
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Exporting and utilizing database interfaces on the web

Permalink
https://escholarship.org/uc/item/2xm3w3c0

Author
Petropoulos, Michail

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2xm3w3c0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Exporting and Utilizing Database Interfaces on the Web

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Michail Petropoulos

Committee in charge:

Professor Yannis Papakonstantinou, Chair
Professor Alin Deutsch
Professor Dimitris N. Politis
Professor Vassilis J. Tsotras
Professor Victor Vianu
Professor Geoffrey M. Voelker

2006

Copyright

Michail Petropoulos, 2006

All rights reserved.

Dedicated to my father, Athanasios Petropoulos

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

Acknowledgements . x

Vita, Publications, and Fields of Study xii

Abstract . xiii

I Introduction . 1
A. Interactive Query Formulation Interfaces 4
B. Data-Oriented Web Service Interfaces 8
C. Web-based Query Form and Report Interfaces 10
D. Thesis Overview . 13

II Interactive Query Formulation Interfaces 15
A. Background . 15

1. Contributions . 20
B. Definitions and Notations . 22
C. Query Building Interfaces . 23
D. CLIDE Interaction in the Presence of Limited Access Methods . . . 25

1. Specification of CLIDE’s Color Scheme 29

III The CLIDE Back-End . 33
A. Architecture . 33
B. Closest Feasible Queries Algorithm 35
C. Color Algorithm . 39
D. Parameters . 41
E. Implementation . 44
F. Experimental Evaluation . 48
G. Discussion and Related Work . 52
H. Proofs . 53

IV Data-Oriented Web Service Interfaces 55
A. Background . 55

1. Example . 57
B. Specifying Queries and Query Sets 59

1. QSSL Specifications . 59

v

2. Reasoning about Data Services 63
3. WSDL and XML Syntax . 64

C. QSSL Extensions . 66
D. Related Work . 66

V Graphical Query Interfaces for Semistructured Data 69
A. Background . 69
B. System Overview and Architecture 71
C. RelatedWork . 73

1. Novel Contributions of QURSED 79
D. Data Model, XML Schema and Expanded Schema Tree 81

1. Aliasing and EST Expansion . 84
E. Example QFR and End-User Experience 85

VI Tree Query Language and Query Set Specifications 87
A. Tree Query Language (TQL) . 87

1. Condition Tree . 88
2. Result Tree . 93

B. Query Set Specification . 95
C. Query Formulation Process . 98
D. Dependencies . 101

VII Editing Query Set Specifications . 105
A. Architecture . 105
B. Building Condition Tree Generators 107

1. Automatic Introduction of Structural Disjunction 108
2. Eliminating Redundancies . 112

C. Building Dependencies . 114
D. Building Result Tree Generators . 115

1. Schema-Driven Construction of Result Tree Generator 115
2. Template-Driven Construction of Result Tree Generator 120

E. Building Result Boolean Expressions 123
F. Dynamic Projection Functionality 124

VIII Conclusions and Future Work . 127
A. Conclusions . 127
B. Future Work . 129

A WSDL Specification of a Data Service 131

B QSSX Syntax . 133

C Result XML Schema . 138

D TPX Query . 140

vi

E XML Schema for TPX Syntax . 142

F TQL2XQuery Algorithm . 145

G GROUPBY Proposal . 152

Bibliography . 154

vii

LIST OF FIGURES

I.1 Data Integration and Publishing Architecture 2
I.2 Thesis Contributions . 3
I.3 CLIDE Front-End . 5
I.4 Data Service Architecture . 10
I.5 Example QFR Interface . 11
I.6 The QURSED Editor . 12

II.1 Service-Oriented Architecture . 16
II.2 Source Schemas and Web Services 18
II.3 QBE-Like Query Building Interfaces 24
II.4 Snapshots of an Interaction Session 27
II.5 Part of an Interaction Graph . 30

III.1 CLIDE Architecture . 35
III.2 MiniCon Optimizations and Extensions 45
III.3 CLIDE’s response time . 51

IV.1 Data Service Architecture . 57
IV.2 Airline Example . 58
IV.3 Example Derivation . 62
IV.4 Family Tree Recursive Example 63

V.1 The QURSED System Architecture 71
V.2 Example Data Set, XML Schema and Expanded Schema Tree . . 82
V.3 Example QFR Interface . 85

VI.1 TQL Query Corresponding to Figure V.3 88
VI.2 Conjunctive Condition Trees . 90
VI.3 OR-Removal Replacement Rules 90
VI.4 Resulting loto for Bindings of Table VI.1 95
VI.5 Query Set Specification . 96
VI.6 Query Formulation Process . 99
VI.7 Condition Tree Generator and Dependencies Graph 101
VI.8 Dependencies on the Query Form Page 102

VII.1 QURSED Editor Architecture . 106
VII.2 Building a Condition Fragment 107
VII.3 “OR Node Introduction” Rules 111
VII.4 Example of the ConstructCTG Algorithm 111
VII.5 “Node Elimination” Rule . 113
VII.6 Eliminating Redundant Nodes on the CTG 113
VII.7 Building Dependencies . 114
VII.8 Schema-Driven Constructed Report Page 115

viii

VII.9 Selecting Elements Nodes and Constructing Template Report Page 116
VII.10 Automatically Generated Result Fragment, RTG and Template

Report Page . 117
VII.11 “OR Node Introduction” Rules for Result Fragment fR 120
VII.12 Editing the Template Report Page 120
VII.13 Performing Element and Group-By Mappings on the Template

Report Page . 121
VII.14 Boolean Expressions for Dynamic Projection 125

ix

ACKNOWLEDGEMENTS

The people acknowledged below had significant impact on the work pre-

sented in this thesis and on the way I evolved as a person during my PhD studies.

They carry unique qualities that I try to inherit and pass to others. I could never

imagine the wealth of ideas and visions they exposed me to when I started this

journey. I am grateful for their generosity.

First and foremost, I would like to thank my advisor, Yannis Papakon-

stantinou, for giving me the opportunity to experience so many aspects of academic

and professional life. From research, presentation skills and teaching at UCSD, to

systems design, collaborations and business plans during the Enosys years, I en-

joyed every bit of it. Not to mention our lengthy discussions on politics, history,

music, movies and, of course, soccer. Moreover, he brought me in contact with

other top researchers, who contributed in my progress and helped broaden my

perspective of database research.

I thank all my coauthors for their patience and the time they devoted to

teach me how research is conducted. First, Vasilis Vassalos, for helping me in my

first professional and academic steps and for being a good friend. Alin Deutsch,

for his unparallel enthusiasm, clarity of mind and knowledge depth, and for his

encouragement during critical times. Vagelis Hristidis, for being an inspirational

colleague, and for listening to my complaints first and then making fun of them.

Yannis Katsis, for his insightful comments and analytical skills that have been

of great value to our projects. Also, I would like to thank Victor Vianu and all

students of the database group at UCSD, for creating such a stimulating research

environment.

Phil Bernstein’s support has been of great importance to me on many

different levels. I thank him for giving me the opportunity to experience the

environment of Microsoft Research and meet many important people, for his con-

tribution during the job search period and, finally, for his support during a difficult

period of my life. Also, I would like to thank Juliana Freire and Prasan Roy for

x

our fruitful collaboration during my internship at Bell Labs, and Jussi Myllymaki,

Paul Brown and Berthold Reinwald for my internship at IBM Almaden. Finally,

the support from NSF and the San Diego Supercomputer Center during my years

at UCSD is gratefully acknowledged.

Special thanks go to my friends Yiota Bafaki and Vasilis Stathopoulos

for supporting me all these years from 10,000 miles away. To Dimitris Giannakos,

for enabling this journey, for showing me the benefits of persistence, for helping

me break the deadlock many years ago when nobody else could, and for adding so

many dimensions to my life. I will keep reminding him of his impact in the years

to come. To my mother Evaggelia and my sister Xenia, for their unconditional

support and for filling my life with joy. And to my late father, for never giving

up, even under extreme circumstances, always aiming for the impossible and for

sacrificing personal benefit for the benefit of others.

xi

VITA

1998 B.S. in Electronic and Computer Engineering,
Technical University of Crete, Greece

2000 M.S. in Computer Science,
University of California, San Diego

2005 Ph.D. in Computer Science,
University of California, San Diego

PUBLICATIONS

M. Petropoulos, Y. Papakonstantinou, V. Vassalos: Graphical Query Interfaces for
Semistructured Data: The QURSED System. In ACM Transactions on Internet
Technology (TOIT), 5(2), 2005.

P. A. Bernstein, S. Melnik, M. Petropoulos, C. Quix: Industrial-Strength Schema
Matching. In ACM SIGMOD Record, 33(4), 2004.

M. Petropoulos, A. Deutsch, Y. Papakonstantinou: Query Set Specification Lan-
guage (QSSL). In Sixth International Workshop on the Web and Databases (WebDB),
2003.

I. Zaslavsky, A. Memon, M. Petropoulos, C. Baru: Online Querying of Heteroge-
neous Distributed Spatial Data on a Grid. In Third International Symposium on
Digital Earth, 2003.

Y. Papakonstantinou, M. Petropoulos, V. Vassalos: Generating Query Forms and
Reports for Semistructured Data: The QURSED Editor. In Ninth Panhellenic
Conference on Informatics (PCI), 2003.

Y. Papakonstantinou, M. Petropoulos, V. Vassalos: QURSED: Querying and Re-
porting SEmistructured Data. In ACM International Conference on Management
of Data (SIGMOD), 2002.

V. Hristidis, M. Petropoulos: Semantic Caching of XML Databases. In Fifth
International Workshop on the Web and Databases (WebDB), 2002.

M. Petropoulos, Y. Papakonstantinou, V. Vassalos: Building XML Query Forms
and Reports with XQForms. In Computer Networks Journal, Special Issue on
XML, Elsevier Science, 39(5), 2002.

M. Petropoulos, V. Vassalos, Y. Papakonstantinou: 10. XML Query Forms (XQ-
Forms): Declarative Specification of XML Query Interfaces. In Tenth International
World Wide Web Conference (WWW10), 2001.

xii

ABSTRACT OF THE DISSERTATION

Exporting and Utilizing Database Interfaces on the Web

by

Michail Petropoulos

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Database interfaces define the way database functionality is exported to

and utilized by end users, developers and programs. Publishing, integration and

service-oriented architectures demand capable interfaces and a higher degree of

database functionality utilization in order to realize their potential.

In service-oriented architectures, applications need to provide integrated

access to the data of multiple sources. Such applications typically support only

a restricted set of queries over the schema they export, because the participating

information sources contribute limited content and limited access methods. In

prior work, these limited access methods have often been specified using a set of

parameterized views, with the understanding that the integration system accepts

only queries which have an equivalent rewriting using the views. These queries

are called feasible. Infeasible queries are rejected without an explanatory feed-

back. To help a developer, who is building an integration application, avoid a

frustrating trial-and-error cycle, I introduced the CLIDE query formulation inter-

face, which extends the QBE-like query builder of Microsoft’s SQL Server with a

coloring scheme that guides the user toward formulating feasible queries. CLIDE

xiii

provides guarantees that the suggested query edit actions are complete (i.e. each

feasible query can be built by following only suggestions), rapidly convergent (the

suggestions are tuned to lead to the closest feasible completions of the query) and

suitably summarized (at each interaction step, only a minimal number of actions

are suggested).

In addition, applications need to publish powerful interfaces to end users

who query and browse the underlying information sources. Such interfaces require

extensive coding and are expensive to maintain. I developed the QURSED system,

which semi-automatically generates web-based query form and report pages for

semistructured XML data. QURSED drives the generation of the pages from

the XML Schema describing the structure of the underlying data and offers to

developers an authoring tool that does not require any coding. The resulting

forms and reports encode large sets of parameterized queries and are powerful

in the sense that heterogeneity, nesting and optionality are tackled declaratively.

The system reduces the cost of developing and maintaining web applications by

decoupling the query aspects from the visual ones.

xiv

Chapter I

Introduction

The context of this thesis is large-scale data integration and publishing

systems. The architecture envisioned by database researchers for such systems is

shown in Figure I.1. In the Application Domain, developers build applications

that integrate several sources by making use of their exported content and access

methods. Portals are the prominent examples at this level, such as CNet.com and

PCWorld.com. In the Source Domain, shown at the bottom of the stack, sources

export structure, content and access methods using web services. Typically, only a

limited set of access methods are exported for business reasons, security constraints

or technology limitations. Access methods are commonly expressed as (parameter-

ized) database views of the sources’ schema. For example, a Dell source provides

Computers only if the desired cpu is given. Similarly, a Cisco source provides

Routers if the rate is specified. The Source Domain has greatly benefited by the

engineering advances in the popular area of service-oriented architectures [82]. For

our purposes, we focus on data-oriented services embedded within standard WSDL

web services [15].

The large number of sources and the large number of access methods in-

herently introduce heterogeneity in data formats, vocabularies and access methods.

These phenomena prevents developers from having a unified view and access of the

underlying data sources. The developer would like to acquire the information by

1

2

Source
Domain

Web
Domain

End User

!

Application
Domain

Integration
Domain

"
Application

Data
Source

Data
Source

Mediator
Integrated
Schema

Developer

!

Integration
Engineer

!

Source
Owner

!

Application

Web Forms
& Reports

Source
Schema

�

"

Web
Service

Web
Service

Web
Service

Source
Schema �

� Dell Computers
� Cisco Routers

� Dell Computers by CPU
� Cisco Routers by Rate

� CNET Computer
� PCWorld Portals

Compatible Combinations
of Computers and Routers

� CNET�s Top Combinations
� PCWorld�s Product Finder

 Figure I.1: Data Integration and Publishing Architecture

issuing a declarative query against an integrated schema. Not by specifying step-

by-step with brute-force code or a workflow system how the data are to be obtained

and put together. For that reason, a mediator [19, 26, 34, 52, 83] is employed in

order to provide such a unified view.

In the Integration Domain, the integration engineer governs the process,

inspects the services exported by the sources and constructs an integrated schema

that satisfies the needs of the developers above. Through the integrated schema,

the mediator provides a virtual view of the underlying sources to the develop-

ers. For example, an integrated schema describes compatible combinations of

Computers and Routers exported by the Dell and Cisco sources. No data are

stored, as opposed to the warehousing approach adopted through the use of ETL

tools. Data are extracted from sources whenever a query is posed in an on-demand

fashion. The mediator provides source transparency analogous to physical layer

transparency in RDBMSs.

On the top-most layer, the developers need to publish information to

users that do not use or understand query languages. In the Web Domain, query

3

Source
Domain

Web
Domain

End User

!

Application
Domain

Integration
Domain

"
Application

Data
Source

Data
Source

Mediator
Integrated
Schema

Developer

!

Integration
Engineer

!

Source
Owner

!

Application

Web Forms
& Reports

Source
Schema

�

"

Web
Service

Web
Service

Web
Service

Source
Schema �

How do I query and browse
the integrated data?

What queries can the
mediator answer for me?

How do I export my
database functionality?

QURSED
Web-Based Query Interfaces

CLIDE
Query Formulation Interface

QSSL
Data-Oriented Web Services

 Figure I.2: Thesis Contributions

forms and reports are the typical interface between end-users and the underlying

information sources. Browsing and querying arbitrarily complex data is the pri-

mary functionality offered by these interfaces, such as CNet’s Top Combinations

page and PCWorld’s Product Finder page.

The information model of such architectures can be either relational,

object-oriented, XML or a combination thereof.

Extensive work appears in the literature on the query languages, query

processing, query reformulation, distributed query optimization and execution as-

pects of the integration and publishing problem [19, 26, 34, 52, 83, 46, 14]. This

body of work did not prove sufficient to solve the integration problem in its en-

tirety. The database community recognized several missing components that are

needed in the process of implementing the architecture in Figure I.1 and are crucial

to the adoption and applicability of existing works [61, 11]. Such components in-

clude descriptions of application interfaces and high-level model-driven tools that

leverage these descriptions to help develope, integrate and evolve application sys-

tems. Moreover, the unification of web and database technologies are playing an

4

important role in the design and implementation of such components, since the

web has become the default infrastructure for integration systems.

The results of this thesis drastically improve the applicability and us-

ability of existing works in a wide range of scenarios by defining declarative user-

oriented and application-oriented databases interfaces for the domains of the ar-

chitecture in Figure I.1. More specifically, this thesis makes three contributions,

shown in Figure I.2, in the Source, Application and Web Domains, respectively,

which are described in detail below.

I.A Interactive Query Formulation Interfaces

Mediators provide to the Application Domain a single point of access over

the participating sources by exporting a global schema against which application

developers formulate their queries. When the participating sources export limited

interfaces, such as web services, mediators are often capable to efficiently answer

application queries by finding a rewriting that filters and combines the results of

supported queries over the sources. An important issue that arises in such scenarios

is how to expose the capabilities of the mediators. Since limited set of queries can

be answered, application developers and users need to know what queries they

can pose against a mediator, without being aware of the participating sources or

examining their limited capabilities.

In prior work, the limited interfaces exported by the sources have often

been specified using a set of parameterized views, with the understanding that

the mediator accepts only queries which have an equivalent rewriting using the

views. These queries are called feasible. Infeasible queries are rejected without an

explanatory feedback. I introduced the CLIDE query formulation interface [63] to

help a developer, who is building an integration application, avoid a frustrating

trial-and-error cycle. CLIDE’s architecture consists of a graphical front-end and a

back-end. The front-end extends the query builder of Microsoft’s SQL Server [81],

5

Figure I.3: CLIDE Front-End

which is based on the Query-By-Example (QBE) paradigm [95], with a coloring

scheme that guides the user toward formulating feasible queries.

Figure I.3 displays CLIDE’s front-end and demonstrates the compactly-

presented guidance, which in every step of the query formulation suggests which

possible actions should, should not or may be taken in order to reach a feasible

query. An action is the inclusion of a table in the FROM clause, the formulation of a

selection condition in the WHERE clause or a projection of a column in the SELECT

clause. The example of Figure I.3 is based on a global schema which is exported

by a mediator and offers a unified view of the Dell and Cisco sources. The global

schema consists of Computers and NetCards, coming from Dell, and Routers,

coming from Cisco, and are shown on the left side of the CLIDE front-end.

The developer is formulating a query that returns Computers, NetCards

and Routers with a compatible standard. Based on the limited interfaces ex-

ported by the Dell and Cisco sources, the red flag at the bottom indicates that the

current query is infeasible and the colors indicate how to reach a feasible query,

which will be a syntactic extension of the current one.

• Yellow color indicates actions that are necessary for the formulation of a

feasible query. For example, conditioning the cpu of Computers is yellow

6

because all queries that the mediator can answer and involve the Computers

table require a given cpu.

• Blue color indicates a set of actions where at least one of them is required

to be taken in order to reach one of the next feasible queries. Notice that

one can choose among many blue options. For example, one can perform

a selection on the rate or the interface of NetCards in order to reach a

feasible query.

• Red color indicates actions that lead to unsupported queries, regardless

of what is included next. For example, conditioning the cid column of

Computers or NetCards with a constant leads to unsupported queries.

• White color indicates selections, tables and projections whose participation

in the query is optional.

Any good interface that guides the user toward some action must be

comprehensive (complete) and, at the same time, avoid overloading the user with

information at every step [59, 87]. CLIDE achieves both goals since it satisfies the

following guarantees at every step of the interaction:

1. Completeness of Suggestions: Every feasible query can be built by following

suggested actions only.

2. Summarization of Suggestions: The minimal set of actions that preserves

completeness is suggested.

3. Rapid convergence: The shortest sequence of actions from a query to any

feasible query consists of suggested actions.

Interaction sessions between the user and the CLIDE front-end are for-

malized using an Interaction Graph, which models the queries as nodes and the

actions that the user performs as edges. Consequently, the color of each action is

formally defined as a property of the set of paths that include the action and lead

7

to feasible queries. Then the above guarantees are formally expressed as graph

properties.

The CLIDE back-end faces the challenge that the coloring properties

cannot be trivially turned into an algorithm since they require the enumeration of

an infinite number of feasible queries. Note that the number of queries is infinite

for two reasons. First, there is an infinite number of constants that may be used.

We tackle this problem by considering parameterized queries (similar to JDBC’s

prepared statements) where each one stands for infinitely many queries. Still, the

number of parameterized queries is infinite, because the size of the FROM clause of

a SQL query is unlimited, which then leads to unlimited size SELECT and WHERE

clauses.

I describe a set of algorithms that find a finite set of closest feasible

queries, related to the current query, and determine the coloring by inspecting it.

For my purpose, I leverage prior algorithms and implementations for finding exact

and maximally-contained rewritings [69, 28, 73]. However, I needed to significantly

optimize and extend current implementations in order to achieve on-line perfor-

mance and to ensure that the produced maximally-contained queries are syntactic

extensions of the current query, hence enabling the color algorithm. I provide a

set of experiments that illustrate the class of queries and views CLIDE can handle,

while maintaining on-line response.

In the current version, CLIDE targets relational databases and the SQL

language, and the supported queries of the participating sources are specified by

a set of parameterized conjunctive views with equality conditions, a formalism

that has been widely used in integration scenarios. CLIDE’s modular architecture

though is capable of accommodating many scenarios which would benefit from its

approach to query building. One such scenario is data privacy enforcement. [74, 48]

allow data owners to identify the non-sensitive data they are willing to export by

means of parameterized, virtual views against the proprietary data. Data con-

sumers formulate their queries against the proprietary database as well, but their

8

queries are rejected [74] or return null values [48] if they are not feasible accord-

ing to the virtual views, which leads to a frustrating trial-and-error development

process.

I.B Data-Oriented Web Service Interfaces

In the Source Domain, database owners need an interface definition lan-

guage to export the limited access methods to their content. The popularity of

service-oriented architectures has established the Web Services Description Lan-

guage (WSDL) [15] as the default language for this purpose.

WSDL provides an XML format for describing functions published as

web services. The function signatures typically have fixed numbers of input and

output parameters. Although WSDL works well for arbitrary web services and in

the general area of application integration, the “function” paradigm is not ade-

quate when the software components behind the web services are databases. One

typically associates one function with each parameterized query but this is prob-

lematic since databases often allow a large or even infinite set of parameterized

queries over their schema. For example, the administrator of the Dell source may

want to allow any query that selects Computers and NetCards by a combination of

selection conditions on their attributes. Given that Computers and NetCards have

8 attributes combined, it is obviously impractical to specify 28 function signatures,

even in our simple example.

In addition, the function paradigm does not state explicitly either the

relationship between the input parameters and the output or the semantic con-

nections the available functions have with each other and with the underlying

database. We classify such web services as functional and we argue that they do

not have sufficient expressive power to describe structurally rich and functionally

powerful information sources, such as relational and emerging XML databases.

For example, consider the following function signatures of two WSDL-based web

9

services exported by the Dell source, and the corresponding SQL queries that are

executed when the services are called:

CheapComputers(cpu) → (Computer)* (WS 1)

SELECT DISTINCT Com.cid, Com.cpu, Com.ram, Com.price (Q1)

FROM Computers Com

WHERE Com.cpu=cpu

AND Com.price<=‘500’

NetCards(rate) → (NetCard)* (WS 2)

SELECT DISTINCT Net.cid, Net.rate, Net.standard, Net.interface (Q2)

FROM NetCards Net

WHERE Net.rate=rate

Without the knowledge of the Dell schema, an application developer can-

not be aware that the return types of these two services are part of the same

database and that there is a foreign-key constraint on the cid of the two types, in

which case it is meaningful to join them. Moreover, if the queries that are encap-

sulated within the function signatures are not published, then the developer is not

aware that cheap computers according to Dell are the ones that are priced under

$500.

I proposed the Query Set Specification Language (QSSL) [64] for export-

ing web services on top of databases which overcomes the limitations of functional

web services by exposing the schema of the underlying source (or view of the

source) and a set of supported queries against this schema. QSSL is capable of

concisely describing large sets of semantically meaningful parameterized queries,

without requiring exhaustive enumeration of them. A QSSL specification is embed-

ded in a WSDL specification, thus extending the current state-of-the-art instead

of replacing it, to form a specialized type of web services, called Data Services.

QSSL targets the more demanding XML data model, in which case the

schema of a data source is expressed in the XML Schema definition language [31]

10

Data
Source

Data
XML Schema

TPX

QSSXData
Service

Application

Input Message

XML
Output Message

Input Message Type

Data XML Schema

Output Message Type

WSDL

Figure I.4: Data Service Architecture

and the queries are tree pattern queries, which is a subset of XPath [53].

Figure I.4 shows the architecture of a Data Service published by a data

source. The query capabilities exported by a Data Service provide an application

with the means to formulate valid and acceptable queries and to be aware of

the structure of the result. A Data Service receives an input message from the

application and replies with an output message or a fault. The input message is

a tree pattern (TP) query expressed in an XML format (TPX), and not just a set

of parameters, and the output message is an XML tree. Hence the relationship

between the input and output messages is explicit, since the input corresponds to

a query and the output to its result. The set of acceptable tree pattern queries,

i.e., the set of acceptable input messages, is a QSSL specification, which describes

the possibly infinite set of parameterized queries that are acceptable. A QSSL

specification is translated into an XML Schema (QSSX) describing the acceptable

TPX messages.

I.C Web-based Query Form and Report Interfaces

In the Web Domain of Figure I.2, end-users need to query the integrated

data, which are often complex and semistructured in nature. End-users are not

expected to have knowledge of any specific query language, but are familiar with

web-based forms and reports. For this purpose, I developed the QURSED sys-

tem [62, 66, 67, 65] which generates and serves web-based query forms and re-

11

Figure I.5: Example QFR Interface

ports for query processors that serve semistructured data and support the emerg-

ing XQuery language. The Enosys Application Builder [61] was a precursor of

QURSED and part of a commercial integration platform.

Figure I.5 displays a QURSED-generated query form and report interface

for proximity sensor products. End users interact with a query form page by typing

or selecting constants in HTML form controls, such as text boxes and drop-down

lists, and QURSED automatically formulates XQuery statements, which produce

report pages. The form and report pages accommodate the intricacies of semi-

structured (typically XML) data, i.e., data whose structure is characterized by high

variability, nesting, repeatability and optional fields. For example, sensors are often

12

Figure I.6: The QURSED Editor

nested into manufacturer categories and each product of a sensor manufacturer

comes with its own variations. Some sensors are rectangular and have height and

width, and others are cylindrical and have diameter and barrel style. Some sensors

have one or more protection ratings, while others have none.

QURSED is based on a Model Driven Architecture [1] and generates

the pages from the XML Schema describing the structure of the underlying data.

Moreover, an intuitive graphical interface, called the QURSED Editor, is provided

to developers in order to semi-automatically produce such query forms and reports

during design-time. Figure I.6 presents a snapshot of the QURSED Editor where

the developer is presented with a visual representation of the XML Schema de-

scribing the underlying XML data on the left, and the query form page on the

right. By performing visual actions, the developer associates schema elements

with form controls on the query form page. The interface does not require pro-

gramming or knowledge of XQuery. The end result is compiled and deployed to a

QURSED-enabled application server.

The design of application-oriented interfaces that export semantically

meaningful functionality poses many of the same challenges that user-oriented

13

interfaces pose. Hence, QURSED is based on a restricted version of QSSL, which

declaratively specifies and describes a large set of parameterized queries that can

be emitted from a query form page, and the complex structure of their results that

is rendered on the report page. QSSL consists of a collection of fragments, each

one capable of generating parts of an XQuery statement, typically navigations, se-

lections and joins. The end user’s interaction with the query form page implicitly

activates the corresponding fragments, which at run-time are synthesized to auto-

matically formulate the corresponding XQuery statement. QURSED renders on

the report page the query result that is expressed directly in XHTML. Structural

variance on the report page is tackled by producing heterogeneous rows/tuples in

the resulting XHTML tables.

QURSED decouples the query aspects of the generated pages from the

visual ones, hence making it easier to develop and maintain the resulting forms

and reports whenever the underlying XML Schema changes - a labor-intensive and

error-prone task with the current state of the art. Moreover, advanced capabilities

are also offered, which provide fine-grained control on what queries make sense

given the XML Schema and the semantics of the data.

I developed the techniques and algorithms employed by QURSED, with

emphasis on how to accommodate the intricacies introduced by the semistructured

nature of the underlying data. I specified the formal model of the query set spec-

ification, as well as its generation via the QURSED Editor, and focused on the

techniques and heuristics the Editor employs for translating visual designer input

into meaningful specifications. I also developed the algorithms QURSED employs

for query generation and report generation.

I.D Thesis Overview

Chapter II presents CLIDE’s front-end and formalizes its interaction with

the developer using an interaction graph. Chapter III presents the architecture

14

of CLIDE’s back-end and the corresponding algorithms for coloring actions on

the front-end. Chapter IV covers the Query Set Specification Language (QSSL)

and provides several examples where QSSL is applicable. Chapter V explains the

architecture of QURSED and discusses the extensive related work. Chapter VI

defines the restricted version of QSSL used by QURSED. Chapter VII elaborates

on the visual steps the developer follows on the QURSED Editor to deliver query

form and report interfaces. Chapter VIII concludes the thesis and discusses future

work.

Chapter II

Interactive Query Formulation

Interfaces

This chapter presents CLIDE’s front-end. Section II.A provides back-

ground information. Section II.B provides definitions and notation conventions.

Section II.C discusses query building interfaces, focusing on CLIDE-related issues,

and introduces the interaction graph, which allows us to formally define their be-

havior. Section II.D discusses the aspects of CLIDE that pertain to interaction in

the presence of a limited set of feasible queries.

II.A Background

Many information sources support only a limited set of queries over their

schema, as a result of privacy constraints [74, 48] or a result of limited access meth-

ods [94, 38]. In both privacy and mediation-oriented systems, a source specifies a

set of queries that can be answered directly using views over its schema. A media-

tor extends the set of directly supported queries with a set of indirectly supported

ones by appropriately rewriting the latter so that they are answered by filtering

and combining the results of directly supported queries. If a submitted query is

not supported the user simply receives a rejection, being forced into a trial-and-

error query development loop. We propose that the user should be guided toward

15

16

feasible (i.e., supported) queries and we developed the CLIDE interactive system

for this purpose.

The CLIDE (CLient guIDE) system is a graphical query formulation in-

terface that mimics the visual paradigm of Microsoft’s Query Builder, incorporated

in MS Access and MS SQL Server [81]. Microsoft’s Query Builder, in turn, is based

on the Query-By-Example (QBE) [95] paradigm. CLIDE guides the user toward

formulating feasible conjunctive queries and indicates any action that will lead to-

ward a non-feasible conjunctive query. In particular, CLIDE provides compactly-

presented guidance in the form of a color scheme, which in every step of the query

formulation indicates which possible actions should, should not or may be taken

in order to reach a feasible query. A flag indicates whether the current query is

feasible or not. If it is, colors indicate how to reach another feasible query, which

will be a syntactic extension of the current one. As usual, an action is the inclusion

of a table in the FROM clause, the formulation of a selection condition in the WHERE

clause or a projection of a column in the SELECT clause.

We illustrate the use of CLIDE and the color-driven interaction using an

example from service-oriented architectures.

Mediator CLIDE Interactive
Query

Formulation

Supported
Queries

Computer
Shopping
Portal

Developer

Dell Cisco

Web
Services

Web
Services

Schema Schema

Web
Application

!

Figure II.1: Service-Oriented Architecture

Service-Oriented Architectures Information systems offer limited access to

their data by publishing views, web services or APIs. For example, Amazon’s

E-Commerce Service [2] provides a set of web services that allow one to query

17

its catalog and product data, and Google’s Web APIs [8] export web services for

developers to issue search requests and receive results as structured data.

Service-oriented architectures [82] aggregate a collection of such services

in order to provide more sophisticated web services and to support web applica-

tions. Figure II.1 shows a simple instance of an architecture where the mediator

enables a computer shopping portal, such as CNET.com, to have integrated query

access to two sources. We assume that Dell and Cisco export a set of web services

on their computer and router catalogs, respectively. Since we want to be able to

issue (distributed) queries, we associate schemas with Dell and Cisco and model

the web services as parameterized views over those schemas [51]1. Figure II.2 il-

lustrates part of their respective schema and the signatures of four web services

they export.

The Dell schema describes computers that are characterized by their cid,

CPU model (e.g., P4), RAM installed and price, and have a set of network cards

installed. Each network card has the cid of the computer it is installed in, accom-

modates a specific data rate (e.g., 54Mbps), implements a standards (e.g., IEEE

802.11g) and communicates with a computer via a particular interface (e.g., USB).

The web service ComByCpu returns the computers of a given cpu. (We assume

there is a Computer type.) The service ComNetByCpuRate provides computers

of a given cpu that have installed network cards of a given data rate. The Cisco

source describes routers that also accommodate a specific data rate, implement

standards, have their own price and are of a particular type. The RoutersWired

and RoutersWireless services return routers that are of either wired or wireless

type respectively.

In Figure II.1, a user builds the computer shopping portal by formulating

queries against the source schemas, and deploys a mediator in order to execute

queries against the exported web services during run-time. The mediator can an-

1Indeed, it is often the case that web services are based on parameterized queries over databases.
However, for the purposes of mediation it is not necessary to assume that the Dell and Cisco schemas
are known.

18

Computers(cid, cpu, ram, price) (Dell Schema)

NetCards(cid, rate, standard, interface)

ComByCpu(cpu) → (Computer)*

SELECT DISTINCT Com.* (V1)

FROM Computers Com

WHERE Com.cpu=cpu

ComNetByCpuRate(cpu, rate) → (Computer, NetCard)*

SELECT DISTINCT Com.*, Net.* (V2)

FROM Computers Com, NetCards Net

WHERE Com.cid=Net.cid AND Com.cpu=cpu

AND Net.rate=rate

Routers(rate, standard, price, type) (Cisco Schema)

RoutersWired() → (Router)*

SELECT DISTINCT Rou.* (V3)

FROM Routers Rou

WHERE Rou.type=’Wired’

RoutersWireless() → (Routers)*

SELECT DISTINCT Rou.* (V4)

FROM Routers Rou

WHERE Rou.type=’Wireless’

(S1.Computers.cid, S1.NetCards.cid) (Column Associations)

(S1.NetCards.rate, S2.Routers.rate)

(S1.NetCards.standard, S2.Routers.standard)

Figure II.2: Source Schemas and Web Services

swer the query “return all P4 computers with a 54Mbps network card and the

compatible wireless routers” by combining the answers of web service calls Comp-

NetByCpuRate and RoutersWired. However, it cannot answer the query “return

all computers with 1GB of RAM”. The reader is pointed to Chapter 20.3 of [38]

for similar examples. CLIDE appropriately guides the user toward the formulation

of feasible queries by employing the following coloring scheme:

19

• Red color indicates actions that lead to unsupported queries, regardless of what

is included next. For example, conditioning the type column of Routers with

a constant other than ’Wired’ and ’Wireless’ leads to unsupported queries.

• Yellow color indicates actions that are necessary for the formulation of a feasible

query. For example, conditioning the cpu of Computers will be yellow since

all queries that the mediator can answer and involve the Computers table

require a given cpu.

• Blue color indicates a set of actions where at least one of them is required

to be taken in order to reach one of the next feasible queries. Notice that

one can choose among many blue options. For example, after the cpu of

Computers has been conditioned and a feasible query has been reached, one

should condition either the ram or the price column (among other choices)

in order to reach the next feasible query.

• White color indicates selection conditions, tables and projections whose par-

ticipation in the query is optional.

CLIDE is based on a modular architecture consisting of the front-end

and a back-end that enables the front-end’s behavior by deciding the color of

each action. The above coloring scheme is implemented by CLIDE’s front-end

and is independent of the specification that has been used to describe the set of

supported queries. Multiple back-ends are possible, depending on the nature of

the specification of the supported query set. For example, one could have a back-

end for the P3P privacy-related supported query set specification of [48] or the

specification of [94] that is related to queries supported as a result of wrapping

web forms.

Parameterized Views One of the most common and, at the same time, most

challenging back-ends relates to the case where the set of directly supported queries

are described using parameterized views, a technique that has been used to describe

content and access methods in the widely used Global-as-View (GaV) integration

20

architectures [42], and also recently to describe privacy constraints in [74]. Going

back to Figure II.2, the parameterized view V1 corresponds to the web service

ComByCpu. Notice that the parameterized view not only indicates the input

(cpu) and output (Computer) of the service, but also indicates how the input and

output are semantically related with respect to the underlying database. Typically

the sources considered by the mediator can be too many to individually browse in

order to formulate a feasible query.

Deciding whether a given query is feasible or not is a query rewriting prob-

lem: The mediator is given a query q over a database D and a set of parameterized

views V1, . . . , Vn and it searches for a plan (if any) that combines the views and

computes q(D). The plan is typically in the form of a query q′(V1(D), . . . , Vn(D))

that runs on the views and often incorporates primitives that indicate the passing

of information across sources and web services.

Several rewriting algorithms have been published; the reader is referred

to the survey [42]. However, these algorithms are not sufficient for CLIDE’s back-

end since whenever there is no plan they only declare that the query cannot be

answered. Some algorithms return overestimate or underestimate approximations

of the query result, thus addressing a different goal than the one in our setting

where the developer needs to know the exact queries that can be issued and pro-

gram accordingly. Nevertheless, there are important technical connections between

those algorithms and our work that are discussed in later sections.

II.A.1 Contributions

Formal Guarantees on the Interaction Any good interface that guides the

user toward some action must be comprehensive (complete) and, at the same time,

avoid overloading the user with information at every step [59, 87]. CLIDE achieves

both goals since it satisfies the following guarantees at every step of the interaction:

1. Completeness: Every feasible query can be built by following suggested actions

only.

21

2. Minimality: The minimal set of actions that preserves completeness is sug-

gested.

3. Rapid convergence: The shortest sequence of actions from a query to any fea-

sible query consists of suggested actions.

Interaction sessions between the user and the CLIDE front-end are for-

malized using an Interaction Graph, which models the queries as nodes and the

actions that the user performs as edges. Consequently, the color of each action is

formally defined as a property of the set of paths that include the action and lead

to feasible queries. Then the above guarantees are formally expressed as graph

properties.

Back-End Algorithms The challenge facing the CLIDE back-end is that the

coloring properties cannot be trivially turned into an algorithm since they require

the enumeration of an infinite number of feasible queries. Note that the number

of queries is infinite for two reasons. First, there is an infinite number of constants

that may be used. We tackle this problem by considering parameterized queries

(similar to JDBC’s prepared statements) where each one stands for infinitely many

queries. Still, the number of parameterized queries is infinite, because the size of

the FROM clause is unlimited, which then leads to unlimited size SELECT and WHERE

clauses.

We describe a set of algorithms that find a finite set of closest feasible

queries, related to the current query, and determine the coloring by inspecting

it. For our purpose, we leverage prior algorithms and implementations for finding

exact and maximally-contained rewritings [69, 28, 73]. However, we needed to

significantly optimize and extend current implementations in order to achieve on-

line performance and to ensure that the produced maximally-contained queries are

syntactic extensions of the current query, hence enabling the color algorithm. We

provide a set of experiments that illustrate the class of queries and views CLIDE

can handle, while maintaining on-line response.

22

CLIDE Demo We implemented the CLIDE front-end and the back-end algo-

rithms which are available as an on-line demonstration at the anonymous address

http://www.clidedemo.com.

II.B Definitions and Notations

The CLIDE front-end formulates queries from the set of conjunctive SQL

queries with equality predicates CQ= under set semantics. The FROM clause consists

of table atoms R r, where R is some table name and r an alias. The SELECT clause

consists of the SQL keyword DISTINCT and projection atoms r.x, where x is a

column of r. The WHERE clause is a conjunction of selection atoms and join atoms.

Constant selection atoms are of the form r.x=constant, where r is some alias and x

some column, while parameterized selection atoms are of the form r.x=parameter.

Obviously, at most one selection atom for each alias-column pair can appear in the

WHERE clause. Join atoms are of the form r.x=s.y. We define the empty query to

have no table, join, selection or projection atom.

Column associations identify pairs of columns, within a source or across

sources, whose join is meaningful. Figure II.2 illustrates the association of the

cid columns of Computers and NetCards and the rate and standard columns of

NetCards and Routers2. The user can configure CLIDE to suggest either arbitrary

joins or only joins between columns that are associated, in order to reduce the

number of suggestions displayed to the user. In the latter case, the user still has

the option to formulate joins between non-associated columns, but the CLIDE

front-end will not suggest them. For the rest of the presentation, we assume the

user has configured CLIDE to suggest joins between associated columns only. We

denote this class of queries with CQ=CA.

The views that CLIDE takes as input are from the set of parameterized

conjunctive SQL queries CQ=P , where parameterized selection atoms of the form

2Column associations can be explicitly declared by the mediator owner. They can also be derived
from the pairs of type-compatible columns, from foreign-key constraints, the join atoms in the views, or
any of the recently proposed schema matching techniques [72, 12].

23

r.x=parameter appear in the WHERE clause. We assume that all joins are between

associated columns. CQ=CA is a subset of CQ=P .

Two queries q1 and q2 are syntactically isomorphic, denoted by q1
∼=

q2, if they are identical modulo table alias renaming. Syntactic isomorphism is

important since the users of query writing tools typically do not have control (or

do not care to control) the exact table alias names.

We denote the set of feasible queries by FQ ⊆ CQ=CA. As in [73], we

define the feasible queries given a set of views V = V1, . . . , Vk ∈ CQ=P over a fixed

schema D, to be the set of queries qF1, . . . , qFm ∈ CQ=CA over D that have an

equivalent CQ= rewriting using V. In the absence of parameters a rewriting is

simply a query that refers exclusively to the views. In the presence of parameters

we need to also ensure that there is a viable order of passing parameter bindings

across the views of the rewriting [73, 75]. We capture this requirement as follows:

First associate to each view a schema that includes both the columns that the view

returns and the columns that participate in parameterized selections (even if they

are not returned). Then we associate with each view schema a binding pattern that

annotates every column that participates in a parameterized selections as bound,

which is denoted by a ‘b’ superscript, and every other column as free, denoted by

an ‘f ’ superscript. For example, we associate the following schema and binding

pattern to V1 in Figure II.2:

V1(cid
f , cpub, ramf , pricef)

A valid rewriting is a query that refers to the views only and there is an order

V1, . . . , Vn of the used views such that if a column x is bound in Vi then either

there is a selection atom Vi.x=constant or a join atom Vi.x=Vj.y where j < i.

II.C Query Building Interfaces

The CLIDE front-end is a QBE-like [95] graphical interface. It adopts

Microsoft’s Query Builder interface [81] as the basis for the interactive query for-

24

(a) Microsoft’s Query Builder

(b) CLIDE’s Front-End expressing the above query

Projection Boxes
Table Boxes

Selection Boxes

Feasibility Flag
Table Alias

Figure II.3: QBE-Like Query Building Interfaces

mulation, since users are very familiar with it. Figure II.3a shows a snapshot of Mi-

crosoft’s Query Builder, where the user formulates a query over the schemas of Fig-

ure II.2. The top pane displays the join of the Computers table with the NetCards

table on cid and the projection of the ram and price columns of Computers and

of the interface column of NetCards. The middle pane shows selections that set

cpu equal to ‘P4’ and rate equal to ‘54Mbps’, and the bottom pane displays the

corresponding SQL expression. The user can add to the top pane tables from the

list shown on the left. The user can also formulate joins, like the one on cid.

Figure II.3b provides a snapshot of CLIDE’s front-end3 for the query of

3In this chapter we adopt a simplified version of the CLIDE’s front-end in Figure I.3 for presentation
purposes.

25

Figure II.3a. Apart from the feasibility flag and the coloring, the correspondence

with Microsoft’s Query Builder is straightforward: CLIDE displays a table box for

each table alias in the FROM clause. Selections on columns are displayed in selection

boxes. Columns are projected using check boxes, called projection boxes. Joins are

displayed as solid lines, called join lines, connecting the respective column names.

The list of available tables is shown in a separate pane. Also shown is the SQL

statement that the interface graphically represents. The “Last Step” and “Next

Step” buttons allow the user to navigate into the history of queries formulated

during the interaction.

The user builds CQ=CA queries with the following visual actions:

1. Table action: Drag a table name from the table list and drop it in the main

pane. The interface draws a new table box with a fresh table alias and adds

a table atom to the FROM clause of the SQL statement.

2. Selection action: Typing a constant in a selection box results to adding a

selection atom to the WHERE clause.

3. Join action: Dragging a column name and dropping it on another one results

to a join line connecting the two column names and a new join atom in the

WHERE clause.

4. Projection action: Checking a projection box adds a projection atom to the

SELECT clause.

II.D CLIDE Interaction in the Presence of Limited Access

Methods

When not all CQ=CA queries against a database schema are feasible,

CLIDE guides the user toward formulating feasible queries by coloring the possible

next actions in a way that indicates what has to be done, what may and what

cannot be done. Table actions are suggested by coloring the background of table

26

names in the table list. Selections and projections are suggested by coloring the

background of their boxes. Joins are suggested by coloring join lines.

We illustrate the color scheme using the interaction session of Figure II.4,

which refers to the running example of Figure II.2. The user wants to formulate

a query that returns computers that meet various selection conditions, including

conditions about network cards and routers - as long as those conditions are sup-

ported. Figure II.4 shows snapshots of the interaction session, where CLIDE’s

color scheme suggests, at each interaction step, which actions lead to a feasible

query.

Required and Optional Actions Consider the query that the user has formu-

lated in Snapshot 1. The interface indicates that this query is infeasible (see flag

at top right) and that every feasible query that extends it must have a selection

on cpu. The latter indication is given by coloring yellow (light gray on a B/W

printout) the cpu selection box. The rest of the selection boxes and projection

boxes are white suggesting that these actions are optional, i.e., feasible queries can

be formulated with or without these actions being performed.

So the user performs the yellow selection on cpu by typing a constant

in the selection box. This leads to the feasible query of Snapshot 2. This query

is feasible since the mediator can run view V1 with the parameter instantiated to

’P4’ and then project out the cid and cpu columns.

Required Choice among multiple Actions The user may terminate the inter-

action session and incorporate the query of Snapshot 2 in her application or may

continue to extend the query. The interface indicates that, in order to reach a next

feasible query, at least one of the NetCards, Routers or (an additional) Computers

tables has to be included in the query, among other options. The indication is pro-

vided by coloring the corresponding names in the table list blue (medium gray).

Each given blue atom, say NetCards, does not appear in all feasible queries that

extend the current query. If it did appear in all, then it would be yellow (i.e.,

required).

27

Snapshot 2

Snapshot 3

Snapshot 4

Snapshot 1

Snapshot 5

Color Legend Yellow Blue Red

Figure II.4: Snapshots of an Interaction Session

Non-Obvious Feasible Queries Snapshot 3 presents a complex case, where

the interface’s color scheme informs the user about non-obvious feasible queries.

After the user introduces a NetCards table, the interface suggests that one of the

following extensions to the query is required: The join line between the cid’s of

28

Computers and NetCards is suggested since it leads to the formulation of view

V2. It is blue since the user has more options: She can introduce a second copy of

Computers, say Com2, which will lead toward the feasible query that joins Networks

with Com2, selects on rate and takes a Cartesian product with Com1. If Cartesian

product queries are of no interest to the user, she can set an option to have CLIDE

ignore them. In such case the cid join would be a required (yellow) extension. For

the remainder of the example, we assume that this option is set.

The user has another pair of options at Snapshot 3. She can perform

the blue rate selection, which leads to the formulation of view V2. Alternatively,

she may introduce a Routers table and join the rate columns of NetCards and

Routers, thus instantiating the rate parameter of V2 with constants provided by

another table.

Selection Options In Snapshot 4, the user has performed the suggested join

and introduced a Routers table. Now the Routers.type column needs to be

bounded and the interface presents to the user a drop-down list that explains

which constants may be chosen. She can either choose ’Wired’ or ’Wireless’. The

symbol * denotes any other constant and is colored red (dark gray) to indicate

that no feasible query can be formulated if she chooses this option. Note that

the options of a drop-down list can have different colors. If there were only one

constant that she could choose, then this option would be yellow. In the special

case where any constant can be chosen, then no drop-down list is shown, as in the

case of the cpu selection box in Snapshot 1.

The front-end can also be configured to hide all red actions, including

columns with red selection and projection boxes. Note that a red selection box

implies a red projection box and vice versa. So the front-end can remove the

column from the corresponding table box altogether.

In the next steps, the user performs the suggested join, chooses the ’Wire-

less’ constant and checks several projection boxes. Snapshot 5 shows the new query,

which is feasible. The mediator plan that implements this query first accesses view

29

V4, then for each rate returned accesses view V2 with its parameters instantiated

to ‘P4’ and the given rate, and finally performs the necessary projections.

The CLIDE front-end displays only yellow and blue join lines. Red and

white join lines are typically too many and are not displayed. If the user wants to

perform a join other than the ones suggested, she has to follow a trial-and-error

procedure. Note that unchecked projection boxes can be either blue, white or red.

A projection box cannot be yellow, because if there is a feasible query that has the

corresponding projection atom in the SELECT clause, then the query formulated by

removing this atom is also feasible.

Finally, if the user performs a red action, then all boxes, lines and items in

the table list are colored red, indicating that the user has reached a dead end, i.e.,

no feasible query can be formulated by performing more actions and it is necessary

to backtrack, i.e., undo actions.

II.D.1 Specification of CLIDE’s Color Scheme

Interaction sessions between the user and the CLIDE front-end are for-

malized by an Interaction Graph. The nodes of the interaction graph correspond

to CQ=CA queries and the edges to actions.

Definition 1 Interaction Graph Given a database schema D and a set of CQ=P

views V over D, an interaction graph is a rooted DAG GI = (N, s, E) with labeled

nodes and edges such that:

• For every query q ∈ CQ=CA over D there is exactly one node n ∈ N whose label

q(n) is syntactically isomorphic to q. We call n feasible if q(n) is feasible.

• s is the root node and is labeled with the empty query.

• E is the set of edges e(n
a→ n′) labeled with an action a which yields a query that

is isomorphic to q(n′) when applied to q(n). a is either a table, a projection,

a join, a specific selection of the form r.x=constant, or a generic selection

30

Color Legend

2n Net1

Com1.cpu=*

Com1.cid=Net1.cid

Net1

Com1.cpu=*

Com1.price=*

Rou1

Com1.ram=*

Com1.cid=*

Com2

Com1.cpu=*

…Com1 Com1.cid

Com2.cid=Net1.cid

Com2

Com2.cpu=* Net1.rate=*

Net1.rate=*

Rou1 Net1.rate=Rou1.rate Rou1.type=‘Wireless’

1n

4n

6n

3n

10n

9n

……

…

…
…

…
…

…

8n

Com1.cpu …

…

Com1.ram=*

Rou1.type=‘Wired’

Rou1.type=‘Wireless’ 11n

Rou1.type=*

s

…

… …
… … … …

………

…

…
…

…

12n

13n

7n

Yellow
Blue
Red

……

5n

…

F
igu

re
II.5:

P
art

of
an

In
teraction

G
rap

h

31

of the form r.x=*. Here * denotes any constant other than the ones that

appear in specific selections and label edges originating from n.

Figure II.5 shows part of an interaction graph for the schemas in Fig-

ure II.2, where nodes n1 to n5 correspond to the queries formulated in Snapshots

1 to 5 of Figure II.4. Notice that there are multiple interaction graphs that corre-

spond to a given schema, since each node n can be relabeled with any of the queries

that are syntactically isomorphic to q(n), i.e., with any query that uses other alias

names. CLIDE considers a single interaction graph by controlling the generation

of aliases. By convention, the generated aliases follow the lexical pattern Ti where

T is the first three letters from the name of the table (for illustration purposes)

and i is a number that is sequentially produced.

Figure II.5 indicates feasible queries by green (shaded) nodes. The root s

is indicated by a hollow node. The outgoing edges of a node n capture all possible

actions that the user can perform on q(n). These are the actions that the front-end

colors and they are finitely many. Even though there are infinitely many constants

that can potentially generate infinitely many selections for a given column, they

are aggregated by the * symbol. In Figure II.5, for example, the * in the selection

Com1.cpu=* labeling an outgoing edge of n1 aggregates all possible constants.

The * in the selection Rou1.type=* labeling an outgoing edge of n4 denotes all

constants except ‘Wired’ and ‘Wireless’, because corresponding selections label

adjacent edges.

For a query q(n), the coloring rules are formally expressed as a coloring

of the actions labeling outgoing edges of node n.

Definition 2 Colors Given an interaction graph GI = (N, s, E), a node n ∈ N

and an outgoing edge e(n
a→ m), the action a is colored:

• Yellow (Required) if every path pi from n to a feasible node nF contains an edge

labeled with a.

• Blue (At Least One Required) if (i) a is not yellow, (ii) at least one path pi

32

from n to a feasible node nF contains an edge labeled with a, and (iii) there

is no path from n to nF that contains a feasible node, excluding n and nF .

• Red (Forbidden) if there is no path from n to a feasible node that contains an

edge labeled with a.

• White (Optional) if not colored otherwise.

We say that actions colored yellow or blue are called suggested. The same action

may have different color at various points in the interaction. For example, table

action NetCards Net1 is white when it labels an outgoing edge of n1 and blue

when it labels an outgoing edge of n2.

CLIDE assigns colors according to Definition 2 and features the following

characteristics of desirable behavior.

1. Completeness of Suggestions Every feasible query can be formulated by

starting from the empty query and at every interaction step picking only

among blue and yellow actions.

2. Minimality of Suggestions At every step, only a minimal number of ac-

tions, which are needed to preserve completeness, are suggested as required.

Equivalently, for each blue or yellow action a, there is at least one feasible

query toward which no progress can be made without picking a.

3. Rapid Convergence by Following Suggestions Assume that the user is at

node n of the interaction graph and consequently follows a path p consisting

of yellow and blue edges until she reaches feasible query q(n′). It is guaranteed

that there is no path p′ that is shorter than p and also leads from n to n′.

Chapter III

The CLIDE Back-End

This chapter presents the algorithms, implementation and performance

evaluation of CLIDE’s back-end which shows that CLIDE is a viable on-line tool.

Section III.A CLIDE’s back-end architecture. describes the algorithms of the

CLIDE back-end. Section III.E describes the implementation and optimizations,

which are experimentally evaluated in Section III.F. Section III.G presents related

work and discusses CLIDE’s applicability to other settings. Section III.H provides

proofs for the theorems and lemmas presented throughout the chapter.

III.A Architecture

The CLIDE back-end is invoked every time the interaction arrives at a

node n in the interaction graph. It takes as input the query q(n), the schemas

and the views exported by the sources, and the set of column associations. The

back-end partitions the set of possible actions, which label outgoing edges of n,

into sets of blue, red, white and yellow suggested actions. It also decides if q(n) is

feasible or not.

The first challenge in determining the partition is that the color definitions

make statements about all possible extensions of the current query, i.e., all feasible

nodes reachable from n. These correspond to an infinite set of infinitely long paths

in the interaction graph. Hence, the color definitions cannot be trivially translated

33

34

into an algorithm.

We show that at each interaction step, it is sufficient to consider only a

representative subgraph of the interaction graph to color the possible actions either

blue or yellow. This subgraph consists of n, the feasible nodes that are closest to

n, and the paths connecting n to these feasible nodes. The closest feasible nodes

are labeled with queries in FQC(n) which is defined below.

Definition 3 Closest Feasible Queries FQC Given an interaction graph GI =

(N, s, E) and a node n ∈ N , the set of closest feasible queries FQC(n) are the

ones that label feasible nodes nF reachable from n such that there is no path p from

n to nF that contains a feasible node, excluding the endpoints of p.

Section III.B presents the computation of FQC(n) when parameterized

selection atoms do not appear in the views. We show that FQC(n) is finite and

present optimizations for computing it, which proved crucial to CLIDE’s usability.

If parameterized selection atoms appear in the views, then FQC(n) is infinite.

Section III.D shows that CLIDE’s back-end faces this additional challenge without

compromising any of the formal guarantees by computing a finite representative

set of seed queries SQ(n).

The second challenge (Section III.C) that the back-end faces is to effi-

ciently color the possible actions given the set of closest feasible queries. Even

though coloring an action yellow or blue is straightforward and inexpensive, col-

oring the remaining actions red or white using a brute force algorithm leads to

significant performance overhead.

Figure III.1 shows the architecture of the CLIDE system implementation.

Currently, the system parses the schemas, view definitions and column associations

from corresponding text files. The Closest Feasible Queries Algorithm computes

the set FQC(n) and implements the algorithm of Section III.B. When parameter-

ized selection atoms do not appear in the views, the Color Algorithm component

inputs the set FQC(n) and implements the algorithm of Section III.C. When

35

Back-End

Closest Feasible Queries Algorithm

User

Closest Feasible Queries FQC

Current Query

Color Algorithm

Colored Actions + Feasibility Flag

Aliases Collapse Rule

Maximally-Contained Rewriter

ViewsSchemas Column
Associations

Minimal Feasible
Extension Queries FQME

!Front-End Actions

Parameters Algorithm

Seed Queries SQ

Figure III.1: CLIDE Architecture

parameterized selection atoms appear in the views, the Color Algorithm compo-

nent inputs a set of seed queries SQ(n) produced by the Parameters Algorithm

component described in Section III.D.

III.B Closest Feasible Queries Algorithm

The search for closest feasible queries faces an infinite search space, namely

all possible extensions of the current query. We limit this space to a finite one,

corresponding to nodes in the interaction graph that are within a bounded distance

from n. Then, we present an efficient method for enumerating FQC(n) without

exploring the whole search space.

Maximally-Contained Feasible Queries Intuitively, as the user syntactically

extends the current query with new tables, selections and joins, she creates queries

which are contained in the initial one. It is therefore a natural starting point to

search for the closest feasible queries among the contained and feasible ones. We

can further focus on the maximally-contained [42] and feasible queries since they

are the least constraining (semantically) and hence they have the least number of

additional tables, selections and joins. As in [42], the set of maximally-contained

feasible queries is formally defined as the set of queries such that

36

1. for each maximally-contained query q1, q1 is feasible and contained in q(n)

(q1 � q(n)),

2. for each maximally-contained query q1 and any feasible query q′1, if q′1 contains

q1, then q′1 is equivalent to q1, and

3. for each feasible query q1 � q(n) there exists a maximally-contained query q2

such that q1 � q2.

Among the maximally-contained feasible queries, we focus on the ones

which are minimal syntactic extensions of q(n), in the sense that dropping any ta-

ble, selection or join compromises feasibility or containment in q(n) or the property

of syntactically extending q(n). We denote this set as FQME(n). Section III.E

describes how we extended one of the several maximally-contained rewriting algo-

rithms proposed in the literature [42] to obtain FQME(n).

FQME(n) is known to be finite if we restrict q(n) and the views to con-

junctive queries with constant selection atoms [42].

Lemma III.B.1 All minimal feasible extensions of q(n) which are maximally-

contained are also closest feasible queries (FQME(n) ⊆ FQC(n)). �

However, there are closest feasible queries that are not in FQME(n), as

the next example shows, and we will have to find them.

Example 4 Assume that views V1 and V2 of Figure II.2 are replaced by the fol-

lowing views V ′
1 and V ′

2 , respectively, which contain constant selections only.

SELECT DISTINCT Com.* (V ′
1)

FROM Computers Com

WHERE Com.cpu=’P4’

SELECT DISTINCT Com.*, Net.* (V ′
2)

FROM Computers Com, Network Net

WHERE Com.cid=Net.cid AND Com.cpu=’P4’

AND Net.rate=’54Mbps’

If the current query is q(n3) in Figure II.5 (Snapshot 3 in Figure II.4),

then the only query in FQME(n3) is q(n9) given below.

37

SELECT DISTINCT Com1.ram, Com1.price q(n9)

FROM Computers Com1, Computers Com2, NetCards Net1

WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’

AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Note that q(n10) is also a closest feasible query to q(n3), but it is not in

FQME(n3) since it is contained in q(n9).

SELECT DISTINCT Com1.ram, Com1.price q(n10)

FROM Computers Com1, NetCards Net1

WHERE Com1.cid = Net1.cid AND Com1.cpu=’P4’

AND Net1.rate=’54Mbps’

Intuitively, one can extend q(n9) with joins until the Com2 alias “col-

lapses” into Com1, leading to a closer query, reachable from q(n3) and clearly con-

tained in q(n9) due to the added joins.

Even though FQME(n) does not give us the set of closest feasible queries,

we can use it to bound the search space for FQC(n). Theorem 5 below states that

all queries in FQC(n) correspond to nodes located within a bounded distance from

n.

Theorem 5 Given a node n in the interaction graph and the set FQME(n), if

pL is the longest path from n to a node labeled with a query in FQME(n), then

all nodes labeled with queries in FQC(n) are reachable from n via a path p, where

|p| ≤ |pL|.

Theorem 5 enables a brute force algorithm for computing FQC(n): (i)

compute FQME(n), (ii) compute the bounded distance |pL| as the length of the

longest path from n to some query in FQME(n), (iii) enumerate the set of queries

B(n, |pL|) reachable from q(n) by systematically applying up to |pL| actions in all

possible ways, and (iv) return all feasible queries from B(n, |pL|).
This algorithm computes FQC(n), but is highly inefficient. In the worst

case, it enumerates all paths of length |pL|. The following observations allow us to

prune this search dramatically, by starting from FQME(n).

38

Alias Collapse Rule We can compute FQC(n) \ FQME(n) starting from the

queries in FQME(n) and rewriting them using the alias collapse rule, which rewrites

a query q into a query q′ as follows: pick a pair of table atoms sharing the same

relation name, say R R1, R R2, and rename R2 with R1 in q, to obtain q′.

Example 6 One can obtain the closest feasible query q(n10) from query q(n9) by

collapsing the aliases Com1 and Com2.

Notice that indiscriminate application of the collapse rule can lead to

unsatisfiable queries. To see this, assume that q contains the selection conditions

R1.x=‘5’ and R2.x=‘3’. After collapsing R1 and R2, q′ contains the inconsistent

selection conditions R1.x=‘5’ and R1.x=‘3’. We apply the alias collapse rule only

if they lead to satisfiable queries.

Lemma III.B.2 For any q1 ∈ FQC(n) \ FQME(n), there exists q2 ∈ FQME(n)

such that q1 is obtained from q2 by repeatedly applying the alias collapse rule. �

Lemmas III.B.1 and III.B.2 lead to the following algorithm for computing

FQC(n).

algorithm QuickFQC

Input: node n

Output: FQC(n)

begin

compute M := FQME(n) using an algorithm for finding maximally-contained rewritings,

extended to produce minimal syntactic extensions of q(n)

// compute FQC(n) \ FQME(n) in AC:

let AC := the empty set ∅
for each qM ∈ M do

for each pair of distinct aliases r1,r2 of some relation in qM do

let q := collapse r1 and r2 in qM

AC := CollapseToFeasible(q, AC)

return M ∪ AC

end

procedure CollapseToFeasible

39

Input: query q, query set AC

Output:all feasible queries obtainable from q by collapsing aliases

begin

if q is unsatisfiable return the empty set ∅

if q is feasible and not contained in any qi ∈ AC

AC := AC∪ {q}
for each pair of distinct aliases r1,r2 of some relation in q do

let q′ := collapse r1 and r2 in q

AC := CollapseToFeasible(q′, AC)

return AC

end

Theorem 7 QuickFQC computes FQC(n).

III.C Color Algorithm

After computing the set of closest feasible queries FQC(n), CLIDE de-

cides if the current query is feasible or not, and then colors all possible actions that

the user can perform next. The current query is feasible if it is a closest feasible

one, i.e., q(n) ∈ FQC(n), and infeasible otherwise. We first present the algorithm

for finding the yellow and blue actions when the current query is infeasible. We

deal with the white and red actions, as well as the feasible case, next.

Blue and Yellow Instead of working with the infinite interaction graph, we can

restrict our attention to the finite close subgraph consisting of n, all closest feasible

nodes labeled with the closest feasible queries in FQC(n) and the paths between

them. Then we have:

Lemma III.C.1 For an infeasible current query q(n), and for every action a ap-

plicable to q(n), a is colored yellow (blue) with respect to the interaction graph if

and only if a is colored yellow (blue) with respect to the close subgraph of n. �

At this point, it is easy and more efficient to color the actions without

actually materializing the close subgraph. We color a join a yellow if it appears in

all closest feasible queries, and blue if it appears in some. In the case of a table

40

action T, we color it yellow (resp. blue) if in all (resp. some) closest feasible queries

there exists a table atom T Tj, such that T Ti and T Tj do not necessarily refer

to the same alias, and T Tj does not appear in the current query.

Specific selections, i.e., selections of the form r.x=constant, are colored

either yellow or blue the same way joins are colored. The front-end displays these

actions in the corresponding selection box as options of a drop-down list. Generic

selections of the form r.x=* and projections cannot be colored blue or yellow when

the current query is infeasible, because for each feasible query they participate in,

there is another feasible query that can be formulated without performing them.

Conversely, when the current query is infeasible, performing a projection or a

generic selection that does not appear in the views will not yield a feasible query1.

White and Red Any remaining actions are either white or red. For each such

action a, a brute force approach would add a to the current query, thus yielding

query q(n′), and then test if FQC(n′) is empty. If so, a is colored red, other-

wise white. This approach, although simple, requires the non-emptiness test of

FQC(n′), which is an expensive operation, as the experiments of Section III.F

demonstrate. Hence, we need to devise more efficient techniques for coloring red

and white actions.

In the case of table actions we color red the ones that are not used in any

view, and white the remaining ones, since a feasible query qF can lead to another

feasible query that takes the Cartesian product of qF and the view that contains

the table in question.

For the case of projections and selections, we attach a maximum projec-

tion list to every closest feasible query qF ∈ FQC(n). A maximum projection list

consists of all projections that can be added to qF , in addition to the ones already

in the current query, without compromising feasibility. For example, if we add all

possible projections to q(n9) of Example 4, while preserving feasibility, then we

formulate the following query q′(n9):

1Note that generic selections can be colored yellow or blue when parameterized selections appear in
the views. Please see Section III.D for details.

41

SELECT DISTINCT q′(n9)

Com1.cid, Com1.cpu, Com1.ram, Com1.price

Com2.cid, Com2.cpu, Com2.ram, Com2.price

Net1.cid, Net1.rate, Net1.standard, Net1.interface

FROM Computers Com1, Computers Com2, NetCards Net1

WHERE Com2.cid = Net1.cid AND Com1.cpu=’P4’

AND Com2.cpu=’P4’ AND Net1.rate=’54Mbps’

Hence, the maximum projection list of q(n9) consists of all projections in

q′(n9) except Com1.ram and Com1.price which appear in q(n9). In Section III.E

we show how we extended a maximally-contained rewriting algorithm to generate

these lists in linear time.

Once we compute the maximum projection lists, we color a projection red

if it does not appear in any list. Generic selections are colored red if the projection

r.x is red. These selections are also shown as options of the corresponding drop-

down lists. In the special case where no specific selections exist, then no drop-down

list is displayed and the selection box is colored according to the color of the generic

selection.

Any remaining actions are colored white. Note that specific selections

can never be colored white or red. The CLIDE front-end does not display white

and red joins, so they are not a consideration.

Feasible Current Query If the current query is feasible, we still use the same

algorithm, but we color all non-red actions blue, as each one leads to a new feasible

query, not obtainable via other actions.

III.D Parameters

When parameterized selection atoms appear in the views, the algorithms

in Sections III.B and III.C need to be extended, because the set of closest feasible

queries becomes infinite. The following example illustrates this point.

Example 8 Assume the following employees and managers source schema. The

exported parameterized view V5 returns the mid of an employee’s manager, given

42

the employee’s eid. V6 returns the salary of a manager, given the manager’s mid.

Note that the source schema is recursive, i.e., an employee has a manager, but a

manager is also an employee, who has a manager. One of the column associations

we consider witnesses this recursion.

Empls(eid, mid) (Schema)

Mngrs(mid, salary)

EmplsMngrs(eid) → (Employee)*

SELECT DISTINCT E1.* (V5)

FROM Empls E1

WHERE E1.eid=eid

MngrsSalary(mid) → (Manager)*

SELECT DISTINCT M1.* (V6)

FROM Mngrs M1

WHERE M1.Mid=mid

(S1.Empls.eid, S1.Empls.mid) (Column Associations)

(S1.Empls.mid, S1.Mngrs.mid)

The user wants to find out the salaries of an employee’s managers and

has currently formulated query q1:

SELECT DISTINCT M1.salary q1

FROM Mnrgs M1, Empls E1

WHERE M1.mid=E1.mid

At this point, E1.eid has to be provided to reach a feasible query. There-

fore, the front-end makes two suggestions: (i) perform a selection on E1.eid, or

(ii) introduce a second Empls E2 table, so that parameters can be passed from

E2.mid to E1.eid (based on the first column association). The suggested actions

are both blue.

Option (i) will formulate the feasible query q2F which returns the salaries

of E1.eid employee’s immediate managers.

SELECT DISTINCT M1.salary q2F

FROM Mnrgs M1, Empls E1

WHERE M1.mid=E1.mid

AND E1.eid=‘‘A123’’

43

Option (ii) leads toward a query that returns the salaries of managers that

are two levels above an employee. More specifically, if the user introduces table a

second table Empls E2, then the front-end colors the join E1.eid=E2.mid yellow,

which formulates q3:

SELECT DISTINCT M1.salary q3

FROM Mnrgs M1, Empls E1, Empls E2

WHERE M1.mid=E1.mid AND E1.eid=E2.mid

For q3, the front-end makes the same kind of suggestions to the user as

for q1, since E2.eid has to be provided now. A selection on E2.eid formulates the

feasible query q4F which returns the salaries of managers that are two levels above

that employee.

SELECT DISTINCT M1.salary q4F

FROM Mnrgs M1, Empls E1, Empls E2

WHERE M1.mid=E1.mid AND E1.eid=E2.mid

AND E2.eid=‘‘A123’’

It becomes evident that the user can build chains of Empls aliases of an

unbounded length, where each alias joins its eid with the next one’s mid, before

performing a constant selection on the eid of the last Empls alias. These queries

are infinitely many and are all closest feasible. For example, q2F and q4F are two

such queries, and there is no sequence of actions that applied on q2F formulate q4F .

Searching for the closest feasible queries starting from the maximally-

contained ones becomes problematic as it is known that the latter set is infinite in

the presence of binding patterns [42]. Moreover, the coloring of actions cannot be

done by enumerating all closest feasible queries.

Instead, CLIDE identifies a finite set of parameterized seed queries SQ(n),

where q(n) is the current query. These are not necessarily feasible, but have the

property that each path toward a closest feasible query must pass through some

seed query first. In Example 8, q2F is a feasible seed query of q1, while q3 is an in-

feasible one, which however must be constructed on the way to q4F . The algorithm

44

suggests to the user a finite set of actions leading from q(n) toward the seed queries

SQ(n). This can be done by simply calling the color algorithm of Section III.C on

SQ(n) instead of FQC(n). This approach does not compromise the guarantees of

completeness, minimality of suggestions and rapid convergence.

It is a priori non-obvious that the finite set SQ(n) even exists. However,

it turns out that this is indeed the case, and moreover that SQ(n) can be computed

as follows. Start by ignoring the binding patterns of the views and computing the

maximally-contained rewritings of q(n) in terms of the views. Under the origi-

nal binding patterns, not all obtained rewritings are valid, and the values of their

parameters must be provided. In each such rewriting, parameter values may be

provided by (i) selections with a constant, or (ii) via a parameter-passing join with

a view alias from within the rewriting or (iii) via a parameter-passing join with a

new view alias. The considered parameter-passing joins must be compatible with

the column associations. Notice that there are only finitely many considered selec-

tions and parameter-passing joins. We obtain SQ(n) by systematically extending

the rewritings according to possibilities (i), (ii) and (iii), and unfolding the view

definitions in all extended rewritings.

III.E Implementation

The current implementation of CLIDE consists of the components that

compute the closest feasible queries and color the actions, shown in Figure III.1.

The component that handles parameterized selections in the views is under devel-

opment.

CLIDE uses MiniCon [69] as the core of its maximally-contained rewriting

component. Even though an initial implementation was provided to us, we had to

significantly optimize and extend it in order to enable CLIDE’s color algorithm and

achieve on-line performance. Figure III.2 illustrates the anatomy of the maximally-

contained rewriting component from Figure III.1.

45

Maximally-Contained Rewriter

Feasible Extension Queries
+ Maximum Projection Lists

Maximally-Contained Feasible Extension Queries
+ Maximum Projection Lists

Maximally-Contained Feasible Queries over Views
+ Containment Mappings

MiniCon

Containment Mappings Logging

Redundant Queries Removal

Minimal Feasible Extension Queries FQME
+ Maximum Projection Lists

Redundant Actions Removal

Views Expansion

Figure III.2: MiniCon Optimizations and Extensions

Views Expansion The first challenge we faced was that MiniCon does not pro-

duce maximally-contained rewritings that are syntactic extensions of the current

one. MiniCon initially produces a set of rewritings expressed using the views.

Once these rewritings are expanded so that they are expressed in terms of the

source schemas, they are not syntactic extensions of the current query, because

fresh aliases are introduced. For example, if the current query is q(n3) (Snapshot 3

in Figure II.4), MiniCon produces the following rewriting query qR that combines

V ′
1 and V ′

2 :

SELECT DISTINCT V ′
1.ram, V ′

1.price qR

FROM V ′
1, V ′

2

After expanding the views of qR, we obtain the following query qRE , which

is expressed in terms of the source schemas.

SELECT DISTINCT ComA.ram, ComA.price qRE

FROM Computers ComA, Computers ComB, NetCards Net

WHERE ComB.cid = Net.cid AND ComA.cpu=’P4’

AND ComB.cpu=’P4’ AND Net.rate=’54Mbps’

Query qRE is syntactically isomorphic to the closest feasible query q(n9),

but it is not a syntactic extension of q(n3), since q(n3) contains a table Computers

Com1, while qRE contains the tables Computers ComA and Computers ComB. It is

not straightforward if Com1 corresponds to ComA or ComB.

46

We could find the correspondences between the tables of q(n3) and the

tables of qRE by computing the containment mapping [4] from q(n3) into qRE .

The containment mapping considers all atoms of the two queries in order to find

the correct correspondences. For example, Com1 of q(n3) cannot be mapped into

ComB of qRE , because the ComB.ram and ComB.price projections do not appear

in the SELECT clause, as is the case in q(n3). Once we compute the containment

mappings, we can turn the MiniCon rewriting queries into syntactic extensions of

the current query by renaming the aliases of the former.

We managed to avoid computing the containment mappings on top of

MiniCon. We observed that while MiniCon searches for maximally-contained

rewritings, it builds the containment mappings from the current query to the

maximally-contained ones. So we extended MiniCon to log this information and

output it along with the set of maximally-contained rewriting queries over the

views, as shown at the bottom of Figure III.2.

Subsequently, we wrote a Views Expansion component, which uses the

logged containment mappings to expand the views in every MiniCon maximally-

contained rewriting so that the resulting queries are syntactic extensions of the

current one.

The Views Expansion component also generates the maximum projection

lists used in the color algorithm of Section III.C. In Section III.C, we defined a

maximum projection list to be the list of all possible projections that can be added

to a query without compromising feasibility. It turns out that for each expanded

query, the maximum projection list corresponds to all projections in the views

that appear in the initial MiniCon rewriting. For example, the initial rewriting of

q(n9) is qR. We can safely add to qR all projections in views V ′
1 and V ′

2 , without

compromising feasibility, and obtain the following query q′R:

SELECT DISTINCT q′R
V ′
1.cid, V ′

1.cpu, V ′
1.ram, V ′

1.price

V ′
2.cid, V ′

2.cpu, V ′
2.ram, V ′

2.price

V ′
2.cid, V ′

2.rate, V ′
2.standard, V ′

2.interface

FROM V ′
1, V ′

2

47

Hence, the maximum projection list of q(n9) consists of all projections in

q′R except V ′
1.ram and V ′

1.price which are mapped into from q(n9). The contain-

ment mappings are used here as well, so that the aliases in the maximum projection

lists refer to aliases that appear in the current query. These lists are constructed

in linear time.

Redundant Queries Removal Although the Views Expansion component in-

puts maximally-contained queries, not all syntactic extension queries it outputs

are necessarily maximally-contained. It turns out that views expansion introduces

redundancy across queries, i.e., expanded queries might contain one another. For

example, if the current query is q(n1) in Figure II.5 (Snapshot 1 in Figure II.4),

then MiniCon outputs two maximally-contained rewritings qR1 and qR2 over the

views V ′
1 and V ′

2 which do not contain one another:

SELECT DISTINCT V ′
1.ram, V ′

1.price qR1

FROM V ′
1

SELECT DISTINCT V ′
2.ram, V ′

2.price qR2

FROM V ′
2

The expansion of qR1 though contains the expansion of qR2, according to

the definition of the views V ′
1 and V ′

2 in Example 4.

In order to preserve the rapid convergence and minimality guarantees of

CLIDE (see Section II.D.1), we have to eliminate contained queries. This addi-

tional work is performed by the Redundant Queries Removal component, which

we build from scratch and tests if one query is contained in another. The query

containment test amounts to finding containment mappings between queries and is

in general NP-complete in the query size. In practice, the constructed queries are

small, and this test is very efficiently implemented [93]. We compute the contain-

ment mappings from query q1 into query q2 by constructing a canonical database

[4] for q2, canDB(q2) and running q1 over canDB(q2). To efficiently evaluate q1,

we employ standard algebraic optimization techniques: we construct an algebraic

operator tree for q1 (left deep join tree), in which selections and projections are

pushed and joins are implemented as hash joins.

48

The efficient implementation of the Views Expansion component proved

crucial to the on-line response of CLIDE, since query containment tests are the

bottleneck for CLIDE’s performance, as Section III.F demonstrates.

Redundant Actions Removal The output of the Redundant Queries Removal

component is still not the set of minimal feasible extension queries FQME that we

are looking for, because they are not necessarily minimal extensions of the current

query. For example, if q is the current query shown below, then qE is the only

feasible expansion query we get from MiniCon. qE is not a minimal expansion

query though. Query qME requires one action less than qE to reach an equivalent

query that minimally extends the current one.

SELECT DISTINCT Com1.ram, Com1.price q

FROM Computers Com1, Computers Com2

SELECT DISTINCT Com1.ram, Com1.price qE

FROM Computers Com1, Computers Com2

WHERE Com1.cpu=’P4’ AND Com2.cpu=’P4’

SELECT DISTINCT Com1.ram, Com1.price qME

FROM Computers Com1, Computers Com2

WHERE Com1.cpu=’P4’

The Redundant Actions Removal component finds FQME by systemati-

cally detecting two identical constants that refer to identical columns of two tables

with identical names but distinct aliases, dropping one of them at a time, and test-

ing for equivalence with the initial query. The same rule is applied on self-joins.

III.F Experimental Evaluation

Our experimental evaluation shows that CLIDE is a viable on-line tool.

The MiniCon algorithm was evaluated via extensive experiments in [69] to measure

the time to find the maximally-contained rewritings of queries using views. The

goal of our experiments was to show that the rest of the CLIDE components do not

add a prohibitive cost, and that the algorithms of Sections III.B and III.C, as well

49

as our extensions and optimizations (efficient implementation of containment test,

logging MiniCon’s containment mappings) are crucial in obtaining quick response

times.

The Experimental Configuration To study how CLIDE scales with increasing

complexity of the constructed query and with the number of views in the system, we

used a synthetic experimental configuration, whose scaling parameters are K, L, M ,

as described below.

The schema. In the literature, synthetic queries are usually generated in

one of two extreme shapes: chain queries and star queries. For a more realistic

setting, we chose a schema which allowed us to build queries of a chain-of-stars

shape, and in which joins follow foreign-key constraints (the most common reason

for joins). To this end, we picked a schema comprised of a relation A(ka, a) playing

the role of a star center, which is linked (via foreign key constraints) to K relations

{Bi(kb, fb, b)}0≤i≤K (the star corners). Each Bi is in turn the center of another

star whose L corners are given by the relations {Ci,j(kc, fc, c)}0≤j≤L. ka, kb, kc

are respectively the key columns for A, the Bi’s and the Ci,j’s. In each Bi, fb is a

foreign key referencing ka from A. In each Ci,j, fc is a foreign key referencing kb

from Bi.

The Views. The MiniCon experiments in [69] consider two extremes for

view shapes, one very favorable, the other one leading to long rewriting time. The

views in our configuration fall in the middle of this spectrum, and are more realis-

tic. Each view we picked covers one of the foreign-key-based joins suggested by the

schema. Moreover, we introduced selections with constants in these views, to force

the interface to propose not only tables and joins, but also selections. For each i,

we introduced M views {V n
i }0≤n≤M joining A with Bi and imposing a selection

comparing the b column with some constant cn. For each i, j we introduced M

views {V n
i,j}0≤n≤M joining Bi with Ci,j and comparing the c column to the constant

cn.

50

V n
i : SELECT x.a, y.kb, y.b

FROM A x, Bi y
WHERE x.ka=y.fb AND y.b=cn

V n
i,j : SELECT y.kb, y.b, z.c

FROM Bi y, Ci,j z
WHERE y.kb=z.fc AND z.c=cn

There are K×M +K×L×M views in the configuration. For an intuitive

interpretation of our abstract configuration, let the Bi tables stand for computer

accessories, such as network cards, storage, keyboard, etc. For instance if B1

plays the role of the NetCards table in Figure II.2 and A that of Computers, then

the view V 3
1 provides the computers compatible with a network card satisfying a

selection condition with constant c3.

The Queries. We scripted a family of interactions in which the simulated

user starts by performing an A table action and then follows only blue and yellow

suggestions, continuing even after reaching feasible queries.

After the initial A table action, CLIDE suggests joins with the Bi’s.

If any of these suggestions are taken (say by picking Bp), CLIDE suggests the

corresponding selections on Bp’s column b, as a list of options c1, . . . , cM . It also

suggests table actions leading to the join of A with some other Bj or of Bp with

some Cp,o. When the simulated user picks a selection with cn it reaches a feasible

query having a rewriting using V n
p . When this feasible query is extended to join

Bp with some Cp,o, CLIDE suggests (among others) selections comparing Cp,o’s

column c to some constant. Picking one of these, say cr, generates another feasible

query, which has a rewriting that joins V n
p with V r

p,o.

The Measurements The measurements were conducted on a dedicated work-

station (Pentium 4 3.2GHz, MS Windows XP Pro, 1GB of RAM) using Sun’s

JRE-1.5.0. All times measured are elapsed times.

We generated four configurations by fixing K = 7, L = 3 and varying

M = 4, 6, 8, 10, yielding respectively 112, 168, 224 and 280 views. Figure III.3

reports the time CLIDE took to come up with the suggestions at each current

query. Query (n, m) is a query reached after performing n table actions and joins,

and m selections. On the horizontal axis, all odd-position queries are infeasible,

while even-position queries are all feasible, being obtained by adding a relevant

51

0

1

2

3

4

5

6

7

(2
,1
)
(2
,2
)
(4
,3
)
(4
,4
)
(6
,5
)
(6
,6
)
(8
,7
)
(8
,8
)

(1
0,
9)

(1
0,
10
)

(1
2,
11
)

(1
2,
12
)

(1
4,
13
)

(1
4,
14
)

(# of Joins, # of Selections) in Current Query

T
im
e
 (
s
e
c
)

112 Views

168 Views

224 Views

280 Views

Figure III.3: CLIDE’s response time

selection to their predecessor.

Notice that, while CLIDE’s response is good overall, scaling to large

number of views, it is much better for feasible queries. This is an expected result,

since CLIDE needs to consider a single closest feasible query, i.e., the one that the

user has reached, as opposed to the number of closest feasible queries when the

current query is infeasible. The bottleneck in CLIDE’s performance turns out to

be the containment tests, which are a consequence of the views expansion. For

instance, for query (14, 13), there are 700 expanded queries of which only 10 are

non-redundant. These queries are quite sophisticated, joining up to 15 views. To

identify them, CLIDE runs pairwise containment tests over the 700 redundant

queries, then it minimizes the 10 queries invoking more containment tests. This

work dominates the response time. 8311 containment tests need 6 seconds out of

the 6.4 seconds of the elapsed time. The reason CLIDE scales to these query and

view sizes is the efficient implementation of the containment test.

Note that when parameterized selections do not appear in the views,

we could invoke MiniCon only when the user reaches a feasible query. We could

exploit the fact that one interaction step along an edge n
a→ n′ changes q(n) only

incrementally. If a was a yellow or blue action, FQC(n′) would be contained in

FQC(n) and we would not need to call MiniCon to compute FQC(n′). Instead,

52

we could inspect the containment mappings from q(n) into FQC(n) and we could

compute FQC(n′) by pruning those mappings that would not be consistent with

action a and dropping from FQC(n) all queries into which there would be no

more containment mappings. This optimization would be in effect as long as the

user would perform yellow and blue actions and for the periods of the interaction

between feasible queries.

III.G Discussion and Related Work

Alternative query formulation paradigms have been proposed in the lit-

erature [76], but the QBE paradigm is the one that users are mostly familiar with

today. As an alternative to a visual query builder, one could try to exploit ex-

isting formalisms for compact descriptions of infinite sets of supported queries.

These focus mainly on sets of binding patterns [28, 51, 73, 94] and sets of parame-

terized queries described by the infinite unfoldings of recursive Datalog programs

[50, 90]. However, these representations are meant for consumption by rewrit-

ing algorithms and not by humans: checking whether a given query is supported

requires non-obvious rewriting algorithms, especially when the set of indirectly

supported queries is enhanced via additional processing inside a mediator. This is

a key obstacle to the practical utilization of current query rewriting algorithms for

interactive query development, forcing the query writer into a trial-and-error loop.

There are many scenarios which would benefit from CLIDE’s approach

to query building. One example is the setting of [94], which is a special case of a

service-oriented architecture with parameterized views restricted to identity views

over individual tables. Their algorithm infers binding patterns for queries against

these views, and could conceptually be used by the user to reach a feasible query

by providing appropriate bindings. However, the user queries may be adorned

with exponentially many binding patterns, turning the visual inspection by the

user into a cumbersome process.

53

Another obvious CLIDE application is in data privacy enforcement. [74,

48] allow data owners to identify the non-sensitive data they are willing to export

by means of parameterized, virtual views against the proprietary data. Data con-

sumers formulate their queries against the proprietary database as well, but their

queries are rejected [74] or return null values [48] if they are not feasible according

to the virtual views. Again this leads to a frustrating trial-and-error development

process.

The implementation of the CLIDE back-end described here requires as

one building block an algorithm for finding maximally-contained rewritings. We

picked MiniCon [69] because we had access to the code, but we could have swapped

it with any other one, such as those in [28, 58]. Their applicability to our problem

comes as a pleasant surprise, as the original goal of these algorithms is different:

to provide an underestimate approximation of the query answer when the query is

not feasible.

Other systems [58] automatically formulate and answer an overestimate

or underestimate of the submitted query. We believe that in many applications the

user needs full control and understanding of what she can ask and which precise

query is being answered.

III.H Proofs

Proof of Lemma III.B.1: Recall that by definition every q1 ∈ FQME(n) is

feasible and contained in q(n). q1 is also closest to q(n), because otherwise there

would have to exist a feasible query q2, distinct from q1, and the paths n→ n2 → n1

in the interaction graph, with q2 = q(n2) and q1 = q(n1). But then q1 � q2 thus

contradicting q1 ∈ FQME(n). �
Proof of Lemma III.B.2: Let q1 = q(n1) where q1 ∈ FQC(n) and assume that

there exists some node m reachable from n and a containment mapping h from

q(m) into q(n1). Let k be the number of table atoms in q(m) minus the number

54

of table atoms in q(n1). Note that 0 ≤ k, otherwise q(n1) can be obtained by

strictly extending q(m) with table actions. But then n1 is reachable from m in the

interaction graph. Since m is reachable from n, we obtain the contradiction that

q(n1) is not a closest query to q(n).

Claim. We prove by induction on k that whenever there is a containment

mapping from q(m) into q1 and m can be reached from n in the interaction graph,

q1 can be obtained from q(m) by applying k alias collapse steps.

The Claim implies the lemma, since for each q1 ∈ FQC(n), there exists

some q(m) ∈ FQME(n) and a containment mapping from q(m) into q1.

The base case k = 0 is trivial. For the step, let q(m) have k + 1 more

table atoms than q1, and let h be the containment mapping from q(m) into q1.

Suppose that no table atoms of q(m) have the same image under h. Then q(n1)

has at least as many table atoms as q(m) and k + 1 < 0, contradiction. Therefore

there must exist Rr1, Rr2 in q(m) which have the same image under h. Substitute

r1 for r2 in q(m) and drop the duplicate table atom to obtain a query q′. Notice

that h remains a containment mapping from q′ into q(n1). Also notice that q′ is

reachable from q(n) and that q′ now only has k more table atoms than q1. By

induction hypothesis, q1 is obtained by k alias collapse steps from q′, therefore by

k + 1 collapse steps from q(m). �
Proof of Theorem 7: Follows from Lemmas III.B.1 and III.B.2. �

Chapter IV

Data-Oriented Web Service

Interfaces

This chapter presents the process of exporting query capabilities using

the Query Set Specification Language (QSSL). Section IV.A provides the back-

ground for QSSL and introduces the running example for the rest of the chapter.

Section IV.B formally defines QSSL and the supported query language. More-

over, it shows how QSSL accommodates recursive schemas and describes which

properties can be verified. Section IV.C discusses possible extensions of QSSL and

Section IV.D covers the related work.

IV.A Background

Web Services Description Language (WSDL) [15] provides an XML for-

mat for describing functions offered via web services. The function signatures

typically have fixed numbers of input and output parameters. However, the “func-

tion” paradigm is not adequate when the software components behind the web

services are databases. One typically associates one function with each parame-

terized query but this is problematic since databases often allow a large or even

infinite set of parameterized queries over their schema. For example, the admin-

istrator of a product catalog database may want to allow any query that selects

55

56

products by a combination of selection conditions on the product’s attributes. As-

suming the product has, say, 10 attributes, it is obviously impractical to specify

210 function signatures. In the particular example one can resolve the issue simply

by allowing some input parameters to be null. This situation is generalized by

QSSL to capture multiple function signatures in just one WSDL operation [15].

In addition, the function paradigm does not state explicitly either the

relationship between the input parameters and the output or the semantic con-

nections the available functions have with each other and with the underlying

database. We classify such web services as functional and we argue that they are

inappropriate for exporting structurally rich and functionally powerful information

sources, such as relational and emerging XML databases.

We introduce a WSDL extension that enables Data Services, which over-

come the limitations of functional web services. A Data Service exports the XML

Schema [31] of an XML view. The Data Service also provides a set of parameter-

ized queries that can be executed against the view. Hence the relationship between

the input and output parameters is explicit, since the input corresponds to a query

and the output to its result. Note that the view typically (but not necessarily)

corresponds to a part of the underlying database.

Given an underlying database, the Query Set Specification Language

(QSSL) allows the concise and semantically meaningful description of set of pa-

rameterized queries. The set may be very large or even infinite, since powerful

information sources (such as relational databases) support a large number of pa-

rameterized queries. Consequently, QSSL must be able to describe sets of para-

meterized queries without requiring exhaustive enumeration of them.

QSSL concisely describes sets of tree pattern (subset of XPath) queries.

It lends itself to a compact and intuitive visual notation that forms the basis of a

GUI that could allow the authoring of Data Services.

Figure IV.1 shows the architecture of a Data Service published by a data

source with a given view XML Schema. The query capabilities exported by a

57

Data
Source

Data
XML Schema

TPX

QSSXData
Service

Application

Input Message

XML
Output Message

Input Message Type

Data XML Schema

Output Message Type

WSDL

Figure IV.1: Data Service Architecture

Data Service are published as a WSDL-based web service [15] that provides an

application with the means to formulate valid and acceptable queries and to be

aware of the structure of the result. Notice that we translate QSSL specifications

into XML Schemas and we are thus compatible with the WSDL specification. The

Data Service receives an input message from the application and replies with an

output message or a fault. The input message is a tree pattern (TP) query (subset

of XPath), defined in Section IV.B, expressed in the TPX XML format, and the

output message is an XML tree. The set of acceptable tree pattern queries (i.e., the

set of acceptable input messages) is a QSSL specification, defined in Section IV.B.

A QSSL specification describes the possibly infinite set of parameterized queries

that are acceptable. A QSSL specification is translated into an XML Schema

(QSSX) describing the acceptable TPX messages.

IV.A.1 Example

The running example is based on the XML Schema in Figure IV.2a that

describes the structure of an airline database holding information about flights.

The schema describes the flights carried out by one or more airline companies,

where each flight has an origin and destination (from and to elements) and is

scheduled at least once per week. In turn, each flight has one or more legs with

a code, an origin and a destination and optionally the type of the aircraft used.

Note that the schema of the actual airline database may be “richer” but we focus

58

flights

airline

flight

name

from

to

day

leg

aircraft

to

from

code

+

*

+

?

+

(a) Data XML Schema

flights

airline

flight

name =‘Delta’

from

to =‘LAX’

=‘JFK’

day =‘MON’

leg

to =‘LAS’

(b) Tree Pattern Query

f7

f8

f9

f6

f5

f4

f3

f2

f1

flights

airline

flight

name=#1

from

to =#3

=#2

day =#4

leg

aircraft

to

from

=#6

=#5

=#7

+

?

*

?

?

?

code

(c) Query Set Specification (d) Productions

flights

airline

f3f2 +

f1

namef2 =#1

flight

f6f4 f5?

f3

*

from

to

f4

=#3

=#2

dayf5 =#4

leg

f9f7 f8 ??

f6

?

fromf7 =#5

tof8 =#6

aircraftf9 =#7

 Figure IV.2: Airline Example

on the part that the database administrator exposes.

The database administrator allows queries that are having any combina-

tion of the following conditions:

• The name of the airline company is specified

• The origin and destination of one or more flights is optionally specified

• A day of the week is specified

• The origin of zero or more legs is optionally specified

• The destination of zero or more legs is optionally specified

• The aircraft used for zero or more legs is optionally specified

59

Notice that one may also specify combinations of origin, destination, and

aircraft for legs. For the sake of the example, we also allow one to check whether

a flight has a leg (existential condition).

The queries may return “airline” or “flight” elements.

The rest of the chapter presents the process of exporting such query

capabilities using a Data Service.

IV.B Specifying Queries and Query Sets

We consider Data Services that support queries defined by a class of

XPath expressions consisting of node tests, navigation along the child axis ‘/’ and

the descendant axis ‘//’, and predicates denoted by ‘[]’. The established conven-

tion for representing this class of XPath expressions is to use tree pattern (TP)

queries [7, 56]. We believe that support for tree pattern queries is a minimum

Data Service requirement, since tree patterns are widely used in current applica-

tions, and since they are crucial building blocks of more expressive query languages

such as XQuery [14]. Moreover, tree patterns provide an excellent visual paradigm

which enables graphical user interfaces for constructing applications that produce

and consume Data Services. For example, the XPath expression

flights/airline[name=‘Delta’]/flight[from=‘JFK’][to=‘LAX’][day=‘MON’][leg[to=‘LAS’]]

is represented by the tree pattern query in Figure IV.2b. The arrow pointing to

the flight element node denotes the result node of the tree pattern query.

IV.B.1 QSSL Specifications

We define a Data Service by specifying the set of tree pattern queries it

supports. First, we introduce parameterized tree patterns (PTPs), which are TP

queries where the constants are replaced with parameters. A PTP query specifies

an infinite set of TP queries, each TP corresponding to a parameter instantiation.

A Data Service exports a possibly infinite set of such parameterized tree pattern

60

queries. This set is succinctly encoded using a QSSL specification.

Definition 9 (QSSL Specification). A QSSL specification is defined as a 5-

tuple 〈F, Σ, P, S, R〉, where:

• F is a finite set called the tree fragment names.

• Σ is a finite set, disjoint from F , called the element node names.

• P is a finite set of productions of general form f → tf1, . . . , tfn where f ∈ F

is a tree fragment name and each tfi is a tree fragment. A tree fragment is

a labeled tree consisting of:

– Element nodes with labels from Σ. Leaf element nodes may be addition-

ally labeled with a parameterized equality predicate of the form = #i,

where #i is a parameter and i is an integer.

– Tree fragment nodes n labeled with a name name(n) ∈ F and an oc-

currence constraint occ(n) ∈ {1, ?, +, ∗}. Tree fragment nodes can only

appear as leaf nodes of a tree fragment. We often omit the occurrence

constraint ‘1’.

– Edges e either of child type, denoted by straight lines, or of descendant

type, denoted by dashed lines.

• S ∈ F is the start tree fragment name.

• R ∈ Σ is a set called result node names. �

Example 10 The QSSL specification describing the airline Data Service from our

motivating example is A = 〈F, Σ, P, S, R〉, where F = {f1, . . . , f9}, Σ = {flights,
airline, name, flight, from, to, day, leg, aircraft}, P is the set of produc-

tions shown in Figure IV.2d, S = f1 and R = {airline, flight}. �

A compact visual representation of this QSSL specification is given in

Figure IV.2c, where tree fragments are depicted by shaded boxes with occurrence

61

constraints to their right. This visual representation could be the basis of a GUI

for authoring QSSL specifications by displaying the XML Schema and using drag-

and-drop actions.

Given the similarity between QSSL specifications and extended context-

free grammars [6], we define the set of parameterized tree pattern queries described

by a QSSL specification analogously to the language generated by a grammar. A

QSSL specification defines the set of PTPs whose result node is in R and whose

pattern is yielded by a sequence of derivation steps starting from the start fragment

name S. At any step, given a tree fragment node n, the derivation step replaces n

with the tree fragments on the right hand side of a production that has n on the

left hand side. Depending on the occurrence constraint labeling n, the derivation

step might replace it more than once or not at all. More specifically, if occ(n) = 1,

then n is replaced with the corresponding tree fragments exactly once, and they all

become children of n’s parent. If occ(n) =?, then n is nondeterministically either

deleted or relabeled with occ(n) = 1 before replacement. If occ(n) = +, then for

a nondeterministically chosen k ≥ 1, n is replaced with k copies of n, all siblings,

with occurrence labels set to 1. If occ(n) = ∗, then n is labeled nondeterministically

with occ(n) =? or occ(n) = + first. The parameters introduced in every step are

freshly renamed such that their name is unique across the tree fragment obtained

so far.

A TP query is accepted by a QSSL specification A if and only if it corre-

sponds to an instantiation of the parameters of a PTP query from the set defined

by A. We denote with TP(A) the set of TP queries accepted by A.

Example 11 Figure IV.3 shows the sequence of derivations steps, denoted by the

⇒ symbol, that obtains the corresponding PTP query pq of the TP query q in

Figure IV.2b. Note how the third derivation step replaces f4 with the corresponding

tree fragments, and how the fourth derivation step deletes f7 and f9. After the

final derivation step, the node labeled with the flight result node name is chosen,

thus forming a PTP query pq. When pq’s parameters [#1, #2, #3, #4, #5] are

62

flights

airline

f3f2

f1

flight

f6f4 f5

from to =#3=#2 day =#4
leg

to =#6

⇒ flights

airline

name=#1

flight

⇒

flights

airline

name=#1

from to =#3=#2 day =#4
leg

flight

⇒ flights

airline

name=#1

⇒

+

? *

f9f7 f8 ?? ?

Figure IV.3: Example Derivation

instantiated with the constants [‘Delta’, ‘JFK’, ‘LAX’, ‘MON’, ‘LAS’], we

obtain the TP query q from Figure IV.2b. Therefore, q is accepted by A. �

When the XML Schema is recursive, it describes documents of arbitrary

depth. On these documents, there are TP queries of arbitrary pattern height with

non-empty answer and it makes sense to export them in a Data Service.

Despite its fixed size (determined by the XML schema), a QSSL specifi-

cation can represent such arbitrarily deep TP queries.

Example 12 The recursive XML Schema in Figure IV.4a captures the structure

of a family tree. Figure IV.4b shows a TP query that returns the persons found

at any depth that are named “Kevin” and were born in “NY” such that at least

one of his descendants is married to a person also named “Kevin” and also born

in “NY”. Recall that the dotted lines in Figure IV.4b denote descendant edges.

A QSSL specification that accepts, among others, the corresponding PTP

query of the TP query in Figure IV.4b is shown in Figure IV.4c. Note the last node,

labeled with the tree fragment name f2, representing the recursion in the schema.

Formally, the above QSSL specification is defined as B = 〈F, Σ, P, S, R〉, where

F = {f1, . . . , f8}, Σ = {familyTree, person, name, place, spouse, children},
P is the set of productions shown in Figure IV.4d, S = f1 and R = {person}. Note

how the recursion in productions f2, f5 and f8 allows for derivations of arbitrary

length. It is easy to see that the PTP query corresponding to the TP query in

63

familyTree

person

spouse

name

name

children

person

?

(a) Recursive XML Schema

?

place

place

*

(b) Tree Pattern Query

familyTree

person

name

children

person

place

=‘Kevin’

spouse

name

place

=‘Kevin’

=‘NY’

=‘NY’

spouse

f8

f7

f6

f5

f4

f3

f2

f1

?

?

?

?

?

(c) Query Set Specification

familyTree

person

spouse

name

name

children

f2

place

place

=#1

=#2

=#3

=#4

?

*

(d) Productions

familyTree

f2

f1

person

f5f3 f4 ??

f2

?

name

place

f3

=#2

=#1

spouse

f8f6 f7 ??

f5

?

namef6 =#3

f7

childrenf8

f4

place=#4

f2 *

Figure IV.4: Family Tree Recursive Example

Figure IV.4b is obtained by a sequence of derivation steps using the production

associated to f2 twice. �

IV.B.2 Reasoning about Data Services

Aside from facilitating the development of applications that are clients of

the Data Service, QSSL specifications allow reasoning about Data Services. Below

are examples of Data Service properties we would like to verify.

• Membership of a query in a Data Service. The most basic problem is to check

if a client TP query q is accepted by a Data Service described by a QSSL

specification A, i.e. q ∈ TP(A).

• Subsumption of Data Services. Given services described by QSSL specifica-

tions A1 and A2, check if TP(A1) ⊆ TP(A2).

• Totality of a Data Service. Does the Data Service described by QSSL speci-

64

fication A accept all possible TP queries?

• Overlap of Data Services. Given services described by QSSL specifications

A1 and A2, check if TP(A1) ∩ TP(A2) �= �.

Of course, revisiting the analogy between QSSL specifications and ex-

tended context-free grammars, we could reduce these problems to decision prob-

lems on grammars. However, while the membership problem can be solved in this

way, the other problems in the list reduce to well-known problems that are unde-

cidable even for standard context-free grammars. Fortunately, it turns out that a

QSSL specification can be translated to an equivalent top-down nondeterministic

unranked tree automaton [16] (the translation is straightforward). QSSL specifica-

tions therefore describe regular tree languages, for which all problems listed above

are decidable [16]. This observation should not come as a surprise given the simi-

lar result stating that DTDs, who look strikingly similar to extended context-free

grammars, actually describe regular tree languages [79].

A practically important question is whether a client query can be an-

swered using a finite subset of the queries described by a QSSL specification. This

is related to the problem of answering queries using limited query capabilities [89].

IV.B.3 WSDL and XML Syntax

Our proposal for specifying Data Services is compatible with the stan-

dard Web Service Specification Language WSDL [15] in the sense that any QSSL

specification can be translated into a WSDL specification.

In general, a WSDL specification describes the format of the messages

that a service sends or receives using element declarations and type definitions

drawn from the XML Schema type system [31]. A WSDL specifies many additional

communication details, such as synchronicity, how sets of messages are grouped

into one operation, etc., all of which are orthogonal to our proposal. A WSDL

specification describing a Data Service restricts a general WSDL specification in

65

several ways, since the communication between the application and the Data Ser-

vice is always synchronous and is carried out in a request/response fashion [77].

The input message represents the query received from the service, and the output

message the result sent from the service. Both message types are described using

the XML Schema type system.

A QSSL specification can be automatically translated into a WSDL spec-

ification using the well-known fact that XML Schemas describe regular tree lan-

guages themselves. We omit the details of the translation algorithm, but illustrate

on an example. This example makes a convincing case for presenting users with a

concise and visually intuitive representation such as a QSSL specification instead

of the less readable XML syntax of the WSDL.

Example 13 Appendix A shows the WSDL for the QSSL specification from Fig-

ure IV.2c. The schemas that describe the input and the output messages of the

Data Service are imported in the beginning of the specification. The first schema

describes the parameterized queries supported by the Data Service. A QSSL speci-

fication is expressed in XML Schema format (QSSX) in order to be contained in a

WSDL specification. QSSX is an XML Schema that acceptable TPX queries con-

form to. The QSSX syntax for the QSSL specification in Figure IV.2c is shown in

Appendix B. The second schema reveals the structure of the underlying database

and presents a choice group consisting of the result node names in the result node

names set of a QSSL specification. Appendix C shows the XML Schema for the

QSSL specification in Figure IV.2c. As in the case of QSSL and QSSX syntax, TP

queries need to be expressible in XML format in order to be contained in messages

described by a WSDL specification. The XML syntax of TP queries, called TPX, is

a subset of XQueryX [54], the XML syntax of XQuery. The TPX query equivalent

to the TP query in Figure IV.2b is given in Appendix D. The XML Schema that

defines the TPX language is presented in Appendix E. �

66

IV.C QSSL Extensions

QSSL can be enhanced to describe subsets of XQuery expressions beyond

XPath ones, as well as additional constraints that restrict the co-occurrence of tree

fragments.

In Figure IV.4c, for example, the QSSL specification only indicates that

a parameterized equality predicate on the name and on the birth place of a person

can optionally be part of an acceptable PTP query. The QSSL specification does

not have the ability to succinctly express that these two predicates are mutually

exclusive, or express that at least one of them must be part of an acceptable

PTP query. It can achieve the desired effect by explicitly listing all acceptable

combinations, but this defeats the purpose of QSSL.

In order to express these constraints, QSSL can be enriched with a set of

replacement constrains including atLeast, atMost and xor.

For example, atLeast(1, {f3, f4}) expresses that in a derivation at least

one of f3 and f4 must be replaced. xor({f3, f4}, {f6, f7}) expresses that either the

parameterized predicates on the name and on the place of a person or on the name

and on the place of a spouse are part of an acceptable PTP query, but not both.

IV.D Related Work

In the past, the database community has conducted research on the re-

lated problems of answering queries using views [42], capability-based query rewrit-

ing [41, 89] and computation of query capabilities [94]. One approach assumes that

a source exports a relational view with n attributes, and query capabilities are de-

scribed as binding patterns [42]. Each binding pattern attaches a b (bound) or an

f (free) adornment on each attribute of the exported view. Adornment b means

that a value for the attribute is required in a query, while f means that a value is

optional. The set of adornments can be enriched adding u, where a value for an

attribute is not permitted, c[s], where a value for an attribute is required and must

67

be chosen from the set of constants s, and o[s], where a value in s is optional [94].

Note that each binding pattern defines a query template. Query capabilities de-

scribed as binding patterns are characterized as negative, because they restrict the

set of all possible queries against the exported view. Wrappers exporting binding

patterns are called thin, because of their limited functionality to execute the input

query against the underlying source.

Another approach describes sets of (parameterized) queries using the ex-

pansions of a Datalog program [50, 89]. In this work, it is shown that Datalog is

not enough to cover even all yes/no conjunctive queries over a schema. It conse-

quently showed that the RQDL extension can describe large sets, such as the set

of all conjunctive queries over a schema. QSSL and Data Services also attempt to

describe the capabilities of sources that support large sets of queries and aim to

fuel the research on the problems considered in [41, 42, 89, 94] for the XML data

model and the XQuery language [14].

On the industrial level, the effort is focused on turning relational database

systems to web services providers by exporting data definition and manipulation

operations via web services. These operations are either fixed or parameterized

queries expressed in SQL or SQL/XML [29], stored procedures, or functions. Typ-

ically, a web service exporting a fixed query takes as input the name of the database

operation, and possibly a parameter instantiation, and outputs either an XML

document or a serialized object in a given programming language. No schema

information of the underlying database is given, either for the input or the output.

A list of systems implementing this architecture includes IBM’s Document Access

Definition Extension (DADx) for DB2 [44], Oracle’s Database Web Services spec-

ification [55], Microsoft’s SQL Server 2000 Web Services Toolkit [85] and BEA’s

WebLogic Workshop [91]. There is also an effort on consuming web services within

the SQL query language, thus integrating relational data with web services.

Finally, the W3C Web Services Description Working Group [77] describes

usage scenarios that focus on various types of communication using messages and

68

demonstrate how they can be carried out using web services. The technical issues

focus on the direction of communication, i.e., request-response, solicit-response or

one-way, whether a web service is synchronous or asynchronous and whether it

supports conversations, rather than what query capabilities a database exports.

Chapter V

Graphical Query Interfaces for

Semistructured Data

This chapter presents an overview of the QURSED system. In particu-

lar, Section V.A outlines the background of semistructured data and web-based

graphical query interfaces, and reveals the need for the QURSED system. Sec-

tion V.B provides an overview of the system architecture. Related systems, in-

dustrial and academic, and the contributions of QURSED are discussed in Sec-

tion V.C. Section V.D defines the data model and Section V.E introduces the

QURSED-generated running example for subsequent chapters and describes the

end-user experience.

V.A Background

XML is a simple and powerful data exchange and representation language,

largely due to its self-describing nature. Its advantages are especially strong in

the case of semistructured data, i.e., data whose structure is not rigid and is

characterized by nesting, optional fields, and high variability of the structure. An

example is a catalog for complicated products such as sensors: they are often

nested into manufacturer categories and each product of a sensor manufacturer

comes with its own variations. For example, some sensors are rectangular and

69

70

have height and width, and others are cylindrical and have diameter and barrel

style. Some sensors have one or more protection ratings, while others have none.

The relational data model is cumbersome in modeling such semistructured data

because of its rigid tabular structure.

The database community perceived the relational model’s limitations

early on and responded with labeled graph data models [3] that evolved into XML-

based data models [32]. XML query languages (with most notable the emerging

XQuery standard [14]), XML databases [78] and mediators [19, 26, 34, 52, 83]

have been designed and developed. They materialize the in-principle advantages

of XML in representing and querying semistructured data. Indeed, mediators allow

one to export XML views of data found in relational databases [34, 83], XHTML

pages, and other information sources, and to obtain XML’s advantages even when

one starts with non-XML legacy data. QURSED automates the construction of

web-based query forms and reports for querying semistructured, XML data.

Web-based query forms and reports are an important aspect of real-world

database systems [11, 84] - albeit semi-neglected by the database research com-

munity. They allow millions of web users to selectively view the information of

underlying sources. A number of tools [88, 21, 45] facilitate the development of

web-based query forms and reports that access relational databases. However,

these tools are tied to the relational model, which limits the resulting user ex-

perience and impedes the developer in his efforts to quickly and cleanly produce

web-based query forms and reports. QURSED is, to the best of our knowledge, the

first web-based query forms and reports generator with focus on semistructured

XML data.

QURSED produces query form and report pages that are called QFRs. A

QFR is associated with a Query Set Specification (QSS). A QSSdescribes formally

the complex query and reporting capabilities [90] of a QFR. These capabilities

include the large number of queries that a form can generate to the underlying

XML query processor and the different structure and content of the query result.

71

XML Data
Server

XQuery
Expressions XML/XHTML

APP SERVER

BROWSER

Dynamic
Server Pages

Deployment

Expanded
Schema
Tree (EST)

Query
Form
Page

Web Designer

!

WYSIWYG
XHTML
Editor

(Optional)
XHTML

Template
Report Page

XHTML
Query Form

Page

QURSED
Editor

Developer

!
Query Form

Page

Query/Visual
Association

Query Set
Specification

(QSS)

QURSED
Compiler

QURSED
Run-Time

Engine

XML
Schema

End-User

!

Report
Pages

Figure V.1: The QURSED System Architecture

The emitted queries are expressed in XQuery and the query results are expressed

directly in XHTML that renders the report page.

V.B System Overview and Architecture

We discuss next the QURSED system architecture, shown in Figure V.1,

the process and the actions involved in producing a QFR, and the process by

which a QFRinteracts with the end-user, emits a query, and displays the result.

We also introduce terms used in the rest of the chapter and in subsequent ones.

QURSED consists of the QURSED Editor, which is the design-time component,

the QURSED Compiler, and the QURSED Run Time Engine.

The Editor inputs the XML Schema that describes the structure of the

XML data to be queried and constructs an Expanded Schema Tree (EST) out of

it. The EST is a structure that serves as the basis for building the query set

specification and is a visual abstraction of the XML Schema that the developer

interacts with. The Editor also inputs an XHTML query form page that provides

the static part of the form page, including the XHTML form controls [71], such as

select (“drop-down menus”) and text (“fill-in-the-box”) input controls, that the

72

end-user will be interacting with. It may additionally input an optional template

report page that provides the XHTML structure of the report page. In particular,

it depicts the nested tables and other components of the page. It is just a template,

since we may not know in advance how many rows/tuples appear in each table.

The query form and template report pages are typically developed with an external

“What You See Is What You Get” (WYSIWYG) editor, such as [43]. If a template

report page is not provided, the developer can automatically build one using the

Editor.

The Editor displays the EST and the XHTML pages to the developer,

who uses them to build the query set specification of the QFR and the query/visual

association. The QSS focuses on the query capabilities of the QFR and describes

the set of queries that the form may emit. The query description is based on

the formalism of the Tree Query Language (TQL) described in Chapter VI. The

QSS ’s key components are the parameterized condition fragments, the fragment

dependencies and the result tree generator. Each condition fragment stands for

a set of conditions (typically navigations, selections and joins) that contain para-

meters. The query/visual association indicates how each parameter is associated

with corresponding XHTML form controls citehtml of the query form page. The

form controls that are associated with the parameters contained in a condition

fragment constitute its visual fragment. Dependencies can be established between

condition fragments and between the values of parameters and fragments, and

provide fine-grained control on what queries can be submitted and which visual

fragments are eligible to appear on the query form page at each point (see Fig-

ure VI.8 in Section VI.D). Finally, the result tree generator specifies how the

source data instantiate and populate the XHTML template report page.

The QURSED Compiler takes as input the output of the Editor and

produces dynamic server pages, which control the interaction with the end-user.

Dynamic server pages are implemented in QURSED as [60], while Active Server

Pages [9] is another possible option. The dynamic server pages, the query set

73

specification and the query/visual association are inputs to the QURSED Run-time

Engine. In particular, the dynamic server pages enforce the dependencies between

the visual fragments on the query form page and handle the navigation on the

report page. The engine, based on the query set specification and the query/visual

association, generates an XQuery expression when the end-user clicks “Execute”,

which is sent to the XML Data Server and its XHTML result is displayed on the

report page.

V.C RelatedWork

The QURSED system relates to four wide classes of systems, coming from

both academia and industry:

1. Web-based Form and Report Generators, such as [88], [21], and [45]. All

of the above enable the development of web-based applications that create

form and report pages that access relational databases, with the exception of

XQForms [67], which targets XML data. QURSED is classified in the same

category, except for its focus on semistructured data.

2. Visual Querying Interfaces, such as QBE [95] and Microsoft’s Query Builder

[45], which target relational databases, and XML-GL [22], EquiX [20], BBQ

[57], VQBD [18], the Lorel’s DataGuide-driven GUI [40], and PESTO [17],

which target XML or object-oriented databases.

3. Schema Mapping Tools, such as IBM’s Clio [68], Microsoft’s BizTalk Map-

per [80], [86] and BEA’s Data View Builder [35]. These are graphical user in-

terfaces that facilitate the data transformation from one or more source XML

Schemas to a target XML Schema. The user constructs complex XQuery [14]

or XSLT [46] expressions through a set of visual actions. These tools are

mainly used in integration scenarios.

4. Data-Intensive Web Site and Application Generators, such as Autoweb [37],

74

Araneus [10], Strudel [33] and Application Manifold [30]. These are recent

research projects proposing new methods of generating web sites, which are

heavily based on database content. An additional extensive discussion on

this class of systems can be found in [36].

Web-based Form and Report Generators create web-based interfaces that

access relational databases. Popular examples are [88], [21], and [45]. The de-

veloper uses a set of wizards to visually explore the tables and views defined in

a relational database schema and selects the one(s) she wants to query using a

query form page. By dragging and dropping the attributes of the desired table to

XHTML form controls [71] on the page, she creates conditions that, during run-

time, restrict the attribute values based on the end-user’s input. The developer

can also select the tables or views to present on a report page, and by dragging and

dropping the desired attributes to XHTML elements on the page, e.g., table cells,

the corresponding attribute values will be shown as the element’s content. The

developer also specifies the XHTML region that will be repeated for each record

found in the table, e.g., one table row per record. These actions are translated

to scripting code or a set of custom XHTML tags that these products generate.

The custom tags incorporate common database and programming languages func-

tionality and one may think of them as a way of folding a programming/scripting

language into XHTML. The three most popular custom tag libraries today are

[60], Active Server Pages [9] and Macromedia ColdFusion Markup Language [21].

Those tools are excellent when flat uniform relational tables need to be

displayed. The visual query formulation paradigm offered to the developer allows

the expression of projections, sort-bys, and simple conditions. However, the de-

velopment of form and report pages that query and display semistructured data

requires substantial programming effort.

Visual Querying Interfaces are applications that allow the exploration

of the schema and/or content of the underlying database and the formulation of

queries. Typical examples are the Query-By-Example (QBE) [95] interface and

75

Microsoft’s Query Builder [45], which target the querying of relational databases.

Recent visual front-ends such as XML-GL [22], EquiX [20], BBQ [57], VQBD [18],

the Lorel’s DataGuide-driven GUI [40], and PESTO [17] target the querying of

XML and object-oriented databases. Unlike the form and report generators, which

produce web front-ends for the “general public”, visual querying interfaces present

the schema of the underlying database to experienced users, who are often de-

velopers building a query, help them formulate queries visually, and display the

result in a default fashion. The user has to, at the very least, understand what

the meaning of “schema” is and what the model of the underlying object structure

is, in order to be able to formulate a query. For example, the QBE user has to

understand what a relational schema is and the user of Lorel’s DataGuide GUI

has to understand that the tree-like structure displayed is the structure of the un-

derlying XML objects. These systems have heavily influenced the design of the

Editor because they provide an excellent visual paradigm for the formulation of

fairly complex queries.

In particular, EquiX allows the visual development of complex XML

queries that include quantification, negation and aggregation. EquiX and BBQ

use some form of the EST and of the corresponding visual concept, but they still

require basic knowledge of query language primitives. Simple predicates, Boolean

expressions and variables can be typed at terminal nodes and quantifiers can be

applied to non-terminal nodes. In a QBE-like manner, the user can select which

elements of the DTD to “print” in the output but the XML structure of the query

result conforms to the XML structure of the source, i.e., there is no restructuring

ability.

A more powerful visual query language is XML-GL that uniformly ex-

presses XML documents, DTDs and queries as graphs. Queries consist of a set of

extraction query graphs, a set of construction query graphs, and a set of bindings

from nodes of one side to nodes of the other. In terms of expressiveness, XML-GL

is more powerful than BBQ and EquiX, because of its ability to construct com-

76

plex results using grouping, aggregate and arithmetic functions. It also supports

heterogeneous union, in a fashion similar to TQL. XML-GL is less powerful than

XQuery though, since recursive queries are not expressible and nested subqueries

are partially supported. An advantage of XML-GL is that it can be implemented

as a visual front-end to an XQuery processor, since the correspondence between

their semantics is straightforward. The disadvantage of XML-GL is that it doesn’t

make the common case easy. The interface is not intuitive for simple queries until

the developer gets familiar with the visual semantics of the language.

It is important to note that the described visual query formulation tools

and the Editor have very different goals: The goal of the former is the development

of a query or a query template by a database programmer, who is familiar with

database models and languages. The goal of the latter is the construction from an

average web developer of a form that represents and can generate a large number

of possible queries.

Schema Mapping Tools are graphical user interfaces that declaratively

transform data between XML Schemas in the context of integration applications.

IBM’s Clio [68], Microsoft’s BizTalk Mapper [80], [86] and BEA’s Data View

Builder [35] are representative examples. The transformation is a three-step process

that is based on multiple source XML Schemas and a single target XML Schema

that are visualized and presented to user. The first step discovers and creates

correspondences between one or more elements of the source schemas and a sin-

gle target element without attaching any specific semantics to them. The second

step turns correspondences to mappings by specifying exactly how the source el-

ements are transformed to the target element. Selection predicates, inner and

outer joins, arithmetic, string and user defined functions are a few examples of

the supported functionality. Clio [68] goes one step further and explains the dif-

ference between different mappings interactively by giving examples to the user

based on small datasets. The third step of the transformation process generates

either an XQuery [14] or an XSLT [46] expression that actually implements the

77

transformation.

Note that the first two steps above are carried out using visual actions

only, so the user does not need to be aware of the particular query language used

by each tool. These visual actions greatly facilitate data integration by simplifying

the transformation process, especially when someone takes into account that the

generated query expressions are particularly complex and hard to write by hand.

QURSED’s Editor adopts part of the functionality provided by the schema

mapping tools for a different purpose. More specifically, the Editor creates two

types of transformations without making a distinction between correspondences

and mappings. First, it creates query/visual associations that map form controls

on the XHTML query form page to parameters of selection predicates, in order

to generate queries that filter the data. And second, it creates a transformation

between a single XML Schema and an XHTML template report page in order to

construct the report pages.

Data-Intensive Web Site and Application Generators. Autoweb [37], Ara-

neus [10] and Strudel [33] are excellent examples of the ongoing research on how to

design and develop web sites heavily dependent on database content. All of them

offer a data model, a navigation model and a presentation model. They provide

important lessons on how to decouple the query aspects of web development from

the presentation ones. (Decoupling the query from the presentation aspects is an

area where commercial web-based form and report generators suffer.) Strudel is

based on labeled directed graphs model for both data and web sites and is very

close to the XML model of QURSED.

The query language of Strudel, called StruQL, is used to define the way

data are integrated from multiple sources (data graph), the pages that make up

the web site, and the way they are linked (site graph). Each node of the site graph

corresponds to exactly one query, which is manually constructed. Query forms are

defined on the edges of the site graph by specifying a set of free variables in the

query, which are instantiated when the page is requested, producing the end node

78

of the edge. Similarly, Autoweb and Araneus perceive query forms as a single

query, in the sense that the number of conditions and the output structure are

fixed. In Strudel, if conditions need to be added or the output structure to change,

a new query has to be constructed and a new node added to the site graph. In

other words, every possible query and output structure has to be written and added

to the site graph. QURSED is complementary to these systems, as it addresses

the problem of encoding a large number of queries in a single QFR and also of

grouping and representing different reports using a single site graph node.

Application Manifold [30] is the first attempt to expand a data integration

framework to an application integration one. The system is capable of generating

web-based e-commerce applications by integrating and customizing existing ones.

Applications’ flow is modeled and visually represented using UML State Charts

that consist of states, corresponding to web pages that provide activities, linked

by transitions, corresponding to navigation links that the end user can follow, and

containing actions, corresponding to method calls that trigger other transitions

and/or alter the application’s state. Application integration and customization is

specified using a declarative language that allows for optimization and verification

of the generated application.

Related to QURSED is also prior work on capability-description lan-

guages and their use in mediator systems [49, 90]. The QSS formalism of QURSED

is essentially a capability description language for query forms and reports over

XML data. The prior work on capabilities has focused on describing the capa-

bilities of query processors with an underlying relational data model. Instead the

QSS captures the complex query and reporting capabilities of query forms over

semistructured data.

There is also the prior work of the author on the XQForms system that

declaratively generates Web-based query forms and reports that construct XQuery

expressions [67]. This work introduces a software architecture that allows an ex-

tensible set of XHTML input controls to be associated with element definitions of

79

an XML schema via an annotation on the XML Schema. It also presents different

“hard-wired” ways the system provides for customizing the appearance of reports.

The set of queries produced by the system are conjunctive and its spectrum is

narrow because of the limitations of the XML Schema-based annotation. This

work does not describe how the system encodes or composes queries and results of

queries based on end-user actions.

Finally, there is the XForms W3C standard [27], which promotes the use

of XML structured documents for communicating to the web server the results

of the end-user’s actions on various kinds of forms. XForms also tries to provide

constructs that change the appearance of the form page on the client side, with-

out the need of coding. QURSED can use these constructs for the evaluation of

dependencies, thus simplifying the implementation.

V.C.1 Novel Contributions of QURSED

Forms and Reports for Semistructured Data. QURSED generates form

and report pages that target the needs of interacting with and presenting semi-

structured data. Multiple features contribute in this direction:

1. QURSED generates queries that handle the structural variance and irreg-

ularities of the source data by employing appropriate forms of disjunction.

For example, consider a sensor query form that allows the end-user to check

whether the sensor fits within an envelope with length X and width Y, where

X and Y are end-user-provided parameters. The corresponding query has to

take into consideration whether the sensor is cylindrical or rectangular, since

X and Y have to be compared against a different set of dimension attributes

in each case.

2. Condition fragment dependencies control what the end-user can ask at every

point. For example, consider another version of the sensor query form that

contains a selection menu where the end-user can specify whether he is in-

80

terested in cylindrical or rectangular sensors. Once this is known, the form

transforms itself to display conditions (e.g., diameter) that pertain to cylin-

drical sensors only or conditions (e.g., height and width) that pertain to

rectangular sensors only.

3. On the report side, data can be automatically nested according to the nesting

proposed by the source schema or can be made to fit XHTML tables that have

variance in their structure and different nesting patterns. Structural variance

on the report page is tackled by producing heterogeneous rows/tuples in the

resulting XHTML tables.

Loose Coupling of Query and Visual Aspects. QURSED separates the

logical aspects of query forms and reports generation, i.e., the query form capabili-

ties, from the presentation aspects, hence making it easier to develop and maintain

the resulting form and report pages. The visual component of the forms can be

prepared with any XHTML editor. Then the developer can focus on the logical

aspects of the forms and reports: Which are the condition fragments? What are

their dependencies? How should the report be nested? The coupling between the

logical and the visual part is loose, simple, and easy to build: The query parameters

are associated with XHTML form controls, the condition fragments are associated

with sets of XHTML form controls, and the grouped elements (see Chapter VI) of

the result tree are associated with the nested tables of the report.

Powerful and Succinct Description Language for Query Form Capabili-

ties. We provide formal syntax and semantics for the QFR query set specifications,

which describe query form capabilities by succinctly encoding large numbers of

meaningful semistructured queries. The specifications primarily consist of parame-

terized condition fragments and dependencies. The combinations of the fragments

lead to large numbers of parameterized queries, while the dependencies guarantee

that the produced queries make sense given the XML Schema and the semantics

of the data.

81

The query set specifications are using the Tree Query Language (TQL),

which is a calculus-based language. TQL is designed to handle the structural

variance and missing fields of semistructured data. Nevertheless, TQL’s purpose

is not to be yet another general-purpose semistructured query language. Its design

goals are to:

1. facilitate the definition of query set specifications and, in particular, of con-

dition fragments, and

2. provide a tree-based query model that captures easily the schema-driven

generation of query conditions by the forms component of the Editor and

also maps well to the model of nested tables used by the reports.

XML, XHTML, and XQuery-Based Architecture. The QURSED architec-

ture and implementation fully utilizes XQuery and the interplay of XML/XHTML.

The result is an efficient overall system, when compared either against relational-

based front-end generators or against conventional XML-based front-end architec-

tures, such as [92]. An XML-related efficiency is derived by the fact that XML is

used throughout QURSED: XML is the data model of the source on which XML

queries, in XQuery syntax, are evaluated, and is also used to deliver the presenta-

tion - in the form of XHTML. The elimination of internal model mismatches yields

significant advantages in the engineering and maintainability of the system.

V.D Data Model, XML Schema and Expanded Schema

Tree

QURSED models XML data as labeled ordered tree objects (lotos), such

as the sample data set shown in Figure V.2a that describes two proximity sensor

products. Each internal node of the labeled ordered tree represents an XML ele-

ment and is labeled with the element’s tag name. The list of children of a node

represents the sequence of elements that make up the content of the element. A

82

sensors
manufacturer
name

product
part_number

“Turck”

“A123”
image
“A123.jpg”

specs
sensing_distance
“11”

body_type
cylindrical

barrel_style

diameter
“17”

“Smooth”
protection_ratings
protection_rating
“NEMA1”

operating_temp
min

max
“-20”

“200”

protection_rating
“NEMA3”

product
part_number
“B123”

specs
sensing_distance
“25”

body_type
rectangular

width

height
“10”

“30”
protection_ratings
protection_rating
“NEMA3”

operating_temp
min

max
“-30”

“350”

protection_rating
“NEMA4”

(a) Data Set (loto)

manufacturer

SEQ

product

image

protection_ratings

cylindrical rectangular

barrel _style width

body_type

protection_rating

*

+

?

+

name

part_number specs

sensing_distance

diameter depth

operating _temp

min max

SEQ

SEQ

sensors

SEQ

CHOICE

SEQ SEQ

ALLSEQ

(b) XML Schema

(c) Expanded Schema Tree (EST)

sensors
manufacturer

product

body_type

cylindrical

diameter

specs

protection_ratings

protection_rating

$PROD

CHOICE

rectangular

width

$DIA

$WID

$PROT

$REC

$CYL

$S

(d) Expanded Schema Tree (EST)

$MAN*

SEQ

SEQ
+

SEQ

SEQ

SEQ

SEQ

$BODY

*

$PROTS

$SPEC

protection_rating $PROT1*

part_number $PART
image $IMG?

sensing_distance $DIST

barrel_style $BAR

height $HEI

operating_temp

min $MIN
ALL

$OPER

max $MAX

Figure V.2: Example Data Set, XML Schema and Expanded Schema Tree

83

leaf node holds the string value of its parent node. If n is a node of a loto, we

denote as tree(n) the subtree rooted at n.

In the sample data set of Figure V.2a, the top sensors node contains

a manufacturer node, whose name is “Turck”. This manufacturer contains a list

of two product nodes, whose direct subelements contain the basic information of

each sensor. The first sensor’s part number is “A123” and has an image, while

the second’s one is “B123” and has no image. The technical specification of each

sensor is modeled by the specs node, whose content is quite irregular. For ex-

ample, the body type of the first sensor is cylindrical, and has diameter and

barrel style, while the second one is rectangular and has height and width.

Also, both sensors have more than one protection rating nodes and have min

and max operating temperature.

The XML Schema that describes the structure of the sample data set of

Figure V.2a is shown as a tree structure in Figure V.2b. Similar conventions for

representing XML Schemas and DTDs have been used by previous works, e.g. [5]

and [34]. Indicated are the optional (? and ∗ labeled edges) and repeatable (∗ and

+ labeled edges) elements and the types of groups of elements (SEQ, CHOICE

and ALL nodes [31].) The leaf nodes are of primitive type [13]. Like many XML

Schemas, it has nesting and many “irregular” structures such as choice groups, e.g.

the body type may be rectangular or cylindrical, and optional elements [31],

e.g. each sensor can optionally have an image element.

Based on the XML Schema in Figure V.2b, the Editor constructs the

corresponding EST that serves as the basis for building the query set specification.

Figure V.2c shows the Editor’s view of the EST as it is displayed to the developer,

and Figure V.2d the internal representation used by the Editor. Formally, the EST

is defined in the following.

Definition 14 (Expanded Schema Tree). An expanded schema tree EST is a

labeled tree that consists of:

• Element nodes n having an element name name(n), which is a constant.

84

Element nodes are labeled with a unique element variable var(n), which starts

with the $ symbol, and an occurrence constrain occ(n), which can be ? (0-1

occurrences), 1 (only one occurrences), ∗ (any number of occurrences) or +

(one or more occurrences). An element node n is optional if occ(n) is either

? or ∗. If occ(n) is either + or ∗, then n is repeatable. Element nodes have

a Boolean property report(n).

• SEQ nodes.

• CHOICE nodes.

• ALL nodes. �

The root node of an EST is a non-repeatable element node.

The Boolean property report of an element node is true if the corre-

sponding checkbox that appears next to the element node on the view of the EST

(Figure V.2c) is checked. The reason for doing that is to indicate to the Edi-

tor which elements to include on the report. Report generation is described in

Chapter VII.

V.D.1 Aliasing and EST Expansion

There are cases where the developer needs to create “aliases” of element

nodes. For example, assume that the developer wants to give the end-user the

ability to specify two desirable protection ratings, out of the multiple that a single

sensor might have. This case is depicted on Figure V.3, where two “Protection

Rating” form controls appear on the query form page. To accomplish that, the

developer expands the protection rating element node on the EST and creates

two copies of it, as shown on Figure V.2c. The EST of Figure V.2d illustrates the

internal effect of the two aliases, where the two copies of the protection rating

element node have two different and unique element variables, $PROT1 and $PROT2.

An expansion can be applied only on a repeatable element node n, creat-

ing a copy c of the subtree rooted at n and setting it as the last child of n’s parent

85

Figure V.3: Example QFR Interface

node. All element nodes of c are labeled with new and unique element variables.

V.E Example QFR and End-User Experience

Using QURSED, a developer can easily generate a QFR interface like

the one shown in Figure V.3 that queries and reports proximity sensor products.

This interface will be the running example and will illustrate the basic points of

the functionality and the experience that QURSED delivers to the end-user of the

interface.

The browser window displays a query form page and a report page. On

the query form page XHTML form controls are displayed for the end-user to select

86

or enter desired values of sensors’ attributes and customize the report page. The

state of the query form page of Figure V.3 has been produced by the following

end-user actions:

• Placed the equality condition “NEMA3” on “Protection Rating 1”.

• Left the preset option “No preference” on “Body Type” and placed the con-

ditions on “Dimension X” being less than 20 “mm” and “Dimension Y”

less than 40 “mm”. These two dimensions define an envelope in which the

end-user wants the sensors to fit, without specifying a particular body type.

• Selected from the “Sort By Options” list to sort the results first by “Man-

ufacturer” (descending) and then by “Sensing Distance” (ascending). The

selections appear in the “Sort By Selections” list.

• In the “Customize Presentation” section, selected to present (“P” column)

all columns that she has control over, e.g., “Part Number” is, by default,

always presented (disabled checkbox).

After the end-user submits the form, she receives the report of Figure V.3.

The results depict the information of product elements: the developer had decided

earlier that product elements should be returned. By default, QURSED organizes

the presentation of the qualifying XML elements in a way that corresponds to the

nesting suggested by their XML Schema. Notice, for example, that each product

display has nested tables for rectangular and cylindrical values. Also notice

that instead of the text of the manufacturer’s name, a corresponding image (logo)

is presented.

Chapter VI

Tree Query Language and Query

Set Specifications

This chapter describes the Tree Query Language (TQL) and the Query

Set Specification (QSS). TQL is designed to handle the structural variance and

missing fields of semistructured data, and is presented in Section VI.A. TQL’s

purpose is not to be yet another general-purpose semistructured query language,

but to facilitate the definition of query set specifications, which are described in

Section VI.B. Section VI.C illustrates how the QURSED run-time engine gener-

ates TQL queries, and in extension XQuery expressions, given a QSS, while Sec-

tion VI.D elaborates on how the developer can apply fine control on the generation

of queries using dependencies.

VI.A Tree Query Language (TQL)

End-user interaction with the query form page results in the genera-

tion of TQL queries, which are subsequently translated into XQuery statements.

TQL shares many common characteristics with previously proposed XML query

languages like XML-QL [23], XML-GL [22], LOREL [70], XMAS —citemix and

XQuery [14]. TQL facilitates the development of query set specifications that en-

code large numbers of queries and the development of a visual interface for the

87

88

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

PROT1 = “NEMA3”

name

part_number

protection_ratings
protection_rating

$PROD

OR
AND

rectangular

width
height

AND

$DIA <= 20 AND $DIA <= 40

$HEI <= 20 AND $WID <= 40

tr
td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME DESC, $DIST)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$IMG
td

img$PART

$DIST

$DIA

$HEI
$WID

$PROT

GROUPBY ($DIA)

$NAME

GROUPBY ($CYL)

GROUPBY ($REC)

$REC

$CYL

GROUPBY ($IMG)

$S

image $IMG

OR
AND true

AND true

barrel_style $BAR

$BAR
td GROUPBY ($BAR)

body
table

(a) Condition Tree

(b) Result Tree

table
tr
td

$HEI
GROUPBY ($HEI)

$WID
td GROUPBY ($WID)

table
tr
td

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT1

$PROT

table
tr
td

td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure VI.1: TQL Query Corresponding to Figure V.3

easy construction of those specifications. This section describes the structure and

semantics of TQL queries. The structure and semantics of query set specifications

are described in the next section.

A TQL query q consists of a condition tree and a result tree. An example

of a TQL query is shown in Figure VI.1, and corresponds to the TQL query

generated by the end-user’s interaction with the query form page of Figure V.3.

VI.A.1 Condition Tree

Definition 15 (Condition Tree). The condition tree of a TQL query q is a

labeled tree that consists of:

• Element nodes n having an element name name(n), which is a constant or

a name variable, and an element variable var(n). In a condition tree, there

can be multiple nodes with the same constant element name, but element and

name variables must be unique. Element variables start with the $ symbol

89

and name variables start with the $N .

• AND nodes, which are labeled with a Boolean expression b consisting of pred-

icates combined with the Boolean connectives ∧, ∨ and ¬. The predicates

consist of arithmetic and comparison operators and functions that use ele-

ment and name variables and constant values as operands and are understood

by the underlying query processor. Each element and name variable used in

b belongs to at least one element node that is either an ancestor of the AND

node, or a descendant of the AND node such that the path from the AND node

to the element node does not contain any OR nodes. The Boolean expression

may also take the values true and false.

• OR nodes. �

The following constraints apply to condition trees:

1. The root element node of a condition tree is an AND node.

2. OR nodes have AND nodes as children.

Figure VI.1 shows the TQL query for the example of Figure V.3. Note

that two conditions are placed on diameter of cylindrical sensors corresponding to

height and width of rectangular sensors. Omitted are the variables that are not

used in the condition or the result tree.

The semantics of condition trees is defined in two steps: OR-removal

and binding generation. OR-removal is the process of transforming a condition

tree with OR nodes into a forest of condition trees without OR nodes, called

conjunctive condition trees in the remainder of the chapter. OR-removal for the

condition tree of Figure VI.1a results in the set of the four condition trees shown

in Figure VI.2.

Intuitively, OR-removal is analogous to turning a logical expression to

disjunctive normal form [39]. In particular, we repeatedly apply the rules shown in

Figure VI.3. Without loss of generality, the subtrees of Figure VI.3 are presented

90

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD
$PART

$DIST

$DIA

$NAME

sensors
manufacturer

product

sensing_distance
body_type

AND

specs

$PROT1 = “NEMA3” AND
$HEI <= 20 AND $WID <= 40

name

part_number

protection_ratings
protection_rating

$PROD

rectangular

width
height

$PART

$DIST

$HEI
$WID

$PROT

$NAME

protection_rating $PROT

$CYL $REC

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

$PROT1 = “NEMA3” AND
$DIA <= 20 AND $DIA <= 40

name

part_number

protection_ratings

$PROD
$PART

$DIST

$DIA

$NAME

sensors
manufacturer

product

sensing_distance
body_type

AND

specs

$PROT1 = “NEMA3” AND
$HEI <= 20 AND $WID <= 40

name

part_number

protection_ratings

$PROD

rectangular

width
height

$PART

$DIST

$HEI
$WID

$NAME

$CYL $REC

image $IMG

barrel_style $BAR

image $IMG

protection_rating $PROT

barrel_style $BAR

protection_rating $PROT

CCT1

CCT2

CCT3

CCT4

N_BODYN_BODY

N_BODYN_BODY

protection_rating $PROT1 protection_rating $PROT1

protection_rating $PROT1 protection_rating $PROT1

 Figure VI.2: Conjunctive Condition Trees

A
OR

D

AND

B
C

AND
A

OR

B
D

AND
A
C
D

A
OR

OR

B
C

A
OR

B
C

A
OR

D

element_node

B
C

AND
A

OR

B
D

AND
A
C
D

element_node

AND
OR

AND

element_node

AND
element_node

OR

AND
element_nodereplace with replace with replace with

replace with

Figure VI.3: OR-Removal Replacement Rules

with 2 or 3 children. At the point when we cannot apply the rules further, we

have produced a tree with an OR root node, which we replace with the forest

of conjunctive condition trees consisting of all the children of the root OR node.

Notice that wherever this process generates AND nodes as children of AND nodes,

these can merged, and the Boolean expression of the merged node is the conjunction

of the Boolean expressions of the original AND nodes. Also notice that the Boolean

expression of the root AND node in the first rule cannot contain any variables in

subtrees B or C, per earlier definition of condition trees. Finally, notice that in

the course of OR-removal “intermediate results” may not be valid condition trees

per Definition 15 (in particular, constraint 2 can be violated), but the final results

obviously are. The semantics of the original condition tree is given in terms of the

semantics of the resulting conjunctive condition trees.

91

A conjunctive condition tree C produces all bindings for which an input

loto t “satisfies” C. Formally, a binding is a mapping β from the set of element

variables and name variables in C to the nodes and node labels of t, such that

the child of the root of C (which is an AND node) matches with the root of t,

i.e., β(var(child(root(C)))) = root(t), and recursively, traversing the two trees

top-down, for each child ni of an element node n in C, assuming var(n) is mapped

to a node x in t, there exists a child xi of x, such that β(var(ni)) = xi and, if xi

is not a leaf node:

• if name(ni) is a constant, name(ni) = name(xi)

• if name(ni) is a name variable, β(name(ni)) = name(xi)

Importantly, AND notes in C are ignored in the traversal of C. In par-

ticular, in the definition above, by “child of the element”, we mean either element

child of the element, or the child of an AND node that is the child of the element.

A binding is qualified if it makes true the Boolean expressions that label the AND

nodes of C. Notice that it is easy to do AND-removal on conjunctive condition

trees. Let a1, . . . , an be the AND nodes in a CCT with root a, and let b1, . . . , bn,

and b be their Boolean expressions. We can eliminate a1, . . . , an, and replace b

with b AND b1 and . . . and bn.

The result of C is the set of qualified bindings. For a conjunctive condition

tree with element and name variables $V1, . . . , $Vk, a binding is represented as a

tuple [$V1 : v1, . . . , $Vk : vk] that binds $Vi to node or value vi, where 1 ≤ i ≤ k. A

binding of some of the variables in a (conjunctive) condition tree is called a partial

binding. Note that the semantics of a binding requires total tuple assignment [70],

i.e., every variable binds to a node or a string value.

The semantics of a condition tree is defined as the union of the bindings

returned from each of the conjunctive condition trees in which it is transformed by

OR-removal. For example, the result of the four conjunctive condition trees shown

in Figure VI.2 on the source loto of Figure V.2a is shown in Table VI.1. The union

92

$NAME $PROD $PART $IMG $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 A123.jpg 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA1 NEMA3 CCT1

$NAME $PROD $PART $IMG $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 A123.jpg 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 NEMA3 CCT1

$NAME $PROD $PART $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA1 NEMA3 CCT2

$NAME $PROD $PART $DIST $N_BODY $CYL $DIA $BAR $PROT $PROT1
Turck product

part_number
“A123”

.

.

.

A123 11 cylindrical cylindrical
diameter
“17”

..

.

17 Smooth NEMA3 NEMA3 CCT2

$NAME $PROD $PART $DIST $N_BODY $REC $HEI $WID $PROT $PROT1
Turck product

part_number
“B123”

.

.

.

B123 25 rectangular rectangular
height
“10”

.

.

.

10 30 NEMA3 NEMA3 CCT4

$NAME $PROD $PART $DIST $N_BODY $REC $HEI $WID $PROT $PROT1
Turck product

part_number
“B123”

.

.

.

B123 25 rectangular rectangular
height
“10”

.

.

.

10 30 NEMA4 NEMA3 CCT4

Table VI.1: Bindings for Conjunctive Condition Trees of Figure VI.2

of the sets of bindings does not need to remove duplicate bindings or bindings

that are subsumed by other bindings (e.g., CCT 2 rows are subsumed by CCT 1

rows in Table VI.1.) The necessary duplicate elimination is performed during

construction. Notice that three of the four conjunctive condition trees generate

two bindings each. Notice also that the union is heterogeneous, in the sense that

the conjunctive condition trees can contain different element variables and thus

their evaluation produces heterogeneous binding tuples.

The above shows that the semantics of an OR node is that of union and

it cannot be simulated by a disjunctive Boolean condition labeling an AND node.

OR nodes therefore are necessary for queries over semistructured data sources (e.g.,

sources whose XML Schema makes use of choice groups and optional elements.)

The condition tree corresponds intuitively to the WHERE part of XML

query languages such as XML-QL, LOREL and XMAS, to the extract and match

parts of XML-GL, and to the FOR and WHERE clauses of a FLWOR expression of

XQuery. The result tree correspondingly maps to the CONSTRUCT clause of XML-

QL and XMAS, the SELECT clause of LOREL, the clip and construct parts of

XML-GL, and the RETURN clause of a FLWOR expression of XQuery. A result tree

specifies how to build new XML elements using the bindings provided by the

condition tree.

93

VI.A.2 Result Tree

Definition 16 (Result Tree). A result tree of a TQL query q is a node-labeled

tree that consists of:

• Element nodes n having an element name name(n), which is a constant if n

is an internal node, and a constant or a variable that appears in the condition

tree of q, if n is a leaf node.

• A group-by label G and a sort-by label S on each node. A group-by label G is

a (possibly empty) list of variables [$V1, . . . , $Vn] from the condition tree of

q. A sort-by label S is a list of ($Vi, Oi) pairs, where $Vi is a variable from

the condition tree of q, and Oi is the sorting order determined for $Vi. Oi

can take the values “DESC” for descending or “ASC” for ascending order.

Each variable in the sort-by list of a node must appear in the group-by list of

the same node. Empty group-by and sort-by labels are omitted from figures

in the remainder of the chapter.

• A Boolean expression b on each node consisting of predicates combined with

the Boolean connectives ∧, ∨ and ¬. The predicates consist of arithmetic

and comparison operators and functions that use element and name variables

appearing in the condition tree of q, and constant values as operands. �

Every element or name variable must be in the scope of some group-by list

or Boolean condition. Similar to logical quantification, the scope of a group-by list

or a Boolean condition of a node is the subtree rooted at that node. Figure VI.1b

shows the result tree for the example of Figure V.3. Note that the rows of the

XHTML tables that contain the static column names are omitted from the result

tree for presentation clarity. Group-by and sort-by labels are the TQL means of

performing grouping and sorting. The intuition behind Boolean expressions on

nodes is that they provide control on the construction of nodes in the result of a

query: A node (and its subtree) is only added to the result of the query if there is

94

at least one qualified binding of the variables in the condition for that node that

renders it true.

Given a TQL query with condition tree and result tree, the answer of

the query on given input is constructed from the set of qualified bindings of the

condition tree. In what follows, binding refers to qualified binding. The result is

a loto constructed by structural recursion on the result tree as formally described

below. The recursion uses partial bindings to instantiate the group-by variables

and condition variables of element nodes.

Traversing the result tree top-down, for each subtree tree(n) rooted at

element node n with group-by label [$V1, . . . , $Vk] and, without loss of general-

ity, sort-by label [$V1, . . . , $Vm] (m ≤ k), let µ = [$VA1 : vA1, . . . , $VAn : vAn]

be a partial binding that instantiates all the group-by and condition variables

of the ancestors of n, let the Boolean expressions of n and its ancestors be b

and bA1, . . . , bAh, and let the variables in these expressions that do not appear

among the [$VA1, . . . , $VAn, $V1, . . . , $Vk] be [$B1, . . . , $Bj]. Recursively replace

the subtree tree(n) in place with a list of subtrees, one for each qualified binding

π = [$VA1 : vA1, . . . , $VAn : vAn, $V1 : v1, . . . , $Vk : vk] such that v1, . . . , vm are

string values, by instantiating all occurrences of $VA1, . . . , $VAn, $V1, . . . , $Vk with

vA1, . . . , vAn, v1, . . . , vk, if and only if b, bA1, . . . , bAh all evaluate to true for some

qualified binding π′ = [$VA1 : vA1, . . . , $VAn : vAn, $V1 : v1, . . . , $Vk : vk, $B1 :

b1, . . . , $Bj : bj] (otherwise the subtree is not included in the list of subtrees pro-

duced.) The list of instantiated subtrees is ordered according to the conditions in

the sort-by label.

Figure VI.4 shows the resulting loto from the TQL query of Figure VI.1

and the bindings of Table VI.1. Note, for example, that for each of the two

distinct partial bindings of the triple [$PROD, $NAME, $DIST], one tr element node

is created, and that, for each such binding, different subtrees rooted at the nested

table element nodes are created, corresponding to different π bindings. Finally,

out of the three Boolean expressions that label the img elements in Figure VI.1b,

95

tr
td

td
“A123”

“cylindrical”

“17”

html

td
“11”

td
table
tr
td

td
tr

“A123.jpg”
td

img

“Smooth”
td

body
table

table
tr
td

“turck.gif”
img

NEMA1

table
tr
td

td

NEMA3

tr
td

tr

td

td
“B123”

“rectangular”

“10”

td
“25”

td
table
tr
td

td
tr

“turck.gif”

td

img

“30”
td

table
tr
td

NEMA3

table
tr
td

td

NEMA4

tr
td

Figure VI.4: Resulting loto for Bindings of Table VI.1

only the first one evaluates to true, for both sensors, based on the bindings of

variable $NAME in Table VI.1.

The QURSED system uses the TQL queries internally, but issues queries

in the standard XQuery language by translating TQL queries to equivalent XQuery

statements. The algorithm for translating TQL queries to equivalent XQuery

statements is given in Appendix F. The XQuery specification is a working draft of

the World Wide Web Consortium (W3C); for a more detailed presentation of the

language and its semantics see [14] and [25].

The TQL query generated by a query form page is a member of the set

of queries encoded in the query set specification of the QFR. The next section

describes the syntax and semantics of query set specifications.

VI.B Query Set Specification

Query set specifications are used by QURSED to succinctly encode in

QFRs large numbers of possible queries. In general, the query set specification can

describe a number of queries that is exponential in the size of the specification. The

96

$DIA <= $#DIMX AND $DIA <= $#DIMY

$HEI <= $#DIMX AND $WID <= $#DIMY

$DIST

$DIA

$HEI

$WID

$CYL

$REC

$BAR

$IMG

$PART

$PROD

$NAME

$NAME = $#NAME

$PROT2

f1

tr

td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME $#O_NAME,
$DIST $#DIST,
$N_BODY $#O_N_BODY)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($REC)

$DIST <= $#DIST

sensors

manufacturer

product

sensing_distance

body_type

cylindrical

diameter

AND

specs

name

part_number

protection_ratings

protection_rating

OR

AND

rectangular

width

height

AND

$PROT1 = $#PROT1

protection_rating $PROT1

max
min

operating_temp

image

OR
AND

AND true

true

$PROT2 = $#PROT2

barrel_style

$MIN <= $#MIN AND $MAX <= $#MAX

$MIN
$MAX

$BAR
td GROUPBY ($BAR)

f2 fR

body
table

(a) Condition Tree Generator (b) Result Tree Generator

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

$N_BODY

table GROUPBY ($CYL)

td
tr

GROUPBY ($PROD, $NAME, $DIST)

protection_rating $PROT

$PROT

td
table
tr
td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

Figure VI.5: Query Set Specification

97

specification also includes a set of dependencies that constrain the set of queries

that can be produced.

The developer uses the Editor to visually create a query set specifica-

tion, like the one in Figure VI.5. This section formally presents the query set

specification that is the logical underpinning of QFRs.

Definition 17 (Query Set Specification). A query set specification QSS is a

4-tuple 〈CTG, RTG, F, D〉, where:

• CTG, the condition tree generator, is a condition tree with three modifica-

tions:

– AND nodes ai can be labeled with a set of Boolean expressions B(ai).

– The same element or name variable can appear in more than one con-

dition fragments.

– Boolean expressions can use parameters (a.k.a. placeholders [50] as

operands of their predicates. Parameters are denoted by the $# symbol

and must bind to a value [13].

The same constraints apply to a CTG as to a condition tree.

• RTG, the result tree generator, is a result tree with two modifications. First,

the variables that appear in the sort-by label S on a node do not have a

specified order (ascending or descending,) as in the case of a result tree, but

they have a parameter instead, called ordering parameter that starts with

the $#O . Second, the Boolean expressions on nodes can use parameters as

operands of their predicates. Boolean expressions on nodes involving only

parameters and constants as operands (no variables) are a special case since

they can be evaluated as soon as the parameters are instantiated. Their use

is described later in Section VII.F of Chapter VII.

• F is a non-empty set of condition fragments. A condition fragment f is

defined as a subtree of the CTG, rooted at the root node of the CTG, where

98

each AND node ai is labeled with exactly one Boolean expression b ∈ B(ai).

Each variable used in b must belong to a node included in f . F always

contains a special condition fragment fR, called result fragment, that includes

all the element nodes whose variables appear in the RTG, all its AND nodes

are labeled with the Boolean value true, and has no parameters. The result

fragment intuitively guarantees the “safety” of the result tree.

• D is an optional set of dependencies. Dependencies are defined in Sec-

tion VI.D. �

For example, the query set specification of Figure VI.5 encodes, among

others, the TQL query of Figure VI.1. The CTG in Figure VI.5a corresponds

partially to the set F of condition fragments defined for the query form page of

Figure V.3. Three condition fragments are indicated with different shades of gray:

1. condition fragment f1 is defined by the dark grey subtree and the Boolean

expression on the root AND node of the CTG that applies a condition to

the name element node;

2. condition fragment f2 is defined by the medium gray subtee and the Boolean

expressions that apply a condition to the dimensions of cylindrical and rec-

tangular sensors ; and

3. condition fragment fR (the result fragment) is defined by the light grey sub-

tree that includes all the element nodes whose variables appear in the RTG

in Figure VI.5b, and imposes no Boolean conditions.

How the developer produces a query set specification via the Editor is

described in Chapter VII.

VI.C Query Formulation Process

Figure VI.6 summarizes the query formulation process of the QURSED

run-time engine. The process starts by accepting a QSS (CTG,RTG, F, D) and

99

XQuery
Expression

TQL2XQuery
Algorithm

QSS2TQL
Algorithm

Fragment
Activate

AlgorithmParameter
Instantiation

Query/Visual
Association

Partial Valuation
Of Parameters

QURSED
Editor

Developer

!

Query
Form
Page

End-User

!

QURSED Run-Time Engine

QSS
<CTG,RTG,F,D> <CTG,F,D>

<RTG>

Active
Condition
Fragments

TQL Query
<CT,RT>

Figure VI.6: Query Formulation Process

a query/visual association, provided by the interaction of the developer with the

Editor, and a partial valuation of its parameters, provided by the end-user’s inter-

action with the query form page. The process terminates by outputting an XQuery

expression.

Parameter Instantiation. The run-time engine first instantiates the para-

meters of the condition tree generator CTG and the result tree generator RTG. In

particular, during the end-user’s interaction with the query form page, and based

on which form controls she fills out and on the query/visual association, a partial

valuation v over P , where P is the set of the parameters that appear in the QSS,

is generated. As an example partial valuation, consider the one generated by the

query form page of Figure V.3 from the constant values the end-user provides:

v = {$#PROT1:“NEMA3”, $#DIMX:“20”, $#DIMY:“40”, $#O NAME:“DESC”, $#O DIST:“ASC”}

Based on v, the run-time engine instantiates the parameters of condition

fragments in F . For example, the above partial valuation instantiates the parame-

ters $#DIMX and $#DIMY of condition fragment f2 of Figure VI.5a, which imposes

a condition on the dimensions of the sensor’s body type. Similarly, the ordering

parameters of the sort-by labels of the RTG, and the parameters of Boolean expres-

sions labeling nodes of the RTG, are instantiated. The ordering parameters can

take the values “DESC” or “ASC”, as in the case of $#O NAME and $#O DIST in the

above partial valuation. An example of an RTG, where parameterized Boolean ex-

pressions are labeling its nodes, is shown in Section VII.F of Chapter VII. Finally,

the run-time engine also instantiates the parameters of the set of dependencies D.

Dependencies are presented in the next section.

100

FragmentActivate Algorithm. As a second step on Figure VI.6, the Frag-

mentActivate algorithm inputs the instantiated CTG and the set of condition

fragments F , and outputs the set of active condition fragments. The algorithm

renders a condition fragment active if it has all its parameters instantiated by

the partial valuation v. Since the partial valuation v might not provide values

for all the parameters used in the CTG, some condition fragments are rendered

inactive. Based on the above example partial valuation, condition fragment f2 of

Figure VI.5a and the condition fragment that imposes a condition on protection

rating (not indicated in Figure VI.5a) are rendered active, while condition fragment

f1 on manufacturer’s name is inactive, since parameter $#NAME is not instantiated

by v. As a special case, the result fragment fR is always active, since it does not

have any parameters.

Note that the FragmentActivate algorithm on Figure VI.6 also inputs the

set of dependencies D, which further complicate the algorithm. Both the depen-

dencies and the revised version of the FragmentActivate algorithm are presented

in the next section.

QSS2TQL Algorithm. The set of active condition fragments and the

instantiated RTG are passed to the QSS2TQL algorithm, which outputs a TQL

query by formulating its condition tree CT and its result tree RT. The CT consists

of the union of the nodes of the active condition fragments f1, . . . , fn, along with

the edges that connect them. Each AND node nAND in the CT is annotated with

the conjunction c1 ∧ . . . ∧ cn of the Boolean expressions c1, . . . , cn that annotate

the node nAND in the fragments f1, . . . , fn respectively.

Similarly, in order to convert the RTG to the RT, the QSS2TQL algo-

rithm first eliminates from the RTG the subtrees rooted at nodes labeled with a

Boolean expression b that has uninstantiated parameters or evaluates to false, as

further explained in Section VII.F of Chapter VII. Then for every node that has a

sort-by label S, we keep in the label only the variables with instantiated ordering

parameters.

101

$WID
$HEI

$BAR

$DIA

$HEI <= $#HEI AND $WID <= $#WID
$DIA <= $#DIA AND $BAR <= $#BAR
$N_BODY = $#BODY

f1

sensors

body_type

cylindrical

diameter

AND

rectangular
height

$N_BODY

width

barrel_style

f2 f3

f1

f2 f3

(b)

(a)

$#BODY = “cylindrical” $#BODY = “rectangular”

Figure VI.7: Condition Tree Generator and Dependencies Graph

As an example of the QSS2TQL algorithm, consider the CT of Fig-

ure VI.1a, which is formulated based on the active condition fragments of Fig-

ure VI.5a, i.e., f2, the condition fragment that imposes a condition on protection

rating, and the result fragment fR. Accordingly, the RT of Figure VI.1b is formu-

lated from the RTG of Figure VI.5b, where the variable $#N BODY is excluded from

the top sort-by list, since its ordering parameter $#O N BODY is not instantiated by

the example partial valuation above.

TQL2XQuery Algorithm. The final step of the query formulation process

on Figure VI.6 passes the TQL query as input to the TQL2XQuery algorithm,

presented in Appendix F. The TQL2XQuery algorithm outputs the final XQuery

expression, which is sent to the underlying XQuery processor.

VI.D Dependencies

Dependencies allow the developer to define conditions that include or

exclude condition fragments from the condition tree depending on the end-user’s

input. Dependencies provide a flexible way to handle data irregularities and struc-

tural variance in the input data, and a declarative way to control the appearance

of visual fragments.

Definition 18 (Dependency). A dependency d is defined as a 3-tuple 〈f, B, H〉
over a set of condition fragments F , where f ∈ F is the dependent condition frag-

102

(b)(a)

Figure VI.8: Dependencies on the Query Form Page

ment and B is the condition of the dependency consisting of predicates combined

with the Boolean connectives ∧, ∨ and ¬. The predicates consist of arithmetic

and comparison operators and functions that use parameters from the CTG and

constant values as operands. The set H ⊆ F , called the head of the dependency,

contains the condition fragments that use at least one parameter that appears in

B. �

A dependency d holds if each parameter pi in B is instantiated in a con-

dition fragment in H that is active, and B evaluates to true. In the presence of

dependencies, a fragment f is active if all its parameters are instantiated and at

least one of the dependencies, where f is the dependent condition fragment, holds.

Intuitively, a set of dependencies constrains the set of queries a query set specifica-

tion can generate by rendering inactive the dependent condition fragments when

none of their dependencies hold. For example, consider the condition tree gener-

ator and condition fragments of Figure VI.7a, and let us define two dependencies

d1 and d2 as follows:

〈f2, $#BODY = “cylindrical”, {f1}〉 (d1)

〈f3, $#BODY = “rectangular”, {f1}〉 (d2)

The condition fragment f1 uses the parameter $#BODY that appears in

the condition of both dependencies on f2 and f3. If a value is not provided for

$#BODY, then neither dependency holds, and f2 and f3 are inactive. If the value

“cylindrical” is provided, then f1 is active, the condition for d1 is true, and so f2

is rendered active.

Dependencies affect the appearance of a query form. More specifically,

QURSED hides from the query form page those visual fragments whose condition

103

fragments participate in dependencies that do not hold. For example, Figure VI.8

demonstrates the effect of dependencies d1 and d2 on the query form page of

Figure V.3. The two shown sets of form controls are the visual fragments of the

condition fragments shown in Figure VI.7a. For instance, the condition fragment f1

applies a condition to the element node labeled with $BODY and its visual fragment

consists of the “Body Type” form control. End-user selection of the “Cylindrical”

option in the “Body Type” form control results in having d1 hold, which makes

the visual fragment for f2 visible (Figure VI.8a.) Notice that f2 is still inactive:

values for “Diameter” and “Barrel Style” need to be provided. Notice also that

an inactive condition fragment whose dependencies do not hold has no chance of

becoming active in QURSED: its visual fragment is hidden, so there is no way for

the end-user to provide values for the parameters of the condition fragment.

Obviously, circular dependencies must be avoided, since the involved de-

pendent fragments can never become active. This restriction is captured by the

dependency graph:

Definition 19 (Dependency Graph). A dependency graph for a set of depen-

dencies D and a set of condition fragments F is a directed labeled graph G = 〈V, E〉,
where the nodes V are the condition fragments in F and for every dependency d

in D there is an edge in E from every condition fragment fi in the head H of d to

the dependent condition fragment f , labeled with the condition B of d. �

The dependency graph for the dependencies d1 and d2 defined above is

shown in Figure VI.7b. QURSED enforces that the dependency graph is acyclic.

The QURSED system activates the appropriate visual fragments (updat-

ing the query form page) and condition fragments, based on which parameters

have been provided and which dependencies hold. The algorithm for “resolving”

the dependencies to decide which fragments are active, called FragmentActivate,

is based on topological sort [47] (hence of complexity Θ(V + E)) and is outlined

below. Note that, when evaluating a condition b of a dependency, any predicates

that contain uninstantiated parameters evaluate to false.

104

Algorithm FragmentActivate
Inputs: A dependencies graph G = 〈V, E〉, and a partial valuation v over P ,
where P is the set of the parameters that appear in the QSS.
Output: The set A of active condition fragments.
Method:
A← � 1
Compute the set of fragments B, whose parameters are all instantiated by v 2
For each edge (n, u) in E 3

Evaluate the condition on edge (n, u) 4
Repeat 5

If node u belongs to B and has no incoming edges 6
A← {u} 7

If node u belongs to B, has an incoming edge (n, u), 8
where n belongs in A and the condition on (n, u) is true

A← {u} 9
Until A reaches fixpoint 10

Section VII.C of Chapter VII describes how the developer can define

dependencies using the Editor.

Chapter VII

Editing Query Set Specifications

This chapter presents the QURSED Editor that is the visual tool for

the development of web-based query forms and reports and their Query Set Spec-

ification (QSS). Section VII.A describes the overall architecture of the Editor.

Section VII.B presents the visual actions, algorithms and heuristics employed

by the Editor for building the Condition Tree Generator (CTG) of a QSS. Sec-

tion VII.C discusses the visual process for building dependencies among condition

fragments. Section VII.D elaborates on the generation of the Report Tree Gener-

ator (RTG) of a QSS, which can either be schema-driven or based on a template

report page. Section VII.E and Section VII.F present the customization function-

ality that QURSED provides on report pages.

VII.A Architecture

The QURSED Editor is the tool the developer uses to build QFRs. Fig-

ure VII.1 shows the Editor’s architecture, how the developer interacts with the

graphical user interface, and how the Editor interprets these visual actions in or-

der to construct the QSS and the query/visual association of a QFR.

The developer builds a condition tree generator by constructing a set of

Boolean expressions based on the input XML Schema, in the form of an EST,

and the input XHTML query form page that are displayed to her. Internally, the

105

106

Query/Visual
Association

Graphical User Interface

Boolean
Expressions

QSS
<CTG,RTG,F,D>

QURSED Editor

<CTG,F><F>

Developer

!

XHTML
Template

Report Page

XHTML
Template

Report Page

Expanded
Schema

Tree

<D>

<RTG>

Dependencies

Report
Customization

Automatic Report
Construction

Condition Fragment
Manipulation &

CTG Construction

Schema-Driven

Template-Driven

 Figure VII.1: QURSED Editor Architecture

Editor interprets the set of Boolean expressions as the set of condition fragments

of the QSS and the query/visual association. The Editor constructs the CTG by

building each condition fragment f , as if f was the only fragment of the condition

tree generator, and then merging f with the CTG. A key step in that process is

that the Editor checks if f is meaningful by considering the presence of CHOICE

elements in the EST and, if necessary, manipulates f by introducing heuristically

structural disjunction operators (OR nodes). The developer also builds the set

of dependencies on the set of condition fragments that become part of the QSS.

These processes are described in Section VII.B and Section VII.C.

For the construction of the result tree generator, the developer has two

choices that are illustrated as a diamond on Figure VII.1. Either an XTMHL

template report page is automatically constructed based on the EST (schema-

driven), or one is provided as an input (template-driven). Either way, the Editor

constructs internally an RTG that becomes part of the QSS. This process is de-

scribed in Section VII.D. The developer can also further customize the template

report page report by building Boolean expressions and adding dynamic projection

functionality, presented in Section VII.E and VII.F.

A key benefit of the Editor is that it enables the easy generation of semi-

structured queries with OR nodes by considering the presence of CHOICE elements

107

Action 1

Action 2

Action 3 Action 4

(b) WYSIWYG HTML Editor(a) QURSED Editor

Figure VII.2: Building a Condition Fragment

in the EST. The following sections describe the visual actions and their translation

to corresponding parts of the query set specification, using the QSS of Figure VI.5

and the QFR of Figure V.3 as an example.

VII.B Building Condition Tree Generators

Figure VII.2a demonstrates how the developer uses the Editor to define

the condition fragment f1 of Figure VI.5a. The main window of the Editor presents

the sample EST of Section V.D on the left panel, and the query form page on the

right panel. The query form page is displayed as an XHTML tree that contains

a form element node and a set of form controls, i.e., select and input element

nodes [71]. The XHTML tree corresponds to the page shown on Figure VII.2b

rendered in the [43] WYSIWYG XHTML editor. Based on this setting, the devel-

oper defines the condition fragment f1 of Figure VI.5a that imposes an equality

condition on the manufacturer’s name by performing the four actions indicated by

the arrows on Figure VII.2a.

The developer starts by clicking on the “New Condition Fragment” button

(Action 1 of Figure VII.2a) and providing a unique ID, which is manufacturer name

in this case. The middle panel lists the condition fragments defined so far, and

108

the expression editor at the bottom allows their definition, inspection and revision.

Then, the developer builds a Boolean expression in the expression editor, by drag

and dropping the equality predicate (Action 2) and setting its left operand to be

the element node name (Action 3). The full path name of the node appears in

the left operand box and is also indicated by the highlighting of the name element

node on the left panel. As a final step, the developer binds the right operand of

the equality predicate to the select XHTML form control named man name select

(Action 4) thus establishing a query/visual association and defining as the visual

fragment the “Manufacturer” form control shown in Figure VII.2b. Internally, the

Editor creates the parameter $#NAME, associated with the “Manufacturer” form

control of Figure VII.2b, and sets it as the right operand of the Boolean expres-

sion, as Figure VI.5a shows.

In order to build more complex condition fragments, Actions 2, 3 and 4

can be repeated multiple times, thus introducing multiple variable and parameters

and including more than one XHTML form controls in the corresponding visual

fragment.

Note that, even though the visual actions introduce variables and para-

meters in the condition fragment, the developer does not need to be aware of their

names. In effect, variables correspond to path names and parameters to XHTML

form control names. The Editor interprets the Boolean expression as a condition

fragment that contains all paths of the expression.

VII.B.1 Automatic Introduction of Structural Disjunction

The semistructuredness of the schema (CHOICE nodes and optional el-

ements) may render the Boolean expression meaningless and unsatisfiable. The

Editor automatically, and by employing a heuristic, manipulates a condition frag-

ment f by introducing structural disjunction operators (OR nodes) that render f

meaningful.

For example, consider the query form page of Figure VII.2b, where the

109

end-user has the option to input two dimensions X and Y that define an envelope

for the sensors, without specifying a particular body type. Sensors can be either

cylindrical or rectangular. The developer’s intention is to specify that either the

diameter is less than dimensions X and Y , or the height is less than dimension

X and the width less than Y . The developer constructs the following Boolean

expression by following the previously described steps:

($DIA ≤ $#DIMX ∧ $DIA ≤ $#DIMY) ∨ ($HEI ≤ $#DIMX ∧ $WID ≤ $#DIMY)

The $DIA, $HEI and $WID variables label the diameter, height and width

elements of the EST. The $#DIMX and $#DIMY parameters are associated with the

“Dimension X” and “Dimension Y” form controls.

However, the query where the above Boolean expression is interpreted

as a condition fragment consisting of the paths to diameter, height and width

elements is unsatisfiable, since no sensor has all of them. The Editor captures the

original intention by automatically manipulating the ∨ Boolean connective and

treating it as an OR node of TQL, as the condition fragment f2 in Figure VI.5a

indicates. The OR node corresponds to the CHOICE node in the EST of Fig-

ure V.2c. Two AND nodes are also introduced and are labeled with the conjunc-

tions in the initial Boolean expression: ($DIA ≤ $#DIMX ∧ $DIA ≤ $#DIMY) and

($HEI ≤ $#DIMX ∧ $WID ≤ $#DIMY). The manipulation of a condition fragment is

part of the ConstructCTG algorithm.

The ConstructCTG algorithm creates a condition tree generator by merg-

ing the condition fragments. It operates incrementally by merging each condition

fragment f with the condition tree generator already constructed from the previous

condition fragments. The main step of the algorithm manipulates f by employing

a heuristic, such that f produces meaningful satisfiable queries given the Boolean

expression b. In particular, the algorithm introduces structural disjunction oper-

ators to f by replacing Boolean connectives ∨ in b with OR nodes, as illustrated

in the example above. The manipulation is driven by the CHOICE nodes and

110

optional elements. An initial step of the algorithm checks if f can be manipulated

to produce meaningful, satisfiable queries. This is accomplished by bringing b to

disjunctive normal form and identifying at least one unsatisfiable conjunction. If

there is one, then the algorithm terminates outputting an error. The final step

of ConstructCTG merges f with the input CTG. The order that the condition

fragments are passed to the algorithm does not matter.

The ConstructCTG algorithm assumes a function node($Vi) that given a

variable name $Vi in b returns the node ni of the EST that the variable corresponds

to, i.e., the node of the EST that the developer drag and dropped. In the case

of name variables, node($Vi) returns the parent of the node that the developer

drag ann dropped. It also assumes the existence of a function copy(ni) that, given

a node ni in the EST, returns the copy of it in f , if there exists one, or null,

otherwise.

Algorithm ConstructCTG
Inputs: A condition fragment f with a Boolean expression b labeling its
root AND node, a condition tree generator CTG, and an EST.
Output: The condition tree generator CTG where f has been added,
or an error if f cannot produce satisfiable queries.
Method:
Step 1: Satisfiability Check of f
Rewrite b in disjunctive normal form such that b = c1 ∨ c2 . . . ∨ cn, 1
where ci is a conjunction of predicates
If a conjunction ci, where 1 ≤ i ≤ n, uses two variables $Vix, $Viy 2
such that the lowest common ancestor of node($Vix) and node($Viy)
in the EST is a CHOICE node

Output an error indicating the unsatisfiable conjunctions 3
Step 2: Manipulation of f
// Introduces OR nodes to f based on CHOICE nodes in the EST
For any two variables $Vix, $Vjy used in conjunctions ci and cj of b, 4
respectively, where 1 ≤ i, j ≤ n and i �= j

If both the paths from node($Vix) and node($Vjy) to their lowest element 5
node common ancestor nANSC in the EST contain either a CHOICE node
or an optional element, excluding nANSC

Apply the Rules 1 and 2 of Figure VII.3 6
// Label AND nodes with Boolean expressions
For each conjunction ci of b, 1 ≤ i ≤ n 7

In f , identify the lowest AND node ai that is the common ancestor of all 8
the element nodes labeled with the variables used in ci and label it with
Boolean expression ci

If the AND node is labeled with more than one conjunctions 9
Combine them with the ∨ Boolean connective 10

Step 3: Addition of f to the CTG

111

B

replace with

Y $Vjy

copy(nANSC)

A

B
Y

X

$Vjy

$Vix

copy(nANSC)
OR
AND

AND

Rule 1 Rule 2

A

subtreei

X $Vix

OR
AND

AND
subtreei

AND

A

Breplace with

Y

X

$Vjy

$Vix

copy(nANSC)

A

B
Y

X

$Vjy

$Vix

copy(nANSC)
OR
AND

ANDC

C

Figure VII.3: “OR Node Introduction” Rules

sensors

manufacturer

product

body_type

cylindrical

diameter

specs

protection_ratings

protection_rating

$PROD

CHOICE

rectangular

width

$DIA

$WID

$PROT

$REC

$CYL

$S

(a) Expanded Schema Tree (EST)

SEQ
$MAN*

SEQ

SEQ
+

SEQ

SEQ

SEQ

SEQ

$BODY

*

$PROTS

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S

(b) Initial Conditional Fragment f1

$MAN

$BODY

$PROTS

AND $DIA <= $#DIA OR $PROT1 = $#PROT1

$SPEC

$SPEC

sensors
manufacturer
product

body_type
cylindrical

specs

rectangular
width

$PROD

$WID

$CYL

$S

(c) Initial Conditional Fragment f2

$MAN

$BODY

$REC

AND $DIA <= $#DIA OR $WID <= $#WID

$SPEC

diameter $DIA

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S

(d) Conditional Fragment f1 after Step 2

$MAN

$BODY

$PROTS

AND

$SPEC

sensors
manufacturer
product

body_type

cylindrical

specs

rectangular
width

$PROD

$WID

$CYL

$S

(e) Conditional Fragment f2 after Step 2

$MAN

$BODY

$REC

AND

$SPEC

diameter $DIA

OR
AND OR

AND $PROT1 = $#PROT1 AND $WID <= $#WID

AND $DIA <= $#DIA

diameter $DIA

diameter $DIA

$DIA <= $#DIA

protection_rating $PROT1*

b1 b2

Figure VII.4: Example of the ConstructCTG Algorithm

Set the children of the root AND node of f as children 11
of the root AND node of the CTG
Take the union of the sets of Boolean expressions labeling 12
the root AND node of f and the root AND node of the CTG and
label the root AND node of the latter with it

Line 6 of the algorithm covers two cases that are illustrated in Fig-

ure VII.3. In the first case, the node copy(nANSC) does not have an OR child

node and Rule 1 shows how the condition fragment f is manipulated. In the sec-

ond case the node copy(nANSC) has an OR child node nOR and the subtree treeix

that contains node($Vix) is a child of an AND child node nAND of nOR, and treejy

that contains node($Vjy) is a child of copy(nANSC). In this case, Rule 2 does not

introduce a new OR node, but places the subtree rooted at B under the existing

OR node instead.

Figure VII.4 illustrates an example application of the ConstructCTG al-

112

gorithm on the condition fragments defined on the EST of Figure VII.4a. Assume

the developer has built two Boolean expressions b1 and b2, and the Editor has cre-

ated the corresponding condition fragments f1 and f2, shown in Figure VII.4b and

c respectively. f1 asks for sensors either having diameter less than the parameter

$#DIA or a protection rating equal to the parameter $#PROT1, while f2 asks for

sensors having either diameter less than the parameter $#DIA or width less than

the parameter $#WID so that they fit in a given space. Both condition fragments

pass the check of Step 1 of the ConstructCTG algorithm, since both conjunctions

of b1 and b2 involve a single variable. In Step 2, structural disjunction operators

are introduced to both fragments, shown in Figure VII.4d and e, according to the

rules of Figure VII.3. In f1, element node diameter is under a CHOICE node in

the EST and element node protection rating is optional. So an OR node is

introduced under their lowest common ancestor node specs. Similarly, in f2, the

nodes diameter and width are both under a CHOICE node in the EST, so an OR

node is introduced under the node body type.

Step 3 of the ConstructCTG algorithm just puts f1 and f2 together, thus

constructing the merged CTG shown in Figure VII.6a, where the two fragments

are indicated in two different tones of gray.

VII.B.2 Eliminating Redundancies

The Editor eliminates redundancies on the merged CTG in order to im-

prove the performance of the generated TQL queries. As shown in [7], efficiency

of tree pattern queries depends on the size of the pattern, so it is essential to

identify and eliminate redundant nodes. More specifically, according to the rule

of Figure VII.5, the Editor renders redundant an element node that has a sibling

node labeled with the same variable.

The application of the rule takes time linear to the number of nodes of

the CTG. The process of eliminating redundant nodes could also be performed on

TQL queries, instead of the CTG, at run-time. Either way, the final TQL query

113

B

Breplace withsubtreei

node node

Rule

subtreej

B
subtreei
subtreej

$B

$B

$B

Figure VII.5: “Node Elimination” Rule

$PROT1 = $#PROT1

(b) CTG after “Node Elimination” Rules
f2f1

sensors
manufacturer
product

body_type
cylindrical

specs

protection_ratings
protection_rating

$PROD

$PROT1

$CYL

$S
$MAN

$BODY

$PROTS

AND

$SPEC

sensors

manufacturer

product

body_type

cylindrical

specs

rectangular

width

$PROD

$WID

$CYL

$S

(a) Initial CTG

$MAN

$BODY

$REC

$SPEC

diameter $DIA

OR
AND

OR

AND

AND $WID <= $#WID

AND $DIA <= $#DIA

diameter $DIA

$DIA <= $#DIA

AND

sensors

manufacturer

product

specs

$PROD

$S

$MAN

$SPEC

body_type

cylindrical

rectangular

width $WID

$CYL

$BODY

$REC

diameter $DIA

OR

AND $WID <= $#WID

AND $DIA <= $#DIA

$PROT1 = $#PROT1

body_type
cylindrical

protection_ratings
protection_rating $PROT1

$CYL
$BODY

$PROTS

OR
AND

AND
diameter $DIA

$DIA <= $#DIA

Figure VII.6: Eliminating Redundant Nodes on the CTG

is the same, so it is preferable to perform the optimization at compile-time.

The rule is eliminating redundancies introduced particularly during the

construction of the CTG, presented in the previous section. For example, the

ConstructCTG algorithm constructs the CTG of Figure VII.6a by merging two

fragments. The path from the sensors node to the specs node appears in both

condition fragments, and every element node along the path is labeled with the

same variable in both fragments. One of these paths is eliminated by parsing the

CTG top-down and iteratively applying the rule of Figure VII.5. The resulting

CTG is shown in Figure VII.6b. Note that the rule preserves the boundaries of

the fragments as element nodes are being eliminated.

114

Action 1
Action 2

Action 3

Action 4

Action 5

Figure VII.7: Building Dependencies

VII.C Building Dependencies

The Editor provides a set of actions to allow the developer to build a

dependency, i.e., to select the dependent condition fragment and to construct the

condition of the dependency. As an example, Figure VII.7 demonstrates how the

developer builds dependency d1 : 〈f2, $#BODY=“cylindrical”, {f1}〉 of Section VI.D

by performing a set of actions indicated by the numbered arrows. Dependency d1

sets the condition fragment f2 on the cylindrical dimensions (Figure VI.7a) active

if the parameter $#BODY is set to “cylindrical”.

First, the developer initiates a dependency (Action 1 of Figure VII.7)

and enters a descriptive ID. On the middle panel, a new row appears in the lower

table that lists the dependencies, and the expression editor opens at the bottom.

She sets the dependent condition fragment to be the “cylindrical” one (Action 2),

and builds the condition of the dependency in the expression editor (Action 3).

She specifies that the left operand of the equality predicate is a parameter bound

to the “Body Type” select form control (Action 4), and the right operand to

be the string constant “cylindrical” (Action 5). Note that only constant values

115

Figure VII.8: Schema-Driven Constructed Report Page

and parameters that bind to form elements can be used in the condition of the

dependency, as defined in Section VI.D.

VII.D Building Result Tree Generators

The Editor provides two options for the developer to build the result

tree generator RTG component of a query set specification, each one associated

with a set of corresponding actions. For the first (and simpler) option, called

schema-driven, the developer only specifies which element nodes of the EST she

wants to present on the report page. Then, the Editor automatically builds a

result tree generator that creates report pages presenting the source data in the

form of XHTML tables that are nested according to the nesting of the EST. If the

developer wants to structure the report page in a different way than the one the

EST dictates, the Editor provides a second option, called template-driven, where

the developer provides as input a template report page to guide the result tree

generator construction. Both options are described next.

VII.D.1 Schema-Driven Construction of Result Tree Generator

The developer can automatically build a result tree generator based on

the nesting of the EST. For example, Figure VII.8 shows a report page created

from the result tree generator for the data set and the EST of Figure V.2. The

116

Action 2

Action 1

Figure VII.9: Selecting Elements Nodes and Constructing Template Report Page

creation of the result tree generator and the template report page is accomplished

by performing the two actions that are indicated by the numbered arrows on the

Editor’s window of Figure VII.9.

First, the developer uses the checkboxes that appear next to the element

nodes of the EST to select the ones she wants to present on the report page (Action

1 of Figure VII.9). This action sets the report property of the selected element

nodes in the EST to true and constructs the result fragment fR indicated in the

condition tree generator of Figure VII.10a. The variables that will be used in the

result tree generator are also indicated. Then, the Editor automatically generates

the template report page (Action 2) displayed on the right panel of Figure VII.9

as a tree of XHTML element nodes. Figure VII.10c shows how a WYSIWYG

XHTML editor renders the template report page. The Editor translates the above

actions into a QSS as follows.

In Action 2, the Editor automatically generates the result tree genera-

tor of Figure VII.10b that presents the element nodes selected in Action 1 using

XHTML table element nodes that are nested according to the nesting of the EST.

For illustration purposes, each table element node in Figure VII.10b is annotated

with the EST element node that it corresponds to. Notice, for example, that

the “product” table is nested in the “manufacturer” table, as is the case in the

117

true

true

sensors
manufacturer

product

sensing_distance
body_type

cylindrical
diameter

AND

specs

name

part_number
$PROD

OR
AND

rectangular

width
height

AND

$PART

$DIST

$DIA

$HEI
$WID

$NAME

$CYL

$REC

image $IMG

OR
AND

AND true

true

barrel_style $BAR

fR

product

manufacturer

cylindrical

rectangular

(a) Condition Tree Generator

(c) Template Report Page

$MAN
tr
td

td
$PART

$DIA

html

GROUPBY ($PART)

td
$DIST

td

$WID

$HEI

table

td

td

tr

GROUPBY ($PROD)

td
table
tr

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

$REC
$BAR

td GROUPBY ($BAR)

body
table

(b) Result Tree Generator

$NAME GROUPBY ($NAME)

table $CYL

td
tr

GROUPBY ($MAN)

$PROT

td
table
tr
td

GROUPBY ($PROT)

protection_ratings
protection_rating $PROT

GROUPBY ($DIST)

td
img
$IMG

GROUPBY ($IMG)

protection_rating

$PROT2protection_rating
protection_rating $PROT1

max
min

operating_temp
$MIN
$MAX

Figure VII.10: Automatically Generated Result Fragment, RTG and Template

Report Page

EST. The table headers in Figure VII.10c are created from the name labels of the

selected element nodes. In the tables, the Editor places the element variables of

the element nodes selected in Action 1 as children of td (table data cell) element

nodes. For example, in the result tree generator of Figure VII.10b the element

variable $NAME appears as the child of the td element node of the “manufacturer”

table.

We discuss next how each type of semistructureness of the EST is handled

by the Editor on the template report page.

118

Optional Element Nodes: When the developer includes an optional ele-

ment node in the result, the corresponding result fragment will produce results

whether this optional element is or is not present. Figure VII.10a demonstrates

the effect of the visual action to select the optional element image to appear on

the report page.

Repeatable Element Nodes: The Editor handles the repeatable element

nodes in the EST by automatically generating corresponding table elements and

group-by lists in the result tree generator. For example, the path from the root

of the EST to the name element node that is selected in Action 1 contains the

manufacturer repeatable element node, which results in the generation of the

“manufacturer” table element node, shown in Figure VII.10b, and the group-by

list of its tr (table row) child element node. This group-by list will generate one

table row for each binding of the $MAN element variable.

CHOICE Nodes: CHOICE nodes in the EST require the Editor to auto-

matically generate OR nodes in the result fragment fR, as in the case where the

CHOICE node above the cylindrical and rectangular element nodes in the

EST is translated to an OR node in the result fragment fR.

The complete algorithm, called AutoReport, for constructing the result

fragment and the result tree generator, is presented below. The AutoReport al-

gorithm inputs the EST, where some or all of the element nodes are selected for

presentation on the report page, i.e., their report property is set to true, the result

fragment fR, and proceeds in two steps. The first step manipulates the result frag-

ment fR by introducing OR nodes based on CHOICE nodes and optional elements

in the EST. The second step automatically constructs the result tree generator.

The AutoReport algorithm assumes the existence of a function node($Vi)

that given a variable name $Vi in fR returns the node ni of the EST that the

variable corresponds to. In the case of name variables, node($Vi) returns the

parent of the node(s) that the name variable corresponds to. It also assumes the

existence of a function copy(ni) that given a node ni in the EST it returns the

119

copy of it in fR, if there exists one, or null, otherwise.

Algorithm AutoReport
Inputs: The EST where some or all of the nodes are selected
for presentation on the report page, and the result fragment fR.
Output: The result fragment fR and the result tree generator RTG.
Method:
Step 1: Manipulation of fR

// Introduce OR nodes in fR based on
// CHOICE nodes and optional elements in the EST
Traversing fR top-down, for an element node ni 1

If ni is labeled with a variable $Vi and parent(node($Vi)) is a 2
CHOICE node and parent(ni) is not an OR node

If there is a sibling nj of ni labeled with a variable $Vj 3
such that node($Vj) is a sibling of node($Vi)

For all sibling element nodes nj of ni labeled with a 4
variable $Vj such that node($Vj) is a sibling of node($Vi)

Apply Rule 1 of Figure VII.11 5
Else 6

Apply the Rule 2 of Figure VII.11 // Treat ni as optional element 7
If ni is labeled with a variable $Vi and node($Vi) is optional, or ni is named 8
with a variable $Vi and at least one child of node($Vi) is optional

Apply the Rules 2 and 3 of Figure VII.11 correspondingly 9
Step 2: Construction of the result tree generator RTG
Create a node nr named “html”, a node nb named “body”, 10
a node nt named “table”, and a node ntr named “tr”
Set nr as the root of the RTG, nb as a child of nr, 11
nt as a child of nb, and ntr as a child of nt

Traversing the EST top-down and left to right, ignoring SEQ, 12
CHOICE and ALL nodes, for an element node ni

BuildTable(ni, ntr) 13

BuildTable(ni, ntr)
If ni is either repeatable or parent(ni) is a CHOICE node 14

Create a node ntd named “td” and a node nt named “table” 15
Set ntd as a child of ntr and nt as a child of ntd 16
Create a node named “tr” and set it as the current ntr 17
If parent(ni) is a CHOICE node 18

Attach the Boolean expression var(ni) to nt 19
If ni is repeatable 20

Add var(ni) to the group-by list of ntr 21
If ni is a selected element node 22

Create a node nth named “th” and add it as a child of ntr 23
Create a node named name(ni) and add it as a child of nth 24
If ni is a leaf element node 25

Create a node named “td”, add it as a child of ntr, 26
and set it as the current ntd

Create a node named var(ni) and add it as a child of ntd 27
If var(ni) is not in any group-by list of an ancestor node 28

Add var(ni) to the group-by list of ntd 29
For every child element node nc of ni 30

BuildTable(nc, ntr) 31

120

Rule 2 Rule 3

A

B
replace with

ni $Vi OR
AND

ni $Vi

B

true

AND true

A A

B
replace with

$Vi OR
AND
$Vi

B

true

AND true

A

Rule 1

A

replace with

ni $Vi
A
OR
AND

ANDB

B

nj $Vj ni $Vi

nj $Vj

…
… …

…

Figure VII.11: “OR Node Introduction” Rules for Result Fragment fR

Figure VII.12: Editing the Template Report Page

The result fragment fR that is manipulated during Step 1 of the Au-

toReport algorithm is merged with the condition tree generator CTG of a QSS

according to Step 3 of the ConstructCTG algorithm of Section VII.B.1 and redun-

dant nodes are eliminated using the rule of Figure VII.5.

VII.D.2 Template-Driven Construction of Result Tree Generator

The developer can create more sophisticated report pages and result tree

generators by providing to the Editor a template report page she has constructed

with an XHTML editor. For example, on the report page of Figure V.3 the devel-

oper wants to display the manufacturer’s name for each sensor product, unlike the

report page on Figure VII.8 that followed the nesting pattern of the EST, where

the product is nested in the manufacturer element node. To accomplish that,

she constructs the template report page shown in Figure VII.12 and provides it to

the Editor.

On the right panel of Figure VII.13 the template report page is displayed.

Using the EST panel and the template report page panel, the developer constructs

121

Action 2

Action 3

Action 4

Action 1

Action 5

Figure VII.13: Performing Element and Group-By Mappings on the Template

Report Page

the result tree generator of the query set specification of Figure VI.5. In particular,

the structure of the result tree generator is the structure of the template report

page. The rest of the result tree generator (element variables, group-by and sort-by

lists) is constructed by performing the actions that are indicated by the numbered

arrows on Figure VII.13.

First, the developer creates a new element, group-by or sort-by mapping

(Action 1). Depending on what mapping was created, one of Actions 2, 3, or 4 is

performed.

In the case of element mapping, the developer drags element nodes from

the EST and drops them to leaf nodes of the template report page (Action 2).

This action places the variable labeling or naming the dragged element node in

the result tree generator, and adds the path from the root of the EST to the

dragged element node to the result fragment fR. For example, by mapping the

part number element node to the td element node on the template report page,

the $PART variable is implicitly placed in the result tree generator of Figure VI.5b.

In the case of group-by mapping, the developer maps element nodes from

the EST to any nodes of the template report page (Action 3). For example, by

mapping the product element node to the tr element node of the outermost table

122

in the template report page, the $PROD element variable is added to the group-by

list of the tr. This action will result in one tr element node for each binding of

the $PROD element variable.

The case of sort-by mapping is the same as the group-by mapping, but

the developer additionally specifies an optional order. For example, by mapping

the sensing distance element node to the tr element node of the outermost

table, the sort-by list of that element, shown in Figure VI.5b, is generated. The

Editor defines automatically a group-by mapping for each sort-by mapping, if one

does not exists. Note though that the developer did not specify a fixed order,

ascending or descending, thus generating the ordering parameter $#O DIST. This

choice allows the end-user to choose the order or exclude sensing distance from

the sort-by list altogether.

Finally, the Editor automatically generates and appends the XHTML

representation of the “Sort by Options” and “Sort By Selections” drop-down lists

to the query form page of Figure V.3 (Action 5). The “Sort by Options” list

contains the sort-by mappings defined in Action 4 for which a fixed order has not

been specified. The “Sort By Selections” list is initially empty. During run-time,

the end-user can select any item from the “Sort by Options”, select “ASC” or

“DESC” order, and, using the “+” button, add it to the “Sort By Selections” list.

When the end-user submits the query form, the corresponding ordering parameters

are instantiated with the order the end-user selected, as explained in the QSS2TQL

algorithm in Section VI.C.

An engineering benefit from the way the developer builds the result tree

generator is that the template report page can easily be opened from any external

XHTML editor and further customized visually, even after the mappings have been

defined.

Based on the above actions, the result fragment fR is defined as the set of

variables used in the result tree generator that the developer manually constructs.

The fR is constructed by Step 1 of the AutoReport algorithm of Section VII.D.1,

123

merged with the condition tree generator of a QSS according to Step 3 of the

ConstructCTG algorithm of Section VII.B.1, and redundant nodes are eliminated

using the rule of Figure VII.5.

VII.E Building Result Boolean Expressions

In Figure V.3, the manufacturer’s column does not display the name as

text, but a corresponding image (logo) is presented instead. This effect is accom-

plished by the three img elements, corresponding to the three possible manufac-

turers, shown in the result tree generator RTG of the QSS in Figure VI.5 and the

Boolean expressions that label them. These expressions are visually defined by the

developer on the template report page and are translated by the Editor to Boolean

expressions labeling nodes of the RTG.

In order to build these Boolean expressions, the Editor provides to the

developer a set of actions that is similar to the actions provided for the specification

of dependencies as it is presented in Section VII.C. The setting of the Editor is

the same with the one in Figure VII.7, except that the “Report” tab is selected

in the middle panel and the “Template Report Page” tab is selected in the right

panel. The developer builds the Boolean expressions by performing the same set

of actions as the ones described in Section VII.C with two differences:

• In Action 2, the developer selects a node from the template report page from

the right panel, instead of a condition fragment, to the expression editor’s

“Activate” box in Figure VII.7. The subtree rooted at the selected node will

be included in the report if the Boolean expression defined in the expression

editor evaluates to true during run-time.

• In Actions 4 and 5, the developer cannot only specify parameters and con-

stants as operands of the predicates in the Boolean expression, but also any

variable, by dragging any element node from the EST on the left panel.

124

The Boolean expressions that the developer defines on the template re-

port page are listed in the “Boolean Expressions” table of the middle panel of

Figure VII.13.

Note that the Boolean expressions containing variables are translated to

XQuery conditional expressions [14], according to TQL2XQuery algorithm in Ap-

pendix F. For example, the three Boolean expressions that label the img elements

in Figure VI.1b are translated to three conditional expressions, as the XQuery

expression in Appendix F shows. If the Boolean expressions contain parameters,

then they are evaluated during the formulation of the TQL query, as the QSS2TQL

algorithm shows in Section VI.C. An example of Boolean expressions containing

parameters is given in the next section.

VII.F Dynamic Projection Functionality

On the query form page of Figure V.3, the “Customize Presentation”

section allows the end-user to control which columns she wants to project on the

report page by selecting the corresponding checkboxes in the “P” column. This

dynamic projection functionality is provided through the use of Boolean expres-

sions in the result tree generator RTG of a QSS. Figure VII.14 shows the RTG of

the QSS of Figure VI.5, where Boolean expressions controlling the dynamic pro-

jection are labeling td (table data cell) element nodes and are indicated with gray

shade. These Boolean expressions contain projection parameters that start with

$#P and correspond to the checkboxes of the “Customize Presentation” section on

the query form page of Figure V.3. If a checkbox is checked, then the correspond-

ing Boolean expression evaluates to true and the subtree is included in the result

tree of the TQL query formulated during run-time. These Boolean expressions are

defined by the developer using the actions described in Section VII.E, but instead

of nodes from the EST, the developer sets as operands of the Boolean expression

the checkboxes from the query form page.

125

tr

td

td
$PART

$N_BODY

$DIA

html

SORTBY ($NAME $#O_NAME, $DIST $#DIST, $N_BODY $#O_N_BODY)

GROUPBY ($PART)

td
$DIST

td
table
tr
td

td
tr

$WID

$HEI

table

td

td

tr

GROUPBY ($IMG)
td
img
$IMG

GROUPBY ($DIA)

GROUPBY ($HEI)

GROUPBY ($WID)

GROUPBY ($REC)
$BAR

td GROUPBY ($BAR)

body
table

Result Tree Generator

“turck.gif”
img $NAME = “Turck”

“balluff.gif”
img $NAME = “Balluff”

“baumer.gif”
img $NAME = “Baumer”

table GROUPBY ($CYL)

td

tr

GROUPBY ($PROD, $NAME, $DIST)

$PROT

td
table
tr
td

GROUPBY ($PROT)

GROUPBY ($N_BODY)

$#P_IMG = true

$#P_MAN = true

$#P_PROT = true

$#P_DIA = true

$#P_HEI = true

$#P_IMG = true

$#P_IMG = true

Figure VII.14: Boolean Expressions for Dynamic Projection

126

The above described process assumes that the developer manually con-

structs the “Customize Presentation” table of Figure V.3. The Editor though has

the ability to construct this table automatically as part of the schema-driven con-

struction of the RTG described in Section VII.D.1. In this case, the “Customize

Presentation” table is constructed according to the nesting of the EST just as the

template report page is, and is structurally the same as the header row of the tem-

plate report page. For example, observe that the “Customize Presentation” table

on Figure V.3 is structurally the same with the header row of the report page, the

only difference being that it is oriented vertically.

More specifically, during Action 2 of Section VII.D.1, the Editor asks

the developer if she wants to construct a “Customize Presentation” table. If so,

the Editor constructs a table based on the element nodes selected during Action

1 of Section VII.D.1 and lets the developer specify which of them she wants the

end-user to be able to include or exclude on the report page. For example, on the

“Customize Presentation” table on Figure V.3, the end-user cannot determine the

projection of “Part Number” and “Sensing Distance”.

Chapter VIII

Conclusions and Future Work

VIII.A Conclusions

The results of this thesis drastically improve the applicability and us-

ability of integration systems in a wide range of scenarios by defining declarative

user-oriented and application-oriented databases interfaces for the domains of the

architecture in Figure I.1.

In the Application Domain, I introduced the CLIDE query formulation

interface [63] to help a developer, who is building an integration application, avoid

a frustrating trial-and-error cycle. CLIDE’s architecture consists of a graphical

front-end and a back-end. The front-end extends the query builder of Microsoft’s

SQL Server [81], which is based on the Query-By-Example (QBE) paradigm [95],

with a coloring scheme that guides the user toward formulating feasible queries.

CLIDE provides guarantees that the suggested query edit actions are complete (i.e.

each feasible query can be built by following only suggestions), rapidly convergent

(the suggestions are tuned to lead to the closest feasible completions of the query)

and suitably summarized (at each interaction step, only a minimal number of

actions are suggested). Interaction sessions between the user and the CLIDE front-

end are formalized using an Interaction Graph, which models the queries as nodes

and the actions that the user performs as edges. Consequently, the color of each

127

128

action is formally defined as a property of the set of paths that include the action

and lead to feasible queries. Then the above guarantees are formally expressed as

graph properties. The CLIDE back-end implements a set of algorithms that find

a finite set of closest feasible queries, related to the current query, and determine

the coloring by inspecting it. I provided a set of experiments that illustrate the

class of queries and views CLIDE can handle, while maintaining on-line response.

In the Source Domain, I proposed the Query Set Specification Language

(QSSL) [64] for exporting web services on top of databases which overcomes the

limitations of WSDL-based web services by exposing the schema of the underlying

source (or view of the source) and a set of supported queries against this schema.

QSSL states explicitly the relationship between the input parameters and the out-

put of web services, and the semantic connections the web services have with each

other and with the underlying database. QSSL is capable of concisely describ-

ing large sets of semantically meaningful parameterized queries, without requiring

exhaustive enumeration of them. A QSSL specification is embedded in a WSDL

specification, thus extending the current state-of-the-art instead of replacing it, to

form a specialized type of web services, called Data Services.

In the Web Domain, I developed QURSED, a system for the semi-automatic

generation of web-based interfaces for querying and reporting semistructured data.

I described the system architecture and the formal underpinnings of the system,

including the Tree Query Language for representing semistructured queries, and

the succinct and powerful query set specification for encoding the large sets of

queries that can be generated by a query form. I described how the tree queries

and the query set specification accommodate the needs of query interfaces for

semistructured information through the use of condition fragments, OR nodes and

dependencies. I also presented the QURSED Editor that allows the GUI-based

specification of the interface for querying and reporting semistructured data, and

described how the intuitive visual actions result in the production of the query

set specification and its association with the visual aspects of the query forms and

129

reports.

VIII.B Future Work

The next generation of integration scenarios is targeting web communities

that need a single point of access to the collection of data owned by a large number

of community members without incurring the heavy development and evolution

cost of existing integration applications. Each member is responsible of registering

her independent data source to a community-shared database, without the need

of an administrator/developer who manages the integration process. Moreover,

community-users will build applications that query the shared database. I am

planning to develop a framework that enables such community-based scenarios

and addresses the challenges presented by such dynamic environments, where new

sources contribute new content that serves the application needs, while, at the

same time, user applications evolve as the community grows.

Community members need tools that assist on several aspects of source

registration. They need to easily understand if their source registration contributes

to the needs of the applications built on top of the community-shared database,

either independently or in conjunction with other registered sources. They also

need to know if the content they contribute is consistent with respect to the content

of already registered sources and what the degree of redundancy is. To expedite

the integration process, schema matching techniques, schema-based and instance-

based, can be used to assist owners in identifying common entities and relationships

between their source and the community-shared database. On a lower level, an

owner might make her contribution by providing interfaces to her sources, such web

services, or by providing data that will be warehoused in the community-shared

database. In the former case, the owner needs to choose what queries to support,

while in the latter, there are issues about data freshness and ownership.

On the other hand, community-users need to be able to build their ap-

130

plications without requiring a comprehensive overview of all registered sources.

CLIDE guides users in formulating executable queries, but more functionality

should be offered. Users should be warned if their queries are executable but

the result is guaranteed to be empty. They should know the reliability and fresh-

ness of the query results they are getting and be able to express their preferences

if more than one sources can provide the data they need.

Another research direction that I recently have started to explore is the

use of formal workflow languages in implementing database-backed web applica-

tions. Workflow languages provide a promising way to express and communicate

application specifications. I believe that we can go one step further by turning the

workflow specifications into the running code of the web application, by enhancing

the workflow specification with actions on the database and presentation of the

data. In this way development time will be reduced and the implementation will

be faithful to the specification. Another well-known problem is that once appli-

cations are built, specifications become outdated and obsolete. In the context of

building web applications, using a formal workflow, specific issues will be studied.

If the workflow specification changes, which applications queries need to change?

If the database schema changes, which applications queries need to change and is

the workflow specification violated?

Appendix A

WSDL Specification of a Data

Service

<?xml version=‘‘1.0’’ encoding=‘‘UTF-8’’?>

<definitions

name=‘‘FlightsService’’

targetNamespace=‘‘http://airline.wsdl/flights/’’

xmlns=‘‘http://schemas.xmlsoap.org/wsdl/’’

xmlns:tns=‘‘http://airline.wsdl/flights/’’

xmlns:xsd=‘‘http://www.w3.org/2001/XMLSchema’’

xmlns:xsd1=‘‘http://airlineQSSX/’’

xmlns:xsd2=‘‘http://airlineSchema/’’>

<import

location=‘‘airlineQSSX.xsd’’

namespace=‘‘http://airlineQSSX/’’/>

<import

location=‘‘airlineSchema.xsd’’

namespace=‘‘http://airlineSchema/’’/>

<message name=‘‘queryFlightsRequest’’>

<part name=‘‘query’’ type=‘‘xsd1:query’’/>

<part name=‘‘result’’ type=‘‘xsd2:result’’/>

131

132

</message>

<message name=‘‘resultFlightsResponse’’>

<part name=‘‘result’’ type=‘‘xsd2:result’’/>

</message>

<portType name=‘‘FlightsPortType’’>

<operation name=‘‘queryFlights’’

variety=‘‘Input-Output’’>

<input message=‘‘tns:queryFlightsRequest’’

name=‘‘queryFlightsRequest’’/>

<output message=‘‘tns:resultFlightsResponse’’

name=‘‘resultFlightsResponse’’/>

</operation>

</portType>

</definitions>

Appendix B

QSSX Syntax

<?xml version = ‘‘1.0’’ encoding = ‘‘UTF-8’’?>

<xsd:schema

xmlns:xsd = ‘‘http://www.w3.org/2001/XMLSchema’’

targetNamespace=‘‘http://airlineQSSX/’’

xmlns:qssx = ‘‘http://airlineQSSX/’’>

<xsd:annotation>

<xsd:documentation>The root element of a TPX query</xsd:documentation>

</xsd:annotation>

<xsd:element name = ‘‘query’’>

<xsd:complexType>

<xsd:sequence>

<xsd:group ref = ‘‘qssx:f1’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:annotation>

<xsd:documentation>

The following element groups correspond to the productions of Figure IV.4d

</xsd:documentation>

</xsd:annotation>

<xsd:group name = ‘‘f1’’><xsd:sequence>

<xsd:element name = ‘‘step’’>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘identifier’’ fixed = ‘‘flights’’/>

133

134

<xsd:choice>

<xsd:sequence>

<xsd:annotation>

<xsd:documentation>

The airline element is chosen as the result node

</xsd:documentation>

</xsd:annotation>

<xsd:element name = ‘‘predicatedExpr’’>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘identifier’’

fixed = ‘‘airline’’/>

<xsd:group ref = ‘‘qssx:f2’’/>

<xsd:element name = ‘‘predicate’’

maxOccurs = ‘‘unbounded’’>

<xsd:complexType><xsd:sequence>

<xsd:group ref = ‘‘qssx:f3’’/>

</xsd:sequence></xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=‘‘axis’’

use=‘‘required’’

type=‘‘xsd:string’’

fixed = ‘‘CHILD’’/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:sequence>

<xsd:annotation>

<xsd:documentation>

The flight element is chosen as the result node

</xsd:documentation>

</xsd:annotation>

<xsd:element name = ‘‘step’’>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘predicatedExpr’’>

<xsd:complexType><xsd:sequence>

<xsd:element name = ‘‘identifier’’

fixed = ‘‘airline’’/>

<xsd:group ref = ‘‘qssx:f2’’/>

</xsd:sequence></xsd:complexType>

</xsd:element>

<xsd:group ref = ‘‘qssx:f3’’

135

maxOccurs = ‘‘unbounded’’/>

</xsd:sequence>

<xsd:attribute name=‘‘axis’’

use=‘‘required’’

type=‘‘xsd:string’’

fixed = ‘‘CHILD’’/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:choice>

</xsd:sequence>

<xsd:attribute name = ‘‘axis’’

use = ‘‘required’’

type = ‘‘xsd:string’’

fixed = ‘‘CHILD’’/>

</xsd:complexType>

</xsd:element>

</xsd:sequence></xsd:group>

<xsd:group name = ‘‘f2’’>

<xsd:sequence>

<xsd:element name = ‘‘predicate’’>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘function’’>

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘identifier’’ fixed = ‘‘name’’/>

<xsd:element name = ‘‘constant’’ type = ‘‘xsd:string’’/>

</xsd:sequence>

<xsd:attribute name=‘‘name’’ fixed=‘‘EQUAL’’/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:group>

<xsd:group name = ‘‘f3’’>

<xsd:sequence>

<xsd:element name = ‘‘predicatedExpr’’>

<xsd:complexType>

<xsd:sequence>

136

<xsd:element name = ‘‘identifier’’ fixed = ‘‘flight’’/>

<xsd:group ref = ‘‘qssx:f4’’ minOccurs = ‘‘0’’/>

<xsd:group ref = ‘‘qssx:f5’’/>

<xsd:group ref = ‘‘qssx:f6’’

minOccurs = ‘‘0’’

maxOccurs = ‘‘unbounded’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:group>

<xsd:group name = ‘‘f4’’>

<xsd:annotation>

<xsd:documentation>

Similar to f2 element group

</xsd:documentation>

</xsd:annotation>

...

</xsd:group>

<xsd:group name = ‘‘f5’’>

<xsd:annotation>

<xsd:documentation>

Similar to f2 element group

</xsd:documentation>

</xsd:annotation>

...

</xsd:group>

<xsd:annotation>

<xsd:documentation>

A choice appears in group f6, because leg element might appear as an identifier

if groups f7, f8 and f9 are not replaced, or as a pedicated expression otherwise

</xsd:documentation>

</xsd:annotation>

<xsd:group name = ‘‘f6’’>

<xsd:sequence>

<xsd:element name = ‘‘predicate’’>

<xsd:complexType>

<xsd:choice>

<xsd:element name = ‘‘identifier’’ fixed = ‘‘leg’’/>

<xsd:sequence>

<xsd:element name = ‘‘predicatedExpr’’>

137

<xsd:complexType>

<xsd:sequence>

<xsd:element name = ‘‘identifier’’ fixed = ‘‘leg’’/>

<xsd:group ref = ‘‘qssx:f7’’ minOccurs = ‘‘0’’/>

<xsd:group ref = ‘‘qssx:f8’’ minOccurs = ‘‘0’’/>

<xsd:group ref = ‘‘qssx:f9’’ minOccurs = ‘‘0’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:group>

<xsd:group name = ‘‘f7’’>

<xsd:annotation>

<xsd:documentation>

Similar to f2 element group

</xsd:documentation>

</xsd:annotation>

...

</xsd:group>

<xsd:group name = ‘‘f8’’>

<xsd:annotation>

<xsd:documentation>

Similar to f2 element group

</xsd:documentation>

</xsd:annotation>

...

</xsd:group>

<xsd:group name = ‘‘f9’’>

<xsd:annotation>

<xsd:documentation>

Similar to f2 element group

</xsd:documentation>

</xsd:annotation>

...

</xsd:group>

</xsd:schema>

Appendix C

Result XML Schema

<?xml version = ‘‘1.0’’ encoding = ‘‘UTF-8’’?>

<xsd:schema xmlns:xsd = ‘‘http://www.w3.org/2001/XMLSchema’’

targetNamespace=‘‘http://airlineSchema/’’>

<xsd:element name = ‘‘result’’>

<xsd:complexType>

<xsd:choice>

<xsd:element ref = ‘‘airline’’/>

<xsd:element ref = ‘‘flight’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘airline’’>

<xsd:annotation>

<xsd:documentation>

Element declaration as it appears in the data XML Schema

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name = ‘‘flight’’>...</xsd:element>

138

139

<xsd:element name = ‘‘leg’’>...</xsd:element>

</xsd:schema>

Appendix D

TPX Query

<query xmlns = ‘‘http://www.db.ucsd.edu/tpx’’>

<step axis = ‘‘CHILD’’>

<identifier>flights</identifier>

<step axis = ‘‘CHILD’’>

<predicatedExpr>

<identifier>airline</identifier>

<predicate>

<function name = ‘‘EQUALS’’>

<identifier>name</identifier>

<constant datatype = ‘‘CHARSTRING’’>Delta</constant>

</function>

</predicate>

</predicatedExpr>

<predicatedExpr>

<identifier>flight</identifier>

<predicate>

<function name = ‘‘EQUALS’’>

<identifier>from</identifier>

<constant datatype = ‘‘CHARSTRING’’>

JFK

</constant>

</function>

140

141

</predicate>

<predicate>

<function name = ‘‘EQUALS’’>

<identifier>to</identifier>

<constant datatype = ‘‘CHARSTRING’’>

LAX

</constant>

</function>

</predicate>

<predicate>

<function name = ‘‘EQUALS’’>

<identifier>day</identifier>

<constant datatype = ‘‘CHARSTRING’’>

MON

</constant>

</function>

</predicate>

<predicate>

<predicatedExpr>

<identifier>leg</identifier>

<predicate>

<function name = ‘‘EQUALS’’>

<identifier>to</identifier>

<constant datatype = ‘‘CHARSTRING’’>

LAS

</constant>

</function>

</predicate>

</predicatedExpr>

</predicate>

</predicatedExpr>

</step>

</step>

</query>

Appendix E

XML Schema for TPX Syntax

<?xml version = ‘‘1.0’’ encoding = ‘‘UTF-8’’?>

<xsd:schema xmlns:xsd = ‘‘http://www.w3.org/2001/XMLSchema’’

targetNamespace = ‘‘http://www.db.ucsd.edu/tpx’’>

<xsd:group name = ‘‘expression’’>

<xsd:choice>

<xsd:element ref = ‘‘constant’’/>

<xsd:element ref = ‘‘function’’/>

<xsd:element ref = ‘‘predicatedExpr’’/>

<xsd:element ref = ‘‘step’’/>

<xsd:element ref = ‘‘identifier’’/>

</xsd:choice>

</xsd:group>

<xsd:element name = ‘‘query’’>

<xsd:complexType>

<xsd:sequence>

<xsd:group ref = ‘‘expression’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘predicatedExpr’’>

<xsd:complexType>

<xsd:sequence>

142

143

<xsd:group ref = ‘‘expression’’/>

<xsd:element ref = ‘‘predicate’’ maxOccurs = ‘‘unbounded’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘predicate’’>

<xsd:complexType>

<xsd:sequence>

<xsd:group ref = ‘‘expression’’/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘identifier’’ type = ‘‘xsd:string’’/>

<xsd:element name = ‘‘constant’’>

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base = ‘‘xsd:string’’>

<xsd:attribute name = ‘‘datatype’’ type = ‘‘xsd:string’’/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘function’’>

<xsd:complexType>

<xsd:choice minOccurs = ‘‘0’’ maxOccurs = ‘‘unbounded’’>

<xsd:group ref = ‘‘expression’’/>

</xsd:choice>

<xsd:attribute name = ‘‘name’’

use = ‘‘required’’

type = ‘‘xsd:string’’

fixed = ‘‘EQUAL’’/>

</xsd:complexType>

</xsd:element>

<xsd:element name = ‘‘step’’>

<xsd:complexType>

144

<xsd:sequence>

<xsd:group ref = ‘‘expression’’/>

<xsd:group ref = ‘‘expression’’/>

</xsd:sequence>

<xsd:attribute name = ‘‘axis’’ use = ‘‘required’’>

<xsd:simpleType>

<xsd:restriction base = ‘‘xsd:NMTOKEN’’>

<xsd:enumeration value = ‘‘CHILD’’/>

<xsd:enumeration value = ‘‘DESCENDANT’’/>

<xsd:enumeration value = ‘‘SLASHSLASH’’/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Appendix F

TQL2XQuery Algorithm

The algorithm TQL2XQuery works on TQL queries, presented in Sec-

tion VI.A. TQL2XQuery generates an XQuery expression equivalent to the input

TQL query. The XQuery expressions generated by TQL2XQuery include GROUPBY

expressions to efficiently perform the groupings. GROUPBY expressions are not part

of the latest XQuery working draft [14], but the draft includes an issue regard-

ing an explicit GROUPBY construct. Such a construct is presented in Appendix G.

The choice of XQuery augmented with GROUPBY expressions has been made be-

cause of the importance of grouping operations for producing nested XML and

XHTML output. Explicit GROUPBY expressions enable easier optimization of such

grouping operations, as is shown in [24]. As Appendix G shows, XQuery+GROUPBY

expressions can always be translated to XQuery expressions, often of significantly

increased complexity: their use results in cleaner query expressions and more op-

portunities for optimization, but does not affect the generality of the algorithm.

TQL2XQuery inputs a result (sub)tree RT, rooted at nRT , of a TQL

query. The algorithm outputs an XQuery expression using nested FWOR expressions

(FOR-WHERE-ORDER BY-RETURN) and element constructors, where FWOR expressions

are always nested in the RETURN clause of their parents. An FWOR expression e

defines a scope se. It follows that scopes are nested. Every variable $V in the

FOR clause of an FWOR expression e corresponds to a node n in CT, as discussed

145

146

in Section VII.B, and we write n = node($V) and $V = var(n). We also write

scope($V) = scope(n) = se to denote the FWOR expression e that $V is in the scope

of. In the algorithm, we represent by S the current scope and by E the current

FWOR expression. We define allvars(S) to be the set of all the variables that are

in S or in any scope that S is nested in, and we assume that the root NCT of the

CT is known to the algorithm.

Initially, the algorithm is called with TQL2XQuery(NRT ,�, nil). NRT is

the root of RT for the TQL query under translation. The initial scope is empty,

as is the initial FWOR expression.

Algorithm TQL2XQuery
Inputs: An RT node nRT , the current scope S, and the current
FWOR expression E.
Output: An XQuery expression equivalent to the input TQL query.
Method:
Traverse RT top-down and left-to-right.
For an element node nRT of RT :
Set V variables in the group-by list G of 1
nRT ←variables in the attached Boolean expression b of nRT

If S is empty and V is not empty then // Top-level group-by list 2
Create a new FWOR expression e, with FOR clause: 3
“FOR var(child(NCT)) IN document(‘source.xml’)”
Set E ← e, S ← se 4
For each child ci of child(NCT) 5

ApplyConditions(ci, V, E, S) 6
Add conjunctively to WHERE clause of E the 7
Boolean expression labeling the root AND node NCT

If there exists a variable $Vi ∈ V such that $Vi /∈ allvars(S) 8
// node($Vi) is under an OR node in CT
Create a new FWOR expression e, set E ← e, S ← se 9

For every distinct variable $V i ∈ V and $V i /∈ allvars(S) 10
GenerateResultVariable($Vi, E, S) 11

If the group-by list G of nRT is not empty 12
Add to RETURN clause of E the expression “GROUPBY G AS” 13

If nRT has an attached Boolean expression b 14
Add to RETURN clause of E the expression “IF b THEN” 15

If name(nRT) is a constant 16
Add to RETURN clause of E the expression <name(nRT)> 17
For each child ci of nRT 18

TQL2XQuery(ci, S, E) 19
Add to RETURN clause of E the expression </name(nRT)> 20

Else if name(nRT) is a variable 21
// then the node is guaranteed to be a leaf node,
// see Definition 16 in Section VI.A
Add to RETURN clause of E the expression “{name(nRT)}” 22

If the sort-by list S of nRT is not empty 23

147

Add to ORDER BY clause of E the S list 24

ApplyConditions(nCT , V, E, S)
// nCT is the current node and V is the top-level group-by list
If nCT is an OR node, not denoting optional element, 25
and no var(nD) is in V , where nD is a descendant of nCT

For each child AND node nAND 26
Create a new SOME. . .SATISFIES expression e′ 27
For each child ci of nAND 28

ApplyConditions(ci, V, e′, se′) 29
Add conjunctively to SATISFIES clause of e′ 30
the Boolean expression labeling nAND

Add conjunctively to WHERE clause of E the disjunction 31
of all SOME. . .SATISFIES expressions

Else If nCT is an OR node and there is a var(nD) is in V , 32
where nD is a descendant of nCT

For each child AND node nAND having a var(nD) is in V , 33
where nD is a descendant of nAND

For each child ci of nAND 34
ApplyConditions(ci, V, E, S) 35

Add conjunctively to WHERE clause of E the 36
Boolean expression labeling nAND

Else If nCT is an AND node 37
For each child ci of nAND 38

ApplyConditions(ci, V, E, S) 39
Add conjunctively to WHERE clause of E the 40
Boolean expression labeling nAND

Else 41
GenerateConditionVariable(nCT , E, S) 42
For each child ci of nCT 43

ApplyConditions(ci, V, E, S) 44

GenerateConditionVariable(nCT , E, S)
If nCT is an element node 45

Construct a path expression pe = var(parent(nCT))/name(nCT) 46
If nCT has a name variable 47

// refers to the XPath’s name() function [53]
Construct a path expression pe = var(parent(nCT))/name() 48

Add to FOR/SOME clause of E the variable declaration “var(nCT) IN pe” 49

GenerateResultVariable($V, E, S)
B ← � 50
Find in CT the lowest element node ancestor nLA of node($V) 51
such that, in RT, var(nLA) in allvars(S)
Construct a relative path expression pe initially consisting of var(nLA) 52
Walking down the tree path from nLA to node($V), 53
for a node nCT of CT on that path:

If nCT is an element node 54
Construct a path expression pe = var(nLA)/name(nCT) 55
Add to FOR clause of E the variable declaration “var(nCT) IN pe” 56

If nCT is an AND node with a Boolean expression b 57
Add b to B 58

148

If nCT has a name variable 59
Construct a path expression pe = var(nLA)/name() 60
Add to FOR clause of E the variable declaration “var(nCT) IN pe” 61

Set nCT as nLA and repeat from line 53 62
For every Boolean expression bi ∈ B 63

For every variable $Vi used in bi and not in allvars(S) 64
GenerateResultVariable($Vi, S, E) 65

Add to WHERE clause of E the conjunction of the expressions in B 66

Initially, the algorithm produces a FWOR expression e for the top-level

group-by list of the RT and applies all conditions that appear in CT. This step

ensures that the top-level group-by list, and all subsequent ones, is applied on

qualified bindings only. All variables in CT that are not under an OR node are

declared in the FOR clause of e. The Boolean expression labeling the root AND

node of CT appears in the WHERE clause of e. For each OR node in CT, the

algorithm produces a SOME. . .SATISFIES expression e′. The set of e′ expressions are

connected using Boolean disjunction and placed in the WHERE clause of e. Nested

OR nodes in CT result in nested SOME. . .SATISFIES expressions. All variables

in CT that are under an OR node are declared in the SOME clause of some e′.

Boolean expressions labeling AND nodes that are children of an OR node appear

in the SATISFIES clause of some e′. This step is implemented in lines 2-7 and the

subroutines ApplyConditions and GenerateConditionVariable.

As a second step, the algorithm traverses the result tree depth-first and

produces a FWOR expression, nested in the RETURN clause of the enclosing FWOR

expression, when it encounters a group-by list containing a variable labeling a

node under an OR node in CT (lines 8-9). The FOR clause of the FWOR expression

declares the variables in the group-by list by traversing the condition tree (lines

10-11 and subroutine GenerateResultVariable). If the nodes of the result tree have

an attached Boolean expression, then an IF. . .THEN condition expression is added

to the RETURN clause of the FWOR expression (lines 14-15). Each node of the result

tree either constructs an element or generates element content in the RETURN clause

(lines 16-22). Finally, if a node in the result tree has a sort-by list, then an ORDER

BY clause is added (lines 23-24.) The complexity of the TQL2XQuery algorithm is

149

polynomial in the size of the input CT and RT.

The following XQuery expression is generated from the TQL2XQuery

algorithm for the TQL query in Figure VI.1. Notice that the algorithm can be

enhanced easily to add a name attribute to all constructed nodes (on line 14),

with the value of the attribute being, for example, the complete path of the node.

That would allow us, for example, to name the different <tr>, <td> and <table>

elements.

<html>
<body>
<table>{
FOR $root IN document(‘‘source.xml’’),

$S IN $root/sensors,
$MAN IN $S/manufacturer,
$NAME IN $MAN/name,
$PROD IN $MAN/product,
$PART IN $PROD/part number,
$SPEC IN $PROD/specs,
$DIST IN $SPEC/sensing distance,
$BODY IN $SPEC/body type,
$N BODY IN $BODY/name(),
$PROTS IN $SPEC/protection ratings,
$PROT IN $PROTS/protection rating,
$PROT1 IN $PROTS/protection rating

WHERE
$PROT1 = "NEMA3"
AND ((SOME $CYL IN $BODY/cylindrical,

$DIA IN $CYL/diameter,
$BAR IN $CYL/barrel style

SATISFIES $DIA <= 20 AND $DIA <= 40)
OR
(SOME $REC IN $BODY/rectangular,

$HEI IN $REC/height,
$WID IN $REC/width

SATISFIES $HEI <= 20 AND $WID <= 40))
ORDER BY $NAME DESCENDING, $DIST
RETURN
GROUPBY $PROD AS
<tr>{

<td>{
FOR $IMG IN $PROD/image
RETURN
GROUPBY $IMG AS
{$IMG}

}</td>,
<td>{

150

IF ($NAME = "Turck") THEN "turck.gif"
IF ($NAME = "Balluff") THEN "balluff.gif"
IF ($NAME = "Baumer") THEN "baumer.gif"

}</td>,
{
GROUPBY $PART AS
<td>{$PART}</td>
},
<td>{
<table>{
GROUPBY $PROT AS
<tr>{
<td>{$PROT}</td>

}</tr>
}</table>

}</td>,
<td>{$DIST}</td>,
<td>{
<table>{
<tr>{
GROUPBY $N BODY AS
<td>{$N BODY}</td>

}</tr>,
<tr>{
<td>{
FOR $CYL IN $BODY/cylindrical,

$DIA IN $CYL/diameter,
$BAR IN $CYL/barrel style

WHERE
$DIA <= 20 AND $DIA <= 40

RETURN
GROUPBY $CYL AS
<table>{
<tr>{

GROUPBY $DIA AS
<td>{$DIA}</td>,
GROUPBY $BAR AS
<td>{$BAR}</td>

}</tr>
}</table>

}</td>,
<td>{
FOR $REC IN $BODY/rectangular,

$HEI IN $REC/height,
$WID IN $REC/width

WHERE
$HEI <= 20 AND $WID <= 40

RETURN
GROUPBY $REC AS
<table>{
<tr>{

GROUPBY $HEI AS

151

<td>{$HEI}</td>,
GROUPBY $WID AS
<td>{$WID}</td>

}</tr>
}</table>

}</td>
}</tr>

}</table>
}</td>

}</tr>
}</table>

</body>
</html>

Appendix G

GROUPBY Proposal

The proposal extends the XQuery syntax with the following GroupBy ex-

pressions (productions below extend those in http://www.w3.org/TR/xquery/#nt-bnf):

Expr ::= Expr ‘SORTBY’ ‘(’ SortSpecList ‘)’
| UnaryOp Expr
| Expr BinaryOp Expr
| Variable
| Literal
| ‘.’
| FunctionName ‘(’ ExprList? ‘)’
| ElementConstructor
| ‘(’ Expr ‘)’
| ‘[’ ExprList? ‘]’
| PathExpr
| Expr Predicate
| FlwrExpr
| ‘IF’ Expr ‘THEN’ Expr ‘ELSE’ Expr
| (‘SOME’ | ‘EVERY’) Variable ‘IN’ Expr ‘SATISFIES’ Expr
| (‘CAST’ | ‘TREAT’) ‘AS’ Datatype ‘(’ Expr ‘)’
| Expr ‘INSTANCEOF’ Datatype
| GroupBy
/********** new ********/

GroupBy ::= ‘GROUPBY’ VarList? HavingClause? ‘AS’ Expr
/********** new ********/
VarList ::= Variable (‘,’ VarList)?
/********** new ********/
HavingClause ::= ‘HAVING’ Expr
/********** new ********/

The rest of the grammar remains unchanged. A GroupBy expression returns an

unordered collection. The example below refers to the “Use Case XMP” DTD and data (in

http://www.w3.org/TR/xmlquery-use-cases).

152

153

EXAMPLE Grouping elements in the returned document. “For each author, return

the number of book titles she published, as well as the list of those titles and their year of

publication”.

FOR $b IN document(‘‘http://www.bn.com’’)/bib/book,
$a IN $b/author,
$t IN $b/title,
$y IN $b/@year

RETURN
GROUPBY $a AS
<result> $a,
<number> count(distinct($t)) </number>,
GROUPBY $t, $y AS
<titleYear>
$t,
<year> $y </year>

</titleYear>
</result>

Notice how the same variable $t can be used both outside a GROUPBY and inside a

GROUPBY. Outside the GROUPBY its value is a collection, inside the GROUPBY its value is a node.

The same query can be expressed without GROUPBY as follows. Here we have to construct an

intermediate collection only to apply ‘distinct’ to it and then to iterate over it:

FOR $a IN distinct(document(‘‘http://www.bn.com’’)/bib/book/author)
LET $t = document(‘‘http://www.bn.com’’)/bib/book[author=$a]/title
RETURN
<result> $a
<number> count(distinct($t)) </number>
FOR $Tup IN distinct(
FOR $b IN document(‘‘http://www.bn.com’’)/bib/book[author=$a],

$t IN $b/title,
$y IN $b/@year

RETURN <Tup> <t> $t </t> <y> $y </y> </Tup>),
$t IN $Tup/t/node(),
$y IN $Tup/y/node()

RETURN
<titleYear>

$t,
<year> $y </year>

</titleYear>
</result>

Bibliography

[1] MDA Guide Version 1.0.1. Object Management Group, Inc., 2003.
Http://www.omg.org/docs/omg/03-06-01.pdf.

[2] Amazon E-Commerce Service 4.0. Http://www.amazon.com/gp/aws/sdk/.

[3] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web. Morgan
Kaufman, San Francisco, CA, 2000.

[4] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[5] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and Querying
XML with Incomplete Information. In Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, 2001.

[6] Jürgen Albert, Dora Giammarresi, and Derick Wood. Normal form algorithms
for extended context-free grammars. Theor. Comput. Sci., 267(1–2):35–47,
2001.

[7] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Sri-
vastava. Minimization of Tree Pattern Queries. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2001.

[8] Google Web APIs. Http://www.google.com/apis/.

[9] Microsoft ASP.NET. Microsoft Corporation, 2005. Http://www.asp.net/.

[10] Paolo Atzeni, Giansalvatore Mecca, and Paolo Merialdo. To Weave the Web.
In Proceedings of the 23rd International Conference on Very Large Data Bases,
pages 206–215, 1997.

[11] Philip A. Bernstein, Michael L. Brodie, Stefano Ceri, David J. DeWitt,
Michael J. Franklin, Hector Garcia-Molina, Jim Gray, Gerald Held, Joseph M.
Hellerstein, H. V. Jagadish, Michael Lesk, David Maier, Jeffrey F. Naughton,
Hamid Pirahesh, Michael Stonebraker, and Jeffrey D. Ullman. The Asilomar
Report on Database Research. SIGMOD Record, 27(4):74–80, 1998.

[12] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, and Christoph
Quix. Industrial-Strength Schema Matching. SIGMOD Record, 33(4):38–43,
2004.

154

155

[13] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation 28 October 2004, 2004.
Http://www.w3.org/TR/xmlschema-2/.

[14] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language. W3C
Working Draft 11 February 2005, 2005. Http://www.w3.org/TR/xquery/.

[15] David Booth and Canyang Kevin Liu. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. W3C Working Draft 21 December 2004,
2004. Http://www.w3.org/TR/wsdl20-primer/.

[16] Anne Brüggemann-Klein, Makoto Murata, and Derick Wood. Regular Tree
and Regular Hedge Languages over Unranked Alphabets: Version 1. HKUST
Theoretical Computer Science Center Research Report, HKUST-TCSC-2001-
05, 2001.

[17] Michael J. Carey, Laura M. Haas, Vivekananda Maganty, and John H.
Williams. PESTO : An Integrated Query/Browser for Object Databases. In
Proceedings of the 22nd International Conference on Very Large Data Bases,
pages 203–214, 1996.

[18] Sudarshan S. Chawathe, Thomas Baby, and Jihwang Yeo. VQBD: Explor-
ing Semistructured Data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2001.

[19] Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your
Mediators Need Data Conversion! In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 177–188, 1998.

[20] Sara Cohen, Yaron Kanza, Yakov A. Kogan, Werner Nutt, Yehoshua Sagiv,
and Alexander Serebrenik. EquiX - Easy Querying in XML Databases. In
Proceedings of the 2nd International Workshop on the Web and Databases,
pages 43–48, 1999.

[21] Macromedia ColdFusion. Macromedia, Inc., 2003.
Http://www.macromedia.com/software/coldfusion/.

[22] Sara Comai, Ernesto Damiani, and Piero Fraternali. Computing graphical
queries over XML data. ACM Trans. Inf. Syst., 19(4):371–430, 2001.

[23] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan
Suciu. XML-QL. In W3C Query Languages Workshop, 1998.

[24] Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. The NEXT Logical
Framework for XQuery. In Proceedings of the 30th International Conference
on Very Large Data Bases, pages 168–179, 2004.

[25] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Kristof-
fer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and
XPath 2.0 Formal Semantics. W3C Working Draft 11 February 2005, 2005.
Http://www.w3.org/TR/xquery-semantics/.

156

[26] Denise Draper, Alon Y. Halevy, and Daniel S. Weld. The Nimble Integration
Engine. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2001.

[27] Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Ra-
man. XForms 1.0. W3C Recommendation 14 October 2003, 2003.
Http://www.w3.org/TR/2003/REC-xforms-20031014/.

[28] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive
Query Plans for Data Integration. Journal of Logic Programming, 43(1), 2000.

[29] Andrew Eisenberg and Jim Melton. SQL/XML is Making Good Progress.
SIGMOD Record, 31(2):101–108, 2002.

[30] Anat Eyal and Tova Milo. Integrating and customizing heterogeneous e-
commerce applications. VLDB Journal, 10(1):16–38, 2001.

[31] David C. Fallside and Priscilla Walmsley. XML Schema Part 0:
Primer Second Edition. W3C Recommendation 28 October 2004, 2004.
Http://www.w3.org/TR/xmlschema-0/.

[32] Mary Fernandez, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Nor-
man Walsh. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 11
February 2005, 2005. Http://www.w3.org/TR/xpath-datamodel/.

[33] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. Declara-
tive Specification of Web Sites with Strudel. VLDB Journal, 9(1):38–55, 2000.

[34] Mary F. Fernandez, Atsuyuki Morishima, and Dan Suciu. Efficient Evalu-
ation of XML Middle-ware Queries. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2001.

[35] BEA Liquid Data for WebLogic. BEA Systems, Inc., 2005. Http://bea.com.

[36] Piero Fraternali. Tools and Approaches for Developing Data-Intensive Web
Applications: A Survey. ACM Comput. Surv., 31(3):227–263, 1999.

[37] Piero Fraternali and Paolo Paolini. Model-driven development of Web appli-
cations: the AutoWeb system. ACM Trans. Inf. Syst., 18(4):323–382, 2000.

[38] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom. Database
Systems: The Complete Book. Prentice Hall, 2001.

[39] Michael Genesereth and Nils J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufman, San Mateo, CA, 1987.

[40] Roy Goldman and Jennifer Widom. Interactive Query and Search in Semi-
structured Databases. In Proceedings of the 1st International Workshop on
the Web and Databases, pages 52–62, 1998.

[41] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.
Optimizing Queries Across Diverse Data Sources. In Proceedings of the 23rd
International Conference on Very Large Data Bases, pages 276–285, 1997.

157

[42] Alon Y. Halevy. Answering Queries Using Views: A Survey. VLDB Journal,
10(4):270–294, 2001.

[43] Macromedia HomeSite. Macromedia, Inc., 2003.
Http://www.macromedia.com/software/homesite/.

[44] Grant Hutchison. DB2 Web Services, 2001. Http://www-
106.ibm.com/developerworks/db2/zones/webservices/bigpicture.html.

[45] Microsoft Visual InterDev. Microsoft Corporation, 2003.
Http://msdn.microsoft.com/vinterdev/.

[46] Michael Kay. XSL Transformations (XSLT) Version 2.0. W3C Working Draft
11 February 2005, 2005. Http://www.w3.org/TR/xslt20/.

[47] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973.

[48] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David DeWitt. Limiting Disclosure in Hippocratic Databases.
In VLDB, pages 108–119, 2004.

[49] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Hetero-
geneous Information Sources Using Source Descriptions. In Proceedings of
the 22nd International Conference on Very Large Data Bases, pages 251–262,
1996.

[50] Alon Y. Levy, Anand Rajaraman, and Jeffrey D. Ullman. Answering Queries
Using Limited External Processors. In Proceedings of the 15th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 227–
237, 1996.

[51] Chen Li and Edward Y. Chang. Answering Queries with Useful Bindings.
ACM Transactions on Database Systems (TODS), 26(3), 2001.

[52] Bertram Ludäscher, Yannis Papakonstantinou, and Pavel Velikhov.
Navigation-Driven Evaluation of Virtual Mediated Views. In Proceedings of
the 7th International Conference on Extending Database Technology, pages
150–165, 2000.

[53] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath
2.0 Functions and Operators. W3C Working Draft 11 February 2005, 2005.
Http://www.w3.org/TR/xpath-functions/.

[54] Jim Melton and Subramanian Muralidhar. XML Syntax for
XQuery 1.0 (XQueryX). W3C Working Draft 4 April 2005, 2005.
Http://www.w3.org/TR/xqueryx/.

[55] Kuassi Mensah and Ekkehard Rohwedder. Oracle9i Database Web Services.
White Paper, 2002. Http://www.oracle.com.

158

[56] Gerome Miklau and Dan Suciu. Containment and Equivalence for an XPath
Fragment. In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pages 65–76, 2002.

[57] Kevin D. Munroe and Yannis Papakonstantinou. BBQ: A Visual Interface for
Integrated Browsing and Querying of XML. In Proceedings of the 5th Working
Conference on Visual Database Systems, pages 277–296, 2000.

[58] Alan Nash and Bertram Ludäscher. Processing Unions of Conjunctive Queries
with Negation under Limited Access Patterns. In EDBT, 2004.

[59] Jakob Nielsen. Designing Web Usability. New Riders Publishing, 2000.

[60] JavaServer Pages. Sun Microsystems, Inc., 2005.
Http://java.sun.com/products/jsp/.

[61] Yannis Papakonstantinou, Vinayak R. Borkar, Maxim Orgiyan, Konstantinos
Stathatos, Lucian Suta, Vasilis Vassalos, and Pavel Velikhov. XML queries and
algebra in the Enosys integration platform. Data Knowl. Eng., 44(3):299–322,
2003.

[62] Yannis Papakonstantinou, Michalis Petropoulos, and Vasilis Vassalos.
QURSED: Querying and Reporting Semistructured Data. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pages
192–203, 2002.

[63] Michalis Petropoulos, Alin Deutsch, and Yannis Papakonstantinou. Interac-
tive Query Formulation for Systems that Rewrite Queries Using Views. Avail-
able online at http://www.db.ucsd.edu/People/michalis/pubs/clide.pdf.

[64] Michalis Petropoulos, Alin Deutsch, and Yannis Papakonstantinou. Query
Set Specification Language (QSSL). In WebDB, pages 99–104, 2003.

[65] Michalis Petropoulos, Yannis Papakonstantinou, and Vasilis Vassalos. Build-
ing XML query forms and reports with XQForms. Computer Networks,
39(5):541–558, 2002.

[66] Michalis Petropoulos, Yannis Papakonstantinou, and Vasilis Vassalos. Graph-
ical Query Interfaces for Semistructured Data: The QURSED System. ACM
Transactions on Internet Technology, 5(2), 2005.

[67] Michalis Petropoulos, Vasilis Vassalos, and Yannis Papakonstantinou. XML
Query Forms (XQForms): Declarative Specification of XML Query Interfaces.
In Proceedings of the 10th International World Wide Web Conference, pages
642–651, 2001.

[68] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and
Ronald Fagin. Translating Web Data. In Proceedings of the 28th International
Conference on Very Large Data Bases, pages 598–609, 2002.

[69] Rachel Pottinger and Alon Halevy. MiniCon: A scalable algorithm for an-
swering queries using views. VLDB Journal, 10(2-3), 2000.

159

[70] Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman, and
Jennifer Widom. (Querying Semistructured Heterogeneous Information). In
Proceedings of the 4th International Conference on Deductive and Object-
Oriented Databases, pages 319–344, 1995.

[71] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01
Specification. W3C Recommendation 24 December 1999, 1999.
Http://www.w3.org/TR/html4/.

[72] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4):334–350, 2001.

[73] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering
Queries Using Templates with Binding Patterns. In PODS, pages 105–112,
1995.

[74] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending
Query Rewriting Techniques for Fine-Grained Access Control. In SIGMOD,
pages 551–562, 2004.

[75] Mary Tork Roth and Peter M. Schwarz. Don’t Scrap It, Wrap It! A Wrapper
Architecture for Legacy Data Sources. In VLDB, pages 266–275, 1997.

[76] Lawrence A. Rowe. ”Fill-in-the-Form” Programming. In VLDB, 1985.

[77] Waqar Sadiq and Sandeep Kumar. Web Service Description Usage Scenarios.
W3C Working Draft 4 June 2002, 2002. Http://www.w3.org/TR/ws-desc-
usecases/.

[78] Harald Schöning and Jürgen Wäsch. Tamino - An Internet Database Sys-
tem. In Proceedings of the 7th International Conference on Extending Database
Technology, pages 383–387, 2000.

[79] Luc Segoufin and Victor Vianu. Validating Streaming XML Documents.
In Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 53–64, 2002.

[80] Microsoft BizTalk Server. Microsoft Corporation, 2004.
Http://www.microsoft.com/biztalk/.

[81] Microsoft Corporation. SQL Server. Http://www.microsoft.com/sql/.

[82] Web Services and Service-Oriented Architectures. Http://www.service-
architecture.com/.

[83] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J.
Carey, Bruce G. Lindsay, Hamid Pirahesh, and Berthold Reinwald. Efficiently
Publishing Relational Data as XML Documents. In Proceedings of the 26th
International Conference on Very Large Data Bases, pages 65–76, 2000.

160

[84] Abraham Silberschatz, Michael Stonebraker, and Jeffrey D. Ullman. Database
Systems: Achievements and Opportunities - The “Lagunita” Report of the
NSF Invitational Workshop on the Future of Database System Research held
in Palo Alto, California, February 22-23, 1990. SIGMOD Record, 19(4):6–22,
1990.

[85] Microsoft SQL Server 2000 Web Services Toolkit. Microsoft Corporation,
2002. Http://www.microsoft.com/sql/techinfo/xml/default.asp.

[86] TIBCO XML Transform. TIBCO Software Inc., 2005. Http://tibco.com.

[87] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence and
Narrative. Graphics Press, 1997.

[88] Macromedia Dreamweaver UltraDev. Macromedia, Inc., 2003.
Http://www.macromedia.com/software/ultradev/.

[89] Vasilis Vassalos and Yannis Papakonstantinou. Describing and Using Query
Capabilities of Heterogeneous Sources. In VLDB, 1997.

[90] Vasilis Vassalos and Yannis Papakonstantinou. Expressive Capabilities De-
scription Languages and Query Rewriting Algorithms. Journal of Logic Pro-
gramming, 43(1):75–122, 2000.

[91] BEA WebLogic Workshop. BEA Systems, Inc., 2005. Http://bea.com.

[92] Oracle XSQL. Oracle, 2004. Http://www.oracle.com.

[93] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB,
pages 82–94, 1981.

[94] Ramana Yerneni, Chen Li, Hector Garcia-Molina, and Jeffrey Ullman. Com-
puting Capabilities of Mediators. In SIGMOD, pages 443–454, 1999.

[95] Moshé M. Zloof. Query By Example. In Proceedings of the AFIPS Conference,
pages 431–438, 1975.

