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Abstract

In Andrews and Guggenberger (2003) a bias-reduced log-periodogram estima-
tor dy, p(r) for the long-memory parameter d in a stationary long-memory time
series has been introduced. Compared to the Geweke and Porter-Hudak (1983)
estimator JGPH = JLP(O), the estimator &\Lp(’l“) for r > 1 generally reduces the
asymptotic bias by an order of magnitude but inflates the asymptotic variance by
a multiplicative constant ¢, e.g. ¢1 = 2.25 and ¢z = 3.52. In this paper, we intro-
duce a new, computationally attractive estimator dy p(r) by taking a weighted
average of GPH estimators over different bandwidths. We show that, for each
fixed r > 0, the new estimator can be designed to have the same asymptotic
bias properties as dpp(r) but its asymptotic variance is changed by a constant
¢’ that can be chosen to be as small as desired, in particular smaller than c,.
The same idea is also applied to the local-polynomial Whittle estimator d, Lw (r)
in Andrews and Sun (2004) leading to the weighted estimator dy Ly (r). We
establish the asymptotic bias, variance, and mean-squared error of the weighted
estimators, and show their asymptotic normality. Furthermore, we introduce a
data-dependent adaptive procedure for selecting r and the bandwidth m and
show that up to a logarithmic factor, the resulting adaptive weighted estimator
achieves the optimal rate of convergence.

A Monte-Carlo study shows that the adaptive weighted estimator compares
very favorably to several other adaptive estimators.
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reduction, frequency domain, long-range dependence, rate of convergence, strongly
dependent time series.

We thank a Co-Editor and three referees for very helpful suggestions. We are
grateful for the constructive comments offered by Javier Hidalgo, Marc Henry, and
especially Katsumi Shimotsu.



1 Introduction

We consider estimation of the long-memory parameter d for a stationary process
{Y;:t =1,...,n}. The spectral density of the time series is given by

FO) =1A"*g(N), (1.1)

where d € (—0.5,0.5) is the long-memory parameter and g(-) is an even function on
[—7, m] satisfying 0 < ¢g(0) < co. The parameter d determines the long-memory prop-
erties of the process {Y;} and g(\) determines its short-run dynamics. To maintain
generality of the short-run dynamics of {Y;}, we do not impose a specific functional
form on g(A). Consistent with the literature on narrow-band semiparametric estima-
tion of the long-memory parameter, we only assume certain regularity conditions for
g(\) near frequency zero.

Examples in the literature of the narrow-band approach include the widely-used
log-periodogram (LP, also known as the GPH estimator) regression estimator, in-
troduced by Geweke and Porter-Hudak (1983) and further analyzed by Robinson
(1995b) and Hurvich et al. (1998) and the local Whittle estimator (LW, also known
as the Gaussian semiparametric estimator), suggested by Kiinsch (1987) and further
studied by Robinson (1995a). These narrow-band approaches approximate In g(\)
by a constant in a shrinking neighborhood of the origin. As a consequence, these
estimators achieve a rate of mean-squared error (MSE) convergence of only n~%/°,
no matter how regular g(\) is. In addition, these estimators can be quite biased
in finite samples due to contamination from high frequencies (see Agiakloglou et al.
(1993)). Given these problems, Andrews and Guggenberger (2003) and Andrews and
Sun (2004) (hereafter AG and AS, respectively) propose approximating In g(\) locally
by an even polynomial of degree 2r. This leads to the bias-reduced log-periodogram
estimator dzp(r) of AG and the local polynomial Whittle estimator dry (r) of AS.
The main feature of these estimators is that for g(-) smooth in a neighborhood of
zero, the bias generally converges to zero at a faster rate than that achieved by the
GPH and local Whittle estimators. The bias improvement however comes at the
price of an increase in the asymptotic variance by a multiplicative constant c., e.g.
c1 = 2.25 and ¢y = 3.52.

In this paper, we introduce modified versions of the GPH and local Whittle estima-
tors that we denote by dw p(r,m) and dwrw (r,m), respectively. These estimators
are given as a weighted average over finitely many GPH (or a k-step version of the
local Whittle) estimators dgpm(m;) calculated using different bandwidths m;. The
bandwidth set is of the form {[l;m]}X, for K € N, m € N, and [; € Qt. The idea
of the weighted estimator is to choose weights w; in such a way that the r dominant
bias terms of the underlying GPH (or k-step local Whittle) estimator are eliminated.
Building on results in Hurvich et al. (1998), Robinson (1995a, 1995b), AG, and AS,
we derive the asymptotic bias, variance, and MSE of the weighted estimators, and es-
tablish their asymptotic normality. Our asymptotic results imply that, if the weights
w; are chosen appropriately, the weighted estimator shares or even improves on the
asymptotic bias advantage of the estimators of AG and AS. The main advantage of
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the weighted estimator over the estimators of AG and AS is that the multiplicative
constant ¢, by which the asymptotic variance is inflated can be chosen to be arbitrar-
ily small. In other words, the new estimator can be designed to have the asymptotic
bias properties of the estimators of AG and AS but its asymptotic variance properties
are better. Under local smoothness assumptions on g, the weighted estimator can be
designed such that the order of the asymptotic bias gets arbitrarily close to the para-
metric one, while at the same time its asymptotic variance can be made arbitrarily
small.

By choosing the weights appropriately, we can obtain an estimator that has the
same asymptotic bias as the Gaussian semiparametric estimator but a smaller asymp-
totic variance. This result is unexpected as Robinson (1995a, p. 1640) conjectures
that 1/4 is the semiparametric efficiency bound for the estimation of the long-memory
parameter for a given bandwidth, say m, and that the Gaussian semiparametric es-
timator achieves this bound. See also Hidalgo (2005) for further discussion of this
issue. Our results do not contradict Robinson’s conjecture, as the weighted estima-
tor uses information beyond bandwidth m. However, our results do imply that it is
possible to design a more efficient estimator than dzy(0) while maintaining or even
reducing its asymptotic bias. In selecting and using only one bandwidth m, existing
narrow-band estimators d(m) discard potentially useful information that is stored in
estimators using other bandwidths, e.g. d(.5m) and d(2m). The weighted estimator
uses such additional information by averaging over the estimators d([l;m]) over a set
of I;s.

Apart from the theoretical properties, the weighted estimators are also compu-
tationally attractive. Both dyy1p(r, m) and dwrw (r,m) (the latter estimator being
based on a k-step version of the local Whittle estimator) require only K OLS regres-
sions and one GLS regression. This is an advantage over the procedure in AS that
requires a nonlinear optimization routine to calculate the estimator.

The weighted estimator depends on the choice of the parameters r, m, and [. From
results in AG it follows that for a fixed [, the optimal choice of r and m in terms
of the rate of convergence of the estimator depends on the unknown smoothness of
g at zero. We provide an adaptive estimator of d (denoted “AWLW?” for “adaptive
weighted local Whittle”), based on Lepskii (1990), that uses the data to select r
and m. We show that this estimator obtains the optimal rate of convergence up to a
logarithmic factor. We suggest rule of thumb choices for the sequence [ based on the
relative performance of the weighted estimator in a Monte Carlo study.

In Monte Carlo simulations, using various models including one with nonsmooth
spectrum, we compare the root mean-square error (RMSE) performance of the AWLW
estimator with several other adaptive estimators, namely, with the ones in Giraitis
et al. (2000), Hurvich (2001), Iouditsky et al. (2001), and AS. The results are very
encouraging and show that if the contamination from the short-run component of
the spectrum is not too large, the AWLW estimator typically outperforms the other
adaptive estimators in RMSE performance.

Besides AG and AS, another bias reduction approach in the narrow-band litera~
ture is Robinson and Henry (2003), who consider a general class of semiparametric
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M-estimators of d that utilize higher-order kernels to obtain bias-reduction. As they
state, their results are heuristic in nature, whereas the results in our paper are es-
tablished rigorously under specific regularity conditions. Also, their estimators suffer
from a variance inflation that can be very large.

An alternative to the narrow-band approach to bias reduction is the so called
broad-band approach where one imposes regularity conditions on g over the whole
interval [0, 7] and one utilizes a nonparametric estimator of g(A) for A € [0, 7]. Exam-
ples include Moulines and Soulier (1999, 2000), Hurvich (2001), Hurvich and Brodsky
(2001), Iouditsky et al. (2001), and Hurvich et al. (2002). In these papers, Ing(\)
is approximated by a truncated Fourier series. It is established that under the given
regularity conditions the estimators exhibit an asymptotic MSE of order (Inn)/n
provided the number of parameters in the model goes to infinity at a suitable rate.

From a broad perspective, the weighted estimator bears some similarity to the
generalized jackknife estimator in the kernel smoothing literature. In that literature,
it has been suggested to average kernel estimators over different smoothing parame-
ters to achieve bias reduction, see e.g. Gray and Schucany (1972) and Hérdle (1990,
Section 4.6).

We now quickly mention possible extensions of the paper. While we focus on
scalar time series satisfying (1.1), it should be possible to extend the idea to the
multivariate case along the lines of Robinson (1995b) and Lobato (1999). Although
our results are obtained for stationary processes, they can also be utilized when the
underlying process is nonstationary (see the discussion in AS, p. 571). In this case, a
preliminary consistent estimator, such as the estimator of Kim and Phillips (1999a,
1999b), Velasco (1999), Velasco and Robinson (2000), Shimotsu and Phillips (2002),
or Phillips and Shimotsu (2004) is required. While the asymptotic results for the
weighted Whittle estimator are derived without assuming Gaussianity, we require
such an assumption for the weighted log-periodogram estimator. Using the insight
of Velasco (2000), the assumption of Gaussianity could possibly be relaxed for the
latter estimator as well. Finally, rather than averaging over different dgpp(0) or (a
k-step version of) dpw (0) estimators as in this paper, we could apply the weighted
approach to drp(r) or (a k-step version of) drw (r) for r > 1 to eliminate additional
bias terms. These extensions however are beyond the scope of this paper.

The remainder of this paper is organized as follows. In the next section, we review
the estimators of AG and AS and lay out the assumptions. Section 3 introduces
the new weighted estimators and establishes their asymptotic properties. Section
4 discusses adaptive estimation. Section 5 describes the simulation results and an
appendix provides proofs of the theorems.

By C*(U) we denote the space of functions that are s-times continuously differ-
entiable. By [s] we denote the integer part of s € R. For a matrix A we denote by
[A]; and [A]; ; the i-th row and the (4, j)-th element of the matrix A, respectively.

7
1(-) is the indicator function.



2 The Log-periodogram and Whittle Estimator

In this section we review the bias-reduced log-periodogram regression estimator d, Lp(r,m)
of AG and the local polynomial Whittle estimator dry (r, m) of AS. These estimators
are used as benchmarks for later comparisons. We also lay out the assumptions.

For i :=+/—1, m €N, and j = 1, ...,m define

P _ 1 < , gy |2
\j =27 /n, wj = m;nexpuw), I; == |w;?, (2.1)
fi + = f(N), and g; == g(\)).

The bias-reduced log-periodogram estimator dr, p(r,m) is the least squares estimator
of d from the pseudo-regression of In I; on a constant, —21n A;, /\32, - )\?’"_2, and )\er
for j = 1,...,m, where m is the number of fundamental frequencies employed in the

regression. The estimator is based on the identity derived from (1.1)

T

Inl; = (Ingo— C) —2dIn); + » b
k=1

2k

where, if defined, >} _; (bar/ (Zk)!)A?k are the first terms of the Taylor series expansion
of In(gj/g0), C := 0.57721... is the Euler constant, and

T

b
ej :=In(gj/g0) — Z (22]3|A32k +Inl;/f;+C
k=1 '

are regarded as regression errors. The GPH estimator is obtained by setting r = 0
and is based on approximating In(g;/go) by a constant around the origin'. As can be
shown, the dominant bias term of the GPH estimator is caused by the term In(g;/go)
rather than E'lnl;/f; + C. For r =1, )\? is added as an additional regressor to the
pseudo-regression model which leads to the elimination of the dominant bias term of
the GPH estimator. For r > 2, additional bias terms are eliminated.

For notational convenience we typically suppress the dependence of the estimator
on r and/or m and write drp, drp(r), or drp(m) for drp(r,m).

The local-polynomial Whittle estimator d, Lw = d, Lw (r,m) of AS is an M-estimator
that minimizes the (negative) local-polynomial Whittle log-likelihood. The latter is
given by

T n —2d oxp(— ' .
Q.(d,G,b) :=m Z{l [GAj p( pT(A”b))]+GA}2dexp(J_pT(Aj,b))}’

(2.3)

J=1

where the notation G := go is taken from Robinson (1995a) and AS and

T

bak
pr(Aj,b) = Z —(22)')\3k and b := (be, ...,bg,n)/.
k=1
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Concentrating Q,(d, G, b) with respect to G € (—o0, 00) yields the concentrated LPW
log-likelihood R (d, b):

m
Ro(d,b) = InGy( IZpr (Aj;b) —2dm ™) "In \j + 1, where
j=1

Gy (d,b) :m_lzfj exp(pr (A, b)) A%, (2.4)
j=1

The local polynomial Whittle estimator (dzw,brw) of (d,b) solves the following
minimization problem:

(ELW(r,m),ELW(T,m)) = argmin R,(d,b), (2.5)
de[dy,d2],be®

where O is a compact and convex set in R”. Existence and uniqueness of (&l\ LW,BLW)
hinge on strict convexity of R, (d,b) (see AS, p. 576) and convexity and compactness
of the parameter space. The local Whittle estimator (Kiinsch (1987) and Robinson
(1995a)) is obtained by setting = = 0.

Before we state the assumptions we need the following definition. We say that a
real function h defined on a neighborhood of zero is “smooth of order 0 < s < oo at
zero” if h € Cl(U) for some neighborhood U of zero and its derivative of order [s],
denoted 1", satisfies a Holder condition of order s— [s] at zero, i.e., ]h([sl) ()\)—h([sl) (0)]
< C|A\|*~l for some constant C' < oo and all A € U. We say that h is “smooth of
order oo at zero”, if h is smooth of order s for every finite s.

AG make the following assumptions to derive the asymptotic properties of the
log-periodogram estimator dyp(r, m).

Assumption AG1. f(\) = |A|72%g(\), where d € (—1/2,1/2).

Assumption AG2. (i) gis smooth of order s > 2+2r at A = 0 for some nonnegative
integer 7. (ii) g is an even function on [—7, 7], 0 < g(0) < oo, and [™ _|A|72%g(A)dA <
0.

Assumption AG3. The time series {Y; : t = 1,...,n} is Gaussian.

Assumption AG4. m = m(n) — oo and m/n — 0 as n — .

For the local polynomial Whittle estimator AS make the following assumptions.?

Assumption AS1. Assumption AG1 holds for d € [di,ds] with —1/2 < d; < da <
1/2.

Assumption AS2. Assumption AG2 holds.
Assumption AS3. (a) The time series {Y; : t = 1,...,n} satisfies

Yi— EYo =) ajer,
j=0
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where

o0
Zajz < 00, E(g|F_1) =0as., E(e}|F_1) =1 aus.,
j=0
E(e}|Fi_1) = 03 a.s., B(e}|Fy_1) =04 as. for t = ..., —1,0,1,...,

and Fy_; is the o-field generated by {e; : s < t}.
(b) In some neighborhood of the origin, (d/dA)a(\) = O(Ja(X)|/A) as A — 0+, where
a(d) = Z;‘;l aje A,
Assumption AS4. AG4 holds and m?®+2" /n2+2" — v € (0, 00) as n — oo.

Under Assumptions AG1-AG4, Theorem 1 in AG gives the following formulae
for the asymptotic bias and variance of the dpp(r,m) estimator®. For certain real

numbers 7, ¢,, and for s given in AG2(i), we have

- m2t2r md In®m
(@) Blip(rom) —d = robagar e (14 o(1) + 0 + 0, (26)
0) Vardup(rm) = e +o(L), wh
ar(dpp(r,m)) = o—cr +o(—), where
q : = min{s, 4+ 2r}. (2.7)

If s = 2+ 2r, then the O(m?/n?) term can be replaced by o(m?/n?). The numbers
7 and ¢, are defined in AG, for example, 79 = —2.19, 71 = 2.23, 79 = —.793 and
co =1, c; = 2.25, and co = 3.52.

If in addition AS4 is assumed, which asymptotically is the MSE-optimal choice
of m, AG (p. 687, comment 2) show that*

R 2+2r 2
or equivalently that
2
~ s
\/ﬁ(dLP(T, m) — d) —d N(XTrb2+2r, ﬂcr). (29)

Similarly, under AS1-AS4, AS show that for the dry (r,m) estimator

N 2+2r 1
\/ﬁ(dLW(T: m)—d— Trb2+2rw) —q N(0, Zcr)- (2.10)

Comparing the bias of C/Z\LP(T, m) (c/Z\LW (r,m)) with the one of dr.p(0, m) (c/Z\LW (0,m)),
one sees that the rate of convergence of the bias to zero is generally faster for the
former, whereas its variance is increased by the multiplicative constant ¢,.. When
Ing(A) is approximated reasonably well by In go in a neighborhood of zero, the bias
reduction for drp(r,m) (drw(r,m)) over drp(0,m) (drw (0, m)) may be very small
and the increase in variance may dominate the reduction of bias in finite samples.
It would be desirable to have an estimator that shares the asymptotic bias proper-
ties of the estimators of AG and AS without inflating the asymptotic variance or at
least inflating it by a constant smaller than the constant ¢.. In the next section, we
describe a new estimator for d that has these properties.
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3 Weighted Semiparametric Estimators

In this section, we introduce the new weighted estimator Ewe and investigate its
asymptotic properties. We first describe its general form as a weighted average of an
estimator d.(0,m) at different bandwidths m and then explicitly look at the cases e =
LP and e = LW. More precisely, rather than the local Whittle estimator dw (0, m),
we work with a k-step local Whittle estimator dryy,(m) defined in (3.12). The k-
step estimator is computationally more attractive than the local Whittle estimator
(because it is given in closed form) but shares its relevant asymptotic properties.

To motivate the weighted estimator, consider the d,p(0) estimator at two different
bandwidths m; and my that are given as multiples of m for fixed numbers I;, m; :=
[l;m], i = 1,2. Recall that under certain regularity conditions and rate conditions on
m, the asymptotic bias of the LP estimator can be written as

. 2
ABIAS(dpp(0,m)) = 7052%(1 +o(1)). (3.1)
Define a weighted estimator &\WLP by
d M Gp(0.ma) — "2y p(0,my)
WLP ‘— 5 — sarp\U,mM2) — —— sarp(Y,Ny).
mi —mj T —mj

It follows from (3.1) that the asymptotic bias of dyw p is of order o(m?/n?) because
by choosing weights wy = m?/(m?2 — m3) and w; = —m3/(m? — m3) we have
eliminated the dominant bias terms of C/Z\LP(O,ml) and C/l\Lp(O,mg). By choosing [;
and [y appropriately, we can in addition control the asymptotic variance of dyrp. In
the following we describe how to design weights and pick constants /; such that the
weighted estimator has the same asymptotic bias as drp(r,m) but smaller asymptotic
variance.

The example illustrates the idea of the weighted estimator. We now consider
the general case in which the average is taken over more than two different band-
widths and higher order biases may be eliminated. To describe it, let r (as in drp(r)
and drw(r)) be a nonnegative integer that denotes the number of dominant bias
terms to be eliminated, [ = (I1,l2,...,lx) be a K-vector that pins down the different
bandwidths® m; := [l;m] for m € N, and finally w = (w1, ws, ..., wx)’ be a K-vector
of weights that satisfies

K
> wi =1, (3.2)
i=1
K
Zwil?k =0, fork=1,...,7. (3.3)
i=1
Occasionally, we impose an additional condition on the weights, namely
K K
D wil =8> 12 for a 6 € R\{0}. (3.4)
i=1 i=1

[7]



The weighted estimator is then defined by®

dwe = dwe(r,m,1,9) : sz (0,m;), (3.5)

where in the next subsections we will explicitly focus on the cases e = LP and e = LW.
If dw is only subject to conditions (3.2)-(3.3) then of course dy. = dwe(r,m,1).
We now discuss conditions (3.2)-(3.4). Condition (3.2) guarantees that dyy. is
asymptotically unbiased. Condition (3.3) is motivated from Lemma 3.1(a) below
which states that the asymptotic bias of the LP estimator up to lower order terms
is given by 22211 T;’;_lbgkm2k /n?* for some constants 7}. Therefore, the condition

implies that the highest order bias terms of &l\e up to m?" /n?" are eliminated for
dwe. Under (3.2)-(3.3), we occasionally want to be able to control the multiplicative
constant for the resulting dominant bias term m?*2" /n2+2" of the weighted estimator.
For example in this section we match the dominant bias term of dW p(m) with that
of d, p(r,m) and then compare their asymptotic variances to deduce the superiority of
the weighted procedure in terms of MSE. Condition (3.4) pins down the multiplicative
constant of the dominant bias term through appropriate choice of 4. Condition (3.4)
is imposed mainly to make the bias/variance comparison of the weighted procedure
with other estimation methods. In Section 4 we will implement the adaptive weighted
estimator based solely on conditions (3.2)-(3.3).

Note that conditions (3.2)-(3.4) are invariant to renormalization of the vector .
More precisely if r,m, [, satisfy conditions (3.2)-(3.4) then so does r, Lm,l/L, ¢ for
any positive constant L and we have dy.(r,m,(,9) = dwe(r, Lm,l/L,0). Therefore,
w.l.o.g. we can normalize [y = 1 and we will do so for the remainder of the paper
unless otherwise stated.

Below we give some theory and Monte Carlo-based discussion and rules of thumb
of how to choose the parameters r,m, [, and . For now, we take these parameters as
given and describe an easy procedure to implement dyy., i.e. a procedure to design
weights w satisfying conditions (3.2)-(3.4). The implementation without condition

(3.4) is analogous. Consider the following pseudo-regression of d(0,m;) on a con-
stant, 12, ...,12", and [772" — S K

y gyttt o i=1"

T K
de(0,mi) = d+ > Bojl? + Bo o, (T =6 ) s, i =1,.., K, (3.6)
j=1 i=1

where u; is the error term. Note that the regression coefficients 3 stand for different
quantities in the cases e = LP and e = LW. For notational convenience however,
we use 3 in both cases. Let Z; := (1,12,1%,..., 12", (l?HT (5ZZ 1 l12+27')) and Z =

(Z},...Z}.) € REX(H7) The welghted estimator dye of d is defined as the first
component of the GLS estimator of (d, 8) = (d, Ba, B4, .-, Bayo), i€

(dwe, B) == (7' 2)" z707'd,, (3.7)
where Q := (€;;) € REXE Q.. = 1/max(l;,;), and d. is the K-vector with i-th

element d.(0,m;). In Lemma 3.1(b) below we establish that up to a multiplicative
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constant Q) is the asymptotic varlance matrix of u = (uy, ..., ux). It is easy to see that
dWe is a weighted average of the de (0,m;) with weights glven by

L= (zatz) T 20 (3.8)

These weights satisfy conditions (3.2)-(3.4) and give rise to our weighted estimator
dWe

In the next two subsections, we analyze the properties of the weighted estima-
tor dWe when the components of d are the log-periodogram regression estimator
dL p(0,m) or a k-step version of the local Whittle estimator d LWA(O m). Both these
estimators are easy to compute. For example, for the estimator dy rp we only need
to first run K OLS regressions to get dp(0,m;) and then one GLS regression (3.7)
to obtain dwrp.

3.1 The Weighted Log-Periodogram (WLP) Estimator

We now consider the weighted estimator dWe in (3 7) when e = LP. The asymptotic
propertles of dWLp depend crucially on those of dL p and the covariance structure of
{d p(0,m;)}. We first state the following refinement of the results of Theorem 1 in
Hurvich et al. (1998).

Lemma 3.1 Suppose Assumptions AG1-AG4 hold. Then,
(a) The bias of dr,p(0,m) satisfies

~ m2k md In° m
Edrp(0,m) —d = Z Tk 102k —1 ok —l—O(F)—FO(

where
. (271')2]%

T @RIk )
and q is defined in (2.7). If s = 2+2r the O(m?/n9) term can be replaced by o(m?/n?).
(b) The covariance between dpp(0,m;) and dpp(0, m;j) is given by
2 1

Cov(drp(0,m;),drp(0,m;)) = 24m max(l;, 1)
(2R¥]

(I+o0(1)).

The lemma shows that we can actually ignore the o(-) term in the asymptotic bias
formula (2.6). This is crucial when proving the next theorem which is a corollary of
the lemma.

Theorem 3.2 Let r and | be fized constants and & = 7/(7* K
7 # 0. Then, under Assumptions AG1-AG4, we have

l2+27’

i 17T°") for some

m2+27’

~ md In3
Edwrp —d = tbheror—5—- v +0<n >+O(

m

);

m
R 2
var(dw p) S Cr cy(140(1)), where
N _wwj
S [(ZQ } Z max(l;, 1)



where the O(m2/n?) term can be replaced by o(m?/n?) if s =2+ 2r.

Remarks (a) If lim(m/n") € (0,00) for 1 > x > (24 2r)/(3 + 2r), then the
dominant bias term of dwr p(r,m) is Thayo,m?+t2" /022" From (2.6), the dominant
bias term of dzp(r,m) is Trba1o,m?>+?" /n?+2" Therefore, the asymptotic biases of the
two estimators converge to zero at the same rate. In particular, the rate is quicker
than that of the GPH estimator if » > 0 and by # 0.

(b) Suppose lim(m/n*) € (0,00) for some 0 < £ < 1 and the assumptions of
Theorem 3.2 hold. Then the asymptotic MSE of dyyp satisfies
1+27r1,,3 2 %
~ 9.9 M\ g4 m In°m., 7 cp
If kK > (2+2r)/(3+2r), then the O(-) term in (3.9) is of smaller order than the other
two terms. Ignoring the O(-) term and assuming that 72b3,,. # 0, minimization of

AMSE(dy1p) with respect to m gives the AMSE-optimal choice of m :

ey VEan (4+47) /(5+47)
_ " r)/(5+4r) | 3.10

Thopt (24(4 + Ar) 20 W) " (3.10)
Note that the AMSE-optimal growth rate of n(*+47/5+4) 3llows one to ignore the
O(-) term in (3.9). The bandwidth m,: depends on the unknown by yo,. Guggenberger
and Sun (2003) propose a plug-in method to estimate mp.

(¢) To compare the asymptotic properties of dy/ 1 p(r,m) and dy,p(r,m), we choose
7 = 7, which makes the dominant bias terms of the two estimators equal. Table
I demonstrates that [ can be chosen such that the constant ¢; in the asymptotic
variance of dyrp(r) is smaller than ¢, that is, while having the same asymptotic
bias properties, the asymptotic variance properties of the new estimator are better
than those of C/l\LP(T, m). We have ¢ = ¢, for r = 0 and r = 1 if [x = 1.2 and
Il = 1.85, respectively, and for larger choices of lx, the weighted estimator has
smaller asymptotic variance than the corresponding c/l\Lp(r)\ estimator in AG with
same asymptotic bias. Comparing with the GPH estimator drp(0,m), the estimator
dy.p(r,m) can be designed such that it improves (if 7 > 0 and by # 0) or retains (if
r = 0) the asymptotic bias and at the same time reduces the asymptotic variance.

(d) From numerical results as the ones reported in Table I, we conclude that for
each r and € > 0, [ can be chosen such that ¢} < e. Therefore, asymptotic theory
suggests that larger values of [ in the definition of c/i\W rp(r,m) imply better variance
properties while the asymptotic bias can remain unchanged. This is not surprising
because by Lemma 3.1(b) larger [ values deliver LP estimates with smaller variance.
However, in finite samples larger values for [ have a negative effect on the bias
properties of c/i\WLp, that is, just as for the bandwidth m, there is a bias/variance
trade-off when choosing ! in finite samples. The reason for the negative effect is that
the approximation of In(g;/go) by its Taylor polynomial bg)\? /24 ... +bg+2T)\j2.+QT /(24
2r)! can be very poor for large values of j. Large values for [ imply large values for
the m; and the bias reduction does not work as well as for smaller values of [.
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Table I. Values of c; for Different | Sequences
(where [y = 1,7 =7,, and [j41 —l; = .05 for j=1,..., K — 1)
Recall that ¢ =1, ¢; = 2.25, and cp = 3.52
Ik 1.5 1.8 20 25 30 35 40 45 5.0
ch 96 90 86 .76 .66 .59 .52 4T .43
¢ 386 225 197 146 1.19 101 .8 .78 .70
c5 31.87 648 4.57 242 1.77 144 123 1.08 .97

Using the results of Hurvich et al. (1998), Robinson (1995b), and AG, we now
establish the asymptotic normality of dy 1 p:

Theorem 3.3 Under the assumptions of Theorem 3.2 and AS/, we have

2
\/R(&\WLP —d— Tb2+2rm2+2rn—(2+2r)) —q N(O 721-4 r)

For r > 1, the assumptions of the theorem allow one to take m much larger than
for the asymptotic normality result for the GPH estimator (compare to Theorem 2 in
Hurvich et al. (1998)). Therefore, by choosing m appropriately, one has asymptotic
normality of C/Z\WL p(r) with a faster rate of convergence than is possible with dGPH
This feature is also obtained for the estimator dr, p(r). The difference between dr, p(r)
and dWLp( ) is that the asymptotic variance of the latter estimator is smaller than
that of the former estimator when [ is chosen such that ¢ < ¢,.

3.2 The Weighted Local Whittle (WLW) Estimator

In this subsection, we investigate the properties of the weighted estimator C/l\We defined
in (3.7) when e stands for a k-step local Whittle estimator dry,. We show that for
given 7 > 1, c/l\WLW can be constructed to share the higher-order bias advantages of
drw (r) but offers the additional advantage of a smaller variance than dzy (r) and
computational simplicity. R

We first introduce the k-step estimator dry; and motivate its choice. As shown in
the Appendix (see (A.6) and Lemma A.2 for r = 0), for each k > 1, c/Z\Lmk has the same
asymptotic N(0,1/4) distribution as the LW estimator drw (0) defined in (2.5) but
has a closed form expression. Hence, while sharing its relevant theoretical properties,
drw has computational advantages over dry(0). While in our simulations below
we take k = 1, we give the theory for general k > 1.

For notational convenience, we write R(d) := Ro(d,b); see equation (2.4). Let
Sm(d) == mR/(d) and H,,(d) := mR"(d) be the normalized first (score) and second
(Hessian) derivatives of R(d), respectively. Define

I = X (m)' X* (m), (3.11)
where X*(m) is an m-vector with j-th element X7(m) given by

m
Xi(m):=-2ln)\; —m Z (—2In Ag).
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For notational simplicity, we usually write X7 for X7(m). The k-step (Gauss-Newton-
type) local Whittle estimator is defined recursively by’

drw;(m) = dpw,1(m) — T Spm(dpwi—1(m)), 5 =1,2,.... k, (3.12)

where dLWO( ) is a {/m-consistent estimator of d. For example, we can define

dLW(](’I“ m) = dWLp(T m)
Let d Lwi be the K-vector with i-th element dLW k(mi). The weighted LW esti-
mator dW Lw is obtained by replacing d in equation (3.7) by d LWk, 1.€.

(dwrw,B) == (2071 2) " 2’0 \d . (3.13)

Note that in the notation we suppressed the dependence on r,m,!l, and §. Using
Lemma A.2 in the Appendix, the following theorem can be proved:

Theorem 3.4 Let v and | be fized constants and 0 = /(75 ZZ (2T for some
7 # 0. Then under Assumptions AS1-AS/, we have
~ 1
Vm(dwrw —d = (7/75) Dpm? 2~ 3H20) - N(0, - ¢

for D, = D,(b) € R defined in (A.21) in the proof of the theorem, e.g. Dy = T{b2
and Dy = 75 (bs + (2/9)b3) .

Remarks (a) The asymptotic bias of dy rw (1) equals (7/7%)Dym22rn=(2+2r) and

is thus of order m2t2rp=(2427)  Therefore, for r > 1, the asymptotic bias is smaller
than that of dzw (0) by an order of magnitude; recall that for dzw (0) the asymptotic
bias is of order m?/n?. _Furthermore, using the weighted version dwpw(r) of the
local Whittle estimator d; w (0) changes the asymptotic variance by the multiplicative
constant c;. If ¢; is smaller than 1, then the asymptotic variance of the weighted
estimator is smaller than that of d LW(O)

(b) The estimator dyw Lw (r) can be modified to have the same dominant asymp-
totic bias term as dry (r). More specifically, define

JWLW(T) = C/Z\WLw(T) — (T/T:ﬁr — TTEQ_A,_QT) m2 12— (2+2r) (3.14)

for consistent estimators 32+2,n of bayor and l/ir of D,. Guggenberger and Sun (2003,
Proposition 11) give examples of such estimators. Then, under the assumptions of
Theorem 3.4 we have

1

m JWLW(T) —d— TT62+2,~m2+2rn_(2+2’") —q N(O 1 r)

Therefore, the estimator EWLW(T) has the same dominant asymptotic bias term
TTbg+ng2+2’"n_(2+2’") as drw(r) but asymptotic variance depending on ¢ rather
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than c,. If [ is chosen appropriately, we can have c; < ¢, (sg\e Table I) implying that
dwrw(r) has better asymptotic variance properties than drw (r). In consequence,
dw Lw (r) has the same asymptotic advantage over d LW( ), i-e. same asymptotic bias
but smaller asymptotic variance, as dWLp( ) has over de( ). Note that there is
no clear advantage of dy Ly over dW rw- The adjustment in (3.14) “may increase or
decrease the asymptotic bias of dWLW, depending on the values of D and b2+2r

(c) It follows from Table I that we can choose [ such that ¢fy < 1. Therefore, the
weighted estimator JW w (0) has the same asymptotic bias as the Gaussian semipara-
metric estimator dry (0) but smaller asymptotic variance. This result is surprising
as it is widely believed that the Gaussian semiparametric estimator attains the semi-
parametric efficiency bound (Robinson (1995a), p. 1640). However, our result does
not constitute a contradiction to this belief, because the efficiency of the Gaussian
semiparametric estimator is conjectured for a fixed bandwidth while dyy i (0) is
based on a number of different bandwidths.

(d) Results in AG and AS show that dpp(r,m) and dpyw(r,m) have the same
dominant bias term 7,boio.(m/n)?+27), In contrast, Theorems 3.2 and 3.4 imply
that the dominant bias terms Tbyyo,(m/n)2") and (7/77)Dr(m/n) 3+ of the
weighted estimators dW p(r) and dW w (r) are different for » > 1 with the difference
depending on b.

(e) Assume lim(m/n") € (0,00) for some 0 < x < 1. It follows that under the
assumptions of Theorem 3.4 the asymptotic mean-squared error of dW Lw is given by
D2’7'2 c*

AMSE(diwiw) = ~L- (/47 (1t 0(1)) + = (1 + o(1).

The AMSE-optimal choice of m is thus given by

C*T*2 1/(5+4r) 44 544
Mopt = <(—> pUtar)/(GHan) | (3.15)

4+ 4r)4D27?

A plug-in method to estimate m,, has been proposed in Guggenberger and Sun
(2003).

4 Adaptive Estimation

The estimator c/l\We(’r, m, 1) depends on the choice of r and m, the number of dominant
bias terms to be eliminated and the bandwidth, respectively.

Using the plug-in method suggested in Hurvich and Deo (1999) and also used in
AG, one can choose m to minimize the asymptotic MSE of the estimator of d for
given r and s large enough. The formulae for the optimal m in (3.10) and (3.15)
depend on the unknown parameter bsio, or D, The plug-in method replaces the
unknown parameter by a consistent estimate and can be adapted to our situation,
see Guggenberger and Sun (2003). However, this method has several drawbacks.
First, it is not fully automatic because it depends on a first stage regression where
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one has to make an initial choice of the bandwidth. Second, because r is assumed
fixed, the method does not adapt to the local smoothness of the spectrum at zero
and therefore, in general, the MSE convergence of the estimator to zero is not rate
optimal.

In this section, we therefore choose a different route that adapts the choice of r
and m to the smoothness of the spectrum at 0. The basic method for this approach
comes from Lepskii (1990) and has been used in the context of estimation of the
long-memory parameter by Giraitis et al. (2000), Iouditsky et al. (2001), Hurvich et
al. (2002), and AS.

According to our above definition of “smooth of order s at zero,” a function that
is smooth of order s7 is also smooth of order so whenever s; > so. The rate optimal
choice of r is an increasing function of the smoothness of the spectrum at zero and we
are therefore interested in determining the “maximal degree sg of smoothness at 0”. In
the following we first precisely define the quantity sg and then describe a procedure to
consistently estimate it. More precisely, we use the weighted local Whittle estimator
to design a consistent estimator s of sg. As described in the following this estimator
can then be used to construct an adaptive weighted estimator. A similar analysis
could be done for the weighted log-periodogram estimator. However, such an analysis
would make the proof section much longer and we therefore focus on the weighted
local Whittle estimator only.

We now define the “maximal degree of smoothness sg at 0” of an even function
h. This definition is then applied to Ing. In the following, denote by U a generic
neighborhood of zero that may be different across different occurrences.

Definition 4.1 Let h € C1(U) be even and let
T :=sup{t € Ng:Jey; € R fori=1,..,t s.t.

Ry(A) == h(A) = (h(0) + ) e A?)
k=1

satisfies Ry(\) = o(|A[*) as A — 0}.
If T = oo, then define the “maximal degree of smoothness of h at 07 as so := oc.
Otherwise, assume that for some positive, finite constants T > 2T, Chpin, and Cpax

Cuin|A]” < [R7(A)] < Cinax| Al (4.1)
for X € U. Then define s := 1.8

Note that if g is smooth of order s at zero (as used in Assumptions AG2 and
AS2), then AG (p. 682) shows that h = Ing has an [s]-order Taylor expansion with
coefficients ej, = 1/(k!) (dk/d)\k)lng()\)‘)\zo and remainder term in o(|\|l*)), and,
because In g is an even function, only even monomials A2* appear in the expansion.
Therefore, in the above definition 27" > [s] holds for h = Ing, but possibly the
inequality is strict. For the rate optimal choice of r we need to know the “maximal”
s for which ¢ is smooth of order s at zero. However, seemingly easy definitions for
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maximal degree of smoothness at 0 for h € C1(U) such as sp := sup{s > 1; h is
smooth of order s at zero} cause technical problems. For example, it is unclear
whether a function that has sy = 2 according to this definition necessarily allows for
a Taylor expansion up to order 2 and therefore in general, it is unclear how many
bias terms can be eliminated. We therefore choose the above definition that avoids
such technical problems. This definition is closely related to the definition of the sets
F(s,a,6,K) in AG (p. 688) and AS (p. 584) and reflects the fact that, all that is
needed in Theorems 3.2 and 3.4 to achieve the faster rate of bias convergence, is a
Taylor expansion with appropriately bounded remainder term.

We now propose an estimator for the maximal degree of smoothness sg of In g at
0. Assume we have fixed [ with [; = 1. Let 1 < s, < s* < 0o be constants such that
s« < sp. As in AS, for a positive constant 1;, define

2s

Mg @ = Pn2s+l,
r(s) : = w for s € 2w, 2w + 2] for w = 0,1, ..., (4.2)
¢(n) : = (Inn)(Inln(n))"/?, and
h:=1/Inn.

By S;, we denote the h-net of the interval [s,, s*], that is
Spi={r:7=s+kh,7<s" for k=0,1,2,..}.

Our proposed estimator for sg is given by

s 1 = max {7'2 €Sy ‘C?WLW(Tl) - C?WLW(W)‘ < (4.3)

(mr)™2 (€57, /4)2Cn) for all 71 < 2,71 € S}

where 95 is a positive constant and for notational simplicity we write C/Z\We(T) for
dwe(r(r),ms, 1) for e = LP and LW. Define m; ; := l;m,. We use drw,o(m;,) =
dwi p(7) for all i as the zero-step estimator in the definition of the k-step LW estima-
tor dyrw (7). Graphically, one can view the bound in theAdefinition of;\’s\ as a function
of 71. Then, 5 is the largest value of 79 € Sy, such that |dwrw(71) — dwrw (72)] lies
below the bound for all 71 < 79, 71 € Sj. Calculation of s is carried out by consider-
ing successively larger 72 values sy, s« +h, i+ 2h, ... until for some 72 the deviation
|dwrw (T1) — dwrw (72)| exceeds the bound for some 71 < 79, 71 € S},

Definition 4.2 The adaptive weighted local Whittle (AWLW) estimator is defined by
dawrw = dwrw (r(3), ms, 1)
for s defined in (4.3) and l being user-chosen constants.

Through s, AWLW depends on several user-chosen constants, namely 1, 19, S,
and s*. Other adaptive estimators, for example, Giraitis et al. (2000), Hurvich (2001),
and Iouditsky et al. (2001) all also depend on user-chosen constants, see AS (p. 587,
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Comment 5) or the Monte Carlo Section 5 below for further discussion. In Section 5
we make suggestions for the choice of ¢, and v,. For the bounds s. and s* we suggest
using 1 and oo, respectively. R

The following theorem establishes important asymptotic properties of s and d oy Lw
The symbol U denotes a neighborhood of zero.

Theorem 4.3 Let Assumptions AS1, AS2(ii), and AS3 hold and suppose Ing has
mazximal degree of smoothness sg > s, > 1 at 0. If T < oo in Definition 4.1, assume
in addition that

(Cmax - (jrrlin)e_S()_1 < Cminsﬂ (44)

and Rp(X) >0 for all \ € U or Rp(\) <0 for all A\ € U. Then

a) § = min(sg, s*) + O, (B2} 45 n — 0o and
P\ Inn S

(b) Hme— o HiMSup,, o0 SUPoels, o+ <n2l9_})0+1 ¢ Y(n) ‘EAWLW - d‘ > C) =0.
(4.5)

Remarks (a) The theorem shows that § consistently estimates the maximal degree
of smoothness sgp when it is finite and s, and s* are appropriately chosen. The
additional assumptions made under finite 7" are weak technicalities that are needed
in the proof of the theorem.

(b) Theorem 3 in AG shows that the optimal rate of convergence for estimation
of d for spectral densities in their set F(so,a,d, K) is given by n0/(Zs0+1) when s
is finite and known. Theorem 4.3(b) shows that AWLW achieves this rate up to a
logarithmic factor ¢~!(n) when s is finite and not known . When sg is not known,
this extra logarithmic factor is an unavoidable price for adaptation and the adaptive
estimator of AS shares this property.

(c) Like the adaptive estimator in AS, the adaptive estimator d, AW LW 1is not nec-
essarily asymptotically normal. However, at the cost of a slower rate of convergence,
an adaptive estimator can be constructed that is asymptotically normal with zero
asymptotic bias by altering the definition of mg so that m, diverges to infinity at
a slower rate than n2/(25t1)_ More specifically, after obtaining § using the above
adaptive procedure, we define

c/Z\ZWLW = C/l\WLw(T(:S\), m>, 1), where m} = i)/ Ur(s)+1),
If sp < oo and s is not an even integer, Part (a) of Theorem 4.3 implies that r(5) =
r(so) with probability approaching one. Thus, both r(5) and mX are essentially non-

random for large n. In consequence, the adaptive estimator d%; ;v is asymptotically

normal: )
A /m;;\ (de‘WLW — d) —d N(O, ZC:(SO)).

Of course, one would expect that a given level of accuracy of approximation by the
normal distribution would require a larger sample size when r and m are adaptively
selected than otherwise.
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5 Monte Carlo Experiment

5.1 Experimental Design

In this section, we present some simulation results that compare the RMSE perfor-
mance of the AWLW estimator with several adaptive estimators in the literature. The
simulation design is taken from AS. Additional simulation results for non-adaptive
plug-in weighted estimators are given in Guggenberger and Sun (2003).

5.1.1 Models

As in AS, we consider three models and several parameter combinations for each
model.

The first model we consider for the time series {Y; : ¢ > 1} is a first-order autore-
gressive fractionally integrated (ARFIMA (1, d, 0)) model with autoregressive (AR)
parameter ¢ and long-memory parameter dy:

(1-oL) 1~ L)"Y; = u, (5.1)

where the innovations {u; : ¢t = ...,0,1,...} are iid random variables and L denotes
the lag operator. We consider three distributions for w;: standard normal, ¢5, and
x3. The t5 and x3 distributions are considered because they exhibit thick tails and
asymmetry, respectively. All of the estimators of dy that we consider are invariant
with respect to the mean and variance of the time series. In consequence, the choice
of location and scale of the innovations is irrelevant. Note that the spectral density
of an ARFIMA(1, d, 0) process is in C*°((0, 7]).

The second model is a stationary ARFIMA(1, d, 0)-like model that has a discon-
tinuity in its spectral density at frequency A = A\g. We call this model a DARFIMA(1,
d, 0) model. Its spectral density is that of an ARFIMA(1, d, 0) process for A € (0, A],
but is zero for A € (Ao, n]. A DARFIMAC(1, d, 0) process {Y; : ¢ > 1} is defined as

n (5.1), but with innovations {w; : ¢ = ...,0, 1, ...} that are an iid Gaussian process
filtered by a low pass filter. Specifically,

) A .
2L, for j =0
U = Z cjer—j for t = ...,0,1,..., where ¢; = sin(‘/\()j)’ for § £ 0 (5.2)
Jj=—00 Jm
and {g; : t = ...,0,1,...} are iid random variables with standard normal, ts5, or x3

distribution. The spectral density f,(\) of {u; : t > 1} equals 02 /(27) for 0 < A < Ao
and equals 0 for \g < A < 7, where 02 denotes the variance of uy, see Brillinger (1975,
equation (3.3.25)). The spectral density of {Y; : ¢ > 1} is f,(\) times the spectral
density of the ARFIMA(1, d, 0) process that has the same AR parameter. Thus, the
spectral density of a DARFIMA process is a truncated discontinuous version of that
of the corresponding ARFIMA process.

The third model is called a long-memory components (LMC) model. It is designed
to have a finite degree of smoothness sy at frequency zero in the short-run part, g(\),
of its spectral density. The process {Y; : ¢ > 1} is defined by

(1 —L)%Y; = uy + k(1 — L)*/ %, (5.3)
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where {u; : t > 1} and {v; : t > 1} are independent iid processes both with normal,
t5, or x3 distribution. The spectral density function of {us + k(1 — L)%/2v, : t > 1} is

2 2 2
9so () = o= + ’“2—:|1 — e, (5.4)
where o2 denotes the variance of u; and v;. Because |1 — ei)‘] ~ XAas A — 0, the
smoothness of gs, x(A) at A =0 is sp.

For the ARFIMA and DARFIMA models, we consider seven values of ¢, viz., 0,
3,.6,.9, —.3, —.6, and —.9. For the DARFIMA model, we take A\g to equal 7 /2. For
the LMC model, we take sp = 1.5 and consider five values of k, viz., 1/3,1/2,1,2,
and 3. For all three models, we consider three values of dy, viz., dg = —.4,0, and .4.
For each model, we consider two sample sizes n = 512 and n = 4,096. In all cases,
1000 simulation repetitions are used. This produces simulation standard errors that
are roughly 3% of the magnitudes of the reported RMSEs.

5.1.2 Estimators

We consider the AWLW estimator defined in the previous section, the adaptive local
polynomial Whittle estimator (ALPW) of AS, the adaptive log-periodogram regres-
sion estimator of Giraitis et al. (2000), the adaptive FEXP estimator of Iouditsky et
al. (2001), and the FEXP estimator of Hurvich (2001) with the number of terms in
the expansion chosen by his local Cr, method. Each of these estimators requires the
specification of certain constants in the adaptive or local C, procedure. In addition,
the AWLW estimator requires choosing the [ sequence, the estimator analyzed by
Giraitis et al. (2000) requires trimming of frequencies near zero and tapering of the
periodogram, and the estimator analyzed by Iouditsky et al. (2001) requires tapering
of the periodogram and allows for pooling of the periodogram.

The constants in the adaptive procedures are tuned to the Gaussian ARFIMA
model with ¢ = .6 with n = 512. That is, they are determined by simulation to be the
values (from a grid) that yield the smallest RMSE for the Gaussian ARFIMA model
with ¢ = .6 and n = 512. These values are then used for all of the processes considered
in the experiment. For AWLW and ALPW procedures, the grids for ¢; and 1, are
{.1,.15,.2,...,.5} and {.05,.10,...,.70}, respectively. For the AWLW procedure, we
consider three equally-spaced [ sequences with increments ;11 — [; of .05, [ = 1,
and [ = 1.5,2, and 3. For the procedure in Giraitis et al. (2000), we set their
constant 5* equal to 2 (as suggested on their p. 192). In addition, we introduce two
constants v, and 1, that are analogous to the constants that appear in the definition
of AWLW. The grid for ¢ is {.1,.2,...,1.0} and the grid for v, is {.05,.10, ...,.70}.
The constants 1, and 1, are introduced in order to give the adaptive procedure in
Giraitis et al. (2000) a degree of flexibility that is comparable to that of the AWLW
procedure. For the procedure in Iouditsky et al. (2001), their constant  is analogous
to the constant 1, of the AWLW estimator and is chosen from the same grid as 1,
and the pooling size (denoted pool below and m in the notation of Iouditsky et al.
(2001)) is determined simultaneously with the constant £ from the grid {1,2,...,6}.
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We analyze several groups of adaptive estimators. The first group contains those
adaptive estimators that are closest to being covered by the theoretical results in the
literature. We refer to these as being the “theoretically-justified” estimators and they
are denoted AWLW, ALPW, GRS1, and IMS1. (The AWLW estimator is covered
by the results of this paper and the ALPW estimator is covered in AS. The GRS1
estimator uses constants ¢; and v, that are not covered by the results of Giraitis
et al. (2000) and the IMSI estimator uses a constant x and an upper bound on
the number p of Fourier terms that are not covered by the results of Iouditsky et
al. (2001), see footnote 4 in AS.) The GRS1 estimator uses the cosine-bell taper
with two out of every three frequencies dropped (as in Giraitis et al. (2000)) and
three frequencies near the origin are trimmed (¢rim = 3) when n = 512 and six are
trimmed (trim = 6) when n = 4,096. The IMS1 estimator uses the Hurvich taper (of
order one) with one frequency dropped between each pool group of frequencies, as in
Section 2.2 of Hurvich et al. (2002). (Note that for the case where no differencing is
carried out to eliminate potential trends, the adaptive estimators in Iouditsky et al.
(2001) and Hurvich et al. (2002) are essentially the same except that the latter uses
a scheme that deletes fewer frequencies, which we employ here.)

The second group of adaptive estimators that we consider does not have known
theoretical properties. The estimator GRS2 differs from GRS1 in that it does not
trim any frequencies near zero. The estimator GRS3 differs from GRS1 in that it
does not trim frequencies near zero, use a taper, or drop two out of every three
frequencies. The estimator IMS2 differs from IMS1 in that it does not use a taper
or drop any frequencies. Although no asymptotic theory has been established for
these estimators, it is expected that these estimators have better performance than
the respective first version as both trimming and tapering reduce the efficiency of the
estimators.

The constants determined by simulation are: AWLW: (¢;,1,) = (.25,.05) and
[ = (1.0,1.05,...,2); ALPW: (¢,15) = (.3,.2); GRS1: (¢1,%5) = (.6,.5); GRS2:
(¥1,19) = (.3,.6); GRS3: (¢1,14) = (.2,.25); IMS1: (pool, k) = (2,.65); and IMS2:
(pool, k) = (2, .45).

Hurvich’s (2001) procedure requires the specification of a constant c.. We consider
the two values @ = .5 and a = .8 that are considered in Hurvich (2001). The
corresponding estimators are denoted H1 and H2. (The value o = .8 turns out to
minimize the RMSE of the FEXP estimator for the ARFIMA process with ¢ = .6
and n = 512 over « values in {.1,.2,...,.8}.) The theoretical properties of Hurvich’s
(2001) procedure, such as its rate of convergence, are not given in Hurvich (2001).
For this reason, we do not put the H1 and H2 estimators in with the first group of
“theoretically-justified” estimators.

The final estimator that we consider is the parametric Whittle quasi-maximum
likelihood (QML) estimator for a Gaussian ARFIMA(1, d, 0) model. This estimator
is misspecified when the model under consideration is the DARFIMA(1, d, 0) model
or the LMC model and is included in the simulations for comparative purposes.



5.2 Monte Carlo Results

Tables II-IV contain the Monte Carlo RMSE results for the three models and
the various estimators. Each table has a separate panel of results for n = 512 and
n = 4,096. The first four rows of each panel give results for the “theoretically-
justified” adaptive estimators. The next rows give results for the adaptive estimators
that do not (currently) have theoretical justification and for the parametric Whittle
QML estimator.

For brevity, we only report a subset of the parameter combinations. For example,
results for ¢ = —.3, —.6, and —.9 are not given because they are close to those for
¢ = 0 and .3. We only give selected results for d = .4 and no results for d = —.4,
because the value of d has only a small effect on RMSE (except for the IMS1 estimator
which exhibits some sensitivity to d). Similarly, we only give selected results for
t5 innovations and we give no results for x3 innovations, because the innovation
distribution turns out to have only a small effect on RMSE.

We start by noting some general features of the results presented in the tables.
First, for d = 0 the results for normal and ¢5 innovations are quite similar. Second,
the results with normal innovations are very similar for d = 0 and d = .4 (with the
exception of the IMS1 estimator that is noticeably worse when d = .4 in all ARFIMA
and DARFIMA models for n = 512). Thirdly and not surprisingly, the performance
of the AWLW and all other estimators improve substantially as n increases from 512
to 4,096 without generally affecting the qualitative ranking of the estimators.

Now, we compare the estimators. Among the four theoretically-justified estima-
tors, the AWLW and ALPW estimators perform the best in an overall sense across
all three models, parameter combinations, and sample sizes. Across the 48 scenarios
reported in the tables, AWLW and ALPW have lowest RMSE in 35 and 11 cases,
respectively, amongst all the theoretically-justified estimators. For ARFIMA and
DARFIMA processes with ¢ < .6, the AWLW estimator uniformly outperforms the
other semiparametric estimators while for ¢ = 0.9 it is beaten by ALPW. Similar
to the explanation in Remark (d) after Theorem 3.2 regarding the negative effect of
large [x-values on the finite-sample bias properties of AWLW, this result for ¢ = 0.9
is caused by the poor approximation of In(g;/go) by its Taylor expansion in a neigh-
borhood of the origin in this case. As expected, the performance of all the estimators
deteriorates with increasing k in the LMC models. Compared to the ALPW estima-
tor, the AWLW estimator has smaller RMSE when k£ < 2 and slightly larger RMSE
when k = 3.

Both GRS1 and IMS1 perform poorly in an absolute sense. Relative to AWLW
and ALPW, GRS1 performs poorly when ¢ > 0.3 or k£ > 1 while IMSI1 is outperformed
for all values of ¢ and k in our three models. Because of the broad-band character of
the IMS1 estimator, it is not robust against discontinuous spectral densities which is
reflected in its worse performance in the DARFIMA model compared to the ARFIMA
model.

Next, we consider the adaptive estimators GRS2, GRS3, and IMS2 without the-
oretical justification. GRS2 and GRS3 perform noticeably better than GRS1, espe-
cially when ¢ or k is large. Hence, trimming is found to have a negative impact.
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The GRS3 estimator outperforms the GRS2 estimator across all cases and all models
considered. Hence, tapering also is found to have a negative impact. In an overall
sense, the GRS3 estimator performs reasonably well relative to the other semipara-
metric estimators. However, with very few exceptions its performance is worse than
that of the AWLW estimator. The IMS2 estimator outperforms the IMS1 estimator
in all but two cases. In many cases the difference is substantial. Hence, again we find
the effect of tapering to be negative. Compared to other semiparametric estimators,
IMS2 performs best in the cases where the short-run contamination is highest, i.e.,
¢ = .9 or k = 3. But in most other cases it is out-performed by the AWLW, ALPW,
and GRS3 estimators. It appears that the relative performance of the IMS2 estima-
tor compared to the narrow-band AWLW, ALPW, and GRS1-3 estimators improves
as the sample size increases from 512 to 4,096. The H1 and H2 estimators perform
well when the sample size is 4,096 and ¢ or k are large. In other cases, they do not
perform well relative to the AWLW, ALPW, or GRS3 estimators. In particular, they
perform poorly for DARFIMA processes except when ¢ = .9. The relative strengths
of the H1 and H2 estimators are similar to those of the IMS1 and IMS2. This is not
surprising, because all of these estimators are broadband FEXP estimators.

The parametric Whittle QML estimator performs as expected. For ARFIMA
processes it typically has smaller RMSE than the semiparametric estimators, of-
ten substantially smaller, for example when ¢ = .9 or n = 4,096. For DARFIMA
processes, for which it is misspecified, it performs very poorly. It is substantially
outperformed by all semiparametric estimators. For LMC processes, for which it is
misspecified, it has lower RMSE than the semiparametric estimators for small values
of k (when the LMC process is close to ARFIMA processes). But, it is outperformed
for larger values of k. One surprising finding that is worth mentioning is that the
parametric Whittle QML is outperformed by AWLW for certain parameter combina-
tions in the ARFIMA model, for example, for n = 512 and ¢ = .3 and .6.

To conclude, among the four theoretically-justified estimators, the new AWLW
estimator seems to be the best. Of all the semiparametric estimators, the two best
ones in an overall sense seem to be AWLW and ALPW. When the short run con-
tamination is not too large, AWLW outperforms ALPW and the opposite is true
when the short run contamination is large. Trimming hurts the performance of the
GRS1 estimator. Tapering hurts the performance of the GRS1 and IMS1 estimators.
The narrow-band estimators AWLW and ALPW perform well over a broad range
of parameter values, but are outperformed by the broad-band estimator IMS2 when
the short run contamination is very large. The broadband estimator IMS2 performs
relatively well when the sample size is large and the short run contamination is large.
The parametric Whittle QML estimator performs very well when the model is cor-
rectly specified, moderately well when the amount of misspecification is small, and
disastrously when the amount of misspecification is large.



TABLE II
RMSE for ARFIMA(1,d,0) Processes with AR Parameter ¢

(a) n =512
d=0 d=0 d= 4
Normal ts Normal
¢ ¢

Estimator 0 3 .6 9 .6 9 .6 9
AWLW 1220 .121*% 134* 473 132% 473 139* 472
ALPW 145 142 145 423 140 420 151 425
GRS1 (taper, trim = 3) 160 197 397 .855 393 .864 394 857
IMS1 (pool = 2, taper) 234 252 2901 448 311 .460 379 579
GRS2 (taper, no trim) 164 172 244 662 254 657 263 .668
GRS3 (no taper, no trim) .131 133 .159  .502 157 501 166 .499
IMS2 (pool = 2, no taper) 203 .209 217  .315 215 .320 222 .301
H1 (e =0.5) 288 309 321 .438 308 .420 310 .436
H2 (o =0.8) 182 206 233 459 235 457 241 480
Parametric Whittle QML  .066* .128  .134* .112* 141 107 140 .156*

(b) n = 4096

d= d=0 d=.
Normal ts Normal
¢ ¢

Estimator 0 3 .6 .9 .6 9 6 9
AWLW .046 .046 .050 .224 048 227 .054  .230
ALPW .061 .061 .060 .207 .058  .201 062 213
GRS1 (taper, trim = 6) .056  .081 .169  .586 168 .581 169 587
IMS1 (pool = 2, taper) 045 133 122 218 1200 .220 142 273
GRS2 (taper, no trim) 063 .066 .108  .396 109 388 114 401
GRS3 (no taper, no trim) .052  .052  .065  .222 .064 .219 070 .228
IMS2 (pool = 2, no taper) .046  .076  .073  .155 073 154 071 145
H1 (e =0.5) .067 .076 .083 .125 082 123 084  .132
H2 (e =0.8) 052  .062 .073 .147 075 144 077 156
Parametric Whittle QML  .013* .028* .046* .025* .045%  .025* .045*  .032*

Notes: Asterisks denote the smallest RMSE across all the estimators for each design.
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TABLE III
RMSE for DARFIMA(1,d,0) Processes with A\g = 7/2 and AR Parameter ¢

(a) n =512
d=0 d=0 d=.4
Normal ts Normal
¢ ¢ ¢
Estimator 0 3 .6 9 .6 9 .6 9
AWLW 123 121 134% 474 139% 472 A38* 472
ALPW 143 142 146 423 149 430 146 425
GRS1 (taper, trim = 3) 160 .200  .390  .857 395 .868 394 .859
IMS1 (pool = 2, taper) 448 448 445 464 468 .490 020 578
GRS2 (taper, no trim) 176 181 243 .656 254 657 253 .668
GRS3 (no taper, no trim) 131 142 159  .503 157 501 165 .499
IMS2 (pool = 2, no taper) 268 .266 .262 .303* 252 .311* 246 .299*
H1l (e =0.5) 356 348 317 404 326 .401 309 427
H2 (o =0.8) 396 393 384 .389 403 409 363 .429

Parametric Whittle QML .866  .616  .949 1.202 951 1.209 .852  .855

(b) n = 4096
d=0 d=0 d=.
Normal ts Normal
¢ ¢ ¢

Estimator 0 3 .6 9 .6 9 .6 9
AWLW .046* .046* .050* .224 .052% 227 .054* 230
ALPW .060 .060 .059 .207 055 .204 061 213
GRS1 (taper, trim = 6) 056  .081 .169  .586 168 581 169 587
IMS1 (pool = 2, taper) 146 146 146 127 148 130 121 .120%
GRS2 (taper, no trim) .063 .066 .108  .396 109 .388 A14 401
GRS3 (no taper, no trim) .051  .052 .066  .222 064 219 070 229
IMS2 (pool = 2, no taper) .096 .096 .096 .106* .093  .103* 100 125
H1 (e =0.5) 1260 1250 123 117 124 119 110 127
H2 (o =0.8) 120 120 119 113 122 119 119 139

Parametric Whittle QML 346  .579  .930 1.256 933 1.257 905  1.068




TABLE IV

RMSE for LCM Model with Smoothness Index so = 1.5 and Weight k

(a) n =512
Normal ts Normal
k k k
Estimator /3 12 1 ) 3 /2 2 /2 2
AWLW 210 1220 .128%  .166%  .226 113 156 119 .161*
ALPW 139 139 139 168 .216F 145 171 138 164
GRS1 (taper, trim = 3) A720 190 230 .384  .486 172 384 A77 375
IMS1 (pool = 2, taper) 247 249 264 298 336 262 .297 307 323
GRS2 (taper, no trim) 165 173 175 262 337 182 .269 181 .265
GRS3 (no taper, no trim) 131 131 136 181 .245 121 184 128 176
IMS2 (pool = 2, no taper) 207 207 209 .209 .229 194 215 215 .233
H1 (e =0.5) .264 2656 276 .303  .333 .259  .307 271 311
H2 (o =0.8) A78 0 182 199 241 298 169 229 182 1245
Parametric Whittle QML .064*  .069* 129 273  .368 .064*  .269 .069* 274
(b) n = 4096
d=0 d=0 d=.
Normal ts Normal
k k k

Estimator /3 1/2 1 2 3 1/2 2 1/2 2
AWLW 045 .046  .048* .065*  .095 .046  .067* .046  .060
ALPW .061  .060 .060 .065* .100 .060 .068 061  .058*
GRS1 (taper, trim = 6) .061 .066 .108 .213  .305 .066  .210 066 212
IMS1 (pool = 2, taper) 056 .075 .123  .136  .166 075 138 070 105
GRS2 (taper, no trim) 068 .068 .079 .137  .201 .067  .137 .066  .135
GRS3 (no taper, no trim) .051 .052 .056 .085 .122 .053  .087 .049  .080
IMS2 (pool = 2, no taper) .050 .058 .070 .085 .085* .058  .086 062  .089
H1l (e =0.5) 072 .073  .078 .089  .100 .078  .089 079 .091
H2 (o =0.8) .056  .058 .065 .087 .107 .060  .089 .061  .087
Parametric Whittle QML .023*  .033* .104 .236  .320 .032*  .235 .031* 232




6 Appendix of Proofs

The next Lemma is needed for the proof of Lemma 3.1. It is a refined version of
statements in Lemma 2 of AG.

Lemma A.1 Suppose Assumption AG4 holds. Then, for J,, defined in (3.11),
(a) J;l — (X*IX*) 1 1 + 1ln?m _‘_O(l?n_rzn) and

8 m2
(b) S, XAk = - (277) (kiﬁ)2 m=2 L O(2 Inm).

Proof of Lemma A.1. For the proof we need the following approximations:
(i) Xt nj=mlnm —m+ 3Inm+0(1),
(i) D7y In?j =mIn®m — 2mInm + 2m +1In?m+ 0(1),
(iii) 7= 1]k Inj = Zgm inm— (k+1)2 mk*'1 + O(mFInm), and
(iv) ZJ 1] /,Hl_lmk‘H - %mk + O( )
These approximations follow from straightforward calculations using the following

version of Euler’'s summation formula (see, e.g., Walter (1992, p. 349)). For f €
C3([1,m]), we have

Yoy fG) = [1 f@)da + 0.5(f(1) + f(m)) + err,

where err := 271 Ey () f'(x )m+6_1 [T (@) Es(x)dx, Ey(x) := By(a—[z]), By(z) :=
Zf 0 ( )B 2P~ is the p-th Bernoulli polynomlal and B; in this lemma denotes the

j-th Bernoulli number. It can be shown that Ea(m) = 6! and for all real numbers
z, |E3(x)| < 207!, For part (a) of Lemma A.1 then note that

XYX* =43 0% —4m~ N (3 Ing)? = 4m — 2In* m + O(Inm),

where the second equality follows from (i) and (ii). Part (a) then follows. For part
(b), note that using (i), (iii), and (iv), we have

SoXiNE = —2<%> ijlnj—ijEZIHi
j=1 j=1 j=1 i=1

or\ * 1 1
- _9 k+1 k+1 k:l
<_n ) <—k ™ T 1)2m +O(m"Inm)

2k k+1 k
mw;—k + O(% Inm), as desired. B

Proof of Lemma 3.1. Part (a) The log-periodogram can be written as
Inlj =(lngg—C)—2dln\j+ Rj +¢jfor j=1,....,m

where R; :=Ing; —Ingog and €; := In(l;/f;) + C, see (2.2). Define the m-vectors
R(m) := (Ry,..., Ry) and e(m) := (€1, ..., ) . Then

drp(0,m) —d = J-1X*(m) (e(m) + R(m)). (A1)
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By Lemma 2(a) and (f) in AG,
EJ'X*(m)e(m) = O (m ' In’m). (A.2)

Regarding J,,1 X*(m)'R(m), first note that under Assumption AG2, a Taylor expan-
sion of In g; about A =0 as in AG (3.3) yields

1+r b% ok |
R; Z )\ + Rem, (A.3)

where by, := (d¥/d\*)1In g(\ | \—o» Item;, defined implicitly as the difference between
R;j and the sum on the right hand side, satisfies maxi<;j<m |[Rem; /]| = O(1) for ¢
deﬁned in (2.7) and maxi<j<m |Remj/)\q| =o(1)if s =2+ 2r. Comblmng this with
Lemma A.1(b) and using AG (7.16) ylelds

* 14 | (2m)*F4kbgy, mAh m? matl
X*(m) R(m) = — I+ [(%)!(%H)Q o+ 0 mm) | +0( ),
—1y# 1 [ (2m)* kboy, m? m*l m?
T (m) R(m) = oM [ T g + O o m)| -+ O(27).(A4)

where the second equation uses Lemma A.1(a). The O(m?/n?) term in (A.4) is
o(m?/n) if s = 24+2r. Note that O((m?*~1 /n?) In? m) is dominated by O (m~! In® m)
from (A.2). Combining (A.1), (A.2), and (A.4) yields the desired result.

Part (b) Let Cov := Cov(drp(0,m;),drp(0,m;)). Without loss of generality, we
assume that [; <[;. Because (X*X*) 7' =47 1m~1(1 4 0(1)), (A.1) implies that

(1+0( )) Zk 1 1= 1XkZleCOU(€k,€l)

where X;, = X} (mz) We decompose the double sum in the formula for C'ov into
(Z?l Y z m —|—1)(szle007)(61€7 €1))-

By Lemma 2(k) in AG, maxi<g<m, | X},| = O(Inm;) for v = i and j. Similar
calculations to the ones in Lemma A.1(a) yield > )" Xj; X7 = 4m;(1 +o(1)). Thus,
the proof of Theorem 1 in Hurvich et al. (1998) where they calculate the variance
of the GPH-estimator (p. 25) can be modified along the same lines as done in the
proof of Theorem 1(b) in AG (p. 702) to prove that the first part of the double sum
equals (4/6)72m;(1 + o(1)). It is easily shown that the contribution of the second
part is in o(m;) and thus negligible and thus Cov = (47%m;/96m;m;)(1 + o(1)) =
(m2/241;m)(1 + o(1)). W

Proof of Theorem 3.3. The proof is analogous to the proof of Theorem 2 in AG.
The latter proof in turn relies on the proof of Theorem 2 in Hurvich et al. (1998)
and the proof of (5.14) in Robinson (1995b). Note that by the definition of dyrp



and Lemma A.1(a)
m(dwrp —d) = m'/? z Wit X* (i)' (R(mi) + e(m;))

= I/Qsz oy X* (i) R(m;)

1=1

+ ZwiW];inEj (1+o0p(1)).

It follows from equation (A.4), the fact that the weights satisfy (3.2)-(3.4), and the
rate condition m?5+2" /n2+2" — y that for the first summand we get

1/2 Z w;J lX*(mZ) R(ml) _ m2.5+2rn—(2+27’)7_b2+2r(1 + 0(1))

Ignoring the 0,(1) term, the second summand can be written as [}/ 172 Kl/ 2 ZT:KI ajej,
where a; .= 2K (wi/(41;))1(5 < m;)X;; and 1(-) is the indicator function. The same
proof as in AG (see p. 705, following equation (7.24)) can be used to show that

m
2(er) Y i M2 f:; aj¢; —q N(0,7%/6).
]:

We just have to verify conditions (i)-(iii) of the asymptotic normality result in AG
(7.28) which then yields the desired result. For (i) note that by Lemma 2(k) in AG
we have maxi<j<m, |X5;| = O(Inm) and thus max1<j<mK laj| = O(Inm). For (ii),
m; Y X5 X = 4(140(1)) for I; < Iy, implies that m' Y78 a2 = I 47 e (1+
(1)) Flnally, for (iii) note that from AG (7.30) we have Zg=1+m‘."5+‘5 | X5[P = O(m)

for all p > 1. This implies ZT:KHmO-sM lajl]P =O(m) forallp > 1. A

To prove Theorem 3.4 and establish the asymptotic properties of dWLW, we first
investigate those of dLW k(m). For some d* between dLW k—1(m) and d we have

Vm(dpw(m) — d)
= \/_(dLWk( ) dLWk 1( )) +\/E(C/Z\LW,k—1(m) _d)
—vmJ 1S, _1(m)) + vVm(dpw_1(m) — d)

~

(dLwi

VM Sn(d) = v/ (S (drw-1(m)) = S(d)] + vVm(dw g—1(m) — d)
= VM S (d) = VmJ g Hy () (dowk-1(m) — d) + Vm(dpw-1(m) — d)
= —VmJy'Sm(d) — Vm(dpwp—1(m) — d)(J Hp(dV) — 1). (A.5)

If \/E(ELW7k_1(m) —d) = Op(1), then applying Lemma 2(b) and (d) of AS for the case
r =0 (in which case their § and 6y are not present) yields J,,' H,,(d7) — 1 = 0,(1).
As a consequence of (A.5),

Vin(diwa(m) — d) = =i S,u(d) + op(1). (A.6)

[27]



To show that\/ﬁ(c/l\,;w k—1(m) —d) = Op(1), by an induction argument it suffices to
show that /m(drwo(m) — d) = Op(1) and that — (&) " =S (d) = Op(1). The

former is assumed through d, Lwo(m) = C/Z\W rp(r,m) and the latter is proved now. The

term (L Jm)_1 is Op(1) by Lemma A.1(a) and so we are left with the term \/—%Sm(d).
Some algebra (see AS (4.2)) gives
1 1 o I
——Sm = —GG Yd)—— L _1)X? A.
T (d) GG (d)\/m ;(% )X (m) (A7)
= —G@_l(d)(Tl + 15+ 15+ T4), where
p; 1 =G, G(d) = Go(d,b), (A.8)
1 (1
T = —— ~L —orl.; — E(—L —2rl., )) Xz,
m ; ?; J ?; J j
1 <~ /FEI fi
T =— _ _ 1> X
? m ;—:1 ( [ w;

we(\) : = (2mn)"V/? Zeteit)‘, and I.; := |w.(\;) .
t=1
The second equality in (A.7) uses the fact that E27l.; = 1. For notational conve-
nience, we write T = Tj(m), j = 1, ...,4. In the proof of their Lemma 2(e), AS show
that T1 =T = 0p(1) as 1/m +m/n — 0. The asymptotic properties of T3, Ty and G
are established in the next lemma. These properties combined with 77 = T = 0, (1)
imply that 1/y/mSp,(d) = Oy(1).

Lemma A.2 Suppose Assumptions AS1-AS4 hold.
(a) Let Ts; := T3(m;). Then

(Tgl, T32, cey TgK), —d N(O, 42), where (Ag)
= (8ij) g and Xij = {min(ly, 1)/ max(l;, ;) }/2.
(b) For s=1,....,7 + 1 let

2m)*s &1 boi, by
Agy 1= =) 8 v L Oz D2y A10
2 (28 + 1)2 kg]_ k' ’Ll—FZF:’Lk:S( (221)' (2Zk)') ( )

where the i (j = 1,...,k) are positive integers. Then

147 m0.5+2k lnm m0.5+q
T4(m) = _4k§1A2kW(1+O(T))+O( nd ),

[28]



where q is defined in (2.7) and O(mizﬂ) can be replaced by o( Y if s =2+ 2r
(c) For real numbers Boj (j =1,...,7) defined in (A.15) below we have

A_]_ r m2k m27’

Note that G depends on m.

Proof of Lemma A.2. Part (a) Using the Cramer-Wold device, we need to show
that for p = (p, ..., pr)’ we have S5 p.T3; —4 N(0,4p%p"). Note that

K
ZPz‘T&' = Z Z 2mley — <2lnp m; 122111/4:)
i=1

k=1
MK K pi m;

= —Z(Q?TIEP -1) Z—Z <21np— m; ! ZQInk) 1(p <my)
p=1 iz VT k=1

1 K
= — 2771'6 —1)v¥, where
p p
mK -

(21np m; 1221nk> (p<my).

k=1

V_Z

Robinson (1995a, p. 1644 lines 11-13 — p. 1647 line 67) proves that

mr mg
1

4
——— ) (@l — 1)y, =g N0, lim — ) 2), (A.12)
mKg—00 MK

p=1 p=1

where v, := 2Inp — mj, ZZ‘ 2Ink. Inspection of his proof reveals that (A.12)
continues to hold with v, replaced by v}, if the following properties of the v}, sequence
hold: (i) v, = O(log m) and (ii) > ‘I/ZH - 1/;‘ = O (logmg) . Property (i) holds
trivially and (ii) holds because

Vpt1 —Vp = MK Z \/_(ZIH(p—}—l)—mi_lgi:ﬂnk)

i:m; >p+1 k=1
—/m Z (21np m; 1221nk>
1M >P k=1

R CICH)
_mé\//%




So

mg mg 1 K
dlvp-vyl = 0 Z2ln<1—|—;) +0(Z
p=1 p=1 i=1

= 0 (log mK) .

1
2lnm; — —Z2lnk
v k=1

)

Therefore Part (a) follows upon showing that lim,,, e — s D L (v ) = 4p%p.
_ « K
But my! > (Vp) equals ;% v} ; for

* 1 —
Vi ;:m—KZ{ mK oy <21np m; 1221111{:) (p <my)

p=1 k=1
X \/m 2Inp — m; 122111/{7) (pﬁmj)}
v < k=1
min(m;,m;) P p ( m;
= Z L R 2Inp —m, 1Z2Ink> <21np—m-_1221nk>
A ]
p=1 Vi k=1 k=1
min(m;,m;) p 0; 1 min(m;,m;) 2
= i J 2lnp — — 2Ink
= NIVaT min (m;, m;) ;
in (m;, m;
100 ™) (14 (1)) = 4pyp; Sl + o(1),

where the second to last equality follows from Lemma 2(a) in AG. Thus, (A.9) follows.
Part (b) Using (A.3), In(f;/¢;) = Rj, and applying “exp” on both sides implies
that for Ay defined in (A.10), we have

4r 9k + 1
fj/(pj =1+ Z ( +2k) Agk)\gk +Rem}<, (A13)
k=1 (2m)" k
max |Remj /| = O(1) and = o(1) if s =2+ 2r.

1<5<

Therefore,

1 m 1+r (2k 1) ok
Ty = — § >y ———A Aj +Rem X*
! vm i <k::1 (2m) % k 2

1 g L4 (2k 4 1)2
Vvm iz \im 2n)*F k

where for the second equation we used equation (7.16) in AG and the O can be

replaced by o if s =2 + 2r. Using Lemma A.1(b), we thus get the desired result:

1 47 (2k41)?
Vm /;::1 (2m) % k

—4 l+4r 2k+1

= =2 [A%

k=1

A%A?k) X5+ O(mt4/n9),

Ty

Agi Yo XFATF 4 O(m >+ /n)
j=1
m

(1+ O(h;nm))] + O(m5+1 /).
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Part (c) We show that for certain constants Co, € R (k =1, ...,7) defined in (A.17),

we have
2k 2r

1A r m m
G 1G(d) =14 kgl CQkW + OP(W). (A14)

It is tedious but straightforward to show that this implies the desired result (A.11)

for
(BQ,...,BQT)I = —M_l(CQ,...,CQT),, (A15)

where M = (M; ;) is a lower triangular r X r-matrix with the number 1 on the main
diagonal and M; ; := Cy(;_j) for i > j. To prove (A.14), write

GlGd)-1= ‘IZ< >:T1+Tz+7§,+ﬂ, (A.16)

where
1 /I I; 1 — f
T =— (—3—27715~—E——27r15> = ( —1>—J,
m; Pj ’ (% ’ mZ:: Pj
1 & 1 N/ fi
:—§ (2rnl.; — dT::—E L 1.
mj s j an 4 m (ng >

-1 j=1

We claim that 7; = o,(m*n=%) for i = 1,2, and 3. In fact, equation (A.21) of
AS (with their g; playing the role of our ¢, their ¢ = 2, and k = m) states Ty =
Op(m=23 %3 mA4m3Pn=24m=12n~1/4) = o,(m*n=2"), where for the last equality
we use Assumption AS4. Equation (A.23) of AS states E(I;/f;) = 1+ O(j 1 Inj)
uniformly over j = 1,...,m. Therefore 75 = O(m ™! 2321]_1 Inj) =O0(m tIn*m) =

o(m?n=2). Equation (A.13) of AS states 73 = Op(m~2) = 0,(m*n~?"). Finally
(A.13) implies that

LN (R @R+ o L) 2kl P
’]:1 = — Z (Z mAQk}\j + Remj - Z k A2k an + 0( nQT )7

™5 k=1 k=1

where the second equality uses (iv) in the proof of Lemma A.1. This proves (A.14)
with
2k +1

Cor = %

Agp for k=1,...,r. & (A.17)

Proof of Theorem 3.4. It follows from equation (A.6), Zfil w; = 1 and Lemma
A.1(a) that

\/T_n<C/Z\WLW—d> = Z\/—\/_(dLWk: (my) — d)

— Z_K wj In?m; . Sy, (d) X
— ;4\/5(1+O( - ) Jin; +0,(1). (A.18)
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Using (A.7), Th = T» = op(1), and Lemma A.2(b) and (c), it follows that the
O((In®m;)/m;) term in (A.18) can be ignored” and thus

N K
Vi (dwiw —d) = > f “Ld) (T3(mi) + Ta(my)) + 0p(1).  (A.19)
Lemma A.2(a) implies that Zfil w;/(4V1;)T5(m;) —q N(0,c:/4). Using Lemma
A.2(b), (¢), (3.3), (3.4), and AS4, we have, up to 0,(1) terms, for By :=1

K K ) r m2k 147 05+2k
121 4f “Hd)Ty(ms) = —El lz(l + Z B )(Z A i) (A20)
K, Lir m2- 5+27~ Lpr )
= - i (Z By(r—1) Aotar—2(k-1)) —5gz — — (22 Ba—1)A242r—2(6-1))XT/ T
i=1 V&b k= n k=1
Setting
1+r
D, = — kzl By—1)A242r—2(k-1) (A.21)

and combining the above statements gives

T * 1 *
Vm(dwrw —d) —a N(x(r/77)Dy, ZCT),
i.e. ]
Vm(dwiw —d — (1/75) Dym a0y ) N(0, 5 1 cy). W

To prove Theorem 4.3 we need the following lemma to be proved below. Unless
otherwise stated, from now on C'is a generic constant, that may be different across
different lines.

Lemma A.3 Suppose the assumptions of Theorem 4.3 hold.
(a) For any constant C > 0, we have

wp P (m¥dwrw (7) = d| > C¢(n)) = O (¢2(n)) -

TE[s«,min(sg,s*
(b) If sy < oo, then for any constant C > 0,
P ( m2|dw Lw (s0 + 8sohInlnn) — d| < CC(n)) —0(¢2(n)).
Proof of Theorem 4.3. Part (a) Set 5 := min(sp,s*) and recall that h = 1/Inn.

We first bound P (s <3 —h). We have P(§<35—h) =} s 1 psP(E=7). By
the definition of 5, if § = 7, there exists 7/ < 7, 7/ € S}, such that

ldwLw (7 + h) — dwow (7| > m_ y(ct 0 /42 (n).
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In consequence, for all 7 € Sy, with 7+ h <3,

PE=r1)
< P (ldwow (7 +h) = dwiw ()] > m ol /4% ()
T'eSK:T!<T
< Y p (mi/fhyc?mw (r+h)—d| > /@C(n))
T'eSh T <T
+ Y p (mi{ﬂJWLW(T') —d| > m((n)) ,
eSSy <1
< 2(s* — s4)(Inn) sup P (m}_//?,c/l\WLW (7-//) —d| > KC(TL)) :

T"e8Sy:T"<s

where Kk := 1), (c:( s*)/ 4)Y/2/2. Note that we used that ¢* is an increasing function in

r. The last inequality holds because there are at most (s* — s,)(Inn) elements 7/ € S,
for which 7 < 7. It now follows from Lemma A.3(a) that

P(3<3—h)=0((s* —s.)*(Inn)*%C%(n)) =0 ((ln Inn)_l) =o(1) as n — 0.

(A.22)
If sp = oo (and thus so > s*), then (A.22) clearly implies the result in Part (a).
Therefore from now on we can assume sy < s*. We now prove that

P (5> sp+8sphlnlnn) = o(1). Assume w.lo.g. that sy + 8sphlnlnn € S,. By
the definition of s,

P(s> so+8sphlnlnn)

1/2 n . 1/2
<P \dw i (so + 8sohlnlnn) — dwrw (so)| < vy (CT(SO) /4) ¢(n)
1/2 * 1/2
<P [dweaw (so -+ 8sohInlnn) = d| < s (€5, /4)  C0)
+m;é2\c?WLW (80) — d’}
1/2 * 1/2
< P \dww (so + 8sohlnlnn) — d| < by (CT(SO) /4) C(n) + C(n)

+P (mif?ldw i (s0) — d| = ¢(m))
= 0(¢*(n) =o(1), (A.23)

where the last line uses both parts of Lemma A.3. 