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ABSTRACT OF THE DISSERTATION

The SpiceC Parallel Programming System

by

Min Feng

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2012

Dr. Rajiv Gupta, Chairperson

As parallel systems become ubiquitous, exploiting parallelism becomes crucial for

improving application performance. However, the complexities of developing parallel soft-

ware are major challenges. Shared memory parallel programming models, such as OpenMP

and Thread Building Blocks (TBBs), offer a single view of the memory thereby making par-

allel programming easier. However, they support limited forms of parallelism. Distributed

memory programming models, such as the Message Passing Interface (MPI), support more

parallelism types; however, their low level interfaces require great deal of programming

effort.

This dissertation presents the SpiceC system that simplifies the task of parallel

programming while supporting different forms of parallelism and parallel computing plat-

forms. SpiceC provides easy to use directives to express different forms of parallelism,

including DOALL, DOACROSS, and pipelining parallelism. SpiceC is based upon an intu-

itive computation model in which each thread performs its computation in isolation from

other threads using its private space and communicates with other threads via the shared
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space. Since, all data transfers between shared and private spaces are explicit, SpiceC

naturally supports both shared and distributed memory platforms with ease.

SpiceC is designed to handle the complexities of real world applications. The ef-

fectiveness of SpiceC is demonstrated both in terms of delivered performance and the ease

of parallelization for applications with the following characteristics. Applications that can-

not be statically parallelized due to presence of dependences, often contain large amounts

of input dependent and dynamic data level parallelism. SpiceC supports speculative par-

allelization for exploiting dynamic parallelism with minimal programming effort. Applica-

tions that operate on large data sets often make extensive use of pointer-based dynamic data

structures. SpiceC provides support for partitioning dynamic data structures across threads

and then distributing the computation among the threads in a partition sensitive fashion.

Finally, due to large input sizes, many applications repeatedly perform I/O operations that

are interspersed with the computation. While traditional approach is to execute loops con-

tain I/O operations serially, SpiceC introduces support for parallelizing computations in the

presence of I/O operations.

Finally, this dissertation demonstrates that SpiceC can handle the challenges posed

by the memory architectures of modern parallel computing platforms. The memory archi-

tecture impacts the manner in which data transfers between private and shared spaces are

implemented. SpiceC does not place the the burden of data transfers on the programmer.

Therefore portability of SpiceC to different platforms is achieved by simply modifying the

handling of data transfers by the SpiceC compiler and runtime. First, it is shown how

SpiceC can be targeted to shared memory architectures both with and without hardware

vii



support for cache coherence. Next it is shown how accelerators such as GPUs present in

heterogeneous systems are exploited by SpiceC. Finally, the ability of SpiceC to exploit the

scalability of a distributed-memory system, consisting of a cluster of multicore machines, is

demonstrated.
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Chapter 1

Introduction

Parallel systems are currently evolving towards massive parallelism and hetero-

geneity for performance and power efficiency. This trend has created exciting opportunities

for achieving increased performance with multithreaded software. Meanwhile, the increas-

ing complexity and variety of parallel systems has made it difficult to efficiently realize the

benefits of their computing power via parallelism, as it has also raised many new challenges

in software development.

Two types of parallel programming models have been proposed to facilitate the

development of parallel applications for modern parallel systems: shared memory program-

ming models; and distributed memory programming models. Existing systems based upon

these models have their drawbacks that greatly limit their ability to deal with the complexity

of developing multithreaded code for real world applications.

Existing shared memory programming models such as OpenMP [36] and Thread-

ing Building Blocks (TBB) [108] have been widely used because they offer a single view of
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the memory. Developers do not have to be aware of the location of data, thereby making

parallel programming easier. However, these parallel programming models have limited

applicability. First, they can only be applied to certain types of applications as they only

support limited forms of parallelism and are unable to handle parallelism in the presence

of popular programming features such as pointer-based linked dynamic data structures and

I/O operations. Second, these programming models do not support distributed memory

systems since they require a shared physical memory. Although the shared memory pro-

gramming models are easy to use, they cannot be adopted in many real applications due to

the lack of support for various application types and platforms.

Distributed memory programming models such as MPI [52], on the other hand, are

more versatile. They do not require any physical shared memory and can be used to exploit

more forms of parallelism. They are often used in large-scale applications that demand bet-

ter scalability. However, the distributed memory programming models are hard to use since

their interfaces tend to be low level. Developers need to spend significant effort to explicitly

program distribution of workload among threads as well as communication and synchro-

nization of threads. Moreover, to achieve efficient implementation of parallel applications,

developers must understand the underlying hardware and undertake the error-prone task of

programming optimizations [60]. Even though the distributed memory programming models

are more versatile, the programmability issue often prevents them from being used.

This dissertation overcomes the above drawbacks by developing a parallel program-

ming system that combines the programmability of the shared memory programming models

and the versatility and portability of the distributed memory programming models. While
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developing such a system is challenging, its benefit in facilitating parallel programming for

wide range of applications and platforms is clear. Developers can exploit parallelism while

focusing on high-level algorithmic issues. They do not need to understand the underlying

hardware to run their programs on different platforms.

1.1 Dissertation Overview

This dissertation presents the SpiceC parallel programming system that enables

development of parallel software for various types of applications and platforms with ease.

Figure 1.1 provides an overview of SpiceC. The key issues addressed by this system are

briefly described next.

Figure 1.1: An overview of SpiceC.
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1.1.1 SpiceC System for Multicores

As commercial processors transition from single-core to multicore, parallel pro-

gramming becomes a challenge on commercial processors. To meet this challenge, pro-

gramming systems should address the programmability, versatility, and portability issues

of parallel programming on multicore processors.

Programmability. The complexity of parallel programming hinders its use by de-

velopers. To make programmers more productive, a parallel programming system should

use high-level programming style. For example, instead of having the developers write new

parallel programs, they could simply add parallelization primitives into the text of an ex-

isting sequential program. Parallelism can be exploited by the compiler based on the added

primitives.

Versatility. To efficiently parallelize applications, a parallel programming system

should support various forms of parallelism as different computations contain different forms

of parallelism to exploit. Since the parallelism in many real applications cannot be guar-

anteed at compile time, speculative parallelization should be supported for dynamically

exploiting the parallelism.

Performance portability. A parallel programming system should be able to adapt to

different types of multiprocessors. As multiprocessors evolve towards manycores, the scala-

bility of traditional cache coherence protocols, such as snoopy- or directory-based protocols,

becomes a problem. Recently, Intel Labs has created their new Tera-scale multiprocessor –

“Single-chip Cloud Computer (SCC)” which is a 48-core processor with no cache coherence

support. Therefore, in the long term, a parallel programming model should support not
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only multicore processors with cache coherence but also manycore processors without cache

coherence.

The core SpiceC system presented in this dissertation is designed to address the

above parallel programming issues for multicore processors. It has a high-level programming

model, which is easy to use and designed to exploit multiple forms of parallelism. The

compiler translates SpiceC code into explicitly parallel code, exploiting parallelism based

on the high-level programming primitives. Its computation model makes it portable across

multiprocessors that may or may not support cache coherence.

1.1.2 Support for Dynamic Linked Data Structures

Recently, parallelization of computations in the presence of dynamic data struc-

tures has shown promise. Efficient parallel execution in the presence of large dynamic data

structures requires exploiting data locality of and speculative parallelism.

Data locality. Data partitioning-based computation distribution [9] has been pro-

posed to exploit data locality on distributed systems. The overall approach involves parti-

tioning the data, assigning the partitions to threads, and finally assigning computations to

threads such that the thread that owns the data required by a computation performs the

computation. Programming the above strategy is not a trivial task. Developers need to

write code for: partitioning and assigning the data to threads; and distributing computa-

tion among threads based on the partitioning. They also program required synchronizations

between computations for different partitions.
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Figure 1.2: Misspeculation rates of four applications that use dynamic data structures.

Speculative parallelism. Mostly each thread works on its assigned partition; how-

ever, occasionally multiple threads need to simultaneously access the same data elements

of a dynamic data structure. In such situations, the threads are designed to speculatively

operate on same elements. However, if the parallel accesses are found to violate data depen-

dences present in sequential version, then misspeculation is detected and the application

must be designed to recover from them. It has been observed that the misspeculation

rates of applications that use dynamic data structures can be very high. Figure 1.2 shows

the misspeculation rates of four applications on a 8-core machine. Since these misspecula-

tion rates are very high (exceeding 15% for all applications), very high recovery overhead

will be incurred. To efficiently exploit speculative parallelism, it is necessary to optimize

speculative execution to reduce the misspeculation overhead.

This dissertation presents the SpiceC support for dynamic data structures, which
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addresses both of the above issues.

1.1.3 Support for Parallelism in the Presence of I/O Operations

Existing parallel programming models only target loops that contain pure com-

putations, i.e., they are free of I/O operations. Since applications that work on large data

sets contain many computatation loops which also contain I/O operations, they fail to yield

much speedup when these loops are executed serially. Therefore, it is highly desirable to

support parallel programming models which allow parallel execution of hybrid loops, i.e.,

loops with both computation and I/O operations. Figure 1.3 shows the percentage of total

execution time taken by the hybrid loops in eight applications on a 24-core machine. We

can see that a significant portion of the total execution time is taken by the hybrid loops in

all these applications. Therefore, to further improve the performance of these applications,

developers must exploit the parallelism in hybrid loops.

The presence of I/O operations raises the following challenges for parallel program-

ming. First, a hybrid loop has cross-iteration dependences caused by the I/O operations as

the file read/write operations from different iterations move the same file pointer. Usually

when the computation within a loop does not involve cross-iteration dependences, maxi-

mum parallelism can be exploited via DOALL parallelization where all loop iterations can

be executed in parallel. However, in a hybrid loop, even when the computation does not

involve cross-iteration dependences, DOALL parallelization is not possible due to the cross-

iteration dependences caused by the I/O operations. Fully exploiting the parallelism in the

loop requires a way to break the cross-iteration dependences due to I/O operations.
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Figure 1.3: The percentage of total execution time taken by the hybrid loops in eight
applications.

Second, cross-iteration dependences may exist in the computation part of a hy-

brid loop. It is impossible to perform DOALL parallelization of such loops even without

the dependences introduced by I/O operations. Speculative parallelization has proven to

be an effective approach to handling cross-iteration dependences in the computation part

when these dependences manifest themselves infrequently. Previous works on speculative

parallelization [126, 43] assume that the loops do not contain I/O operations. To apply spec-

ulative parallelization to the hybrid loops, the speculative execution of the I/O operations

must be enabled.

Finally, after a hybrid loop is parallelized, multiple parallel threads may access the

I/O bus at the same time. The contention on the I/O bus is increased with the increased

parallelism in the hybrid loop. The increased I/O contention may lead to performance

degradation. Therefore, techniques for reducing I/O bus contention must be developed to
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effectively parallelize hybrid loops.

This dissertation presents the SpiceC support for hybrid loops, which meets the

above challenges.

1.1.4 SpiceC on Heterogeneous Multicores with GPUs

Graphics processing units (GPUs) provide an inexpensive, highly parallel system

to perform computations that are traditionally handled by CPUs. SpiceC can be easily ex-

tended to support GPUs since its computational model can naturally handle the host/device

memory hierarchy in heterogeneous systems with GPUs.

A few high-level programming models [76, 10, 14] have been proposed to explore

loop-level parallelism using GPUs. To run a loop using the GPU, the programmer or

compiler must ensure that there is no cross-iteration dependence. This prevents GPUs

from executing loops that may encounter cross-iteration dependences at runtime.

The cross-iteration dependences in many loops rarely manifest themselves at run-

time. Although these loops cannot be parallelized statically by any existing programming

model, they are good candidates to be executed on GPUs when no cross-iteration de-

pendence happens at runtime. Figure 1.4 shows the loop speedups of three applications

achieved on a GPU by assuming the absence of cross-iteration dependence at runtime.

These speedups are quite substantial, exceeding a factor of 10x in all cases. Thus, finding

a method for running such loops on GPUs is higher desirable.

Speculative parallelization techniques based upon thread level speculation [126,

43], although applicable to CPUs, cannot be directly used on GPUs. This is due to the
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Figure 1.4: Potential loop speedups of three applications achieved on a GPU.

architectural differences between CPUs and GPUs. First, they require the results of each

speculatively executed iteration to be stored in a logically separate space. GPUs do not

have enough memory space to create a separate space for every thread due to thousands

of threads. Second, these techniques commit the results of each iteration in a sequential

order to preserve the original sequential semantics of the loop. Once misspeculation is

detected in an iteration, these techniques require the iteration to be re-executed before

committing the results of subsequent iterations. This requires complicated synchronization

between threads, which cannot be efficiently implemented on GPUs due to very high GPU

synchronization overhead [32].

This dissertation presents an extension to the programming model and runtime

support of SpiceC, that enables speculative parallelism on GPUs.
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1.1.5 SpiceC on Distributed Memory Clusters

Modern applications from important domains (e.g., data mining, machine learn-

ing, and computational geometry) have high processing demands and a very large memory

footprint. To meet the demands of such applications, it is natural to consider the use of

clusters of multicore machines. Clusters can not only scale to a large number of processing

cores, they also provide a large amount of memory. They are especially attractive for mod-

ern applications because, with the advances in network technology, a cluster can provide an

application with a faster storage system than a disk based storage system.

SpiceC can be extended for clusters since its computation model does not necessar-

ily require shared memory. This dissertation addresses the following issues to port SpiceC

to a cluster of multicore machines.

Data distribution. To support distributed memory clusters, the SpiceC runtime

should be able to spread shared data across different machines. When a parallel thread

accesses a shared data item, the runtime must locate the shared data item in the cluster.

In case that dynamic linked data structures are used, the runtime should support reference

to shared data via pointers.

Tolerating network latency. Network communication on clusters can be time-consuming.

Figure 1.5 shows the percentage of the execution time taken by network communication for

four applications running on a cluster of five multicore machines. The applications were

executed sequentially using the memory from the five machines. In all four applications,

network communication takes a significant portion of the execution time. Therefore, to

efficiently run programs on clusters, the the network latency must be hidden by being kept

11
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Figure 1.5: Percentage of the execution time taken by network communication.

off the critical path of the program execution.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 describes the core

features of the SpiceC system and its implementation. Chapter 3 discusses the compiler

support for efficiently allowing speculative execution in SpiceC. Chapters 4 and 5 present

the SpiceC support for parallelization in the presence of dynamic linked data structures and

I/O operations. Chapters 6 and 7 describe how SpiceC is extended to take advantage of

parallel systems other than multicore processors, i.e., systems with GPUs and distributed

memory cluster of multicores. Related work is given in Chapter 8. Chapter 9 summarizes

the contributions of this dissertation and identifies directions for future work.
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Chapter 2

SpiceC on Multicore Systems

Shared memory parallel systems such as multicore processors have been widely

used because they offer a single view of the memory thereby making parallel program-

ming easier. Developers do not have to be aware of the location of data. A few shared

memory parallel programming models, e.g., OpenMP [36] and Threading Building Blocks

(TBB) [108], have been proposed to facilitate the development of parallel applications on

shared memory multiprocessors. However, the above models have limitations in the forms

of parallelism and the platforms they support.

To overcome the limitations of above models this dissertation introduces SpiceC

for shared-memory multicore systems that is aimed at meeting the following demands:

I. Different forms of parallelism. A shared memory programming model must support var-

ious forms of parallelisms for successfully handling a wide range of applications. DOALL

parallelism can be easily expressed using existing shared memory parallel programming
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models. However, more forms of parallelism (such as DOACROSS and pipelining) are

needed and even support for speculative parallelism is required to enable parallelization in

the presence of cross-iteration dependences.

II. Different forms of multicore platforms. A shared memory programming model should

support not only multicore processors with cache coherence but also manycore processors

without cache coherence. Existing shared memory programming model only works for

processors with cache coherence. However, as multiprocessors transition from multicores

to manycores, the scalability of traditional cache coherence protocols becomes a problem.

Intel Labs has created their new Tera-scale multiprocessor – “Single-chip Cloud Computer

(SCC)” which is a 48-core processor without support for cache coherence. Other similar

manycore processors may be created in the future.

This chapter presents a shared memory programming model, called SpiceC (Scalable

parallelism via implicit copying and explicit Commit), which is the core of the SpiceC sys-

tem. It is designed to satisfy the aforementioned demands. The chapter also describes

the implementation of the SpiceC programming model, which consists of a source-to-source

compiler and a runtime library.

2.1 The Design of SpiceC

2.1.1 The SpiceC Computation Model

The SpiceC computation model represents a simple view of a parallel computation

that serves as the basis for the programmer interface as well as corresponding implementa-

14



tion. In this model a parallel computation consists of multiple threads where each thread

maintains a private space for data. In addition, a shared space is also maintained that holds

shared data and provides a means for threads to communicate data to each other. A thread

cannot access the private space belonging to other threads.

Figure 2.1: SpiceC Computation Model.

Each thread carries out its computation as follows: using copying operations it

transfers data to its private space from shared space; it operates on the data in private

space and produce results that are also written to the private space; and finally the thread

affects the transfer of results to shared space using a commit operation thus allowing all

threads to see the computed results. Thus, in this model, a thread performs its computation

in isolation from other threads. Associated with each thread is an access control module

which manages all accesses a thread makes to shared space. The access control modules of

different threads perform actions on the shared space in coordination with each other.

A variable in shared space may be accessed by a thread by simply referring to

it. A thread’s first access to a shared space variable results in an image of that variable
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being created in its private space and this image is initialized by copying the value of the

variable from shared space to private space. After copying, all subsequent accesses to the

variable, including both read and write accesses, refer to the variable’s image in the private

space. In other words, the thread can manipulate the value of the variable in isolation,

free of contention with other threads. Most importantly, the above semantics is enforced

automatically by the implementation of SpiceC model – the programmer simply refers to

the variable by its name without having to distinguish between first or subsequent accesses.

Therefore the above copying is referred to as implicit copying as it is automatically performed

without help from the programmer. There will be times when the private space of a thread

will need to be cleared and so updated values of shared data can be accessed from shared

space. The clearing of private space, like its setup through copying, is also implicit. The

private space of a thread is cleared at program points that correspond to boundaries of code

regions (e.g., iteration boundaries of parallel loops, boundaries separating pipeline stages,

synchronization points).

When a thread has finished a block of computation and wishes to expose its results

to other threads, it performs an explicit commit operation. This results in the transfer of

variable’s values from private space to shared space. The programmer is provided with an

Application Programming Interface (API) using which he/she can specify points in the pro-

gram where the values of variable’s need to be committed to shared space. SpiceC supports

two types of commit operations. The first type of commit operation simply copies all copied

variables to the shared space after acquiring the write permission to the shared space. The

second type of commit operation checks for atomicity violation before committing, that is, it
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checks to see if any of the copied variables was updated by another thread after being copied

into the private space of the committing thread. An atomic commit enables programmers

to express speculative computations with little effort.

2.1.2 SpiceC Design Choices

This section briefly describes how the design of SpiceC addresses the following

issues: programmability (i.e., reducing the burden of parallel programming), versatility (i.e.,

providing means to program different types of parallelism), and performance portability

(i.e., programs deliver performance on different platforms without having to rewrite them).

I. Programmability. The complexity of parallel programming hinders developers from using

it. To make programming easier, SpiceC uses programming style similar to OpenMP [36].

Developers do not write new parallel programs but simply add SpiceC directives into the

text of a sequential program. Parallelism is exploited by the compiler based upon the

directives. SpiceC model can be used to cause selected portions of the code to be executed

in parallel while the remaining code remains serial.

To ensure that the programmer can easily reason about a program, a form of

sequential consistency is employed as follows. In SpiceC, the copy and commit operations

naturally divide code in parallel regions into chunks. These chunks can be executed with

atomicity and in isolation as specified by developers. Sequential consistency is then enforced

by the software at the coarse grain level of chunks. For performance, the compiler can freely

reorder instructions within a chunk without the risk of violating coarse grain sequential

consistency.
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SpiceC removes the need to explicitly specify communication between threads. The

work of copying and commit is done by the compiler and the implementation of supporting

API functions. Developers only need to insert commit calls in their codes. This greatly

reduces developer burden of programming explicit communication in a message-passing

model such as Message Passing Interface (MPI). For example, in a message-passing model,

developers need to write the following three functions to transfer a linked list from a thread

to another: the first converting the linked list to a binary string, the second transferring

the string to another thread, and the last for reconstructing the linked list from the string.

In SpiceC, after a thread commits the linked list, other threads can access it as any other

shared space variable. Developers do not need to write any special code to handle the linked

list.

II. Versatility. To efficiently parallelize applications, SpiceC supports multiple forms of par-

allelism: DOALL, DOACROSS, pipelining, and speculative parallelism. It is difficult to use

existing parallel programming model to implement some forms of parallelism while ensuring

correctness and delivering high performance. For example, speculation must be expressed

using low level primitives in existing languages [101]. Speculative computation, misspecu-

lation check, and misspeculation recovery must be programmed by the user which can be

a non-trivial programming exercise. In contrast, SpiceC supports high level primitives and

developer only needs to specify the parallelism and the coarse-grained dependences in the

program. Compilers and runtime systems take care of the tedious part of parallel code

generation.
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SpiceC provides other benefits to parallel program developers. First, since a thread

only updates variables in its private space before committing, it is easy to reverse the

computation by simply discarding the content in the private space. In addition, the commit

operation provided by SpiceC can check atomicity violation at runtime before committing.

This makes it easy for developers to write programs with speculative parallelism. Secondly,

parallel programming is error-prone. In SpiceC, an error in one thread does not affect

other threads until it is committed. Therefore, it is easy to realize fault tolerance in SpiceC

model. For example, developers can capture all fatal exceptions in thread T and reset T

when exceptions happen. This enables other threads to continue operating even in the

presence of errors in T.

III. Performance Portability. SpiceC can be implemented on any multicore or manycore

system that has a logically shared memory with or without cache coherence. The portability

of SpiceC makes it attractive alternative for developers who want their programs deployed

on multiple platforms. Moreover, since current cache coherence protocols may not scale to

manycore systems [11, 22], SpiceC makes it possible to scale shared-memory programs (e.g.,

OpenMP programs) to manycore systems.

2.1.3 Programming Interface

SpiceC aims to provide a portable standard for writing parallel programs while

hiding the complexity of parallel programming from developers. This section presents di-

rectives supported by SpiceC.

SpiceC compiler directives enable the programmer to mark and parallelize a section
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Directive Description

#pragma SpiceC parallel [parallelism] specify a parallel region

#pragma SpiceC region [name] [order] specify a subregion

#pragma SpiceC commit [check type] [order] perform commit operation

#pragma SpiceC barrier [for variable (variables)] clear variables from private space

Table 2.1: Compiler directives implemented by SpiceC

of code that is meant to be run in parallel just as is the case in OpenMP [36]. A compiler

directive in C/C++ is called a pragma (pragmatic information). Compiler directives specific

to SpiceC model in C/C++ start with #pragma SpiceC. Table 2.1 shows the compiler

directives supported by SpiceC.

#pragma SpiceC parallel is used to specify the parallel region of the program. The par-

allel region must be a loop, written in for, while, or do . . . while form. Developers

must specify in what form of parallelism the parallel region is to be executed. SpiceC

supports three types of parallelism: DOALL, DOACROSS, and pipelining.

#pragma SpiceC region is used to specify a subregion in the parallel region. Developers

can assign a name to the subregion and specify the execution order of different in-

stances of the subregion or different subregions. By default, the whole loop body of

the parallel region is one subregion.

#pragma SpiceC commit is used to call the commit operation, which commits all variables

that are updated in the subregion to the shared space. Developers can specify whether

to perform atomicity check before the commit operation. If the atomicity check fails,

the subregion is re-executed. Developers can also specify the execution order of the

commit operation which can be used to enforce the sequential semantics the parallel
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region. By default, a commit operation is placed at each exit of a subregion if no

explicit commit is specified.

#pragma SpiceC barrier is used to insert a barrier in the parallel region. In the SpiceC

model, each thread clears its private space when it encounters a barrier. Developers

can optionally specify which variables to clear to enable avoidance of unnecessary

copying overhead.

The following sections illustrate the use of directives in marking code regions and

expressing different forms of parallelism. A few examples written in SpiceC are presented

to show how different forms of parallelism can be expressed with little effort by the pro-

grammer.

2.1.4 Data Transfers in SpiceC

Figure 2.2 shows an example of explicit parallel code written in SpiceC that illus-

trates how shared space may be used by threads to communicate values to each other. The

parallel code is executed by two threads. It is divided into two phases. In the first phase

the two threads calculate values of variables a and b respectively. The programmer does

not specify that a and b are to be copied into the private spaces – they are automatically

copied upon their first uses. At the end of the first phase, a and b need to be committed into

the shared space so that their new values are accessible to other threads. The programmer

need not identify a and b in the commit operation – this is handled automatically which

makes it easy to use. In other words, developer only specifies “when” to commit but need

not specify “what” to commit. At the barrier, the two threads clear variable a and b in
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#pragma SpiceC parallel {

int tid = spicec get thread id();

if (tid == 0)

a = calculate a();

else

b = calculate b();

#pragma SpiceC commit

#pragma SpiceC barrier for variable(a,b)

if (tid == 0)

c = calculate c(a,b);

else

d = calculate d(a,b);

}

Figure 2.2: Communicating parallel threads written in SpiceC.
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their private spaces and wait for each other. When both threads reach the synchronization

point, they continue their computation and copy the value of a and b from the shared space

again when they are used. Developers may or may not specify which variables to clear at

the barrier. If variables are not specified at the barrier, the entire private space is cleared.

2.1.5 Non-speculative Parallelism

#pragma SpiceC parallel doall {

for(i=0;i<nodes;i++)

nodes[i].cluster = closest cluster(nodes[i], clusters);

#pragma SpiceC commit

} //implicit barrier

#pragma SpiceC parallel doall {

for(i=0;i<clusters;i++)

clusters[i].mean = calculate mean(clusters[i], nodes);

#pragma SpiceC commit

}

Figure 2.3: K-means clustering algorithm written in SpiceC.

I. DOALL Parallelism in SpiceC. Figure 2.3 shows a K-means clustering program written

in SpiceC. This program looks very similar to an OpenMP program. Without the direc-
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tives, the program can still be compiled as a sequential program. The K-means clustering

algorithm has two steps: the first step assigns each node to the cluster with the closest

mean and the second step calculates the new means to be the centroid of the nodes for each

cluster. Each step is parallelized using DOALL parallelism. Commit operations are inserted

at the end of each parallel region. By using DOALL, workloads are divided and assigned

among the threads at the beginning of the parallel region. No execution order is specified

in this example. Therefore each thread executes fully in parallel with other threads. All

threads join at the end of the parallel region, which acts as a implicit barrier.

II. DOACROSS Parallelism in SpiceC. Figure 2.4 shows a typical stream decoding program

written in SpiceC model. The program repeatedly does the three steps: read a stream

from the input buffer, decode the stream, and write the stream back to the output buffer.

There are two cross-iteration dependences in the loop. In each iteration, the read stream

function reads a stream from the input buffer and moves the input buffer pointer to the

next stream. Therefore, the read stream in the current iteration depends on itself in the

previous iteration. Similarly, write stream also has cross-iteration dependence on itself.

To parallelize this program, the loop is annotated with DOACROSS parallelism. By using

DOACROSS, consecutive iterations are assigned to different threads to allow them to be

executed in parallel. The loop is divided into three subregions with each step forming one

subregion. Subregion R1/R3 in the current iteration is specified to only be executed after

R1/R3 in the previous iteration finishes. The keyword “ITER” used in the SpiceC pragmas

refers to the current iteration and “ITER-1” refers to the preceding iteration. No execution

24



#pragma SpiceC parallel doacross {

for(i=0;i<n;i++) {

#pragma SpiceC region R1 order after(ITER-1, R1)

{

job = read stream(input buffer);

#pragma SpiceC commit

}

#pragma SpiceC region R2 no order

{

decode(job);

#pragma SpiceC commit

}

#pragma SpiceC region R3 order after(ITER-1, R3)

{

write stream(output buffer, job);

#pragma SpiceC commit

}

}

}

Figure 2.4: A typical stream decoder written in SpiceC.
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order is specified for R2 since it does not have cross-iteration dependence.

III. Pipelined Parallelism in SpiceC. Figure 2.5 shows the same stream decoder as shown in

Figure 2.4. But in this example, it is parallelized using pipelined parallelism. The loop

body is still divided into three subregions. Each subregion is a stage of the pipeline. By

using pipelining, each subregion is executed in one thread, similar to Decoupled Software

Pipelining [106]. In this program, the subregion R2 needs data from R1 and R3 needs

data from R2. Therefore, R2 is specified to be executed after R1 and R3 after R2. In

this case, it is not necessary to specify the cross-iteration execution order (e.g., R1 in the

current iteration should be executed after R1 in the previous iteration) since it is ensured

by the very nature of pipelining. Unlike the model of producer and consumer, SpiceC model

commits data to the same place every time. Therefore, subsequent commit may overwrite

the value from previous commit. To avoid this problem, the scalar variable job is expanded

into an array and make each iteration compute using different memory locations.

2.1.6 Speculative Parallelism

SpiceC also supports speculative parallelization for exploiting parallelism between

code regions that occasionally involve dependences although mostly they can be safely

executed in parallel. With the SpiceC programming model, speculation can be easily applied

to all forms of parallelism described in the preceding section. Users just need to add an

atomicity check clause if the regions are being speculatively executed in parallel.

Figure 2.6 shows an example of using speculation in context of a DOACROSS

loop. The code in the example is the kernel of benchmark telecomm-CRC32 in MiBench
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#pragma SpiceC parallel pipelining {

for(i=0;i<n;i++) {

#pragma SpiceC region R1 {

job[i] = read stream(input buffer);

#pragma SpiceC commit

}

#pragma SpiceC region R2 order after(ITER, R1) {

decode(job[i]);

#pragma SpiceC commit

}

#pragma SpiceC region R3 order after(ITER, R2) {

write stream(output buffer, job[i]);

#pragma SpiceC commit

}

}

}

Figure 2.5: Stream decoder parallelized using pipelining parallelism.
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error=0;

i=0;

#pragma SpiceC parallel doacross {

while(i<n) {

#pragma SpiceC region R1 order after(ITER-1, R1) {

string = read file(file[i++]);

#pragma SpiceC commit

}

#pragma SpiceC region R2 no order {

ret = calculate crc(string);

if (ret != 0)

error |= ret;

#pragma SpiceC commit \

atomicity check order after(ITER-1, R2)

}

}

}

Figure 2.6: Kernel of benchmark telecomm-CRC32.
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suite. The program calculates 32-bit CRC for each file in the file list and put the results

into the error variable. The update of error depends on the value of error from previous

iterations. Therefore, the subregion R2 has a cross-iteration dependence on itself. However,

since the function calculate crc usually returns 0 that represents success in real runs, the

cross-iteration dependence is rarely manifested. The program can be parallelized with spec-

ulating on the absence of the dependence. The program is parallelized using DOACROSS

parallelism. The loop body is divided into two subregions. The subregion R1 is executed

sequentially since there is a cross-iteration dependence due to variable i. The subregion R2

is executed in parallel but the commit operation in R2 is performed sequentially to ensure

the sequential semantics of the loop. Before the commit operation, an atomicity check is

performed to detect if the cross-iteration dependence occurred. If the dependence is de-

tected, then the whole subregion R2 is re-executed. Otherwise, R2 can commit its results

safely.

2.2 The Implementation of SpiceC

This section describes the implementation of SpiceC on shared-memory systems

with or without cache coherence. The core components of the SpiceC prototype implementa-

tion consist of: a source-to-source compiler and a user-level runtime library, as shown in Fig-

ure 2.7. The compiler translates high-level SpiceC code into explicitly parallel C/C++ code

while the runtime provides support for access control, synchronization, and loop schedul-

ing. The remainder of this section first presents the implementation of the SpiceC runtime

library amd then it describes the SpiceC compiler.
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Figure 2.7: Overview of SpiceC implementation.

2.2.1 The Runtime

I. Access control. In the implementation of SpiceC, all accesses to the shared space are

managed by the access control runtime system. The access control runtime system makes

sure that all variables are copied and committed properly in the parallel region and the

copy and commit operations strictly follow the user-specified execution order. The access

control is implemented based on an STM library — Transactional Lock II (TL2) [41].

The copy operations are implemented using STM read/write barriers. To make sure that

every variable is copied and committed properly, the TL2 library is modified to maintains

metadata for each variable. Each variable has metadata in both shared and private spaces.

In the shared space, the version of each variable is recorded for atomicity check. In a private
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space, metadata includes its shared space address, its type/size, whether they have been

copied into the private space, and its version when it is copied.

II. Relaxed copy/commit model. The programs written in SpiceC model are portable across

CMP machines with or without cache coherence. However, in some cases, copy and commit

operations are unnecessary and may incur higher overhead compared to directly accessing

the shared space. To improve the performance of SpiceC in these cases, SpiceC relaxes the

copy/commit model by allowing the threads to directly access the shared space.

On systems with cache coherence, since the shared space is cachable and fast to

access, SpiceC allows directly accessing the shared space if copy and commit operations are

unnecessary. The copy/commit model is relaxed in the following cases. (1) If a subregion

uses non-check commit without any order specification, SpiceC allows the subregion to

directly operate on the shared space since the subregion has no dependence with any other

part of program that is executed simultaneously. (2) Read-only variables do not need

to be committed even in the subregions where copy and commit operation are required.

Therefore, a variable is only copied when it is to be written. When a variable is to be read,

SpiceC only records its version number for atomicity check. In this way, the copy/commit

overhead for read-only variables is reduced.

On systems without cache coherence, shared space is usually non-cachable to avoid

consistency problem. Directly accessing the shared space is much slower than accessing the

private spaces which is cachable. Therefore, SpiceC makes copy of every variable that is to

be accessed in the private space to make subsequent accesses to the same variable faster.
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The copy/commit model on systems without cache coherence is not relaxed since it is better

for performance.

III. Synchronization. In the SpiceC programming model, developers can specify the execu-

tion order for subregions and commits. Depending on the system configuration, the SpiceC

runtime uses different synchronization mechanisms to ensure the specified execution order.

On systems with cache coherence, the busy-waiting algorithm is used to ensure

the execution order. A flag is set after each subregion is finished. Before a subregion or

commit is executed, the SpiceC runtime checks the flags of the subregions which it is waiting

for. The execution continues if the flags are set. The busy-waiting algorithm achieves low

wake-up latency and hence yield good performance [88].

Systems without cache coherence usually provide hardware support for message-

passing interface (MPI) to enable fast communication between cores. Therefore SpiceC uses

MPI to ensure the execution order. For every iteration or subregion, the SpiceC runtime

knows the thread that will execute it. Since the execution order is explicitly specified in

the code, a thread can know which thread is waiting for it at runtime. Therefore, after a

thread finishes a subregion, it can send signal to the waiting thread.

IV. Loop scheduling. Loop iterations are scheduled according to the specified parallelism.

For loops with DOALL parallelism, the workloads are distributed among the threads at the

beginning of the loop. Since subsequent iterations often display temporal locality, they are

assigned to the same thread for better cache performance. For example, for a DOALL loop

with n iterations, thread i will execute the loop from iteration n/m ∗ i to n/m ∗ (i+1)− 1,
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wherem is the total number of threads. For loops with DOACROSS parallelism, each thread

executes one iteration at a time. After committing an iteration, a thread fetches another

iteration by executing the loop index. The loop index is always executed in sequential order

due to the existence of cross-iteration dependences. It is not allowed to depend on any

part of loop body. If the loop index does depend on loop body, developers need to move

it into the loop body and specify the execution order or check type for it. For example,

a DOACROSS loop is executed by m threads. Thread i only executes iteration m ∗ j + i,

where j ∈ {0, 1, 2, . . .}. Thread i begins to execute iteration m ∗ j + i only after it finishes

iteration m ∗ (j − 1) + i and thread i− 1 finishes the index part of iteration m ∗ j + i− 1.

For loops with pipelining parallelism, each thread is dedicated to execute one subregion, as

in [106]. For example, a pipelining loop contains m subregions. Thread i executes the i-th

subregion for every iteration.

2.2.2 The Compiler

The SpiceC compiler analyzes the code annotated with SpiceC directives and gen-

erates explicitly parallel code. The code translation consists of four steps, as shown in

Figure 2.7. Three out of the four steps are described in this section. One of the key con-

tributions of this dissertation is that the SpiceC compiler automatically generates code for

speculative execution by inserting copy/commit operations into the parallel code. This part

is elaborated separately in Chapter 2 due to its complicated nature.

I. Generating and analyzing the AST. Before code translation, the SpiceC code is analyzed

to determine what translation to perform. The code analysis is performed on the abstract
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syntax tree (AST) of the SpiceC code, which is generated using the ROSE compiler in-

frastructure [104]. During the AST generation, the SpiceC directives are converted to the

attributes of corresponding AST node (i.e., code constructs).

Two passes of analysis are performed on the AST. In the first top-down pass,

parallelism attributes are passed down from the outer loops to inner regions. Translation

of code regions requires parallelism information to generate correct synchronization code.

In the second bottom-up pass, inner regions’ attributes (e.g., ordering information and

atomicity checks) are passed to the outer loops. The information is needed for generating

initialization code. For example, if atomicity checks are specified inside inner regions, the

initialization of STM library must be inserted before the loop.

II. Generating code for synchronization and scheduling. After the AST analysis, the SpiceC

compiler generates code for synchronization and scheduling. Synchronization code controls

signal sending and waiting between regions. It is inserted at the beginning and/or end

of regions to enforce the execution order between region instances. Synchronization data

structures are created to hold signals. They are defined according to the form of parallelism.

Scheduling code controls how the loop iterations are scheduled. Calls to the scheduling

runtime library (as described in Section 2.2.1 are inserted before all parallel loops. The

parallelism type decides which scheduling policy is used.

III. Outlining parallel code region. At the end of the code translation, the parallel loops are

wrapped into functions, which can then be called for scheduling. Outlining is implemen-

tation using ROSE [104]. Outlining needs to be performed at last since the parameters
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of the wrapper functions are defined according to the data dependences. All above code

translation may change the data dependences and then invalidate outlining.

2.3 Evaluation

This section evaluates the performance of SpiceC on systems with and without

cache coherence support. Two implementations of SpiceC were developed: (1) the first

is designed for shared-memory systems with cache coherence using relaxed copy/commit

model and busy-waiting synchronization; and (2) the second is designed for shared-memory

systems without cache coherence using strict copy/commit model and message passing

synchronization. The experiments are conducted on a 24-core DELL PowerEdge R905

machine. Table 2.2 lists the machine details. The machine runs Ubuntu Server v10.04.

Both implementations run on the machine. Since the machine has hardware support for

cache coherence, accessing the shared space on it is faster than that on a system without

cache coherence. Therefore, the performance reported for the strict copy/commit model

is higher than the actual performance on a system without cache coherence. The machine

is used for evaluating the strict model because a manycore machine with message passing

hardware instead of cache coherence is not available.

Processors 4×6-core 64-bit AMD Opteron 8431 Processor (2.4GHz)

L1 cache Private, 128KB for each core

L2 cache Private, 512KB for each core

L3 cache Shared among 6 cores, 6144KB

Memory 32GB RAM

Table 2.2: Dell PowerEdge R905 machine details.
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2.3.1 Benchmarks

Benchmark LOC Parallelism Speculation? % of Runtime # of Dir.

streamcluster 300 DOALL No 88% 21

fluidanimate 206 DOALL No 96% 16

CRC32 15
DOACROSS No 100% 7
DOACROSS Yes 100% 5

256.bzip2 127
DOACROSS Yes 99% 17
pipelining No 99% 7–19

197.parser 1183 DOACROSS Yes 99% 15

ferret 84 pipelining No 99% 13–25

mpeg2enc 91 pipelining Yes 56% 13-21

Table 2.3: Benchmark details. From left to right: benchmark name, lines of code in the
parallelized loops, type of parallelism exploited, whether speculation is used, percentage
of total execution time taken by the parallelized loops, and number of directives used for
parallelization.

SpiceC was applied to benchmarks selected from PARSEC, SPEC CPU2000, Medi-

aBench, and MiBench suites. Two different forms of parallelism were applied to benchmark

CRC32 and bzip. For some of the benchmarks, their loops were unrolled to increase the

workload of each iteration. Table 2.3 shows the details of the benchmarks.

I. Benchmarks using DOALL. Streamcluster was developed to solve online clustering prob-

lem. It is from the PARSEC suite and thereby has a manually parallelized version. Its serial

version was parallelized with the SpiceC directives. There are 9 loops that can be paral-

lelized using DOALL. Among them, three loops need to compute sums of large arrays of

values. For the three loops, simple modifications was done to realize parallel sum reduction.

Fluidanimate was designed to simulate an incompressible fluid for interactive

animation purposes. It is also from the PARSEC suite. Its serial version requires manually

partitioning workloads for parallelization. SpiceC was applied to its pthread version with
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all pthread calls replaced by the SpiceC directives. In the pthread version, there are a lot

of lock operations for synchronization. In the SpiceC version, all these lock operations are

removed, which makes the program easier to understand.

II. Benchmarks using DOACROSS. The CRC32 program computes the 32-bit CRC used as

the frame check sequence in Advanced Data Communication Control Procedures (ADCCP).

Its kernel is shown in Figure 2.6. In each iteration, it first reads data from a file, then

calculates CRC based on the data, and finally summarizes the error code into variable

“error”. In the experiments, CRC32 was parallelized using two forms of parallelism. One

way to parallelizing it is applying non-speculative DOACROSS. The loop body was divided

into three subregions — input, computation and output. Input and output subregions need

to be executed in order since there are cross-iteration dependences in them. Computation

subregion can executed in parallel. The other way of parallelizing it is using speculation as

shown in Figure 2.6.

Bzip2 is a tool used for lossless, block-sorting data compression and decompression.

In the experiments, its compression part was parallelized. There are many superfluous cross-

iteration dependences on global variables in bzip2. To remove these dependences, many

global variables were made local to each iteration and replicate buffers for each iteration.

Bzip2 was parallelized using both DOACROSS and pipelining. For the DOACROSS version,

the loop body was divided into three subregions – input, compression, and output. Cross-

iteration dependences in input and output subregions are enforced by specifying execution

order for them. Cross-iteration dependences in compression subregions rarely manifest
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at runtime. Therefore, the compression subregion was executed speculatively. For the

pipelining version, the loop body was carefully divided into stages. Several functions were

inlined in the loop and some parts of loop were moved around to make the stages balanced.

Parser is a syntactic English parser based on link grammar. It was parallelized

using speculative DOACROSS. The problem with parser is that dependences may occurs

for many variables, including control variables which is a set of global variables and dictio-

nary structures which is a set of linked dynamic data structures. This causes the commit

operations to become bottlenecks for the parallelized program.

III. Benchmarks for pipelining. Ferret is a tool used for content-based similarity search of

feature-rich data. In the experiments, its serial version was parallelized using two different

forms of pipeline: a 6-stage pipeline and a more fine-grained 14-stage pipeline. To realize

the pipelining, several functions were inlined but no statement was moved.

Mpeg2enc is a MPEG video encoder. A loop in function “dist1” was parallelized

using a 5-stage pipeline and a 9-stage pipeline. Loop exits are required to be speculated to

achieve parallelization.

2.3.2 Performance of the Relaxed Model

Figure 2.8(a) shows the speedups of benchmarks with DOALL and DOACROSS

parallelisms using the relaxed model. As we can see, the performance of most benchmarks

scales well over the number of threads, except for streamcluster. The performance of

streamcluster goes down when the number of threads exceeds 20. This is because only

the inner loops of streamcluster were parallelized. As the number of threads increases,
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Figure 2.8: Speedup with the relaxed model.

the overhead of creating and joining threads gets higher while the workload for each thread

shrinks. Only results of 2, 4, 8, and 16 threads are shown for fluidanimate because it

can only take power of 2 as thread number. CRC32 achieves the highest speedup among

all the benchmarks. This is because most part of the program can be executed in parallel.

Its speculative version performs better than the non-speculative version since the misspec-

ulation rate is only around 0.1%. Parser and bzip2 achieves moderate speedup. Their

misspeculation rates are 0.92% and 0.5% respectively. Most performance loss is due to

atomicity checks.

Figure 2.8(b) shows the speedups of benchmarks with pipelining parallelism. The

number under each bar indicates the number of threads used. The figure only shows the

results of certain numbers of threads since it is hard to breakdown the program into arbitrary

number of stages. Their speedups are between 1.2x and 2.8x, much less than the speedups

achieved by DOALL and DOACROSS. For bzip2 and ferret, their poor performance is
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mainly due to the unbalanced workloads. For mpeg2enc, a significant performance loss is

due to its high misspeculation rate which is around 16%.

Figure 2.9 shows the average parallelization overhead on each thread. The num-

ber under each bar indicates how many threads are used when calculating the overhead.

The overhead includes time spent on synchronization, copy/commit, atomicity check, and

misspeculation recovery. As we can see, parallelization overhead increases with the num-

ber of threads. streamcluster and fluidanimate has higher overhead since they were

parallelized on more fine-grained level. The overhead of mpeg2enc is mainly due to high

misspeculation rate. Parser has moderate overhead, which is caused by the atomicity check

for dynamic data structures. A significant overhead of bzip2 using pipelining is synchroniza-

tion due to unbalanced workloads. The rest benchmarks have relatively low parallelization

overhead.

2.3.3 Performance of the Strict Model

Figure 2.10(a) shows the speedups for benchmarks with DOALL and DOACROSS

parallelism using the strict model. Similar to results in the previous section, the performance

of most benchmarks scales well with the number of threads, except for streamcluster. We

can see that CRC32 and bzip2 are not affected much by using strict copy/commit model.

CRC32 still achieves highest speedup since it has very few variables that require copying.

Bzip2 needs to copy only a few more variables using the strict model. Therefore, its per-

formance does not degrade much. The performance of Streamcluster and fluidanimate

are greatly degraded by use of the strict model. The major part of performance loss is due
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Figure 2.9: Parallelization overhead with the relaxed model.
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Figure 2.10: Speedup with the strict model.
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to the large amount of data that needs to be copied. Streamcluster and fluidanimate

require 98MB and 163MB respectively memory space at runtime. Using the strict model,

they need to dynamically copy/commit most of the data in each parallel region. Since

the parallelization is done at fine-grained level, the copy and commit overhead is significant

compared to the computation workload assigned to each thread. Therefore, streamcluster

and fluidanimate show loss of performance using the strict model. Parser also takes a mod-

erate performance hit using the strict model. This is because many dynamic data structures

need to be copied even though they are read-only. Figure 2.10(b) shows the speedups of

the benchmarks with pipelining parallelism. Bzip2 loses performance because some buffers

need to be copied between subregions. Mpeg2enc is parallelized at very fine-grained level.

The extra copy and commit overhead significantly drags down its performance. Ferret is

only slightly affected by using the strict model. Its workload is well partitioned so that

there is not much data requiring copy and commit.

Figure 2.9 shows the average parallelization overhead on each thread when using

the strict model. The number under each bar indicates how many threads are used when

calculating the overhead. As we can see, parallelization overhead increases in the strict

model. Streamcluster and fluidanimate incur up to 30% overhead due to extra copy

and commit operations. Parser’s overhead using 24 threads goes from 8% up to 18%

which significantly degrades its performance. Mpeg2enc’s overhead with the 9-stage pipeline

increases by 5%, which is significant compared to each stage’s workload.
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Figure 2.11: Time overhead with the strict model.

2.4 Summary

This chapter has presented the core SpiceC system. It has a shared memory

parallel programming model that is designed to exploit various forms of parallelism and

can be ported across shared memory multiprocessors that may or may not support cache

coherence. The SpiceC programming model provides a set of compiler directives, which can

be easily used to parallelize sequential programs. The implementation of SpiceC consists

of a source-to-source compiler and a runtime library. The compiler translates the high-

level SpiceC code into explicitly parallel code while the runtime provides support for access

control, synchronization, and loop scheduling. The SpiceC system executes programs using

different runtime schemes to achieve optimal performance on systems with and without

cache coherence support.
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Chapter 3

Support for Speculative Execution

Many real-world applications that cannot be statically parallelized due to the

presence of dependences have been observed to contain high levels of parallelism. This is due

to the fact that the dependences present arise very infrequently at runtime. To exploit this

form of dynamic parallelism, speculative parallelization [107, 126, 43] has been proposed.

Speculative parallelization executes the code in parallel, optimistically assuming that the

dependences which inhibit parallel execution will not arise. However, the runtime looks

out for the manifestation of such dependences, and if they do arise, the code is reexecuted

preserving the original sequential semantics of the program.

While exploiting dynamic parallelism is highly desirable, programming specula-

tively parallelized code in an unmanaged language, such as C/C++, is a demanding task

for programmers. In this chapter it is shown how the SpiceC compiler addresses this problem

by automatically generating speculatively executed code. Table 3.1 shows the programming

burden of writing speculatively executed code using previous software transactional mem-
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ory (STM) [118] implementations. All of these implementations require significant amount

of programming effort, including inserting read/write barriers for each shared read/write,

annotating functions called directly and indirectly in a transaction (i.e., a speculatively

executed code region), and manually handling the precompiled functions and system calls.

In the SpiceC system, all these tasks are automatically done by the compiler, which greatly

alleviates the programming burden.

STM libs Intel STM SpiceC

Instrumenting shared Manual Auto Auto
accesses

Annotating speculative Manual Manual Auto
functions

Dealing with precompiled Manual Manual Auto
library functions

Dealing with system calls Manual Manual Auto

Table 3.1: A comparison of programming burden for writing speculatively executed code.
Manual — tasks done manually by the programmer; Auto — tasks done automatically by
the compiler.

With the SpiceC programming model, programmers only need to mark the code

regions that need to be executed speculatively. The compiler generates code for speculative

execution by automatically inserting STM constructs (which implement the copy/commit

operations as mentioned in Section 2.2.1). The compiler also provides support for precom-

piled library functions (e.g., C standard library) and system calls (e.g., I/O operations and

system calls) to enable their parallel execution within transactions.

This chapter presents the design of the SpiceC compiler that transforms annotated

C/C++ code into speculatively-executable code based on the high-level SpiceC directives.

A series of important optimizations are introduced for reducing the overhead of speculative
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execution, including: placement of read/write barriers only for accesses that actually can

cause a data race; elimination of redundant read/write barriers by caching shared variables;

and eliminating unnecessary search in the write buffer.

3.1 Code Generation for Speculative Execution

The key part of the SpiceC compiler is automatically inserting the STM constructs

into the C/C++ code to achieve the speculative execution as well as the copy/commit

scheme in the strict model. Since the copy/commit scheme is part of the speculative exe-

cution, this chapter mainly focus on the code generation for speculative execution.

Automatically inserting STM read/write barriers (i.e., the copy operations) into

the C/C++ code is very challenging. First, for C/C++ programs, the compiler must

generate code statically—it is impossible to use JIT compilation as managed languages do.

JIT compilers can perform operations such as creating an atomic clone for a function on the

fly, dynamically suppressing redundant/dead barriers, and transact-ifying library functions

by inlining them, which static compilation cannot do. Second, due to the unsafe use of

pointers in C/C++ programs, the compiler is forced to use word-based STMs while the

compilers for managed languages can use object-based STMs. Finally, without type safety,

shared reads/writes should be checked conservatively, which further makes reducing STM

overhead quite challenging.

The SpiceC compiler translates programs annotated with the SpiceC directives into

source code instrumented with calls to the STM library — TL2 [41]. Figure 3.1 shows the

process of code generation, where the grey blocks indicate the work done by the compiler.
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The user code is written in C/C++ annotated with the SpiceC directives. The compiler

first takes the user code as input and translates the functions and calls based on the call

graph. It then instruments code with low-level STM API constructs and uses static data

race analysis to find shared data accesses, as described in detail in Section 3.1.2. Finally,

the compiler eliminates redundant read and write checks to reduce the overhead, which will

be described in Section 3.3. The generated code is C/C++ code with calls to low-level

STM functions, and can be compiled with regular compilers, such as GCC, to generate an

executable binary.
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Figure 3.1: Overview of code generation.
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3.1.1 Function Translation

This first step in code translation is to translate all functions defined in the user

code according to their call sites and their usage via function pointers. To do this, the

compiler first statically analyzes the user code to generate the static call graph. Based on

the call graph, the compiler classifies the functions into the following four types.

1. Atomic functions are functions called only inside transactions (i.e., code subregions

specified with atomicity checks). In other words, their call sites are either in transac-

tions or in other atomic functions. These functions need to be executed atomically.

Therefore, the compiler must instrument the shared reads/writes in them with low-

level STM API constructs.

2. Non-atomic functions are functions that are never called in any transaction, i.e., these

functions are called either outside transactions or from non-atomic functions. The

compiler does not need to do any special code translation for these functions unless

the strict copy/commit model is used.

3. Double-duty functions are functions called both inside and outside transactions. The

compiler creates atomic clones for such functions and instruments the clones with low-

level STM API constructs. All calls to these functions that appear in transactions are

replaced with calls to their atomic clones.

4. Dynamically-called functions are functions called through function pointers. Since

these functions may be called both inside and outside transactions, it can only be

decided at runtime whether to call the original function or its atomic clone. To solve
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this problem, for each dynamically-called function, the compiler creates an atomic

clone and places a conditional call to the atomic clone at the beginning of the original

function. Figure 3.2 gives an example: the original function checks a thread-local

variable, inside transaction at the beginning. The variable is set to be true when

the current thread enters a transaction. If the variable is true, the original function

then calls its atomic clone; otherwise, the original statements inside the function are

executed.

int original func()

{

if ( inside transaction == true )

return atomic func();

// original statements here

}

Figure 3.2: Code translation for a dynamically-called function.

3.1.2 Code Instrumentation

After function translation, the compiler instruments the transaction code, atomic

functions, and atomic clones of functions with low-level STM API constructs. Table 3.2

presents the low-level STM API calls used by the SpiceC compiler. This API is designed

for word-based STM libraries, such as TL2 [41] and TinySTM [46]. SpiceC uses word-based

STM libraries rather than object-based libraries due to the lack of type safety and the
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presence of unsafe pointer arithmetic in C/C++ [134]. Although the compiler is designed

to generate code for STM libraries, it can also be used for hardware and hybrid TM libraries

as long as their implementations are compatible with the API listed in Table 3.2.

API function Description

txDesc* stmGetDesc() Get a transaction descriptor.

void stmBegin(txDesc*) Start a transaction

void stmEnd(txDesc*) Validate/commit a transaction

void stmAbort(txDesc*) Explicitly abort a transaction

Type stmRead〈Type〉(txDesc*, Type*) STM read barrier

void stmWrite〈Type〉(txDesc*, Type*, Type) STM write barrier

void stmReadBytes(txDesc*, void*, void*, size t)) STM read barrier

void stmWriteBytes(txDesc*, void*, void*, size t)) STM write barrier

void stmLogStack(txDesc*) Log local variables on the stack

void stmLogBytes(txDesc*, void *, size t) Log a specific memory location

(void*) stmMalloc(txDesc*, void*) STM malloc

void stmFree(txDesc*, void*) STM free

Type stmDirectRead〈Type〉(txDesc*, Type*) STM read barrier without
searching the write buffer

Table 3.2: The low-level STM API used in translated code.

All low-level STM APIs require a transaction descriptor as an input. The trans-

action descriptor is obtained by calling the function stmGetDesc. Each thread has a unique

transaction descriptor, which is created in thread-local storage when function stmGetDesc

is called for the first time in the thread. Calls to function stmGetDesc are inserted before

every transaction. To eliminate redundant accesses to thread-local storage within a trans-

action, a local variable is used to hold the transaction descriptor and passed to every called

atomic function through arguments.

The compiler inserts the stmBegin and stmEnd API calls at the boundaries of

transactions to start and commit them. The stmAbort call is inserted where explicit
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transaction abort is specified. The above three inserted functions dynamically decide

if the transaction is nested in another transaction by checking a thread-local variable

inside transaction. If so, they start/end the transaction as an inner transaction; other-

wise, the transaction is treated as an outermost transaction. In previous works [134, 93],

transactions are statically classified as outermost transactions and inner transactions and

different API constructs are inserted to start/commit them. Dynamic checks are used be-

cause a function containing transactions may be called from both inside and outside of other

transactions. Therefore, the transactions in the function may be either outermost or inner

transactions, depending on the function’s call site.

Barrier functions perform the required STM operations to ensure consistency and

detect conflicts for shared memory accesses in transactions. Read/write barriers are imple-

mented for each basic data type in C/C++. For user-defined data constructs, stmReadBytes

and stmWriteBytes are used as read/write barriers. The SpiceC compiler instruments

atomic code with read/write barriers as follows:

1. Find Shared Variables. It is very important for the compiler to only place read/write

barriers at necessary places since they are usually time-consuming at runtime. In-

strumenting all accesses to global/heap variables with read/write barriers usually

introduces unnecessary barriers since some of global/heap variables may be read-only

in transactions, or may not be shared across transactions. To avoid placing unnec-

essary read/write barriers, the compiler uses static data race analysis [102] to find

potentially shared variables, i.e., variables that two transactions may access without

synchronization and one of the accesses is a write.
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2. Normalize Operators. The compiler then normalizes C/C++ operators on these vari-

ables. In C/C++, a variable reference may be both a read and a write at the same

time. Since the compiler works on C/C++ source code, it cannot directly insert

read/write barriers for such variable references. For example, the reference to a in

a++ is both a read and a write. To enable barrier insertion, the compiler converts a++

to a=a+1, where the first reference to a is a write and the second is a read.

3. Insert Barriers. Finally, the compiler inserts read/write barriers for accesses to the po-

tentially shared variables found in step 1. For example, after instrumentation, a=a+1

will be stmWriteInt(tx, &a, stmReadInt(tx, a)+1), where tx is the transaction

descriptor.

Although it is not necessarily to detect conflicts for writes to live-in private vari-

ables (including local variables on the stack, thread-local variables, and global variables that

are not shared), the original values in these variables need to be logged to allow rollback if

needed. The compiler inserts stmLogStack before each transaction to save the local state.

Function stmLogStack uses the ebp and esp registers to locate and save the local variables

on the stack. The compiler also inserts stmLogBytes before every write to thread-local vari-

ables and global variables that are not shared. The function saves the value at an address

if the address has not been logged in the transaction.

Functions stmMalloc and stmFree are the STM versions of malloc and free. The

compiler replaces malloc and free in transactions with the STM versions. The read barrier

stmDirectRead is used for an optimization discussed in Section 3.3.
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3.2 Support for Library Functions

In previous works [134, 93, 12], two types of functions cannot be transact-ified:

precompiled library functions and functions that cannot be rolled back (e.g., system calls

and I/O operations). Calls to these types of functions within transactions can be detected

by either the compiler or the runtime system. If a transaction is identified to contain such

function calls, it is executed in serial mode, i.e., other transactions cannot run concurrently

with it. This makes it impossible to speculatively parallelize code that contains calls to

precompiled or irreversible functions. This section introduces two SpiceC directives to

avoid serialization of transactions when such functions are called in transactions.

3.2.1 Precompiled Library Functions

Construct #pragma SpiceC precompiled is designed to annotate precompiled li-

brary functions so that the compiler can transact-ify them. The syntax is given in Figure 3.3.

#pragma SpiceC precompiled [read(. . .)] [write(. . .)]

// function declaration here

Figure 3.3: Syntax of the precompiled construct.

The directive is introduced immediately preceding a function declaration, and tells

the compiler what memory locations the function reads and writes. A memory location can

be a variable or a (pointer,size) pair. After a precompiled function is annotated with the

construct, it can be used as a regular function in transactions. In a transaction where the
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function is called, the compiler creates local copies of the shared memory locations that the

function accesses. The function then works on the local copies instead of directly accessing

the shared memory locations. In this way, the need to transact-ify the code inside the

function is eliminated since the function does not touch shared memory locations. The

compiler only needs to add read/write barriers when copying data between shared memory

locations and local copies. The transactions with annotated library functions can thus be

executed in parallel with other transactions.

#pragma SpiceC precompiled read(x)

float sin (float x);

. . .

#pragma SpiceC precompiled \

read(dst, src, num, (*src, num)) \

write((*dst, num))

char * memcpy(void *dst, void *src, size t num);

Figure 3.4: Using the precompiled construct to annotate function declarations.

The code given in Figure 3.4 provides an example with the precompiled construct

used to annotate two library functions. The first function is a mathematical function pro-

vided by the C numerics library. Argument x is placed in the read clause since it is read

in the function. The write clause is omitted since no variable is written by the function.

The second function is a memory copy function provided by C string library. It copies the
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values of num bytes from the memory location pointed to by src to the one pointed to by

dst. Since the function reads the num-byte memory block pointed to by src, (*src, num)

is placed in the read clause. Similarly, (*dst, num) is put in the write clause.

In certain cases it is impossible to know the memory locations accessed by a

function until it is called. In such cases, programmers can use the precompiled construct

to annotate the call site of the function. In Figure 3.5, the function copies a string pointed

to by src into the array pointed to by dst. The string ends in a null character. It is

impossible to know the memory size accessed by the function at its declaration, since the

string length is not fixed. However, programmers can conservatively annotate the function

at its call site since the maximum length of the string (i.e., the size of the allocated memory

block) is known at that time.

Calls to an annotated library function need to be translated and instrumented with

low-level STM API constructs for the purpose of conflict detection and potential rollback.

Instrumenting calls to a precompiled function proceeds as follows:

1. Log Values of Thread-local Variables. For every thread-local variable in the write

clause, the compiler uses the log functions to log their values as they may be needed

in case of a rollback.

2. Create Local Copies for Shared Variables. For every shared scalar variable in the read

and write clauses, the compiler creates a local variable on the stack. The compiler

initializes the local copies of the variables in the read clause by using stmRead〈Type〉.

For other shared variables (such as arrays, objects, and dynamic data structures) in

the read and write clauses, the compiler uses malloc to allocate space for their local
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char src[256], dst[256];

#pragma SpiceC region R1

{

... // statements here

#pragma SpiceC precompiled \

read(dst, (*src, 256), src) \

write((*dst, 256))

strcpy(dst, src);

#pragma SpiceC commit atomicity check

}

Figure 3.5: Using the precompiled construct to annotate function call sites.

56



copies and assigns the starting addresses to the corresponding pointers. Function

stmReadBytes is called to copy data for these variables. The compiler replaces the

function arguments with their local copies.

3. Update Values of Shared Variables. After the function is completed, the shared vari-

ables in the write clauses need to be updated with the values in their local copies.

Therefore, the compiler inserts calls to stmWrite〈Type〉 and stmWriteBytes after the

function call for shared variables in the write clause. Finally, the compiler frees all

temporarily allocated variables.

Figure 3.6 the translated call to precompiled function memcpy, whose annotation

was described before.

int l num = stmReadInt(tx, &num);

void *l src = (void*)malloc(tx, 256);

void *l dst = (void*)malloc(tx, 256);

stmReadBytes(tx, (void*)l src, (void*)src, 256);

memcpy(l dst, l src, l num);

stmWriteBytes(tx, (void*)dst, (void*)l dst, 256);

free(l src); free(l dst);

Figure 3.6: The translated call to precompiled function memcpy.
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3.2.2 Irreversible Functions

In some transactions that call irreversible functions, other statements may not be

data-dependent on the irreversible functions. For example, function printf only prints

text on the screen but does not produce any data. Another example is function system,

which invokes the shell to execute a system command. Other statements in the transaction

may not depend on the system command. Therefore, in these transactions, the execution

of such functions can be safely suspended during speculative execution. The input of these

functions are buffered during the speculative execution and the functions are executed when

the transactions have completed successfully.

Construct #pragma SpiceC suspend is designed to annotate the functions to be

suspended during the speculative execution. Its syntax is similar to that of the precompiled

construct except that there is no write clause; it annotates function declarations, as shown

in Figure 3.7. The putchar function is an output function from the standard C library—it

prints the character c to the current position in the standard output. Since the function

does not use any pointer as argument, programmers can annotate it when it is declared.

#pragma SpiceC suspend read(c)

int putchar (int c);

Figure 3.7: Using the suspend construct to annotate function declarations.

Similar to the precompiled construct, the suspend construct can also be used at

function call sites as shown in Figure 3.8. In the example, function puts writes the string
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char str[256];

#pragma SpiceC region R1

{

... // statements here

#pragma SpiceC suspend read(str, (*str, 256))

puts(str);

#pragma SpiceC commit atomicity check

}

Figure 3.8: Using the suspend construct to annotate function call sites.

pointed to by str to standard output. As the string ends in a null character, it is impossible

to know the string length at the function declaration. Therefore, the function needs to be

annotated at its call site, where the maximum length of the string is known.

Calls to an annotated irreversible function need to be translated and instrumented

to enable suspending with transactions. The compiler instruments calls to irreversible

functions as follows:

1. Record Arguments. For every variable in the read clause, the compiler pushes its value

in the thread-local queue args. For shared variables, stmRead〈Type〉 or stmReadBytes

is called inside the push function to ensure consistency. These values will be used to

invoke the irreversible function outside the transaction.

2. Record Function. The compiler replaces the function call with a statement that saves
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the function identifier (generated from the function name for each annotated function)

in the thread-local queue funcs. The function identifier will be used to invoke the

irreversible function outside the transaction.

3. Call Function Outside. The compiler generates a wrapper function resume suspended funcs

that goes through these queues and calls the irreversible functions they contain. The

wrapper function will be called from stmEnd when the transaction is successfully com-

mitted.

The code given in Figure 3.9 shows the translated call to irreversible function

putchar, whose annotation was described before.

A global lock is used to prevent the wrapper functions called in different transac-

tions from interleaving. A thread needs to acquire the lock before performing a wrapper

function during the commit phase.

The precompiled and suspend constructs can be used to annotate most C/C++

standard library functions. However, there is one case where these constructs cannot be

used—the standard template library (STL). This is because some STL functions operate

on linked data structures, hence it is difficult to determine the memory locations that are

accessed prior to executing them.

3.3 Optimizations

Section 3.1.2 has presented the use of static data race analysis for reducing the

number of read/write barriers inserted in the code. This section presents three other compile
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stmBegin(tx);

. . . // statements here

args.sharedpush(tx, &c, sizeof(char));

funcs.push( F PUTCHAR );

stmEnd(tx);

. . .

void resume suspended funcs() {

while ( !funcs.empty() )

switch ( funcs.pop() ) {

case F PUTCHAR:

putchar( *((char*)args.pop()) );

break;

. . .

}

}

Figure 3.9: Translated call to irreversible function putchar.
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time optimizations to reduce the time overhead incurred by STM.

3.3.1 Eliminating Redundant Barriers

During code instrumentation, redundant read/write barriers may be introduced

in the code, which can significantly increase the STM overhead. Figure 3.10 shows two

arithmetic statements and their intermediate code with read/write barriers.

Original code Intermediate code
b = a+1; stmWriteInt(tx, &b, \

stmReadInt(tx, &a)+1);

b = a*b; stmWriteInt(tx, &b, \
stmReadInt(tx, &a)* \
stmReadInt(tx, &b));

Figure 3.10: An example of intermediate code with read/write barriers.

In the intermediate code, read barrier is called three times and write barrier

is called twice. Actually, only two barriers are required in this code, one read barrier for a

and one write barrier for b (all other barriers are redundant).

To eliminate redundant barriers in an expression, the compiler first creates tem-

porary variables to hold the values loaded/stored by read/write barriers and uses the tem-

porary variables in the expression. Figure 3.11 shows the previous intermediate code with

temporary variables inserted for read/write barriers.

With temporary variables, read/write barriers are separated from the original

statements. A read barrier can be eliminated if it is pre-dominated by read or write barriers

to the same variable within the same transaction. A write barrier can be eliminated if

it is post-dominated by write barriers to the same variable within the same transaction.
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l a = stmReadInt(tx, &a);

l b = l a+1;

stmWriteInt(tx, &b, l b);

l a = stmReadInt(tx, &a);

l b = stmReadInt(tx, &b);

l b = l a*l b;

stmWriteInt(tx, &b, l b);

Figure 3.11: Intermediate code with temporary variables.

Figure 3.12 shows the final code generated for the previous example after elimination of

redundant barriers.

l a = stmReadInt(tx, &a);

l b = l a+1;

l b = l a*l b;

stmWriteInt(tx, &b, l b);

Figure 3.12: Final code after redundancy elimination.

3.3.2 Reducing Searches in Write Buffers

Since the overhead of write buffering-based STMs comes largely from searching

write buffers [114], eliminating unnecessary data searches in write buffers can greatly im-
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prove performance. To eliminate unnecessary searches in write buffers, the SpiceC compiler

checks the control flow for each read barrier. If a read barrier is not preceded by any write

barrier to the same variable within the same transaction, it does not need to search the

transaction’s write-set since the variable cannot be in the write-set. The compiler replaces

such read barriers with calls to stmDirectRead〈Type〉, which is a read barrier that reads a

value in a regular memory location without searching the write-set.

3.3.3 Synchronization Between Transactions

Speculative parallelization often requires transactions to be committed in a spe-

cific order, to preserve the sequential semantics of the original program. One way to enforce

a commit order between transactions is to place synchronization code prior to the end of

the transaction. However, this has two major drawbacks. First, performing synchroniza-

tion in transactions introduces extra overhead since synchronization code usually does not

need to be executed speculatively. Second, performing synchronization in transactions may

cause transactions to abort, due to inconsistent states of shared data structures used for

synchronization. Therefore, it increases transaction abort rates.

For example, in Figure 3.13, busy-waiting is used to synchronize the transaction

commit. In the example, the transaction will not commit until a signal is received. Let

us assume that when the transaction enters the busy-waiting loop, variable signal’s value

is 0. The value of signal can be changed to 1 after the transaction has started, e.g.,

by another transaction. This leads to an inconsistent memory state since the transaction

eventually sees two values (‘0’ and ‘1’) for variable signal. Most STM implementations,
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#pragma SpiceC region R1

{

... // statements here

while (signal == 0);

#pragma SpiceC commit atomicity check

}

Figure 3.13: Busy waiting inside a transaction.

such as Transactional Lock II (TL2) [41], will abort the transaction in this case since

inconsistent memory state may trigger a fatal exception (e.g., segmentation fault) or cause

the transaction to enter an endless loop.

SpiceC introduces a directive, #pragma SpiceC beforevalidate, which specifies

code that is executed non-speculatively immediately before the atomicity check is performed.

The beforevalidate construct is designed for synchronization between transaction com-

mits to keep the sequential semantics of the original program.

For example, the preceding synchronization code can be written as shown in Fig-

ure 3.14. In the example, the busy-waiting loop is executed non-speculatively before trans-

action validation and commit. Therefore, it will not cause extra overhead or increase trans-

action abort rate.

It should be noted that this construct is different from commit handlers proposed

in previous works [85, 12]. The construct is used for synchronization to preserve the se-

quential semantics of the original program. Therefore, the statement block specified by
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#pragma SpiceC region R1

{

... // statements here

#pragma SpiceC commit atomicity check

}

#pragma SpiceC beforevalidate

{

while (signal == 0);

}

Figure 3.14: Busy waiting using the beforevalidate construct.

beforevalidate is executed before transaction validation. In contrast, a commit handler

allows the programmer to specify code that runs once a transaction is known to have com-

pleted successfully, hence a commit handler is executed after transaction validation.

3.4 Safety

This section presents the solutions to two safety issues during compilation.

3.4.1 Aliasing of Shared Variables

Temporary variables introduced by redundancy elimination (as described in Sec-

tion 3.3) may cause aliasing issues. For example, the snippets given in Figure 3.15 show

original code that manipulates two pointers (left) and hypothetical code that would be
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generated if aliasing was not handled safely (right). The hypothetical code eliminates the

read barrier for the third statement a=*p since it is pre-dominated by a write barrier to the

same location. However, in this example, if p and q point to the same memory location, the

value of a in the hypothetical code will be wrong since a always gets its value from t1. To

solve this problem, a temporary variable that holds data pointed to by a pointer is killed

when another pointer is dereferenced.

Original code Hypothetical (unsafe) code

*p = f();

*q = g();

a = *p;

t1 = f();

stmWriteInt(tx, p,

t1);

t2 = g();

stmWriteInt(tx, q,

t2);

a = t1;

Figure 3.15: An example of aliasing.

3.4.2 Exception Handling

Exceptions in transactions require careful consideration and treatment since excep-

tion objects may contain data from speculative states. Uncaught exceptions that propagate

out of a transaction may pollute the non-speculative state with data from the speculative

state and thus causes inconsistent memory state. The SpiceC compiler inserts code to catch

all exceptions in transactions. When an exception is caught, the function stmEnd is called

to validate the transaction. If the transaction passes validation, the transaction is commit-

ted and the exception is transferred to the handler outside the transaction; otherwise, the

transaction is rolled back and the exception is discarded.
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3.5 Evaluation

This section evaluates the SpiceC compiler for generating speculatively executed

code. The experiments were conducted on an 8-core DELL PowerEdge T605 machine.

Table 3.3 lists the details of the machine. The machine ran CentOS v5.5.

Ten applications were used to evaluate the SpiceC compiler: eight STAMP bench-

marks and two real applications—Velvet and ITI. Table 3.4 lists their description. This

section first presents the experimental results for the STAMP benchmarks. It then intro-

duces the real applications, explains how they were parallelized using our approach, and

presents the results of performance evaluation.

3.5.1 STAMP Benchmarks

STAMP is a benchmark suite designed for STM research. It consists of eight

parallel benchmarks [91]. All STAMP benchmarks are originally instrumented with low-

level STM constructs. To evaluate the SpiceC compiler, the low-level STM constructs in

the STAMP benchmarks were replaced with the SpiceC directives. Each benchmark has

two input data sets. In the experiments, the larger input data set is used since it is more

suitable for experiments on real machines. Two of the benchmarks, Kmeans and Vacation,

Processors 2×4-core AMD Opteron processors (2.0GHz)

L1 cache Private, 64KB for each core

L2 cache Private, 512KB for each core

L3 cache Shared among 4 cores, 2048KB

Memory 8GB RAM

Table 3.3: Machine details.
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Program Source Programming effort
STM API Intel STM SpiceC compiler

barrier other boundary precomp. irrev.

Bayes STAMP 49 127 75 15 0 0

Labyrinth STAMP 36 62 31 3 0 0

Genome STAMP 60 62 31 5 0 0

Intruder STAMP 75 190 95 3 0 0

Kmeans STAMP 8 9 3 3 0 0

Ssca2 STAMP 24 31 10 10 0 0

Vacation STAMP 63 296 151 3 0 0

Yada STAMP 99 225 115 6 0 0

Velvet real – – – 2 0 9

ITI real – – – 1 2 30

Table 3.4: Benchmark summary and programming effort (number of constructs) when using
the low-level STM API, the Intel STM compiler, and the SpiceC compiler. Programming
effort using the low-level STM API is split into constructs used for read/write barriers and
others, while programming effort using the SpiceC compiler is split into constructs used for
transaction boundaries, precompiled functions, and irreversible functions.

have inputs with low contention and inputs with high contention. Both were used in the

experiments to show the performance on different contention levels.

Programming Effort

To compare the programming effort with prior approaches, Table 3.4 shows the

number of programming constructs inserted into the benchmarks, using the low-level STM

API, the Intel STM compiler, and the SpiceC compiler. The reported numbers include

the number of programming constructs inserted in the library functions called in these

benchmarks. With the low-level STM API, programmers must define transaction bound-

aries, insert read/write barriers, and add STM-related arguments to function declarations.

When using the Intel STM compiler, programmers must define transaction boundaries and

annotate the functions called within transactions. The SpiceC compiler only requires pro-

69



grammers to define transaction boundaries (i.e., the region directives).

Compared to the low-level STM API, the SpiceC compiler requires on average 97%

fewer programming constructs to be inserted into each benchmark. For each benchmark

in the PARSEC benchmark suite, the number of accesses to global/heap variables within

transactions was counted. On average each transaction contains 144 accesses to global/heap

variables, out of which 81 are shared accesses. To achieve better performance with the low-

level STM API, programmers need not only place read/write barriers, but also put effort in

examining all the accesses to global/heap variables to see whether they are shared accesses.

The SpiceC compiler liberates programmers from the burden of identifying shared accesses

and placing read/write barriers. Compared to the Intel STM compiler, the SpiceC compiler

requires on average 91% fewer programming constructs to be inserted into each benchmark.

With the SpiceC compiler, programmers do not need to annotate any function called within

transactions. Overall, the SpiceC compiler only requires 3–15 programming constructs for

each benchmark.
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Figure 3.16: Speedups over sequential versions of the same programs achieved by the SpiceC
compiler using 1, 2, 4, and 8 threads.
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Performance

Figure 3.16 shows the speedups achieved for each STAMP benchmark using differ-

ent numbers of threads. For each benchmark, the baseline is the single-threaded orig-

inal version of the program. Numbers greater than 1 reflect better performance than

the single-threaded original versions. The numbers are measured using all optimizations.

With 8 threads, the SpiceC compiler achieves speedups for all STAMP benchmarks except

vacation-high and yada. For vacation-high and yada, the large number of read/write

barriers imposes a significant performance penalty. On average, the SpiceC compiler achieves

1.65x speedup for the STAMP benchmarks with 8 threads.

Optimization Benefits

The benefits of various optimizations are evaluated. The optimizations include

using static data race analysis (DRA) to avoid placing barriers for accesses that do not

cause data races, caching the values loaded/stored by shared reads/writes to eliminate

redundant barriers (ERB), and eliminating unnecessary searches (EUS) in write buffers for

data that are definitely not present in write buffers.

Table 3.5 compares the number of read/write barriers inserted with different opti-

mizations. In the baseline, read/write barriers were inserted for every access to global/heap

data, which are potentially shared by threads. As we can see, in the baseline, each bench-

mark has on average 144 read/write barriers. DRA reduces the number of barriers by 25.3%

on average for these benchmarks. The number of barriers inserted in yada is reduced signif-

icantly since yada operates on numerous locally-allocated objects. ERB further reduces the
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Program Baseline DRA DRA+ERB

Bayes 172 87 71

Labyrinth 107 67 67

Genome 40 40 37

Intruder 183 152 148

Kmeans 7 7 7

Ssca2 24 24 24

Vacation 196 180 156

Yada 424 304 289

Average 144 108 100

Table 3.5: Number of read/write barriers inserted with various optimizations.

number of barriers by 7.2%. EUS does not reduce the number of barriers since it only elim-

inates the unnecessary searches in write buffers. Since kmeans and ssca2 have only small

transactions that do not call any functions, their baseline does not contain any barriers to

eliminate. Overall, the optimizations eliminate 30.7% of the barriers from the baseline.
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Figure 3.17: Performance with different optimizations.

Figure 3.17 shows the impact of various optimizations on program performance.

The numbers were measured using 8 threads. In the baseline, read/write barriers are
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inserted for every access to global/heap data. DRA improves the performance by 23.3%

on average for these benchmarks. The performance of bayes and labyrinth is improved

most since a lot of barriers in them are eliminated by DRA. ERB and EUS further improve

the performance by 7.4% and 5.4% for these benchmarks. EUS significantly improves

performance for genome and kmeans since they have shared read-only data. Overall, the

optimizations improve the performance by 32.8% on average for these benchmarks.
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Figure 3.18: Performance comparison of the hand-coded transactional code, the Intel STM
compiler, and the SpiceC compiler.

Comparison

Figure 3.18 compares the performance of hand-coded transactional code using

the low-level STM API, the Intel STM compiler, and the SpiceC compiler. The STAMP

benchmark suite provides hand-coded transactional code via low-level STM constructs.

To measure the performance of the Intel STM compiler, their programming constructs

were applied to the STAMP benchmarks. The numbers were measured using 8 threads.

Among the three implementations, the hand-coded transactional code achieves the best
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performance. This is expected since a lot of effort has been spent on manually optimizing the

hand-coded transactional code provided by STAMP. For example, there are no redundant

barriers in the hand-coded transactional code. The performance of the SpiceC compiler

is quite close to that of the hand-coded transactional code. Compared to the hand-coded

transactional code, the programs generated by the SpiceC compiler are slower by 14.3%.

Compared to the Intel STM compiler, the SpiceC compiler improves the performance by

20.8%.

3.5.2 Real Applications

This section evaluates the SpiceC compiler using two real applications, Velvet

and ITI. These applications are used to show that the SpiceC compiler has low programmer

burden and can improve performance for loops with precompiled and irreversible functions.

The low programming burden is evident in the last two rows of Table 3.4: users only need

to add just 11 constructs for Velvet and 33 for ITI. Note that, since low-level STM APIs

cannot be used to transact-ify irreversible functions, they cannot be used for these two real

applications (see ‘–’ entries in Table 3.4). Similarly, the Intel STM compiler cannot be used

to parallelize these applications because the compiler serializes the execution of transactions

that contain precompiled and irreversible functions.

Velvet Genomic Assembler

Velvet [143] is a widely-used genomic assembler designed for short read sequencing

technologies. Due to its popularity, developers have put a lot of effort into parallelizing it.
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In the latest version of velvet (version 1.1), fine-grained locks (i.e., one lock for each

shared object) are used to parallelize two loops in function fillUpGraph. The two loops

account for approximately 50% of the execution time. To apply fine-grained locks, 257

lock-related statements were added by the Velvet developers. Apart from the extra code,

the programmer must ensure that there is no deadlock and no livelock. Lock contention

needs to be managed to maximize program performance. For example, programmers must

determine whether threads should spin or block when acquiring a lock.

The SpiceC compiler was used to speculatively parallelize the two loops. Each

iteration of the two loops is treated as a transaction. Numerous output operations (e.g.,

fprintf) and system calls (e.g., sysconf) are called inside the two loops. Since these func-

tions are irreversible, 9 programming constructs were inserted to suspend and perform the

functions outside the transactions. Out of the 9 inserted constructs, 3 were used to anno-

tate system calls and 6 were used to annotate output operations. In total, 11 programming

constructs were inserted in velvet, including 2 for annotating the transaction boundaries.

Figure 3.19 compares the performance of the SpiceC compiler and fine-grained

locks (FGL). The baseline is the sequential version of velvet. The numbers were measured

using nucleotide sequence SRR027005 [2] as input. With only 11 programming constructs

added, the SpiceC compiler achieves 1.48x speedup using 8 threads. Compared to code

with fine-grained locks, the code generated by the SpiceC compiler is slower by only 11.4%.

Considering the significantly lower programming effort, the SpiceC compiler provides an

easy way to parallelize real applications.
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Figure 3.19: Speedups of Velvet over its sequential version.

Incremental Tree Inducer

Incremental tree inducer (ITI) [131], also called Direct Metric Tree Induction

(DMTI), is a widely-used decision tree constructor; it incrementally constructs decision

trees from labeled examples. The application has not been parallelized before.

The SpiceC compiler was used to speculatively parallelize the main loop, each

iteration of which reads a labeled example and updates the decision tree. The loop body

is annotated as a transaction. Both precompiled and irreversible library functions are used

inside the loop. Two C string functions, strlen and strcmp, are called inside the loop.

Since the string length is known, 2 precompiled constructs were used to annotate their

declarations. C standard output function, printf, is also called inside the loop. Since

different calls to printf use different formats of arguments, 30 suspend constructs were

inserted to annotate its call sites. In total, 33 programming constructs were added, including
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1 for annotating the transaction boundaries.
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Figure 3.20: Speedup of ITI over its sequential version.

Figure 3.20 shows the speedups achieved by the SpiceC for ITI. The baseline is the

single-threaded original version of ITI. Data set agaricus lepiota [6] was used as input.

The SpiceC compiler achieves a 1.50x speedup using 8 threads, which demonstrates that it

can be used to parallelize real applications that contain both precompiled and irreversible

functions.

3.6 Summary

This chapter has presented the SpiceC compiler, which automatically inserts STM

constructs into C/C++ code to enable speculative execution. Compiler directives are pro-

vided to support parallel execution of transactions that contain precompiled and irreversible

library functions. A set of compiler optimizations are proposed to improve transaction per-
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formance.
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Chapter 4

Support for Dynamic Linked Data

Structures

Computation distribution is crucial to the performance of parallel applications.

Efficient parallel execution requires exploiting locality of data references in the process

of computation distribution. Many sequential programs execute the computations in an

order that exploits spatial data locality. However, when parallelizing these programs, if

consecutive computations are assigned to different threads, the resulting data contention

will harm performance.

Data partitioning based computation distribution [9] has been proposed to improve

the performance of parallel programs in distributed memory systems. This approach first

partitions the data, then assigns partitions to threads, and finally assigns computations to

threads such that the thread that owns the data required by a computation performs the

computation. Programming this strategy is not a trivial task. Developers need to write code
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for: partitioning and assigning the data to threads; and distributing computation among

threads based on the partitioning. They also need to enforce synchronization between

computations for different partitions. A few programming models have been proposed to

explore data and computation distribution. Most of them focus on array-based parallel

programs [66, 110, 34, 44, 57, 27, 28]. The Galois system [71] employs data partitioning for

irregular JAVA applications. It is designed for exploiting worklist-based parallelism where

an iterative program processes work items from a worklist. Galois requires programmers

to specify the relationship between method calls and how to undo modifications for shared

data structures. Compared to C++ programs, JAVA programs are less challenging since

JAVA supports more OO features (e.g., properties) and does not have pointer variables.

This chapter presents SpiceC support for exploiting parallelism in C++ programs

that rely upon the use of dynamic linked data structures. In dynamic linked data struc-

tures each node is connected to a fixed number of neighboring nodes and the computation

performed on the nodes progresses across the nodes by traversing the links. SpiceC ex-

ploits this characteristic in carrying out data distribution and computation distribution

among threads. Consequently, when speculation is employed, high misspeculation rates are

avoided.

4.1 Overview

SpiceC provides efficient support for exploiting data parallelism in a program that

relies on the use of a dynamic linked data structure. With SpiceC, computations can be

distributed across threads that operate upon different data partitions created by dividing
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the dynamic linked data structure. The runtime execution flow of the program is as follows.

A set of threads are created at the beginning of the program. Each thread is bound to a

unique processor core. A master thread executes the sequential part of the program. When

encountering a parallel region identified by the programmer, the master thread divides the

data into multiple partitions via partitioning strategy selected by the programmer and maps

each partition to one of the threads. Within a parallel region, each thread typically performs

the computations that work on its assigned data partition and it either skips or redistributes

the computations that work on other partitions. To support the above execution model,

SpiceC provides the following features:

I. Partitioning support. SpiceC provides four data partitioning strategies to handle differ-

ent data structures and computation patterns. METIS and HASH are two partitioning

strategies for graph data structures with each computation working on one or more nodes.

SYMM SUBTREE and ASYMM SUBTREE are two partitioning strategies for tree data

structures with each computation exhibiting locality on a subtree. SpiceC also allows the

programmers to specify custom data partitionings.

II. Homogeneous parallel regions. In this form of parallelism, every thread executes the same

code after entering the parallel region. Although all threads execute the same code, different

threads perform computations on different data partitions. This parallelism is similar to

the Single Program Multiple Data (SPMD) parallelism. The core SpiceC programming

model is extended to provide constructs for checking if the data required by a computation

(i.e., an iteration of the loop) is located in the current thread’s data partition. At runtime,
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a thread performs this check at an early stage of each computation. If the data required

by a computation is located in the thread’s partition, the thread continues executing the

computation. Otherwise, the thread skips to the next computation. This execution model is

often used for graph data structures with each computation starting from a different node.

III. Heterogeneous parallel regions. This form of parallelism is suitable for computations

that always start from the same node (e.g., a search from the root of a tree). Homogeneous

parallelism is not suitable here since the thread owning the starting node will end up

performing all computations. After entering a heterogeneous parallel region, only the master

thread starts to execute the code in the parallel region and all other threads are put in

idle state. When the master thread comes across a computation that requires data from

another thread’s partition, it assigns the computation to the corresponding thread and

continues to execute the code following the assigned computation. The thread that receives

the computation then performs it in parallel with other threads. All threads are able to

distribute computations to other threads based on the data required by the computations.

IV. Speculative parallelism. Sometimes, a computation may need to access and update the

data from multiple partitions, where some partitions belong to other threads. For example,

in a graph data structure, a computation may start from one node but end up with updating

multiple nodes around the starting node. The thread that performs the computation may

have to access the data from a partition assigned to another thread. In this case, it is

possible that multiple parallel threads access the same data simultaneously. The core SpiceC

system provides speculation support for this type of computation to resolve any data conflict
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between two threads. To improve the performance of speculative computation on dynamic

linked data structures, a speculation mechanism called conditional speculation is introduced

to SpiceC. It selectively applies speculation on computations to reduce the speculation cost.

The following sections present the partitioning strategies supported by SpiceC and

programming support given to the developer in form of pragmas.

4.2 Partitioning Support

Let us consider the strategies for partitioning data objects belonging to a dy-

namically created linked data structure. SpiceC provides programmers four partitioning

strategies that can be used to handle commonly occurring scenarios involving graphs and

trees used by a wide range of applications. These strategies include: METIS and HASH for

graphs; and SYMM SUBTREE and ASYMM SUBTREE for trees (see Table 4.1). SpiceC

also provides the programmer with the ability to specify custom data partitioning strategies.

The remainder of this section discusses the partitioning strategies in detail.

Strategy Struct. Selection Criterion Benefits

METIS Graph Spatial Locality Present Locality1; Speculation2

HASH Graph No Spatial Locality Locality1

ASYMM SUBTREE Tree

Searches Originating
Locality1; Speculation2

at Internal/Leaf Node
Recursively Parallel

Locality1
Computation

SYMM SUBTREE Tree
Searches Originating

Locality1; Speculation2
at Root Node

1Improved cache locality. 2Reduced speculation cost.

Table 4.1: Summary of partitioning strategies.
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4.2.1 Graph Partitioning

Graphs are widely used in the design of algorithms. A graph data structure is

defined as a set of data objects connected by edges. Each object is called a node or a vertex

belonging to the graph. A graph may be directed or undirected. The access patterns of

graph data structures are divided into two categories according to the presence or absence

of spatial locality in the access patterns. Spatial locality means that if a node is accessed by

a computation, then it is likely that nodes adjacent to it in the graph will also be accessed

during the same computation. The remainder of this section gives examples that show

that in the presence of spatial locality, METIS is a good partitioning strategy while in the

absence of spatial locality HASH is a good strategy.

I. METIS. A computation on a graph data structure often requires accessing a set of nodes

that are connected by edges. Often a computation begins by accessing one or more nodes

in the graph. It then gradually involves more and more nodes that are adjacent to the

beginning nodes. Thus, the access pattern exhibits spatial locality with respect to the

graph structure. Figure 4.1 shows an example of the graph data structure where accesses

exhibit spatial locality. A dark node indicates that the node is required by two different

computations. Each computation requires accessing a connected subgraph and thus exhibits

spatial locality with respect to the graph.

For this access pattern, if the computations are randomly assigned to threads,

many cache coherence misses may occur. To improve the locality, users can group nodes

that are near each other into partitions and assign each partition to a thread. Each thread
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Figure 4.1: Parallel computation in a
graph with spatial locality.

Figure 4.2: Breadth first search - an ex-
ample of parallel computation in a graph
without spatial locality.

can then perform computations that start from the nodes in its own partition. Since there

is greater chance that each thread will access its own partition, the cache locality is en-

hanced. When threads are executed speculatively in parallel, this approach will result in

low misspeculation rate since it is less likely that two parallel threads will access the same

nodes.

Many algorithms have been proposed for partitioning graph data structures. SpiceC

adopts the METIS algorithm, which is based on the state-of-the-art multilevel graph par-

titioning [63]. The METIS produces very high quality partitionings for large graphs. As it

operates with a reduced-size graph, it is extremely fast compared to traditional partitioning

algorithms. Moreover, METIS has a parallel implementation, which is suitable for parallel

programs.

In addition to partitioning an existing graph, users must also consider reparti-

tioning as a result of node insertions. Since node insertions occur frequently for some

applications (e.g., Delaunay Mesh Refinement [59]), the repartitioning is required to be
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inexpensive. Instead of repartitioning the whole graph, we simply incorporate the new

nodes into existing partitions. A new node is assigned to the partition, to which most of its

neighbors belong. In this way, SpiceC minimizes the number of edges that cross partition

boundaries.

II. HASH. In some parallel applications, a computation block (e.g., a loop iteration) only

accesses one node in the graph data structure. Thus this access pattern is without spatial

locality. Figure 4.2 shows an example of parallel breadth first search (BFS) (see Figure 4.8

for pseudocode). The dark nodes are the nodes that have been visited. The double circles

mark the nodes that need to be visited in parallel. Since each computation only accesses

one node, grouping nearby nodes cannot improve the cache locality in this case. Besides,

grouping nodes that are close to each other may even make the workload unbalanced since

it is likely that the nodes that need to be processed in parallel are connected. For this

type of access pattern, users just need to hash the nodes into partitions. This partitioning

strategy is called as HASH. Each thread is assigned a partition constructed via hashing and

the thread only processes the nodes in its own partition. This approach not only balances

the workload but also improves cache locality if multiple BFSs need to be performed on the

graph. In this scheme, partitioning and repartitioning are both performed via hashing.

4.2.2 Tree Partitioning

Tree data structures have been widely used to represent hierarchical structures.

Two partitioning strategies are proposed for tree structures which are described next.
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I. ASYMM SUBTREE. This partitioning strategy supports two types of tree computations:

computations that start from an internal/leaf node and recursive computations. First let

us consider the computations that start from an internal/leaf node and then travel within

a local subtree that contains the node. Figure 4.3 shows two examples of such computa-

tions – one computation begins at an internal node and the other at a leaf node but both

computations only touch a subtree instead of the whole tree. This behavior is typical of

searches on trees such as quadtrees and KD-trees. For a program that performs a large

number of such computations at runtime, performing these computations in parallel could

greatly improve the performance. In this scenario users would like repeated computations

on the same subtree to be performed by the same thread to achieve improved cache locality

and also reduce the chance of two parallel threads accessing the same data. To achieve this

SpiceC supports a partitioning strategy that forms partitions from subtrees as illustrated

by the partitions shown in Figure 4.3 by dotted lines. Since this strategy creates subtrees

that are not of exact same size it is named ASYMM SUBTREE. The resulting subtrees are

assigned to different threads, which can operate on their respective partitions in parallel.

A computation is performed by the thread that owns the starting node. For example, in

Figure 4.3, the computation on the left side is performed by the thread owning the leftmost

partition and the computation on the right side is performed by the thread owning the

rightmost partition.

Now let us consider the case of recursive parallel computations. In such computa-

tions, typically, the starting thread first assigns all of the child subtrees except one to other

parallel threads and then continues to process the one left. The threads assigned the child
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Figure 4.3: Parallel computations start-
ing at an internal/leaf node.

Figure 4.4: Parallel computations start-
ing from the root node.

trees repeat the above procedure until no more threads are available to assign part of the

work. Such recursive parallel code is invoked multiple times in many programs that have

been examined. If threads are randomly assigned to subtrees for each invocation of the

parallel code, the opportunities of reusing the data in the cache across multiple invocations

will be lost. Even if the subtrees are assigned to threads in the same fixed order during

each invocation, the mapping of partitions to threads may vary across different invocations.

To improve data reuse, the tree can be partitioned as shown in Figure 4.3, and at runtime,

require each thread to process the same subtree.

Figure 4.5 shows the algorithm for asymmetric tree partitioning shown in Fig-

ure 4.3. The algorithm starts with creating a new partition for the root. When the number

of partitions is smaller than the limit, the algorithm assigns a node’s leftmost child to the

same partition and creates new partitions for all other children. Once the number of parti-

tions reaches a limit, no new partitions are created. Each of the remaining nodes is assigned

to its parent’s partition. The repartitioning strategy allows for leaf node insertion and it

assigns a new leaf node to its parent’s partition.
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root.partition ← 0;

partitions ← 1;

nodequeue ← {root};

while ( nodequeue 6= φ ) {

nodequeue.pop(n);

foreach child ∈ n.childset do {

nodequeue.push(child);

if (child is leftest OR partitions = total partitions)

child.partition ← n.partition;

else {

child.partition ← partitions;

partitions ← partitions + 1;

}

}

}

Figure 4.5: Asymmetric tree partitioning algorithm.
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II. SYMM SUBTREE. Most tree algorithms always start at the root node. Figure 4.4 shows

two examples of tree computations starting at the root node. The right arrow indicates a

tree computation that goes from the root to a leaf node and updates the value at the

leaf node (e.g., binary insertion). The left arrow indicates a tree computation that goes

from the root, searches a subtree, and finally updates the values at several nodes (e.g.,

during local tree balancing). A tree-based program typically begins many computations

starting from the root node at runtime. Performing these computations in parallel can

greatly improve its performance. For such computations, if each thread only processes the

operations on a certain subtree, then it is possible to reduce the misspeculation rate or even

do without speculation (e.g., during binary search). This also improves the cache locality.

Since every computation starts from the root node, all computations will be started in

the thread that owns the root node. Poor performance will occur if ASYMM SUBTREE

partitioning algorithm is used in this case. For example, under the partitioning of Figure 4.3,

all computations will start in the thread owning the leftmost partition. If a computation

goes right, the thread will assign it to another thread. However, if a computation goes all

the way left, all subsequent computations will be blocked until it is completed. Suppose

a computation has equal chance of going left and right, around 1/4 of the computations

will block subsequent computations. This will greatly reduce the parallelism. Moreover,

if a computation goes all the way to the right, it will go through three threads and incur

communication overhead.

To address the above problem SpiceC introduces a strategy that partitions the

tree into symmetric subtrees as shown in Figure 4.4 — it is named SYMM SUBTREE as it
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partitions the tree in symmetric subtrees. A root partition is created to contain the nodes

at the top few levels of the tree while each subtree partition contains a subtree under the

root partition. At runtime, each thread is assigned a subtree partition. The root partition

can be assigned either to the master thread or shared by all threads. Figure 4.6 presents the

symmetric tree partitioning algorithm. The algorithm starts with assigning nodes to the

root partition from the top of the tree until reaching a level, at which the number of nodes is

greater that the number of desired partitions. It then evenly distributes those nodes among

the partitions. It is not necessary to assign the remaining nodes to the partitions since the

searches always go from the top to the bottom.

4.2.3 Programmer-specified Partitioning

Programmers often have the knowledge of the shape of the data structures that

can be exploited by them during partitioning. To support this scenario SpiceC also allows

programmers to specify their own partitioning strategies. Figure 4.7 shows two partitioning

examples that can be easily specified by programmers. Figure 4.7(a) shows a hash table

that consists of an array of linked lists. The programmer can easily group the linked lists by

hashing the array indices into partition IDs. At runtime, each thread only processes hash

operations in its own partition. This partitioning will improve the cache locality and avoid

data contention. Figure 4.7(b) shows an example of a grid computation. The computation

on each node requires the data from its neighbors. The programmer can easily group nodes

near each other into the same partition given the position of each node. Although both

examples can be partitioned using METIS, programmer specified partitionings as shown
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nodeset ← root;

while ( |nodeset| < total partitions ) {

childset ← φ;

foreach node ∈ nodeset do

childset ← childset + node.childset;

nodeset ← childset;

}

size ← ⌈total partitions / |nodeset|⌉;

partitions ← 0;

while ( partitions < total partitions ) {

for i ← 1 to size do

if ( nodeset 6= φ ) {

nodeset.pop(n);

n.partition ← partitions;

}

partitions ← partitions + 1;

}

Figure 4.6: Symmetric tree partitioning algorithm.
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(a) Hash table (b) Grid computation

Figure 4.7: Example of manual partitioning.

are even superior.

4.3 Programming Support

This section presents the SpiceC directives designed for using partitioning based

approach in programming applications. The presentation of these pragmas is divided ac-

cording to the types of parallelism they support: homogeneous, heterogeneous, and specu-

lative. Examples are given to illustrate the use of these pragmas in variety of application

scenarios.

To enable partitioning of a linked data structure, the partitioning algorithm must

be able to identify the data structure, i.e, its nodes and edges. To allow this SpiceC re-

quires that the data structures that need to be partitioned inherit a base class, called

BaseNode. The BaseNode class defines two interfaces (i.e., virtual functions in C++ ) –

GetNeighborNum and GetNeighbor which developers must implement. The first interface
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returns the total number of neighbors and the second returns a specified neighbor. The

SpiceC runtime library can acquire the graph information by calling these two functions.

Besides, the implementation of the BaseNode should automatically maintain a list of nodes

that have not been partitioned. The BaseNode class should also provide two member func-

tions – GetPartition and SetPartition. These two functions are used to get and set the

partition to which a data object belongs.

4.3.1 Non-speculative Homogeneous Parallelism

#pragma SpiceC parallel homo partition ([DataType],[PartitionType])

#pragma SpiceC region [RegionName] inpartition ([Partition])

The first pragma is used to mark the parallel code region, such as a loop, that is to

be executed in parallel and where partitioning is to be applied. The homo clause indicates

that homogeneous parallelism is to be used and the partition clause indicates the type

of partitioning where the parameter DataType gives the type of the data structures to be

partitioned and the parameter PartitionType identifies the partitioning strategy to be

used. The second pragma is used to check in which thread the subsequent region is to be

performed. The pragma checks if the partition specified by the parameter belongs to the

current thread. If so, the current thread continues the subsequent computation. Otherwise,

the current thread skips the rest of the computation and goes to the next computation.

The Partition parameter can be given in the form of constant, variable, or return value

of a function. Next the use of above pragmas is illustrated through examples.
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read(graph);

vertexset.add(source);

while( !vertexset.empty() ) {

nextset.clear();

#pragma SpiceC parallel homo partition(Vertex, HASH)

for(int i=0; i<vertexset.size(); i++) {

#pragma SpiceC region R1

v = vertexset[i];

#pragma SpiceC region R2 inpartition(v.GetPartition())

if ( !v.visited) {

v.visited = true;

process(v);

nextset.lockedAdd(v.adjacentset());

}

}

vertexset = nextset;

}

Figure 4.8: Pseudocode for parallel BFS with graph partitioning.
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I. Parallel loop with graph data structures. Figure 4.8 shows the pseudocode of a parallel

implementation of Breadth First Search (BFS). The vertexset and nextset are containers

that store unique vertices. The starting node is placed in the vertexset at the beginning.

In the parallel loop, each iteration processes one node in the vertexset and adds pointers to

its neighbors to the nextset. The program does not examine the visited bit of a neighbor

when adding it to the nextset to avoid excessive cache coherence misses. After the loop

has completed, the program moves the nextset to the vertexset and repeats the loop. The

program ends when all nodes have been visited.

HASH partitioning can be used for the graph since each computation of the parallel

BFS just accesses one node. Partitioning can improve the data reuse if the BFS is called

multiple times. Two pragmas are used to realize the partitioning-based parallelism in this

case. The first pragma declares that the code region must be executed in the form of

homogeneous parallelism and the graph must be partitioned using the HASH strategy.

Partitioning will only be performed once by the program since the unpartitioned node list

will be empty after the first partitioning. The second pragma checks if the vertex belongs to

the current thread’s partition. If so, the current thread continues the iteration. Otherwise,

the current thread skips to the next iteration. The function GetPartition returns the

vertex’s partition that is computed by the first pragma. At runtime, the master thread

executes the program until reaching the first pragma. After data partitioning and mapping,

all threads execute the code region in parallel. Each thread performs the computations on

the vertices in its own partition.
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II. Programmer specified partitioning. The pragmas also support programmer specified par-

titioning. Figure 4.9 shows an example of parallel hash table lookup. Before entering the

loop, the programmer uses the function SetPartition to manually assign each entry in the

hash table to a partition. The pragma homo indicates that the loop will be carried out

by all threads. Each thread performs the hash function for every work in the worklist but

only does the insertion for the work that is hashed into its partition. If the hash table is

not partitioned and the computations are randomly distributed among threads, speculation

will be needed since two threads may insert nodes into the same part of the hash table.

Partitioning eliminates the need for speculation.

4.3.2 Non-speculative Heterogeneous Parallelism

#pragma SpiceC parallel hetero partition ([DataType],[PartitionType])

#pragma SpiceC region [RegionName] distribute ([Partition])

#pragma SpiceC join ([Partition])

The first pragma is used to mark the parallel code region such as a loop that

is to be executed in parallel and where partitioning is to be applied. The hetero clause

indicates that heterogeneous parallelism is to be used and the partition clause indicates

the type of partitioning to be used. The second pragma is used to check in which thread

the subsequent computation should be performed. The distribute clause indicates that

the pragma will try to assign the subsequent computation to another thread to which the

partition belongs so that the subsequent computation can be performed in parallel. If the

partition belongs to the current thread, the subsequent computation is skipped. Finally,
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for(index=0; index < table.size(); index ++)

table[index].SetPartition(index % totalthreads());

#pragma SpiceC parallel homo partition(NONE)

foreach w in worklist do {

#pragma SpiceC region R1

index = hash(w);

#pragma SpiceC region R2 inpartition(table[index].GetPartition()) {

if ( table[index].lookup(w) == NULL )

table[index].insert(w);

}

}

Figure 4.9: Parallel hash table lookup with partitioning.
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the third pragma, #pragma join, is used for synchronization between threads. The current

thread will sleep until the thread owning the given partition finishes its computation. If the

current thread owns the given partition, the pragma does nothing. Next the use of above

pragmas is illustrated through examples.

I. Parallel loop with tree data structures. Figure 4.10 shows the pseudocode for parallel

binary search and insertion. For each work item in the worklist, the program always starts

search from the root node to a leaf node. If the tree is not partitioned, the search procedure

requires speculation since multiple searches may go through the same path. To realize

partitioning-based parallelism for this program, the program needs to be modified a little

as shown in highlight. The pragma in the main function partitions the tree using the

SYMM SUBTREE partitioning and maps the partitions to the processor cores. Since it is

unknown in which subtree each work in the worklist will be located before performing the

search, the loop is marked heterogeneous so it is only executed by the master thread. In

each iteration, the master thread performs searches until it reaches a node that is not in its

partition. Then the distribute pragma distributes (assigns) the continuation of the search

to a parallel thread corresponding to the node’s partition. By partitioning the tree in this

manner, the searches that are located in the same subtree will be performed by the same

thread. Therefore, SpiceC improves the performance of the program without requiring the

use of speculation.

II. Recursive computation with tree data structures. Figure 4.11 shows a simple example

of recursion parallelism. The recursive function is called for multiple time at runtime. To
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void search(Node node, int tag) {

#pragma SpiceC region R1 inpartition (node.getPartition()) {

if ( node.tag == tag )

output (node);

else if ( node.tag > tag )

search (node.left, tag);

else

search (node.right, tag);

}

#pragma SpiceC region R2 distribute (node.getPartition())

search (node, tag);

}

. . .

// in main function

#pragma SpiceC parallel hetero partition(Node, SYMM SUBTREE)

for(int i=0; i<worklist.size(); i++) {

search(root, worklist[i]);

}

Figure 4.10: Pseudocode for parallel binary search with tree partitioning.
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function update(node) {

pre process(node);

foreach child in node.children

#pragma SpiceC region R1 distribute(child.GetPartition())

update(child);

foreach child in node.children

#pragma SpiceC region R2 inpartition(child.GetPartition())

update(child);

foreach child in node.children

#pragma SpiceC join(child.GetPartition())

post process(node);

}

. . .

// in main function

#pragma SpiceC parallel hetero partition(Node, ASYMM SUBTREE)

update(root);

. . .

Figure 4.11: Pseudocode for parallel recursion computation with tree partitioning.
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improve the data reuse, users can partition the tree using the ASYMM SUBTREE strategy.

The tree is partitioned in the main function. The recursive function checks the partition

of each child of the node. If a child belongs to another thread’s partition, the update for

that child is assigned to that thread. After assigning all the children that are not in the

current thread’s partition, the current thread continues to update the rest children. After

the current thread completes its work, it waits for other threads to finish their work using

join and then performs the post process work. Since the same thread always updates the

same child, the cache performance of the program is improved.

4.3.3 Speculative Parallelism

For parallel programs where each computation may touch data across multiple

partitions simultaneously, SpiceC provides support for speculation via the following prag-

mas.

#pragma SpiceC repartition

#pragma SpiceC touchpostpone(partition)

The first pragma is used to incrementally assign partitions to newly created nodes.

Although this pragma is illustrated in context of speculation, it can also be used in non-

speculative situations as needed. The second pragma is used to assist in conditional spec-

ulation. When the touchpostpone clause is used in a loop, the conditional speculation

mechanism is used for the loop where speculation is only used for computations that dy-

namically are determined to require access to multiple threads’ partitions.
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It postpones the execution of current computation if the given partition is not a lo-

cal partition. The postponed computation is later executed using standard (unconditional)

speculation mechanism. The following paragraphs illustrates the usage of above pragmas

using an example.

Figure 4.12 shows the pseudocode of a parallel implementation of Delaunay Mesh

Refinement [59]. The program is designed to refine bad triangles (i.e., triangles whose

circumradius-to-shortest edge ratios are larger than some bound) in a mesh. It takes a

triangular mesh as input. Each iteration of the parallel loop first searches the triangles

around one bad triangle to form a cavity, then retriangulates the cavity, and finally updates

the mesh. If the procedure generates a new bad triangle, it is placed in the todolist. The

parallel loop requires speculation since two iterations may access the same triangles. After

the parallel loop is completed, the program moves the todolist to the worklist and repeat

the parallel loop. The program ends when there is no bad triangle in the mesh. Since the

bad triangles can be processed in any order, there is no need to enforce any order in the

parallel implementation.

The data accesses of the Delaunay Mesh Refinement algorithm exhibit spatial

locality since if a triangle is accessed in a computation its neighbors are likely accessed in

the same computation. Grouping nearby nodes into partitions can improve the program’s

performance. The partitioning-based parallelism is realized via the use of three pragmas.

The first pragma declares the code region that will be executed by all threads, partitions

the mesh (a graph where each node is a triangle) with the METIS algorithm, and maps

the partitions to the threads. The partitioning is only done once in the program since the
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read(mesh);

worklist.add(mesh.getBads());

while( !worklist.empty() ) {

todolist.clear();

#pragma SpiceC parallel homo partition(Triangle, METIS)

for(int i=0;i<worklist.size();i++) {

#pragma SpiceC region Refine inpartition(worklist[i].GetPartition()) {

Cavity c = new Cavity(worklist[i]);

c.build(mesh);

c.retriangulate(mesh);

mesh.update(c);

#pragma commit atomicity check repartition

}

#pragma SpiceC region Add inpartition(worklist[i].GetPartition())

todolist.lockedAdd(c.newBads());

}

worklist = todolist;

}

Figure 4.12: Parallel Delaunay Mesh Refinement with graph partitioning.
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list of unpartitioned nodes will be empty in the subsequent execution. The second pragma

checks if the computation should be done in the current thread. If the computation should

be done in another thread, the current thread moves on to the next iteration. The function

GetPartition returns the bad triangle’s partition that is computed by the first pragma.

The third pragma incrementally updates the partitioning after new triangles are added into

the mesh. At runtime, the master thread executes the program until reaching the first

pragma. After data partitioning and mapping, all threads execute the parallel code region

in parallel as indicated by the homo clause. Each thread only performs the computations

that begin from its own partition and skips the rest computations. After retriangulating a

cavity, a thread incrementally partitions the newly created triangles using the repartition

pragma.

Conditional speculation. Although data partitioning can reduce the misspeculation

rate, the high overhead of speculation can still hurt the parallel performance. In fact, under

partitioning-based parallelism, most computations are likely to touch their local partitions

as long as each partition is large enough. When all threads are performing computations

that only touch their own partitions, the speculation is not needed. Motivated by this

observation, SpiceC provides support for partitioning-based conditional speculation. In

this approach, by default a thread does not start speculation at the beginning of each

computation. If a computation only touches data in its local partition, then it succeeds

without speculation. If the thread detects that a computation will touch other partitions,

the thread postpones its execution for later. When all threads complete the computations

on their local partitions, they use speculation in redoing all postponed computations. The
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conditional use of speculation cuts down the percentage of computations executed under

the speculation though it causes extra overhead for the computations involving multiple

partitions. Therefore, as long as most computations only touch local partitions, the overall

cost of speculation is reduced.

As previously mentioned, for the computations that require a subset of nodes in

the graph, usually start with collecting the nearby nodes around the starting node. Since

the collection procedure usually does not write to any global variable such as the graph

data structure, it can be executed without speculation. In the collection procedure, a com-

putation decides which nodes it will use later. Therefore, during the collection procedure,

SpiceC can determine which partitions a computation will touch. If a computation will

touch a remote partition, the thread postpones the computation, saving the loop index in

a queue for later, and continues to the next computation. These saved computations are

executed using speculation after all other computations are done.

For example, in Figure 4.12, the triangles that will be touched are determined in

function build. Figure 4.13 shows the pseudocode of the build function. The function

collects the triangles that are in or around the cavity. The function only writes to the

variables local to the threads. Therefore, the function can be executed without speculation.

One pragma (highlighted) is added into the function to realize adaptive speculation. The

pragma first checks the partition of variable neighbor. If neighbor is in the local partition,

the computation continues. If it is in a remote partition, the pragma saves the loop index of

the computation (i.e., variable i on line 6 in Figure 4.12) in a queue and skips to the next

computation. In the parallel loop shown in Figure 4.12, developers just need to wrap the
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frontier.add(center);

foreach node in frontier do {

foreach neighbor in node.getNeighbors() do {

#pragma SpiceC touchpostpone(neighbor.GetPartition())

if ( neighbor is part of the cavity ) {

cavity.add(neighbor);

frontier.add(neighbor);

} else {

border.add(neighbor);

} } }

Figure 4.13: Pseudocode for building cavity in Delaunay Mesh Refinement.
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speculative code using #pragma conditional speculate instead of #pragma speculate.

No other change needs to be made. At runtime, in the main parallel loop of Delaunay Mesh

Refinement (as shown in Figure 4.12), the #pragma conditional speculate does nothing

by default. Each thread checks the partition of each triangle at the pragma touchpostpone.

After all threads complete the parallel loop, they redo the computations for the saved

indices. During this redo procedure, the #pragma conditional speculate starts and ends

speculative execution normally.

For the correctness purpose, write to any global variable is not allowed before the

collection procedure is finished. The SpiceC compiler can detect whether there is a write to

global variable along the paths from “#pragma speculate” to “#pragma touchpostpone”.

If there is such a write, the compiler will give a warning to the programmer.

4.4 Evaluation

This section evaluates the SpiceC support for dynamic linked data structures. The

experiments were conducted on an 8-core DELL PowerEdge T605 machine. Table 4.2 lists

the details of the machine. The machine ran CentOS v5.5.

Processors 2×4-core AMD Opteron processors (2.0GHz)

L1 cache Private, 64KB for each core

L2 cache Private, 512KB for each core

L3 cache Shared among 4 cores, 2048KB

Memory 8GB RAM

Table 4.2: Machine details.
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4.4.1 Implementation

I. Pragmas. The inpartition and touchpostpone pragmas can cause a thread

to skip the rest of the current computation and jump to the next computation. They are

allowed to be placed inside a function called in the parallel region. They are implemented

using the exception support in C++. When these pragmas decide to skip the current

computation, they throw an exception. The parallel code region is wrapped with an ex-

ception handler. Once it captures an exception from those pragmas, it jumps to the next

computation.

II. Threads-to-cores mapping. In a parallel region using the speculation pragma,

each computation may access multiple adjacent partitions. In modern multicore processors,

the caches are organized in a hierarchy that causes closer cores to share more efficiently. To

improve the utilization of the cache hierarchy, it is necessary to place adjacent partitions to

close cores so that accessing adjacent partitions will be faster. The cache topology aware

mapping algorithm proposed in [62] is used to map the threads to the processor cores for

parallel region using speculation.

4.4.2 Benchmarks

Ten benchmarks are used in the experiments. Two out of ten benchmarks are real

applications. The rest eight benchmarks are from three benchmark suites – Lonestar [73],

Olden [25], and Shootout. All benchmarks either already use pointer-linked data structures

or were ported to make use of them. For all benchmarks, the order in which the compu-

tations are performed does not affect the correctness of the output though different orders
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may yield different outputs. Table 4.3 shows the details of the benchmarks.

The benchmarks Delaunay Refinement and Agglomerative Clustering are from

the Lonestar benchmark suite [73] and originally written in JAVA. They are ported into

C++ in the experiments. The original Delaunay Refinement uses a few hash table-based

containers to store the graph. Therefore, even if two computations require different parts

of the graph, they may share some data in the containers. The program was rewritten

using pointer-linked data structures to solve this problem. Agglomerative Clustering is

a hierarchical clustering algorithm. It uses a KD-tree for nearest neighbor search. The

code was reorganized so that a node collection procedure is conducted at an early stage

of each computation. Barnes-Hut is an implementation of the Barnes-Hut n-body algo-

rithm [13] that simulates the gravitational forces in a galactic cluster. It uses an octree

for storing nodes in the graph. The force-computation step was parallelized in the main

loop. The benchmarks Voronoi and TreeAdd are from the Olden benchmark suite [25].

Voronoi implements a recursive Delaunay Refinement algorithm. TreeAdd calculates the

sum of values in a balanced B-tree. Both benchmarks are parallelized using recursion par-

allelism. In the experiments, the sum calculation was repeated for ten times during the

execution of TreeAdd. Boykov-Kolmogorov is a maxflow algorithm used for image segmen-

tation. Two different loops were parallelized in this program using different partitionings

– METIS and HASH, respectively. For HASH-based parallelism, although there is no data

contention between threads on the graph structure, two threads may share other global

variables. Locks are used to serialize the accesses to these variables. AVL is a self-balancing

binary tree algorithm designed for addressing the issue of deletions. During execution, bal-
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Benchmark Par. Type LOC + Data Partitioning Spec.? -
#Pragmas Structures Cond.?

Delaunay- homo. 108 + 5 graph METIS yes - yes
Refinement

Boykov- homo. 93 + 5 graph METIS yes - yes
Kolmogorov homo. 93 + 3 graph HASH no - no

Barnes-Hut homo. 107 + 2 graph METIS no - no

Agglomerative- homo. 61 + 4 tree ASYMM yes - yes
Clustering

Voronoi heter. 106 + 3 tree ASYMM no - no

TreeAdd heter. 23 + 3 tree ASYMM no - no

AVL heter. 87 + 4 tree SYMM yes - no

ITI heter. 60 + 4 tree SYMM yes - no

Hash homo. 31 + 2 hash table customized no - no

Coloring homo. 32 + 5 graph customized yes - yes

Table 4.3: Benchmark details. From left to right: benchmark name; function where the
parallel region is located and type of parallelism (homogeneous and heterogeneous); lines
of code in the function and number of pragmas introduced; type of data structure used in
the benchmark; partitioning strategy employed; whether speculation is used and whether
conditional speculation is used.

ancing usually takes place locally. It was parallelized using SYMM SUBTREE partitioning.

ITI [131] is a real application that constructs decision tree automatically from labeled ex-

amples. The batch train function was parallelized speculatively. The Hash benchmark

is from the Shootout benchmark suite. The main loop performs a large number of hash

table lookups and insertions. The hash table can be easily partitioned by programmers.

Coloring is an implementation of the scalable graph coloring algorithm in [21]. The orig-

inal program does not use graph partitioning or speculative parallelism. In the original

program, threads communicate node information with each other. In the experiments, the

program was parallelized using user-specified data partitioning and speculative parallelism.
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Figure 4.14: Speedup with partitioning.
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Figure 4.15: Speedup without partitioning.

4.4.3 Performance

Figure 4.14 shows the speedup achieved by SpiceC with data partitioning. Perfor-

mance is shown for different number of threads. The original sequential versions of these

benchmarks are used as baseline. For every benchmark except Voronoi, the performance of

the benchmark improves with the increase of thread number. The performance of Voronoi

decreases at 8 threads due to the high communication overhead (as shown in Figure 4.17).

AVL and ITI gets slowdown with two threads since it employs a master/worker execution

model similar to the example given in Figure 4.10. With two threads, they have only one

worker thread to perform computations. Figure 4.15 shows the speedup without partition-

ing, where computations are assigned to threads in a round-robin manner. As we can see,

the speedups achieved with data partitioning are much higher than those without partition-

ing. Without partitioning, parallelization causes slowdown for three benchmarks, for all of

which speedup is achieved with data partitioning.

Table 4.4 compares the misspeculation rate with and without partitioning. With
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Benchmark w/o par. w/ par.

DelaunayRefinement 90.42% 0.07%

Boykov-Kolmogorov 20% 0.09%

AgglomerativeClustering 3.21% 0.25%

AVL 21.84% 3.19%

ITI 16.58% 0.73%

Coloring 6.15% 0.17%

Table 4.4: Comparison of misspeculation rates with 8 threads. From left to right:
benchmark name, misspeculation rate without partitioning, and misspeculation rate with
partitioning.

partitioning, the misspeculation rates of all six benchmarks are greatly reduced. The misspec-

ulation rates of five out of six benchmarks almost decrease to zero. Delaunay Refinement

has the highest misspeculation rate when partitioning is not used. This is because close

triangles are processed consecutively in the original program. With partitioning, most mis-

speculations of Delaunay Refinement are eliminated.

4.4.4 Effectiveness of Conditional Speculation
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Figure 4.16: Regular speculation vs. Conditional speculation

Figure 4.16 shows a performance comparison between regular speculation and con-

ditional speculation on the four benchmarks – Delaunay Refinement, Boykov-Kolmogorov,
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Agglomerative Clustering, and Coloring. Without conditional speculation, paralleliza-

tion causes slowdown for Boykov-Kolmogorov due to its high speculation overhead (as shown

in Figure 4.17). Conditional speculation improves performance for all four benchmarks.

With 8 threads, conditional speculation improves the performance for the four benchmarks

by 2.23x, 3.91x, 1.31x, and 1.46x over regular speculation, respectively.

Table 4.5 shows the percentages of postponed computations for the four bench-

marks. For all four benchmarks, only less than one-sixth of computations requires spec-

ulation since most computations only access local data partitions. The postpone rates

increase as the number of threads is increased. This is because the chance of accessing

multiple threads’ partitions goes up as the size of each partition decreases. Delaunay

Refinement and Boykov-Kolmogorov have similar postpone rates. The postpone rates of

Agglomerative Clustering and Coloring are a little lower. However, due to the high

cost of the node collection procedures in Agglomerative Clustering, its speedup is lower

than that of the other two.

Benchmark 2 threads 4 threads 8 threads

DelaunayRefinement 3.5% 6.9% 13.1%

Boykov-Kolmogorov 4.6% 7.6% 15.4%

AgglomerativeClustering 1.7% 3.2% 6.0%

Coloring 2.1% 3.9% 8.7%

Table 4.5: Postpone rate.
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Figure 4.17: Time breakdown of the master thread.

4.4.5 Overhead

Figure 4.17 shows the time breakdown for the master thread with different numbers

of threads. The time is divided into four categories: computation, speculation, communi-

cation and partitioning. Among the four categories, partitioning spends the least time.

For the four benchmarks that use conditional speculation, their speculation overhead rises

with the increase of thread number. This is mainly due to the increasing postpone rate as

shown in Table 4.5. Among all the benchmarks, AVL has the highest overhead. Its master

thread spends half of the time on speculation since it uses regular speculation. B.K.-HASH

and Voronoi have higher communication overhead which hurts their performance. Three

benchmarks, Barnes-Hut, Hash, and TreeAdd, have very low overhead. Partitioning elimi-

nates the speculation cost for Hash.
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4.5 Summary

This chapter has presented SpiceC support for dynamic linked data structures.

Data partitioning and conditional speculation is introduced into SpiceC to improve cache

locality and reduces misspeculation rate and speculation cost. The chapter also presented a

set of SpiceC directives for efficiently parallelizing programs that rely on the use of dynamic

linked data structures.
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Chapter 5

Support for Parallelism in the

Presence of I/O Operations

Amajority of the parallel programming models (e.g., Threading Building Blocks [108],

OpenMP [36], and Galois [72]) focus on exploiting data parallelism in loops including

DOALL, DOACROSS, pipelined, and speculatively parallelized loops. However, these pro-

gramming models only target loops that contain pure computations, i.e., they are free of

I/O operations. Since many applications contain loops with I/O operations, they fail to

yield much speedup due to these loops still being sequential. Therefore, it is highly de-

sirable to support parallel programming models which allow parallel execution of hybrid

loops, i.e., loops with both computation and I/O operations. For example, Velvet [143] is a

popular bioinformatics application. In its version 1.1 (i.e., the latest version when this work

is conducted), 18 pure computation loops have been parallelized using OpenMP. However,

since OpenMP lacks support for parallelizing loops with I/O operations, none of the hybrid
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loops in Velvet have been parallelized. Actually, Velvet has 39 hybrid loops, out of which

26 loops can be parallelized by the approach presented in this chapter. These hybrid loops

take a significant portion (27%–53%) of the total execution time in the experiments on a

24-core machine. Therefore, to further improve the performance of Velvet, developers must

exploit the parallelism in hybrid loops. Interestingly, while this work is being conducted,

the developers of Velvet were working independently on manually parallelizing the hybrid

loops, which only confirms the above observation of the need to parallelize hybrid loops.

In Chapter 2 where hybrid loops are parallelized (as shown in Figure 2.4), DOACROSS

parallelism is used (i.e., synchronization is imposed to deal with cross-iteration dependences)

even if the computation part of the loop can be performed using DOALL (i.e., no cross-

iteration dependence in the computation part). However, DOACROSS execution is not as

efficient as DOALL. Because DOACROSS execution assigns only one iteration per schedul-

ing step, it results in significant synchronization and scheduling overhead. In addition, the

speculation-based loop parallelization techniques proposed in these works are not applica-

ble when the loop contains I/O operations. While the work on parallel I/O [119, 124, 125]

provides a set of low-level techniques that change the I/O subsystem to improve the per-

formance of multiple simultaneous I/O operations, it does not provide any means for pro-

grammers to parallelize hybrid loops.

This chapter presents programming and compiler support for efficiently paralleliz-

ing hybrid loops, i.e., loops that contain I/O operations in addition to computation. The

SpiceC programming model is extended by providing I/O related pragmas that are merely

inserted preceding the hybrid loops being parallelized. The compiler techniques break the
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cross-iteration dependences involving I/O operations. Therefore, DOALL parallelism can

be employed whenever there is no cross-iteration dependence in the computation part of

the loop. Speculative execution of I/O operations is also supported to allow for speculative

parallelization of hybrid loops. Finally, helper threading is employed to reduce the I/O bus

contention resulting from aggressive parallelization of hybrid loops. The programmer can

use helper threading by simply calling helper threading APIs preceding the loops.

5.1 Parallelizing Hybrid Loops

This section begins by discussing the challenges in parallelizing hybrid loops and

then describes the approach to overcoming these challenges. First, it discusses why existing

techniques for DOALL parallelization and speculative loop parallelization cannot be directly

applied if a loop also contains I/O operations. The goal is to generalize these techniques

so that they can be applied to hybrid loops. Second, this section shows that parallelization

of hybrid loops can lead to I/O contention which must be effectively handled to realize the

full benefits of parallelization.

I. Enabling DOALL Parallelization of Hybrid Loops. Figure 5.1(a) shows a typical loop with

I/O operations that can be found in many applications (e.g., bzip2, parser [55], and stream

encoder/decoder). Each loop iteration first checks if the end of the input file has been

reached. If not, data is read from the file, computation on the data is performed, and finally

results are written to the output file. When the computation within a loop does not involve

cross-iteration dependences, maximum parallelism can be exploited via DOALL paralleliza-

119



Figure 5.1: Execution of the loop example.

tion where all loop iterations can be executed in parallel. However, in a hybrid loop, even

when the computation does not involve cross-iteration dependences, DOALL parallelization

is not possible because the file read/write operations introduce cross-iteration dependences

due to the movement (in the example, advancement) of the file pointer. In Chapter 2, such

loops (e.g., in Figure 2.4) are parallelized using DOACROSS parallelism which incurs high

scheduling and synchronization overhead—see Figure 5.1(b) for DOACROSS loop execu-

tion.

To fully exploit the parallelism in the loop, it is necessary to find a way to break the

cross-iteration dependences due to I/O operations. In this chapter, SpiceC is extended to

enable DOALL parallelization, which leads to the execution shown in Figure 5.1(c). DOALL

parallelization eliminates the synchronization between consecutive iterations and enables

more efficient scheduling polices such as Guided Self Scheduling [100]. Figure 5.2 compares

the performance of DOACROSS with the performance of DOALL on a microbenchmark

constructed based on the example loop type. In the microbenchmark, the compute function
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is composed of a loop. The ratio of I/O workload vs. computation workload can be adjusted

by varying the loop size. The figure shows the performance comparison for both I/O-

dominant workload and computation-dominant workload. In the I/O-dominant workload,

the I/O calls take around 75% of the execution time of the sequential loop while in the

computation-dominant workload the I/O calls take only 25% of the loop execution time.

In both cases, DOALL performs better than DOACROSS, especially with large number

of parallel threads. Therefore, the first challenge addressed in this work is to efficiently

parallelize hybrid loops by enabling DOALL parallelization.
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Figure 5.2: Performance comparison of DOACROSS and DOALL on the example loop.

II. Performing Speculative Parallelization of Hybrid Loops. Now let us consider the situation

in which cross-iteration dependences exist in the computation part of the loop. It is impos-

sible to perform DOALL parallelization of such loops even if the dependences introduced by

I/O operations are broken. Recent works have shown that an effective approach to handling
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Figure 5.3: Performance of reading a 1 GB file using different numbers of parallel I/O
requests.

cross-iteration dependences in the computation part is to employ speculative parallelization

of loops. This approach is very effective when the cross-iteration dependences manifest

themselves infrequently. Previous works [126, 43] have shown that speculative paralleliza-

tion works better than non-speculative DOACROSS parallelization; however, these works

also assume that the loops do not contain I/O operations. To apply speculative paralleliza-

tion to the loops with I/O operations, it is necessary to enable the speculative execution of

the I/O operations. Therefore, the second challenge of efficiently parallelizing hybrid loops

is to develop solutions for speculative execution of I/O operations.

III. I/O Contention due to Parallelization. Another challenge arises once DOALL and spec-

ulative parallelization of hybrid loops have been achieved. Increasing parallelism also raises

I/O bus contention. Figure 5.3 shows the performance of a microbenchmark that reads

a 1 GB file from the disk. The microbenchmark creates multiple parallel threads, each
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Figure 5.4: Commonly used file access patterns of loops and strategies for locating the
starting file position for each parallel thread.

of which then sends an I/O request to read a portion of the file. The number of paral-

lel threads (i.e., number of parallel I/O requests) is varied to examine the impact of I/O

bus contention. We can see that the I/O performance degrades quickly with more than 7

parallel I/O requests due to the I/O bus contention. Using more than 16 parallel I/O re-

quests actually causes a slowdown compared to the performance with just one I/O request.

Figure 5.2 also shows that the DOALL performance of the example loop degrades slightly

with large number of parallel threads. Therefore, to effectively parallelize hybrid loops, it is

required to develop techniques for reducing I/O bus contention.

5.1.1 DOALL Parallelization of Hybrid Loops

To apply DOALL parallelization to a hybrid loop, it is necessary to break the

cross-iteration dependences introduced by the I/O operations in the loop. The dependence-

breaking strategies for input operations differ from those for output operations. Thus, this

section discusses them separately below.
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I. Cross-iteration dependences caused by the input operations. These dependences arise be-

cause the starting file position for an iteration depends on the input operations performed

in the previous iteration. The DOALL parallelization assigns each parallel thread a chunk

of consecutive iterations for execution. Breaking the dependences requires identifying the

starting file position corresponding to each parallel thread. Therefore, the starting file po-

sitions should be calculated before the execution of the loop. The method for computing

the starting file positions depends upon the file access pattern used in the loop. An exam-

ination of Velvet [143] and the programs in two benchmark suites, SPEC CPU 2000 and

PARSEC [16], has identified three commonly-used file access patterns which are described

next.

(i) FSB: Fixed Size Blocks. The first access pattern, shown in Figure 5.4(a), is

called the fixed-size blocks pattern as in this pattern each loop iteration reads a fixed-size

block of data. The stride of the file pointer is equal to the size of the data block read by

each iteration. Since the stride of the file pointer is known before entering the loop, it is

easy to calculate the size of data to be read by each parallel thread. Thus the starting file

position of a parallel thread can be calculated by summing up the size of data to be read

by previous parallel threads. Given the starting file position of each parallel thread, the

time complexity of moving the file pointer to the starting file position via a seek operation

is O(1).

(ii) FLS: Fixed Loop Size. In the second pattern, as shown in Figure 5.4(b), the

loop first reads the total number of blocks from the file and then accesses one delimited

block during each loop iteration. Since the blocks are of variable size, delimiters are used
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to separate them (e.g., in a text file, the delimiter is ‘\n’). The number of blocks, n, to be

read by each parallel thread can be calculated from the total number of blocks. Using a

scan operation, the starting file position of parallel thread i can be located by skipping n∗ i

occurrences of the delimiter. The time complexity is O(N), where N is the file size. This

strategy is slow because it requires a scan as opposed to a seek.

(iii) FCS: Fixed Cumulative Size. In the third pattern, shown in Figure 5.4(c),

each loop iteration accesses one delimited block that is encountered until the total size of

data read by the loop reaches a given number. Because the data blocks are of variable size,

delimiters are used to separate them. Since the total size of data to be read by the loop

and the total number of parallel threads (T ) are known, the starting file position of parallel

thread i can be located by first skipping the i/T fraction of the data and then looking for

the first occurrence of the delimiter. In this case, each thread is actually assigned with

equal amount of data instead of equal number of iterations, which is different from typical

DOALL parallelization. This strategy requires two operations—a seek and a scan. This

scan is faster than the scan performed in FLS since it only scans to the first occurrence

of the delimiter. The time complexity of this strategy is O(L), where L is the maximum

length of a data block. This time complexity is much lower than that of assigning equal

number of iterations to every thread—O(N), where N is the file size.

II. Cross-iteration dependences caused by the output operations. Simply computing the start-

ing file position cannot help break cross-iteration dependences caused by output operations.

This is because the calculated file position does not exist until all previous output operations
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Figure 5.5: Strategies for flushing the output buffer.

have completed. Therefore, a different approach is proposed to break these dependences.

An output buffer is created for each parallel thread. Each thread writes the outputs into its

output buffer during the parallel execution of the loop. As a result, the output operations

in one thread no longer depend on those in other threads. Flushing these buffers can be

performed in parallel with the sequential code following the loop, as shown in Figure 5.5(a).

5.1.2 Speculative Parallelization of Hybrid Loops

Speculative parallelization is a way to efficiently exploit potential, but not guaran-

teed, parallelism in loops. Software speculative execution of non-I/O code has been studied

in previous work [126, 43]. However, I/O operations cannot be executed speculatively in the

same way because they use system calls. The code executed by the system calls is hidden

from the compiler and runtime library, which thus cannot monitor the execution of system

calls. Moreover, the results of I/O operations cannot be simply reversed once they are done.

Therefore, efficiently parallelizing loops with I/O operations using speculative parallelism

requires support for speculative execution of I/O operations.
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I. Speculative execution of input operations. Speculative execution of the input operations in

each iteration is enabled by creating a copy of the file pointer at the start of each iteration

and then using the copy to perform all input operations in the iteration. If speculation

succeeds, the original file pointer is discarded and the copy is used in the subsequent itera-

tions. If speculation fails, the copy is simply discarded. One way of creating the copy is to

instantiate a new file pointer and then seek to the current file position.

II. Speculative execution of output operations. Speculative execution of a loop iteration that

contains output operations should satisfy the atomicity semantics, i.e., either all output

operations occur or none occur. Therefore, the output operations in the loop iteration

should not actually write to the file since that cannot be reversed. Speculative execution of

the output operations in an iteration can be realized by using the output buffering described

in the previous section. If speculation succeeds, the buffered output is kept. Otherwise, the

buffered output is simply discarded. The output buffer is flushed at the end of each iteration

as shown in Figure 5.5(b). Flushing the buffer at the end of each iteration requires small

amount of memory since the buffer does not need to hold the outputs from the entire loop,

but it incurs synchronization overhead because the flush operations need to be performed

sequentially. The flush operation in an iteration needs to wait for the completion of the

flush operation in the previous iteration as shown in Figure 5.5(b).

5.1.3 I/O Contention Reduction via Helper Threading

Parallelizing hybrid loops can lead to increased contention on the I/O bus. Helper

threading is introduced to reduce this I/O contention. Before entering a hybrid loop, a
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helper thread is created which monitors the file buffers of the associated file pointers and

performs the following tasks. For an input file pointer, the helper thread refills the file

buffer when the size of remaining data in the buffer is less than a predefined threshold. For

an output file pointer, it flushes the file buffer when the size of buffered output is larger

than a predefined threshold. The use of a helper thread actually causes the I/O requests

sent to the I/O bus to be serialized. Therefore, it eliminates the slowdown caused by the

bursty nature of I/O requests. Moreover, since the parallel threads only access the buffer

in the memory instead of the file on the disk, the I/O latency is also hidden by the helper

thread. The helper threading can also be used in sequential loops to reduce I/O latency.

5.2 SpiceC Support for Parallelizing Hybrid Loops

The strategies described to enable parallelization of hybrid loops have been in-

corporated into the SpiceC programming system. The SpiceC programming model (as

described in Chapter 2) has been extended to allow parallelization of hybrid loops. This

section first presents the approach to programming parallel loops in the presence of I/O

and illustrate it using several examples from real applications. Next it describes the imple-

mentation of the programming model.

5.2.1 Programming Parallel Hybrid Loops

Let us first consider the programming model for parallelizing hybrid loops. Code

examples are presented to show how parallel hybrid loops are programmed and describe the

use of I/O helper threads to boost the I/O performance on multicores. In the examples, the
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C standard I/O library (stdio) is used for illustrating the programming model. All the pro-

posed APIs can be used for other I/O libraries, e.g., the C++ I/O library (iostream). The

SpiceC programming constructs used to express parallelism in this chapter are summarized

in Table 2.1.

Parallelizing Loops with Input Operations

To enable DOALL parallelization of loops with input operations, the pinput clause

is introduced:

#pragma SpiceC parallel doall pinput(file, stride, start, end)

The pinput clause is designed to be used with the SpiceC DOALL construct. To parallelize a

loop with input operations, programmers just need to insert the DOALL construct combined

with the pinput clause. The pinput clause has four parameters: file, stride, start, and end.

Parameter file is the input file pointer that causes cross-iteration dependences. Parameter

stride gives the stride of file in the loop; it can be either the size of data block read by

each iteration or the delimiter between data blocks. They are distinguished from each other

based on the parameter’s type. Parameter start is the initial position of file at the beginning

of the loop. By default (i.e., when this parameter is empty), the current position pointed

by file is used as the initial position. Parameter end is the ending position that file will

reach at the end of the loop. The end should be left empty if the ending position of file is

unknown before entering the loop (e.g., the FLS file access pattern shown in Figure 5.4(b)).

Given these parameters, the compiler can then calculate the starting file position for each

parallel thread using the strategies described in Section 5.1.1.
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Pattern Pragma Example

FSB pinput(file, size, 0, EOF)

FCS pinput(file, delimiter, 0, EOF)

FSB pinput(file, size)

FLS pinput(file, delimiter)

Table 5.1: Examples of the pinput clause.

Table 5.1 shows four examples of the pinput clause covering four different file input

patterns. In the first two examples, the loop reads the whole file. The initial file position is

set to 0 so that the compiler knows that the file pointer starts from the beginning of the file.

The use of EOF as the ending file position tells the compiler that the file pointer will reach

the end of the file. In the last two examples, the loop reads a fixed number of data blocks

from the current file position. The initial file position is not given in the pinput clause since

the current file position is used as the initial position. The ending file position is left empty

because it is unknown. The first and third examples exhibit the FSB pattern (as shown in

Figure 5.4(a)) since they use a constant block size as the stride of the file pointer. In the

second example, a delimiter is used as the stride and the total data size read by the loop

can be calculated by the initial and ending file position. Therefore, it exhibits the FCS

pattern (as shown in Figure 5.4(c)). The last example exhibits the FLS pattern (as shown

in Figure 5.4(b)) since a delimiter is used as the stride and the loop size is fixed.

Figure 5.6 shows a real example of DOALL input loop that is similar to the fourth

case given in Table 5.1. The original input loop is from the DelaunayRefinement bench-

mark [73]. Although the computation part of this benchmark has been parallelized in

various ways [117, 72], its input loop, which contains I/O, has never been parallelized. The
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file=fopen(“input”, “r”);

fscanf(file, “%d”, &ntuples);

#pragma SpiceC parallel doall pinput(file, “\n”) {

for( i=0; i<ntuples; i++) {

fgets(line, maxsize, file);

read line(line, &index, &x, &y);

tuples[index] = create tuple(x,y,0);

}

}

Figure 5.6: An input loop of benchmark DelaunayRefinement.

131



input loop reads an array of ntuples tuples from the file. Each iteration reads a line from

the file and then creates a tuple structure from the input. In the example, the pragmas

inserted to parallelize the loop are highlighted in bold. The SpiceC DOALL construct is

used to identify the parallel region and type of parallelism. The pinput clause is used to

specify the file input pattern. Since each iteration reads one line from the file, “\n” is given

as the delimiter in the pinput clause.

Parallelizing Loops with Output Operations

To parallelize a loop with output operations using DOALL parallelism, it is nec-

essary to buffer the output of each iteration. Programmers can achieve this by using the

boutput clause with the SpiceC DOALL construct as follows.

#pragma SpiceC parallel doall boutput(file, isparallel)

The boutput clause tells the compiler that the output to file in the loop is written into its

buffer. The buffer will not be flushed until the end of the loop, as shown in Figure 5.5(a).

The boutput clause has two parameters: file and isparallel. Parameter file is the file pointer

whose output needs to be buffered. Parameter isparallel specifies whether buffer flushing is

performed in parallel with the computation threads or in a sequential fashion.

Figure 5.7 shows an output loop of Velvet [143], a widely-used bioinformatics

application (genomic sequence assembler). Although the computationally-intensive part

of Velvet has recently been parallelized with OpenMP, its hybrid loops have not been

parallelized. In the original output loop, each iteration of the loop gets a nucleotide from

the descriptor and outputs a character based on the type of the nucleotide. The pragmas
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#pragma SpiceC parallel doall boutput(outfile, true) {

for (index = 0; index<length; index++) {

nucleotide = getNucleotide(descriptor, index);

switch (nucleotide) {

case ADENINE:

fprintf(outfile, “A”);

break;

case CYTOSINE:

fprintf(outfile, “C”);

break;

. . .

}

}

}

Figure 5.7: An output loop of bioinformatics application Velvet.
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used to parallelize the loop are highlighted in bold. The SpiceC pragma is used to mark

the parallel region and the boutput clause is used to buffer all outputs of fprintf so that the

output operations do not cause any cross-iteration dependence on the file pointer. Buffer

flushing is programmed to be performed in parallel with the sequential code after the loop.

The boutput clause can also be used to program DOACROSS loops with output

operations. For DOACROSS parallelism, the buffer is flushed at the end of each iteration,

as shown in Figure 5.5(b). Figure 5.8 shows the kernel of the benchmark Parser. Each

iteration first reads a line from stdin and then parses the line. Because of the cross-iteration

dependences in the parse portion of the loop, the loop cannot be parallelized using DOALL

parallelism. However, since these dependences rarely manifest themselves at runtime, the

loop can be parallelized using speculative DOACROSS parallelism. Because the parse por-

tion of the loop calls printf to output the results, programmers need the boutput clause

when applying speculative execution to the parse portion. In the figure, the pragmas in-

serted to speculatively parallelize the loop are highlighted in bold. The first SpiceC pragma

is used to identify the parallel region and type of parallelism. The loop is divided into two

subregions by the rest of the SpiceC pragmas. The first subregion, READ, performs the

input operations. The pinput clause is used at the beginning of the loop to tell the compiler

the file input pattern. The compiler can then calculate the starting position of infile for

each iteration and break the cross-iteration dependences introduced by fgets. The second

subregion, PARSE, parses the input; it is executed speculatively as specified by the commit

pragma at the end of the PARSE subregion. Since printf cannot be executed speculatively,

the boutput clause is used with the DOACROSS construct to buffer the outputs to stdout
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#pragma SpiceC parallel doacross \

pinput(infile, “\n”, 0, EOF) boutput(stdout, false) {

for(index=0; !feof(infile); index++) {

#pragma SpiceC region READ {

fgets(line, max line, infile); }

#pragma SpiceC region PARSE {

if ( special command(line) ) continue;

first prepare to parse(1);

while ( !success ) {

/* parser code here */

printf(“ Linkage %d”, index+1);

/* parser code here */

}

#pragma SpiceC commit atomicity check \

order after(ITER-1, PARSE)

}

}

}

Figure 5.8: Speculative parallelization of a kernel from Parser.

135



in the loop. This enables speculative execution. Buffer flushing is performed at the end of

each iteration in sequential order, as specified by parameter isparallel in the boutput clause.

Programming I/O Helper Threads

Helper threading is introduced to reduce the I/O contention caused by the hybrid

loop parallelization. Table 5.2 summarizes the API for programming I/O helper threads.

Function inithelper is used to create a new I/O helper thread; it returns the handle of

the created helper thread which can then be bound to a file pointer using the function

sethelper. Once bound to a file pointer, the helper thread continues to monitor the buffer

corresponding to that file pointer.

API Description

inithelper() initialize a I/O helper thread

sethelper(file, helper) bind a helper thread to a file pointer

Table 5.2: APIs for programming I/O helper thread.

Figure 5.9 shows an example of using I/O helper threading in a parallel loop taken

from DelaunayRefinement as shown in Figure 5.6. A helper thread is created and bound

to the input file pointer before entering the loop. Upon entering the parallel thread, the

helper thread will automatically monitor the buffer corresponding to the file pointer copy

in each parallel thread. Programmers do not need to code the binding of the helper thread

to each copy of the file pointer.

I/O helper threading can also be used in sequential loops to reduce the I/O latency.

Similar to the example of parallel loop, use of I/O helper thread in sequential loops is
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file=fopen(“input”, “r”);

fscanf(file, “%d”, &ntuples);

helper = inithelper();

sethelper(file, helper);

#pragma SpiceC parallel doall pinput(file, “\n”) {

for( i=0; i<ntuples; i++) {

fgets(line, maxsize, file);

read line(line, &index, &x, &y);

tuples[index] = create tuple(x,y,0);

}

}

Figure 5.9: Example of using I/O helper threads.
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straightforward: programmers just need to call inithelper and sethelper before entering the

loop.

5.2.2 Implementation

Code translation for the new pragmas is incorporated into the SpiceC compiler.

The compiler infrastructure, ROSE [104], is used to analyze the code annotated with the

new pragmas and generate explicitly parallel C/C++ code. The SpiceC runtime library

is extended to implement output buffering and helper threading. The following sections

describe the code transformation performed by the SpiceC compiler and then elaborate

how output buffering and helper threading are implemented.

Loop Transformation

API Description

bwrite(index, data, size, file) write data of size into the
buffer of file in iteration index

bputs(index, string, file) write string into the buffer of
file in iteration index

bprintf(index, file, format, ...) write formatted data into the
buffer of file in iteration index

bflush(file, ALL/index, ispar) flush the buffer of file using a
separate thread or not

Table 5.3: Low-level functions for buffering outputs.

The code transformation from DOALL hybrid loops to C/C++ code is done auto-

matically by the SpiceC compiler. Figure 5.10 shows an example of the code transformation.

Figure 5.10(a) shows a DOALL hybrid loop parallelized by the extended SpiceC directives.

Each iteration of the loop reads 100 bytes from the input file, then processes them, and
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in = fopen(“input”, “r”);
out = fopen(“output”, “w”);
#pragma SpiceC parallel doall \
pinput(in, 100, 0, EOF) boutput(out, true) {
for( ; !feof(in); )
fread(buf, 1, 100, in);
process(buf);
fputs(buf, out);

}

(a) Original code with SpiceC pragmas

init parallel threads();
. . .
in = fopen(“input”, “r”);
out = fopen(“output”, “w”);
args->in = in;
args->out = out;
start doall(wrapper, args);
join doall();
bflush(out, ALL, true);
. . .
close parallel threads();

void wrapper(void* args) {
in = args->in;
out = args->out;
tid = get thread id();
f = local start(tid, in, 100, 0, EOF);
c = local count(tid, in, 100, 0, EOF);
for( i=0; i<c; i++ )
fread(buf, 1, 100, f);
process(buf);
bputs(i, buf, out);

}

(b) Transformed main program (c) Transformed parallel loop

Figure 5.10: Example of code transformation.

finally outputs them into the output file. Figure 5.10(b) shows the transformed main pro-

gram. The compiler inserts initialization of the parallel threads at the beginning of the

program and close the parallel threads at the end of the program. The DOALL loop is

outlined into function wrapper. All variables used in the DOALL loop are wrapped into a

structure which is then passed as a parameter to the outlined loop. Function start doall

is called to execute the outlined loop in the parallel threads. Function join doall is a syn-

chronization method that waits until all parallel threads finish their work. Function bflush

is called after the loop to flush the buffer of file pointer out. Figure 5.10(c) shows the
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outlined loop. Before the loop, three functions are called to prepare the workload for the

current thread. Function get thread id is used to get the ID of the current thread. Function

local start is called to calculate the starting file position of the current thread. Function

local count is called to calculate the number of iterations to be performed in the current

thread. Function fputs is replaced with function bputs for buffering the outputs. Table 5.3

lists the substitute for the C standard I/O functions. They are designed to buffer and

flush the outputs for breaking the cross-iteration dependences introduced by the output

operations.

Output Buffering

To enable output buffering (e.g., bputs, bflush), an output buffer is created for each

parallel thread. The structure of each output buffer is a linked list, as shown in Figure 5.11.

Each node in the linked list is a buffer of predefined length which can typically hold the

output from several iterations. Once a node is full, a new node is created and appended to

the linked list.

Flushing the output buffers takes O(n) time, where n is the total size of all output

buffers. Figure 5.11(a) shows the data layout of the output buffers for a DOALL loop with

two parallel threads. The output buffer of thread 1 stores the output from iteration 1 to 6

and the output buffer of thread 2 stores the rest. It is straightforward to flush the output

buffers with this data layout. Flushing the output buffers can start from the first thread

and end with the last thread, which takes O(n) time. Figure 5.11(b) shows the data layout

of the output buffers for a DOACROSS loop. The output buffer of thread 1 stores the
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output from odd iterations and the output buffer of thread 1 stores the output from even

iterations. In this case, the output buffers can be flushed in a round-robin manner, which

also takes O(n) time. The output of the current iteration in a DOACROSS loop can be

flushed efficiently (as shown in Figure 5.8) since the output of the current iteration is always

pointed to by the tail pointer of the output buffer.

Figure 5.11: Buffer layout.

I/O Helper Threading

To enable I/O helper threading, the SpiceC runtime library is extended to imple-

ment an extended version of the standard file pointer by dividing the file buffer into two

parts of equal size: the f-buffer and the h-buffer, where the f-buffer is used as the file buffer

directly accessed by the I/O operations and the h-buffer is the helper buffer used by the

helper thread.

For input file pointers, all input operations read data from the f-buffer. Once the

f-buffer is empty, it is switched with the h-buffer. The helper thread keeps monitoring the

141



h-buffer. If the h-buffer is empty, it refills it by calling I/O system calls. Output file pointers

work in a similar way.

The SpiceC runtime typically does not put the helper thread to sleep to minimize

the refilling latency. However, when the number of parallel threads is equal to the number

of processor cores in the system, the helper thread will compete with the parallel threads

for CPU resources. Therefore in this case, instead of busy idling the helper thread, the

helper thread goes to sleep when it does not find any buffer that needs refilling. The helper

thread is then woken when an f-buffer is switched with the h-buffer in a buffer pair.

5.3 Evaluation

This section evaluates the SpiceC extension for the parallelization of hybrid loops.

The experiments were conducted on a 24-core DELL PowerEdge R905 machine. Table 5.4

lists the machine details.

Processors 4×6-core 64-bit AMD Opteron 8431
Processor (2.4GHz)

L1 cache Private, 128KB for each core

L2 cache Private, 512KB for each core

L3 cache Shared among 6 cores, 6144KB

Memory 32GB RAM

OS Ubuntu server, Linux kernel version 2.6.32

Table 5.4: Dell PowerEdge R905 machine details.
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Name Loops Input Output? Spec.? Helper? % runtime # stmts

velveth 8 FCS Yes No Yes 53% 18
velvetg 18 FCS Yes No Yes 27% 46
spacetyrant 4 – Yes No No 95% 8
Delaunay 3 FLS No No Yes 23% 7
bzip2 1 FSB Yes No Yes 99% 13
parser 1 FCS Yes Yes No 99% 8
blackscholes 1 FLS No No Yes 45% 6
fluidanimate 3 FLS Yes No Yes 36% 10

Table 5.5: Benchmark summary. From left to right: benchmark name, number of paral-
lelized hybrid loops, input file access pattern, whether output buffering is used, whether
speculative parallelization is used, whether helper threading is used, percentage of total
execution time taken by the hybrid loops, number of statements added or modified for
parallelization.

5.3.1 Benchmarks

The new SpiceC programming constructs was applied to eight applications. Two

are real-world applications, while the others are from the PARSEC [16] and SPEC CPU2000

suites. These applications were selected using the following criteria: (1) the applications

must have at least one hybrid loop that can be efficiently parallelized (i.e., there is no

frequent cross-iteration dependence in the computation part); and (2) the hybrid loop(s)

must take a significant portion of execution time. Applying the SpiceC extension to ap-

plications that do not satisfy these criteria would diminish the capacity to measure and

evaluate the hybrid loop parallelization techniques. DOALL parallelism was applied to the

hybrid loops in seven applications except parser (speculative parallelism was required to

parallelize parser). Table 5.5 shows the details of the benchmarks.

Velvet [143] is a popular genomic sequence assembler. It contains two applications—

velveth and velvetg. Velveth constructs the dataset and calculates what each input se-

quence represents. Velvetg manipulates the de Bruijn graph that is built on the dataset. 18
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computation loops in velveth and velvetg have already been parallelized using OpenMP.

In the experiment, their hybrid loops were parallelized. All parallelized input loops have

the FCS pattern. Output buffering was used to parallelize the loops that contain output

operations. Nucleotide sequence SRR027005 [2] was used as input. SpaceTyrant [5] is

an online multi-player game server. Its backup thread was parallelized which executes the

backupdata function to backup game data. The backupdata function has 4 output loops for

storing different types of data. Output buffering was used to parallelize these loops. In the

experiments, every data block was assumed to be dirty and needed to be written to the file.

DelaunayRefinement [73] is a meshing algorithm for two-dimensional quality mesh gener-

ation, originally written in JAVA. It was ported to C++. Its computation loop has been

parallelized in previous work [72]. The three input loops in the read function were paral-

lelized. They read different aspects of the input graph. All the loops have the FLS pattern.

DOALL parallelism was applied to them by breaking the I/O dependences. Bzip2 is a tool

used for data compression and decompression. In the experiments, its compression loop

was parallelized using DOALL. There are many superfluous cross-iteration dependences on

global variables in bzip2. To remove these dependences, buffers were replicated for each

iteration and many global variables were made local to each iteration. Some of the local

variables are summarized into global variables after the loop. Parser is a syntactic parser

for English. Speculative parallelism was used to parallelize its batch process function which

reads and parses the sentences in the input filed. The function contains a FCS loop. The

I/O dependences were broken by calculating the starting file position for each iteration

and using output buffering. It is required to speculate on dependences for control vari-
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ables which may be altered by the special commands in the input file. Blackscholes is a

computational finance application. The input loop in the main function was parallelized.

The loop is a FLS loop that contains only input operations. Fluidanimate is designed to

simulate an incompressible fluid in parallel. In its original Parsec version, the number of

threads supplied by users must be a power of 2. The workload partitioning was modified to

enable an arbitrary number of threads. For the PARSEC benchmarks, their pthread-based

parallel versions were used in the experiments.

5.3.2 Performance

Figure 5.12 shows the absolute speedup of the parallelized applications over their

sequential versions for varying number of parallel threads. Figure 5.12(a) shows the speedup

when applying the hybrid loop parallelization techniques. The speedup ranges from 3.0x to

12.8x. On average, the performance of these applications is improved by 6.6x on the 24-core

machine. For some benchmarks, the performance degrades with 24 parallel threads. This

is caused by the contention between the helper thread and parallel threads. Fluidanimate

has unstable performance across varying the number of parallel threads because its work-

load cannot be evenly partitioned with certain numbers of threads. The performance

of SpaceTyrant goes down with larger number of threads. This is caused by the dy-

namic memory allocation for output buffering. For comparison, Figure 5.12(b) shows the

speedup of these parallelized applications without hybrid loop parallelization. The speedup

of SpaceTyrant is always 1 since its backup thread cannot be parallelized without hybrid

loop parallelization. The speedup of these applications without hybrid loop paralleliza-
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Figure 5.12: Absolute parallelized application speedup over sequential programs.
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tion is between 2.3x–8.8x which is significantly lower than the speedups with hybrid loop

parallelization.

Figure 5.13(a) shows the relative speedup of hybrid loops with parallelization vs.

without parallelization. For seven applications, hybrid loop parallelization improves the

hybrid loop performance by factors greater than 5x. On average, hybrid loop paralleliza-

tion improves the loop performance by a factor of 7.54x. Figure 5.13(b) shows the relative

parallelized full application speedups with hybrid loop parallelization vs. without hybrid

loop parallelization. On average, hybrid loop parallelization improves the application per-

formance by 68%.

5.3.3 Impact of Helper Threading

Figure 5.14 shows the impact of I/O helper threading. On average, I/O helper

threading improves the performance of parallelized hybrid loops by 11.9%. I/O helper

threading usually provides more benefit with larger number of threads except 24 parallel

threads where the I/O parallel thread competes with the parallel threads for processing

resources. Figure 5.15 shows the impact of the buffer size of the helper thread in two

applications—velveth and DelaunayRefinement. I/O helper threading achieves higher

speedup with larger buffer sizes.

The buffer size is a critical factor that determines whether a helper thread can

efficiently load data for multiple threads. The following example is used to show how the

proper buffer size is set for a helper thread. Figure 5.16 compares the computation time

with the data load time for different numbers of iterations in DelaunayRefinement. The
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trend of the curves is similar for hybrid loops in other applications. Let us define tck as the

computation time of k iterations and tlk as the time of loading data for k iterations. From

the figure, tck increases much more quickly than tlk with the increase of k. For a helper

thread that loads data for p parallel threads, its buffer for each parallel thread should be

able to hold data for n iterations where tcn > p ∗ tln since loading data should be finished

before the data in the buffer is used up. Since tck increases much more quickly than tlk,

there always exists n satisfying tcn > p ∗ tln.

5.3.4 Overhead

Figure 5.17 shows the breakdown of the hybrid loop execution time for the paral-

lelized applications. The time is divided into four categories: computation, I/O, speculation,

and synchronization. For 5 out of 8 applications, most time is spent on the computation.

SpaceTyrant and Blackscholes spend most time on I/O operations since their hybrid loops
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contain very little computation. Since most loops are parallelized using DOALL parallelism,

very little synchronization overhead was introduced. Parser has the highest synchroniza-

tion overhead since it is parallelized speculatively. I/O operations take a higher percentage

of execution time with larger number of parallel threads due to I/O bus contention. Fig-

ure 5.18 shows the memory overhead incurred by hybrid loop parallelization. For 5 out of 8

benchmarks, the memory overhead is smaller than 10MB. Velveth and velvetg have high

memory overhead since their output, which needs to be buffered in the memory during loop

execution, is large.

5.4 Summary

In this chapter, the opportunity to parallelize hybrid loops, i.e., loops with compu-

tation and I/O operations, was identified. Several techniques were presented for efficiently

parallelizing hybrid loops. The SpiceC programming model was extended for exploiting

parallelism in hybrid loops. Parallelizing hybrid loops using the SpiceC extension requires

few modifications to the code. The chapter also described the compiler and runtime support

for the new SpiceC programming constructs.
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Chapter 6

SpiceC on Heterogeneous

Multicores with GPUs

GPUs provide an inexpensive, highly-parallel system to perform computations that

are traditionally handled by CPUs. Increasingly, GPUs are being incorporated in multicore

systems where they are used as accelerators. While the parallel application executes on the

CPUs of the multicore system, kernals from the application that contain fine-grained data

parallelism are executed on GPUs to further enhance performance. SpiceC can be easily

extended to support GPUs since its copying and commit computational model (as described

in Chapter 2) can naturally handle the host/device memory hierarchy in heterogeneous

systems with GPUs. The host memory can be seen as the shared space while the device

memory can be used as the private spaces. The data transfers between the shared and

private spaces are then controlled by the SpiceC runtime. This chapter demonstrates how

the SpiceC system described in preceding chapters is extended to take advantage of a GPU.
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for (i=0; i<n; i++) {
. . . = A[P[i]];
A[Q[i]] = . . .;
}

for (i=0; i<n; i++) {
. . . = A[i];
if (A[i]) A[i+1] = . . . ;
}

(a) Irregular memory access (b) Irregular control flow

Figure 6.1: Examples of dynamic irregularities that cause cross-iteration dependences.

There is another aspect of this work that makes it novel. For the first time,

it demonstrates how data parallel loops whose execution requires the use of speculation

can be accelerated using a GPU. While recently a number of research works [76, 10, 14]

have explored the use of GPUs, they exploit loop-level data parallelism in the absence

of cross-iteration dependence. However, data parallel loops have been observed to contain

dynamic irregularities that cause cross-iteration dependences at runtime, preventing existing

techniques from parallelizing the loops on GPUs. In particular, two types of dynamic

irregularities may cause cross-iteration dependences to arise at runtime as described below.

I. Dynamic irregular memory accesses refer to memory accesses whose memory access pat-

terns are unknown at compile time. Figure 6.1(a) shows an example, where each iteration

of the loop reads A[P [i]] and writes to A[Q[i]]. The memory access patterns of A[P [i]]

and A[Q[i]] are determined by the runtime values of the elements in arrays P and Q. It

is possible that an element in array A is read in one iteration and written in another at

runtime, which results in a dynamic cross-iteration dependence.

II. Irregular control flows are introduced by conditional statements, which may cause ex-

ecution of paths that give rise to cross-iteration dependences at runtime, as illustrated in
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Figure 6.1(b). In the example, there is a conditional branch that guards a write to A[i+1],

which is to be read in the next iteration. If the condition is true according to the runtime

value of A[i], a cross-iteration dependence occurs.

The remainder of this chapter presents a speculative execution framework for GPU

computing. It is designed to parallelize loops that may contain cross-iteration dependences

caused by the above dynamic irregularities. The SpiceC programming model is extended

for writing speculative parallel loops for GPUs.

6.1 Execution Framework

��� ���

��������	
��

�������	������

����������	
�����

�����

������	
��

���������

����������	
�����

��������

�������� 

!��

"�

Figure 6.2: Execution framework of a speculative parallel loop with GPUs.
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The overview of the developed framework for executing a speculatively parallelized

loop using a GPU is given in Figure 6.2. The procedure consists of five phases: scheduling,

computation, misspeculation check, result committing, and misspeculation recovery, among

which computation and misspeculation check are performed on the GPU. The five phases

are repeated until the entire loop is finished. This section briefly describes the five phases

as follows.

I. Scheduling. Upon entering a speculatively parallelized loop, the CPU needs to determine

the proper number of iterations that will be executed on the GPU in the next phase.

Assigning large number of iterations to the GPU may cause excessive misspeculations while

assigning small number of iterations may limit performance while leaving the GPU under-

utilized.

Computation After scheduling, the GPU executes the iterations in parallel by specu-

lating on the absence of cross-iteration dependence. To enable speculative execution, it is

necessary to track the irregular memory accesses and control flows during the computation.

II. Misspeculation check. Misspeculation check consists of two steps: detection and local-

ization. Misspeculation detection is used to determine whether the iterations have been

executed correctly. If misspeculation is detected, the misspeculation localization step is

used to identify the iterations that were executed incorrectly. In addition, for speculative

execution on GPUs, it is necessary to identify the correct part of the results, which must

be copied back to the CPU memory. To make misspeculation checks efficient, they are

156



performed in parallel on the GPU. Since there is data parallelism in misspeculation checks,

executing them on the GPU can lead to better performance.

III. Result committing. After misspeculation checks, the results should be copied from the

GPU memory to the CPU memory. For better performance, it is necessary to optimize

result committing to minimize copying overhead.

IV. Misspeculation recovery. The iterations where misspeculation occurs should be re-executed

for correctness. It is better to re-execute on the CPU as few iterations as possible to min-

imize the recovery overhead. Executing more iterations on the GPU will get us better

performance.

The following sections first illustrate the GPU part of the execution model, i.e.,

the second and third phases. Then the fourth and fifth phases, which are performed on the

CPU, are elaborated. Finally, the scheduling policy is described.

6.2 Speculative Execution on GPUs

This section describes how to execute a loop speculatively in parallel on GPUs.

The infrequent cross-iteration dependences in a speculative parallel loop are usually caused

by two types of dynamic irregularities – irregular memory accesses and irregular control

flows. The strategies for dealing with them are described separately.
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Figure 6.3: Code transformation of a loop with irregular memory accesses.

6.2.1 Irregular memory accesses

A loop with dynamic irregular memory accesses may have cross-iteration depen-

dences that cannot be identified at compile time. Figure 6.3(a) shows the kernel of the

loop example given in Figure 6.1(a). The conversion from loops to GPU kernels has been

studied in [76, 10]. In the example, tid is the GPU thread ID. Each GPU thread executes

one iteration of the loop. The memory access patterns of array A in the kernel is deter-

mined by the runtime values of the elements in arrays P and Q. Two iterations of the

loop may read and write the same element of array A, causing cross-iteration dependence

between them at runtime. An example of the runtime values of array P and Q is given

below the kernel in Figure 6.3(a). Because iteration 1 (starting from 0) writes A[2] and it-

eration 2 reads A[2], there exists a RAW dependence between the two iterations. Similarly,

since both iteration 2 and 4 write A[3], there exists a WAW dependence between them.

Because of these dependences, the results of iteration 2 and 4 will be incorrect if they are

executed in parallel. The kernel can only be executed in parallel by speculating on the

absence of cross-iteration dependence. To verify the correctness of the parallel execution
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of the kernel, it is necessary to identify the iterations whose results are incorrect due to

occurrences of cross-iteration dependences at runtime. Our speculative execution on GPUs

consists of three phases: execution with memory access tracking, misspeculation detection,

and misspeculation localization. These phases are described next.

I. Memory access tracking. To detect the cross-iteration dependences, it is required to track

which elements of the arrays with irregular access patterns are accessed in each iteration.

This is done by inserting a tracking operation after each irregular memory access in the

kernel. For low tracking overhead on the GPU, two static arrays of a predefined size are

used for each iteration to store the indices of the read and written elements. The maximum

number of elements that will be accessed in each iteration is assumed to be known. This is

often true, including for all benchmarks used in our experiments. Figure 6.3(b) shows the

transformed kernel with a tracking operation after each irregular access to array A.

II. Misspeculation detection. After the parallel execution of the kernel is finished, the ex-

istence of cross-iteration dependence should be checked. Unlike recent speculative paral-

lelization techniques [126, 43] for CPUs, which only need to detect RAW dependences,

speculative parallelization on GPUs requires detecting all kinds of dependences, including

RAW, WAR, and WAW. Speculative parallelization on CPUs resolves WAR and WAW

dependences by committing the results of the iterations in a sequential order. However,

these techniques cannot be efficiently implemented on GPUs because they require compli-

cated synchronizations. Since all computations are performed simultaneously on GPUs, it

is necessary to detect all kinds of dependences.
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Figure 6.4: Misspeculation detection.

The traditional shadow memory-based misspeculation detection method [107] is

simplified and adapted for GPU computing. The misspeculation detection is performed

on the GPU to efficiently explore the data parallelism in the detection procedure. The

misspeculation detection method is lightweight. It can only detect the existence of cross-

iteration dependences. If there is no such dependence, the lightweight method can decide

that the results are all correct and it is safe to continue to the next computation. If

there is any such dependence, the method cannot locate them. It is necessary to perform

the misspeculation localization phase to determine in which iterations misspeculation has

occurred.

Figure 6.4(a) shows the pseudocode for misspeculation detection for the kernel

example given in Figure 6.3. The detection procedure is described in detail as follows.

160



1. ReadA is calculated in parallel (line 1–3). ReadA[i] is set when A[i] is read but not

written in an iteration. It records the elements of array A which are read-only in some

iteration(s).

2. WriteA and WCA is then calculated in parallel (line 4–6). WriteA[i] is set when A[i]

is written in an iteration. It records the elements of array A that have been written.

WCA stores the number of elements written in each iteration.

3. The sums of WriteA and WCA are calculated in parallel (line 7–8). The sum of

WriteA is the number of elements that have been written, where multiple writes to

the same element in an iteration count as 1. The sum of WCA is the number of writes

to array A.

4. The intersection ofReadA andWriteA is calculated in parallel (line 9–11). If ∃i, ReadA[i]∧

WriteA[i] = 1, then A[i] is read-only in some iteration(s) and written in some other

iteration(s). In this case, misspeculation occurs due to a RAW or WAR dependence.

In some cases, an element may be read and written in an iteration(s) and also written

in another iteration(s). This kind of dependences is treated as WAW dependences,

which will be detected in the next step.

5. The sums of WriteA and WCA are compared. If
∑

i
WriteA[i] <

∑
i
WCA[i], then

there must exist multiple iterations that write the same element. This indicates the

existence of WAW dependences since some elements of array A are written in more

than one iterations.

Figure 6.4(b) shows the calculated values of array ReadA and WriteA for the P
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and Q given in Figure 6.3(a). The values indicate that there exist both RAW/WAR and

WAW dependences in the kernel execution. ReadA[2] and WriteA[2] are both equal to 1

since iteration 1 writes A[2] and iteration 2 reads A[2].
∑

WriteA[i] = 4 is smaller than

∑
WCA[i] = 5 since A[3] is written in two iterations. The read and write of A[3] happens in

the same iteration. Thus, A[3] is not recorded in ReadA. Therefore, there is no dependence

detected on A[3].
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Figure 6.5: Misspeculation localization.

III. Misspeculation localization. Our misspeculation localization method identifies not only

the misspeculated iterations but also the incorrect elements of arrays with irregular access

patterns. With the information of incorrect elements, it is possible to optimize the copying
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of results from the GPU to the CPU. The localization procedure is parallelized on the GPU

for better performance. Figure 6.5(a) shows the misspeculation localization for the kernel

example. The details of the localization procedure are described below.

1. RWA is calculated in parallel (line 1–2). RWA is the intersection of ReadA and

WriteA, which indicates the elements that are read and written in different iterations.

To calculate RWA in parallel, array A is divided into blocks. Block boundaries are

stored in BKA. Each thread calculates RWA for one block of array A.

2. WWA is calculated in parallel (line 3–7). WWA stores the number of iterations that

write each element. WWA[i] is larger than 1 if A[i] is written in multiple iterations. To

calculate WWA in parallel, WriteTraceA is divided into N blocks. Block boundaries

are stored in BKT . Each of the first N thread calculates WWA for one block of

WriteTraceA.

3. RWA is checked in each thread (line 8–10). If RWA[i] is set and A[i] is read in the cur-

rent thread, then the iteration performed by the current thread reads an element that

is written in another iteration. The iteration is misspeculated due to a RAW/WAR

dependence. Array Misspec stores the misspeculated iterations.

4. WWA is checked in each thread (line 11–13). If WWA[i] is larger than 1 and A[i]

is written in the current thread, then the iteration performed by the current thread

writes an element that is written in some other iteration(s). The iteration is involved

in misspeculation due to a WAW dependence. Misspec[tid] is set when the iteration

calculated by the current thread is involved in a misspeculation.
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5. Next, WrongA is calculated in parallel (line 14–16), which indicates the incorrect

elements of array A. An element is incorrect only when it is written by at least one

misspeculated iteration.

6. Finally, parallel reductions are performed on WrongA and Misspec to store the in-

correct elements and misspeculated iterations in lists. The CPU needs to know the in-

correct elements and misspeculated iterations to perform commit and recovery. Since

both arrays, WrongA and Misspec, are sparse, it is very inefficient for CPU to scan

them to get the information. Storing them in lists reduces the commit and recovery

overhead on CPU.

Figure 6.5(b) shows the values of RWA, WWA, WrongA, and Misspec for the P

and Q given in Figure 6.3(a). Since iteration 2 reads A[2] which is written by iteration 1,

iteration 2 is involved in misspeculation. Since iteration 4 writes A[3] which is written by

multiple iterations, it is misspeculated. As A[3] is written by misspeculated iterations 2 and

4, its value is incorrect.

After locating the misspeculated iterations and incorrect array elements, the cor-

rect array elements are stored and recovery needs to be done for the misspeculated iterations.

Section 6.3 presents details of copying and recovery.

6.2.2 Irregular Control Flows

Cross-iteration dependences may also be caused by irregular control flows in a loop.

Figure 6.6 shows three types of cross-iteration dependences that are caused by irregular

control flows. In Figure 6.6(a), the true branch condition causes a write to an element
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Figure 6.6: Loops with irregular control flows.
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that is read in the next iteration and thus makes the next iteration misspeculated. In

Figure 6.6(b), the true branch condition reads an element that is written in the previous

iteration and thus causes the current iteration to be misspeculated. In Figure 6.6(c), the

true branch condition writes a scalar variable that is read in all iterations and therefore

executing the branch makes them all wrong. These loops can be parallelized by speculating

the branch will not be executed. To verify the correctness of the parallel execution, the

execution of these branches needs to be monitored. Once these branches are executed, it is

required to detect the misspeculation and identify the misspeculated iterations.

The cross-iteration dependences in the branches can be either marked by the pro-

grammer or detected by the static data race detection techniques, such as Locksmith [102].

Static data race detection techniques identify dependences in a conservative way. There-

fore, they may cause false misspeculations. Programmers can better identify the branches

using their knowledge of the application. The SpiceC programming model is extended for

marking the branches that cause cross-iteration dependences (Section 6.5).

Once the cross-iteration dependences in the branches have been identified, the

branches need to be transformed for speculative execution. The transformation consists of

two steps.

1. In the branches that cause cross-iteration dependences, an operation is inserted for

recording the misspeculated iterations. The same array Misspec is used to store the

misspeculated iterations as shown in the previous section.

2. The statements in a branch are removed from the GPU kernels if the branch execution

will cause previous or current iterations to misspeculate.
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The rationale behind this transformation is explained using examples. Figure 6.6

gives the transformed code for the branches. The example given in Figure 6.6(a) uses an

operation that marks the next iteration as misspeculated. The statements in the branch are

kept since they will not pollute previous iterations. The example shown in Figure 6.6(b) uses

an operation that marks the current iteration as misspeculated. Since the current iteration

is misspeculated, executing the statements in the branch is meaningless. Therefore, the

statements are removed from the branch. In Figure 6.6(c), the operation inserted in the

branch sets a special flag in Misspec. The flag indicates that all subsequent iterations

including the current iteration are misspeculated. Since executing the statements in the

branch also make previous iterations wrong, the statements are removed from the branch

so that the results of previous iterations will be correct. In this branch, the current iteration

is included in the misspeculated iterations because the statements in the branch need to be

re-executed during recovery.

Having identified which iterations are misspeculated, the incorrect elements in the

output array (i.e., incorrect results) should be identified next. Since the memory accesses are

regular, polyhedral tools such as the Omega Library [64] can be used to capture the mapping

between the iterations and array elements. Once the mapping is known, the elements that

are written in the misspeculated iterations can be easily found. These elements are incorrect

and should be stored in array Wrong as shown in the previous section.

Similar to the previous section, the GPU is used to perform parallel reductions on

WrongA and Misspec to store the incorrect elements and misspeculated iterations in lists.

This reduces the commit and recovery overhead on the CPU.
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Cross-iteration dependences caused by irregular control flows can also be detected

by the method for irregular memory accesses presented in the previous section. However, in

comparison to the misspeculation check for irregular memory accesses, the misspeculation

check for irregular control flows is much cheaper. Therefore, the misspeculation check for

irregular control flows should be used whenever possible.

6.3 Commit and Recovery

01 copyFromGPUToCPU(Misspec);

02 copyFromGPUToCPU(WrongA);

03 if ( sizeof(WrongA) == 0 )

04 copyFromGPUToCPU(A);

05 else { // copy only correct part of array A

06 prepend(-1, WrongA);

07 append(size(A), WrongA);

08 for (i=0; i<size(WrongA); i++)

09 copyFromGPUToCPU(A[WrongA[i]+1 . . . WrongA[i+1]-1]);

10 }

11 for (i=0; i<size(Misspec); i++)

12 reexecute(Misspec[i]);

Figure 6.7: The pseudocode of commit and misspeculation recovery for the example given
in Figure 6.3.
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After the speculative execution on the GPU is finished, the correct results need to

be committed and misspeculation recovery should be performed. The commit and misspec-

ulation recovery are performed on the CPU. Figure 6.7 shows the pseudocode of commit

and misspeculation recovery for the example given in Figure 6.3. The procedure is described

next in detail.

1. The reduced arrays Misspec and Wrong are first copied from the GPU to to CPU.

These arrays are required for the commit and misspeculation recovery. This step has

very low overhead since the arrays are usually very small.

2. Data are committed back to the CPU. For an array, if all elements are correct, the

whole array is directly copied from the GPU to the CPU and the original array is

overwritten. If misspeculation is detected, it is necessary to scan array Wrong and

only copy the correct elements between the wrong elements stored in array Wrong.

3. Finally, the misspeculation recovery is performed. In this step, the misspeculated

iterations are re-executed on the CPU. For loops with irregular memory accesses,

array Misspec is scanned before redoing every iteration inside. For the loops with

irregular control flows, recovery is performed depending on the misspeculation type.

For the first two cases in Figure 6.6, where only one iteration is misspeculated with

the execution of the branch, every misspeculated iteration in array Misspec is re-

executed on the CPU. For the third case in Figure 6.6, where all subsequent iterations

are misspeculated, only the first iteration (i.e., the one that executes the branch and

causes the misspeculation) is re-executed on the CPU. All remaining misspeculated
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iterations are assigned to the GPU in the next scheduling assignment. This improves

the performance due to the reduced number of iterations executed sequentially on the

CPU.

Array Wrong can also be used to reduce the copy-in (copy from the CPU to GPU)

overhead. For loops with irregular memory accesses, it is unknown which array elements

that will be accessed in an assignment of iterations. Therefore, the whole array needs to be

kept in the GPU memory. After the recovery procedure, all elements that are re-calculated

on the CPU are stored in array Wrong. In the next assignment, only the elements stored

in array Wrong needs to be copied from the CPU to GPU. All other elements in the GPU

memory are already up-to-date.

6.4 Scheduling

For speculative parallel loops, scheduling more iterations in one assignment may

not always give better performance. This is because larger number of iterations in one

assignment may cause excessive misspeculations degrading the performance. Therefore,

when scheduling iterations in a speculative parallel loop, it is necessary to consider the

misspeculation rate. The scheduling policies for different types of loops are described as

follows.

I. Loops with irregular memory accesses. For speculatively parallelized loops with irregular

memory accesses, scheduling more iterations in one assignment will increase the chance of

dependences between iterations. It is not possible to determine the optimal assignment size
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since the cross-iteration dependences are unknown at compile time. A runtime scheme that

dynamically determines the assignment size is proposed.

In the first assignment, n/m iterations are scheduled to the GPU, where m is

the number of elements written in each iteration and n is the number of elements in the

array. If more than n/m iterations are scheduled in one assignment, there must exist two

iterations that writes the same element. From the second assignment, the assignment size is

adjusted based on the misspeculation rate in the previous scheduling. If the misspeculation

rate is higher than a predefined threshold, the assignment size is halved to reduce the

misspeculation rate in the next round of scheduling. If the misspeculation rate stays zero

for a number of consecutive iterations, the assignment size is doubled for better utilizing

the large number of stream processors on the GPU. It is unwise to increase the assignment

size beyond n/m since misspeculation will definitely happen when the assignment size is

large than n/m.

II. Loops with irregular control flows. For the first two cases in Figure 6.6, where only one

iteration is misspeculated by the execution of the branch, the runtime schedules as many

iterations as possible in one assignment. This is because the number of misspeculated iter-

ations are almost solely determined by the number of iterations that execute the branches.

Therefore the misspeculation rate can only be changed if the iterations that execute the

branches are scheduled as the first or last iteration in an assignment, which is very unlikely.

For the third example in Figure 6.6, where all subsequent iterations are marked

misspeculated if the branch is executed, the runtime measures the average interval between

171



two iterations that executes the branch at runtime and uses the interval as the assignment

size when performing scheduling. This is because once an iteration executes the branch, all

subsequent iterations are misspeculated. Therefore, to reduce the number of misspeculated

iterations, the iterations that execute the branch is better to appear near the end of the

assignments. Sometimes, there may be more than two iterations executing the branch in

one assignment. Then the runtime can use the interval between them as the size for the

next assignment so that the second iteration that executes the branch will appear at the

end of the next scheduling.

6.5 Programming Speculative Parallel Loops on GPUs

This section shows how speculative parallel loops are programmed on GPUs. The

techniques described to enable speculative parallelization on GPUs have been incorporated

into SpiceC.

To enable loop execution on GPUs, the target clause is introduced in the SpiceC

parallel construct.

#pragma SpiceC parallel doall target(device)

The intent of the target clause is to specify the device on which a given computation will

be executed. The valid device specified by the target clause can be cuda, cell, and etc.

This chapter uses target(cuda) for loop parallelization on GPUs. Only DOALL loops can

be executed on GPUs since other forms of parallelism require synchronizations which are

extremely expensive on GPUs.
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6.5.1 Irregular Memory Accesses

To enable speculative parallelization of loops with irregular memory accesses, the

speculate clause is introduced:

#pragma SpiceC parallel doall speculate(array)

A loop parallelized with the speculate clause will be executed speculatively under the

previously described framework. Programmers can specify which arrays may cause cross-

iteration dependences in the speculate clause. The memory accesses to these arrays will

be monitored at runtime for misspeculation check. Although the compiler can identify the

arrays that have irregular access patterns [140], not all of them will cause cross-iteration

dependence at runtime. Programmers can better identify which arrays need to be monitored

using their knowledge.

#pragma SpiceC parallel doall target(cuda) speculate(data)

for (mm=1; mm<=mtrn; mm++) {

jrev2s = (mm-1)*mskip + jrev2*nskip;

js = (mm-1)*mskip + (j+1)*nskip;

h = data(jrev2s+1);

data(jrev2s+1) = data(js+1);

data(js+1) = H;

}

Figure 6.8: A speculatively parallel loop from benchmark ocean.
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Figure 6.8 shows a loop example extracted from benchmark ocean, which is a

Boussinesq fluid layer solver [35]. The loop accesses a vector with runtime determined

strides and offsets. Each iteration of the loop first calculates the indices of two elements

of array data based on the loop index mm and a few other variables. It then reads and

writes the two elements to swap them. It is impossible to know which elements will be

swapped in each iteration at compile time since their indices are determined by runtime

values. There may exist cross-iteration dependences at runtime since two iterations could

potentially access the same element. Although the cross-iteration dependences usually do

not manifest themselves in real runs, it is possible that performing the iterations in parallel

produces wrong results. Therefore, speculative parallelization is required for the loop. In

the example, the SpiceC parallel construct with the speculate clause is added before the

loop to speculatively parallelize it. Array data is specified to be monitored at runtime since

its memory accesses may dynamically cause cross-iteration dependences. From the example,

we can see that it is very easy to speculatively parallelize a loop with the speculate clause

since programmers just need to insert the clause before the loop without modifying the

loop.

6.5.2 Irregular Control Flows

To enable speculative parallelization of loops with irregular control flows, the

branch construct is introduced:

#pragma SpiceC branch misspeculate(iterations)

The branch construct is designed to be inserted at the beginning of a branch that will
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cause cross-iteration dependences once its branch condition is true. The misspeculate

clause is used to specify the misspeculated iterations if the branch is executed. A loop that

contains the branch construct will be executed speculatively using the scheme described in

Section 6.2.2.

The iterations expression in the misspeculate clause is designed to allow the

following forms: absolute iterations, relative iterations, and iteration ranges. Absolute

iterations can be expressed as (i), where i is the iteration index. For example, (10)

denotes the 10th iteration. Relative iterations can be expressed as (+i/-i), where i is the

relative iteration index. For example, (+1) denotes the next iteration. Iteration ranges

can be expressed as (i:j), where i and j can be either absolute iteration index or relative

iteration index. For example, (+0:+4) denotes the current iteration and next four iterations.

Multiple iterations can be separated by comma in the expression. For example, (-1,+1)

denotes the previous and next iterations.

Figure 6.9 shows a loop example extracted from benchmark mdg, which dynami-

cally calculates water molecules in the liquid state at room temperature and pressure [77].

The example is simplified for better illustration. The example contains two nested loops.

The outer loop is parallelized. In each iteration of the outer loop, the inner loop calculates

array rs and counts how many elements are larger than a predefined threshold. After the

inner loop, there is a branch that is executed only if there exists elements in array rs,

which are smaller than the threshold. The execution of the branch will cause cross-iteration

dependences since it reads and writes a shared variable vir. Therefore, parallelizing the

loop requires speculation. In the example, the for construct is inserted before the loop to
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#pragma SpiceC parallel doall target(cuda)

for (j = i + 1; j <= nmol; j++) {

. . .

kc = 0;

for (k = 1; k <= 9; k++) {

rs[k - 1] = . . .;

if (rs[k - 1] > mdvar 1.cut2)

kc++;

}

if (kc < 9) {

#pragma SpiceC branch misspeculate(+1:nmol)

. . .

vir = . . .;

. . .

}

}

Figure 6.9: A loop with irregular control flow from benchmark mdg.
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parallelize it. The branch construct is inserted at the beginning of the branch for mon-

itoring the control flow. The iterations is set to (+1:nmol) since the execution of the

branch can make subsequent iterations misspeculated. From the example, we can see that

programmers can use the branch construct to speculatively parallelize loops with irregular

control flows without modifying the loop.

6.6 Evaluation

To generate CUDA code, the backend of the SpiceC compiler is extended using

OpenMPC [76], which is an OpenMP-to-CUDA compiler. The programmers use pragmas

to annotate the variables or control flows that may cause cross-iteration dependences. A

runtime library is developed for scheduling, misspeculation check, result committing, and

misspeculation recovery.

CPU 4-core Intel Xeon E5540 Processor
24GB RAM

GPU nVidia Tesla C1060
240 processor cores (1.296GHz)
4GB SDRAM
CUDA 3.0 installed

OS Linux kernel version 2.6.18

Table 6.1: Machine details.

An nVidia Tesla C1060 was used as the experimental platform. The device includes

a single chip with 240 cores organized as 30 streaming multiprocessors. The device is

connected to a host system consisting of Intel(R) Xeon(R) E5540 processors. The machine

has CUDA 3.0 installed. The machine details are summarized in Figure 6.1.

177



6.6.1 Benchmarks

The framework was evaluated using the benchmarks shown in Table 6.2. They

were selected because they contain dynamic irregularities that may cause cross-iteration

dependences at runtime and thus they cannot be parallelized without speculation. Three

of the benchmarks have irregular memory accesses and four have irregular control flows. It

is observed that only one or two pragmas are required to parallelize each loop. The details

of the benchmarks are described as follows.

I. Benchmarks with irregular memory accesses. The ocean benchmark [35] solves the dynam-

ical equations of a two-dimensional Boussinesq fluid layer for studying the chaotic behavior

of free-slip Rayleigh-Bénard convection. The source code of the parallelized loop is given

in Figure 6.8. Each loop iteration swaps two elements whose indices are calculated based

on some runtime values. Since two iterations may access the same element, parallelization

requires speculation. The memory accesses to a data array are tracked for misspeculation

check. The trfd [136] benchmark simulates a two-electron integral transformation, which

Benchmark Irregularities % of time # of pragmas

ocean irregular memory accesses 45% 1

trfd irregular memory accesses 6% 1

fftbench irregular memory accesses 20% 1

mdg irregular control flows 94% 2

strcat irregular control flows 99% 2

gothic irregular control flows 99% 2

alvinn irregular control flows 97% 8

Table 6.2: From left to right: benchmark name, type of irregularities that cause cross-
iteration dependences, percentage of total execution time taken by the loop, and number
of pragmas inserted for parallelization.
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is used in computing correlated wavefunctions and determinations of molecular electronic

structure. The loop parallelized in trfd has irregular memory access pattern. Each itera-

tion of the loop calculates the runtime value of variable val and assigns it to two elements

of array X. The indices of the two elements are calculated based on the runtime values of

array IA. Speculative parallelization is required as two iterations may write to the same

element. The memory accesses to array X are tracked. The program, fftbench, is from

the Coyote library which comes with LLVM [75]. In the loop that was parallelized, each

iteration reads and writes two elements of array result. The indices of the elements are

calculated dynamically. The loop requires speculative parallelization as the compiler cannot

identify elements accessed in each iteration.

II. Benchmarks with irregular control flows. The mdg [77] benchmark performs a molecular

dynamics calculation of water molecules in the liquid state at room temperature and pres-

sure. It can be used to predict a wide variety of static and dynamic properties of liquid

water. The simplified version of the parallelized loop is shown in Figure 6.9. The code

contains two nested loops – the outer loop is parallelized. Each iteration of this loop calcu-

lates the runtime values of array rs and counts the number of values that are larger than a

threshold. The branch that can cause cross-iteration dependences is executed if the count is

smaller than array rs’s size. Since whether or not the branch will be executed cannot be de-

termined at compile time, parallelizing the loop requires speculation. The execution of the

branch needs to be monitored. Program strcat is from the shootout benchmark suite. The

main loop is parallelized. Each iteration of the loop appends a fixed number of characters
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to a large buffer. A branch in the loop checks the free buffer space and reallocates the buffer

if there is not enough space. This branch causes cross-iteration dependences and cannot be

executed on the GPU. Therefore, the loop is parallelized via monitoring the execution of

the reallocation branch. Program gothic is a gothic printer. The kernel loop is parallelized.

Each iterations of the loop process one character. If a special character is met, the program

reverses the background, causing cross-iteration dependences. Our implementation tracks

the branch that examines the occurrence of the special character. The alvinn benchmark

trains a neural network using backpropagation. Four loops were parallelized in the program.

Each iteration of these loops need to move the weight pointer, thus causing cross-iteration

dependences. Although the increment in each iteration is input dependent, it often does

not change. To parallelize the loops, the increment is assumed unchanged at runtime and

a branch is created to check this condition. The execution of the branch is monitored to

detect cross-iteration dependences.

6.6.2 Performance Overview

Figure 6.10 shows the speedups for the loops considered. The baseline is the

sequential execution time of the loops on the host system. Bars higher (lower) than 1

indicate speedup (slowdown).

For each benchmark there are four bars – the first bar shows the performance of our

technique with all optimizations. The rest of the bars show the performance with different

optimizations individually omitted (for discussion of optimization results see Section 6.6.3).

The speedups for the fully optimized version are between 3.62x and 13.76x, with five (out
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Figure 6.10: Loop speedups for different optimization.

of seven) benchmarks achieving over 5x. The speedups demonstrate the effectiveness of our

framework in using GPUs for irregular loops considered.

6.6.3 Effectiveness of the Optimizations

Let us examine Figure 6.10 to study the effectiveness of optimizations. The second

bar (“w/o MO” in Figure 6.10) gives the performance without misspeculation optimization

(i.e., misspeculation detection without misspeculation localization and re-executing all it-

erations on the host system once misspeculation is detected). The third bar (“w/o CO”

in Figure 6.10) shows the performance without copy optimization (i.e., copying all data

between CPU and GPU for every assignment of iterations). The last bar (“w/o SCHED”

in Figure 6.10) shows the performance without our scheduling policy (i.e., scheduling all
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iterations to the GPU in the first assignment). These three groups of bars are intended to

show the importance of misspeculation localization, copy optimization, and our scheduling

policy.

For the ocean benchmark, our scheduling policy improves the performance by

around 32% over the one (“w/o SCHED”) with minimum speedup. Our scheduling policy

decreases the size of each assignment so that there is almost no misspeculation after the first

few assignments. Misspeculation and copy optimizations do not improve the performance

much since no misspeculation occurs in most assignments of iterations. Misspeculation

optimization improves the performance of trfd greatly because there is always only one

misspeculation in each execution of the loop. Without misspeculation optimization, all

iterations will be re-executed on the CPU, which apparently will cause slowdown. Copy

optimization improves its performance by 36%. The copy-in (i.e., copy from CPU to GPU)

overhead is greatly reduced as only the elements that are re-computed on the CPU (for

recovery) are copied to the GPU memory for every assignment. Our scheduling policy does

not have much impact on the performance of trfd since there is only one misspeculation for

each execution of the loop. The speedup of fftbench is partially offset by the number of

memory access tracking. Since no cross-iteration dependences occur at runtime for the test

input, misspeculation localization and recovery are never performed. Therefore, none of

the optimizations has a performance impact. The speedup of mdg is high because the loop

body has a lot of computation which can fully utilize the massively parallel architecture

of the GPU. Also, only a few iterations execute the branch at runtime. Therefore, most

computations are performed in parallel. With misspeculation optimization, only the first
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misspeculated iteration is re-executed on the CPU. The rest of the misspeculated iterations

are assigned to the GPU in the next assignment of iterations. If all misspeculated iterations

are re-executed on the CPU, the performance will be degraded by 60%. The speedup for

strcat is good since the misspeculation rate is very low due to the rapid growth of buffer

size. Misspeculation optimization improves the performance by 72% for the same reason as

in mdg. Copy optimization is critical for performance of strcat. By avoiding copying the

correct results back and forth between the CPU and GPU, the performance is improved

by 55%. In gothic, a misspeculation makes all subsequent iterations incorrect. Thus,

misspeculation optimization greatly reduces iterations executed on the CPU and improves

the performance. The speedup of alvinn is high because no misspeculation happens in our

experiments. The increment of the weight pointer does not change according to the input

and thus the optimizations make no impact.

6.6.4 Overhead

Figure 6.11 shows the time overhead (divided into recovery and misspeculation

check) as the percentage of the loop execution time. The time of computation and copy

is a necessity for all GPU computations since they are required by the GPU computing

model. The misspeculation check overhead for the ocean benchmark is the highest among all

benchmarks because it requires memory access tracking, and its misspeculation check needs

to detect both RAW/WAR andWAW dependences. The recovery overhead is high for ocean

since the first few schedules of the loop cause many misspeculations. The misspeculation

check overhead for trfd is lower than ocean since its misspeculation check only needs to
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Figure 6.11: Time overhead.

detect WAW dependences. In fftbench and alvinn, since no cross-iteration dependence

occurs for the test input, misspeculation localization and recovery are never performed. The

recovery overhead for mdg and gothic is low since only the first misspeculated iteration is

re-executed on the CPU. In strcat, the overhead for misspeculation check is low since the

runtime only monitors the execution of the branch that reallocates the buffer.

Overall, our framework introduces very low runtime overhead for performing re-

covery. Recovery takes less than 10% of the loop execution time. Misspeculation check takes

more time for loops with irregular memory accesses due to tracking of memory accesses.

On average, misspeculation check takes around 11% of the execution time for loops with

irregular memory accesses and 1.7% for the rest. Our speculative parallelized loops spend
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Figure 6.12: Memory overhead for misspeculation check.

more than 75% of execution time on computation and copy, demonstrating its efficiency.

Figure 6.12 shows the percentage of GPU memory usage for misspeculation check,

including the memory space used for memory access tracking, misspeculation detection, and

misspeculation localization. For benchmarks ocean, trfd, and fftbench, misspeculation

check requires significant GPU memory space because they require checking cross-iteration

dependences between memory accesses. Benchmark fftbench spends less memory on mis-

speculation check than ocean and trfd because no cross-iteration dependence occurs at

runtime. The memory overhead for the rest of the benchmarks is low since they only

require monitoring the execution of the branches.
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6.7 Summary

This chapter has described a framework that extends SpiceC to allow the use

of GPUs. Further, it shows how GPUs may be used to speculatively parallelize loops that

may have cross-iteration dependences at runtime due to irregularities. Several optimizations

were proposed to improve the performance, including parallelizing misspeculation check on

the GPU, optimizing the procedure of result committing and misspeculation recovery, and

adaptive scheduling policy for different types of cross-iteration dependences. An extension

to the SpiceC programming model was presented for writing speculative parallel loop on

GPUs. Parallelizing a loop with the SpiceC extension only requires inserting one or two

pragmas into the loop.
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Chapter 7

SpiceC on Distributed Memory

Clusters

Modern applications from important domains (e.g., data mining, machine learn-

ing, and computational geometry) have high processing demands and a very large memory

footprint. To meet the demands of such applications, it is natural to consider the use of

clusters of multicore machines. Clusters can not only scale to a large number of processing

cores, they also provide a large amount of memory via the scalable distributed memory

architecture. SpiceC can be adapted to the distributed memory architecture since its copy-

ing and commit computational model (as described in Chapter 2) does not require shared

memory and the data transfers between shared and private spaces are controlled by soft-

ware. The challenge for porting SpiceC to clusters is to implement the mechanisms for data

transfers between private and shared spaces so that they can work for distributed memory.

Since the data transfers are handled by the SpiceC compiler and runtime, this modifica-
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tion is transparent to the user. Programs parallelized using SpiceC can be executed on

distributed memory clusters without placing additional burden on the programmer. This

chapter demonstrates the ability of SpiceC to exploit the scalability of a distributed-memory

system, consisting of a cluster of multicore machines.

Unlike the SpiceC runtime on multicore processors, which stores all private and

shared spaces in the same physical memory, the SpiceC runtime on clusters distributes the

private and shared spaces across different machines. Therefore, to enable SpiceC on clusters,

the SpiceC runtime needs to address the following issues:

• The SpiceC runtime should provide a shared-memory abstraction on top of distributed

memory to hide explicit communication from users and give them an illusion of phys-

ically shared memory since SpiceC has a shared memory programming model.

• Since network communication is time-consuming, the overhead of network communi-

cation should be carefully handled for better program performance.

This chapter presents SpiceC-DSM (SpiceC Distributed Shared Memory), which is

a runtime system designed to enable SpiceC on clusters. With the support of SpiceC-DSM,

users can write shared memory parallel programs using the SpiceC programming model

and execute them on clusters, which greatly facilitates parallel programming on clusters.

SpiceC-DSM also move the overhead of network communication off the critical path of

program execution to improve the performance on clusters.
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7.1 Shared Memory Abstraction

To provide an efficient shared Memory abstraction, SpiceC-DSM creates a two-

level virtual memory hierarchy on a cluster. Figure 7.1 shows the two-level virtual memory

hierarchy. The second level virtual shared memory aggregates the physical memories from

different machines to provide a shared memory abstraction, which corresponds to the shared

space in the SpiceC computation model (as described in Chapter 2). The first level virtual

private cache is created for each thread for temporary storage of data to exploit the temporal

locality and reduce the network overhead, which is also used as the private space in the

SpiceC model. According to the SpiceC computation model, each thread must first copy

the required data from the virtual shared memory to its private cache before operating

on them. After that, the thread can continue to use the data copies in its private cache

until they are committed. The commit of modified data copies, in the private cache, to the

virtual shared memory makes the results visible to other machines.

The remainder of this section describes how SpiceC-DSM provides users with the

second level virtual shared memory. It first illustrates what data structures to be shared

across the cluster and then describes how they are distributed and accesses.

7.1.1 Definition of Shared Data

In SpiceC-DSM, all shared data structures must be dynamically allocated and

deallocated. In other words, only dynamic data structures will be shared across the cluster.

This avoids the overhead of sharing unnecessary data across the cluster and works perfectly

for applications with large data sets such as data mining applications since they usually
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Figure 7.1: Memory hierarchy of SpiceC-DSM on a modern cluster.

use dynamic data structures to hold the data sets. Arrays and scalar variables can also be

shared using SpiceC-DSM as long as they are dynamically allocated.

Similar to the SpiceC support for dynamic data structures presented in Chapter 4,

SpiceC-DSM must be able to identify the shared data structures. To achieve this, SpiceC-

DSM requires that the data structures to be shared across the cluster inherit a base class,

called BaseNode. To support proactive communication described in Section 7.2, SpiceC-

DSM also needs to learn the topology of the shared data structures. The BaseNode class

defines two interfaces (i.e., virtual functions in C++ ) — GetNeighborNum and GetNeighbor

that the developers must implement. The first interface returns the total number of neigh-

bors and the second returns a specified neighbor. The SpiceC-DSM can acquire the topology

by calling these two functions.
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7.1.2 Data Distribution
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Figure 7.2: An example of dynamic data structure stored in SpiceC-DSM.

In SpiceC-DSM, dynamic data structures are distributed across multiple machines.

Figure 7.2 shows an example of a graph data structures stored in SpiceC-DSM. The nodes

in the graph are distributed among two machines.

In SpiceC-DSM, data distribution is done automatically at the allocation sites

as all shared data structures are dynamically allocated. When an element is allocated at

runtime, it is automatically assigned to one of the machines in the cluster using a hash

function. This machine is called the owner of the element and maintains a master copy of

the element. When an element is deallocated, it will be removed from its owner.

7.1.3 Data Reference

Since all shared data structures are dynamically allocated, they can only be ac-

cessed via pointers. As shown in Figure 7.2, an edge in the graph may connect two nodes
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on the same machine or on different machines. Therefore, a thread should be able to access

a data element stored on a remote machine via a pointer.

In SpiceC-DSM, a pointer stores the ID of a shared data element. Each shared data

element is assigned with an ID when it is allocated in SpiceC-DSM. The ID is a string unique

to the element. It is used to access the element, acting as the virtual address of the element.

When the element is distributed, its owner is selected by hashing the ID. Therefore, when a

pointer is dereferenced, the owner of the data element can be easily located by hashing the

ID stored in the pointer. According to the SpiceC computation model, the corresponding

data element will be copied into the local virtual cache. All references to the data element

will access the local virtual cache, which is much faster than remote accesses. If the data

element is updated, it will be copied back to its owner when the computation is committed.

7.1.4 Sequential Consistency

To ensure that the programmer can easily reason about a program, SpiceC-DSM

employs a form of sequential consistency as follows. As shown in Chapter 2, each parallel

loop written in SpiceC is divided into regions by the region directives. With SpiceC-DSM,

each region is executed with atomicity and in isolation since the data are copied into the

local virtual cache before being accessed and copied back to its owner at the commit site of

the region. Sequential consistency is then enforced by SpiceC-DSM at the coarse grain level

of regions. For performance, the compiler can freely reorder instructions within a region

without the risk of violating coarse grain sequential consistency.
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7.2 Proactive Data Communication
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Figure 7.3: Data communication in SpiceC-DSM.

SpiceC-DSM introduces a communication layer to perform data communication

proactively between the virtual private caches and the virtual shared memory, as shown in

Figure 7.3. This layer is composed of a set of daemons that handle data communication in

parallel with the actual computation. They proactively fetch data from remote machines

for the local computation tasks and forward the updates from the local computation tasks

to the owners. The daemons ensure that the data required by the computation tasks are

mostly available locally when needed. In this way they hide the network latency from the

computation tasks. As a result, the computation tasks only need to operate on data in

the local memory, which leads to better performance. Proactive data communication layer

hides read latency by proactively fetching data needed by computation tasks and it hides

write latency by proactively committing updates to the owners. Detailed discussion of both
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these mechanisms follows.

I. Proactive data fetching. When a computation task wants to access a data element,

it first checks whether a replicated copy already resides in the local virtual cache. If not,

the computation task will have to wait for a remote access for fetching the data element.

To avoid this case, the daemons in the data communication layer proactively fetch data for

the computation tasks.

To perform proactive data fetching, when a data element is accessed by a com-

putation task for the first time, a communication daemon also predicts what elements are

likely to be accessed next. If the predicted elements have not previously been copied into

the local virtual cache, then the daemon sends data requests to their owners. In applica-

tions that use dynamic data structures such as graphs and trees, each computation often

accesses a set of connected data elements. Therefore, when a data element is accessed, its

neighbors are predicted to be accessed next and proactively fetched by the communication

daemon. This is done using the two interfaces – GetNeighborNum and GetNeighbor which

developers implement for the shared data structures.

A computation task will still be blocked when the data elements it requests are

not in the local virtual cache. In this case, the access latency for these data elements is on

the critical path of the computation.

II. Proactive data committing. At the end of each computation, the computed

results in the virtual private cache need to be committed to their owners. The data commit

is performed by one of the daemons in the proactive communication layer to keep the

overhead off the critical path. Atomicity check must be performed before data commit
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to ensure sequential consistency. During the atomicity check, the communication daemon

communicates with the owners to see if the elements in the virtual private cache have been

updated by other computation tasks. If so, the data in the virtual private cache must be

discarded and the computation must be redone. To ensure sequential consistency, multiple

commits from the same computation task should be performed one by one.

Proactive data communication does not only hide the network latency from the

computation tasks, but also makes communication asynchronous. With asynchronous com-

munication, multiple communication requests can be processed simultaneously to further

hide the network latency.

7.3 SpiceC Programming on Clusters

SpiceC programming on clusters is similar to that on shared memory systems (as

described in Chapter 2). The only difference is that only dynamic data structures are shared

on clusters.

Figure 7.4 shows an example of parallel graph coloring written in SpiceC. The first

half of the code reads input from a file and constructs the graph sequentially. Since it is

sequential region, it will only be executed on the main thread. The first loop reads the

node information and allocates the nodes. As the nodes are dynamically allocated, they

will be shared in SpiceC-DSM. The second loop reads the edge information and connects

the nodes accordingly. The objects shared in SpiceC-DSM are just used as normal objects.

All objects accessed in the sequential region will be cached in the private space of the main

thread. They will be copied back to the shared space before entering the parallel region so
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// sequential region: read input and construct graph

for(i=0; i<nodes; i++) { // read nodes

read node(file, &v);

node ptrs[id] = new Node;

node ptrs[id]→value = v;

}

for(i=0; i<edges; i++) { // read edges

read edge(file, &id1, &id2);

node ptrs[id1]→neighbors.add(node ptrs[id2]);

}

// parallel region: perform graph coloring

#pragma SpiceC parallel doall

for(int i=0; i<Node.size(); i++) {

#pragma SpiceC region R1 {

coloring(Node[i]);

#pragma SpiceC commit atomicity check

}

}

Figure 7.4: Pseudocode for graph coloring.
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that other threads can see the results from the sequential region.

The second half of the code example performs graph coloring in parallel. It is just

like writing a regular DOALL loop using SpiceC. Since the Node structure inherits the base

class BaseNode (as described in Section 7.1.1), member function size() returns the total

number of Node objects and each Node object can be referred to by using an index with the

Node type. In the DOALL loop, they are used to enumerate all objects with the Node type.

Since multiple iterations of the parallel loop may access the same node, atomicity check

is specified at the commit site to enable speculation.

7.4 Evaluation

This section evaluates SpiceC-DSM. The SpiceC-DSM runtime is implemented

using Memcached, which is an open-source distributed memory object caching system. In

the experiments, the proactive communication layer on each machine consists of 32 daemons.

The number is limited by the size of Memcached connection pool. When no data needs to

be transferred, the daemons will be blocked, thus consuming no CPU resource.

The experiments were conducted on a cluster consisting of five eight-core DELL

PowerEdge T605 machines. Table 7.1 lists the details of each machine. These machines ran

Ubuntu 11.04. In the experiments, SpiceC-DSM uses the memory of all five machines no

matter how many cores are used for computation.
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Processors 2×4-core AMD Opteron processors (2.0GHz)

L1 cache Private, 64KB for each core

L2 cache Private, 512KB for each core

L3 cache Shared among 4 cores, 2048KB

Memory 8GB RAM

Network 1GB Ethernet

Table 7.1: Machine details.

7.4.1 Benchmarks

To evaluate SpiceC-DSM, the experiments were performed using 6 applications,

including Delaunay Refinement, Graph Coloring, K-means Clustering, PageRank, BlackSc-

holes, and Betweenness Centrality. Since SpiceC-DSM is built for applications with large

data sets, these applications were chosen as they are all data-intensive. Most of the appli-

cations are widely-used data mining programs designed to process large volume of data.

Benchmark Data Struct. Speculation?

Delaunay Refinement Graph Yes

Graph Coloring Graph Yes

Betweenness Centrality Graph Yes

K-means Clustering Dynamic Array Yes

PageRank Graph No

BlackScholes Dynamic Array No

Table 7.2: Benchmark summary.

Table 7.2 summarizes the applications. Delaunay Refinement is an implemen-

tation of a mesh generation algorithm. It transforms a planar straight-line graph to a

Delaunay triangulation of only quality triangles. The data set is stored in a pointer-based

graph structure. Each iteration of the main loop updates a cavity which is a subset of con-

nected nodes. Speculation is used since multiple threads can update the same nodes. Graph
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Coloring is an implementation of the scalable graph coloring algorithm proposed in [21].

Each computation task colors one node using the information of its neighbors. K-means

Clustering [39] is a parallel implementation of a popular cluster analysis algorithm, which

aims to partition n points into k clusters where each point belongs to the cluster with the

nearest mean. All points are stored in a dynamic array in the implementation. Each it-

eration of the parallel loop assigns a node to the nearest cluster and updates the centroid

of the cluster. Since multiple iterations may update the same cluster, the program needs

speculation. PageRank is a link analysis algorithm used by Google. It iteratively com-

putes weight for every node of a linked webgraph. In the implementation, a dynamic data

structure is used to hold the webgraph. BlackScholes is a benchmark from the PARSEC

benchmark suite [16]. It uses the Block-Scholes partial differential equation to calculate

the prices of European-style options. All data are stored in dynamic arrays in the imple-

mentation. Betweenness Centrality is a popular graph algorithm used in many areas. It

computes the shortest paths between all pairs of nodes. For a given node, it determines

what fraction of shortest paths contain that node. Speculation is used to atomically update

the betweenness centrality of every node.

7.4.2 Scalability

Figure 7.5 shows the application speedups achieved on SpiceC-DSM using different

numbers of cores for computation. In the experiment, every group of eight cores are on the

same machine. The baseline is the sequential versions of the same applications. For all

sequentail and parallel runs, Spcice-DSM uses the memory of all five machines. We can
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Figure 7.5: Application speedups.

see that the performance of most applications scales well with the number of cores used

for computation. The parallel versions are always faster than the sequential version with

speedups up to 25x. The performance of k-means drops at 40 cores due to very high

misspeculation rate, which is around 40%. The average speedup at 40 cores is 7x, which

demonstrates the SpiceC-DSM’s ability to handle parallel applications.

7.4.3 Impact of Copying and Commit Model

SpiceC-DSM uses the copying and commit model to reduce the number of remote

accesses occurring at each threads. Private spaces are used to hold temporary data copies

for consecutive accesses. Without private spaces, every data accesses will go to the vir-

tual shared memory, greatly increasing the number of remote accesses. Figure 7.6 shows

the execution time of blackscholes with and without private spaces. All time data are
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Figure 7.6: Execution time of blackscholes with and without private spaces.

normalized to the execution time with private spaces using 8 cores. We can see that the

performance with private spaces is always better than without private spaces, which shows

that the copying and commit model can efficiently improve the program performanc on

distributed memory systems.

7.4.4 Impact of Proactive Communication
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Figure 7.7: Relative speedup: with proactive communication vs. without proactive
communication.
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Figure 7.7 shows the performance improvement achieved by proactive communi-

cation for three applications. Sequential programs are used for measuring the performance

on 1 core. We can see that proactive communication can improve the program performance

by up to 3.4x. It improve the performance of both sequential and parallel programs.
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Figure 7.8: Speculation overhead in the execution of graph coloring with and without
proactive communication.

Figure 7.8 shows the speculation overhead in the execution of graph coloring

with and without proactive communication. The speculation overhead with proactive com-

munication is always lower than that without proactive communication.On average, proac-

tive communication reduces the speculation overhead by 60% for graph coloring, which

demonstrates its ability to hide speculation overhead.

7.4.5 Impact of Data Contention

Figure 7.9 compares the speedups of k-means with high and low data contention.

Input data sets are calibrated to produce different data contention. We can see that SpiceC-

DSM achieves better performance when data contention is low. Even when data contention

is high, SpiceC-DSM can still achieve speedups for k-means, which shows that SpiceC-DSM
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Figure 7.9: Speedups of k-means with high data contention and low data contention.

can efficiently handle data contention.

7.4.6 Bandwidth Consumption
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Figure 7.10: Comparison of page-level and object-level data transfer.

Previous cache-coherence DSM systems [103] typically perform data transfers at

page level when maintaining memory coherence. However, a cluster of nodes accessed by

a code segment (e.g., a node and its neighbors in a graph), are not necessarily allocated

consecutively in the memory space. Thus, little benefit can be achieved from the high
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communication overhead paid for page level data transfer. SpiceC-DSM transfers data

between shared and private spaces at object level. Figure 7.10 compares the bandwidth

consumed by page level and object level data transfer using the parallel graph coloring. As

we can see, data transfers at page level cause far greater level of communication than object

level transfers. Thus, it is desirable to use SpiceC-DSM for applications that rely on the

use of dynamic data structures.

7.5 Summary

This chapter presented SpiceC-DSM, which is designed to enable SpiceC on clus-

ters. SpiceC-DSM aggregates the memory from different machines to form a shared memory

abstraction, which meets the demand of applications that have large data sets. SpiceC-DSM

introduces proactive data communication, which uses the on-chip parallelism provided by

multicore machines to hide the network latency from the computation tasks. SpiceC-DSM

also offers sequential consistency through the atomic execution of code regions.
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Chapter 8

Related Work

This chapter discusses the related research in the two main areas addressed by

this dissertation. First, the state of the art in parallel programming is discussed. Second,

since speculative execution is a key component of all the solutions developed in this work,

related work in this area is presented. The works on parallel programming and speculative

execution are presented for all types of architectures, i.e., multicore CPUs, heterogeneous

multicores with GPUs, and distributed memory clusters. The final section discusses some

miscellaneous works not covered in the sections on parallel programming and speculative

execution.

8.1 Parallel Programming

The related work on parallel programming is discussed next. The discussion is

divided according to the parallel computing platforms that it is aimed at.
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8.1.1 Shared Memory Systems

Many programming models have been proposed to write parallel programs for

multiprocessors. OpenMP [36] is probably the most widely used programming model for

parallelizing sequential programs on shared-memory systems. Similar to SpiceC, OpenMP

also uses compiler directives to express shared-memory parallelism. OpenMP gives devel-

opers a simple interface to parallelize their programs. A few extensions to OpenMP have

been proposed for speculative parallelization of C/C++ code. OpenTM [12] is an extension

to OpenMP, which is a widely-used API for shared-memory parallel programming. The

new compiler directives are designed to express loop-level speculative parallelization based

on TMs. Milovanović et al. [90] proposed an extension to OpenMP that supports a mul-

tithreaded STM design with a dedicated thread for eager asynchronous conflict detection

improving time efficiency.

Threading Building Blocks (TBB) [108] is another programming model used to

parallelize programs for shared-memory systems. Instead of using compiler directives, TBB

provides a set of threadsafe containers and algorithms to allow developers to easily write

parallel programs. To use TBB, developers need to wrap their codes using the containers

provided by TBB. Like OpenMP, TBB does not support speculative parallelism. To par-

allelize a loop with cross-iteration dependences, developers need to manually use low level

primitives to handle the dependences.

Galois [72, 71, 70, 89, 99] provides a runtime library for exploiting the data par-

allelism in irregular applications. It supports speculative parallelism but developers must

provide code to perform rollback once speculation fails. It has been extended to use data
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partitioning for better locality and lower misspeculation rate. However, partitioning is not

done automatically and should be provided by developers.

Bamboo [146] is a data flow language designed to exploit parallelism on manycore

processors. It is a data-oriented extension to Java. Bamboo programs are composed of a

set of tasks that implement the programs operations. Developers focus on how data flows

between tasks. Parallelism is achieved through the parallel execution of independent tasks.

Prabhu et al. [101] proposed two language constructs to enable developers to

achieve parallelism via the use of value speculation. They required all parallel tasks to

be defined in a producer and consumer model. Prediction functions provided by developers

are used to predict values of data dependences between tasks for increasing parallelism. A

static analysis was proposed to reduce the misspeculation overhead.

There are a few other parallel programming interfaces proposed to improve memory

performance on shared memory systems. Sequoia [45] is a memory hierarchy aware parallel

programming model. In Sequoia, developers explicitly control the movement and placement

of data at all levels of the machine memory hierarchy to make parallel programs bandwidth-

efficient. Hierarchically Tiled Array (HTA) [17] accelerates sequential OO languages by

using an array to express multiple levels of tiling for locality and parallelism.

None of the above programming models are as versatile as SpiceC. They are all

designed to exploit parallelism in a specific class of applications with the same form of

parallelism. They are unable to parallelize real applications that use precompiled functions

and system calls. While keeping simplicity, they do not support more scalable systems like

clusters. Except OpenMP and TBB, these programming models are not as easy to use
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as SpiceC. They do not have a compiler for automatically generating code for speculative

execution. Some programming models like Bamboo and Sequoia require the programs to

be written in a disciplined style.

8.1.2 Distributed Memory Systems

Single Program Multiple Data (SPMD) is a programming model to achieve par-

allelism on distributed memory systems. Message passing interface (MPI) [52] is currently

the de facto standard for SPMD. Using MPI, developers need to explicitly write parallel

programs, including manually distributing workloads among threads and handling all com-

munications and synchronizations between threads. Since developers can fully control their

programs in MPI, MPI is good for optimizing performance and managing data locality.

Partitioned global address space (PGAS) is a parallel programming model which tries to

combine the performance advantage of MPI with the programmability of a shared-memory

model. It includes Unified Parallel C [34], Co-Array Fortran [44], Titanium [57], Chapel [27]

and X10 [28]. Unified Parallel C, Co-Array Fortran, and Titanium use SPMD style and try

to improve the programmability of SPMD. Chapel and X10 extend PGAS to allow each node

to execute multiple tasks from a task pool and invoke work on other nodes. These PGAS

programming models explore parallelism for array-based data-parallel programs using data

partitioning [66, 110]. Since these works focus on array-based data parallel programs, they

do not need to consider dynamic computation partitioning and data contention between

threads. High Performance Fortran was extended for dynamic data distribution to paral-

lelize array-based unstructured computations [92]. Several works [137, 51] have focused on
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data and task partitioning for stream programs.

Software DSM has been proposed to provide the easy of shared-memory program-

ming on distributed-memory systems. Callahan and Kennedy [24] have proposed a software

DSM mechanism that executes programs in SPMD mode. In SPMD mode, every CPU ex-

ecutes the same program but performs only the instructions that access data local to the

CPU. The other series of works is Cache-coherent DSM [115, 116], which was mostly in-

spired by virutal memory and cache coherence protocol on shared-memory systems [103].

They allow data replication and migration so that most data accesses cab hit the local

memory as long as the application exhibits high locality. The above DSM systems were

not developed for modern clusters, where each node has many processing cores. They do

not make use of the multiple cores on each node. In addition, these DSM systems work

poorly for applications that use using dynamic features provided by modern programming

languages. The performance of SPMD-based DSM is greatly degraded for modern appli-

cations as these dynamic features make the appropriate distribution of data impossible to

determine at compile-time. In a cache-coherent DSM system, data need to be replicated

and/or migrated on the fly as it is impossible to statically figure out the memory access

patterns for programs using dynamic features. SpiceC overcomes these drawbacks. It allows

automatic data distribution while keeping the communication overhead low using the copy-

ing and commit model. SpiceC also moves most communication overhead off the critical

path using the multicore architecture on each machine.

Distributed caching is a simplified DSMmechansim for caching objects in distributed-

memory systems. Memcached [50] is a popular implementation of distributed caching. It
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is designed to speed up web applications by alleviating database load. For the system’s

simplicity, users need to manually load and store data in the system. The system does not

provide any guarantee for memory consistency. Besides, users must manually serialize data

before puting them into the distributed cache since the system does not understand data

structures, which further increases the programming burden. Unlike SpiceC, Memcached

does not provide any support for keeping the communication overhead off the critical path.

Recently, software transactional memory [118] has been introduced to clusters as

a parallel programming paradigm. Distributed Multiversioning (DMV) [84] is a page-level

distributed memory coherence algorithm that allows transactions on different machines to

manipulate shared data structures in an atomic and serializable manner. It is designed for

parallel database applications. Cluster-STM [20] studied metadata distribution and com-

munication aggregation for STM on clusters. It also introduced a low-level STM API for

clusters. DiSTM [67, 68] is an object-level transactional memory for clusters. It supports

multiple transactions to commit concurrently. Many software DSM libraries also provide

certain levels of consistency to support transactional applications, such as snapshot isola-

tion [79, 139], session consistency [37], and persistent sotre [123]. Compared to SpiceC,

none of the above systems is designed to keep the communication and speculation overhead

off the critical path by using the multicore architecture on each machine.

MapReduce [38] is a programming framework for processing large data sets on

distributed-memory systems. The framework consists of two steps: map and reduce. In

the map step, the master node divides the computation into smaller sub-computations and

distributes them to the worker nodes. In the reduce step, a set of reducer nodes combine the

210



results from the worker nodes to generate the final output. While MapReduce may be easy

for developers to adopt for simple or one-time processing tasks [98], it is non-straightforward

to port sophisticated tasks with complex dependences into MapReduce. It requires users

to manually map the computation into the map and reduce steps. In comparison with

MapReduce, SpiceC do not require significant modification to the original programs.

8.1.3 Heterogeneous Systems With GPUs

Several parallel programming models have been proposed for GPU computing.

OpenCL [122] is a programming model for parallel programming of heterogeneous systems.

The CUDA programming model [94] is a standard for NVIDIA’s parallel computing archi-

tecture – CUDA. Both programming models provide APIs for writing kernels that execute

on GPUs and defining/ controlling the GPUs. OmpSs [10] is a programming model that

extends the OpenMP standard [36] for the GPU architectures. It provides pragmas for

programmers to specify the data flow requirements for kernels, which can be used to opti-

mize memory accesses. OmpSs also provides APIs for specifying architecture heterogeneity,

which is used to improve kernel scheduling. Lee et al. [76] developed an OpenMP-to-CUDA

compiler that allows programmers to write GPU programs using OpenMP directives. None

of these programming models support speculative parallelization for GPU computing.
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8.2 Speculation Execution

8.2.1 Automatic Speculative Parallelization

I. Multicore CPUs. Speculative parallelization has been widely studied to improve the pro-

gram performance on CPUs. It was earlier proposed for automatically parallelizing loops

on the Symmetric Multiprocessor (SMP) machines [107]. To parallelize a loop on SMPs,

the loop is run in parallel and the existence of cross-iteration dependences is checked. If any

cross-iteration dependence is found to occur, the sequential version of the loop is executed

to obtain the correct results. Recovery for individual iterations is not supported.

Recently, thread level speculation (TLS) techniques have been proposed to explore

more parallelization opportunities for sequential programs. Krishnan et al. [69] proposed

an architecture for hardware-based TLS. Recently, many works have focused on software-

based TLS. Behavior oriented parallelization (BOP) [43, 65] is a process-based speculation

technique. Copy or Discard (CorD) [127, 129] is a thread-based speculation technique.

All these TLS techniques are based on state separation. In other words, speculative com-

putations are performed in a separate memory space. The results are not committed to

the non-speculative space until the speculation succeeds. CorD was extended to support

a set of compiler optimizations for copying dynamic data structures between spaces [129].

BOP [43, 65] improves the performance of data copying between spaces with the help of

OS.

Transactional memory has been used to enable speculative parallelization. Mehrara

et al. [86] customized a low-cost STM for facilitating profile-guided automatic loop paral-
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lelization. They used compiler analysis to eliminate a considerable amount of checking and

locking overhead in conventional software transactional memory models

II. Heterogeneous multicores with GPUs. Speculative execution has been used to explore

task-level parallelism on multi-GPU systems [40]. Usually, the runtime system must block

the execution of a kernel until its predecessors in the control flow graph (CFG) have fin-

ished. On multi-GPU systems, the performance is limited by the runtime system’s inability

to execute more kernels in parallel. Diamos and Yalamanchili [40] alleviated this problem

by speculating the control flows between kernels. They allow kernels to be executed spec-

ulatively in parallel before their predecessors in the CFG have been finished. Unlike their

work, this paper explores thread-level speculative parallelism in a kernel. An exploratory

study has been done for speculative execution on GPUs [80, 81]. The preliminary solution

proposed in the study cannot handle any benchmark used in the experiments of Chapter 6.

It assumes that programs have irregular reads but regular writes, which is often not true in

real applications.

8.2.2 Transactional Memory Based Compilers

I. Unmanaged languages. The work closest to SpiceC on code generation for speculative

execution is the Intel STM Prototype Compiler [3, 134, 93]. Both approaches provide high-

level programming constructs for C/C++ in the form of an atomic block or transaction.

However, the SpiceC compiler differs from the Intel STM Compiler in several major aspects.

First, the Intel STM compiler requires programmers to annotate every function called in

transactions while the SpiceC compiler does not. The experiments in Chapter 3 have shown
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that annotating functions called in transactions places a substantial burden on the program-

mer. Second, SpiceC provide programming and compiler support for precompiled library

functions and irreversible functions. Programmers can use our programming constructs to

annotate these functions to enable concurrent execution of the transactions containing them.

In contrast, the Intel STM compiler serializes the execution of the transactions that contain

them. Third, SpiceC provides constructs for programming synchronization between trans-

action commits while the Intel STM compiler does not. Fourth, the Intel STM compiler is

designed to use an undo logging-based STM [114] while SpiceC adopts write buffering-based

STMs. This makes SpiecC’s code generation and optimization different from theirs. For

example, the Intel STM compiler needs to handle aliasing of stack allocated variables for

transaction aborts while the SpiceC compiler does not. The SpiceC compiler eliminates un-

necessary searches in write buffers, which the Intel STM compiler does not need to perform.

Finally, the SpiceC compiler is compared with the Intel STM compiler in the experiments.

Code generated with the SpiceC compiler outperforms code generated with Intel’s by 20.8%

using 8 threads.

Some other works have also introduced high-level TM constructs into C or C++.

Tanger [47] is another STM compiler for C/C++. Similar to the Intel STM compiler,

it does not provide STM constructs for synchronization, precompiled library functions or

irreversible functions. It relies on dynamic instrumentation to support precompiled library

functions in transactions. Luchangco et al. [82] theoretically analyzed different design

options for integrating transactional memory into the C++ programming language.
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II. Managed languages. Many works have introduced TM constructs into managed lan-

guages. AtomCaml [109] introduced first-class constructs to support atomic execution of

code written in Objective Caml, which is based on a uniprocessor execution model. Adl-

Tabatabai et al. [7] presented compiler and runtime optimizations for TM constructs in

JAVA. Their system supports composition of transactions and partial roll back. They use

just-in-time (JIT) optimizations on STM operations. Hindman and Grossman [58] devel-

oped a source-to-source translator to support atomicity in JAVA. Their implementation is

based on locks. Harris et al. [54] developed a STM compiler for Bartok, an optimizing

ahead-of-time research compiler and runtime system for Common Intermediate Language

(CIL) programs.

III. Binary rewriting-based systems. Dynamic binary instrumentation has been used to sup-

port atomic execution of code. JudoSTM [96] is a dynamic binary-rewriting approach that

implements STM in C/C++ code. It uses value-based conflict detection and supports

transactional execution of both library functions and irreversible functions. Tarifa [47] and

LDBTOM [135] are two other binary rewriters that instrument binary code with calls to

a STM library. They are designed to enable atomic execution of legacy library functions.

Roy et al. [111] proposed to incorporate static and dynamic binary rewriting techniques to

reduce the binary instrumentation overhead for STM systems.
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8.3 Other Works on Enhancing Performance

8.3.1 Enhancing Performance on GPUs

This dissertation handles irregularities that cause cross-iteration dependences on

GPUs. Irregularities may also severely limit the efficiency of GPU computing due to the

warp organization and SIMD (Single Instruction Multiple Data) execution model of GPUs.

Many software optimizations have been proposed to reduce the impact of irregularities.

Zhang et al. [144] gave a few runtime optimizations with the support of a CPU-GPU pipeline

scheme to remove thread divergences. They also proposed two code transformations [145],

data reordering and job swapping, to remove irregularities in both memory accesses and

control flows. Baskaran et al. [14] proposed a polyhedral compiler model to optimize affine

memory accesses in regular loops. Lee et al. [76] developed an OpenMP-to-CUDA com-

piler that optimizes memory accesses within loops. Ryoo et al. [113] gave a few optimization

principles for manually improving memory accesses. Yang et al. [140] presented an optimiz-

ing compiler for memory bandwidth enhancement, data reuse and parallelism management,

and partition-camping elimination.

8.3.2 Enhancing I/O Performance

Many techniques have been proposed to improve the I/O performance in parallel

programs.

I. Parallel I/O. Parallel I/O has been proposed to improve the performance of multiple I/O

operations at the same time. It is mostly designed to deal with massive amounts of data on
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distributed systems. Research work in parallel I/O can be mainly divided into two different

groups: parallel file systems and parallel I/O libraries. Parallel file systems [119] usually

spread data over multiple servers for high performance. They allow shared accesses to files

from multiple processes. Parallel I/O libraries such as ROMIO [124] are APIs designed

to access parallel file systems. Collective I/O [125] has been proposed to optimize non-

contiguous I/O requests from multiple processes; it coordinates accesses to files by a group

of processes in which collective I/O functions are called.

SpiceC support for hybrid loops are orthogonal to parallel I/O. Parallel I/O pro-

vides lower-level programming constructs designed to improve the I/O throughput of large-

scale systems. However, when using parallel I/O, programmers must be highly skilled in

order to express, and make efficient use of, parallel I/O operations. SpiceC makes it easy for

programmers to parallelize hybrid loops by providing a higher-level programming model.

The SpiceC compiler is designed to optimize the performance of hybrid loops written in the

SpiceC model.

More specifically, SpiceC differs in two ways. First, to parallelize a loop with op-

erations using MPI I/O, programmers must write code to calculate the starting and ending

offset for each thread and explicitly set the offset using the MPI I/O APIs. Programmers

also need to take care of synchronization, scheduling, load balancing, etc. Using the SpiceC

programming model, programmers just need to insert a few pragmas. Second, Parallel I/O,

such as MPI I/O, does not provide any support for speculative parallelization, while SpiceC

does.
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II. I/O support for transactional memory. Unrestricted transactional memory [19] is a hard-

ware transactional memory technique that has been proposed to support I/O calls in trans-

actions. Transactions usually cannot contain I/O calls because these operations cannot

easily be rolled back. Unrestricted transactional memory gives up some concurrency in

exchange for gaining the ability to perform I/O calls within transactions by allowing only

a single overflowed transaction per application.

III. I/O prefetching. Helper threading has been used in software-guided prefetching to hide

I/O latency [120, 23]. To minimize I/O latency, these techniques require timely prefetch-

ing. They rely on the profiler or operating system to insert prefetching calls. The helper

threading technique in SpiceC is designed to reduce contention on the I/O bus instead of

hiding the I/O latency. Therefore, it only requires data residing in main memories (i.e.,

off-chip memories) instead of caches (i.e., on-chip memories) when they are read. Since

main memories have very large capacity nowadays, SpiceC does not require very timely

prefetching. Moreover, the helper threading in SpiceC is specially designed for loops with

contiguous I/O accesses. Therefore, it does not require any support from a profiler or the

operating system.
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Chapter 9

Conclusions

9.1 Contributions

This dissertation makes contributions in the area of programming and compiler

support for widely-available parallel computing systems. It presents SpiceC, which is a

parallel programming interface that simplifies the task of parallel programming through

a combination of SpiceC directives and an intuitive computation model. The program-

ming interface provided by SpiecC consists of a set of high-level directives which allow

programmers to easily express different forms of parallelism. The computation model of

SpiceC offers is based upon software-managed memory isolation and data transfers between

threads private spaces and shared space. This model achieves ease of portability of SpiceC

across shared and distributed memory platforms. In particular, this dissertation makes the

following contributions:
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I. Satisfying the demand for the parallelization of various real world applications. Due to

the diversity of real world application, they cannot all be parallelized in the same way.

Therefore SpiceC programming model can express various forms of parallelism, including

DOALL, DOACROSS, and pipelinning parallelism. SpiceC also provides support for dealing

with real world applications with the following characteristics. Applications that cannot

be statically parallelized but contain large amounts of dynamic parallelism can be handled

easily and effectively via speculative parallelization features of SpiceC. For applications that

operate on pointer-based dynamic data structures SpiceC provides support for partitioning

data structures across threads and then distributing the computation in a partition sensitive

fashion. Finally, applications with I/O operations interspersed with computation can be

easily parallelized using SpiceC.

II. Meeting the challenges posed by the memory architectures of modern parallel systems. The

memory architectures of parallel systems include two categories: shared memory and dis-

tributed memory. The SpiceC computation model can handle both kinds of architectures

by simply adapting the manner in which data transfers between private spaces and shared

space are implemented. The burden of these transfers is on the compiler and runtime;

thus, performance portability is achieved without placing burden on the programmer. This

thesis demonstrated the implementations of SpiceC for shared-memory multicores with and

without cache coherence support, heterogeneous multicores with GPUs, and distributed

memory systems.
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III. Addressing the practical issues related to the implementation of software-based specula-

tive parallelization. While exploiting dynamic parallelism is highly desirable, programming

speculatively parallelized code in an unmanaged language, such as C/C++, is a demanding

task for programmers. Although many implementations of transactional memory have been

proposed, all of them require significant amount of programming effort, including insert-

ing read/write barriers for each shared read/write, annotating functions called directly and

indirectly in a transaction (i.e., a speculatively executed code region), and manually han-

dling the precompiled functions and system calls. With the SpiceC programming model,

programmers only need to mark the code regions that need to be executed speculatively.

The compiler generates code for speculative execution by automatically inserting STM con-

structs. The compiler also enables precompiled library functions and system calls to be

executed in parallel within transactions.

IV. Overcoming the obstacle to parallelization caused by the dynamic irregularities for GPU

computing. This dissertation for the first time demonstrates how data parallel loops whose

execution requires the use of speculation, can be accelerated using a GPU. Data parallel

loops have been observed to contain dynamic irregularities that cause cross-iteration de-

pendences at runtime, preventing existing techniques from parallelizing the loops on GPUs.

A speculative execution framework was developed for GPU computing. It is designed to

parallelize loops that may contain cross-iteration dependences caused by the dynamic irreg-

ularities. The SpiceC programming model is extended for writing speculative parallel loops

for GPUs.
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V. Handling the performance bottleneck raised by the network communication on distributed

memory systems. The scalability of distributed memory systems can meet the demands

of modern applications from important domains (e.g., data mining, machine learning, and

computational geometry) that have high processing demands and a very large memory

footprint. However, since the network communication could be many orders of magni-

tude slower than CPUs, it greatly limits the program performance on distributed memory

systems. This dissertation presents a data communication technique, called proactive com-

munication, which is designed to move the overhead of communication off the critical path.

With proactive communication, data are proactively fetched from remote machines to en-

sure that the data required by the computation are mostly available locally when needed.

Proactive communication allows local computations to make progress without having to

wait due to network communication delays. Data is committed to remote owners in parallel

with the computation to increase the throughput.

9.2 Future Direction

I. Extending SpiceC for efficiently utilizing the massive parallel architecture on future manycore

processors. This dissertation demonstrates SpiceC on systems consisting of 8–56 processor

cores. Researchers from Intel have announced that the architecture of their recent 48-core

processor called Single-Chip Cloud Computer can scale to 1,000 cores. Therefore, SpiceC

should be able to meet the challenges posed by the massive parallel architectures on future

manycore processors. This problem can be tackled from three angles. First, the SpiceC

programming model should be extended for extracting parallelism from real applications
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for manycore processors. Extracting parallelism for this kind of extreme-scale processors

is a challenging task, requiring new understanding of parallelism and program behavior.

Second, many applications lack sufficient parallelism to keep all the cores busy. An alter-

native approach is to use the idle cores to execute helper threads that assist the work on

the busy cores. The possible role of helper threads (e.g., data prefetching) in SpiceC should

be examined on 1000-core processors. Finally, with the massive parallel architecture, it

is necessary to to revisit the current implementations of some parallelisms in SpiceC. For

example, the current implementations of speculative parallelism require synchronization

between commits if the original order of the sequential loop needs to be preserved, which

may prevent performance scaling. Besides, the current implementations of speculative par-

allelism requires some shared data structures or locks for misspeculation detection, which

may become performance bottlenecks on 1000-core processors.

II. Optimizing SpiceC for new hardware designs presented on future manycore processors. First,

to integrate more cores on a chip, cores in a lot of manycore processors are tightly coupled,

sharing a lot of computing resources. For example, in AMD’s Bulldozer architecture, two

neighboring cores share the instruction fetcher, the instruction decoder, the FPUs, and the

L2 cache. In the future, the SpiceC runtime should be designed to reduce the contention

on shared resources. Second, 3D integrated circuits have been seen as a promising way

to design manycore processors. However, extensive localized heating can occur due to the

stacking technology. This will cause memory failures and thus degrade the performance.

Compiler and runtime optimizations should be developed for SpiceC programs to alleviate
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the heat problem.

III.Developing intelligent debugging tools for SpiceC. Using SpiceC, users develop parallel

programs by instrumenting sequential programs with parallelization code. Currently there

is no efficient tool for debugging this kind of parallel programs. Theoretically, debugging

the parallelization code can be done by comparing the runtime behavior (e.g. dynamic

data dependences) of sequential code and parallel code. It will have three advantages over

traditional concurrent debugging techniques based on thread interleaving. First, it may

expose bugs in the parallelization code even if the program outputs are correct. Second,

such tool can tell if a bug is caused by parallelization or not. Finally, it reduces the time

required by debugging by avoiding exploiting thread interleaving, which has been widely

used in traditional concurrent debugging.
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Eduard Ayguadé, and Mateo Valero. Multithreaded software transactional memory
and OpenMP. In MEDEA, pages 81–88, 2007.

[91] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:
Stanford transactional applications for multi-processing. In IISWC, pages 35–46, 2008.
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