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Abstract

Quantum Transport and Phase-Field Modeling for Next-Generation Logic Devices

by

Samuel Justin Smith

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sayeef Salahuddin, Chair

Modeling of semiconductor devices plays an important role in determining which future
technologies are most promising for the semiconductor industry as well as optimizing the
performance and better understanding the underlying physics of existing devices. This thesis
focuses on the design, development, and use of software to study transport in low-dimensional
materials and explores the physics of negative capacitance in ferroelectrics.

Quantum transport simulation is used to examine the properties of graphene nanoribbons
in geometries that can be fabricated through bottom-up chemical synthesis. The chevron
graphene nanoribbon is shown to have an electronic structure analogous to traditional semi-
conductor superlattices. It is shown how this property could be utilized to create a new
type of device, which exhibits both negative differential resistance and steep-slope (< 60
mV/decade) switching for low-power electronics applications. We discuss BerkeleyNano3D,
a new quantum transport simulator based on the non-equilibrium Greens function (NEGF)
formalism, which is capable of efficient three-dimensional device simulation on large com-
puting clusters.

Finally, the phenomenon of ferroelectric negative capacitance is examined through the
lens of phase-field simulations based on the time-dependent Ginzburg-Landau equation. This
phenomenon has been previously predicted as a means to enable energy-efficient steep-slope
device with minimal modification to existing transistor processes. Simulation results from
three-dimensional phase-field modeling provide new insight into the underlying mechanisms
for negative capacitance and give far better agreement with experiment than previously
studied single domain models.
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Chapter 1

Introduction

1.1 Overcoming Boltzmann limit for switching

The power dissipated by a transistor in an electronic circuit is P = fCV 2, where f is the clock
frequency, C is the capacitance, and V is the supply voltage. In modern integrated circuits,
the capacitance is dominated by metallic interconnect lines and the surrounding interlayer
dielectrics. Frequency is set by the logic depth and propagation delays and has remained
mostly constant since the early 2000s. As a result, much of the work on reducing power
consumption in modern metal-oxide-semiconductor field-effect transistor (MOSFET) devices
has focused on reducing the logic supply voltage VDD. Reducing this value significantly below
0.7 V has proven to be difficult as it is constrained by the thermal nature of the switching
mechanism of a MOSFET.

For any device which works by modulating an electrostatic barrier that prevents a thermal
population of carriers from crossing the barrier, the ability to turn off the device and prevent
charge flow is inherently limited by the thermal tail of the charge carrier distribution [125].
In the limit of Boltzmann statistics, the for every factor of ln(10)kT (approximately 60 mV
at 300 K) the barrier is lowered, current will increase by a factor of 10. This means that to
have an ON-OFF ratio of 106, a supply voltage of no less than 360 mV is required before
taking into account noise margin and electrostatic concerns.

Not only is supply voltage reduction limited by the nature of the thermal distribution
of carriers, it is also limited by electrostatics. The gate sees a capacitive divider network
(see Fig. 1.2) with the oxide capacitance Cox in series with the semiconductor depletion
capacitance Cdm, with the channel surface potential ψs at the semiconductor surface between
those two effective capacitances.

The full expression for the subthreshold current of a MOSFET taking into account this
capacitive divider effect is given by Taur and Ning as [125]:

Ids = µeffCox
W

L
(m− 1)

(
kT

q

)
e−q(Vgs−Vt)/mkT

(
1− eqVds/kT

)
(1.1)
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Ec

D(E)f(E)

E

x

Figure 1.1: Leakage current (blue) over the top of the barrier in an n-channel MOSFET.
The conduction band is indicated by Ec. The carrier density of states D(E) is multiplied
by the Fermi-Dirac distribution f(E) to give the total population of carriers that can cross
the barrier. The height of the source-side injection barrier is modulated by the gate voltage
and controls how much of the thermal distribution of carriers at the source can cross into
the channel.

Cdm

Cox+
−Vgs ψs

Figure 1.2: MOSFET gate stack series capacitor circuit model. The channel potential ψs is
between the oxide capacitance Cox and the semiconductor depletion capacitance Cdm.

where

m ≡ ∆Vgs/∆ψs =

(
1 +

Cdm
Cox

)
(1.2)

The subthreshold swing is then given by [125]:

S =

(
d log10 Ids
dVgs

)−1

= ln(10)
mkT

q
= 60 mV

(
1 +

Cdm
Cox

)
(1.3)

Substantial work towards optimizing the electrostatics has been done and modern Fin-
FET [56, 101] devices can get reasonably close to this 60 mV/decade limit. Proposals to go
beyond this limit primarily involve devices which are not based on thermal switching mech-
anisms and include tunnel field-effect transistors (TFETs) [60], MEMS relays [108], and
nanomagnetic logic [13]. In this thesis, we will examine two other technologies through the
lens of computational modeling. The first, the superlattice FET [48, 80], works by filtering
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high energy electrons above the source side injection barrier using a superlattice that has
finite bandwidth for its conduction band. The second, the negative capacitance FET [116]
uses a ferroelectric gate oxide that can behave as “negative capacitor” and thereby passively
amplify the value of ψs the device sees.

1.2 Device modeling with the Non-Equilibrium

Green’s Function formalism

The Non-Equilibium Green’s function (NEGF) formalism is a method for describing trans-
port in a quantum mechanical system that interacts with its surrounding environment [28,
29, 30, 3]. In contrast to solving the Schrödinger equation for an isolated system, NEGF
allows contacts with open boundary conditions to be incorporated in a natural way.

In contrast with semiclassical models, such as drift-diffusion, hydrodynamic and energy-
transport models [50], deterministic solvers for the Boltzmann transport equation [58], and
Monte Carlo methods [62, 39], the description of the system used by NEGF can model phe-
nomena, such as tunneling and quantum confinement, that are purely quantum mechanical
in origin in a realistic way, without resorting to empirical models or approximations.

A schematic of how a device is modeled using NEGF is shown in 1.3. For purely ballistic
quantum transport, a central scattering region represented by a Hamiltonian, H, interacts
with contact reservoirs described by self-energies ΣL and ΣR. Additionally, NEGF also
allows interactions with other scattering processes, such as phonons or surface roughness,
to be naturally incorporated into simulations via additional scattering self-energy terms Σ.

Channel

H
Contact

L

Contact

R

Phonons

Phonon

Figure 1.3: Schematic of a device within the NEGF formalism. A central region described
by a Hamiltonian H is connected to semi-infinite contacts described by self-energies ΣL and
ΣR. Interaction with scattering processes is described by self-energy ΣPhonon.
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Typically, the Hamiltonian and all other quantities are expressed in a set of localized tight-
binding basis functions, such as those given by Slater and Koster [121]. While this is not a
requirement of the NEGF formalism, it is typically required for computational efficiency.

Key NEGF equations

To model devices with NEGF, the retarded Green’s function Gr, the electron correlation
function Gn, and the hole correlation function Gp typically have to be calculated [3]. The
retarded Green’s function can be computed by:

Gr = [EI −H − Σ + iη]−1 (1.4)

where E is energy, I is the identity matrix, Σ is the self-energy as a result of the left and
right semi-infinite contacts and scattering processes, and iη is a small imaginary number.

The electron and hole correlation functions can be computed as:

Gn = GΣinG† (1.5)

Gp = GΣoutG† (1.6)

where Σin and Σout are the in-scattering and out-scattering self energies respectively. Typ-
ically Gr, Gn, and Gp are not computed directly with full matrix inversion and multiplica-
tion, but rather through an efficient algorithm such as the recursive Green’s function (RGF)
method [79]. Once the Green’s functions have been calculated, the density of states can
be calculated from the diagonal of Gr, and the electron and hole charge densities can be
calculated through the diagonals or Gn and Gp respectively. For ballistic transport, the
transmission can be calculated as:

T (E) = Tr
[
ΓLG

rΓRG
r†] (1.7)

where

ΓL = −2Im[ΣL(E)] (1.8)

ΓR = −2Im[ΣR(E)] (1.9)

Current can be calculated from the transmission coefficient and the difference between the
value of the Fermi-Dirac distributions at the left and right contacts at each energy point and
then integrating over energy:

J =
ie

2πh̄

∫ Emax

Emin

T (E)[fL(E)− fR(E)] (1.10)
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Self-consistent field method

Typically, we are not simply interested in solving the NEGF equations by themselves. To
model a device, we need to self-consistently solve for the electrostatic potential from Poisson’s
equation with the charge and current from NEGF. The details of this procedure as well as
a complete description of BerkeleyNano3D transport simulator is discussed in Chapter 2.
In Chapters 4 and 4 we will discuss the application of the NEGF method to graphene
nanoribbons and carbon nanotubes.

1.3 Ferroelectric modeling

Landau models for ferroelectric materials

The second half of this thesis focuses on phase-field simulations of ferroelectric materials.
Ferroelectric materials are those materials which have a spontaneous electric polarization [91,
112]. Analogous to how a ferromagnet can be switched by means of an external magnetic
field, ferroelectric polarization can be switched by an external electric field. When the
external field is removed, there is still a remnant polarization. This behavior is depicted by
the hysteresis loop shown in Fig. 1.4.

The hysteresis loop and the relationship between polarization, electric field, and free
energy can be modeled through Landau theory [20]. We can write an expression for the free
energy F of a ferroelectric as a function of external electric field E and polarization P as:

F = αP 2 + βP 4 + γP 6 − EP (1.11)

where α (< 0), β (usually > 0), and γ (> 0) are the Landau coefficients for the ferroelectric.
The Landau coefficients for different ferroelectrics are typically fit with thermodynamic data.
The free energy relationship is plotted for an arbitrary ferroelectric in Fig. 1.5.

Figure 1.4: Relationship between polarization and electric field for a ferroelectric. The hys-
teretic effect can be used to make memory devices. Figure from Chandra and Littlewood[20].
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Polarization

Free Energy

Figure 1.5: Free energy of a ferroelectric with respect to polarization with no electric field
present.

The equilibrium polarization for a given electric field can be computed by setting the
derivative of free energy with respect to polarization equal to zero:

dF

dP
= 0 = 2αP + 4βP 3 + 6γP 5 − E (1.12)

If we ignore the P 5 term, which is inconsequential for our basic analysis, we find that this
equation can have up to three possible solutions. We can visually see from Fig. 1.5 that these
solutions at zero field will be ±PS, where PS the spontaneous polarization, and P = 0. The
solution at P = 0 is, however, dynamically unstable to infinitesimal perturbations because
the second derivative is negative. This is a point we will return to later.

The dynamics of ferroelectric can be modeled through the Landau-Khalatnikov equation
[81]:

−ρdP
dt

=
dF

dP
= 2αP + 4βP 3 + 6γP 5 − E (1.13)

where ρ is a parameter that has units of resistance and sets the timescale over which free
energy is minimized in the ferroelectric. This equation represents a gradient descent of the
ferroelectric free energy landscape over time. Again, we see that the system will stabilize
when dF/dP = 0. The final value of polarization will subject to the initial conditions. By
varying the electric field and finding the steady state condition, we can trace out hysteresis
loops similar to the one previously shown in Fig. 1.4.

Negative capacitance

The key idea behind the theory negative capacitance is that the unstable equilibrium of the
system near P = 0 can be stabilized under some circumstances [116]. We know from basic
physics that a capacitor with charge Q and capacitance C has energy F = Q2/2C. Now
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Polarization

Free Energy

FE
DE

FE+DE

Figure 1.6: Free energy of a combination of a ferroelectric (FE) and a dielectric (DE) ca-
pacitor. The unstable free energy extremum at P = 0 has been stabilized by the addition of
the dielectric capacitor.

suppose we connect a standard dielectric capacitor in series with the ferroelectric capacitor
subject to the boundary condition that the two will have the same charge (polarization).

The free energy of the combination of the ferroelectric (FE) and dielectric (DE) capacitors
is now given by:

F =

(
αFE +

1

2CDE

)
P 2 + βP 4 + γP 6 − EP (1.14)

The combined free energy landscape is plotted in Fig. 1.6 for a suitably chosen capacitor
value. As we can see visually, the previously unstable point P = 0 has been stabilized by
the addition of the dielectric capacitor and that the combined system has higher capacitance
than the dielectric alone.

We can relate the capacitance of a ferroelectric or dielectric to its free energy through
the following expression:

C =

(
∂2F

∂P 2

)−1

(1.15)

It was shown by Salahuddin and Datta [116] that so long as the total capacitance of the
system is positive, the ferroelectric can be stabilized in the region of negative curvature (and
hence negative capacitance) near P = 0 and that the hysteresis will disappear. If we go back
to circuit of Fig. 1.2 and the expression for subthreshold swing in a MOSFET (Eqn. 1.3)
and plug in a negative value of Cox by using a ferroelectric as the gate oxide, we see that
we can achieve a subthreshold swing less than 60 mV/decade at room temperature. In this
case, the surface potential ψs will be higher than the external gate voltage Vgs. A schematic
for a negative capacitance field-effect transistor (NC-FET) is shown in Fig. 1.7.
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Figure 1.7: Negative capacitance FET. The surface potential ψs is amplified when the insu-
lator capacitance Cins is negative. This can be achieved by matching the ferroelectric to the
semiconductor capacitance Cs. Image from Salahuddin and Datta [116].

Phase-field modeling of ferroelectrics

In the past few sections we have considered only a very basic model for a ferroelectric. In that
model, the ferroelectric’s free energy is a function of only a single value of polarization. Real
ferroelectrics, much like ferromagnets, are comprised of many domains that have different
orientations of polarization [91]. While single domain models are capable of capturing much
of the physics of ferroelectrics, multidomain models offer a more realistic, complete picture
of ferroelectric behavior at the cost of significantly more complexity.

The most common model for multidomain ferroelectricity is the phase-field model [88,
21]. In a phase-field model, a continuum field is used to represent how an order parameter,
polarization in our case, varies over space [109]. Interfaces are never explicitly tracked, but
are taken into account through continuous variation of the order parameter field. In this
thesis, we will use a phase-field simulator, fully described in Chapter 6, to study negative
capacitance. An example of polarization throughout a sample calculated by solving the time-
dependent Ginzburg-Landau equation, the continuum equivalent of the Landau-Khalatnikov
equation, is shown in Fig.1.8. In this example, there is a mixture of domains oriented up
and down with respect to the z-axis.

Effect of multidomain ferroelectricity on negative capacitance

The effect of multidomain ferroelectricity on negative capacitance remains an open problem
[17, 145, 83]. The key question is whether a ferroelectric can truly be stabilized in a state near
zero or whether it will split into a mixture of possibly more stable up and down domains. In
the latter case, can this multidomain state still behave as a negative capacitor for transistor
application purposes? We will explore these questions in Chapters 7 and 8.
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Figure 1.8: Phase-field simulation output for a ferroelectric with domains oriented along the
z-axis.

1.4 Outline of the thesis

The thesis is divided into two major parts. The first part, Chapters 2-5, discusses the
development of a quantum transport simulator and the applications of that simulator to
modeling devices based on graphene nanoribbons. The second part of the thesis, Chapters
6-8, describes work on our group’s phase-field simulator and how the phase-field method
can be used to model phenomena related to negative capacitance. The chapters can be
summarized as follows:

Chapter 2 gives an overview of the development and implementation of BerkeleyNano3D.
The finite element-based electrostatics solver, the methods used for self-consistency, the
transport solver, the parallelization methods, the implementation of phonon scattering, and
the Lua-based scripting interface are described in detail. This chapter is intended to serve
as a general reference for the organization of the source code for BerkeleyNano3D.

Chapter 3 covers the implementation of the hierarchical Schur Complement (HSC) method
for computationally efficient transport simulation of large devices. This method uses the
nested dissection method for partitioning the device Hamilitonian matrix. Benchmarks of
our implementation demonstrate the usefulness of this algorithm for large problems at the
expense of significant overhead for smaller problems.

Chapter 4 discusses simulation of carbon nanotube and graphene nanoribbon devices
with quantum transport. Here we discuss our transport simulation results for devices of these
carbon-based materials with particular emphasis on simulating new graphene nanoribbon-
based heterostructure devices that can be fabricated with bottom-up chemical synthesis
techniques.
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Chapter 5 is about chevron-type graphene nanoribbons, which can be made though
bottom-up chemical synthesis and have interesting electronic structures similar to super-
lattices made from traditional semiconductors. Quantum transport simulations show that
transistors made from these ribbons could potentially exhibit negative differential resistance
and steep-slope behavior, even in the presence of optical phonon scattering.

Chapter 6 covers the development and implementation of the phase-field simulator for
modeling ferroelectric materials. This simulator models microstructure evolution in fer-
roelectric materials taking into account local Landau-Devonshire free energy, domain wall
energy, and long-range electrostatic and elastic interactions.

Chapter 7 discusses the stability of negative capacitance within the the time-dependent
Ginzburg-Landau equation framework with both analytical results and phase-field simula-
tions of a dielectric capacitor in series with a ferroelectric. The implications of this stability
analysis for transistor applications is discussed.

Chapter 8 demonstrates that negative capacitance can be observed for a ferroelectric
capacitor in series with a resistor based on a nucleation and growth mechanism within
the ferroelectric. This is demonstrated with the phase-field simulator, using an implicit
differential equation solver that can self-consistently compute the ferroelectric charge and
current.

Chapter 9 contains the conclusion and suggestions for future work.
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Chapter 2

BerkeleyNano3D Transport Simulator

2.1 Introduction

As the minimum feature size of devices continues to be scaled into the sub-10 nm regime,
quantum transport is rapidly becoming a necessity for accurate modeling of commercial
semiconductor devices. Unlike traditional methods of semiclassical semiconductor device
modeling, such as the drift-diffusion or hydrodynamic approaches, quantum transport is
able to accurately capture phenomena, such as tunneling, that are of a purely quantum
mechanical origin. This is important because the key operating principles of several emerging
devices, such as the tunnel field-effect transistor (TFET) and superlattice FET, can only be
modeled in a rigorous manner through the application of quantum mechanics [3, 30].

The ability to accurately capture the effects of quantum mechanics on device performance,
however, comes at a cost. Whereas workstation-class machines are capable of simulating
modern three-dimensional devices such as FinFETs with semiclassical transport methods,
rigorous atomistic quantum transport calculations require extraordinary computational re-
sources, such as a large cluster or supercomputer. As such, quantum transport simulations
incorporating an atomistic Hamiltonian and all the scattering mechanisms relevant in the
current generation of commercial MOSFET devices is beyond the scope of problems which
can be solved by current transport simulators. But as computing resources grow exponen-
tially and devices shrink in accordance with Moore’s law, simulation of devices relevant to
commercial products is becoming a more tractable problem.

In this chapter, we will describe the development of BerkeleyNano3D, a new quantum
transport simulator based on the non-equilibrium Green’s function (NEGF) formalism [30]
written to solve several of the perceived deficits in currently available transport codes. While
our research group already had transport simulation code written in the C programming
language that had been used to solve a number of practical problems from simulating MoS2
transistors to TFETs [138, 42, 41, 43, 96, 97], the code would have been difficult to extend
to solve new problems without extensive amounts of restructuring and rewriting. Several
other academic simulation codes exist as well, such as NEMO5 from Purdue University[123],



CHAPTER 2. BERKELEYNANO3D TRANSPORT SIMULATOR 12

NanoTCAD ViDES from the University of Pisa [38], and OMEN from ETH Zurich [93]. For
various reasons including licensing, availability, and documentation, none of these options
was deemed suitable for running the transport calculations to be described later in this
thesis, so a new simulator had to be developed.

BerekleyNano3D is written in C++ and is designed according to the principles of object-
oriented programming to allow for easy extensibility and maintenance of the code base. The
Eigen [51] library is used for linear algebra. This library was chosen as it offers far greater
readability of code compared with directly calling BLAS/LAPACK functions. There is no
loss of performance when Eigen is linked against an optimized BLAS/LAPACK implemen-
tation, such as the Intel Math Kernel Library (MKL) or OpenBLAS. The simulator can be
used through a Lua-based scripting interface.

This chapter gives an overview of the structure of the BerkeleyNano3D code, and will
discuss the implementation of several key features including: the Hamiltonian and lattice
description, the NEGF transport solver based on the recursive Green’s function (RGF)
algorithm, the finite-element electrostatics solver, the parallel computing interface, the self-
consistency solver, and finally the bindings to the Lua programming language for scripting.
Additional documentation can be found in the Doxygen comments within the code itself.

2.2 Code overview

The code for the BerkeleyNano3D is organized among several C++ classes with source code
within the root directory. The headers are located in the Nano3DInclude directory. Various
test cases are located in the Tests directory, though these have been largely superseded by
test cases implemented as Lua scripts. The TranScriptInterface directory contains the
code for the Lua interface, including the wrapper functions the Sol2 Lua interface directly
binds to the scripting interface. The other major directory is the Util directory, which con-
tains various Python and Octave/MATLAB helper scripts for post-processing the simulator
output.

Atomic lattice

The atomic lattice and the Hamiltonian are implemented within the RgfLattice class. The
data structure for the storage is optimized for the recursive Green’s function algorithm [79],
which works with the device as a layered structure with interaction terms of the Hamiltonian
present each layer and between adjacent layers. As a result, the Hamiltonian can be stored
in a fairly sparse representation as a block tridiagonal matrix. A vector of complex double
precision matrices is used to store the blocks of the Hamiltonian. Several vectors of integers
store the indices of the diagonal, upper diagonal, lower diagonal blocks of the Hamiltonian.
The same indices can be repeated multiple times to save storage space when Hamiltonian
blocks along the device are identical as is the case when a local basis set is used and the
device is made of the same material throughout. An additional index vector is used when
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performing k-space calculations to indicate the blocks to be added to the diagonal blocks
after being multiplied by exp(ik · r) along with Hermitian conjugates scaled by exp(−ik · r).
Two additional indices are used to indicate the periodic hopping blocks at the left and right
contacts, which are used in the computation of the surface Green’s function. The size of
these blocks must be the same as the size of the first and last blocks of the main diagonal
respectively.

The Cartesian coordinates of the lattice are also stored in the RgfLattice class. The
orbital mapping array stores the index of the atomic coordinate each row/column in the
full Hamiltonian corresponds to. This is to allow multiple orbitals to be centered around the
same atomic site. Finally, the RgfLattice class has a method to read the lattice from binary
or ASCII files. Code to generate example lattices can be found in the Tests directory.

Transport solver

The RgfTransportSolver class implements the core of the recursive Green’s function (RGF)
algorithm for ballistic transport. The solver is initialized with an RgfLattice and an options
struct for the surface Green’s function calculation. The method SolveCoherent evaluates
the transmission coefficient, electron charge, hole charge, and current at a particular energy.
The left and right contact Fermi levels, fL and fR, along with the electrostatic potential φ
must also be supplied as input. If a k-space calculation is being performed a value of k · r
must also be supplied. The electrostatic potential is typically provided directly as an input
for a non-self-consistent field calculation or is computed iterative until self-consistency is
achieved by the self-consistency solver, to be described later.

Contact self-energy

Several options for calculating the contact self-energies, ΣL and ΣR, are available. There
is a simple iterative scheme used mainly for debugging purposes. The faster Sancho-Rubio
iteration scheme [118] is generally preferred as it has a much higher convergence rate and
should be used in most circumstances. An implementation of the Umerski algorithm [130] is
also available. This algorithm solves for the surface Green’s function is deterministic time by
finding the eigendecomposition of a 2n× 2n matrix, where n is the size of the contact block.
This algorithm unfortunately has the drawback that the hopping matrix must be full-rank, a
condition not satisfied for most realistic geometries beyond the simple square/cubic lattices
used in an effective mass approximation.

Electrostatics solver

Electrostatics in BerkeleyNano3D are handled with a finite element Poisson solver im-
plemented in the PoissonFEM class. The abstract class FemMesh is implemented by the
FemTriMesh class for two-dimensional triangular meshes and the FemTetMesh class for three-
dimensional tetrahedral meshes.
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Finite element form of Poisson’s equation

The relationship between charge and potential is given by Poisson’s equation:

∇ · ε∇φ = −ρ (2.1)

where ε is the local dielectric constant, φ is the electrostatic potential, and ρ is the charge
density. While this equation accurately describes the electrostatics of a semiconductor device,
it is not in a form that can be directly solved numerically.

In earlier versions of the transport simulator, Poisson’s equation was solved using the
finite difference method [100]. In this method, derivatives are handled through taking suc-
cessive differences between points of a field defined on a finite grid. For example, second
derivative of potential in Poisson’s equation in one dimension is written as:

∂2φ(i)

∂x2
=
φ(i− 1)− 2φ(i) + φ(i+ 1)

h2
, (2.2)

where h is the grid spacing. This method allows for regions with different dielectric constants
and can be easily extended to three dimensions as is described in Nagel [100]. The finite
difference method, while fairly easy to implement, fails to be computationally efficient for
systems with irregular geometry, particularly in three dimensions. The finite difference
method typically requires a rectilinear (or at least regular) grid. Grids with variable spacing
along each axis are possible, but there is no general way to mesh the geometry with variable
mesh precision at arbitrary points in the 3D geometry as is possible with the finite volume
and finite element methods. Despite the finite difference electrostatics solver no longer being
used in BerkeleyNano3D, its ability to handle regular 3D grids made it ideal for inclusion in
the phase-field simulator for ferroelectrics described in Chapter 6.

In BerkeleyNano3D, the Poisson solver is implemented with the finite element method.
In the finite element method (FEM), the geometry of the system is partitioned into small,
simplistic volumes known as finite elements. Within these volumes, the solution of some
differential equation is approximated as some continuous interpolation function over the
volume. Such interpolating functions, known as shape functions, can be linear or nonlinear
and are typically parameterized by values given at the nodes of the element. The element
size can be varied throughout the mesh, allowing for the solution to be more precise at some
points that others. This is particularly relevant for atomistic device simulation, where the
solution needs to be very accurate in the channel and the immediately surrounding regions
where the potential can vary over fairly short distances, but in the oxide environment far
away from the active region, the solution typically varies slowly as a function of space.
Because we can use different mesh densities in different regions as needed, we can get a
solution with the same or better level of precision across the entire simulation domain with
less computational work.

After generating a suitable mesh for the device, we write the weak (variational) form of
Poisson’s equation for every element [144]. To get the weak form, we multiply both sides of
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Eqn. 2.2 by v, an arbitrary test function within the same approximation space as the shape
functions defined over the elements, and integrate over the volume Ω:

−
∫

Ω

(
∇2εφ

)
v dΩ =

∫
Ω

ρv dΩ. (2.3)

Note that the dielectric constant ε is no longer taken to be spatially varying. This is because
we can always mesh the geometry such that material dielectric constant boundaries intersect
with the boundaries between elements. When the resulting system of differential equations
is built, the variation in the dielectric constant will be taken into account automatically.
Next we apply Green’s identity to arrive at the weak form:∫

Ω

∇εφ∇v dΩ =

∫
Ω

ρv dΩ (2.4)

Implementation of Poisson solver

This form of Poisson’s equations is discretized over a mesh comprised of either triangle
elements in 2D or tetrahedral elements in 3D using linear Lagrange shape functions. The
solver is implemented in an object-oriented fashion with substantial code shared between
the 2D and 3D versions of the solver. While the use of quadrilateral (2D) and hexahedral
(3D) elements was considered, implementation complexity as well as the availability of open-
source mesh generators was found to be significantly better for triangular and tetrahedral
elements.

In the code, the FemTetMesh and FemTriMesh classes extend the FemMesh class. These
classes have methods to find the element index corresponding to a set of Catesian coordi-
nates (FindElement), convert Cartesian coordinates to barycentric coordinates for a specific
element (BarycentricCoords), and compute a subset of elements that exist between two
corner points specified by Cartesian coordinates (Subset). The mesh classes contain the
coordinates of the mesh nodes, the mesh connectivity defining the elements, which nodes
correspond to Dirichlet (constant voltage) boundary conditions, and the relative dielectric
constant εr for every element in the mesh. The FEM left-hand side (LHS) matrix K is assem-
bled with the BuildFEMMatrix method. The matrix is assembled in the compressed sparse
column (CSC) format. The method BuildFEMMatrixDirichlet assembles a sparse matrix
which must be multiplied by the right-hand side (RHS) vector and the result subtracted
from the RHS vector before boundary conditions are applied. This is done to preserve the
positive definite property (and therefore symmmetry) of K so that the conjugate gradient
(CG) method can be used to solve the resulting linear system.

The PoissonFEM class manages the solution of the electrostatics problem for a particular
device. Its constructor takes pointers to both an FemMesh and and RgfLattice. This
constructor calls the matrix construction methods for the FemMesh and computes which
mesh elements contain every atomic site in the RgfLattice as well as the corresponding
barycentric coordinates for those sites, which are required for creating the RHS vector as
will now be explained.
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Figure 2.1: Linear shape functions over a triangle with vertices (0,0), (1,0), and (1,1). Each
shape function is one at one node and zero at the other two, varying linearly in between.
The barycentric coordinates (λ1, λ2, λ3) corresponding the Cartesian coordinates (x, y) are
given by the values of the shape functions at each point.

Mapping between atomistic grid and FEM mesh

In order to solve Poisson’s equation, we must compute the RHS vector∫
Ω

ρv dΩ (2.5)

where ρ is the charge computed from NEGF, and v is a shape function. For a triangular
mesh, each element will have three shape functions, and for a tetrahedral mesh, each element
will have four shape functions. Our linear Lagrange shape functions (shown in Fig.2.1 for
a triangular element) are defined as being equal to one at a particular node of the element,
zero at all the other nodes, and vary linearly throughout the rest of the element. Given that
ρ is computed at coordinates defined by the atomic lattice that have no direct relation to
the nodes of the FEM mesh, it is not immediately obvious how to evaluate this integral. An
obvious solution is to simply assign all the charge to the shape function corresponding to
the nearest neighbor node of the mesh or equally to all the nodes of the element containing
the lattice site. While these approaches are trivial to implement and clearly conserve total
charge, they are problematic in that accuracy can vary immensely given how close each
atomic site is to it surrounding mesh nodes.

Another possible solution to this problem is to assume the charge ρi for each lattice site
i with coordinates xi can be represented by a Dirac delta distribution centered about that
site, allowing us to write total charge as:

ρ(x) =
∑
i

ρiδ(x− xi) (2.6)

In the case where each lattice site corresponds directly to a mesh node, the value of the
integral is nonzero only for the shape function corresponding to node and the integrand is
nonzero only exactly at the mesh node where the shape function is defined to be unity.
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Unfortunately, it is difficult to generate FEM meshes where some points of the mesh are
predefined at these lattice sites. One possible solution is to generate a mesh using some
mesh generation software, add the extra nodes to node list, and then perform Delaunay
triangulation or tetrahedralization to generate a new mesh with the updated node list. While
this result of this will be a mesh with nodes at the correct locations, there are no guarantees,
such as those usually provided by the initial mesh generation process, that the resulting
elements will be high quality and not have extreme aspect ratios that will lead to numerical
problems.

A way around custom mesh generation and the approach adopted by our electrostatics
solver is to evaluate the shape functions for each element at each atomic site assuming the
aforementioned Dirac delta charge distribution using a barycentric coordinate transforma-
tion. For any given point with Cartesian coordinates x inside a triangular (tetrahedral)
element, the value for each of the three (four) shape functions is given by the barycentric
coordinates λ corresponding to that point. Barycentric coordinates [35] represent the frac-
tion of total mass that must be placed at each vertex of a triangle or tetrahedron for a given
point to be the center of mass (or equivalently center of charge when using charge instead
of mass) of that triangle. Thus to determine how to assign the charge from each atomic
site to the the vertices of the surrounding element with the correct weighting, we compute
the barycentric coordinates within the element for each atomic site. Because the sum of the
barycentric coordinates λi is always equal to one, charge is conserved.

Using this coordinate transformation, we can now evaluate the integral of 2.5 for lattice
site i and shape function j as: ∫

Ω

ρivj dΩ = ρiλj(xi) (2.7)

To quickly calculate the RHS for Poisson’s equation, the element containing each site in
the RgfLattice and the barycentric coordinates corresponding to that site for that element
are precomputed when the PoissonFEM object is initialized.

Numerical solution of Poisson’s equation

Once charge is calculated at each lattice site, the SolvePoissonSimple method is used to
solve Poisson’s equation. This method computes the RHS vector ρ from the input charge
using the barycentric coordinate method previous described. Dirichlet boundary conditions,
corresponding to regions of constant voltage, are applied next. Finally the resulting system
of equations Kφ = ρ is solved using Eigen’s conjugate gradient solver for the potential ψ
[51].

The resulting solution of Poisson’s equation is defined at the nodes of the FEM mesh.
This full mesh potential, extracted using the FullSolution method, is useful in determining
the behavior of the solution far away from the active region of the device. To get the potential
at each lattice site, we simply evaluate the sum of the shape functions at that lattice using
the barycentric coordinates previously used to map from the lattice coordinate space to the
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FEM mesh. At lattice site i in element j in d dimensions with barycentric coordinates λ,
this is:

φi =
d∑

k=0

λkφj,k. (2.8)

This is computed by the LatInterpSolution method.

Self-consistency solver

The Poisson equation is solved self-consistently with the NEGF equations as described in
Datta [30] and Anantram et al. [3]. The procedure is outlined as follows and shown in
Fig.2.2:

1. Estimate the potential φ

2. Use the estimate of φ to solve for the Green’s functions.

3. Extract the electron charge from the diagonal of Gn and the hole charge from the
diagonal of Gp

4. Solve for Poisson’s equation for φnew using the calculated charge.

5. If φnew is close enough to φ by some metric, stop.

6. Else, estimate a new potential and return to step 2.
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Figure 2.2: Self-consistency loop for coherent transport calculations.

Mixing schemes

In step 6, we estimate a new potential. In most cases simply taking the solution to Poisson’s
equation from step 4 is not sufficient. If this solution is directly used, the charge can change
significantly in the next iteration, and oscillatory or divergent behavior may be observed.
Finding a self-consistent solution to Poisson’s equation and the NEGF equations is related
to the mathematical problem of finding fixed points of a function (i.e., values of x such that
f(x) = x). In our case, we are looking for fixed points in the solution space of Poisson’s
equation such that:

φ = φPoisson (ρNEGF(φ)) (2.9)

where ρNEGF(φ) signifies computing charge from NEGF for a given potential and φPoisson(ρ)
signifies solving Poisson’s equation for a given charge.

To get the solution to converge, it is necessary to implement some sort of mixing scheme
to combine the solution of Poisson’s equation with the solutions at previous iterations. The
simplest of these methods is the relaxed Picard method. In this scheme, sometimes called
linear mixing, the new potential is estimated as a combination of the solution of Poisson’s
equation, φPoisson, from step 4 and the potential from the previous iteration, φi. This is:

φi+1 = ωφPoisson + (1− ω)φi (2.10)
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for some relaxation parameter ω such that 0 ≤ ω ≤ 1. Values of ω are highly problem-
dependent and can range from 0.001 to 0.3. If the value of ω is too small, it may take many
iterations to converge to the solution, but if the value is large, the solution may diverge.

While not described in this thesis, BerkeleyNano3D has several potential mixing schemes
implemented including: gradient descent, the relaxed secant method, and Pulay mixing
(DIIS) [110]. The solution method can be selected using the outer relax method option in
SelfConsistencyOptions section of the Lua input script.

Nonlinear predictor-corrector

The most dramatic improvements in convergence can be obtained using a physically based
approximation of the Jacobian of the system, such as the predictor-corrector scheme of
Trellakis et al. [129]. In our implementation, we assume that charge will vary exponentially
according to Maxwellian statistics based on some change ∆φ in the potential:

ρ = ρn exp(qβ∆φ) + ρp exp(−qβ∆φ) (2.11)

where ρn and ρp are the electron and hole charge respectively from NEGF and β = 1/kBT .
Using the first two terms of the Taylor series expansion, we write exp(x) = 1 + x. We
substitute this into Poisson’s equation and make the substitution φ̂ = φ+ ∆φ:

−∇ · ε∇(φ+ ∆φ) = ρn exp(qβ∆φ) + ρp exp(−qβ∆φ) (2.12)

−∇ · ε∇(φ+ ∆φ) = ρn(1 + qβ∆φ) + ρp(1− qβ∆φ) (2.13)

−∇ · ε∇φ̂ = ρn(1 + qβφ̂− qβφ) + ρn(1− qβφ̂+ qβφ) (2.14)

−∇ · ε∇φ̂+ diag(qβρp − qβρn)φ̂ = ρn(1− qβφ) + ρn(1 + qβφ) (2.15)

(−∇ · ε∇+ diag(qβρp − qβρn)) φ̂ = ρn(1− qβφ) + ρn(1 + qβφ), (2.16)

where operations are elementwise unless otherwise noted and diag indicates the construction
of a diagonal matrix with the elements of a vector. BerkeleyNano3D solves the weak form
of this this linearized form of the nonlinear Poisson equation and uses the new estimated
potential φ̂ as a guess for the next self-consistency iteration. This is done in one of two
ways. The SolvePoissonLinearized method of PoissonFEM simply calculates the solution
of the linearized equation. The SolvePoissonNonlinear method recomputes the charge
density using the semiclassical estimate of 2.11 and re-linearizes the equation about the new
value of φ. Usually, under-relaxation is used for φ̂ to prevent the potential from changing
too much between iterations and diverging. This iterative solution method requires many
conjugate gradient solves per self-consistency iteration, but this is typically not a problem as
the conjugate gradient Poisson solver typically takes orders of magnitude less time than the
NEGF solver. For extremely large FEM meshes, this may be a bottleneck as the electrostatics
solver is limited to shared-memory parallelism on a single compute node rather than the
NEGF solver, which can be run in parallel on a large number of compute nodes.
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Phonon scattering

Phonon scattering is implemented according to the method of Nikonov et al. [106]. We
consider scattering processes where the in/out-scattering functions take the form:

Σin = D (r1, r2, E) (nq + 1)Gn (r1, r2, E + h̄ω) (2.17)

+D∗ (r1, r2, E) (nq)G
n (r1, r2, E − h̄ω) (2.18)

Σout = D∗ (r1, r2, E) (nq + 1)Gn (r1, r2, E − h̄ω) (2.19)

+D (r1, r2, E) (nq)G
n (r1, r2, E + h̄ω) , (2.20)

where the first term corresponds to emission of a phonon and the second term corresponds to
absorption of a phonon, D is the electron-phonon coupling constant, nq = 1/(exp(h̄ω/kBT )− 1)
is the Bose factor, and h̄ω is the phonon energy. In our implementation, we consider only
the case when scattering in local in space (i.e., r1 = r2) and consider only the diagonal terms
of Gn and Gp.

In BerkeleyNano3D, scattering processes are described by objects implementing the
ScatteringProcess interface. Currently, the AcousticPhonon and OpticalPhonon classes
have been implemented. All ScatteringProcess classes implement the SigmaInScattering
and SigmaOutScattering methods to compute the in/out-scattering diagonal matrices.
While elastic scattering with h̄ω ≈ 0 is assumed for acoustic phonons, computing the optical
phonon scattering terms require Gn/p at E ± h̄ω, energy points, which may not be locally
stored on the compute node evaluating transport at energy E. The parallel data transfer
process to ensure that all compute nodes have access to Gn/p at the relevant energies is
detailed in a later section.

The effect of phonon scattering is computed self-consistently in a manner similar to
charge-potential self-consistency:

1. Solve for G, Gn, and Gp assuming ballistic transport using the RGF algorithm.

2. Compute new values for Σin and Σout.

3. Solve for G, Gn, and Gp using new values for Σin and Σout.

4. If Gn and Gp are sufficiently close to their previous values by some metric across all
energy points, done.

5. Else, go to step 2.

Unlike the charge-potential self-consistency, no mixing scheme is required to achieve conver-
gence in most cases. Typically several iterations are required to achieve current continuity
throughout the device, which is physically required. When performing fully self-consistent
calculations, note that two self-consistency loops are now required: an outer loop for charge-
potential and an inner loop for phonon scattering. The RGF algorithm to compute G, Gn,
and Gp must be run significantly many more times than in the case of strictly ballistic trans-
port for each bias point. As a result, self-consistent simulations with phonon scattering are
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Figure 2.3: Nested self-consistency loop for phonon scattering within electrostatic self-
consistency loop.

significantly more computationally expensive. Additionally, the hole charge can be computed
without explicitly solving for Gp in the case of ballistic transport, so extra work has to be
done solving for Gp when computing dissipative transport.
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Figure 2.4: Runtime with respect to the number of MPI processes shown on both linear and
inverse scales.

Parallel computing interface

BerkeleyNano3D is parallelized with a hybrid of OpenMP for shared memory parallelism and
MPI for distributed memory parallelism. This hybrid implementation allows the simulator
to take advantage of large parallel systems with a reduced memory footprint and faster
interprocess communication within each individual compute node.

Parallel functionality is handled almost exclusively through the ParallelIntegrator

class. This class contains the SolveParallel and analogous SolveCoherentParallel meth-
ods which divide the workload among the different processes and threads. When running a
coherent transport simulation, the workload is embarrassingly parallel with respect to en-
ergy and k-points. That is, the required calculations are completely separable, and processes
evaluating transport at one energy point never need to communicate with other processes
until the computation is done and the results aggregated.

penMP tasks is dependent on the system OpenMP implementation. Testing found that
there is little performance difference in using only MPI with a number of MPI processes equal
to the total number of CPU cores and using a number of MPI processes equal to the number
of compute nodes and an OpenMP thread count (environment variable OMP NUM THREADS)
equal to the number of cores per compute node, but that the hybrid MPI+OpenMP imple-
mentation uses less memory. In some cases it may be advantageous to use more processes
on recent processors that have Hyper-Threading or an equivalent technology.

Fig. 2.4 shows how the performance of the simulator scales on our group’s cluster up to
192 CPU cores for solving a graphene nanoribbon problem at 2302 energy points with 20
self-consistency iterations. Nearly ideal linear scaling is observed due to the embarrassingly
parallel nature of the problem, and scaling is expected to extend far beyond 192 cores.

The parallel scaling is excellent and close to linear as a result of the aforementioned
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Figure 2.5: Dataflow for parallel computation of coherent transport. Both the Poisson solver
and a transport solver run on the root process. During each iteration, every process sends
the root process it charge computed at their respective energy quadrature points. The root
process aggregates this data, solves Poisson’s equation, and then broadcasts the updated
potential to every process.

embarrassingly parallel nature of the calculations. The only communication among the pro-
cesses occurs immediately before and immediately after the RGF transport algorithm is run
at all energy points. Before, the root process sends the potential from the electrostatics
solver to all the nodes. After, the summed charge is sent to the root process for the electro-
statics calculation. In this case, each process does not send charge to the root, but a more
efficient MPI Reduce call is used to minimize the communication. Communication is also
required when exporting quantities, such as charge and density of states, to output files for
post-processing.

Phonon parallelization

Parallelization with phonon scattering is more complicated than the case for ballistic trans-
port because processes evaluating transport at energies E± h̄ω require the values of Gn and
Gp at energy E at every iteration of the phonon self-consistency loop. Parallelization of co-
herent transport requires only simple MPI calls implementing either all-to-one or one-to-all
data transfer, while efficiently parallelizing a calculation with phonon scattering requires a
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Figure 2.6: Dataflow between processes during self-consistent computation of the Green’s
functions with phonon scattering. Here, each process holds one energy point with spacing
∆E between energy points, and the phonon energy h̄ω = 2∆E. Therefore, each process in
this case must communicate with its second nearest neighbors.

more intricate communication topology.
An initial implementation involved sending the all the values at every energy point of

Gn and Gp to every process from every process using MPI Gather calls. This approach
obviously does not scale as the required memory at every node is now proportional to the
number of energy points and does not reduce with the number of processes. Additionally,
communication, rather than computation, is often a bottleneck in parallel computing and
should be avoided if unnecessary.

In the current implementation, each process precomputes the processes it must send data
to and which it must receive data from based on the how the energy grid is distributed among
processes, which energy points it owns, and the optical phonon energy h̄ω. This is somewhat
simplified by realizing that for two energy points separated by h̄ω the information flow is
necessarily bidirectional. The values for Gn and Gp are transmitted using the asynchronous,
non-blocking MPI calls (MPI Irecv and MPI Isend). This allows the data to be sent effi-
ciently without having to worry about ordering the communication for synchronous blocking
calls in a careful manner to avoid deadlocks. This implementation is reasonably efficient and
performs well in practice, but could be further improved.

A possible future improvement would be to minimize communication through rearrang-
ing which processes solve for which energy points instead of simply evenly subdividing the
range of energy points. One reasonable approach to do this would be a greedy algorithm
that initially assigns one energy point to a process and continues to add energy points that
the current set of energy points must communicate with until that process is full and then
continues to the next process. Such a scheme could yield a significant reduction in com-
munication in cases where h̄ω is large and data locality is unlikely for a large number of
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processes.

2.3 Generating inputs for the transport simulator

Lattice and Hamiltonian generation

BerkeleyNano3D does not internally contain code for generating atomic lattices beyond sim-
ple rectangular lattices with an effective mass approximation, but rather specifies a format
for reading lattices generated by some external script that can be read by the constructor for
RgfLattice. Example lattice/Hamiltonian scripts for InAs (Python, developed by Charles
Zhang) and graphene nanoribbons (Octave/MATLAB) are provided in the Tests directory
of the source code.

These scripts generate the (x, y, z) coordinates of the atomic sites which are automat-
ically mapped into the Poisson solver, the upper, lower, and main diagonal blocks of the
Hamiltonian used for the RGF algorithm, the Hamiltonian blocks for the contacts, and vari-
ous other mapping arrays that identify which orbitals in the Hamiltonian are associated with
which atoms and which matrix indices correspond to which Hamiltonian blocks.

Finite element mesh generation

BerkeleyNano3D also does not generate the finite element meshes used by the electrostatics
solver. While it is possible to use any meshing software that can generate tetrahedral meshes,
the SALOME platform [113] was used to generate the meshes for the graphene nanoribbon
(GNR) devices described later in this thesis. SALOME was chosen because of its excellent
scripting capabilities with Python, integrated CAD module, and the possibility of using it
in the future to generate quadrilateral and hexahedral meshes.

Geometry is created using the CAD/solid geometry module of SALOME. In this module,
different solid regions are used to represent different materials of the device with different
dielectric constants (e.g., field oxide, high-κ oxide, channel, etc.). Typically metallic contacts
where Dirichlet boundary conditions will be applied are modeled as surfaces. An example of
creating geometry for a GNR device with SALOME is shown in Fig. 2.7.

Meshing the device is done in the mesh module of SALOME. Meshing rules are typically
applied to constrain the size of mesh elements based on what region of the geometry they
belong to. For example, the mesh in the channel region usually needs to be finer than the
mesh of the field oxide far away from the active region of the device. BerkeleyNano3D reads
meshes in the .dat format SALOME can output. Typically several files are required: a global
mesh, submeshes to define which elements belong to the different material regions, and node
lists which describe which nodes correspond to fixed potential Dirichlet boundary conditions.
Example Python scripts for geometry and mesh creation for SALOME are provided under
the Tests directory of the BerkeleyNano3D source directory. An example of a meshing a
GNR device is shown in Fig. 2.8.
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Figure 2.7: Solid geometry model for double-gate GNR transistor in SALOME.
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Figure 2.8: Meshing a double-gate GNR transistor in SALOME.



CHAPTER 2. BERKELEYNANO3D TRANSPORT SIMULATOR 29

Lua scripting

The primary way of running simulations in BerkeleyNano3D is through the Lua interface
known as Transport Script or simply TranScript. The Lua programming language was chosen
to implement the scripting interface for several reasons:

1. Portability. The Lua interpreter is written in ANSI C and can easily be compiled on
virtually any platform.

2. Ease of Embedding. The Lua language is easy to embed in large applications written
in C/C++.

3. Concise mapping to C++ code. The Sol2 Lua API wrapper (Available from https:

//github.com/ThePhD/sol2) for the C++ programming language allows mapping a
C++ functions and data structures to a Lua function with very little glue code.

Another major transport simulator, NanoTCAD ViDES [37] uses Python as its scripting
interface. We strongly considered this, but ultimately found working with Lua to be easier.
The NEMO5 simulator [123] uses Boost.Spirit, but we did not consider this approach as we
did not want to create our own domain-specific language and sacrifice the functionality and
library support that a general-purpose language, such as Lua or Python, provides.

The functions accessible to the scripting interface are listed in TranScript.h. While
an exhaustive description of the approximately 50 functions accessible within Lua from
BerkeleyNano3D is beyond the scope of this chapter, there are several important concepts
behind the implementation.

All interaction with the transport simulator occurs through a SolverContext object.
Instances of this object contain pointers to an RgfLattice, an RgfTransportSolver, a
ParallelIntegrator, and a SelfConsistency. While multiple SolverContext objects
may be created in one script, most simulations will require only one. After creating the
context object, individual components of the context may be initialized through the various
setup methods for those objects. For example, to setup the SelfConsistency solver, the
SetupSelfConsistency function is called with a table containing the doping passed along
with the solver context.

Providing arrays of information to the C++ code, such as the doping or an initial guess
of the electrostatic potential, can be done in several ways. The first is to pass a Lua table
(numerically indexed from 1) to the simulator. Binary and text files, as well as linear
combinations of two or more files, can also be passed as is seen in some of the examples.
Configuring the finite element mesh is also done through passing a specially formatted table
to SetupFemMesh.

After the simulation is setup, performing a self-consistent simulation at a given bias
point is done by calling SolveSelfConsistent. There is no direct way to run a simulation
at multiple bias points. This is instead handled by adding for loops to the Lua code and
calling UpdateContactVoltage to change the contact voltages. This is done to give the user
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maximum flexibility in terms of when to write output files and perform post-processing tasks
between solving each bias point.

Several examples of Lua scripts for running simulations are provided with the Berke-
leyNano3D source code and should be used as references along with the documented C++
source itself when running new simulations.

Processing transport simulator output

The transport simulator generates several types of output files. When and if output files are
written is specified by the user in the Lua script for a particular simulation. The Lua func-
tions WriteSingleTransportPoint (single quadrature point from an RgfTransportSolver)
and WriteAllQuadPoints (all quadrature points from a ParallelIntegrator) write the
electron charge, hole charge, density of states, or current at each layer depending on which
quantity is specified. This output is in either a raw binary or ASCII format or a binary or
ASCII VTK format. Binary formats are greatly preferred, especially for large problems and
when manual inspection of text output is not required. ASCII formats are recommended
only for very small outputs or in rare cases when data must be transferred from a big-
endian CPU architecture, such as some versions of ARM and POWER, to a little-endian
CPU architecture, such as x86 64. VTK output files are automatically byte-swapped to the
big-endian format required by the VTK specification, though this byte swapping may need
to be disabled if porting the simulator to a big-endian architecture.

Additional Lua functions include: WriteEnergyGrid, WriteTransmissionAllQuadPoints,
WriteCurrentAllQuadPoints and WriteQuadratureWeights. These functions output ASCII
text files, which are typically small in size as they output only a single number per quadra-
ture point. The WriteElectrostaticPotential function writes the electrostatic potential.
This can be for the entire FEM mesh or interpolated at each atomic site depending on the
options.

Examples in Python and Octave/MATLAB for post-processing binary data from the
simulator are found in the Util directory of the code. VTK files are typically handled with
either ParaView or VisIt.
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Chapter 3

Implementation of the Hierarchical
Schur Complement Algorithm

In this chapter, we discuss the our implementation of the Hierarchical Schur Complement
(HSC) algorithm originally published by Hetmaniuk et al. [54] in 2013. This algorithm was
implemented in an earlier version of BerkeleyNano3D and was found to be efficient for certain
types of problems. However, support for this algorithm was removed from later versions of
the transport simulator due to lack of applicability to most practical transport problems.

In quantum transport simulation within the NEGF formalism, the HSC algorithm is used
to calculate the retarded Green’s function Gr and the electron correlation function Gn. The
fundamental underlying mathematical problem is the computation of selected entries in the
inverse of a large sparse matrix with a sparsity pattern similar to the device Hamiltonian.
We compare the performance of the HSC algorithm with the recursive Green’s function [79]
algorithm and show that it has asymptotically better performance, though with substantial
overhead.

3.1 Efficient algorithms for quantum transport

Numerical implementations of NEGF typically involve substantial amounts of dense linear
algebra. The primary mathematical problem in solving NEGF equations is the computation
of the retarded Green’s function Gr and the electron correlation function Gn as defined by
the equations:

A = [EI −H − ΣL − ΣR]

AGr = I

AGn = Σin(Gr)†

where E is a scalar energy, I is the identity matrix, H is the device Hamiltonian, and ΣL

and ΣR are the self-energies for the left and right contacts. The matrix Σin describes the
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scattering in the device and is typically block diagonal. For coherent transport problems
examined in this study only the blocks corresponding to the left and right contacts of the
device are nonzero.

Fortunately, we do not need the entire inverse of the matrix A to calculate quantities of
physical interest. Typically only blocks along the diagonal are needed. Efficient algorithms,
such as the Recursive Green’s Function (RGF) method [79] solve for these entires in O(ln3)
time where l is the length of the device and n is the dimension of the matrix for each layer
of the device. The primary problem with the RGF algorithm is that it is fundamentally
sequential and limits the ability to parallelize device simulations. For years this issue has been
largely ignored because typical simulations involve solving the problem over a large number of
values of energy E, and the problem is embarrassingly parallel for calculating separate energy
points. With access to modern supercomputers with symmetric multiprocessing (SMP)
nodes that have 16 or more cores, it would be advantageous to have an algorithm that can
be efficiently parallelized so that larger systems can be studied with more resources available
for computation at a single energy point.

In 2007 an algorithm called Fast Inverse using Nested Dissection (FIND) was developed
and applied to semiconductor transport [85]. This work was an important first step to-
wards the realization of an efficient direct method for transport. It unfortunately used very
large separator regions in its implementation of the nested dissection partitioning of the
semiconductor lattice and imposed other geometric restriction on the lattice.

Recently, a new algorithm to selectively invert sparse matrices called the Hierarchical
Schur Complement (HSC) method has appeared [89, 90]. This method uses an arbitrary
hierarchical partitioning of the graph representing the sparse matrix, usually with nested
dissection (ND). At a given level of the partition hierarchy, all subproblems are independent
and can thus be solved in parallel. An implementation of this algorithm specifically applied
to NEGF simulation to calculate Gr has been developed [107]. It was later extended to the
calculation of Gn and to use preexisting software for graph partitioning [54].

3.2 Nested dissection

A key ingredient in the HSC algorithm is a good hierarchical partitioning of the graph
representing connectivity in the semiconductor device Hamiltonian. A well-known method
to generate such a hierarchical partitioning is nested dissection. The basic idea of nested
dissection is to partition a graph into three parts S, L, and R, where L and R are both
connected to the separator region S and there are no vertices between L and R. For some
applications, such as load balancing in parallel computation, it is ideal that L and R be
approximately the same size and that S be small. Nested dissection can be applied recursively
to a graph to generate a hierarchy of separator regions, where the resultant hierarchy can be
represented as a binary tree. This is illustrated in Fig. 3.1.

For our implementation of lattice partitioning, we used the METIS package [68]. It is
somewhat difficult to actually extract the hierarchical partitioning directly from METIS as
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Figure 3.1: Example of a hierarchical partitioning for a rectangular lattice. Figure from
Hetmaniuk, et al. [54].

the function Metis NodeND returns only a fill-reducing ordering for a sparse matrix intended
to be used by a Cholesky factorization routine. Direct correspondence with the authors of
Hetmaniuk, et al. [54] indicated that their results were generated through modification of
the source code to the package to output the partitions. After going through the METIS
source code it was determined that no modification was actually necessary if the routine
Metis NodeNDP was called instead. This routine is an extra function designed to be used by
the parallel version of METIS called ParMETIS and returns the partition sizes in addition to
the ordering. As the ordering is a list of vertices in each partition from post-order traversal
of the partition tree, it is possible to fully reconstruct all information about the partitioning
with knowledge of the partition sizes. Partitioning for a 50 × 20 lattice with our transport
simulator is shown in Fig. 3.2.
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Figure 3.2: Lattice colored by partition number for a 50× 20 lattice.

3.3 Hierarchical Schur complement algorithm

Computation of Gr

After we have constructed the nested dissection ordering for the graph, we partition the
matrix into regions corresponding to the left and right branches of the tree and the separator
region. This results in a matrix with zeros in the 21 and 12 blocks (connections between
the left and right partitions). Here we only show the algorithm for a single separator rather
than a full tree. The full details of the algorithm are discussed in Hetmaniuk, et al. [54].

A =

ALL 0 ALS
0 ARR ARS
ATLS ATRS ASS


This form of the matrix can be factorized into LDLT :

A = LDLT =

 I 0 0
0 I 0

ATLSA
−1
LL ATRSA

−1
RR I

ALL 0 0
0 ARR 0

0 0 ÂSS

I 0 A−1
LLALS

0 I A−1
RRARS

0 0 I


The term ÂSS is the Schur complement and is defined as:

ÂSS ≡ ASS − ATLSA−1
LLALS − A

T
RSA

−1
RRARS

We now wish to calculate Gr ≡ A−1:

Gr = (I − LT )Gr +D−1L−1
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Substituting these values we get:

Gr =

A−1
LLALSG

r
SL A−1

LLALSG
r
SR A−1

LLALSG
r
SS

A−1
RRALSG

r
SL A−1

RRALSG
r
SR A−1

RRALSG
r
SS

0 0 0

+

A−1
LL 0 0
0 A−1

RR 0

0 0 Â−1
SS

 I 0 0
0 I 0

−ATLSA−1
LL −ATRSA

−1
RR I


Thus the separator and off-diagonal blocks are calculated as:

Gr
SS =

(
ÂSS

)−1

Gr
LS = −A−1

LLALSG
r
SS

Gr
RS = −A−1

RRARSG
r
SS

The diagonal blocks can be calculated completely independently of each other. This is
where the additional parallelism comes from.

Gr
LL = A−1

LL − A
−1
LLALS(Gr

LS)T = A−1
LL + A−1

LLALSG
r
SSA

T
LSA

−1
LL

Gr
RR = A−1

RR − A
−1
RRARS(Gr

RS)T = A−1
RR + A−1

RRARSG
r
SSA

T
RSA

−1
RR

Implementing this method recursively, we can solve for more entries of Gr. This method
will not generate the full inverse of Gr, but rather only the entires for blocks which interact
within the same separator region. Fortunately, these are the only parts of the inverse of
significant physical interest.

Complexity analysis

For an n × n = N grid directly inverting the matrix costs O(N3) = O(n6). To analyze the
complexity of the HSC algorithm we will assume the separator region is of size

√
m for some

partition of size m. If the calculation at this level is dominated by matrix inversion and
multiplication of matrices the size of the separator region, the cost is O(m3/2). We split the
problem into two subproblems of size m/2. This yields a recurrence:

T (n) = 2T
(m

2

)
+m3/2 (3.1)

Solving the recurrence using the master theorem [27] gives a complexity of O(m3/2). Taking
m = N = n2, constructing selective entires in the inverse of Gr for an n×n device is O(n3).
This is asymptotically better than the O(n4) complexity for RGF which requires n inversions
of n× n matrices and several multiplications of the same size.

Computation of Gn

To calculate Gn, we multiply our partial solution of Gr by Σin, a known quantity which can
be calculated from the self energy matrices ΣR and ΣL and the Fermi level at each contact,
which is a function of device bias conditions. Some of the entries of Gn can be calculated
using a similar algorithm to the one for Gr.



CHAPTER 3. IMPLEMENTATION OF THE HIERARCHICAL SCHUR
COMPLEMENT ALGORITHM 36

3.4 Implementation

To implement the HSC algorithm several features had to be implemented in our C++ trans-
port simulator code. The interface to METIS for partitioning was previously described. To
store the blocks of the sparse matrix for each partition a data structure called BlockSparse

was developed. This structure contains a sparse matrix stored in the CSR or CSC format
where each entry Pij is a pointer to a dense matrix storing the entries for the matrix ele-
ments between block i and block j. This is similar to data structures such as block sparse
row and block sparse column, but unlike some implementations of these structures, the block
sizes can be arbitrary. This is necessary because the different partitions may be different
sizes. As a result of each block having a different size, operations on the structure other
than set and get methods for individual blocks can become somewhat complicated. The
current implementation of this structure is adequate for the implementation of HSC, but
substantial performance enhancements, especially for the multiplication of Σin with Gr in
the computation of of Gn could be made.

The implementation of the HSC algorithm follows the description given the paper by
Hetmaniuk, et al. [54]. When the transport routine is called, the matrix A ≡ (Gr)−1 =
EI−H−ΣL−ΣR is constructed. EI is diagonal and H can be constructed from the lattice
connectivity graph. The contact self-energies ΣL and ΣR represent the effect of an infinite
lead on either side of the device and are calculated with the Sancho-Rubio algorithm [118].
For certain Hamiltonians, the calculation of the self-energy matrices is a bottleneck and in
some cases is actually slower than the transport calculation itself. As a result this calculation
is not included in any of the benchmarks in this chapter.

Currently, the code calculates both Gr and Gn. Results have been verified against the
recursive Green’s function algorithm and match everywhere except very close to the poles
of the Green’s function, where results are generally suspect. This is not typically an issue
in practice. The calculation of Gr has been parallelized with OpenMP. The code can crash
or produce erroneous results unless writes to the BlockSparse structure are performed as
atomic operations. This limitation on multithreading reduces performace. Possible ways to
rewrite the data structure to avoid race conditions and the requirement for atomic operations
are currently being explored. The other factor limiting parallelism is that near the top of
the partition tree there are only a small number of blocks that must be inverted, and these
are unfortunately the largest blocks that must be inverted. It may be possible to use a
multithreaded LAPACK implementation such as Intel MKL or OpenBLAS to get around
this issue.

The code was tested with a few model problems to verify correctness. Fig. 3.3 shows
a contour plot the density of states for the device with 50 × 20 lattice sites with a simple
effective mass Hamiltonian whose partitioning was shown above as a function of position
(along the x and y axes) and energy (along the z axis). The density of states is a function of
the diagonal of Gr. The transmission coefficient for transport in this device as a function of
energy is shown in Fig. 3.4. The transmission coefficient is calculated from the first diagonal
block of Gr.
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Figure 3.3: Density of states for the 50× 20 device as a function of space (x and y axes) and
energy (z-axis).
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Figure 3.4: Zero bias transmission coefficient for the 50× 20 device as a function and energy

3.5 Benchmarks

The code was benchmarked on an 3.5 GHz Intel Core i5 Ivy Bridge workstation running
Ubuntu Linux 14.04 LTS. The first benchmark compared the performance of calculating Gr

at a single energy point for an n × n device. For the largest size of 300 × 300, RGF took
38.179 s, HSC took 16.372 s and HSC with 4 OpenMP threads took 11.926 s. Full results are
shown in Fig. 3.5. This indicates that the parallel scaling is suboptimal, but even without
parallelism, the algorithm is faster. If the aforementioned data race concurrency issue could
be resolved, this performance could improve.

When computing Gr and Gn the performance gap began to close as a result of a partic-
ularly inefficient implementation of the multiplication by Σin. This matrix is block diagonal
in the original ordering, but this property is unfortunately destroyed when the rows are



CHAPTER 3. IMPLEMENTATION OF THE HIERARCHICAL SCHUR
COMPLEMENT ALGORITHM 38

100 200 300

10−1

100

101

Dimension nx = ny

E
x
ec

u
ti

on
T

im
e

(s
)

RGF HSC HSC (OpenMP)

Figure 3.5: Performance of RGF, HSC, and HSC with OpenMP as a function of device size
for the computation of Gr

permuted to the nested dissection ordering. A partial redesign of the data structure should
enable this operation to be much faster. Due to this issue, no attempt has yet been made
to parallelize the computation of Gn. For the largest size of 300× 300, RGF took 122.916 s
and HSC took 85.406 s. Full results are shown in Fig. 3.6.
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Figure 3.6: Performance of RGF and HSC as a function of device size for the computation
of Gr and Gn

An additional degree of freedom over which performance could be optimized was the
TreeReduce (TR) parameter. The value of this parameter merges the bottom TR levels
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of the partition tree into a single partition. This results in trading off more floating point
operations for the ability to do dense linear algebra on larger blocks resulting in less overhead
for the algorithm. For the above benchmarks, TR = 3. Another series of benchmarks was
done for TR between 1 and 8 for the 300× 300 device for the calculation of only Gr with 4
OpenMP threads. For TR = 1 (not shown in the graph), it took 135.097 s. The optimal value
was found to be TR = 5 with a calculation time of 6.529 s. This value of TR corresponds to
a minimum block size of around 32. The value of TR = 3 in the previous benchmarks took
12.233 s. The optimal block size is likely to vary as a function of the structure of the device
Hamiltonian as well as the machine cache size and hierarchy. Full results are shown in Fig.
3.7.
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Figure 3.7: Performance of the HSC algorithm as a function of the TreeReduce parameter.
For this simulation nx = ny = 300, and 4 OpenMP threads are used.

3.6 Future work and other methods

There are several possible directions for future work on our implementation of the HSC algo-
rithm. The most obvious is to enhance the performance of the BlockSparse data structure
and resolve issues with blocking in the OpenMP implementation. It would also be interest-
ing to compare the quality of the nested dissection partitioning generated by METIS with
those generated by other packages, such as PT-SCOTCH [24]. There is a new algorithm
called PSelInv which extends the original SelInv algorithm to work with distributed memory
parallelism [63]. Recently an approximate algorithm has been reported which uses a tech-
nique called model order reduction [59]. Such an algorithm may give substantial performance
increases over a direct method without sacrificing too much accuracy.
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Chapter 4

Electronic Structure and Transport
Properties of Graphene Nanonribbons
and Carbon Nanotubes

In this chapter we will discuss how graphene nanoribbon (GNR) and carbon nanotube (CNT)
devices are simulated in BerkeleyNano3D and explore some benchmark simulations. We will
begin by discussing the tight-binding model for graphene and carbon-based materials. Next,
we will provide some simulations of GNR and CNT MOSFET devices using the transport
simulator we described in the previous chapter. Finally, we will discuss transport through a
GNR heterojunction structure.

4.1 Making one-dimensional carbon: bottom-up

synthesis of graphene nanoribbons

Since graphene was first isolated by Novoselov in 2005 [104], graphene and graphene based
materials have been proposed for a number of applications [128]. In this chapter, we will
focus mostly on graphene nanoribbons fabricated through bottom-up chemical synthesis.
The first major work on the synthesis of GNRs was that of Cai et al., who synthesized n = 7
armchair GNRs (AGNRs) along with the chevron-type GNRs, which are the topic of the next
chapter [15]. These ribbons are highly attractive for research because the chemical synthesis
allows for the creation of atomically precise ribbons. Such ribbons, unlike those made from
etching bulk graphene, can be made with precise edges and can possibly avoid the problems
with edge roughness that have been theoretically predicted for GNR transistors [139].

Beyond making traditional devices like MOSFETs out of new materials, chemically as-
sembled graphene nanoribbons also offer the possibility for entirely new types of devices.
The assembled ribbons need not be straight semiconducting AGNRs, but the ribbons can
take on new geometries previously impossible to construct in any semiconducting system at
the nanometer length scale. Take for instance the 7-13 AGNR heterostructure synthesized
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Figure 4.1: Synthesis of a 7-13 AGNR heterojunction. Figure taken from Chen et al.. [22].

by Chen et al. [22], whose synthesis is shown in 4.1 and an scanning-tunneling microscopy
image of which is shown in Fig. 4.2. By varying the width of the ribbon, and hence the
quantum confinement, semiconductor heterostructures with bandgap differences at ultra-
short length scales can be created. This could have immense impact for technologies like
heterojunction TFETs [74] and superlattice FETs [48]. Later in this chapter, we will analyze
the transmission and density of states of this 7-13 heterojunction using our simulator.

Other interesting ribbons have also been created. Chen et al. also synthesized n = 13
AGNRs, which we will use as the basis for our MOSFET simulations later in this chapter
[23]. Ruffieux et al. synthesized GNRs with zig-zag edges, theoretically predicted to be
antiferromagnetic [114]. Doping through the synthesis process is also possible. Cai et al.
synthesized heterojunctions of pristine and nitrogen-doped chevron GNRs [16]. Nguyen et al.
made n = 13 sulfur-doped AGNRs [102], and Cloke et al. fabricated boron-doped AGNRs
[26].
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Figure 4.2: Scanning-tunneling microscopy image of a 7-13 AGNR heterojunction [22]. Fig-
ure taken from Chen et al..

4.2 Tight-binding models for graphene nanoribbons

We model the electronic structure of graphene nanoribbons and carbon nanotubes in this
chapter using tight-binding models. While ab-initio methods such as density functional
theory with the GW correction can provide an excellent description of the electronic structure
of graphene nanoribbons and can account for many-body effects [122, 136], these methods
are very computationally intensive and the computed electronic structure is very hard to
directly use in transport calculations.

The simplest description for the Hamiltonian of a CNT or a GNR is to assume a single pz
orbital for each carbon atom with a constant overlap term −t0 with neighboring atoms and
an on-site energy of zero, where t0 = 2.7 eV. This model was originally published seventy
years ago in 1947 by Wallace [132], and works remarkably well for predicting many of the
properties of bulk graphene, CNTs, and GNRs. It predicts the Dirac cones near the K points
in bulk graphene, as well as the semiconducting nature of some GNRs and CNTs.

Despite the many successes of this description, it has several problems. It typically
underestimates the bandgaps of GNRs and in some cases predicts that some semiconducting
ribbons are metallic with zero band gap. One example of this is the 3n+2 family of armchair
edge graphene nanoribbons (n is number of carbon atoms along the width of the ribbon).
This is because the model, originally derived for bulk graphene, does not take into account
the change in electronic structure when the π network is terminated by hydrogen atoms at
the edge of the ribbon.

To get around the shortcomings of the pz description of graphene for our transport
simulations, we have also implemented the tight-binding model of Boykin et al. for our
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Figure 4.3: Electronic structure calculated from the p/d tight-binding model of Boykin et
al. for several armchair-edge GNRs [14]. AGNRs can be categorized based on their width
modulo 3, with the 3n+ 2 family having the lowest bandgap, the 3n family having the next
highest bandgap, and the 3n+ 1 family having the highest bandgap.

calculations [14]. This model was fit from ab-initio calculations and takes into account
hydrogen atoms on the edges of armchair GNRs (AGNRs) and also adds dyz and dzx orbitals
to the pz description of carbon. The Hamiltonian is parameterized using Slater-Koster
overlap integrals [121], which are very common in NEGF device simulation. The computed
bandstructures of three example graphene nanoribbons, one from each of families of GNRs
categorized by the width of the ribbon modulo 3, are shown in Fig. 4.3 along with the
computed bandgaps for a number of different widths. As is expected, wider ribbons have
lower band gaps and the 3n+ 2 family is not metallic.

This increased accuracy comes at a cost however. Using three orbitals per atom instead
of one consequently triples the dimensions of the Hamiltonian and increases the cost of doing
calculations by about a factor of more 30. This factor comes from the O(n3) scaling of the
matrix inversion and multiplication operations that dominate the computation in the RGF
algorithm as well as the need to explicitly consider the extra hydrogen atoms on the edge.
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Figure 4.4: Wireframe of tetrahedral finite element mesh for calculating electrostatics for the
GNR and CNT MOSFET devices generated by SALOME. Our finite element Poisson solver
allows us to handle fringing fields as a result of the gate far away from the active region of
the device.

4.3 MOSFET devices

To benchmark our quantum transport simulator and its ability to model graphene nanorib-
bon and carbon nanotube devices, we preformed several benchmark MOSFET simulations.
These simulations largely replicate what has been published in literature [38, 37, 139, 52].
We simulate a dual-gate n-channel MOSFET with a channel length of 15 nm, simulated GN-
R/CNT length of 70 nm, source-drain donor doping of 5× 1012 /cm2, an intrinsic channel,
and effective oxide thickness of 1 nm for both the top and bottom gates. The simulation was
performed using two different channels: a 13-AGNR, and a (13,0) CNT (26 carbon atoms
around circumference). Both the single pz and p/d tight-binding models are used for the
GNR, but only the pz model is used for the CNT. The 13-AGNR was chosen because it
was recently experimentally synthesized and had a low enough bandgap (0.9 eV in the p/d
model) to be useful for a MOSFET. Electron-phonon scattering was not taken into account
for these calculations.

The wireframe for our mesh generated with SALOME [113] is shown in Fig. 4.4. Slight
modifications to the mesh had to be made for the channel region to accommodate the different
dimensions of the GNR compare with the CNT. The gate is extended beyond the channel on
both sides by 30 nm to model the fringing fields that are a consequence of the gate extension
beyond the channel in many experimental devices, such as those fabricated by Llinás et al.
[92].

The Ids − Vds and Ids − Vgs curves for the device are shown in Fig. 4.5. The ON-current
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Figure 4.5: I − V characteristics for GNR-based device using the pz tight binding model.
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Figure 4.6: Comparison of transmission and current in the ON-state at Vgs = 0.40 V, Vds =
0.05 V.

at Vgs = 0.40 V, Vds = 0.05 V is 0.94 µA for the 13-AGNR (single pz), 0.75 µA for the 13-
AGNR (p/d), and 1.11 µA for the (13,0) CNT (single pz). At Vgs = 0.40 V, Vds = 0.40 V the
ON-current is 1.40 µA for the 13-AGNR (single pz), 1.12 µA for the 13-AGNR (p/d), and
1.179 µA for the (13,0) CNT.

Clearly, the p/d Hamiltonian gives less current than the single pz Hamiltonian. This is
because the bandgap for the pz model is 0.7 eV compared with 0.9 eV for the p/d model.
The CNT also has around a 0.9 eV bandgap, but it gives the highest current because its
conduction band has two degenerate valleys, unlike the AGNR which only has a single
conduction band valley. This can be seen very clearly when looking at the transmission at
Vgs = 0.40 V, Vds = 0.05 V plotted in Fig. 4.6.

The local density of states as a function of position along the device and energy in the
ON and OFF states for two different values of Vds for the 13-AGNR with the single pz basis
set. These figures illustrate standard ballistic MOSFET operation and should be compared
with the similar plots in the next chapter for the chevron-type GNR transistor where the
density of states above the conduction band edge has abrupt gaps that are a result of the
superlattice-like electronic structure.

Though it is beyond the scope of this chapter, we also were also able to simulate a pin
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Figure 4.7: Density of states plotted as a function of position and energy in a 13-AGNR
MOSFET at four biasing conditions. The conduction and valence band edges are indicated
by solid black lines. The colormap is based on a logarithmic scale.

tunnel field-effect transistor (TFET) based on the 13-AGNR. The results of this simulation
were consistent with those of Kim et al. [74]. In our ballistic calculation, this device was able
to acheive 5.1 mv/decade subthreshold swing, though, as we will see in the next chapter,
phonon scattering can significantly degrade steep-slope behavior.

4.4 Transmission through a 7-13 AGNR

heterojunction

After simulating basic FET structures, we turned to modeling the 7-13 AGNR heterojunction
originally synthesized by Chen et al. [22]. This ribbon is shown in Fig. 4.1. Using our NEGF
solver with open boundary conditions and the p/d, we computed the transmission coefficient
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Figure 4.8: Transmission as a function of energy for the 7-13 AGNR heterojunction. The
transmission is plotted for the parent 7-AGNR and 13-AGNR structures for comparison.
Above the conduction band edge, there is a region for which the transmission coefficient
drops dramatically. This could be used to build a device that exhibits negative differential
resistance.

as a function of energy. This is shown in Fig. 4.8 along with the transmission coefficients
for the parent 7-AGNR and 13-AGNR ribbons.

Of note, is that above the conduction band edge, the transmission coefficient does not
monotonically increase. Transmission peaks occur when bulk 7-AGNR modes align with the
allowed energies for the quantum dot-like 13-AGNR region. This property could be used to
create a device that exhibits negative differential resistance (NDR) when transmission is cut
off by increasing bias. Fig. 4.9 shows the local density of states at two different energies,
one in which the density of states is fairly uniform across the ribbon and another where it is
highly localized within the 13-AGNR region. In the next chapter, NDR is demonstrated for
another GNR heterostructure, the periodic chevron GNR.

4.5 Conclusion

In this chapter, we have demonstrated the ability of the BerkeleyNano3D to simulate MOS-
FET devices based on graphene nanoribbons and carbon nanotubes using two different elec-
tronic structure models for GNRs. Our results for these devices are consistent with those
found in literature. We have also laid the foundation for simulating interesting transport
properties, including negative differential resistance, in assembled GNR devices.
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(a) Delocalized state at 2.2 eV (b) Localized state at 3.8 eV

Figure 4.9: Density of states for the 7-13 AGNR heterojunction as calculated through NEGF
with open boundary conditions.
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Chapter 5

Transport Properties of Chevron
Graphene Nanoribbon Field-Effect
Transistors

5.1 Introduction

In this chapter, we show that recently fabricated Chevron-type graphene nanoribbons (CGNRs)
act as a monolithic superlattice structure. This is enabled by the large periodic unit cells with
regions of different effective bandgap in these nanoribbons, resulting in minibands and gaps
in the density of states above the conduction band edge. Quantum transport calculations
based on the non-equilibrium Green’s function formalism reveal that a negative differential
resistance (NDR) is expected to manifest in these nanoribbons. Due to the relatively low
density of states, such NDR behavior can also be modulated with a gate electric field. We
show that a sub-thermal subthreshold swing (< kT/q) can potentially be obtained in a three
terminal configuration, even in the presence of optical phonon scattering.

In 1970, L.Esaki and R. Tsu predicted [34] that in an appropriately made superlattice,
it should be possible to obtain very narrow width bands, which could then lead to negative
differential resistance. The remarkable property of these superlattices is in the fact that,
unlike in Esaki diodes, this negative differential resistance does not need any tunneling,
rather it comes from the direct conduction of electrons. Nonetheless, significant difficulty in
synthesizing atomically precise, epitaxial heterostructures has made it very challenging to
realize such superlattice structures [33, 25, 61, 12, 49, 69, 134]. Much work has been done on
modeling graphene nanoribbon heterostructures and superlattices which could exhibit NDR
[36, 86, 126, 119, 120, 115, 47]. Other work has been done on steep-slope devices based on
GNR and CNT heterojunctions [74, 141]. Gnani et al. showed how superlattices could be
used in a III-V nanowire FET to achieve steep-slope behavior by using the superlattice gap to
filter high energy electrons in the OFF state [48]. Here, we show that the recently synthesized
chevron nanoribbons [15] provide a natural, monolithic material system where narrow-width
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energy bands and negative differential resistance (NDR) can be achieved. Our atomistic
calculations predict that the NDR behavior should manifest at room temperature along
with sub-thermal steepness (<60 mV/decade at room temperature). Such NDR behavior
could lead to completely novel devices for next generation electronics.

Unlike a graphene sheet, a narrow strip of graphene, often called a graphene nanoribbon
(GNR), can provide a sizable bandgap. As a result, GNRs could lead to devices with good
ON/OFF ratio at the nanoscale. However, a number of studies have also shown the delete-
rious effect of edge roughness on the device performance [37, 139]. Recent breakthroughs in
bottom-up chemical synthesis can produce GNRs with atomistically pristine edge states and
overcome this shortcoming [15]. In fact, a recent experimental work demonstrated working
transistors with 9- and 13-AGNRs made with these techniques [92]. The methods used to
synthesize these ribbons can also be used to generate complex periodic structures beyond
simply armchair and zigzag nanoribbons [16, 22]. In this work, we will consider one of those
structures, the chevron graphene nanoribbon (CGNR).

Fig. 5.1(a) shows both the structure of the 6-9 CGNR originally fabricated by Cai et al.
and the band structure calculated with a pz orbital-based tight-binding method [15]. A key
feature of the band structure is the presence of minibands with regions of forbidden energy
above the conduction band edge, such as those seen in superlattices of III-V semiconductors.
Analogous to III-V superlattices, the CGNR contains regions of different effective bandgap.
When we look at the CGNR in Fig. 5.1(a), we see that its narrowest segment is 6 carbon
atoms across and its widest segment is 9 carbon atoms across, with both segments having
armchair-type edges. Using a pz-basis set (GW [136]), the bandgap, Eg, of a 6-AGNR is
1.33 eV (2.7 eV), and the bandgap of a 9-AGNR is 0.95 eV (2.0 eV). However, given the
very short length scale over which the width changes in our structure (∼ 1 nm), one would
not expect the system to behave as though the local effective potential oscillates between
the bulk values of Eg for the isolated AGNRs. In fact, our chevron structure has an overall
bandgap of 1.59 eV. This value is consistent with the 1.62 eV bandgap from LDA DFT
calculations, but significantly smaller than the 3.74 eV value from calculations incorporating
the GW correction [133]. Both LDA and GW calculations show the presence of minibands
and gaps above the conduction band edge [133].

5.2 Simulation Methods and Details

The simulated device, illustrated in Fig. 5.2, has a double gate GNR-on-insulator structure.
Like a typical MOSFET, our superlattice field-effect transistor (SLFET) can be turned ON
and OFF with a gate voltage at low drain biases. Operation differs from a MOSFET in two
key ways. The first is that the device shows NDR with respect to the drain voltage. At
some value of Vds determined by the width of the first miniband, Ids decreases substantially
when the conduction band at the source becomes aligned with the superlattice gap at the
drain. At higher drain bias, current increases again when the conduction band at the source
is aligned with the second miniband at the drain. The second feature of the SLFET is that
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Figure 5.1: (a) Band structure of a chevron GNR based on a pz orbital basis set. The
width (and thus quantum confinement) varies across the unit cell, giving a superlattice-like
band structure. Forbidden energies are highlighted in red. The bandgap of the ribbon is
1.59 eV, the first conduction band has a bandwidth of 0.272 eV, and the first gap between
minibands is 0.178 eV. Inset: Chevron GNR structure. (b) When a gate voltage turns the
device ON, current conduction occurs at low values of Vds where the first miniband at the
source is aligned with the first miniband at the drain. As the drain voltage is increased
beyond qEmb1, the bandwidth of the first miniband, transmission is cut off and the device
exhibits NDR.
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Figure 5.2: Artistic rendering of double-gate CGNR on insulator FET. Parts of the top gate
and oxide region have been cut away so that the channel is visible. The device has a doped
source/drain and an intrinsic channel.

the superlattice gap at the drain filters out higher energy electrons from the first miniband
at the source when a source-drain bias is applied. This cuts off the higher energy portion of
the thermionic tail at the source, which would contribute to leakage current in a traditional
MOSFET. This filtering does not, however, affect the low-energy electrons, which carry most
of the ON state current as they are in the window where the first minibands at the source
and drain overlap. Transport in an SLFET is entirely intraband like a MOSFET, whereas a
TFET relies on band-to-band tunneling. This could possibly allow higher ON current than a
TFET. Fig. 5.1(b) illustrates the how the device exhibits negative differential resistance. At
low drain biases, conduction will occur within the first miniband. When the drain voltage
is increased to the point where the gap above the first miniband at the drain is aligned with
the source Fermi level, conduction is cut off. With even higher drain voltage, band-to-band
tunneling from the first miniband to the second miniband becomes possible, and current
increases again.

The CGNR used in our simulation has a width of 1.9 nm. The simulation domain is
approximately 70 nm long, and the gate has a length of 15 nm. The source and drain are
doped with ND = 1.0× 1013 cm−2 donors. An effective oxide thickness of 1.0 nm is used for
both the top and bottom gates. The gate contacts are extended 30 nm perpendicular to the
channel to capture fringing gate fields. While our simulation uses an effective doping density
to align the source and drain Fermi levels to the CGNR conduction band, this could be
achieved in an experiment through electrostatics alone. The parameters for the simulation
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Parameter Value
Source/Drain doping 1.0× 1013 cm−2

Channel length 15 nm
Gate contact width (⊥) 30 nm
CGNR length 70 nm
Effective oxide thickness 1 nm
pz hopping energy 2.7 eV
Acoustic phonon coupling, Dω,AP 0.01 eV2

Optical phonon coupling, Dω,OP 0.01 eV2

Optical phonon energy, h̄ωOP 196 eV

Table 5.1: Simulation parameters for chevron-GNR FET simulation.

are listed in Table 5.1.
Simulations are performed using the non-equilibrium Green’s function (NEGF) formalism

[30]. A simple pz-basis Hamiltonian with hopping parameter t0 = 2.7 eV is used. Charge
and current are calculated with the recursive Green’s function algorithm [79], and contact
self-energy is computed with the Sancho-Rubio iteration scheme [118].

The NEGF equations are solved self-consistently with the nonlinear Poisson equation in
three dimensions using the predictor-corrector scheme described by Trellakis et al. [129].
The geometry is modeled using a tetrahedral finite element mesh generated with the SA-
LOME package [113]. The solution of the discretized Poisson equation is performed using
the conjugate gradient solver from the Eigen library [51].

Acoustic and optical phonon scattering are taken in account with the according to the
method described by Pal et al. [106], which has been used previously to calculate the effect
of electron-phonon scattering in CNT and GNR devices [76, 105, 140, 142]. Because we
lack an exact values for the electron-phonon coupling constants, we use approximate values
similar to those used by Koswatta et al. for CNTs [76]. Our values are Dω,AP = 0.01 eV2,
Dω,OP = 0.01 eV2, and h̄ωOP = 196 eV.

5.3 Results

Initially, a ballistic transport calculation excluding phonon scattering was run to establish a
benchmark for the performance of the CGNR devices. Fig. 5.3 shows the density of states
for several bias points. Fig. 5.3b shows peak current case when a large enough drain bias has
been applied to generate enough splitting between the source and drain Fermi levels to allow
significant current to flow, but not a high enough bias to move the first miniband outside
of the current conduction window. For higher bias as in Fig. 5.3c, intraband conduction
from the first miniband is completely cut off. As the drain bias is further increased, current
can only flow due to a band-to-band tunneling from the first miniband at the source to
the second miniband at the drain. Note that, due to the minibands, there will be regions
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Figure 5.3: Local density of states as a function of position and energy from a coherent
transport calculation.

of operation for both gate and drain voltages where direct current flow is abruptly turned
on or off, as the overlap between source minibands and drain minibands is modified. This
leads to a steep subthreshold swing (< 60 mV/decade at room temperature) in the Ids−Vgs
characteristic and a negative differential resistance in the Ids − Vds characteristic.

Fig. 5.4(a) shows Id vs. Vgs for several values of Vds. While steep slope behavior
is exhibited at some point for all values of Vds, the highest ON current is obverved for
Vds = 0.1 V. At this drain bias, an ON current of 168 nA is achieved at a gate bias of
Vgs = 0.75 V. In the steep slope region of this curve, the subthreshold swing is 6 mV/decade
when averaged over five orders of magnitude of Id. With gate work function engineering and
additional device optimization, it should be possible to achieve reasonable ON current with
a low supply voltage. The origin of the steep-slope behavior can be understood from Fig.
5.5. In the OFF state shown in Fig. 5.5a, the superlattice gap at the drain prevents leakage
current from flowing over the source-side injection barrier. The states near the top of the
barrier are seen to decay rapidly in the drain region. Fig. 5.5b shows the ON state, in which
low-energy electrons, which make up virtually all of the ON current, can flow unimpeded
from source to drain.

The Id − Vds curves are shown in Fig. 5.4(b). When Vgs = 0.7 V, we see an increase
in current up to Vds = 0.10 V. As the drain bias is further increased, we see a decrease in
current as the drain miniband goes out of alignment with the source miniband. The current
beigins to pick up again as the second miniband at the drain starts to come in alignment
with the source miniband again. The peak-to-valley ratio (PVR) at this gate voltage is
4.88× 103.

Next, the effect of phonon scattering is incorporated into the calculations. The Green’s
functions are computed self-consistently with acoustic and optical phonon scattering using
the converged potential from the coherent calculations. The local density of states calculated
for the CGNR MOSFET in the presence of phonon scattering is shown in Fig. 5.5 for
several biasing conditions. As is visually apparent when comparing with Fig. 5.3, phonon
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(a) (b)

Figure 5.4: I-V curves from a coherent transport calculation. Id − Vgs for different values
of Vds. Steep-slope behavior is observed with a subtheshold swing of around 6 mV/decade
over five orders of magnitude around Vgs = 0.6 V when Vds = 0.1 V. NDR is evident in that
the peak value of Id is lower for higher Vds. (b) Id − Vds for different values of Vgs. When
Vgs = 0.7 V, a PVR of 4.88× 103 is achieved.

scattering broadens the local density of states significantly. For the OFF state shown in
Fig. 5.5a, states above the conduction band edge in the channel appear as a result of optical
phonon scattering. In the ON state shown in Fig. 5.5b, the aforementioned states appear
above the conduction band edge, but these no longer significantly affect device performance
because ballistic transport from source to drain at the top of the barrier is permitted at this
bias condition. At the higher drain bias shown in Fig. 5.5c, current is higher relative to
the ballistic calculation because optical phonon scattering couples the first miniband in the
channel to the first miniband in the drain at the channel-drain junction.

Figure 5.6 shows the energy-resolved current spectrum in the OFF state at Vgs =
0.55 V, Vds = 0.10 V (the same bias point as Fig. 5.5(a)). In the OFF-state, subthresh-
old leakage current is suppressed because of the lack of states at the drain at the energy
of the top of the barrier. However, optical phonon scattering permits some carriers to be
scattered down into the first miniband at the drain. Nevertheless, the steep-slope behavior is
preserved, despite being deteriorated relative to 6 mV/decade subthreshold swing we observe
in ballistic calculations. Previously, Yoon and Salahuddin [142] studied the effects of phonon-
assisted band-to-band tunneling in armchair graphene nanoribbon tunnel transistors. That
work concluded that while subthreshold swing in those devices was degraded by electron-
phonon scattering, it was still possible to achieve a subthreshold swing of 34 mV/decade,
far below the Boltzmann limit, consistent with the degradation in performance we see in our
device when the effects of the electron-phonon interaction are taken into account.



CHAPTER 5. TRANSPORT PROPERTIES OF CHEVRON GRAPHENE
NANORIBBON FIELD-EFFECT TRANSISTORS 56

0 10 20 30 40 50 60 70

x (nm)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

E
 (

e
V

)

(a) Vgs = 0.55V, Vds = 0.10V

0 10 20 30 40 50 60 70

x (nm)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

E
 (

e
V

)

(b) Vgs = 0.70V, Vds = 0.10V

0 10 20 30 40 50 60 70

x (nm)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

E
 (

e
V

)

(c) Vgs = 0.70V, Vds = 0.30V

Figure 5.5: Local density of states as a function of position and energy in the presence of
phonon scattering. (a) OFF state. States above the conduction band edge in the channel
are a result of the optical phonon interaction. (b) ON state. Current flows as it does in the
coherent transport case but with some degradation due to acoustic phonon scattering. (c)
ON state for a higher value of Vds. Current is higher than before as optical phonon scattering
couples the first miniband in the channel to states in the drain.
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Figure 5.6: Energy-resolved current spectrum at Vgs = 0.55 V, Vds = 0.10 V. Optical phonon
scattering allows coupling between minibands that would not be coupled in purely ballistic
transport, thereby degrading both subthreshold swing and negative differential resistance.
The colormap is based on a logarithmic scale.



CHAPTER 5. TRANSPORT PROPERTIES OF CHEVRON GRAPHENE
NANORIBBON FIELD-EFFECT TRANSISTORS 57

(a)

0.5 0.6 0.7
Vgs (V)

10
4

10
2

10
0

10
2

I d
 (n

A
)

SS = 41 mV
dec

SS = 57 mV
dec

SS = 38 mV
dec

SS = 53 mV
dec

(b)

0.0 0.1 0.2 0.3 0.4 0.5
Vds (V)

0

5

10

15

20

25

I d
 (n

A
)

Vgs=0.70 V

Vgs=0.65 V

Figure 5.7: I-V curves from a calculation with acoustic and optical phonon scattering. (a)
Ids − Vgs for Vds = 0.1 V. Steep-slope behavior is observed with a an subthreshold swing of
around of 49 mV/decade over four decades of current between Vgs = 0.48 V and Vgs = 0.68 V
with a minimum value of 38 mV/decade around Vgs = 0.60 V. When Vgs = 0.7 V, a peak-
to-valley ratio of 3.15 is achieved.

Fig. 5.7(a) shows Ids vs. Vgs for Vds = 0.1 V. As in the coherent transport calculation,
the highest ON current is observed for Vds = 0.1 V. At this drain bias, an ON current of
85 nA is achieved at a gate bias of Vgs = 0.75 V. This is degraded relative to the ballistic
calculation primarily as a result of acoustic phonon scattering. The subthreshold swing is 49
mV/decade when averaged over four orders of magnitude of Ids between Vgs = 0.48 V and
Vgs = 0.68 V at Vds = 0.1 V with a minimum value of 38 mV/decade around Vgs = 0.60 V.

The Ids − Vds curves are shown in Fig. 5.7(b). As with the ballistic calculation, When
Vgs = 0.7 V, we see an increase in current up to Vds = 0.10 V. The peak-to-valley ratio
(PVR) at this gate voltage is 3.15. At Vgs = 0.65 V, the calculated PVR is 2.89. While
these values are far worse than those predicted in the calculation without optical phonon
scattering, it should still be possible to make a useful device with PVR ≈ 3.

5.4 Conclusion

Previous work on III-V MOSFETs with a superlattice source filter by Lam et al. [80] found
that it should be possible to achieve ION = 0.81 mA µm−1 with SS = 20.9 mV/decade at
Vds = 0.6 V, though this calculation did not take into account the effects of phonon scattering.
Assuming a device with multiple ribbons in parallel with a pitch of 5 nm, our device achieves
ION = 0.017 mA µm−1. While this value is much smaller, our device operates Vds = 0.1 V.
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Because of the NDR effect, higher drain biases unfortunately result in lower current.
In summary, we have shown that CGNR devices can exhibit both steep-slope subthresh-

old behavior and negative differential resistance. Both properties are the result of the
superlattice-like electronic structure of the ribbon. CGNR SLFETs could be promising for a
number of applications ranging from low-power logic transistors to high speed oscillators. A
major obstacle to building a real device is making contacts with appropriate Schottky barrier
heights to be able to match the band alignment conditions achieved in this work through
doping. The performance of a real device could also be impacted by edge roughness, which
we have not considered here, though the ability to synthesize ribbons with virtually no de-
fects may minimize this effects. Additional optimization is also likely necessary to make a
functioning device. DFT+GW calculations predict a much higher bandgap for the CGNR in
vacuum than the tight-binding model used in this work. While surface screening may reduce
the bandgap, a wider ribbon with a narrower bandgap may be required. Co-optimization of
the bandgap with the bandwidths of the minibands and the gaps between minibands is also
a necessary topic for future work.
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Chapter 6

Phase-Field Simulator

6.1 Introduction

The phase-field method describes the time evolution of systems where two or more phases
exist simultaneously [109]. The distinguishing feature of phase-field models compared to
other methods for modeling multiphase systems is that phase-field models use a continuum
field to track the local value of the order parameter. At a phase boundary, the order pa-
rameter varies continuously. The advantage to this is that the interface does not have to
be tracked explicitly, thereby allowing the model to be easily implemented without having
to store complex information about the geometry of the interface. Phase-field models can
take into account many contributions to the free energy of a system and minimize total free
energy through a gradient descent of the free energy functional with respect to the order
parameter field.

When the phase-field method is applied to ferroelectrics, the order parameter is the
polarization P , typically specified to be a vector with ~P = (Px, Py, Pz) [21].

The time evolution of the system is given the time-dependent Ginzburg-Landau (TDGL)
equation [21]:

δ ~P

δt
= −LδF

δ ~P
= −LδFlocal + δFwall + δFelec + Felas

δ ~P
(6.1)

This equation is the gradient flow of the Ginzburg-Landau free energy functional for ferro-
electrics, which includes the local Landau-Devonshire energy, a gradient term corresponding
to domain walls, a long-range electrostatic interaction, and a long range elastic interaction.
In this chapter, we will discuss each of the free energy terms in detail. In some phase-field
literature, the TDGL is sometimes called the Allen-Cahn equation [109].

6.2 Code overview

The phase-field simulator is based on the original code developed by Khalid Ashraf, which is
described in great detail in his dissertation [9]. Unlike the previous version of the simulator,
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support for large-scale parallel (MPI) computing has been removed due to the difficulty in
maintaining this part. While this is useful for simulating large micron scale ferroelectric
capacitors, capacitors with dimensions in the 10-100 nm size range can be easily simulated
on standard multicore workstations with adequate speed. Despite the removal of support
for MPI-based parallel computing, several new features have been added:

1. Complete rewrite of code in object-oriented C++11 with the Eigen template library
[51].

2. Paralution algebraic multigrid and Krylov subspace solvers, which can run on multicore
CPUs and GPUs [78].

3. Support for Sundials CVODE and IDA time-steppers [55].

4. JavaScript Object Notation (JSON) based input file.

5. Circuit-based models for negative capacitance with external resistors and capacitors.

6. New finite difference Poisson solver with support for embedding a semiclassical model
for semiconductor charge for negative capacitance field-effect transistor (NC-FET) elec-
trostatics.

7. Two defect models: fixed polarization and reduced coercive field.

8. Randomized Voronoi tessellation for generating random initial conditions and defect
positions.

The key operation of the phase-field simulator is shown in figure 6.1. First the simula-
tor reads the inputs from a material parameters file, a simulation configuration file, and an
optional initial polarization file to continue from a previous simulation. After the initial con-
ditions have been defined, the simulator evaluates the time derivative of polarization dP/dt
as a result of several forcing terms including: local energy, domain wall energy, electrostatics,
and elasticity. When dP/dt has been computed, a time-stepper integrates the TDGL and
computes a new value of polarization. The force computation and time-stepping continues
in a loop until the conclusion of the simulation. During this process, several outputs can be
generated at the request of the user: polarization, electrostatic potential, charge, stress, and
strain. Additionally, the mean polarization along each axis as well as the contact voltages
(if enabled) are written to a log file at each time-step. We will now describe each part of the
simulator in greater detail. Further details of the original implementation can be found in
the work of Ashraf et al. [7, 8, 9].
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Figure 6.1: Self-consistency loop for coherent transport calculations.

Polarization field and initial conditions

The polarization field is stored in a VectorField object, which specifies the vector polariza-
tion on a finite difference grid with regular spacing along the x, y, and z-axes.

The initial conditions for the system are specified in the ICSetup portion of the input
file. Various patterns can be specified, such as stripe domains and a centered region with a
different polarization than the surrounding region. Random patterns can be specified such
that every point takes on a random polarization. After some time for stable domains to
form, these random patterns can be considered analogous to those in a ferroelectric cooled
below its Curie temperature before any field has been applied. Additionally, initial domains
can be generated based on a Voronoi tessellation of random points within the simulation
domain. This feature will be discussed in greater detail in a later section.

Another option to specify the initial conditions is to restart from an existing polarization
file. This is useful to continue from an existing simulation that has crashed or to run several
simulations with different conditions after some period of common conditions. Custom initial
conditions can also be created using Octave/MATLAB or another scripting language by writ-
ing a VTK file of the same format that the phase-field simulator writes. Full documentation
of the possible initial conditions is given in the ICSetup section of SolverConfig.h.

Time-stepping

Given, the polarization at time t, P (t), the force terms are evaluated and a VectorField

with the values of dP/dt at every point is generated by summing the contributions from all
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the individual force terms. This information is passed to a time-stepper, which may then
request computation of dP/dt at additional partial time-steps in order to produce a more
accurate estimate of P (t+∆t) where ∆t is a fixed time-step size. Support for several different
time-steppers is provided at compile time via preprocessor options.

The first time-stepper is a second-order Verlet algorithm based on the one implemented by
Ashraf [9]. This method typically produces far more accurate results than simple forward-
Euler based methods, while remaining fairly simple to implement. There are, however,
several issues with this method. The first is that the solver requires using a fixed time-step
size. For times when polarization is changing rapidly, very short time-steps have to be used
for the solution to be stable. These time-steps are small relative to what may actually be
required for stability during other times in the simulation, so significant extra work may be
required.

To get around the limitations of our simple algorithm, we implemented an interface to the
Sundials package package from Lawrence Livermore National Laboratories [55]. The CVODE
solver supports variable-order, variable-step methods to solve stiff and non-stiff ordinary
differential equation systems in the form y′ = f(t, y). This solver is the preferred option
for most problems. We also support the Sundials IDA solver which solves implicit systems
in the form y′ = f(t, y, y′). This is necessary for accurately solving for the dynamics of a
ferroelectric in series with a resistor, whose voltage depends on current, which is

∫
dΩ dPz/dt,

the volume integral of the rate change in polarization over time.

Landau local energy

The local energy term is solely a function of the local polarization ~P = (Px, Py, Pz). The

free energy is expressed as a polynomial function of the components of ~P . The free energy
expression including up to fourth-order terms is:

Flocal =

∫
Ω

[α1

(
P 2
x + P 2

y + P 2
z

)
(6.2)

+ α11

(
P 4
x + P 4

y + P 4
z

)
+ α12

(
P 2
xP

2
y + P 2

yP
2
z + P 2

z P
2
x

)
+ ...] dΩ

where the α values are Landau-Devonshire free energy coefficients. Typically the the values
for the α coefficients fit from experimental thermodynamic data or ab-initio simulation
results. Values for several common ferroelectrics are found in the appendix of Rabe, et
al. [112]. The phase-field simulator support polynomial expressions for local free energy up
to eighth-order, which are specified in the material input file.

This expression can simply be plugged into the time-dependent Ginzburg-Landau equa-
tion, and we can write the the time derivative of the x-component of polarization at grid
point i considering terms up to fourth order as:

∂Pi,x
∂t

= −L ∂F

∂Pi,x
= 2α1Pi,x + 4α11P

3
i,x + 2α12Pi,x(P

2
i,y + P 2

i,z) + ... (6.3)
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with similar expressions for the the y and z-components.

Gradient (domain wall) energy

The energy of a domain wall between regions of differing polarization is the result of dipole-
dipole interaction and strain. This energy can be approximated as an isotropic domain
wall energy constant G11 multiplied by the sum of the gradients in every direction for every
component of ~P . The free energy can be written as:

Fwall =

∫
Ω

G11(P ′x,x + P ′x,y + P ′x,z + P ′y,x + P ′y,y (6.4)

+ P ′y,z + P ′z,x + P ′z,y + P ′z,z) dΩ

Its associated contribution to the TDGL is:

δFgrad
δPi

= G11∇2Pi (6.5)

The current implementation computes this expression on the finite difference polarization
grid and adds this contribution to the total forcing term at each time-step. Currently, there
is only support for isotropic domain wall energy, though adding anisotropic domain wall
energy could be done in the future with little difficulty should the need for it arise.

Electrostatics

The electrostatic contribution to total free energy and contribution to the TDGL at grid
point i can be expressed as:

Felec =

∫
Ω

− ~E · ~P dΩ (6.6)

−δFelec
δ ~Pi

= ~Ei (6.7)

The phase-field simulator provides two implementations of this term. The first, SimpleEField,
simply assumes a uniform electric field at every point in the simulation domain. This field
can be set to any orientation, and a number of waveform options are available. This method
is fast and provides a reasonable approximation for the electric field in cases where an exter-
nally applied field dominates contributions to the electrostatic interactions in the system.

The second implementation, ElectrostaticForce, uses a finite difference Poisson solver
to calculate the potential and electric field at every point in the simulation domain. As
discussed in Chapter 2, the Poisson equation is written as:

∇ · ε∇φ = −ρ (6.8)
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and can be solved with either the finite element or finite difference method. The charge ρ is
calculated from the ferroelectric polarization using:

ρ = ∇ · ~P (6.9)

Charged domain walls can influence the electric field even at long distances and must there-
fore be taken into account with a full solution of Poisson’s equation.

The Poisson solver, implemented in the FDPoisson3D class, is a modified version of the
finite difference Poisson solver that was used in our quantum transport simulator before
development switched to a finite element-based solver as was described in Chapter 2. The
discretized version of Poisson’s equation is solve using an algebraic multigrid solver from the
Paralution package [78]. Multigrid methods can be used to solve linear systems derived from
the discretization of elliptic partial differential equations, such as Poisson’s equation, in O(n)
time complexity [32]. The Poisson solver is interfaced with the ElectrostaticForce class
that defines the solver geometry and computes the final force term for the time-stepper.

The contact voltages at the top and bottom of the ferroelectric capacitor are incorporated
as Dirichlet boundary conditions. The top contact can be underlapped in order to simulate
the fringing fields that occur when a small area top contact is used with a back contact
covering the entire area of ferroelectric. At the sides of the capacitor, both periodic and
Neumann (isolated) boundary conditions can be applied.

In order to simulate negative capacitance devices with a ferroelectric epitaxially grown
on a dielectric, the Poisson solver has an option to simulate an additional dielectric region
between the ferroelectric region and the bottom contact. There is an also option to simu-
late this region as a semiconductor with charge computed from a semiclassical expression
that assumes parabolic conduction and valence bands and a two-dimensional semiconductor
(constant density of states within the bands).

External resistors and capacitors

One of the key features of the phase-field simulator is the ability to simulate the response of
a multidomain ferroelectric capacitor in series with an external resistor or capacitor. This
is useful for comparison with several experimental demonstrations of negative capacitance.
The formulation for a series capacitor is covered in Chapter 7 and the formulation for a series
resistor is covered in Chapter 8. In both cases, the effect of the external circuit is taken into
account by setting the contact voltages in the electrostatics solver to values consistent with
the voltage across the ferroelectric capacitor in the circuit model. When an external resistor
is used, only the Sundials IDA time-stepper can be used because it is an implicit ODE solver
which it provides an estimate of dP/dt. This is required because the voltage across the
resistor is a function of the current, which is −dP/dt. There are no-restrictions on which
time-stepper can be used in the case of an external capacitor.
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Figure 6.2: Hexahedral finite element with 8 nodes. Graphic taken from Zohdi [144].

Elasticity

Overview

Long-range elastic interactions can affect how domains evolve over the course of a simulation
and which orientations are preferred for domains. In our simulation, we compute the effect
of the elastic interaction according to the following process:

1. Compute the load vector for the body stress forces as a result of local polarization
~P (x).

2. Solve for the strain developed as a result of those stress forces by solving a linear
elasticity problem.

3. Compute the contribution to the TDGL as a result of local strain.

We employ the finite element method (FEM) to solve the linear elasticity problem [144].
Unlike the FEM electrostatics solver described in Chapter 2 for the transport simulator,
we do not use an externally generated mesh, but rather use a regular mesh of hexahedral
(“brick” or “cube”) elements. This is because ultimately we must take polarization values
from the regularly spaced, rectilinear finite difference grid on which polarization is defined.
In our model each, finite difference grid point is represented by a single hexahedral element
with eight nodes. Because of the extra nodes on the boundaries of the final elements, the
finite element grid has (nx+1)× (ny +1)× (nz +1) nodes instead of nx×ny×nz grid points,
where nx, ny, and nz are the dimensions of the finite difference polarization grid.

Weak form and discretization

First we formulate the weak form of the equation for for linear elasticity according the the
procedure of Zohdi [144]. We begin with the strong form of the equation of motion (a form
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of Newton’s second law) and the physical constitutive law:

∇ · σ + F = 0 (6.10)

σ = E : ∇u (6.11)

where E, the stiffness tensor can be spatially variable. The body force per unit volume
is given by F = F(x, y, z), the stress tensor is σ, and the displacement is u. This linear
equation is valid in the limit of a small, infinitesimal deformation. In our simulation, the
stiffness tensor is constant across space because we only solve this equation in ferroelectric,
but the simulator could be extended to allow simulating the substrate and surrounding
media. The stiffness tensor is calculated from the Young’s modulus E and the Poisson ratio
ν.

We multiply by a smooth test function v that is at least once differentiable and integrate
over the domain: ∫

Ω

(∇ · σ + F)v dΩ =

∫
Ω

r · v dΩ = 0 (6.12)

Taking the condition that this hold for every v where v|Γu= 0, where Γu is the region of
the domain over which Dirichlet boundary conditions (fixed displacement) apply, this allows
us to conclude that the residual r = 0. This is the standard condition applied in Galerkin
finite element methods. Using the product rule of differentiation for vector valued functions,
integrating with the divergence theorem, and substituting the constitutive law gives the final
version of the weak form: ∫

Ω

∇v : E : ∇u dΩ =

∫
Ω

F · v dΩ (6.13)

For u satisfying the clamped (Dirichlet) boundary conditions Γu. Fixed boundary conditions
consistent with the fractional strain specified in the input file are applied on the bottom
surface of the ferroelectric, though this can be modified through the IsDirichletBC method
of ElasticForce.

Next, we discretize the weak form of this equation with finite elements. We begin by
assuming the media is isotropic. This allows us to reduce the number of elements in the
stiffness tensor from 81 independent elements down to just 6. This allows us to write Eq.6.13
as: ∫

Ω

([D]{v})T [E]([D]{u}) dΩ =

∫
Ω

{v}T{F} dΩ (6.14)

where {u}, {v}, and {F} are three component vector-valued functions and:

[D] =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1


(6.15)



CHAPTER 6. PHASE-FIELD SIMULATOR 67

We will now express {u} and {v} in some finite element basis.
As {u} and {v} describe three component vector fields, we cannot directly assign a

and b coefficients to multiply the shape functions as with scalar field problems, such as the
electrostatic Poisson problem described in Chapter 2. Define the 3 × 3N matrix of shape
functions [φ] as:

[φ] =

φ1 · · · φN 0 · · · 0 · · · 0
0 · · · 0 φ1 · · · φN 0 · · · 0
0 · · · 0 · · · 0 φ1 · · · φN

 (6.16)

Where the rows correspond to the first second and third component of some vector formed
from the linear combination of these shape functions. Accordingly we express {v} and {u}
as:

{v} = [φ]{b}
{u} = [φ]{a}

The weak form can now be written as:∫
Ω

([D][Φ]{b})T [E]([D][Φ]{a}) dΩ =

∫
Ω

[Φ]{b}T{F} dΩ (6.17)

We substitute the 3D trilinear Lagrange shape functions over the hexahedral volume
shown in Fig. 6.2:

φ̂1 =
1

8
(1− ζ1)(1− ζ2)(1− ζ3)

φ̂2 =
1

8
(1 + ζ1)(1− ζ2)(1− ζ3)

φ̂3 =
1

8
(1 + ζ1)(1 + ζ2)(1− ζ3)

φ̂4 =
1

8
(1− ζ1)(1 + ζ2)(1− ζ3)

φ̂5 =
1

8
(1− ζ1)(1− ζ2)(1 + ζ3)

φ̂6 =
1

8
(1 + ζ1)(1− ζ2)(1 + ζ3)

φ̂7 =
1

8
(1 + ζ1)(1 + ζ2)(1 + ζ3)

φ̂8 =
1

8
(1− ζ1)(1 + ζ2)(1 + ζ3)

Taking our final finite element weak form and noting that the {b} vector is arbitrary by
construction, we can thus get a simplified matrix form:

{b}T{[K]{a} − {R}} = 0 (6.18)

[K]{a} = {R} (6.19)
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[K] ≡
∫

Ω

([D][Φ])T [E]([D][Φ]) dΩ (6.20)

{R} ≡
∫

Ω

[Φ]T{F} dΩ (6.21)

This gives a general form for the stiffness matrix and right hand side vector, but to
explicitly construct these we must perform global/local transformations. We define our
coordinate mapping as follows:

xi =
8∑
j=1

χijφ̂j (6.22)

where χij is the i coordinate for node j in this element. So that we can do our calculations

over the master element and the φ̂ functions rather than in x space over the φ functions, we
need the Jacobian J for the mapping, which we take as the determinant of the deformation
gradient F (not to be confused with the force F):

J ≡ |F |=

∣∣∣∣∣∣∣
∂x1
∂ζ1

∂x1
∂ζ2

∂x1
∂ζ3

∂x2
∂ζ1

∂x2
∂ζ2

∂x2
∂ζ3

∂x3
∂ζ1

∂x3
∂ζ2

∂x3
∂ζ3

∣∣∣∣∣∣∣ (6.23)

The 24× 24 blocks of the stiffness matrix for a particular element volume ω can now be
written as:

Kij =

∫
ω

([D̂][Φ̂][F ]−1)T [E]([D̂][Φ̂][F ]−1) |F | dω (6.24)

where

[φ̂] =

φ̂1 · · · φ̂8 0 · · · 0 · · · 0

0 · · · 0 φ̂1 · · · φ̂8 0 · · · 0

0 · · · 0 · · · 0 φ̂1 · · · φ̂8

 (6.25)

and

[D̂] =



∂
∂ζ1

0 0

0 ∂
∂ζ2

0

0 0 ∂
∂ζ3

∂
∂ζ2

∂
∂ζ1

0

0 ∂
∂ζ3

∂
∂ζ2

∂
∂ζ3

0 ∂
∂ζ1


(6.26)

To construct the full sparse matrix from the local element matrices, the elements of the
matrix are added to the global rows/columns corresponding to the global node numbers for
the eight nodes of the matrix. Note that for each node there are three components. Note
that this is an “add” operation and not a “set” operation as each node may be a member of
multiple elements.
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Load vector

The load vector {b} is constructed in a somewhat analogous way.

bi =

∫
ω

[Φ̂]T [F] |F | dω (6.27)

Here, the body force is computed by computing the fractional strain for an isolated element
with polarization P and then back-computing the force that would lead to that strain [9].
The diagonal components of the local strain tensor are given by:

ε0ii = Q11P
2
i +Q12(P 2

j + P 2
k ) (6.28)

The off-diagonal components are given by:

ε0ij = Q44PiPj (6.29)

After the local strain tensor has been computed, the body force is calculated by multi-
plying the local stiffness matrix 6.24 with this strain:

F = Kε (6.30)

This the load vector is then computed using this force and equation 6.27.

Force term

The matrix K is assembled once when the constructor of ElasticForce is called. At each
iteration, the load vector is recomputed based on the current value of P. After the load
vector is assembled, the resulting system of linear equations is solved using the conjugate
gradient solver with an incomplete Cholesky preconditioner from the Paralution library [78].
The force term for the TDGL is then evaluated from the local strain and electrostriction
relations as described in Li et al. [88].

Defects

Three possible types of defects are implemented in the phase-field simulator. The first is
for pinned defects where polarization remain fixed at a particular value and orientation
throughout the simulation. Defects can also be constrained to a particular axis without
the norm of the polarization vector being fixed, thus allowing the ferroelectric to switch
only along a path through zero polarization. The final type of defect is a low-coercivity
defect where the defect region will switch at a lower field than the surrounding regions. This
is useful for simulating domain nucleation from a fixed region. Low-coercivity defects are
implemented by reducing the value of α1 in the local free energy density expression to some
fraction of its bulk value (e.g., 20% is used in the simulations in Chapter 8).

Defect regions can be specified either with with Cartesian coordinates or generated ran-
domly to achieve a particular density of defects with a given average defect size. The random
generation of defects is handled by the Voronoi tesselation module, described in the next
section.
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(a) L1 (Manhattan distance) (b) L2 (Euclidean distance)

Figure 6.3: Voronoi tessellations generated from the same set of seed points with L1 and L2

distance metrics.

Voronoi tessellation

A Voronoi tesselation of a set of n seed points is a partitioning of an area or volume into n
regions with each region defined by being closer to one of those seed points than any of the
other seed points by some metric [31, 11]. The phase-field simulator can use Voronoi tes-
sellations for generating initial conditions with randomized contiguous domain-like regions
that have the same polarization. Voronoi tessellations can also be used to specify defect
regions. When a volume concentration of defects is specified, randomized cells of the tessel-
lation are added to the defect region until enough regions are selected to get the specified
concentration of defects. The Voronoi tessellation code supports both L2 (Euclidean dis-
tance, d =

√
(∆x)2 + (∆y)2 + (∆z)2 ) and L1 (Manhattan distance, d = |∆x|+|∆y|+|∆z|)

metrics. Tessellations based on the L1 metric tend to have domain walls with 45◦, 90◦, and
180◦ intersections, which may be relevant for modeling tetragonal ferroelectrics like the per-
ovskite family. Distribution of the angles formed at cell boundaries tends to be a bit more
random when using the L2 metric. Examples of random Voronoi tessellations generated by
the simulator are shown in Fig. 6.3. The number of points n used in the tessellation is
inversely proportional to the mean size of the individual regions. The mean volume of each
cell can be approximated as V̄cell = Vtotal/n. As with all randomized initial conditions in the
simulator, the seed for the pseudorandom number generator can be specified in the input
file so that a particular random pattern can be exactly reproduced for future calculations.
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6.3 Input and output

Input files

The input to the phase-field simulator is handled with JSON (JavaScript Object Notation)
files, which are parsed using RapidJSON [137]. Typically, two JSON files are required to
run a simulation: a material definition file and a simulation parameters file. A material
definition file has three sections:

1. Landau- Coefficients for the local Landau-Devonshire expansion for free energy.

2. Elastic- Elastic coefficients for computing the mechanical contribution to free energy.

3. Electrical- Electrical properties of the material used in the electrostatics calculation
and to normalize units throughout the simulation.

Full documentation of the parameters in the material definition file is provided in Material.h.
The simulation parameters file has a number of blocks, which map directly to the structures
in SolverConfig.h:

1. IO- Sets when output files are written, whether output is in ASCII or binary format.

2. Forces- Enables and disables different contributions to free energy as well as enabling
defects.

3. ICSetup- Defines initial conditions for the simulation.

4. Geometry- Defines the size of the simulation domain as well as the boundary conditions.

5. ElectrostaticSolver- Configures the finite difference Poisson solver and the geome-
try of regions outside the ferroelectric region.

6. ElasticSolver- Configures fractional strain applied to the ferroelectric in the elasticity
calculation.

7. TopContactSweep- Array containing segments of a piecewise-linear voltage sweep ap-
plied to the top contact of the electrostatic solver. When using a series capacitor or
resistor, this defines the total voltage across the series combination of that element and
the ferroelectric.

8. Defects- Defines the locations and types of defects present in the simulation.

9. SimpleEField- Configures the SimpleEField force term for a time-varying, spatially
uniform electric field.

10. Time- Defines end time for the simulation as well as the time-step size.
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VTK output

As with the BerkeleyNano3D quantum transport simulator, the default output format of
the phase-field simulator is the legacy VTK file format, which can be opened using VisIt or
ParaView. Which outputs are generated is specified in the IO block of the input file along
with after how many iterations to generate each output. Polarization, stress, and strain are
written as vector fields over the simulation domain, while charge and potential are written
as scalar fields.
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Chapter 7

Negative Capacitance in Phase-Field
Models

The use of a ferroelectric in the gate stack of a field-effect transistor has been proposed as a
way to improve on the thermodynamically imposed 60 mV/decade limit on the subthreshold
swing of any device based on thermal injection of carriers over an electrostatically modu-
lated barrier [117]. In this chapter, we explore how the formation of ferroelectric domains
affects negative capacitance using continuum phase field models based on the time-dependent
Landau-Ginzburg equation. We show that for a ferroelectric in series with a capacitor that
the formation of domains can inhibit negative capacitance. This may significantly affect
the stability of transistors using a ferroelectric for enhanced subthreshold performance and
result in unwanted hysteretic behavior. These results primarily apply to larger, thicker ferro-
electrics where the physics of continuum phase field models remain valid. At smaller length
scales, such as those relevant to the thin-film dielectrics used in modern MOSFET devices,
the applicability of the phase-field method remains an open question.

States near P = 0 are generally forbidden in a free ferroelectric below the Curie tempera-
ture as this corresponds to the high symmetry dielectric phase. However, recent experimental
results have shown negative capacitance (NC), indicating that the interactions between ferro-
electric (FE) and dielectric (DE) layers are indeed sufficient to stabilize negative capacitance
[45, 4, 70]. The single-domain, uniform FE polarization model for negative capacitance has
been extensively studied, and there have been several proposals for new devices based on
the underlying theory [64, 40]. Some literature has indicated that the negative capacitance
states may be unstable with respect to the formation of domains based on simple analytical
models [98, 17], but there has been no study of the effect of domain formation on negative
capacitance with a fully three-dimensional phase-field model. By coupling such a model to
the dynamics of an external capacitor, we will show that the formation of domains can lead
to a substantial suppression of negative capacitance and demonstrate how this instability can
be used to explain the hysteretic behavior observed in many NC-FET devices, particularly
those with large external FE capacitors connected in series with the gate stack.
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7.1 Theory of ferroelectric-dielectric series

combinations

Time-Dependent Ginzburg-Landau Dynamics

For the purposes of deriving a simplified model for the stability of polarization in a mul-
tidomain ferroelectric, suppose that the ferroelectric is compressively strained such that the
polarization is energetically preferred to be along the z-axis (normal to the ferroelectric-
dielectric interface) such that we can consider P = Pz. To describe the dynamics of a
one-dimensional ferroelectric capacitor with spatially inhomogeneous polarization P (x), we
use the time-dependent Ginzburg-Landau (TDGL) equation [21]:

δP

δt
= −LδF

δP
= −LδFlocal + δFwall + δFelec

δP
(7.1)

This equation is the gradient flow of the Ginzburg-Landau free energy functional for fer-
roelectrics, which includes the local Landau-Devonshire energy and a gradient term corre-
sponding to domain walls. Mathematically, these terms of the free energy functional can be
expressed for a ferroelectric in one dimension as:

Flocal =

∫ [
α (P (x))2 + β (P (x))4 + γ (P (x))6] dx (7.2)

Fwall =

∫
Gwall

(
dP

dx

)2

dx (7.3)

Felec =

∫
−E(x) · P (x) dx (7.4)

where α, β, and γ are the Landau-Devonshire free energy coefficients and Gwall is related to
the domain wall energy density, E(x) is the external electric field as a function of position,
and L is a term by which the time scale is normalized. The Felec term of the free energy
corresponds to the interaction with an externally applied electric field, which will be derived
in the next section for a series combination of a ferroelectric and dielectric capacitor.

Free energy of a ferroelectric-dielectric series combination

To model negative capacitance, we couple a dielectric (DE) capacitor to our ferroelectric
(FE) through a circuit model that assumes equal charge across the DE and the FE:

VDE =
QDE

CDE
=
−〈PFE〉
CDE

(7.5)

VFE = Vapp − VDE = Vapp +
〈PFE〉
CDE

(7.6)

EFE = −VFE
tFE

, (7.7)
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where 〈PFE〉 is the mean polarization about the z-axis in the ferroelectric, CDE is the capac-
itance per unit area of the series DE capacitor, VDE is the voltage across the DE capacitor,
Vapp is the voltage applied to the series combination of the DE and the FE capacitors, VFE
is the voltage across the FE, EFE is the electric field across the ferroelectric, and tFE is the
ferroelectric thickness.

CFE

CDE
Vapp

Figure 7.1: Series Capacitor Circuit Model.

7.2 Stability analysis

Here we will perform a simplified analysis of the stability of a ferroelectric where polarization
is allowed to vary throughout the volume of the ferroelectric using a discretized version of the
Ginzburg-Landau free energy functional. We begin by discretizing the previous expression
for free energy in one dimension. Suppose a ferroelectric of thickness tFE is divided into n
identical regions with polarization Pi. Also suppose that the ferroelectric is connected in
series with a dielectric subject to the condition that QDE = −〈P 〉. This condition where the
polarization can be simply averaged is equivalent to having a metal between the FE and DE
layers.

We can write the areal free energy density of the ferroelectric as:

F = Flocal + Felec (7.8)

Flocal =
tFE
n

n∑
i=1

(
αP 2

i + βP 4
i

)
(7.9)

Felec =
tFE
n

n∑
i=1

(−E · Pi) =
VFE
n

n∑
i=1

Pi (7.10)

We are ignoring higher order terms in Flocal, but the analysis is similar if they are included.
When a voltage Vapp is applied we can calculate the voltage across the ferroelectric from
Kirchoff’s voltage law as Vapp = VDE+VFE. The voltage across the dielectric with capacitance
CDE is calculated as:

VDE =
QDE

CDE
=
−〈P 〉
CDE

= − 1

nCDE

n∑
i=1

Pi (7.11)
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With knowledge of Vapp and VDE we can write Felec:

Felec =
VFE
n

n∑
i=1

Pi =
Vapp − VDE

n

n∑
i=1

Pi (7.12)

Making one final substitution, we get:

Felec =
Vapp + 1

nCDE

∑n
i=1 Pi

n

n∑
i=1

Pi (7.13)

The presence of the double sum is expected as the metallic nature of the contacts to the
ferroelectric means that the appearance of charge at one point in the ferroelectric changes
the dielectric voltage which in turn affects the externally applied electric field at all points
in the ferroelectric.

Similarly to the second derivative of free energy test for stability in the simple single
domain picture, we can assess the stability of a state by looking at the eigenvalues of the
Hessian H for the free energy. If all the eigenvalues of H are positive, the system is stable.
If there are any negative eigenvalues, the system is unstable. We can write H for a system
homogeneous polarization:

H =


∂2F
∂P 2

1

∂2F
∂P1∂P2

· · · ∂2F
∂P1∂Pn

∂2F
∂P1∂P2

∂2F
∂P 2

2

. . .
...

...
. . . . . .

...
∂2F

∂Pn∂P1
· · · · · · ∂2F

∂P 2
n

 =


a+ b b · · · b

b a+ b
. . .

...
...

. . . . . .
...

b · · · · · · a+ b

 (7.14)

where a = (2α + 12βP 2) tFE

2
and b = 1

nCDE
. Each row in this matrix is cyclically rotated

one element from the previous row. This is therefore a circulant matrix, which can be
diagonalized with the discrete Fourier transform [32].

The eigenvalues of this matrix are given can be computed as:

λj = a+ b

(
n−1∑
k=0

ωkj

)
(7.15)

where the ωj’s are the nth roots of unity. For j 6= 0 (multiplicity n− 1), we can calculate λj
by summing the series as:

λj = a+ b
ωnj − 1

ωj − 1
= a+ b(0) = a = (2α + 12βP 2)

tFE
2
. (7.16)

When j = 0, ωj = 1 and we get:

λ0 = a+ b

(
n−1∑
k=0

1k

)
= a+ nb = (2α + 12βP 2)

tFE
2

+
1

CDE
(7.17)
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with the eigenvector corresponding to the zero frequency (constant) Fourier component :

v0 =
1√
n

[1 1 · · · 1]T . (7.18)

Let us now consider the stability of homogeneous negative capacitance in the case where
P = 0. We find that we have n − 1 eigenvalues λj = 2α. Given that α is negative for any
ferroelectric, we conclude that all of these n − 1 eigenvalues correspond to an instability
in the ferroelectric. In fact, these eigenvalues will always be negative for any value of P
corresponding to a region of negative curvature in the free energy landscape where negative
capacitance is expected to occur. The value of λ0 is positive only when tFE < tcrit where

tcrit = − 1

2αCDE
. (7.19)

This is exactly the same as the stability criterion derived by Salahuddin and Datta in their
original paper on negative capacitance [116]. Indeed, it corresponds to the eigenvector in
the ferroelectric configuration space corresponding to a homogeneous polarization. With no
additional coupling terms, the free energy minimum in the original single domain theory of
negative capacitance is actually an saddle point with respect to the formation of a multido-
main state. Looking at the other n − 1 eigenvalues, we find that local stability everywhere
in the ferroelectric is a requirement for the stability of any state with uniform polarization
across the entire ferroelectric.

Adding domain wall energy

We now add a domain wall energy term of the form:

Fgrad = GDW

∑
i

(Pi − Pi+1)2 (7.20)

This is simply the discretized form of the previously given continuum domain wall energy
expression. Assuming periodic boundary conditions to preserve the circulant property of H,
we can write the new Hessian as the original Hessian plus a tridiagonal correction (with two
extra entries in the corners for the periodicity):

H = H0 + 2GDW


2 −1 −1

−1 2
. . .

. . . . . . −1
−1 −1 2

 . (7.21)

The new eigenvalues of this matrix can be computed as:

λj = λj0 + 4GDW

[
1− cos

(
2π
j

n

)]
. (7.22)
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This has the physical interpretation that the presence of a domain wall energy term can
stabilize previously unstable states with respect to perturbation of high spatial frequency.
However, we find that the eigenvalue shift quadratically goes to zero for small values of j cor-
responding to long wavelength polarization waves. Hence, we would expect any ephemeral
negative capacitance state to rapidly transition to an inhomogeneous state with some mini-
mum domain size determined by the magnitude of GDW in this simplified model.
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Figure 7.2: Eigenvalue shift from domain wall energy in terms of domain wall energy constant
GDW as function of spatial frequency ω (arbitrary units).

7.3 Phase-Field Method

The phase-field method [88, 21] is a popular way to simulate the behavior of ferroelectric
materials subject to a plethora of complex boundary conditions in three dimensions. Phase-
field methods minimize a functional of free energy by integration of the Time-Dependent
Ginzburg-Landau (TDGL) equation:

δ ~P

δt
= −LδF

δ ~P
= −LδFlocal + δFwall + δFelec + δFelas

δ ~P
(7.23)

In this chapter, our description of free energy includes the local Landau-Devonshire energy
and a gradient term corresponding to domain walls. The electrostatic interaction is added
through a 3D finite difference Poisson solver, which is capable of handling arbitrary contact
geometries and boundaries between the ferroelectric and external dielectrics. The nonlo-
cal elastic interaction is handled through a finite-element elasticity solver. Details of the
simulator can be found in Chapter 6.

Our simulations were done with the perovskite ferroelectric PbTiO3 (PTO) using parame-

ters taken from literature [111]. The ferroelectric region in the simulations was approximately
60×60×15 nm. Periodic boundary conditions were used to eliminate edge effects, but the
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small size of the simulation domain effectively suppresses the type of very long-range interac-
tions found in larger capacitors. To achieve negative capacitance, we couple a DE capacitor
through a circuit model similar to the one previously used to derive the one-dimensional
stability criterion:

Vox =
〈Pz,FE〉
Cox

(7.24)

VFE = Vapp − Vox, (7.25)

where 〈Pz,FE〉 is the mean polarization about the z-axis in the ferroelectric, Cox is the
capacitance per unit area of the series dielectric capacitor, Vox is the voltage across the DE
capacitor, Vapp is the voltage applied to the series combination of the PE capacitor and the
FE, and VFE is the voltage across the FE. The value of VFE is computed at every time step in
the phase-field simulation and is used to set the Dirichlet boundary condition for electrostatic
potential at the metal contacts at the top and bottom of the simulation domain. This model
better corresponds to a metal-ferroelectric-metal-insulator-semiconductor gate stack used in
some NC-FET transistors than previous phase-field simulations of ferroelectric-paraelectric
interfaces [6], in which the materials are directly in contact with each other. In the direct
contact case, the depolarization field from the uncompensated interface can lead to the
formation of flux-closure quadrants [1, 135], which was recently demonstrated experimentally
[124]. These vortex-like structures do not result in significant negative capacitance because
near the interface, polarization is oriented parallel to the interface, greatly reducing the
coupling between layers.

In some experimental setups used to study negative capacitance, an external capacitor is
wired in series with the ferroelectric rather. In this case, the capacitor may not initially have
the same charge as the ferroelectric. This does not change any results beyond a simple shift
in the which voltage/charge corresponds to zero in the model. This can be trivially shown
for some initial difference in charge between the capacitor and ferroelectric P0:

V ′ox =
〈Pz,FE〉
Cox

− P0

Cox
(7.26)

VFE = Vapp − V0 − Vox (7.27)

VFE = V ′app − Vox, (7.28)

with V ′app = Vapp − V0 = Vapp − P0/Cox.

In our simulations the external capacitance is taken to be approximately 12 µF/cm2, a
value which should be possible through high-κ dielectrics in modern CMOS processes. This
gives a critical thickness for negative capacitance of 25 nm for PTO in series, below which
Landau theory predicts that the spontaneous polarization in the ferroelectric should vanish
and the ferroelectric should be stabilized in a state where it exhibits negative capacitance
[117].
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Figure 7.3: Hysteresis loop with fast sweep rate. Clear enhancement of capacitance over the
series capacitor alone can be seen.

Figure 7.4: Single domain state near P = 0. This state is unstable and disappears if the
voltage ramp rate is not fast enough.
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7.4 Fast Transient

When the sweep rate is very fast relative to the formation of domains through the ampli-
fication of polarization waves in the system, negative capacitance can be clearly observed.
This can be shown by noting that the series combination of the ferroelectric and paraelectric
has a higher polarization than the ferroelectric alone. In this case, the ferroelectric switches
coherently as a single domain. During the switching transient the polarization of the system
takes on a uniform value near P = 0 as shown is Fig. 7.4. It is these states which directly
correspond the single domain theory of negative capacitance. The small hysteresis in Fig.
7.3 can be explained by the lag of polarization behind voltage from the Landau-Khalatnikov
dynamics.

7.5 Defects
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Figure 7.5: Hysteresis loops in the presence of pinned defects. When pinned defects are only
of a single polarity and the voltage sweep rate is fast enough, a small region of apparent
negative capacitance can be observed.

When small pinned defects are added to the system, these defects serve as nucleation cen-
ters for the formation of domains as illustrated in Fig. 7.6. When the ferroelectric switches
through domain wall motion as in this case, the negative capacitance behavior is no longer
observed and the hysteresis loop falls below the line indicating the series dielectric capac-
itance. To achieve observable capacitance enhancement, a large region of the ferroelectric
must simultaneously transit the negative curvature region of the free energy landscape. In
domain wall switching, only a small region near/within the domain walls is in this region.
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Figure 7.6: Intermediate state from defect-mediated domain nucleation

In the case where all defects are pinned along the same direction, we can observe negative
capacitance over a short segment of the hysteresis loop where the defects cannot serve as
nucleation centers for domains of the opposite polarity.

7.6 Breakdown through Spinodal Decomposition

Even without defects, it is still possible for domains to form. It was previously noted that
when a single domain ferroelectric enters a region with where the single domain Landau-
Khalatnikov model predicts negative capacitance, the system may rapidly break into domains
through a barrier-free process similar to spinodal decomposition [5]. This type of spontaneous
breakdown is seen in our phase-field models when the voltage sweep is conducted slowly
enough such that infinitesimal inhomogeneities in the polarization amplified into a large
amplitude polarization waves as predicted by the previous stability analysis. In this case,
negative capacitance ceases to be observed as the capacitance of the ferroelectric is again
dominated by localized domain wall motion instead of a global, coherent switching process
through P = 0. An intermediate state generated by the spinodal breakdown mechanism
for a long-wavelength polarization wave is shown in Fig. 7.8. In this case, absolute voltage
amplification, corresponding to a negative voltage across the ferroelectric, does not occur.
However, it is clear from Fig. 7.7 that in during the spinodal transition dQ/dV is higher
than for the dielectric alone, giving differential voltage amplification.
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Figure 7.7: Hysteresis loop resulting from domain formation through spinodal breakdown
without defects. The steep transition regions are accompanied by a sudden decrease in the
free energy of the system, resulting in irreversibility.

Figure 7.8: Stabilization of a long wavelength polarization waves as domains from spinodal
breakdown
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7.7 Implications for NC-FET devices

In order to have low-hysteresis enhancement of capacitance for MOSFET operation, we
must remain close to the single domain state as in our fast transient case. In the spinodal
breakdown case, we observe regions of the hysteresis loop that show a rapid increase in charge
for a small change in potential. It is very important not to confuse these transitions with those
predicted by a single domain theory of negative capacitance even though they may indicate
a sharp transition. In the single domain model, the free energy varies continuously with the
polarization. When the ferroelectric breaks into domains via the spinodal mechanism, there
is a substantial, immediate change in free energy because the multidomain state with absolute
local polarization |P | ≈ PS is strongly energetically preferable over the single domain state
where |P | � PS absent a huge domain wall energy, where PS is the spontaneous polarization.
The domain wall energy densities required to stabilize the negative capacitance states would
have to be much higher than those required to stabilize a simple capacitor in a single domain
state because of the large energetic penalty of being so far from the stable spontaneous
polarization.
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Figure 7.9: Hysteresis loop from incomplete poling after spinodal breakdown

The discontinuity in free energy at this transition implies thermodynamic irreversibility,
meaning that to return to the single domain state require traversing a different trajectory
in the configuration space of the system. This invariably leads to hysteretic behavior as in
Fig. 7.9, where the system underwent spinodal decomposition and the voltage was swept
such that the system remained in the multidomain state. The implication for transistors
is that if ferroelectric breaks into domains through the proposed spontaneous, barrier-free
mechanism, it may be possible to turn the device on with a subthreshold slope steeper than
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60 mV/decade when this irreversible transition occurs, but it will not be possible to simply
turn the device off by slightly decreasing the voltage.

7.8 Conclusion

Negative capacitance can be suppressed through the formation of domains. To observe
negative capacitance experimentally, it is thus critical to have very high quality films free
of defects which promote domain nucleation or a very thin film where the dynamics of the
ferroelectric are more locally coupled to the dielectric than is predicted from our model where
charge is averaged across the ferroelectric. More experimental work is needed to understand
the kinetics of the formation of domains through the barrier-free spinodal decomposition
mechanism. If such a mechanism were to be experimentally confirmed to be rapid, it would
be highly challenging to stabilize a large-area, thick ferroelectric in the negative capacitance
region such that a less than 60 mV/decade subthreshold swing could be achieved without
significant hysteresis in an NC-FET.

Finally, it may be possible to achieve low-hysteresis negative capacitance in other materi-
als more recently under investigation for NC-FET applications, such as ferroelectric HfZrO2,
which has a lower spontaneous polarization and a smaller energetic barrier for switching, than
the PTO we examined in this chapter. HfZrO2 can also be grown at very small thicknesses

with atomic layer deposition (ALD) directly on silicon, which may alleviate the “averaging”
effect of the metal plate boundary conditions we have considered.
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Chapter 8

Multidomain Phase-Field Modeling of
Negative Capacitance Switching
Transients

In this chapter, we demonstrate that continuum phase-field simulations show how a multido-
main ferroelectric capacitor in series with a resistor can exhibit a transient response in which
the ferroelectric behaves as a negative capacitor. We show that accelerating domain growth
leads to negative capacitance and this happens even when there is no initial switching of the
domains. The observed behavior is in close agreement with experimental results of negative
capacitance transients seen recently in a number of ferroelectric material systems.

8.1 Introduction

In previous chapters, we discussed how negative capacitance (NC) has been proposed as
a way to overcome the Boltzmann limit for subthreshold swing in a field-effect transistor
[116]. Recently, transients corresponding to a negative capacitance have been observed in
an experimental system by connecting a resistor in series with a ferroelectric capacitor [72,
75, 57]. Other experiments have shown clear evidence of an NC effect from ferroelectric
layers in a ferroelectric-dielectric superlattice as measured by small signal capacitance [71,
44]. Another recent study correlated similar experimental results with atomistic Monte-
Carlo simulations for such superlattices [145]. In addition, a number of recent papers have
demonstrated < 60 mV/decade subthreshold swing in transistors at room temperature [143,
82, 84, 73, 67, 66, 103, 95].

In this chapter, we address the question of how multidomain ferroelectricity relates to the
viability of negative capacitance [18, 145], specifically analyzing the direct measurement of
negative capacitance transients that were observed in single crystal ferroelectric capacitors
[72]. The experimental set up is shown in Fig. 8.1 where a voltage source is connected to
a series combination of a resistor and a ferroelectric capacitor. Experimental measurements
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Figure 8.1: Series Resistor Circuit Model. Here the capacitor CFE is a ferroelectric capacitor.
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Figure 8.2: (a) The experimental data from Khan et al. [72]. (b) Landau-Khalatnikov model
for a ferroelectric in series with a resistor. While the dVFE/dt < 0 behavior as seen in the
experiment is replicated, the long flat region of the transient is not present. Additionally,
the voltage across the ferroelectric can become negative resulting in the voltage across the
resistor becoming larger than the source voltage Vapp.

[72] show that when a voltage is applied to this series combination, the voltage across the
ferroelectric,VF decreases during some parts of the switching transient, even though the
charge, QF is itself increasing. This leads to a situation where dQF/dVF < 0, exhibiting
negative capacitance. Fig. 8.2(a) shows a typical experimental trace of this phenomenon.

Our objective here is go beyond the traditional practice of using a single-domain Landau-
Khalatnikov equation [81] and investigate how the multidomain nature of the ferroelectric
is expected to affect the negative capacitance behavior. For comparison, Fig. 8.2(b) shows
a single-domain calculation corresponding to experiment. While the single-domain model
definitively predicts the negative capacitance behavior qualitatively, the lack of similarity
between the experimental and modeling results indicates that the multidomain nature of
the capacitors is playing a significant role in the observed behavior. In addition, given
that the capacitors used in the experiment have at least a 20 µm ×20 µm footprint area,
a multidomain model is more realistic. Motivated by these observations, we have used a
three-dimensional phase field model to analyze the experiment.
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8.2 Model

Time-Dependent Ginzburg-Landau Dynamics

To describe the dynamics of a ferroelectric capacitor with spatially inhomogeneous polariza-
tion ~P , we use the time-dependent Ginzburg-Landau (TDGL) equation [21]:

δ ~P

δt
= −LδF

δ ~P
= −LδFlocal + δFwall + δFelec

δ ~P
(8.1)

This equation is the gradient flow of the Ginzburg-Landau free energy functional for fer-
roelectrics, which includes the local Landau-Devonshire energy and a gradient term corre-
sponding to domain walls. Mathematically, these terms of the free energy functional can be
expressed for a ferroelectric as:

Flocal =

∫
Ω

[α1

(
P 2
x + P 2

y + P 2
z

)
(8.2)

+ α11

(
P 4
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2
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z P
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+ ...] dΩ

Fwall =

∫
Ω

G11(P ′x,x + P ′x,y + P ′x,z + P ′y,x + P ′y,y (8.3)

+ P ′y,z + P ′z,x + P ′z,y + P ′z,z) dΩ

Felec =

∫
Ω

− ~E · ~P dΩ (8.4)

where the α values are Landau-Devonshire free energy coefficients. The full expression of
local free energy density is taken from [112] and includes terms up sixth order for polarization

in PbTiO3. G11 is related to the domain wall energy density, ~E is the electric field, and L is
a parameter with units of resistance by which the time scale is normalized. The Felec term
of the free energy corresponds to the interaction with an externally applied electric field,
which will be derived in the next section for a series combination of a ferroelectric capacitor
and a resistor. For the purposes of this work, we have ignored long-range elastic interactions
as they are not relevant to the physics that give negative capacitance transients, but they
could be included in a future work focusing on more quantitative predictions.

When a resistor is added to the simulation, the equations must be reformulated into a
differential-algebraic equation where δP

δt
is now implicit. This is a key point to remember when

simulating such a system and has significant impact on overall behavior of the simulation as
described in the following. In simulations without an external resistor, the electric field can
be calculated by solving Poisson’s equation within the ferroelectric with the voltages at the
top and bottom contacts set by the specified external voltage. When the resistor is added,
the ferroelectric contact voltage becomes a function of both the external source voltage and
the current flowing through the circuit. The voltage across the ferroelectric capacitor shown
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in Fig. 8.1 can be calculated as:

VFE = Vapp −RIFE = −R
∫

Ω

dPz
dt

dΩ (8.5)

for a ferroelectric where switching occurs along the z-axis. It can now be seen that the local
rate of change in polarization anywhere in the system can affect the contact voltage, which
affects the global dynamics of the ferroelectric. To solve the resulting implicit form of the
TDGL equation in which the ferroelectric current and voltage are self-consistent, we used
the IDA solver from the Sundials package [55].

Defects are added to the simulation in one of two different ways. In the first method,
defects are represented as regions where the polarization is fixed to a particular orientation
and is not allowed to change throughout the simulation. Such defects resemble ‘pinned
defects’ and the switching of the ferroelectric happens simply by domain wall growth from
these defects. The second method is to model defects as regions with a lower coercive field
than the rest of the ferroelectric. This is done by reducing the the value of the Landau
coefficient α1 to some fraction of its bulk value. For this case, the defect regions will switch
first when a field is applied and domains will grow from those defect regions. For this work,
a value of α1,defect = 0.2α1,bulk was chosen. The main difference between the two methods is
that in the first case, there is no initial switching of the domains, rather the applied voltage
results in the growth of oppositely polarized domains from the pinned defects; by contrast
for the second method, there is an initial switching of the domains at the defect points, and
subsequently there is growth of those switched domains.

8.3 Results and Discussion

Our simulated structure consists of a PbTiO3 ferroelectric bar that is 75 nm long, 30 nm wide,
and 15 nm thick. Initially, the polarization is oriented in the upward direction everywhere. A
3 nm × 3 nm × 3 nm defect is included at the center of the end of the bar as is illustrated in
Fig. 8.3(a). A voltage step with a magnitude of 2.3 V is applied to switch the ferroelectric.
The voltage across the ferroelectric is shown in Fig. 8.4.

For both the low-coercivity defect as well as the pinned defect, an NC transient is seen
that resembles what is seen experimentally. The transient appears when the domain growth
rate is accelerating. As can be seen in Fig. 8.3(b), the domain surface area, and hence
growth rate, is proportional to the square of the radius the domain has propagated from the
defect. Assuming a constant domain wall velocity, it is apparent that domain growth will
accelerate. During this accelerating growth, the current through (and the voltage across) the
resistor will increase, thus the voltage across the ferroelectric capacitor will decrease. This
decrease in voltage can be interpreted as a negative capacitance. A secondary effect of the
reduced voltage across the ferroelectric is that the switching takes place at a slightly slower
rate due to the lower electric field.

As a greater volume of the ferroelectric switches to the orientation of the new domain,
the effective domain wall area saturates as in Fig. 8.3(c). At this point voltage will remain
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relatively constant across the ferroelectric. Eventually, all of the ferroelectric will be switched
to the final polarization orientation as in Fig. 8.3(d), and the current will go to zero with
ferroelectric voltage now equal to the source voltage.

It is interesting to note that both the pinned and the low-coercivity defect models give
qualitatively similar results and that the microscopic physics of the domain nucleation center
is fairly unimportant in determining the overall switching characteristics. Therefore, the
“correct” defect model would be difficult to determine directly from looking at ferroelectric
switching data. What really matters in our simulations is the rate at which the domains
grow after the initial nucleation.

To compare our defect-mediated switching model with previous theoretical work, the
simulation was also run with defects turned off so that the ferroelectric behaves as a single
domain in accordance with the Landau-Khalatnikov equation. As seen in Fig. 8.4(c), the
behavior of the voltage is the same as a simple one-dimensional model as shown in Fig.
8.2(b).

While the bar geometry model with a single defect allows the concept of negative capaci-
tance through accelerating domain growth to be easily visualized, it is clearly not a physical
model for a large-area, thin-film ferroelectric capacitor. To demonstrate that the physics of
our negative capacitance model is not limited to such a contrived example, we ran a large
area simulation for a 300 nm × 300 nm × 15 nm ferroelectric capacitor. Within the capaci-
tor, 15 fixed polarization defects, each occupying a 1.5 nm × 1.5 nm × 1.5 nm volume, were
placed at random locations.

The voltage across the ferroelectric capacitor, VFE, is shown in Fig. 8.4(d) and the domain
structure at different points in time is shown in Fig. 8.5. As with the simplified geometry,
when the rate of domain growth is accelerating, the negative capacitance transient is evident.
With randomized defects, the qualitative features of the experimental NC transient are
clearly observed. There is a clear region where dQ/dV < 0, an extended region where the
voltage does not change too much indicating a mostly constant domain growth rate, and
finally a region where the ferroelectric voltage smoothly slopes up the its final value.

8.4 Conclusion

In conclusion, we have presented three-dimensional phase field simulations for a ferroelectric
capacitor connected in series with a resistor. We address two specific questions: (i) Is it
possible to obtain a negative capacitance behavior within a multidomain model and (ii) is
domain switching necessary for a negative capacitance behavior? Our results show that the
multidomain model gives excellent agreement with the experimental data. In addition, we
show that even when domains grow from pinned defects, a negative capacitance behavior
is expected, indicating, domain switching is not a precondition for negative capacitance
behavior. Our results show that the negative capacitance behavior in a multidomain model
originates from the acceleration of the domain growth. Within the picture of an activation
model, where certain external stimulus is necessary to go over the activation barrier, such
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(a) t = 0 (b) t = 1000

(c) t = 2500 (d) t = 5000

Figure 8.3: Internal state of the ferroelectric with a pinned defect during switching. (a)
Initial state before any voltage is applied. (b) During the NC transient, the rate of domain
growth is accelerating because of the increasing surface area of the domain. This results
in an increasing switching current and therefore an increasing voltage dropped across the
resistor. (c) When the domain growth rate has stabilized, the switching current remains
approximately constant. (d) Switching is complete, and the ferroelectric polarization has a
uniform orientation. Red indicates a domain with polarization along the z-axis pointing up,
while blue indicates down.

acceleration is identifiable with the kinetic energy gained while ’rolling down the hill’ from
the activation barrier, in close resemblance to a double-well energy landscape that signifies
a two-level system, such as a ferroelectric.
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Figure 8.4: (a-c) Comparison of different defect models for the bar geometry ferroelectric
with a single defect with the Landau-Khalatnikov solution. (a) The low-coercivity defect
has α1 = 0.2α1,bulk. Markers along the curve correspond to the time-steps shown in Fig.
8.3. (b) The pinned defect has orientation rotated 180◦ to that of the bulk. Because the
difference between initial switching current and saturation switching current for the pinned
defect case is smaller than the difference between the initial nucleation current and saturation
switching current for the low-coercivity case, the pinned defect case exhibits a smaller NC
transient in terms of voltage magnitude. Markers along the curve indicate the time-steps
shown in Fig. 8.3. (c) The intrinsic, no defect case is for a ferroelectric which switches
uniformly as a single domain. This is equivalent to the solution of the Landau-Khalatnikov
(LK) equation. (d) For a large area capacitor with 15 randomly positioned pinned defects,
the results are qualitatively very similar to experiment. Markers along the curve correspond
to the time-steps shown in Fig. 8.5.
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(a) t = 0 (b) t = 1500

(c) t = 3000 (d) t = 4500

Figure 8.5: Switching a large-area capacitor with random defects. (a) 15 defects are randomly
placed in the ferroelectric oriented down. These defects are mostly inside the ferroelectric and
are therefore occluded because only surface polarization is shown. (b) Negative capacitance
is observed as the growth rate increases. (c) The domain growth rate has saturated, and
the NC transient stops. (d) As more of the volume of the ferroelectric switches, the effective
domain growth rate slows down and voltage rises across the ferroelectric as in a dielectric
capacitor.
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Chapter 9

Conclusion and Future Work

This thesis covered the development of two simulators capable of solving problems relevant
to the field of semiconductor devices. The first was BerkeleyNano3D, a quantum transport
simulator based on the non-equilibrium Green’s function formalism, built from scratch for
simulating low-dimensional semiconductor devices. The second was a phase-field simulator,
extended from our group’s previous work, capable of simulating negative capacitance within
the framework of the time-depenedent Ginzburg-Landau equation.

We have explored two phenomena that could be utilized in producing transistors that
could overcome the Boltzmann limit for subthreshold swing of 60 mV/decade: superlattice
energy filtering and ferroelectric negative capacitance. Our chevron GNR simulations are,
to the best of our knowledge, the first results on steep-slope superlattice FET devices that
rigorously take into account the effects of phonon scattering. The phase-field models for
negative capacitance go far beyond the limits of the single-domain theory that has so far
been the standard for modeling this phenomenon.

9.1 Summary of key results

The key results of this thesis are summarized as follows:

1. The quantum transport simulator BerkeleyNano3D provides an environment to study
both ballistic and dissipative transport in low-dimensional material systems, such as
graphene nanoribbons and carbon nanotubes. Simulations can be efficiently scaled
to large parallel systems. It features a finite-element based electrostatics solver that
solves the nonlinear Poisson equation for rapid convergence. The simulator was built
over the course of several years and provides a foundation for future work.

2. The hierarchical Schur complement (HSC) algorithm can be used to solve for the
retarded Green’s function Gr and the electron correlation function Gn with fewer op-
erations than the standard recursive Green’s function algorithm. Compared with the
implementation in literature [54], our version required no modification to the external
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graph partitioning library, but we ultimately found that this algorithm was relatively
impractical for simulating the low-dimensional structures that we were interested in.

3. Our simulator is capable of simulating CNT- and GNR-based devices with the ability
to handle a wide range of geometries, including GNR heterojunctions. These het-
erojunctions may show interesting transport properties including negative differential
resistance and tunneling effects.

4. Chevron graphene nanoribbons (CGNRs), assembled with bottom-up chemical synthe-
sis techniques, are a monolithic superlattice that can be utilized in several interesting
ways because of the presence of minibands above the conduction band edge. Ballistic
calculations reveal that field-effect transistors fabricated from CGNRs could have a
subthreshold swing as low as 6 mV/decade. These devices could also exhibit nega-
tive differential resistance with respect to the drain voltage with a peak-to-valley ratio
(PVR) in excess of 4800.

5. The performance of CGNR devices is, however, degraded upon the inclusion of optical
phonon scattering. Dissipative transport calculations reveal that it should be possible
to achieve a subthreshold swing less than 60 mV/decade along with a PVR ≈ 3 even
in the presence of phonon scattering.

6. While CGNR devices can exhibit steep-slope switching, the negative differential resis-
tance property significantly limits the maximum possible logic voltage and the ability
to use CGNR superlattice FETs as a drop-in replacement for traditional silicon-based
CMOS technology.

7. A phase-field simulator, based on the previous work of K. Ashraf [7], has been exten-
sively developed with new features to support simulation of ferroelectric negative capac-
itance. These features include a modular electrostatics solver with support for coupled
external resistors and capacitors, interfaces to fast linear solvers and time-steppers,
several defect models, and flexible initial condition generators including Voronoi tes-
sellation.

8. Phase-field models predict that negative capacitance states with uniform polarization
near P = 0, which are predicted to be stabilized by an external dielectric capacitor in
a single domain model, are unstable and will spontaneously undergo a transition into
a multidomain state via a mechanism similar to spinodal decomposition. This was
originally predicted by Cano and Jiménez [17] using a one-dimensional ferroelectric
model. Our work demonstrates this effect in a three-dimensional simulation, derives
the stability criterion for a discretized model, and predicts a modified hysteresis loop.
The validity of these results may not extend to very thin ferroelectric films grown
directly on semiconductors because of the continuum nature of phase-field models.

9. Experimentally observed negative capacitance transients for a ferroelectric in series
with a resistor can be explained through domain growth in the ferroelectric with a
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variable domain growth rate. This model agrees well with the experimental voltage
transient waveform.

9.2 Future work

Quantum transport simulator development

Several features could be added to BerkeleyNano3D to make it more suitable for solving even
larger problems:

Adaptive integration

The most useful improvement to the BerkeleyNano3D would arguably support for adaptive
integration. The current implementation uses a simple Riemann sum to add up current
and charge over a grid of energy points. This is simple to implement and easy to parallelize.
Quadrature rules, such as Gauss-Kronrod quadrature [77] give some estimate of the accuracy
of the quadrature and can suggest when the number of quadrature points over an interval
should be refined to converge to some tolerance. Some changes to the code to enable this
would be necessary. Many sections of code, particularly in the ParallelIntegrator class
assume that the positions of the quadrature point are known before starting the transport
calculation. Therefore, some synchronization and distribution must developed to allow new
energy points to be dispatched to the MPI processes to refine certain intervals where the
error bounds must be improved.

Parallel linear algebra and efficient algorithms

Currently parallelism in BerkeleyNano3D is limited by the extent to which the problem can
be subdivided into independent energy and k-points. While multithreaded linear algebra
libraries, such as OpenBLAS and Intel MKL allow the use of an entire compute node to
solve to solve an individual quadrature point, very large problems, such as full simulations
of silicon FinFETs likely will require significantly more memory than what will fit in a single
compute node. In this case, the linear algebra itself must be done with a library such as
ScaLAPACK, which supports MPI parallel communication. However, rewriting the code to
support this would likely be a long and arduous undertaking.

Additionally, better algorithms for computing transport other than the recursive Green’s
function method could greatly enhance performance and scalability. We discussed the hi-
erarchical Schur complement (HSC) algorithm [54] in Chapter 3. Approximate techniques,
such as model order reduction [59] may also enable more efficient transport calculations.
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Electrostatics parallelization

One area of the code lacking significantly in parallelization is the electrostatics solver, which
is executed only on the root process. The main computational task in this part of the
simulator is the solution of a linear system Ku = b where K is a sparse, positive definite
matrix. There are two common algorithms used to solve problems of this type [32]. The
first is conjugate gradient (CG), an iterative Krylov subspace method whose performance
depends on fast sparse matrix-vector multiplication. The second is Cholesky decomposition
(LDLT factorization), a direct method which factors the matrix into a lower triangular, a
diagonal, and an upper triangular matrix. Currently the CG solver from the Eigen library
[51] is used because Eigen is already being used, and this reduces the number of external
dependencies. This solver offers reasonable speed, especially when used with OpenMP, but
it can still only be run on a single MPI process. This is adequate for FEM problems of size
we are currently solving (∼ 104 to ∼ 105 unknowns), but may become a bottleneck for very
large (∼ 107 unknowns) FEM problems with very dense meshes. In this case, it may be
necessary to use a fully parallel sparse solver, such as the Kyrlov subspace solvers provided
by PETSc [10] or Trilinos [53], or a direct parallel solver, such as SuperLU [87] or MUMPS
[2].

First-principles electronic structure

The simulations on graphene nanoribbons in this thesis were done with a pz tight-binding
Hamiltonian. Some of the armchair GNR and heterostructure results were validated against
the more sophisticated tight-binding model of Boykin et al., which adds two extra d-orbitals
to give more accurate estimates of the bandgaps of AGNRs [14]. While these tight-binding
models are excellent for simulating carbon-only GNRs, doping can only be simulated by
adding a background charge to the Poisson solver that results in the equilibrium Fermi level
in the ribbon floating to a level consistent with the doping.

GNRs with site-specific substitutional doping have been synthesized by Cloke et al. with
boron and nitrogen dopants [26]. A possible way to rigorously model these ribbons would
be to use ab-initio calculations and extract a tight-binding Hamiltonian in a localized basis
set. Approaches to this include directly fitting Slater-Koster overlap integrals to a density
functional theory (DFT) bandstructure as done by Zahid et al. for MoS2, or using a tool like

Wannier90 [99] to extract a maximally-localized Wannier function basis for wavefunctions
from a DFT program, such as Quantum Espresso [46]. Caution should be used with this
approach, however, as the DFT bandgaps for graphene nanoribbons are usually significantly
smaller than those calculated when the GW correction is added [122, 136].

Optimization of GNR heterojunctions

The chevron GNR we studied in Chapter 5 was chosen as a topic for research because it had
actually been experimentally synthesized. Going forward, the choice of graphene nanoribbon
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to use for superlattice FET structures will likely have to be optimized before a working device
exhibiting negative differential resistance can be fabricated. While this ribbon has a bandgap
of 1.59 eV in our tight-binding calculations, DFT+GW calculations predict that it should
have a much higher bandgap of around 3.74 eV [133].

In practice, ribbons will have to chosen from a complex design space considering the
following criteria:

1. Bandgap. Ribbons will likely need to have a small bandgap (< 2 eV) in order for a
useful FET device to be made.

2. Miniband width. The first miniband must be sufficiently wide to get a reasonable
range of voltage operation without being too wide to prevent NDR within that voltage
range.

3. Miniband gap width. The gap between minibands should be wide enough that band-
to-band tunneling from the first to second minibands does not substantially impact
the performance of the device.

4. Feasibility of synthesis. Some ribbons are more easily synthesized than others.

5. Ability to form heterojunctions. If it were possible to form a heterojunction such that
high energy electrons were only filtered at the source, it may be possible to make
devices closer to those described by Lam et al. [80] that exhibit steep-slope behavior
without the negative differential resistance that makes our devices impractical as drop-
in replacements for current CMOS technology.

Topological properties of GNR heterojunctions

Recent work by Cao et al. studied the topology of junctions between AGNRs of different
widths [19]. This work found that depending on the alignment of the AGNR segments at the
junction, topological edge states can be present dependent on whether the two sides of the
junction are topologically equivalent or inequivalent. This could have interesting applications
both for spintronic devices and optimizing transport in the FET-like device described in this
thesis.

Phase-field simulator development

Several enhancements to the phase-field simulation code would greatly enhance the ability
to simulate ferroelectric negative capacitance devices.

GPU support

The linear solvers used by the elasticity and electrostatics modules of the simulator are
from the Paralution package [78]. Currently, we are only using the multicore CPU solvers
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parallelized through OpenMP, but Paralution also offers CUDA/OpenCL solvers that can
run on graphics processing units (GPUs). This was never fully explored due to lack of
available hardware, but it may be possible to get significant performance improvements for
large problems by switching to GPU-based solvers.

Finite element implementation with adaptive mesh refinement

Efficient phase-field simulations of very large ferroelectric systems may be possible through
using the finite element method (FEM). A key advantage of using FEM over finite difference
solvers is the ability to have lower mesh density far away from regions of interest. This
is somewhat problematic for our ferroelectric simulations because the domain walls move
during the simulation and the regions of interest change over time. A possible solution to
this would be to use adaptive mesh refinement. A finite element implementation of phase-
field simulation for ferroelectrics has previously been done by the Ferret application [94]
based on the open-source MOOSE multiphysics package [127].

Full-device negative capacitance FET simulations

Currently the phase-field simulator only simulates what happens within the ferroelectric with
any degree of sophistication. It should be possible to model a negative capacitance field-effect
transistor (NC-FET) by coupling the phase-field model to a semiconductor transport solver
through a common electrostatics solver. Some preliminary attempt was made to do this
through coupling a simplified quantum transport simulator, but ultimately the performance
of such a model was not good enough to warrant further work. Another approach that
was mentioned in the electrostatics solver section of this chapter was to approximate the
equilibrium charge in the semiconductor using just the density of states and the potential.
While this is more computationally efficient, it can only simulate equilibrium conditions.

The best way to accomplish this would be to couple the electrostatics solver with a
drift-diffusion or hydrodynamic transport solver such as those described by Vasileska and
Goodnick [131]. This could provide a realistic model for an NC-FET that takes into account
the multidomain nature of the ferroelectric in a way only limited by the validity of the
phase-field model. This could be done through extension of an existing simulator, such as
those sold by Sentaurus or Silvaco, or through writing a new, simplified simulation code.
It may also be possible to build a drift-diffusion or hydrodynamic solver by extending an
open-source computational fluid dynamics (CFD) package, such as OpenFOAM [65], to solve
semiconductor transport equations, which are very similar in form to CFD equations.
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