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Selective memory generalization by spatial patterning of protein
synthesis

Cian O’Donnell1 and Terrence J. Sejnowski1,2

1Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

2Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA.

Summary

Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo

protein expression can be restricted to specific neurons within a population, and to specific

dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein

regulation for learning are unknown. We used computational modeling to study this problem. We

found that spatially patterned protein synthesis can enable selective consolidation of some

memories but forgetting of others, even for simultaneous events that are represented by the same

neural population. Key factors regulating selectivity include the functional clustering of synapses

on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on

these findings we proposed a novel two-step model for selective memory generalization during

REM and slow-wave sleep. The pattern-matching framework we propose may be broadly

applicable to spatial protein signaling throughout cortex and hippocampus.

Introduction

The persistence of new memories beyond a few hours requires the synthesis of new proteins

at the time of learning (Davis and Squire, 1984). At the cellular level, consolidation of long-

term synaptic plasticity also requires de novo protein synthesis (Kelleher et al., 2004; Krug

et al., 1984). Although the molecular identities of these plasticity-related proteins (PRPs)

remain unclear, their expression is tightly regulated in both time and space. In the temporal

domain, a wave of protein synthesis occurs rapidly (within minutes) following the induction

of synaptic plasticity, and returns to baseline less than one hour later (Kelleher et al., 2004;

Otani et al., 1989). In the spatial domain, PRP expression is restricted at two distinct levels

of granularity: the neural level and the dendritic level. At the neural level, protein expression

following synaptic plasticity induction is specific to single cells within a given population

(Mackler et al., 1992), and PRPs are presumably not shared between neurons. At the

dendritic level, substantial evidence indicates that synaptic activity can drive PRP synthesis
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in the dendrites local to the activated synapses (Figure 1A) (Sutton and Schuman, 2006).

Once synthesized, the PRPs can remain localized within or near the particular dendritic

branch where they originated, on a spatial scale of ~100 μm (Govindarajan et al., 2011;

Wang et al., 2009).

What functional benefits does spatial and temporal PRP expression during learning provide

for the organism? In this study we address for the first time the potential functions of the

spatial regulation of PRP synthesis. In contrast, previous studies have focused almost

exclusively on the functions of temporally bounded PRP synthesis. One stream of research

has lead to the idea that time-restricted PRP expression could be used to gate which

memories persist and which are forgotten, resulting in the ‘synaptic tagging and capture’

theory (STC) (Redondo and Morris, 2011) (schematized in Figure 1B-E). According to the

STC model, there are two types of synaptic plasticity stimuli termed ‘weak’ and ‘strong’.

Weak stimuli trigger induction of long-term potentiation and activation of a molecular ‘tag’

at the activated synapses. However, if left unaided both the potentiation and the tag signal

decay back to baseline levels over a time period of 2–3 hrs. Hence, weak stimuli alone

trigger synaptic strength changes which are eventually forgotten. Strong stimuli, in contrast,

trigger induction of long-term potentiation, activation of the tag, and the de novo synthesis

of plasticity-related-proteins (PRPs) in cytosol near the synapse (Figure 1). These PRPs can

be captured by tagged synapses to stabilize synaptic strength changes, which can then persist

for long times (days–months). Hence, strong protein-synthesis-inducing events create a ~2

hour time window within which other nearby weak synaptic plasticity events can become

consolidated.

Analogous processes to synaptic tagging have been found at the whole animal level, termed

‘behavioral tagging’ (Moncada and Viola, 2007). Rats exposed to a novel environment for 5

minutes showed enhanced and persistent memory for a learning task in a different familiar

environment when tested 24 hours later. This novelty-induced enhancement in memory

persistence required both hippocampal protein-synthesis and dopamine receptor activation

(Moncada and Viola, 2007; Wang et al., 2010), similar to the STC process at the synaptic

level (O’Carroll and Morris, 2004; Wang et al., 2010). These mechanisms have been

postulated to underlie the ‘flashbulb memory’ effect in humans (Brown and Kulik, 1977),

where memories for unimportant everyday events persist if they occur nearby in time to a

behaviorally salient event, such as remembering our whereabouts when hearing of the 9/11

terrorist attacks.

These proposals, and several theoretical studies (Barrett et al., 2009; Clopath et al., 2008;

Päpper et al., 2011; Smolen et al., 2012), have suggested how STC could be used to select

memories according to their alignment in time. In contrast, the potential effects of spatial

restrictions of PRP expression at the dendritic and neural circuit levels remain unclear

(Govindarajan et al., 2006). We built a novel framework to study this problem.

We found that spatially patterned PRP synthesis comprises a powerful mechanism for the

selective consolidation of some memories over others, even for events that occur nearby in

time. The effectiveness of this mechanism depends on the specificity of synaptic wiring at

the dendritic level, and on the overlap of activity patterns at the neural circuit level. We
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applied this framework to quantitatively link existing experimental results from rodents at

the neural level to those at the behavioral level. Finally, we used the framework to develop a

new model for how STC might allow selective generalization of memories during sleep.

Results

Our general goal was to develop a quantitative framework that can predict the degree of

consolidation of a weak memory event as a function of its temporal and spatial overlap with

a strong protein-synthesis-inducing memory event. To do this we separately studied the

effects of spatial patterning of protein synthesis at the 1) dendritic and 2) neural circuit

levels, in turn.

Timing and spatial overlap of synaptic inputs at dendritic level determines the degree of
synaptic plasticity consolidation

What is the expected long-term synaptic change from a weak plasticity-inducing stimulus

onto a single neuron? We derived an expression for this quantity based on the following

simple model (Figure 2A). Consider a single postsynaptic neuron with three dendrites that is

innervated by two presynaptic neurons, labeled pre1 and pre2. Neuron pre1 synapses onto

the first dendrite of the postsynaptic neuron. This synapse is activated with a strong stimulus

which causes LTP and the synthesis of PRPs. For simplicity we assume that the PRPs are

restricted to first dendrite and do not reach the other two dendrites (Govindarajan et al.,

2011). Now consider the synapse from neuron pre2. If it is activated with a weak stimulus, it

will have access to the PRPs (hence becoming stabilized) only if it also targets the first

dendrite. What determines whether the synapse from neuron pre2 targets the same dendrite

as the synapse from neuron pre1? We propose that this process can be parameterized by a

quantity we term the dendritic correlation coefficient, cdend, which may vary in most cases

between 0 and 1. If synapses from neurons pre1 and pre2 always terminate onto the same

dendrites, then they are perfectly correlated with cdend = 1. If they select dendrites

independently, then they are uncorrelated with cdend = 0. In that situation, the probability p

that the two presynaptic neurons synapse onto the same dendrite is just equal to chance. In

our above example because the postsynaptic neuron has three dendrites, chance level is

simply 1/3. Intermediate levels of cdend bias the probability that the two neurons to synapse

onto the same dendrite without guaranteeing it. For example, in our three-dendrite example

if cdend = 1/2, then p = 2/3. In general, the probability that the neurons synapse onto the

same dendrite is , where d is the number of dendrites on the

postsynaptic neuron. Using this equation, and the assumption that the temporal window for

PRP capture can be described by an exponential function (Govindarajan et al., 2011), we can

write an equation for the mean long-term synaptic strength change for a synapse receiving a

weak stimulus:

(1)
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where α is a constant, Δt is the time interval between the strong and the weak stimuli, and τ
is the time constant of the tagging and PRP capture windows. In Figure 2B we plot the

consolidated synaptic strength change as a function of the time interval between the strong

and weak stimuli, for a range of different values of cdend, both as averaged over multiple

random simulations and as predicted by equation 1. When cdend is large (close to 1), then

consolidation is effective. However, when cdend is smaller (close to 0), consolidation is

much reduced. In this way, the degree of spatial correlation between strong and weakly

activated synapses can enable selective consolidation of plasticity at some weakly activated

synapses but not others (Figure 2B-C).

Importantly, the effectiveness of the dendritic correlation mechanism depends on the

number of dendrites available (Figure 2D). For example, if a neuron had only one dendrite,

then all synapses onto the neuron would have access to PRPs and there could be no selective

consolidation. In contrast, a greater numbers of dendrites allow for increased discrimination

between synaptic populations by reducing the baseline chance level that a weakly activated

synapse will randomly terminate onto the same dendrite as a strongly activated synapse.

Overlap between strong and weak patterns at neural circuit level determines degree of
consolidation of weak pattern

Above we considered plasticity at synapses onto a single neuron. However, neural

representations underlying cognitive processes are distributed over many neurons

simultaneously (Churchland and Sejnowski, 1994). We studied the implications of the STC

theory for distributed neuronal activity patterns by considering a simple model of a two-

layer feedforward neural network (Figure 3A). Although this model was generic, it could

potentially be applied to many different projections in the nervous system involved in

learning and memory. We defined an activity pattern as the subset of neurons in the

presynaptic and postsynaptic populations that were involved in encoding a specific memory.

Our aim was to calculate the mean consolidated synaptic strength change resulting from a

weak activity pattern as a function of its temporal and spatial overlap with a strong activity

pattern.

Neurons in the weak pattern can be split into two categories: those that are also part of the

strong pattern, and those that are not. We label these two types of neuron as ‘shared’ and

‘weak-only’ respectively. Consequently, the synapses in the weak pattern can be split into

four groups based on their pre and post-synaptic neuron types: 1) pre weak-only to post

weak-only, 2) pre shared to post weak-only, 3) pre weak-only to post shared and 4) pre

shared to post shared. Importantly, these four groups of synapse will experience different

degrees of consolidation of synaptic plasticity (Table 1). Synapses that terminate on weak-

only postsynaptic neurons (groups 1 and 2) will not have their changes consolidated,

because they will not have access to PRPs. Hence their expected synaptic plasticity change

is zero: ⟨Δw⟩1 = ⟨Δw⟩2 = 0. In contrast, synapses that arise from weak-only presynaptic

neurons but terminate on shared postsynaptic neurons (group 3) may be consolidated if the

dendrite they synapse onto has PRPs available. We assumed that a dendrite contains PRPs if

at least one synapse from the strong pattern terminates there. The probability of this

occurring, p(Nstrong ≥ 1), is a function of the dendritic correlation between presynaptic
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neurons, the number of neurons in the presynaptic population, and the presynaptic sparsity

of the strong pattern (see Experimental Procedures and Supplemental Figure 1). In sum, the

expected synaptic plasticity of a group 3 synapse is given by (see Experimental Procedures):

. The remaining set of synapses, those arising from shared pre-

and post-synaptic neurons (group 4), are guaranteed to have access to PRPs because they

were part of the strong activity pattern. However, their total expected synaptic plasticity

change will be determined by the interactions between the signals from the strong and weak

activity patterns, which are usually not additive (Abraham, 2008). For example, it may be

that LTP induced by the first pattern causes occlusion of LTP from the second pattern (Frey

et al., 1995). Because these interactions are complicated, incompletely understood, and

outside the scope of this study, we simply denote the expected consolidated change at these

synapses as an ‘overwriting’ term which can depend on the properties of the strong and

weak patterns and the time interval between them: ⟨Δw⟩4 = ⟨Δw⟩over.

The fraction of synapses in a weak pattern that fall into each of these four groups (r1, r2, r3,

r4) depends on the degree of overlap between the strong and weak patterns. The ratios

between the groups are

where qpre and qpost are the fraction of presynaptic and postsynaptic neurons in the weak

pattern that overlap with the strong pattern, respectively. We then calculated the total mean

consolidated synaptic strength change in a weak pattern by adding the weighted

contributions from the four groups of synapses (see Experimental Procedures):

(2)

This equation clarifies the distinct roles of presynaptic versus postsynaptic pattern overlap.

Increasing the postsynaptic overlap between patterns always increases the consolidated

synaptic strength change. In contrast, increasing the presynaptic overlap between patterns

decreases the impact of PRPs sharing between synapses, but increases the impact of

overwriting at shared synapses. Whether the net effect of increasing presynaptic overlap is

to increase or decrease the consolidated synaptic strength change depends on the relative

magnitudes of the PRP sharing term and the overwriting term. In summary, the degrees of

pre and postsynaptic overlap between strong and weak patterns are critical determinants of

the degree of consolidation of synaptic plasticity from a weak pattern.

Density of neural representations determines the effectiveness of protein sharing for weak
memory consolidation

What determines the degree of overlap between neural activity patterns in the brain? There

are several factors: the brain region involved, how dense or sparse its representations are,

and the functional relationship between the specific items that are being represented in pre

and post-synaptic populations. We first considered the simplest case where pre- and post-
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synaptic patterns are spatially random and uncorrelated. In this case the fractional overlap

between a weak and strong pattern, q, is simply equal to the sparsity of the strong pattern fs,

defined as the fraction of all neurons in the population that are part of the strong pattern.

Because q = fs, according to eq. 2 we should expect that the degree of sparsity of neuronal

representations will influence the degree of consolidation of a weak pattern. Dense activity

will lead to greater overlap between patterns. Although pattern sparsity in a brain region

may take any value between 0 and 1, for illustration in Figure 4 we plot the mean

consolidated synaptic strength change for two example sparsity levels which we label sparse

(fs = 0.1) and dense (fs = 0.5) from both theory (curves) and simulation (circle symbols).

There are four types of presynaptic to postsynaptic projection in this scenario: sparse-to-

sparse, sparse-to-dense, dense-to-sparse, and dense-to-dense. The four different types of

projection showed substantially different dependencies of synaptic consolidation on

dendritic protein translation. In a sparse-to-sparse projection (Figure 4A), there is little

overlap between weak and strong pattern both pre and post-synaptically. Few synapses are

shared between patterns, implying little contribution from overwriting. Although varying

dendritic correlation cdend does have a moderate impact, its effect is limited because few

neurons are shared postsynaptically. As a result, memory consolidation here is selective but

weak. In a sparse-to-dense projection (Figure 4B), few neurons are shared presynaptically

but many are shared postsynaptically. This scenario minimizes the contribution of

overwriting, and maximizes the contribution of dendritic protein sharing. As a result, in this

situation regulation of cdend constitutes a powerful mechanism for strong and selective

memory consolidation. In a dense-to-sparse projection (Figure 4C) many neurons are shared

presynaptically but few neurons are shared postsynaptically. This scenario is the least

optimal for the utilization of dendritic protein sharing because few synapses in the weak

pattern will have access to PRPs, and most of those that do will also be part of the strong

pattern. In this case, memory consolidation is weak and not selective. Finally, in a dense-to-

dense projection (Figure 4D), many neurons overlap both pre and postsynaptically. In this

situation, many synapses are shared between strong and weak patterns, so the contribution of

overwriting is large, and varying cdend has relatively little impact. In this scenario,

consolidation may be strong but not selective across memories.

These results show that the density of neural representations is a strong determinant of the

effectiveness of dendritic protein sharing for selective memory consolidation. These results

may prove helpful in predicting the prevalence of dendritic protein sharing from brain region

to brain region. An important caveat is that these conclusions are based on the assumption

that strong and weak patterns are spatially uncorrelated. We next explored scenarios with

more structured activity patterns.

STC is of limited effectiveness when pre and postsynaptic populations code for the same
stimuli

How does the effectiveness of the STC mechanism depend on the structure of the neural

representation? To begin to address this question we considered a two-layer feedforward

neural network where neurons in both the pre- and post-synaptic populations were arranged

according to their preferred value of a 1-dimensional circular stimulus (Figure 5A). This
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coding scheme is common in many brain regions, for example the orientation tuning of

neurons in early mammalian visual cortex, or the place field tuning of a rodent’s location on

a linear track by hippocampal neurons. We assumed that presynaptic neurons which

preferred similar stimuli were more likely to synapse onto the same postsynaptic dendrites

than neurons which preferred different stimuli (Figure 5C). A strong pattern presented to the

network causes PRP translation in only the innervated dendrites of the activated

postsynaptic neurons. If a weak pattern is also presented to the network, its expected

consolidation can be given in terms of four key parameters (see Experimental Procedures):

the distance between the strong and weak stimuli values Δθ, the width of the pre- and post-

synaptic tuning curves rpre and rpost, and the width of dendritic spatial correlation window

between presynaptic neurons . We highlight three main conclusions: 1) Consolidation of

weak patterns through STC can only occur for stimuli within the range of the width of the

postsynaptic tuning curve (0 < Δθ < rpost). 2) Dendritic restriction of PRPs will only have an

additional effect if the dendritic spatial correlation window also changes within this stimulus

range: λ < rpost. 3) Increasing the width of the presynaptic tuning curve decreases the

consolidation of weak patterns for all stimulus values. Some example scenarios are plotted

in Figure 5D-F. If presynaptic tuning curves are narrow but postsynaptic tuning curves are

wide (Figure 5D), substantial consolidation of a weak pattern can occur through STC.

Dendrite-specific synaptic wiring schemes can also have a substantial impact (compare

dashed and solid curves). In contrast, if presynaptic tuning curves are wide while

postsynaptic tuning curves are narrow (Figure 5F), very little weak pattern consolidation

occurs through STC and dendrite-specific synaptic wiring has little impact. If pre and post

tuning curves are the same width, then moderate consolidation occurs (Figure 5E). These

results imply that although STC can potentially act a mechanism for pattern consolidation in

circuits where representations vary smoothly with a stimulus feature, very specific coding

conditions must be met for this to occur.

STC can cause memory linking in the CA3-CA1 pathway

To explore the possible function of STC for a second biologically relevant coding scheme

we modeled the rodent hippocampal CA3-to-CA1 Schaffer collateral pathway (Figure 6A).

These subfields are key components of the hippocampal circuit, important for normal

memory function (Nakashiba et al., 2008), and their synaptic connection is the locus at

which STC has been best studied (Alarcon et al., 2006; Frey and Morris, 1997; Sajikumar

and Frey, 2004). We retained a two-layer feedforward network as before, but instead of a 1-

D variable, let activity patterns in CA3 and CA1 represent the entirety of a rodent’s spatial

environment. We attempted to replicate previous experiments (Leutgeb et al., 2005; 2004;

Vazdarjanova and Guzowski, 2004), where an animal was allowed to explore three different

environments: a reference environment A, a similar environment A’, and a substantially

different environment B. The degree of overlap between the sets of neurons that get

activated in these three types of environment differs qualitatively between CA3 and CA1

(Leutgeb et al., 2004; 2005; Vazdarjanova and Guzowski, 2004) (Figure 6B-E). CA3 is

believed to perform a ‘pattern completion’ operation for similar environments, so that the set

of neurons that are active when the rodent is in environment A is highly overlapping with the

set of neurons active when the animal is either replaced in A, or allowed to explore A’

(Figure 6B,D,E). However, for sufficiently distinct environments, CA3 performs ‘pattern
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separation’, so that the set of neurons active in A is found to be statistically independent of

those active in B (Figure 6B,C,E). In contrast, CA1 shows a much more graded shift in

patterns between environments, so that A and A’ representations share a large number of

neurons (but less so than CA3), and A and B representations are found to show an above-

chance overlap in their active neuron sets (Figure 6B-E).

Given these data, we aimed to calculate the mean long-term synaptic strength change from a

‘weak’ event in either A, A’ or B relative to a preceding ‘strong’ event in environment A.

Inserting the experimentally derived pre- and post-synaptic overlap fractions (Vazdarjanova

and Guzowski, 2004) into eq. 2, we plotted the expected synaptic strength change for each

spatial context in Figure 6F. We found that the expected weight change for a weak event in

environment A was greater than that for a weak event in environment A’, while both were

greater than that for a weak event in environment B. We also considered the effect of

varying the degree of dendritic correlation between weak and strong patterns, cdend, and

found that, as expected, decreasing cdend always causes a decrease in memory strength

(Figure 6F-H). However, the relative decrease in memory strength as cdend varied from 1 to

0 in environment A was relatively minor (~16%) while the decrease in memory strength for

environment B was almost complete (~84%) (Figure 6H). A’ was intermediate to these

extremes. Although predicting error bars on these estimates would be possible in principle, it

would require additional assumptions for both a specific neuronal noise model and a model

for the experimental measurement errors. Because little data are available at present to

constrain either of these sources of variability, we instead limit our predictions to the mean

outcome only. All of the above effects were due to the different degrees of pre (CA3) and

post (CA1) synaptic overlap for A/A, A/A’ and A/B. The high pre and post overlap for A/A

implies a large number of shared synapses between the representations with relatively little

role for PRP sharing between synapses. In contrast, A/B representations have almost zero

pre-synaptic overlap but substantial postsynaptic overlap. This scenario is optimal for

selective consolidation via STC. In summary, we found that STC is of limited use for cross-

consolidation of hippocampal memories for events occurring within the same environment,

but can act as a powerful mechanism for selective consolidation of hippocampal memories

for events occurring in distinct environments, as observed experimentally (Ballarini et al.,

2009; Moncada and Viola, 2007; Wang et al., 2010).

A two-step model for generalization of memories during sleep

The above findings show how spatial protein synthesis allows for selective memory

consolidation. We next applied this same framework to a different open biological problem:

how memories become generalized during sleep. Although these might appear to be

unrelated problems, we show how they may be linked at the molecular level. A growing

body of evidence supports the idea that human memories become reorganized during sleep

(Lewis and Durrant, 2011; Rasch and Born, 2013; Stickgold and Walker, 2013). Two main

effects have been observed: first, some memories are consolidated while others are

forgotten. Second, the memories that are chosen for consolidation can also be generalized.

Often this generalization takes the form of ‘gist extraction’ or abstraction from a small set of

experiences to generate broader knowledge about the world (Lewis and Durrant, 2011;

Stickgold and Walker, 2013; Wagner et al., 2004). For example, if a person were bitten by
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their neighbor’s dog, then they might generalize this information to alter their beliefs about

the likelihood of getting bitten by all dogs. Importantly, this generalization process is found

to be selective for items similar to the consolidated memory. The memory enhancement is

not seen for items that are substantially different from the experienced items (Payne et al.,

2009). To return to the biting dog example, the person should not over-generalize their new

knowledge to their beliefs about cats.

At the neural level, the process of selective memory consolidation is believed to involve

hippocampal-cortical interactions during slow-wave sleep (Rasch and Born, 2013; Stickgold

and Walker, 2013). In contrast, little is known about how memories can become generalized

during sleep. Using a simple neural network model, we explored the possibility that STC

could enable selective memory generalization during sleep.

The novel generalization mechanism we propose occurs in two steps, corresponding to SWS

and REM sleep respectively (Figure 7A). We considered a two-layer feedforward neural

network representing the projection from one population of cortical neurons to another.

During the SWS step a subset of neurons in the presynaptic population are activated by an

external hippocampal ‘sharp-wave ripple’ input (Buzsáki, 1996; Wierzynski et al., 2009).

This presynaptic pattern in turn activates a subset of the neurons in the postsynaptic

population, causes potentiation at the activated synapses, heterosynaptic depression at the

non-activated synapses, and the synthesis of PRPs in the activated postsynaptic neurons. We

label this activity pattern ‘strong’. During the following REM step, multiple ‘weak’ activity

patterns are sequentially activated in the presynaptic population that propagate to the

postsynaptic population. These patterns correspond to cortically-generated REM sleep

activity patterns, as observed experimentally in both rodents (Ribeiro et al., 2004) and

humans (Maquet et al., 2000). In the model, these patterns cause potentiation at their

activated synapses. Crucially, this potentiation is consolidated only for the synapses onto

postsynaptic neurons that have PRPs available from the earlier strong pattern. Together, we

found that this two-step process was sufficient to achieve selective generalization of learned

memories. In the following paragraphs we elaborate on the details of our results.

In the network model we studied, each neuron in the presynaptic population was connected

to a random subset of neurons in the postsynaptic population with a low probability (see

Experimental Procedures). Initially all synapses were of uniform strength. As previously

found (O’Reilly and McClelland, 1994), this network configuration caused all sparse input

activity patterns to undergo pattern separation: any overlap between two patterns in the

presynaptic layer was reduced at the postsynaptic layer (Figure 7B). However, synaptic

plasticity from the strong activity pattern changed this input-output mapping. Homosynaptic

potentiation increased the probability that the targeted postsynaptic neurons were also

activated for input patterns similar to the strong pattern (the region where magenta curve is

above the black curve in Figure 7B). This corresponds to pattern completion. The

heterosynaptic depression also played an important complementary role by decreasing the

probability that the targeted postsynaptic neurons were activated for patterns dissimilar to

the strong pattern (the region where the magenta curve is below the black curve in Figure

7B). This corresponds to pattern separation (O’Reilly and McClelland, 1994). This dual

pattern-separation/pattern-completion property proved to be critical for selective
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generalization. In Figure 7C we plot the mean strength of the synapses activated by a

hypothetical pattern as a function of its overlap with the strong pattern (magenta curve and

circles). As expected, the mean synaptic strength decreased with decreasing overlap with the

strong pattern, because fewer synapses were shared with the strong pattern. Then, during the

REM step, weak patterns were activated sequentially in random order, causing potentiation

at their synapses. However this potentiation was consolidated only if the synapse had access

to PRPs. After we ‘played’ several of these patterns, we replotted the mean synaptic strength

of each pattern as a function of its overlap with the strong pattern (Figure 7C, blue filled

circles). All patterns with high overlap (>0.5) with the strong pattern had an equally

potentiated mean synaptic strength, while patterns with a low overlap (near the chance level

of 0.1) had a mean synaptic strength close to the initial value. Hence, synaptic changes were

consolidated only if they came from weak patterns that were similar to the strong pattern.

Under the assumption that patterns with high overlap represent items or events that are

similar to each other in the external world, this mechanism offers a novel neural explanation

for selective generalization of memories in the brain during sleep.

To further explore how this mechanism worked, we categorized the synapses in a weak

pattern according to the same scheme as before. In Figure 7D-E we plot the fraction of

synapses in a weak pattern in groups 3 and 4 (see above) as a function of its overlap with the

strong pattern, as calculated both analytically and from simulation results. In the initial state

(Figure 7D), the fraction of synapses in group 4 (shared pre to shared post) decreased

rapidly with decreasing pattern overlap, while the fraction of synapses in group 3 (weak-

only pre to shared post) was only weakly dependent on overlap. Because STC can only act

to consolidate synapses in group 3, in this initial state the network could not guarantee

selective consolidation for patterns in any particular overlap range. However, following

plasticity from the strong pattern the fraction of synapses in group 3 depended greatly on

pattern overlap (Figure 7E). It was minimal for patterns of either high or low overlap, and

maximal for patterns of intermediate overlap. This shift allowed weak patterns with

intermediate overlap to be selectively consolidated through STC.

Further study of the model uncovered three additional findings (data not shown). First, the

number of presented weak activity patterns needed to be limited to avoid over-

generalization. The maximum number of possible patterns before over-generalization

occurred depended on network parameters, the synaptic plasticity rule, and the statistics of

the activity patterns. Second, the degree of synaptic plasticity from the strong pattern

determined the extent of generalization for subsequent weak patterns. Stronger plasticity

leads to broader generalization (O’Reilly and McClelland, 1994). Third, weak patterns that

had an overlap with the strong pattern sufficient for substantial consolidation were

extremely unlikely to arise by chance alone. Instead, the input set needed to be biased

towards these patterns.

Discussion

We have introduced a novel quantitative framework for linking protein synthesis, neural

circuit wiring, and activity pattern properties to selective memory consolidation. Previous

research had suggested how STC could facilitate selective memory storage according to

O’Donnell and Sejnowski Page 10

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



events’ separation in time (Ballarini et al., 2009; Frey and Morris, 1997). Our results

quantify the additional benefits of spatial patterning of neural protein synthesis (Alarcon et

al., 2006; Govindarajan et al., 2006; Sajikumar et al., 2007). Utilizing the spatial dimension

lets STC further select which memories to store based on their content, even if their causal

events in the outside world overlap in time.

We found that multiple key factors determine the selectivity of memory consolidation. The

first factor is the spatial arrangement of synapses on a neuron’s dendritic tree. If two

presynaptic neurons have a tendency to synapse onto the same dendrite (perhaps based on

their functional properties), then they can regulate each other through STC. On the other

hand, if two neurons synapse at random locations on the dendritic tree with respect to each

other, then it is unlikely that they will share the same dendrite and hence will have limited

ability to affect each other’s synaptic plasticity consolidation. The second factor is the

degree of overlap between neural activity patterns at the circuit level. Crucially, our results

stress the differing roles played by the overlap in the presynaptic and postsynaptic neural

populations (examples from the mammalian hippocampus might be CA3 and CA1,

respectively). A large overlap between strong and weak activity patterns in the postsynaptic

population always enhances the consolidation of the weak synaptic plasticity pattern,

because a large fraction of the synapses in the weak pattern will have access to PRPs. The

degree of presynaptic overlap performs a different function: it determines the relative impact

of protein sharing between synapses versus that of simply overwriting the same synapses

twice. Whether or not increasing presynaptic overlap increases the net consolidation of a

weak pattern will depend on the relative magnitudes of plasticity via these respective

mechanisms, which in general may vary from one scenario to another. The important

distinction is that both rely on fundamentally different processes at the molecular level and

so may be differentially controlled by the cell.

Are these mechanisms specific to particular brain circuits, or widespread throughout the

nervous system? STC has been experimentally demonstrated in rodent hippocampus in vitro

(reviewed by Barco et al., 2008; Reymann and Frey, 2007), and in vivo (Shires et al., 2012)

and invertebrate sensory neurons in vitro (Martin et al., 1997). The analogous behavioral

tagging process has been observed for hippocampal (Ballarini et al., 2009; Moncada and

Viola, 2007) and insular cortex (Ballarini et al., 2009; Merhav and Rosenblum, 2008)

dependent learning tasks in rodents. These data, along with the fact that protein synthesis

appears to be critical for multiple forms of persistent memory throughout the brain (Davis

and Squire, 1984; Hernandez and Abel, 2008) suggests that, in principle, the mechanisms we

propose could be prevalent across the nervous system.

Because PRP synthesis is triggered by electrical activity in neural circuits, any spatial

patterning in PRP expression must be inherited from spatial structure already present in the

electrical signals. At the circuit level it is clear that different neurons within the same

population can receive distinct, structured synaptic inputs, and respond with heterogeneous

gene expression (Mackler et al., 1992). However the degree of spatial structure in synaptic

inputs at the sub-neuron level is less clear. At a coarse scale, layered brain structures such as

the hippocampus and neocortex are wired such that the dendritic trees of larger cells (such as

pyramidal neurons) may collect inputs from multiple layers. In this case, different dendritic

O’Donnell and Sejnowski Page 11

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



regions on the same cell can receive synaptic input from distinct presynaptic populations.

Indeed, in certain conditions STC can obey layer-specificity in CA1 hippocampal pyramidal

neurons (Alarcon et al., 2006; Pavlowsky and Alarcon, 2012; Sajikumar et al., 2007).

Whether synaptic inputs from within a given layer are also structured is more controversial.

There is currently evidence both for and against this possibility depending on the examined

stimulus set and brain circuit (Chen et al., 2011; Jia et al., 2010; Kleindienst et al., 2011;

Makino and Malinow, 2011; Takahashi et al., 2012). Although in this study we explicitly

assumed that synaptic wiring is structured at the level of single dendrites, our findings will

still be applicable if neural activity in a given brain region is found to be patterned at only

the population or layer level.

The information stored in memories may be useful for dealing with future situations

(Schacter et al., 2007). However, episodic memories are defined as those for specific events

that occurred in the past. Because it is unlikely that an event that occurred in an organism’s

past will reoccur in an identical fashion in the organism’s future, the information stored in

an episodic memory might be best utilized if it were combined with prior knowledge to

generalize the organism’s beliefs about a larger set of related events (Tenenbaum et al.,

2011).

We have proposed a new two-step model for this process of selective generalization during

sleep. This model may help unify several disparate pieces of data. First, sleep can enable

generalization of learned information (Cai et al., 2009; Ellenbogen et al., 2007; Pace-Schott

et al., 2009; Payne et al., 2009). Second, memory consolidation is found to be maximally

effective when both SWS and REM occur in succession (Gais et al., 2000; Mednick et al.,

2003; Stickgold et al., 2000). In the model we propose, proper function of the REM step

requires a preceding SWS step. Third, most REM dreams in humans are neither veridical

replays of previously experienced events nor completely unrelated, but somewhere

intermediate (Fosse et al., 2003; Wamsley et al., 2010). This intermediate degree of

similarity of REM activity patterns to the veridical activity patterns of the preceding SWS is

a fundamental feature of the model we suggest. Fourth, rodents are found to show co-

ordinated hippocampo-cortical ‘replay’ of previously experienced neural activity patterns

during SWS (Ribeiro et al., 2004; Siapas and Wilson, 1998; Wierzynski et al., 2009; Wilson

and McNaughton, 1994), while showing more weakly correlated, but still statistically

similar, hippocamus-independent cortical activity patterns during REM sleep (Ribeiro et al.,

2004; Wierzynski et al., 2009). Fifth, in rodents new episodic memories are detailed and

hippocampus dependent, but over subsequent weeks become both more generalized and less

hippocampus dependent (Wiltgen and Silva, 2007; Winocur et al., 2007). The dual

properties of extra-hippocampal transfer and content generalization are deeply linked in the

model we propose.

The framework we introduce makes several new and testable predictions. First, the degree of

both postsynaptic and, crucially, presynaptic overlap of neural activity patterns at the circuit

level will determine the magnitude of consolidation of a weak memory event. These

measurements can now be readily made either ex vivo or in vivo using neural activity

reporters such as immediate-early gene expression (Vazdarjanova et al., 2002) or fluorescent

calcium indicators (Dombeck et al., 2010), respectively. Second, due to the distinct
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computations performed by CA1 and CA3, our model predicts that hippocampus-dependent

behavioral tagging processes will most effectively work across events occurring in distinct

environments, but will only weakly influence interactions between different events in the

same environment (Fig 6). Third, our novel model for generalization during sleep assigns

specific roles to SWS and REM sleep phases (Fig 7). According to this model, blocking

protein synthesis during SWS alone will be sufficient to block both consolidation of the

initial memory and its generalization during the subsequent REM phase, while blocking

tagging processes (Redondo and Morris, 2011) during the REM phase should block memory

generalization while leaving the original memory intact.

In general, neuronal protein synthesis may constitute a powerful signal for encoding

information in the nervous system because it is complementary to electrical signaling in both

time and space. Electrical signals operate on fast timescales (ms to s) and relatively wide

spatial scales (single neurons to networks), whereas PRP synthesis and degradation operates

on slow timescales (minutes to hours) and small spatial scales (dendrites to single neurons).

Hence, patterned PRP synthesis could be used by the brain for linking or discriminating

behavioral events that would be difficult to achieve using electrical signaling alone.

Problems may arise if this process goes awry. Many neurodevelopmental disorders that are

associated with learning disabilities have been linked to altered neuronal protein translation

(Kelleher and Bear, 2008; Zoghbi and Bear, 2012). Indeed, recent experiments have shown

that hippocampal STC is altered in a mouse model of Fragile-X Syndrome, a common cause

of autism (Connor et al., 2011). The framework we propose may help link these deficits at

the cellular level to learning deficits at the cognitive level.

Experimental Procedures

All simulations and analysis were performed using MATLAB (Mathworks).

Generation of correlated synaptic locations on dendrites

The dendritic locations for each synapse throughout this study were generated using an

algorithm previously proposed for generating correlated spike trains (Macke et al., 2009).

This algorithm generates correlated binary variables with arbitrary specified means and

pairwise correlations by applying suitable thresholds to an underlying correlated

multivariate Gaussian. Correlated multivariate Gaussian samples are readily generated using

standard software packages like MATLAB (Mathworks), for example, because they contain

no higher-order correlations beyond pairwise. Our dendritic synapses had the additional

constraint that we required exactly one synapse from each presynaptic neuron onto each

postsynaptic neuron. We obeyed this constraint by posthoc rejection of any samples that did

not meet the requirement, and verified that this correction did not alter the resulting synaptic

correlations.

Expected strength change of a synapse that is ‘weak only’ presynaptically but ‘shared’
postsynaptically

A synapse from a weak pattern that is from a ‘weak only’ presynaptic neuron to a ‘shared’

postsynaptic neuron will have access to PRPs only if its dendrite receives synaptic input
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from at least one synapse in the strong pattern. We sought the probability that this occurs

p(Nstrong ≥ 1∣weak synapse), in terms of the following parameters: the number of neurons in

the presynaptic population Npre, the density of the strong presynaptic pattern fpre, the

number of dendrites per postsynaptic neuron d, and the dendritic correlation between the

neurons in the presynaptic population cdend (here assumed uniform). One way to find this

probability is to first calculate the probability distribution for the number of synapses per

dendrite P(Nsyn)(Supplemental Figure 1). If synaptic locations were uncorrelated (cdend = 0),

then synapse numbers would be distributed binomially. On the other hand, if all synapses

were perfectly correlated (cdend = 1), then all synapses would terminate onto the same single

dendrite, while all other dendrites on that neuron received no synapses. Varying cdend from

zero to one moves P(Nsyn) between these two extremes (Supplemental Figure 1). We solved

for this distribution numerically by simulating many realizations of synaptic wiring given

values for the parameters Npre, d, and cdend. Although for some very restricted synaptic

wiring models it would be possible to find a closed-form expression for the distribution

P(Nsyn) (e.g. Diniz et al., 2010), we chose to solve for it numerically because doing so

allows for arbitrary arrangements of pairwise dendritic correlations between all of the

presynaptic neurons. After evaluating P(Nsyn), we calculated the distribution for the fraction

of synapses f(i) that have a given number i synapses on their dendrite from

 which is the product of the probability of getting i synapses on a

dendrite, and that number of synapses i, and the number of dendrites d, all divided by the

total number of synapses Npre. Finally, the probability of at least one synapse from the

strong pattern terminating on the same dendrite as a given weak synapse, p(Nstrong ≥ 1∣weak

synapse), is derived using the hypergeometric distribution as follows. We start from the

vantage point of a weak synapse on a given dendrite. The hypergeometric distribution

describes the probability H(k) of drawing k “successes” from a population of size N which

contains K total “successes” when drawing n times without replacement. If we consider the

population size N as the total number of remaining synapses = Npre – 1, the total number of

“successes” K as the total number of strong synapses = Nprefpre, and the drawn number n as

the number of other synapses on the dendrite = i – 1, and k the eventual number of successes

as the number of strong synapses on that dendrite Nstrong. The total probability that at least

one synapse is strong is the sum of H(k) from k = 1 to k = Nprefpre, which is also equal to one

minus the probability that there are no strong synapses on that dendrite, H(k = 0). Finally,

this quantity must then be averaged over all possible values of i, the probabilities of which

are given by f(i). In summary, p(Nstrong ≥ 1∣weak synapse) = 

where H(k) is the hypergeometric distribution with parameters N = Npre – 1, K = Nprefpre and

n = i – 1. Although the hypergeometric distribution does not directly take into account the

correlation in synaptic locations, in this case its use is valid because the effect of correlations

has already been included in the earlier step of the calculation, when solving for P(Nsyn).

Network simulations

Most of our STC simulations (Figures 2, 4, 5 and 6) involved two-layer feedforward neural

networks with all-to-all pre to post-synaptic connectivity. The simulations consisted of two

main steps. First, we generated the set of postsynaptic dendritic locations of all synapses
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given the following parameters: the number of pre Npre and post-synaptic Npost neurons, the

number of dendrites per postsynaptic neuron d, and the dendritic correlation between each

pair of pre-synaptic neurons cdend. For Figures 2, 4 and 6, cdend was the same for all pairs of

neurons, but for Figure 5 the pairwise cdend values depended on the difference between the

preferred stimulus values of the given pair of neurons (Figure 5C). For the simulations

presented in Figure 2, Npre = 2, Npost = 1 and d = 10; Figure 4, Npre = 20, Npost = 100 and d

= 15; Figure 5 Npre = 100, Npost = 100 and d = 50; Figure 6, Npre = 20, Npost = 100 and d =

30. For the second step, we presented one weak and one strong activity pattern separated by

a specified time interval and simulated the tag, PRP and synaptic strength dynamics. The

synaptic tag K(t) and dendritic PRP P(T) dynamics were simulated as exponential time

courses. Synaptic strength dynamics also followed the form outlined above:

. The values of the scaling constants AP, AK and ρ were chosen so that

the maximal synaptic potentiation was ~40%, similar to the magnitude of LTP observed

experimentally, while the time constant of PRP and tag decay was set to τ = 30 mins, to

reproduce the ~90 min wide time window observed experimentally (Govindarajan et al.,

2011). For Figure 2, we present the synaptic strength changes averaged over 100 realizations

for each configuration of cdend and Δt.

STC in networks where pre- and post-synaptic populations code for the same 1-D variable

We examined the case where activity patterns in two layers of feedforward network are

determined by the value of a particular one-dimensional circular variable in the external

world, θ. This variable may represent, for example, the orientation of a bar stimulus in the

visual field. We assumed that each neuron is tuned to respond preferentially to a particular

value of θ = θpref (but also responds within a range θpref ± rθ/2), that the θ preferences of

neurons are evenly distributed across the populations, and that they tile the entire range of

possible values of θ. We also assume that the postsynaptic dendritic correlation between any

two neurons i and j in the presynaptic population Δθij = ∣θi – θj is a decaying function of the

distance between their preferred values (Figure 5C): cij = e−Δθ/λ where λ is a parameter that

determines the extent of dendritic correlations with distance in feature space (we set λ = 0.1

× θmax). Hence, presynaptic neurons that prefer similar values of θ are more likely to

synapse onto the same dendrites in postsynaptic neurons. We then derived an expression for

the component of the mean synaptic strength change induced by a weak stimulus pattern that

is due to STC, in terms of rθpre, rθpost, Δθ and λ as follows. The presynaptic overlap of any

two patterns with a stimulus difference of Δθ is:

. An analogous expression exists for qpost. By

inserting the overlap terms into equation 2 (Results) we can calculate the mean synaptic

strength change from a weak stimulus pattern:
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where p is the probability that a synapse in the weak pattern terminates on a dendrite that

also receives a strongly activated synapse. As above, we solved for p numerically by

simulating many realizations of synaptic wiring given values for the parameters Npre, d and

λ.

Because representations in pre and post populations are centered on the same value of θ,

then every weak pattern that overlaps postsynaptically with a strong pattern will necessarily

contain a non-zero fraction of presynaptic neurons that are also part of the strong pattern.

Hence, in most cases there will be a significant contribution from the overwriting term. We

further analyzed the conditions for maximal STC-based enhancement of consolidation. First,

the degree of consolidation is linearly correlated with the postsynaptic overlap between

weak and strong patterns. Hence, rθpost should be large. This gives condition 1: Δθ <

rθpost/2. Second, protein sharing is most important relative to the overwriting terms when the

presynaptic overlap is minimized. Hence, condition 2: Δθ ≥ rθpre/2. These first two

conditions set upper and lower limits for possible ranges of Δθ. In order to exploit dendritic

PRP compartmentalization a further constraint for the dendritic correlation should vary in

the range between these two limits: rθpre/2 ≤ λ ≤ rθpost/2.

For the simulations presented in Figure 5 we used the following parameters: Npre = 100,

Npost = 100, d = 50, λ = 0.1 × θmax.

Calculation and simulations of pattern overlap and memory generalization during sleep

We studied a novel two-step model for generalization of memories during sleep based on

STC mechanisms, using both analytical calculation for the mean behavior and Monte-Carlo

simulation for specific realizations of the model. For the simulations, we modeled a two-

layer feedforward network of binary neurons (representing two cortical cell populations)

where each presynaptic neuron (Npre = 1000) was randomly connected to a subset of the

postsynaptic neurons (Npost = 1000) with a fixed low probability (pconn = 0.1). Each synapse

had an initial weight of 1 (arbitrary units). A hippocampus-driven ‘strong’ activity pattern

was initiated in the presynaptic layer by randomly choosing a subset of the neurons to be

active, with a specified level of sparsity (fpre = 0.1). A postsynaptic neuron was then

activated if it received synaptic inputs from a sufficient number of activated neurons in the

presynaptic layer. The threshold for activation Θ was chosen such that the expected pattern

sparsity in the postsynaptic layer was close to a specified level (fpost = 0.1) by using the

hypergeometric distribution, as follows (O’Reilly and McClelland, 1994). The probability

for any postsynaptic neuron to receive m active synapses p(m) is given by:

. The threshold required to ensure a target level of

postsynaptic layer sparsity fpost can then be calculated from the cumulative of this

distribution  by finding the smallest value of m where P(m) ≥ 1 –

fpost. After presenting the strong stimulus, we simulated potentiation of all of the activated

synapses by increasing their weights to ηPstrong = 2, and simulated heterosynaptic
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depression at all synapses from non-activated presynaptic neurons onto the activated

postsynaptic neurons by setting their weights to ηD = 1/2. We then sequentially presented

weak patterns with the same presynaptic sparsity as the strong pattern (fpre = 0.1). Each

weak pattern caused potentiation of its activated synapses that were not part of the strong

pattern, simulated by setting their weights to ηPweak = 2. Synapses that were shared between

the strong pattern and weak pattern were left unchanged at ηPstrong = 2. The weak patterns

were not chosen by randomly selecting a subset of the presynaptic neurons, but instead were

selected to have a desired overlap with the strong pattern in order to demonstrate the

behavior of the model (Figure 7B-E). This selection process was necessary because for the

parameters investigated a weak pattern chosen by chance was extremely unlikely to have

substantial overlap with the strong pattern. The mean synaptic drive D from a pattern

(Figure 7C) was calculated as the sum of the activated synaptic weights onto a single

postsynaptic neuron that was part of the strong pattern, averaged across all activated

postsynaptic neurons:  where wi is the weight of the synapse from

the ith neuron and xi is the binary state of the ith neuron’s activity (0 or 1). It is a measure of

how likely it is that that pattern would activate a postsynaptic neuron.

For the analytical calculations of the mean behavior of the same model we followed the

method of (O’Reilly and McClelland, 1994), who showed using further employment of the

hypergeometric distribution how to calculate the probability that a previously activated

postsynaptic neuron was reactivated by a second pattern, as a function of the presynaptic

population overlap of the two patterns (Figure 7B). From this quantity we calculated the

fraction of synapses in each group (weak-only pre to shared post, shared pre to shared post),

plotted in Figure 7D-E.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Dendritic protein translation and synaptic tagging. A: Schematic of local protein translation in dendrites. Dendritic ribosomes

(blue) transcribes mRNA (black) to synthesize the assorted synaptic receptors (red), plasticity-related proteins (green) and other

proteins (not shown) that comprise and regulate nearby synapses. B: Cartoon of molecular events during STC in a neuron with

two dendrites and three synapses. C: Activity level of molecular ‘tag’ at the strongly (magenta) and weakly (blue) activated

synapses vs time. D: PRP level in the dendrite of the strongly activated synapse vs time. E: Synaptic strength vs time for

strongly activated synapse (magenta), weakly activated synapse on same dendrite (solid blue) and weakly activated synapse on

different dendrite (dashed blue). Labeled points on the time axis (t1, t2, t3) correspond to three illustrations in A.

O’Donnell and Sejnowski Page 22

Neuron. Author manuscript; available in PMC 2015 April 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
A: A single postsynaptic neuron innervated by two presynaptic neurons. The degree of bias for the two neurons to synapse onto

the same dendrite can be captured by a parameter cdend. B: Mean consolidated strength change of a weakly stimulated synapse

as a function of the time interval with the strong stimulus. Circle symbols are results from simulations, curves are predictions

from theory (see Experimental Procedures). Different curves denote different values of cdend. C: Mean consolidated strength

change of a weakly stimulated synapse as a function of the weak presynaptic neuron’s correlation with the strongly activated

presynaptic neuron, for a time interval of zero min. D: Mean consolidated strength change of a weakly stimulated synapse as a

function of the number of dendrites on the postsynaptic neuron. Different curves denote different values of cdend, as indicated in

figure.
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Figure 3.
Two-layer feedforward neuronal network. A strong (top left) or weak (bottom left) activity pattern covers a specific subset the

pre and postsynaptic populations. The statistics of pre and postsynaptic overlap (right) determines the efficacy of STC (see

Text).
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Figure 4.
Mean consolidated synaptic strength of a weak pattern as a function of its temporal interval with a strong pattern for different

levels of pre- and post-synaptic pattern sparsity (A-D) and three levels of dendritic correlation between synapses (different

curves in each subfigure). E: The mean synaptic strength change as a function of dendritic correlation for a time interval of zero

(data replotted from A-D).
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Figure 5.
Weak pattern consolidation in a two-layer network where pre- and post-synaptic populations code for the same variable. A:

Each neuron in a layer responds maximally for its preferred value of the stimulus. Neurons are ordered according to their

preference and tile the entire 1-D stimulus space (gray curves). B: The degree of overlap in the set of neurons activated by a

strong (magenta) and weak (blue) stimulus is determined by the distance between the stimulus values. C: The dendritic

correlation (y-axis) between any two neurons decays as a function of the difference between their preferred stimulus values (x-

axis). D-F: The mean consolidated synaptic strength change from a weak stimulus (y-axis) as a function of the difference

between its value and the value of the strong stimulus (x-axis). Solid curves are from case where dendritic correlation follows

figure C, dashed curves are from case where there is only one postsynaptic dendrite. DF represent different relative widths for

the pre and postsynaptic tuning curves (insets).
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Figure 6.
Weak pattern consolidation in a model of rodent hippocampal Schaffer collateral projection (CA3-CA1).

A: Schematic diagram of the hippocampal circuit (DG: dentate gyrus, EC: entorhinal cortex). We focused on modeling the

CA3-CA1 (pre-post) projection. B: Schematic of pattern separation (for dissimilar inputs) and pattern completion (for similar

inputs) by CA3, but preservation of pattern similarity by CA1. C: Pattern separation for dissimilar environments by CA3, but

environment differences are preserved in CA1 representation. D: Pattern completion for similar environments by CA3, but

environment similarities are preserved in CA1. E: Experimentally measured (Vazdarjanova and Guzowski, 2004) activity

pattern overlap in CA3 and CA1 for three different spatial context comparisons: same (A/A), minor change (A/A’) or major

change (A/B). F: Expected synaptic strength change of a weak pattern representing context 2 prior to a strong pattern

representing context 1. Three curves refer to varying levels of dendritic correlation of weak pattern CA3 neurons with strong

pattern CA3 neurons. G-H: Expected synaptic strength change for a weak event in either context A, A’ or B (different curves)

as a function of mean dendritic correlation of weak pattern neurons with strong pattern neurons. Panel G plots synaptic strength

change relative to baseline, while H plots synaptic strength change relative to maximum at cdend=1. Data replotted from F.
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Figure 7.
STC and noisy replay as a mechanism for generalization of synaptic learning.

A: Schematic diagram of the model of memory generalization during sleep (see Results).

B: Probability of postsynaptic neuron from strong pattern being active as a function of weak pattern overlap. Black: from initial

network. Magenta: from network following strong pattern plasticity. In this and subsequent subfigures, solid curves indicate

predictions from theory, while symbols indicate simulation results. Diagonal dashed line indicates identity. Vertical dashed line

indicates chance overlap level.

C: Mean strength of activated synapses onto strong pattern postsynaptic neurons as a function of overlap. Black: from initial

network. Magenta: from network after strong pattern plasticity. Blue: from network after strong and weak pattern plasticity.

Horizontal gray line indicates mean neuron spike threshold.

D-E: Fraction of synapses in weak-only (solid curve, triangles) and shared (dashed curve, circles) presynaptic categories as a

function of weak pattern overlap with strong pattern. Data in D (black) calculated from initial network, data in E (magenta) from

network after strong pattern plasticity.
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Table 1

Synapses in a weak pattern can be separated into four groups depending on their overlap with those in a strong

pattern.

Symbols Connection ⟨ Δw ⟩

pre weak-only → post weak-only 0

pre shared → post weak-only 0

pre weak-only → post shared αe

∣Δt ∣
τ p(Nstrong ≥ 1)

pre shared → post shared ⟨ Δw ⟨ over

Each row corresponds to one of the four groups of synapses that make up a weak memory pattern, depending on their overlap with a strong pattern.
The first column shows each group pictorially according to the color scheme from Figure 3. The pair of filled circles represents a pair of neurons
from the presynaptic and postsynaptic populations, with blue representing neurons that are only in the weak pattern, and magenta-blue those that
are part of both the strong and weak patterns. The second column describes the synapse group in words, while the third column gives the mean
synaptic weight change, ⟨Δw⟩, of that group. See Results for details.
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