, 16] Discrete, Normalization
Roof Type Flat roof, Sloping roof Binary

Building Area [1313, 16910] To calculate Energy Use
Intensity

Energy Use
Intensity

N.A. Normalization

Correlation Eq. 4 Normalization



Fig. 3 Overview of the learning process of the SN-ANN model

4. Results and assessment

4.1 Building Energy Use Intensity Results

The  energy  use  intensity  measurement  results  of  the  office,

educational,  laboratory,  and residential  buildings  are  shown in  Figs.

4(a-d), 5(a-d), 6(a-d), 7(a-d), respectively. For each building group, the

energy use intensity distribution in year 2015, 2016, 2017, and the

total building energy use intensity box plot are presented. 



  

Fig. 4 (a-d): EUIs of the office building group (a, b, c) and total building

energy use (d).

The  results  show  in  Figure  4(a-c)  that  the  three  biggest  energy

consumers are O1, O3, and O6 in 2015 and 2016, and O3, O5, and O6

during 2017. Figure 4(d) shows the combined total of the EUI of the

office building group.  The EUI  trends  show that  the office buildings

generally  consumed  more  energy  in  the  winter  (December  and

January),  and  summer  (July  and  August)  months,  due  to  typical

seasonal patterns. The results show the EUI of O1 varies from 2 to 22

kWh/m2, with an average of 6 kWh/m2 and a standard deviation of 4

kWh/m2.  The O2 and O4 buildings consumed less  energy and have

minimum EUIs of about 1 and 0.5 kWh/m2, respectively. The average

EUIs  for  O2  and  O4  buildings  is  about  2  kWh/m2 (for  both),  with

maximums of 4 and 4.7 kWh/m2  and a standard deviation of 0.8 and

1.2  kWh/m2,  respectively.  Observed  from Table  6,  O2  and  O4  have

smaller floor areas and are also older, than O1 and O3. O3 has the

biggest average EUI of 11 kWh/m2 and a minimum EUI of 7 kWh/m2.

For the entire office building group, the EUI varies from 3 to 12.5 kWh/

m2 with an average of 6 kWh/m2. 



Table 6. EUIs of the office building group (kWh/m2)

Min. Mean Std. Max.

O1 2.01 6.14 4.35 21.64

O2 1.05 2.13 0.83 3.97

O3 6.89 10.76 2.25 15.51

O4 0.46 2.00 1.21 4.66

O5 0.54 6.81 5.35 20.89

O6 4.51 8.01 2.88 14.50

O_total 2.86 6.15 2.29 12.46

Fig.  5(a-d)  and  Table  7  show  the  EUIs  and  the  combined  total

building energy use intensity box plot of the educational buildings. The

educational  buildings  are  relatively  new  and  smaller  (Table  2)

compared with the office buildings and the EUI results are reflective of

this fact. Additionally, the educational buildings empty during summer

(July and August) and winter (February) breaks. For E1, E2 and E4, the

EUI varies (minimum to maximum) from 1 to 3 kWh/m2, from 1 to 5

kWh/m2, from 1 to 3 kWh/m2, respectively. While E2, the biggest energy

consumer, varied from 4 to 14 kWh/m2. 

 

Fig. 5 (a-d): The EUIs of the educational building group (a, b, c) and

total building energy use (d).



Table 7. EUIs of the educational building group (kWh/m2)

  Min. Mean Std. Max.
E1 1.06 1.83 0.49 3.11
E2 3.63 7.84 2.54 14.34

E3 0.97 2.51 0.90 4.86
E4 0.79 1.58 0.45 3.22

E_total 1.89 3.77 1.13 6.85

Fig. 6(a-d) and Table 8 show the EUIs of the laboratory buildings

with no unclear trend. The average EUI for L4 is substantially less than

the EUIs of the other laboratory buildings. L4 varied from nearly zero

(0.04 kWh/m2) to 6 kWh/m2 and with an average of 1 kWh/m2. Although

L3 has a similar EUI maximum to minimum range as L4 (varying from

0.2 to 7.3 kWh/m2) the average EUI of L3 was 4.8, far higher than that

of L4. L2 consumes the largest amount of energy and has the largest

building area. Its EUI varies from 6.4 to 11.4 kWh/m2, with an average

of 8.5 kWh/m2. While for L1, its EUI ranged from 0.7 to 11 kWh/m2, with

an average of 3.6 kWh/m2. 



 

Fig. 6 (a-d): The EUIs of the laboratory building group (a, b, c) and total

building energy use (d).

Table 8. EUIs of the laboratory building group (kWh/m2)

Min. Mean Std. Max.

L1 0.72 3.58 3.11 10.87

L2 6.36 8.48 1.44 11.40

L3 0.16 4.75 1.53 7.27

L4 0.04 0.89 1.05 6.01

L_total 4.67 6.70 1.29 10.01

Fig 7(a-d) and Table 9 shows the EUIs of the residential buildings.

The EUI trend for the student residential buildings is very similar to the

educational  buildings,  as  they  are  utilizing  the  same  educational

schedule. During the summer and winter breaks, the occupancy and



operation  of  the  residential  buildings  decreases,  thus  the  building

energy use decreases accordingly. This study selected three adjacent

residential buildings which were built in the same year, with the same

construction wall and roof type. The R2 and R3 are high-rise buildings

with 16 and 15 stories, respectively. R2 has a floor area of 12,906 m2,

larger than R3. The EUIs of R2 vary from 0.2 to 17 kWh/m2 with an

average of 4 kWh/m2; while EUIs of R3 vary from 0.2 to 6 kWh/m2 with

an average of 2 kWh/m2. While for R1, its EUI is from 0.7 to 10 kWh/m2

with an average of 3.5 kWh/m2.

   

Fig. 7(a-d): The EUIs of the residential building group (a, b, c) and total

building energy use (d).

Table 9. EUIs of the residential building group (kWh/m2)

Min. Mean Std. Max.

R1 0.77 3.54 2.25 9.81

R2 0.16 3.82 4.03 17.24

R3 0.21 1.89 1.59 5.85

R_total 0.27 3.35 3.12 13.08



4.2 Network analysis and prediction accuracy

This  section  discusses  the  applications  of  the  social  network

analysis and the social network based machine learning technique, as

well  as  presents  the  multi-building  prediction  accuracy.  Fig.  8  (a-d)

shows  the  networks  between  the  buildings  in  each  group,  by

calculating  the  correlations  of  individual  building  EUI  with  the  total

building group EUI, in year 2015 to 2017. 

In  the  office  building  group,  buildings  O1,  O3,  and  O6  were

identified as the reference buildings (Fig. 8a). The correlations between

O1,  O3,  O6  and  the  total  building’s  EUI  are  0.7,  0.6,  and  0.7,

respectively. Building O1 shows the most relevant trend to the total

building EUI. Observed from the networks between the non-reference

buildings  and  the  reference  buildings,  it  is  found  that  most  non-

reference  buildings  do  not  have  much  relevancy  to  the  reference

buildings and their EUI trend correlations are generally less than 0.6

(except for O2 and O3 with a correlation of 0.7). This is especially true

for O1 and O5 as they shared a negative network correlation. 

For  the  educational  building  group  building  E4  is  the  only  non-

reference building (Fig. 8b). The building with the most relevant trend

to the total building’s EUI trend is building E2 with a high correlation of

0.98. The building E3 is also highly correlated to the total building’s EUI

trend with a correlation of 0.91. 

While considering the networks in the laboratory buildings, buildings

L1 and L2 are the reference buildings with correlations of  0.72 and

0.92, respectively (Fig. 8c). For the non-reference buildings, building L4

is negatively relevant to both buildings L1 and L2, showing opposite

EUI trends between L4 and L1, L2, respectively. Meanwhile building L3

shows a much lower relation of EUI trend to the reference buildings L1

and L2. 



In the residential buildings group, buildings R2 and R3 are identified

as the reference buildings with high correlations of 0.82 and 0.96 (Fig.

8d).  Building  R1  shows  a  positive  relationship  between  the  two

reference buildings, but with low correlations.

Fig. 8 (a-d): The social network analysis results of (a) office, (b)

educational, (c) laboratory and (d) residential buildings.

To compare the proposed SN-ANN model, two baseline results were

applied (Fig. 9). The first one compares the actual building EUI to the

predicated EUI using the SN-ANN model for a six-month period from

July  to  December.  The  second  compares  the  actual  EUI  with  the

predicted building EUI generated by applying the reference buildings in

the ANN model while ignoring networks between the buildings. In most



cases  the  actual  and  predicted  values  are  reasonable.  To  further

understand the prediction performance Q-Q plots were generated.  

Fig. 9 The building EUI prediction results for the office, educational,

laboratory and residential buildings.

The  Q-Q  plot  represents  the  quantiles  of  the  actual  data  set

compared  against  the  quantiles  of  the  predicted  data  set.  Fig.  10

presents an assessment of the results for the office and educational

buildings. The results from the office buildings Q-Q plot validate the

predicted SN-ANN model results with R2 of 1. Moreover, the SN-ANN

model performed better than using just the ANN model (R2 of 0.6309).

Additionally, the SN-ANN predicted results gravitate closer to the line Y

= X, which indicates the SN-ANN model can predict more accurately

the actual EUI.  However,  for the educational buildings,  although the

two models achieved good prediction performance (R2 of  0.9578 for

the SN-ANN model and R2 of 0.988 for the ANN model), the ANN model

predicted results far better when assessing the line Y = X. 



Fig. 10 The Q-Q plot for the office and educational buildings.

Fig.  11  presents  the  Q-Q  plot  results  for  the  laboratory  and

residential  buildings.  Observed  from  the  results,  the  ANN  model

achieved better predicted results in both building groups than the SN-

ANN model as indicated by the R2 values. However, compared with the

ANN model,  the SN-ANN model  has  more predicted building energy

results  falling  with  the  line  Y  =  X.  This  means  the  SN-ANN model

achieved more accurate prediction results. A numerical comparison of

the ANN and SN-ANN results are presented in Table 10 with MAPE and

RMSE calculations. Compared with the ground truth, the SN-ANN model

for the office building group showed greater than a 23% improvement

in prediction accuracy over the ANN model for both the MAPE (9.3%

SN-ANN, 33% ANN) and the RMSE (9.1% SN-ANN, 36% ANN). For the

educational  buildings,  it  shows  that  although  the  SN-ANN  model

achieved an acceptable accuracy, the ANN model can lead to a better



total building EUI without considering the networks between the non-

reference building E4 and the reference buildings E1, E2, and E3. This

might be because there are already two reference buildings (E1, E2)

that are highly related to the total building energy EUI. It is adequate

to predict the total building EUI with the reference buildings. While for

the laboratory buildings, we can find the SN-ANN model can have a

better  performance  with  the  MAPE  and  RMSE  of  8%  and  9%,

respectively, while the two assessment indices are both 12% for the

ANN model. In the residence buildings, the RMSE results show the SN-

ANN  model  doesn’t  improve  a  lot  on  the  robustness  of  the  total

building EUI prediction compared with the ANN model. However, the

SN-ANN can improve the accuracy of EUI prediction results from 27%

to 17% compared with the ANN model. Finally, the overall assessment

shows the SN-ANN model based prediction accuracy with MAPE is 11%

while  the  ANN model  based  accuracy  with  MAPE  is  19%.  Also,  the

robustness can be improved from 26% to 14% when comparing the

SN-ANN  with  the  ANN  model.  It  can  be  concluded  that  the  social

network analysis  can greatly improve the prediction performance of

the  ANN model  by  integrating  the  networks  between the  reference

buildings  with  the  total  building  energy  use  and  the  non-reference

buildings. 



Fig. 11 The Q-Q plot for laboratory and residential buildings.

Table 10 Comparison of the predicted results from the SN-ANN and

ANN models

SN-ANN model ANN model
MAPE RMSE MAPE RMSE

Office buildings 9.33% 9.12% 32.6% 36.1%
Education
buildings

9.21% 9.56% 3.6% 3.66%

Laboratory
buildings

7.66% 9.04% 12.1% 12.2%

Residence
buildings

16.68% 23.55% 27.46% 24.19%

Total 10.72% 14.52% 18.94% 26.06%

In the proposed SN-ANN model,  three networks  are vital  for  the

building group EUI prediction. They are: (1) the network between the

reference buildings’ EUI and the total buildings’ EUI, (2) the network

between each other of the individual reference buildings’ EUI, and (3)



the  network  between  the  reference  buildings’  EUI  and  the  non-

reference buildings’ EUI.  For office buildings, it shows in Fig. 9 that the

predicted building EUI results based on the SN-ANN and ANN models

are less than the actual building EUI. This may be attributed to two

important  reasons,  that  the  three  networks  are  weak  in  the  office

buildings group and the sum of reference buildings’ EUI is far less than

the total building’ EUI. However, the accuracy using the SN-ANN model

is improved substantially when compared with the ANN model, which

only used the reference buildings’ EUI to predict the total buildings’

EUI.  While  for  the  educational  buildings,  the  findings  are  on  the

contrary; the networks between each reference building’s EUI and the

total buildings’ EUI and the networks between reference buildings, are

both strong so that the accuracies based on the SN-ANN and the ANN

models are both significant with the latter being a little better.  This

indicates that the ANN model, using only the reference buildings’ EUI,

is good enough to predict the total building energy use. 

For laboratory buildings, the accuracy using the SN-ANN model is

also improved. Although the network between the reference buildings’

EUI and the total buildings’  EUI is strong, it shows that most of the

networks between the reference buildings’ EUI and the non-reference

buildings’  EUI  are negative.  This  phenomenon causes the predicted

results based on the SN-ANN model to be less than those based on the

ANN model. In the residential building group, the accuracy is improved

and networks between each other of reference buildings’ EUI, and the

reference buildings’ EUI and the total buildings’ EUI are both strong.

Considering  the  standard  deviation  of  each  building  group’s  EUI

pattern,  we found that the standard deviation of  the office building

group and the residential building group are relatively high. Applying

the SN-ANN model in those two groups can improve accuracy when

predicting the total building EUI.  



In conclusion, the findings indicate that the SN-ANN model is more

suitable and accurate for those buildings, in which the networks (or

correlations) between reference buildings’ EUI and the total buildings’

EUI  are  weak  and  standard  deviation  of  building  groups’  EUI  is

relatively high. While for other building groups, e.g., the educational

buildings, in which the three networks are strong, it might infer that

the ANN model will  be accurate enough to predict the total building

EUI. 

5. Discussion

This  study  presented  interdisciplinary  research  integrating  social

network analysis and an artificial neural network algorithm. First, we

applied  the  social  network  analysis  method  to  identify:  (1)  the

reference buildings, the building’s energy use that closely matched the

total  buildings  energy use (correlation  coefficient  >= 60%),  (2)  the

networks between the reference buildings, (3) the total building energy

use trend, and (4) the non-reference buildings. In the second step, we

integrated  machine  learning  techniques  with  the  social  networks  to

predict  the total building energy use. The final  validation step used

buildings from Southeast University that were divided into four building

types, including office, educational, laboratory and residential groups.

Noteably,  each  group  had  unique  operational  hours  resulting  in

different peak energy use. The results demonstrated the proposed SN-

ANN model predicted the multi-building EUI with satisfactory accuracy. 

For city planners and energy policymakers, understanding energy

use dynamics is critical to (1) knowing where and how energy is being

consumed across the morphologic and socioeconomic contours of the

city,  (2)  providing  situational  awareness  of  energy  use  to  better

allocate resources and target policy interventions, and (3) identifying

cost-efficient  savings  opportunities  across  the  city.  Campuses

consisting of a big group of buildings are an important component of a



city, and optimization of distribution energy systems in a campus can

help reduce energy use and GHG emissions in the city. In this light, the

SN-ANN model can provide insights into which buildings are the most

significant users and to predict the dynamic building EUI. The SN-ANN

model  provides  a  method  for  better  allocating  the  distribution  of

energy  resources.  This  study  provides  interdisciplinary  framework

outlining how to define reference buildings and apply them to predict

multi-building  energy.  Finally,  the  multi-building  energy  prediction

model can estimate the energy use, which is one key feature of the

grid-interactive efficient buildings [49].

This  study  has  some  limitations.  Firstly,  it  only  selected  the

Southeast  University  as  a  case  study  with  a  limited  number  of

buildings,  and  did  not  test  the  method  in  other  types  of  building

groups,  such  as  the  multi-use  buildings.  This  study  also  does  not

validate the performance of  the proposed SN-ANN model  to predict

non-campus  building  energy  use  at  the  city  scale.  Secondly,  when

applying  the  social  network  analysis  method,  three  networks  were

created and inputted into the SN-ANN model. However, this study did

not  investigate  if  all  the  networks  are  needed or  which  network  is

better  for  multi-building energy prediction.  Also,  the findings in  this

study  indicated  that  the  SN-ANN  model  is  more  suitable  for  those

building  groups  with  higher  standard  deviation  of  EUI  patterns.

Therefore,  more  effort  and  richer  building  datasets  are  needed  to

support  further  research.  Thirdly,  further  research  is  needed  to

determine whether the proposed SN-ANN model can be adopted for

energy prediction of larger building groups, e.g., city-scale buildings.

For this, the modeling to identify all the reference buildings at the city

scale  can be intensive and thus requiring cloud computing or  high-

performance computing to handle large-scale problems. 



6. Conclusions

This study proposed a multi-building energy use prediction model

by  integrating  social  network  analysis  (SN)  and  machine  learning

techniques. SN methods were used to identify the reference buildings

and establish correlations between the reference buildings and (1) the

total  building  energy use and (2)  non-reference buildings.  The next

step was to  integrate the network  into  the artificial  neural  network

(ANN)  method.  Important  building  property  information,  like  the

building  height,  number  of  stories,  year  built,  roof  type,  and

construction  type  were  considered  in  the  model.  To  validate  the

proposed AN-SNN method, this study selected the Southeast University

as  a  case  study,  with  four  building  groups  tested  including:  office,

educational,  laboratory,  and  residential  groups.  To  test  the

performance of the proposed SN-ANN model, we selected the ground

truth energy use data and the ANN-based predicted energy use as two

baselines. The results show the proposed SN-ANN and ANN models can

achieve  the  prediction  MAPE  accuracies  of  9.3%  and  32.6%,

respectively for office buildings; 9.2% and 3.6%, respectively for the

educational buildings; 7.7% and 12.1%, respectively for the laboratory

buildings;  and  16.7%  and  27.5%,  respectively  for  the  residential

buildings.  Considering  the  robustness  of  the  RMSE  results,  the

proposed  SN-ANN  and  ANN  models  can  achieve  the  prediction

accuracies  of  9.1% and 36.1%,  respectively  for  the office buildings;

9.6% and 3.6%, respectively for the educational buildings; 9.0% and

12.2%, respectively for the laboratory buildings; and 23.5% and 24.2%,

respectively for the residential buildings. Also, observed in the overall

results, the SN-ANN model can predict the multi-building energy use

with an accuracy of  MAPE and RMSE of about 10.72% and 14.52%,

respectively,  demonstrating that  the proposed model  can efficiently

and accurately  predict  the multi-building energy use.  Moreover,  the



findings indicate that the SN-ANN model is more suitable for buildings,

in which the networks between reference buildings’ EUI and the total

buildings’ EUI are weak and the standard deviation of building groups’

EUI  is  relatively  high.  While  for  other  building  groups,  in  which  the

three  networks  are  strong,  the  ANN  model  proved  to  be  accurate

enough to predict the total building EUI. The proposed interdisciplinary

SN-ANN model,  presented  in  this  study,  provides  a  new,  attractive

empirical approach to urban building energy use prediction. In future

work, we will apply and enhance the SN-ANN model to a larger group

of buildings in city districts or an entire city depending upon availability

of monthly energy use data. 
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