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Background: HIV molecular epidemiology (ME) is the analysis of sequence data
together with individual-level clinical, demographic, and behavioral data to understand
HIV epidemiology. The use of ME has raised concerns regarding identification of the
putative source in direct transmission events. This could result in harm ranging from
stigma to criminal prosecution in some jurisdictions. Here we assessed the risks of ME
using simulated HIV genetic sequencing data.

Methods: We simulated social networks of men-who-have-sex-with-men, calibrating
the simulations to data from San Diego. We used these networks to simulate consensus
and next-generation sequence (NGS) data to evaluate the risks of identifying direct
transmissions using different HIV sequence lengths, and population sampling depths.
To identify the source of transmissions, we calculated infector probability and used
phyloscanner software for the analysis of consensus and NGS data, respectively.

Results: Consensus sequence analyses showed that the risk of correctly inferring the
source (direct transmission) within identified transmission pairs was very small and
independent of sampling depth. Alternatively, NGS analyses showed that identification
of the source of a transmission was very accurate, but only for 6.5% of inferred pairs.
False positive transmissions were also observed, where one or more unobserved
intermediaries were present when compared to the true network.

Conclusion: Source attribution using consensus sequences rarely infers direct trans-
mission pairs with high confidence but is still useful for population studies. In contrast,
source attribution using NGS data was much more accurate in identifying direct
transmission pairs, but for only a small percentage of transmission pairs analyzed.

Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.
AIDS 2024, 38:865–873
Keywords: consensus sequences, HIV, molecular epidemiology, next-generation
sequencing, phylogenetics, source attribution
Introduction

Molecular epidemiology (ME) is the analysis of
pathogen genetic sequence data combined with
individual-level clinical, demographic, and behavioral
data to understand the epidemiology of a disease [1].
HIV ME has emerged as a tool to identify risk factors
associated with linked transmission events within and
between different populations [2]. ME can answer
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questions at different scales, such as ‘Where is HIV
transmission occurring at the greatest rate?’; ‘Which
groups are at greatest risk of transmitting and acquiring
infection?’; and ‘How are transmission patterns likely to
change in the future?’. However, the use of ME has
raised ethical concerns about whether such analyses
could identify individuals linked by a direct transmission
(i.e., person A transmitted to person B without
intermediate individuals) or transmission pairs (i.e.,
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person A transmitted to person B or person B
transmitted to A without intermediate individuals).

Attribution of a direct HIV transmission to an individual
may have harmful consequences, ranging from stigma to
criminal prosecution (in jurisdictions with laws crimi-
nalizing HIV transmission and nondisclosure) [1]. For
example, ME analysis using pol and env were used in two
criminal cases to implicate defendants as the source of
transmission [3]. However, in these criminal cases, the
analyses based on gene sequences was only one piece of
evidence, which in isolation was not sufficient to establish
transmission [3].

Identification of transmission pairs with ME using partial
pol sequences generated by Sanger sequencing (consensus
sequence data) with high credibility is seldom possible [4].
However, with the increasing availability and reduced
cost of next-generation sequencing (NGS) technologies,
it is possible to sequence full-length HIV genomes and
sample the viral diversity, increasing the potential to
correctly identify transmission pairs [5–8].

The risks associated with identifying direct transmission
pairs have the potential to limit use of ME and limit the
willingness of people who are vulnerable to HIV from
seeking HIV testing, since HIV sequence data is routinely
collected to guide the use of antiretroviral treatment
(ART). These sequence data are also reported to public
health departments for epidemiological surveillance.
Despite the potential risks associated with HIV ME,
qualitative work to understand ME perceptions among
stakeholders found general support for HIV ME, with
most feeling that the potential benefits to public health
outweighed the risks [9]. However, there were still
concerns about breaches of privacy and a potential
increase in antigay sentiment [9].

The objective of our paper was to use simulated
transmission networks, consensus sequences and NGS
to quantify and contrast the source attribution risks of HIV
ME between both sequencing technologies. In contrast to
previous reports [5,6,10,11], we used random samples and
sampling times to understand whether we could use ME
to infer direct transmissions in a surveillance setting.
Methods

Methods are summarized here. For a complete descrip-
tion see Supplementary Material.
Network simulations

To simulate HIV transmission dynamics, we used the R
package EpiModel [12] to implement an agent-based
framework. Agent-based simulations allow tracking of
individuals through time, such as the formation of sexual
relationships and HIV transmission events. Our simulated
HIV dynamics were based on a simple mathematical
model for HIV transmissions in men-who-have-sex-
with-men (MSM) parameterized by epidemiological
surveillance data from San Diego, USA [13].

Our transmission dynamics model included five stages of
HIV infection, defined as acute and early HIV; three
stages of chronic infection; and AIDS [14]. Our model
also included three stages of diagnosis defined as
undiagnosed; diagnosed and not on ART; and diagnosed
and on ART. A novel feature of our model was the
incorporation of migration events in which individuals
were allowed to migrate between two different popula-
tions, here referred to as region and global. Region was
representative of the San Diego MSM population, while
globalwas representative of a bigger population that would
account for importation of lineages from a global
reservoir. For HIV evolution, migration allowed the
analysis of lineages which had a common ancestor in
global predating the epidemic expansion in region.

Model parameters
The parameters used in our agent-based simulations
described the initial population size and structure;
migration in and out of San Diego; transmission
probabilities; and probability an MSM would be
diagnosed and start ART over time (Table S1, Supple-
mental Digital Content, http://links.lww.com/QAD/
D87). Transmission probabilities varied based on stage of
infection, diagnosis, and care. Individuals with acute and
early HIV, undiagnosed, or diagnosed but not receiving
ART had a higher probability of transmission than
individuals diagnosed with chronic HIV and on ART
[15].

Because real epidemics typically feature super-spreading
and because this can have a large influence on genetic
diversity of a pathogen [16], the population was further
stratified into two risk categories with 20% of individuals
assigned to a high-risk group, associated with a 10-fold
higher rate of HIV transmissions compared to the
individuals in the low-risk group [15].

Model calibrations
To calibrate our network simulations, we used random
Latin hypercube sampling [17] to sample the parameters
we could not obtain from San Diego surveillance data,
such as the initial number of HIV infected individuals and
the probability an MSM would initiate ART (Table S2,
Supplemental Digital Content, http://links.lww.com/
QAD/D87). After selecting the best fit simulated
trajectory for HIV incidence of diagnosis, we only ran
30 replicates using the best two parameter group values
(Fig. 1), because our simulations required significant
computational resources including storage space.

http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
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Fig. 1. Incidence of diagnosis. Absolute numbers for inci-
dence of diagnosis (y-axis) from 1980 to 2020 (x-axis) for the
two best combination of parameter values, referred to as
parameters 1 and parameters 2, that showed the best fit to
the surveillance data of incidence of diagnosis for MSM in San
Diego (see Table S6, Supplemental Digital Content, http://
links.lww.com/QAD/D87). Medians and 95% credible inter-
val are shown as dashed line and shaded area, respectively.
Black solid line represents the incidence of diagnosis for
surveillance data for San Diego.
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Fig. 2. Sampling strategy and phylogenetic trees. (a) Sche-
matic illustration of the sampling strategies used to random
sample individuals and sampling times to (b) estimate the ‘true
trees’ using the VirusTreeSimulator program. The illustration
in (b) shows the main parts of a phylogenetic tree discussed in
the text. For example, seq1 and seq2 forms a cherry as well as
seq3 and seq4. For consensus sequences, we only analyzed
tips that formed a cherry. Depth¼ the sampling population
size of diagnosed individuals; ART¼ antiretroviral treatment;
Filtered¼whether a filtering strategy was implemented on the
total number of sampled individuals; and sampling time-
s¼ the time that virus was sampled from an individual.
Output of simulations
For each network simulation, we obtained a transmission
matrix containing the time of transmission, the identifi-
cation number (ID) of individuals attributed as the source
and recipient of the HIV transmission, and the origin
(region or global) of each ID at the time of transmission.We
also recorded additional metadata for each individual at
each simulation run and time step, such as the HIV stage
of infection, and start of ART. These metadata were used
in the phylogenetic and source attribution analyses
described below.
Simulation and analysis of genetic
sequences

A summary of the sampling strategies used to simulate
consensus sequences andNGS is provided (Fig. 2). Due to
the significant computational resources required for NGS
simulation, we were unable to use the same strategy as
used for the consensus sequences.
Consensus sequences
We carried out two different sampling strategies from the
transmission matrix: We sampled individuals who were
active (have not departed the network), diagnosed, and
both not on ART at the time of sampling and
independent of ART-status at the time of sampling.
We then randomly chose dates in the past 15 years (time of
sampling) and varied the percentage of individuals
sampled from 5% to 90% (Fig. 2).

We used the sampled individuals and sampling times
together with the transmission matrix to obtain
phylogenetic trees using the program VirusTreeSimulator
(https://github.com/PangeaHIV/VirusTreeSimulator).
We referred to these trees as true trees. In the real world,
true trees are not known a priori but must be inferred
based on viral genetic sequences. We used the true trees
with Seq-Gen v1.3.4 [18] to simulate genetic sequence
alignments of 1000 base pairs (bp) (equivalent to the
partial pol gene), and 10 000 bp (equivalent to the HIV

https://github.com/PangeaHIV/VirusTreeSimulator
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
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whole-genome). For each alignment, we estimated
phylogenetic trees using maximum likelihood (ML) with
the program IQ-TREE v2.2.0 [19] followed by
estimation of time-scaled trees using treedater v0.5.3 [20].

For the source attribution, we calculated the infector
probability (W) which is the probability that a particular
host i infected a particular host j [4]. This can be estimated
using a combination of time-scaled trees and epidemio-
logical surveillance data including recency of infection
[21–23]. We used the method by Volz and Frost [4]
which incorporates incidence and prevalence data to
adjust for incomplete sampling and the fact that
unsampled individuals can be an unobserved source of
infection [21].

We calculated W for the true trees and to account for
error when inferring phylogenetic trees, we also
calculated W for the time-trees estimated with 1000 bp
and 10 000 bp simulated sequence alignments, and used
the same values for incidence, prevalence, CD4 count,
and recency test as obtained in the network simulations.

To evaluate the accuracy of estimated W we calculated
precision-recall curves (PRC) for all pairs of adjacent tips
in a phylogeny (also known as a cherry) (Fig. 2). The
PRCwas computed for cherries instead of all pairs within
the sample because this would flood the results with true
negatives, allowing our prediction to appear overly
accurate as distant pairs in the tree will have very low W
values [4]. Furthermore, when imbalanced data is
analyzed, such as described here in which we had very
few positive classes compared to negative classes, a PRC
provides more useful interpretation of the data than a
receiver operating characteristic (ROC) curve [24].

To evaluate whether a pair represented a transmission pair,
we compared W results with the network simulations,
where the ground truth is known, and we were able to
quantify the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). PRC was
computed using merged data from 30 replicates per
parameter group values to estimate the recall and
precision over a range of population sample sizes. We
also estimated the area under the curve (AUC) for each
PRC as a measure to understand W performance in
identifying transmission pairs (independent of source
attribution).

Next-generation sequencing
We carried out one sample strategy in which we used the
transmission matrix to sample 90% of individuals who
were active, diagnosed and not on ART at the time of
sampling (Fig. 2).We then randomly sampled a date in the
past 5 years (time of sampling). We used the sampled
individuals and dates together with the transmission
matrix to obtain phylogenetic trees using the program
VirusTreeSimulator. We simulated 10 proviruses for each
individual to mimic viral diversity.

To decrease the amount of disk space required for NGS
simulation, we derived a consensus tree by removing all
but leaving one viral sequence per individual, and
estimated W. We then analyzed a dataset containing all
pairs that showed W�80% and a second dataset
containing all pairs that showed W�1%.

We simulated genomic sequence alignments using Seq-
Gen [18] for all pairs that showed W �80% or W �1%.
We used the program ART_Illumina v2.5.8 [25] to
simulate 250 bp Illumina paired-end reads (Table S3,
Supplemental Digital Content, http://links.lww.com/
QAD/D87) and used the program SHIVER [26] to
map the simulated Illumina reads to a HIV-1 subtype
B reference sequence (GenBank accession number:
K03455).

For source attribution, we used phyloscanner [27] to infer
transmission pairs using the mapped reads and previously
reported parameter values [6] (Supplementary Material;
Tables S4 and S5, Supplemental Digital Content, http://
links.lww.com/QAD/D87). To evaluate the accuracy of
phyloscanner to identify a transmission pair we compared
the results obtained with phyloscanner and the ground
truth network simulations and quantified the total
number of pairs identified as TP, FP, TN, and FN. Using
these values, we estimated sensitivity, specificity, and
precision for each parameter group values.

We also calculated PRC for phyloscanner results filtering
by W �1% and the AUC for each PRC as a measure to
understand the performance of phyloscanner to identify
transmission pairs.
Software and code availability

We developed an R package HIVepisim (https://github.
com/thednainus/HIVepisim) to simulate HIV epidemics
based on EpiModel [12]. We uploaded the code used to
generate our results at https://github.com/thednainus/
HIVepisimAnalysis.
Computational resources

Analyses were carried out using the Imperial College
Research Computing Service; the Open Science Grid
[28]; and the bridges2 system at the Pittsburgh Super-
computing Center available through the Extreme Science
and Engineering Discovery Environment [29].

http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
https://github.com/thednainus/HIVepisim
https://github.com/thednainus/HIVepisim
https://github.com/thednainus/HIVepisimAnalysis
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Results

Incidence of diagnosis
Figure 1 shows the simulated trajectories for incidence of
HIV diagnoses obtained with the two best parameter
group values (Table S6, Supplemental Digital Content,
http://links.lww.com/QAD/D87). These simulations
differed substantially before 1995, after which both
trajectories were very similar, with parameter group 1
trajectory showing a larger credible interval than
parameter group 2 (Fig. 1).

Analysis of consensus sequences
Each individual viral genetic sequence is represented by a
tip of the phylogenetic tree (Fig. 2), and because we
sampled different population depths, we analyzed a
smaller number of total pairs (Tables S2.3–S2.14, [30]) for
a 5% sampling depth compared to 90%. The main
difference between sampling strategy 1 (diagnosed
individuals not on ART) and strategy 2 (diagnosed
individuals independent of ART-status) was that the total
number of pairs analyzed was larger for strategy 2.

To understand whether we could use infector probabili-
ties to identify transmission pairs, we generated PRCs.
PRCs showed that infector probabilities performed better
than a random classifier, which is indicated by the
horizontal lines (Fig. 3a and b). In general, infector
probability performance was similar independent of
migration rates and sampling depth (Figures S2–S13,
Supplemental Digital Content, http://links.lww.com/
QAD/D87).

There is no guideline for selecting the optimalW value to
identify transmission pairs. To demonstrate the impact of
varying W values on our ability to identify transmission
pairs, we assessed sensitivity, specificity, and precision at
W thresholds of 80% and 90% (Table 1 and Tables S8–
S19, Supplemental Digital Content, http://links.lww.
com/QAD/D87). We observed that sensitivity decreased
for the 90% threshold because the number of TP were
smaller than the 80% threshold. In contrast, precision
increased for the 90% threshold because the number of
TP and FP were smaller than for the 80% threshold
(Tables S2.3–S2.14, [30]). When checking whether we
could attribute the source of a direct transmission among
TP pairs, we observed that for a 5% population depth, we
correctly identified direct transmissions in 100% of the
pairs. However, this represented only two to seven pairs
from the total analyzed. As we increased sampling depth,
we identified direct transmissions in >80% of pairs
depending on analyses (Tables S2.3–S2.14, [30]).

Analysis of next-generation sequencing
To understand the accuracy of phyloscanner to identify
transmission pairs we also used PRCs. PRCs showed that
phyloscanner performed better than a random classifier
(Fig. 3c). We observed very high values of precision
compared to recall for both parameter group values
(Fig. 3c) and these PRCs showed an AUC of 68% and
70% for parameter groups 1 and 2, respectively. Similar
results were observed for the different migration rates
(Figure S14, Supplemental Digital Content, http://links.
lww.com/QAD/D87). Note that for phyloscanner
analyses, we observed precision values above 0.50 for
the smallest threshold values used to generate the PRC
(Fig. 3c).

The threshold used with phyloscanner to identify
whether a pair represented a transmission pair is described
in Supplementary Material. Our results showed that
sensitivity is low because the absolute number of FN is
higher than the TP and that specificity is very high
because the absolute number of TN is very high
compared to FP (Tables S20–S21, Supplemental Digital
Content, http://links.lww.com/QAD/D87). We also
observed high values for precision which were similar
for analyses carried out for parameter groups 1 and 2
(Table 2 and Table S21, Supplemental Digital Content,
http://links.lww.com/QAD/D87).

We observed a higher number of TP pairs (Tables S20,
Supplemental Digital Content, http://links.lww.com/
QAD/D87) for data filtered by W �1% than by W
�80%. This was a consequence of analyzing an average of
eight times more pairs than filtering the data byW�80%.
Finally, an average of 43.5% of pairs were identified as FN
for any set of parameter group values (Table S20,
Supplemental Digital Content, http://links.lww.com/
QAD/D87). Conversely, only 6.5% of pairs were
identified as TP. Within those TP pairs, phyloscanner
correctly identified direct transmissions on an average of
99% pairs (for any combination of parameter values and
migration rate) for both analyses using W �80% and W
�1%.

When comparing the pairs identified as FP to the
network simulations, we observed an average of 93% and
84% of one intermediary ID for pairs filtered byW�80%
and W �1%, respectively. An intermediary ID is an
unsampled viral genetic sequence from an individual who
was in the network transmission simulation but was not
sampled in the 5%–90% population depth. When we
considered the intermediary ID, the order of transmis-
sions followed a transmission chain in the form of
host.1!intermediary(s)!host.2, where host.1 and
host.2 were the pair analyzed by phyloscanner.

In contrast, for pairs identified as TN, we observed an
average of 79% and 65% of one intermediary ID for pairs
filtered by W�80% and W�1%, respectively. When
checking the order of transmissions, most pairs (average of
87% and 88.5% for pairs filtered by W � 80% and W �
1%, respectively) followed a pattern of intermediar-
y!host.1 and intermediary(s)!host.2; or intermediar-
y!host.1 and host.2!intermediary, where host.1 and

http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
http://links.lww.com/QAD/D87
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Fig. 3. Precision–recall curves (PRC). PRC for consensus sequences for sampling depth of 5%, 60% and 90% of the diagnosed
individuals not on ART for adjacent tips (cherry or 2-clades; Fig. 2) in the phylogenetic tree for (a) parameter group 1 and (b)
parameter group 2. PRC for phyloscanner results filtered byW >–1% of the diagnosed individuals not on ART for parameter groups 1
and 2 (c). All PRCs are for a total of 500 migrants to and from region per year. For definition of parameter group 1 and group 2, see
Fig. 1 and Table S6, Supplemental Digital Content, http://links.lww.com/QAD/D87. y-axis shows precision¼ TP/(TPþ FP); while
x-axis shows the recall¼TP/(TPþ FN). TP¼ total number of pairs identified as true positives; FP¼ total number of pairs identified
as false positives and FN¼ total number of pairs identified as false negatives. Horizontal lines represent a random classifier.
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Table 1. Infector probability results.

Threshold 80%/90%

Parameter/tree/perc. Sensitivitya Specificitya Precisiona

Group 1/true trees/5 0.02/0 1/1 0.8/NA
Group 1/1000 bp/5 0.04/0.006 1/1 0.78/1
Group 1/10 000 bp/5 0.03/0 1/1 0.83/NA
Group 1/true trees/60 0.024/0.006 0.997/0.99 0.78/0.81
Group 1/1000 bp/60 0.034/0.011 0.996/0.99 0.75/0.81
Group 1/10 000 bp/60 0.026/0.006 0.997/0.99 0.78/0.84
Group 1/true trees/90 0.026/0.007 0.996/0.99 0.82/0.89
Group 1/1000 bp/90 0.036/0.011 0.994/0.99 0.77/0.80
Group 1/10 000 bp/90 0.028/0.007 0.996/0.99 0.82/0.86
Group 2/true trees/5 0.005/0.005 1/1 0.67/1
Group 2/1000 bp/5 0.006/0.006 1/1 0.67/1
Group 2/10 000 bp/5 0.008/0.005 1/1 0.75/1
Group 2/true trees/60 0.014/0.004 0.998/0.99 0.78/0.81
Group 2/1000 bp/60 0.022/0.007 0.997/0.99 0.78/0.84
Group 2/10 000 bp/60 0.016/0.004 0.998/1 0.81/0.84
Group 2/true trees/90 0.018/0�005 0.997/1 0.86/0.90
Group 2/1000 bp/90 0.026/0�009 0.997/0.99 0.83/0.86
Group 2/10 000 bp/90 0.019/0�005 0.997/0.99 0.85/0.89

Sensitivity, specificity and precision for infector probabilities thresholds of 80% and 90% for true trees andML trees estimated with 1000bp and 10
000bp for different sampling depth (percentage) of diagnosed individuals not on ART of 5%, 60% and 90%. Here, we quantified whether a pair
represented a transmission pair independent of who infected whom for parameter group 1 and parameter group 2 and a total of 500 migrants per
year to and from region.
aSensitivity¼TP/(TPþ FN); specificity¼TN/(TNþ FP); precision¼TP/(TPþ FP), where TP is the number of true positives; FP is the number of false
positives; TN is the number of true negatives; and FN is the number of false negatives.
NA, no TP was observed.
host.2 were the pair analyzed by phyloscanner. The
remainder of pairs followed a pattern of hos-
t.1!intermediary!host.2.
Discussion

The ability to attribute a direct transmission event to an
individual is the greatest potential risk of HIV ME. We
found that consensus sequence data pose minimal risk for
these concerns, as using these data to estimate infector
probabilities as a classifier is inadequate for forensic
purposes but may still be useful for epidemiological
Table 2. Phyloscanner results.

W � 80%/W � 1%

Parameter Sensitivitya Specificitya Precisiona

1 0.06/0.19 0.99/0.96 0.86/0.82
2 0.07/0.21 0.99/0.95 0.90/0.80

Sensitivity, specificity and precision for phyloscanner analyses. Here,
we quantified whether a pair represented a transmission pair inde-
pendent of who infected whom filtering data by infector probability
(W) �80% or 1% and a total of 500 migrants to and from region per
year.
aSensitivity¼TP/(TPþ FN); specificity¼TN/(TNþ FP); preci-
sion¼TP/(TPþ FP), where TP is the number of true positives; FP is
the number of false positives; TN is the number of true negatives; and
FN is the number of false negatives.
investigations and aggregated analysis. The AUC for
each PRC showed low and very similar values for the
true trees and ML trees (Table S7, Supplemental Digital
Content, http://links.lww.com/QAD/D87). Also, as
expected, the number of pairs identified as TP and FP
decreased with a higher infector probability threshold
value (Tables S2.3–S2.14, [30]). These results held true
independent of the epidemic parameters and migration
rates evaluated.

There are several reports, summarized in Abecasis et al.
[31], showing the use of phylogenetic trees together with
epidemiological data as evidence to support or refute
direct transmissions. However, we showed that analysis of
consensus sequences alone provides only weak evidence
of transmission directness, as the presence of unsampled
individuals who may act as intermediaries in a transmis-
sion chain or common source of infection cannot be ruled
out [31,32].

Alternatively, a recent study analyzing 32 couples using
whole-genome NGS and phyloscanner correctly identi-
fied the source of transmission in >93% of couples (a
sample highly skewed towards true transmission pairs)
with no incorrect results [6]. However, this study [6] was
carried out on a cohort in which epidemiological data
linking individuals were available and their results might
not extend to other datasets. Other recent studies using
phyloscanner also analyzed biased samples representing
data from linked individuals [5,6] or the authors applied a
strategy to analyze sequences that potentially represented
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phylogenetically close pairs [10]. In contrast, we used
random samples to understand whether phyloscanner
could infer direct transmissions or transmission pairs.
Even though NGS generates a high amount of
sequencing data, we classified as TP only a small
percentage (ca. 6.5%) of the pairs analyzed. From those
classified as TP, phyloscanner was able to attribute the
source of transmission in 99% of the cases. When
comparing to previously reported results [6], our
estimates of direct transmission attribution was slightly
higher, most likely because in our simulations we have a
lower error attributable to sequencing technologies than
when carrying out real data experiments.

Phyloscanner rarely incorrectly identified transmission
pairs (FP in Table S20, Supplemental Digital Content,
http://links.lww.com/QAD/D87), however since this is
a potentially costly mis-inference, we separately charac-
terized how these errors occurred. A close analysis of FP
pairs showed that there were one or more unsampled
intermediaries in a transmission chain in which
transmission happened very quickly.

Given our simulated data results, in the right setting
with sampling performed soon after seroconversion and
using HIV whole-genomes NGS, inference about
transmission directionality may be significantly strength-
ened. However, we still showed that if unsampled
intermediaries are present between a pair analyzed by
phyloscanner, attribution of direct transmissions or
transmission pairs may be incorrect. Based on these
future directions, it is also important to have in place
safeguards to anonymize data, but also make sure results
are not over-interpreted.

There were several limitations in our study. First, our
network simulation did not include assortativity by age or
risk group. However, for the purposes of our analysis, we
do not think assortativity would increase our ability to
identify who transmitted to whom at the individual level.
Second, we were unable to exactly match simulated
epidemic trajectories with reported incidence from San
Diego. The network model used here is commonly used
with egocentric data for parameterization of the model
[12]. To increase the complexity of the network model, it
is important that the parameter values are based on
realistic empirical data if available [12]. When simulating
the San Diego HIV epidemic, many parameters lacked
informative priors or were missing for some years of the
HIV surveillance data. For example, there was no prior
information available on the average number of partners
per person for any time for MSM in San Diego. Finally,
because our analyses required significant computational
resources, our simulations were carried out on best case
scenarios, such as good quality sequence alignments and
for the pol and whole-genomes. However, analyses of
empirical sequencing data with information linking who
infected whom, showed that results obtained with whole-
genomes and pol gene performed better than the using the
gag or env genes [6].

In summary, our results suggest that source attribution
using infector probabilities with consensus sequence data
combined with clinical markers of stage of infection will
seldom infer transmission pairs and direct transmissions
with high confidence. This conclusion holds for a large
range of sampling depths and whole-genomes versus
partial genes. Detecting transmission pairs with whole-
genome NGS data was rare. A small proportion (5%–
10%) of transmission pairs within a random sample could
be identified with high confidence. Within those
transmission pairs, we inferred who infected whom with
high confidence. For research settings with strong
epidemiologic linkage, such as the one reported by
Zhang et al. [6], there is a nonnegligible chance of
identifying who infected whom.
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