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Abstract

Physical Binding Site Modeling for Quantitative

Prediction of Biological Activities

Lawrence Rocco Varela

Computational approaches for binding affinity prediction are most frequently demon-

strated through cross-validation within a series of molecules or through performance

shown on a blinded test set. Here, we show how such a system performs in two

realistic applications: 1. An iterative, temporal lead optimization exercise, and 2.

A hybrid strategy that leverages diversified information as input. In the first eval-

uation, a series of gyrase inhibitors with known synthetic order formed the set of

molecules that could be selected for synthesis. Beginning with a small number of

molecules, based only on structures and activities, a model was constructed using

the newly developed Surflex-Quantitative Modeling (QMOD) approach. Compound

selection was done computationally, each time making five selections based on confi-

dent predictions of high activity and five selections based on a quantitative measure

of three-dimensional structural novelty. Compound selection was followed by model

refinement using the new data. Iterative computational candidate selection produced

rapid improvements in selected compound activity, and incorporation of explicitly

novel compounds uncovered much more diverse active inhibitors than strategies lack-

ing active novelty selection. For the second evaluation we present a hybrid structure-

guided strategy that combines molecular similarity, docking, and multiple-instance

learning such that information from protein structures can be used to inform mod-

els of structure-activity relationships. The Surflex-QMOD approach has been shown

to produce accurate predictions of binding affinity by constructing an interpretable

vi



physical model of a binding site with no experimental binding site structural informa-

tion. Here we introduce a methodological enhancement to integrate protein structure

information into the model induction process in order to construct more robust phys-

ical models. The structure-guided models accurately predict binding affinities over a

broad range of compounds while producing more accurate representations of the pro-

tein pockets and ligand binding modes. Structure-guidance for the QMOD method

yielded significant performance improvements, especially in cases where predictions

were made on ligands very different from those used for model induction.
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Chapter 1

Introduction

Information retrieval, processing, and interpretation plays a critical role in the accel-

eration of biological discoveries. Over the last decade there has been concerted effort

towards the expansion of biological data. We have seen the completion of the human

genome project.1,2 The 1000 Genomes Project Consortium has recently completed

efforts to provide deep characterization of human genome sequence variation3 of 1000

anonymously selected individuals from different ethnic groups and geographic regions.

An additional 66,145 structures have been deposited in the Protein Data Bank4 since

2003. The ChEMBL database now provides approximately 1.4M compound records

of bioactive drug-like small molecules, covering 9,570 targets and summarizing re-

search findings of over 48K publications.5 Computational sciences play a necessary

and invaluable role in generating and testing hypothesis from data of this magnitude.

Hypothesis testing and validation via direct experimentation can be an expensive and

time consuming challenge. Computer technology provides an inexpensive means of

efficiently reducing efforts for direct experimentation.

The work presented here describes the research and development of computational

methods for addressing central challenges in drug development and design. This

work applies machine learning to molecular data to improve methods for quantifying

protein-ligand binding affinity. A unique aspect of machine learning in the area

of binding affinity prediction is that the precise relationship of a ligand bound to a
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protein is not known. This uncertainty presents its self as free or partially constrained

variables that define the conformation and alignment of a ligand within a protein

pocket. Formally, this presents a problem of multiple-instance learning.6,7 The work

presented here has direct applications within drug development, yet the underlying

techniques described herein may be useful in any multiple-instance learning problem.

This dissertation begins with an overview of the drug development cycle in Section

1.1. A description of the underlying principles of protein-ligand binding will be pre-

sented in Section 1.2, followed with an overview of physics-based methods for scoring

protein-ligand interactions (Section 1.3). This chapter closes with a brief review of

machine learning (Section 1.4) followed by summarizing comments.

The remainder of this dissertation is organized into chapters describing the general

field of binding affinity prediction (Chapter 2) and the contributions of the work pre-

sented here. Note that aspects of the underlying theory and algorithms for molecular

similarity, docking, and QSAR presented in Chapters 1 and 2 have been excerpted or

paraphrased from a manuscript to be published as a book (used with permission).8

Chapter 3 describes the underlying method of our work in quantitative binding affin-

ity prediction and lays the foundation for the technology used in the subsequent

chapters. Chapter 4 describes methodological enhancements and applications in it-

erative model refinement and guidance in molecular design. Chapter 5 describes

further methodological improvements that integrate protein structural information

in the model induction process to derive more accurate and widely applicable mod-

els. Final remarks and insights of future directions are discussed in the concluding

chapter.
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1.1 Drug Development Cycle

The financial feasibility of new drug development depends on the expected costs and

returns to research and development (R&D). Capitalized preclinical and clinical costs

per investigational biopharmaceutical compound is reported as ranging from tens to

hundreds of millions of dollars. Table 1.1 shows data collected on capitalized costs

of investigational biopharmaceutical compounds.9 Majority of the expenditures are

typically consumed during preclinical research (right row, Table 1.1). When R&D

costs are substantial it is critical to examine approaches that could reduce those

costs. Innovation throughput and eventual benefit to patients hinges on new drug

development productivity, and the improvement thereof.

Table 1.1: Capitalized Preclinical and Clinical Period costs per Investigational Bio-
pharmaceutical Compound.9

Testing
Phase

Expected
Out-of-
Pocket
Cost ($)

Phase
Length
(mos.)

Monthly
Cost ($)

Start of
Phase to
Approval
(mos.)

End of
Phase to
Approval
(mos.)

Expected
Capital-
ized Cost
($)

Preclinical 59.88 52.0 1.15 149.7 97.7 185.62

Phase I 32.28 19.5 1.66 97.7 78.2 71.78

Phase II 31.55 29.3 1.08 78.2 48.9 56.32

Phase III 45.26 32.9 1.38 48.9 16.0 60.98

Total 374.70

The drug discovery life cycle is commonly considered to be a linear process. New

targets (typically proteins) are identified through knowledge of a particular biolog-

ical process associated with particular disease. Drug-like compounds in chemical

libraries are typically tested in high-throughput screens (HTS) for their ability to

bind to or modulate the target of interest. Compounds revealing acceptable levels of

activity are selected, and subsequently optimized through further testing screens to

produce “leads” that have the required pharmacokinetic properties. Leads revealing

3



the required efficacy in in vivo disease models are further optimized into clinical drug

candidates, followed by subsequent testing in human clinical trials.10

Figure 1.1: The “standard model” of the drug discovery life cycle is considered to
be a linear process. Target indentification is followed by high-throughput screens
(HTS) of drug-like chemical libraries. Compounds with acceptable levels of activity
are subsequently optimized through testing in further screens to reveal leads that
have the required pharmacokinetic properties. Leads showing acceptable efficacy in
in vivo disease models are further optimized into clinical drug candidates. Successful
candidates are then tested in human clinical trials.10

Early phases of drug discovery proceeds largely by trial and error. Typically, sev-

eral thousands of compounds are synthesized for each candidate that finally becomes

a drug. Each synthesis costs, on average, thousands of dollars and requires a few days

to a few weeks of effort. This contributes towards the aforementioned tremendous

expense and low productivity of drug discovery. Accurately predicting the biological

activity of molecules and understanding the basis of those predictions would make

the process more productive. The underlying goal is often to modulate the function

of a therapeutic target, typically a protein such as an enzyme or receptor, in attempt

to induce or prevent its signaling function of a particular disease of interest. The

general strategy is to find a ligand molecule that will bind to the protein’s active

site. Factors that bind molecules together include van der Waals interactions, the

hydrophobic effect, and electrostatics.
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1.2 Protein-Ligand Binding

Successful binding activity prediction requires an understanding of the macromolec-

ular interactions that drive protein structure and function, and intermolecular inter-

actions that contribute towards protein-ligand binding. Proteins are linear polymers

composed of amino acids joined by peptide bonds.11 The amino acid sequence, often

referred to as the primary structure, gives rise to the secondary structure. Secondary

structures are typically represented by local conformational arrangements into alpha

helices, beta sheets, or hairpin loops. Composition of multiple secondary structure

elements produces the tertiary structure, giving rise to the overall 3D structure of the

protein. Multiple polypeptide chains can further come together to organize assem-

blies of larger functional units. Ligands, as we refer to in this work, are molecules

that bind or interact with another through non-covalent forces. In the work presented

here, ligands are typically small molecules with molecular weight < 600 Da and the

binding counterpart is the protein. The nature of interaction between a ligand and

its receptor depends on the delicate balance of physical and chemical forces between

them, and the forces between each of the molecules with the solvent environment.

Figure 1.2 illustrates the physical situation to be modeled for docking a ligand to a

protein binding pocket. The problem is well-formed in the sense of thermodynamics.

The goal is to estimate the difference in free energy between the unbound state at left

and the bound state at right. In the case of a “good” ligand, the energy of the bound

state is significantly less than that of the unbound state. The following equations are

central and give three definitions of the free energy of binding:

Equation 1.1 defines ∆Gbind as the difference in free energy between the bound and

unbound states of the system. Equation 1.2 relates ∆Gbind to changes in enthalpy and

entropy. Enthalpic changes arise from the van der Waals and electrostatic interactions

made between protein and ligand atoms, replacing those lost with solvent. Entropic

5



Unbound protein and ligand Bound protein and ligand

Figure 1.2: Solvated protein and ligand moving from unbound to bound states.

change encompasses the degrees of freedom (translational, rotational, vibrational)

lost to the protein and ligand due to binding. Equation 1.3 defines the relationship

between ∆Gbind and the dissociation constant between the ligand and protein, which

can be measured experimentally. Scoring functions for molecular docking generally

return values directly related to ∆Gbind, whether in kilojoules (kJ), kilocalories (kcal),

units of pKd (-log(Kd)), or in arbitrary units suggested to be related to energy.

∆Gbind = ∆Gcomplex − (∆Gligand + ∆Greceptor) (1.1)

∆Gbind = ∆H − T∆S (1.2)

∆Gbind = −RT ln(Kd) (1.3)

6



A = U − TS (1.4)

H = U + PV (1.5)

G = H − TS (1.6)

Statistical mechanics offers a formal means to treat systems such as those en-

countered in non-covalent binding. Equation 1.4 defines the Helmholtz free energy of

a system (constant temperature and volume), denoted A. Equation 1.6 defines the

Gibbs free energy (denoted G) of a system (constant temperature and pressure), and

H denotes the enthalpy. The Gibbs formulation is more common in chemistry (see

Eqs. 1.1–1.3 from above). For non-covalent protein-ligand binding, there is typically

no PV “work” involved, so the formulations are essentially interchangeable.

The Gibbs free energy of binding is given by Eq. 1.7 (see12 for additional details

on derivation).

∆Gbind = −RT ln

(
1

8π2

∫
e−(U(rPL)+W (rPL))/RTdrPL(∫

e−(U(rP )+W (rP ))/RTdrP
) (∫

e−(U(rL)+W (rL))/RTdrL
)) (1.7)

In Eq. 1.7, U denotes energies dependent on the internal coordinates of the species

in question, and W denotes solvation energies. The integrals are intended to cover all

configurations of internal coordinates (rP , rL, and rPL), but those with high energy

can be neglected. So, with respect to the protein-ligand bound component in the

numerator, all reasonably low-energy bound states must be identified and sampled,

with energies computed in the presence of solvent. For the unbound components in

the denominator, enumeration of energetically accessible solvated states of protein

and ligand are also required. Adequate sampling in order to estimate (∆Gbind) based

on these theoretical considerations is not feasible for molecular docking applications
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(even with the advent of inexpensive computational resources). However, all methods

for molecular docking rely upon scoring functions that make various approximations

to Eq. 1.7, which itself can be seen to embed all of the aspects of protein-ligand

binding illustrated in Figure 1.2. For example, configurations in which the bound

complex shows favorable energetics relative to unbound states will promote binding.

Configurational entropy will disfavor binding to the extent that there are a large

number of equally stable configurations in the unbound state but only a limited

range in the bound state. Solvation effects favor binding if, for example, solvation

energies are high for unbound protein and ligand, which will tend to occur when both

the ligand and protein binding cavity are significantly hydrophobic.

One method of predicting these energies using first principles is described in the

following section. The empirical approach adopted in this work is foreshadowed in

Section 1.4 and fully introduced in Section of the following chapter.

1.3 Physics-Based Methods

Approaches grounded in physics are represented by molecular mechanics treatments

to the scoring problem and are exemplified by the pioneering work of Blaney and

Kuntz with the DOCK program, further refinement of DOCK by groups such as that

of Shoichet, and Abagyan’s ICM method.13–15 The molecular mechanics approach

consists of terms for covalent forces (bond lengths, bond angles, and torsions), but

for the purposes of modeling protein-ligand binding, we will discuss the non-covalent

forces. Due to the difficulty in modeling the entropic aspects of ∆Gbind, these methods

frequently ignore the entropic components or treat them in a reduced fashion. The

key equation in the classical treatment involves pairwise atomic contacts between the

ligand and protein, consisting of a Lennard Jones potential and a Coulombic term.
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∆Gbind ≈
m∑
i=1

n∑
j=1

(
Aij
R12
ij

− Bij

R6
ij

+
qiqj
εRij

)
(1.8)

The A and B parameters are defined for each pair of different atom type com-

binations, R is the distance between atomic centers, q is the partial charge on each

atom, and ε is the dielectric constant. Precise choice of each of these parameters

can have very substantial effects on the behavior and performance of the scoring

function. Owing to the difficulty of explicit solvent representation in the context of

highthroughput computation, continuum solvent modeling is common. This has re-

sulted in a good deal of effort developing an appropriate treatment of the dielectric

constant. The presence of water as a solvent yields a “screening” effect on the effects

of charged interactions at some given distance. A typical value for ε in solvent is

80.0, whereas more typical values in proximity to a protein are closer to 2.0 (which is

between ε of 1 in a vacuum and 4 in many non-polar solvents). Figure 1.3 illustrates

these potential functions. Recalling Eq. 1.7, we see that this formulation ignores all

terms except for the direct protein-ligand enthalpic component at the extremum with

respect to ligand pose, essentially only U(rPL) for the inter-atomic energy terms. All

aspects of solvation and entropy are ignored, and conformational strain is typically

heuristically limited by exploring ligand conformations through torsional variation

that avoids internal clashes.

1.4 Machine Learning

Physics-based approaches for potency prediction are applicable in cases where a re-

liable, high-resolution structure of the protein target is available. While there have

been some encouraging reports of success,16 the problem remains unsolved, with pre-

diction methods suffering from a lack of accuracy and high computational cost.17–19
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Figure 1.3: Classical potential functions for physics-based scoring functions.

In addition, for large classes of therapeutically relevant targets, high-resolution pro-

tein structures are only rarely available (e.g., ligand-gated ion channels, membrane

transporters, and membrane spanning G-protein-coupled receptors). For these rea-

sons, constructing predictive activity models based purely on ligand structure activity

data has been long-studied in computer-aided drug discovery. In this form, it is a

classic machine-learning problem, that of model induction from training data, and

it is not amenable to a direct physics-based approach. This section discusses the

applicability of machine learning in computer-aided drug discovery. An in-depth dis-

cussion on ligand-based approaches to predicting binding affinity will presented in

the following chapter (2).

Machine learning is a branch of computer science focused on developing and study-

ing systems that can automatically learn and improve predictive performance through

experience. Experience may come in many forms, but is typically encapsulated by

data relevant to the task at hand. The typical machine learning problem involves

capturing complex relationships between relevant descriptors and observed outcomes.
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The hope is that what is learned from a finite training set can then be applied gener-

ally to the remaining space. If each example in the training set has a known descriptor

or associated target value, this becomes a supervised learning problem. The goal is

to create a rational model specialized to that domain that is capable of classifying or

predicting future outcomes.

This is a straight forward task when the association between descriptors and

outcomes is fairly linear. In drug development, however, the parameters influencing

biological activity tend to be numerous and interact in a non-linear fashion (consider

the Lennard Jones potential Eq. 1.8). Additional difficulty arises when there is not

enough experimental data, also known as the “curse of dimensionality.20 If M points

are necessary to reasonably define a single dimension, then MN points are required

for N dimensions. Thus, if it takes 10 examples to approximate the relationship of a

single parameter, then 17 parameters would require 1017 examples. Clearly, encoding

knowledge in a higher dimensional space requires astute model selection to succeed.

Several such models are embedded in the scoring functions of molecular dockers and

modeling systems. These are covered in depth in Chapter 2.

Consider now the scenario in Figure 1.4 where our learner has only partial or

incomplete knowledge about each training example. Instead of each example being

represented by a single feature vector, each might be represented by a set of poten-

tial feature vectors of which only one may be responsible for the observed result.

The ambiguous nature of training input arises in the domain of activity prediction

for drugs.6,21 In this example, the object is a ligand and the observed result is the

binding affinity of that ligand with the target. The multiple instances are the vari-

ous conformations (dictated by rotatable bonds, alignments relative to protein) the

ligand can adopt within the binding pocket. At ordinary temperatures, the molecule

conformation is constantly changing. Only a few of these can provide the ideal in-

11



teractions necessary with the protein to produce the required binding affinity. Each

conformation has a potential energy that is related to its intra- and inter-atomic in-

teractions. The probability that the molecule exists in any particular conformation

is exponentially dependent on the potential energy of the conformation according to

the Boltzmann distribution. The most probable conformations are lower in energy,

and thus more likely to be the correct binding pose.22 Identifying and retaining low

energy poses out of the space of infinite poses as we simultaneously optimize the

protein-ligand interaction (via spatial adjustments of a physical pocket model) is a

multiple instance problem. An efficient method of handling this learning complexity

is described in Chapter 3 and Chapters 4 and 5 as we describe its applications to

complex challenges.

Figure 1.4: Supervised learning: A) Usual scenario, B) Multiple instance scenario.21
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1.5 Conclusion

This chapter provided context for our work in protein-ligand affinity modeling. The

need for increased efficiency in the drug development cycle is motivated in Section 1.1.

One step in that cycle where computational methods can be applied to great effect

is in early compound design/lead optimization (Figure 1.1) where accurate modeling

of the driving forces of protein-ligand binding (Section 1.2) become a critical area

in applied research. Here, the game is to accurately predict protein-ligand binding

affinity with a high level of accuracy that can distinguish levels of potency within var-

ious orders of magnitude. Section 1.3 introduced a physics-based approach towards

this challenge, highlighting the complexity and limitations on common systems. Sec-

tion 1.4 introduced machine learning and its applicability in modeling protein-ligand

binding, foreshadowing the heart of the work discussed in the remainder of this disser-

tation. The next chapter will provide more depth in the field of quantitative binding

affinity prediction.
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Chapter 2

Quantitative Binding Affinity

Prediction

2.1 Introduction

Small molecule drug discovery nearly always involves specific non-covalent modulation

of enzymes, receptors, transporters, and ligand-gated ion channels. Toward that end,

the a priori expectation is that if a molecule exhibits its effects against a desired

target at very low concentrations (i.e. that the molecule is potent), it will tend to

exert clinically relevant modulation at that target and few others. This drives a

central need to optimize potency against a desired molecular target.

A medicinal chemistry lead optimization project will typically require design and

synthesis of several hundred to a few thousand small molecules. The design process

seeks to increase or maintain potency (affinity for the desired biological target) while

simultaneously addressing aspects of selectivity, solubility, absorption, distribution,

metabolism, excretion, and toxicity due to undesirable off-target effects. Potency is

just one part of the puzzle, but it is a necessary part, and since it can generally

be measured quickly with in vitro assays, it is the subject of direct optimization.

Strategies to address other properties require making alterations in either the sub-

stituents or basic scaffolding of a chemical series while trying to maintain gains in
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potency, which may be hard-won. The central importance of the affinity of a ligand

for its desired protein target has driven the field of quantitative structure activity

relationship (QSAR) modeling. It has also driven biophysical characterization of pro-

tein ligand binding (typically X-ray crystallography) coupled with physics-oriented

computational means for estimating binding affinities. This chapter will begin with

a discussion of the underlying technology required for exploring molecular binding

behavior. This includes a quantifiable description for molecular similarity and ap-

proaches for conformation and alignment optimization. An in-depth discussion of the

empirical scoring methodology will follow. This chapter will conclude with a discus-

sion of quantitative structure-activity relationships, an introduction to our contribu-

tion in this field, and closing remarks.

2.2 Molecular Similarity

One of the earliest descriptions of the use of molecular shape in relation to the biolog-

ical activity of small molecules was provided by Hopfinger.23 The conceptualization

of shape comparison was based on volume overlap of molecules that were modeled as

collections of spheres. The concept of spherical volume overlap is the foundational

concept of a family of molecular similarity approaches, best exemplified in current

practice by the ROCS approach.24 A separate line of thought characterizes molecu-

lar similarity by surface overlap, and one of the earliest descriptions of this concept

was introduced by Masek et al.25 In that approach, molecules were characterized as

having “skins” of a particular thickness, and the volume of the surface was described

by the difference between a collection of spheres with standard atomic radii and one

of radii made larger by the skin thickness. Similarity was measured based on the

shared skin overlap between two molecules, offering some advantages over volumetric

approaches, for example, when comparing molecules of very different overall sizes.
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The notion of molecular surface comparison is best exemplified by the Surflex-Sim

approach,26 which owes its provenance to the Compass 3D-QSAR approach.6

The fundamental underpinning of widely used 3D molecular similarity approaches

makes use of the approximation that a molecule in a particular pose can be thought

of as a collection of spheres with radii that depend on atomic type and also may have

different chemical properties such as charge or polarity. The fundamental distinctions

among metrics revolve around a basic choice between volume comparison or surface

comparison. The work presented here is founded on surface-based shape comparisons.

2.2.1 Shape Similarity

A surface-based molecular representation provides two appealing aspects. First, in-

teractions between small molecules and proteins occur between surfaces, and there

is a direct relationship between binding free energy and encapsulated hydrophobic

surface area of a ligand. Second, as pointed out by Masek et al. with their molecular

skins approach,25 comparison of molecules with different sizes based on shared volume

maximization can produce odd results (i.e. embedding a small molecule in the mid-

dle of a larger one). While conceptually attractive, the molecular skins approach was

computationally demanding. A different approach to capturing molecular surfaces

was proposed during the development of the Compass 3D QSAR technique.6 A col-

lection of observation points was used from which to measure the minimum distance

to a molecule’s surface, and this distance was compared to a learned ideal distance.

This basic concept was quickly generalized to define a similarity measure that used a

Gaussian reward function.27 Similarity functions of this type correspond very closely

to a surface density function formulation of molecular shape, as follows.

Mi(ri) = e(−(ri−µi)2)/γ (2.1)
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EP
k (rk) = e(−(rk−dk)2)/γ (2.2)

R(r) =

(∑
i

Mi

)(∑
k

EP
k

)
(2.3)

The Mi of Eq. 2.1 are Gaussians with peaks at the atomic surface (set by the

atomic radii, denoted µi). By itself, the sum over the Mi produces internal molec-

ular surfaces in addition to external ones. The EP
k of Eq. 2.2 define Gaussians on

local radial coordinates around each observer point from set P , with peaks at the

molecular surface (set by the minimum distances from the observers to the molecule,

denoted dk). When γ is chosen carefully, the integral of the product of two molecules’

surface density functions R (defined in Eq. 2.3) is very closely approximated by the

morphological similarity function used by Surflex-Sim.26

Figure 2.1 depicts the volumetric and surface density functions for benzamidine.

The molecule benzamidine was placed in a coordinate frame such that the XY

plane bisected the aromatic ring. The surface density function R is depicted, again

with the significant density shown with red shading. The green curves indicate the

relative value of the density functions along the X axis, penetrating two hydrogen

atoms and three aromatic carbons. The surface density function leaves the interior

of the molecule with extremely low values, creating a peaked zone that also shows

smoothing at saddle points.

In the surface density approach (Eq. 2.3), the density function is the product of

two sums, one “lighting up” the surfaces of each atom of a molecule and the other

lighting up the surfaces of spheres packed around the molecule. The product produces

a function that has significantly non-zero values only at points close to the overall

molecular surface, as shown in Figure 2.1. Consider two molecules A and B and one
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Figure 2.1: Surface-based molecular density functions for benzamidine.

set of “observation” points P , giving rise two the following two density functions.

RA(r) =

(∑
i

MA
i

)(∑
k

EP,A
k

)
(2.4)

RB(r) =

(∑
i

MB
i

)(∑
k

EP,B
k

)
(2.5)

Here, the two surface density functions are defined with respect to a single set

of observation points P . The spheres that “pack” around each of the two molecules

A and B share the same centers, but they have different radii, depending on the

minimum distance to each molecular surface. One can define a similarity metric in

terms of the overlap integral of the product of the two surface density functions.
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This function is very closely approximated by the function computed by Surflex-Sim,

simplified slightly in what follows.

SPk (dAk , d
B
k ) = e(−(dAk −dBk )2)/σ (2.6)

SPA,B =
∑
k

SPk (dAk , d
B
k ) (2.7)

Here, the Gaussian terms are soft reward functions for concordance of the dis-

tances from the observer points P measured to the molecule surfaces of A and B

(denoted dAk , d
B
k ). When σ is roughly twice γ from Eqs. 2.1 and 2.2, the equivalence

to the surface overlap integral holds. The intuition behind the metric is simple: when

the minimum distances from each observer to each molecule are similar, the molecules

must exhibit the same surface shape. The morphological similarity function used by

Surflex-Sim26,28 defines an infinite grid of observer points, with weights set such that

a shell of observer points around each molecule subject to a comparison contribute.

In practice, finite observer sets having significant weight are selected, and alignment

optimization is done using the set constructed with respect to the query ligand. Sim-

ilarity scores are reported using that set, another set constructed with respect to the

final aligned new ligand, and a merger of the two.

2.2.2 Electrostatic Similarity

The foregoing has addressed only the molecular shape aspect of 3D molecular sim-

ilarity, but the degree to which the polar moieties of two molecules are congruent

is also important to consider. The surface-based similarity approach of Surflex-Sim

explicitly models hydrogen bond donors and acceptors, formal charges, and the direc-

tionality of polar interactions. All molecule atoms are labeled as being hydrophobic,
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hydrogen bond donors, hydrogen bond acceptors, or formally charged atoms (charge

is automatically delocalized where needed, as in carboxylates). From each observer

point, in addition to computing the distance to the closest atom of any type, which

gives the pure shape of the molecule, distances are also computed to nearest polar

positive atom (this includes donors and atoms assigned positive charge) and polar

negative atom (acceptors and atoms assigned negative charge). For a particular ob-

server point, directionality is treated by comparing the preferred interaction direction

of a polar atom to the vector from that atom’s surface to the observer. The coinci-

dence of these directions is combined with formal charge to yield a strength value.

Similarity from each observer point’s perspective is maximized when both molecules

produce the same distances and strengths. Partial similarity results from, for exam-

ple, a hydrogen bond donor being aligned with the hydrogen of a charged nitrogen.

Figure 2.2 shows the optimal alignment of two competitive muscarinic antagonists

using the full Surflex-Sim function, including both shape and electrostatics. The 2D

structures are shown above the optimal mutual alignment, with the quinuclidine

derivative shown in cyan carbons. On the right shows the individual molecules in the

same pose with atomic surfaces and rods that indicate surface areas that have high

similarity between the two. Green rods indicate high shape similarity, red indicate

high similarity in the hydrogen-bond acceptor position and directional preference, and

blue indicate concordance of the charged amine hydrogen atoms. This is an example

where very high 3D similarity (0.82 on a scale of 0 to 1) obtains from molecules having

different underlying scaffolds.

2.3 Conformation and Alignment Optimization

All 3D similarity methods are dependent on the conformations of the molecules to

be compared, and all in common use are dependent on the particular alignment of
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Figure 2.2: Optimal alignment of two muscarinic antagonists using surface shape and
polarity.

the molecules as well. This property derives from their direct relationship to what

physically makes molecules similar to one another in biological systems. Because

of this, in order to compare a molecule to a single pose of another, a 3D similarity

approach must identify both the conformation and alignment that yields a maximal

similarity value.

Typical drugs and drug-like molecules may have a few rotatable bonds (e.g. as-

pirin, a COX-1/2 inhibitor) but some can have more than ten (e.g. saquinavir, an

HIV protease inhibitor, has thirteen). Methotrexate, an old drug and inhibitor of

dihydrofolate reductase, has nine rotatable bonds, and it has been used frequently

to test search strategies involving conformation and alignment optimization. Even a

very coarse sampling of conformational space of three rotamers per torsion produces

roughly 20,000 conformations. A more generous sampling of six rotamers produces

over ten million conformations. The issue of alignment generates a multiplicative in-
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crease in complexity, because the conformations and alignments must be considered

together. Assuming translational uncertainty of ± 5Å and a sampling requirement of

1Å, sampling of translational and rotational space for a molecule such as methotrex-

ate requires over ten million rigid alignments. Clearly, brute-force enumeration of all

energetically reasonable conformations (with alignments sampled to roughly 1Å) is

not feasible even with a very efficiently computed similarity function. There are two

basic strategies that have been taken for the conformational problem and two for the

alignment problem.

2.3.1 Conformational Optimization

One way to address the conformation question is to search each ligand of interest

independently of any other consideration and to retain some maximal number of

individual conformers. A typical value for the number of retained conformers is

200, allowing for quite complete sampling of molecules with up to five or six rotatable

bonds. This does not provide dense sampling for drug molecules such as methotrexate

or saquinavir, but in applications such as virtual screening of very large libraries, the

speed requirements may necessitate some tradeoffs.

Figure 2.3 illustrates results for agnostic conformation generation. At left, biotin is

shown. It has five rotatable bonds, with two ring conformations of reasonable energy.

The lowest-energy conformation is shown in a “canonical” alignment to the Carte-

sian coordinate system, with the molecular centroid at the origin, the largest radial

excursion parallel to the Y axis, and the largest excursion in the XZ plane rotated to

be within the XY plane. Conformational expansion of biotin, with a maximal sam-

pling of 200 conformers, contains a conformer that is 0.35Å RMSD different from the

conformation of biotin bound to streptavidin (PDB code 1STP). For methotrexate,

the conformational variation is clearly much more significant, particularly in terms
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Figure 2.3: Conformational sampling independent of molecular alignment.

of the different conformers that the tail of the molecule can exhibit. In this case,

the minimum RMSD from a 200 conformer sample is 1.17Å when compared with the

configuration bound to DHFR (PDB code 4DFR). Conformational enumeration of

this type typically takes seconds per molecule, and it need be done only once, offering

the resulting sampled molecular state for further processing for the negligible cost of

retrieving the conformations.

The other approach is to treat the conformational search as part of the overall

similarity optimization procedure, with strategies to identify only those conforma-

tions that are likely to yield good matches to the reference molecule. Such strategies

include divide and conquer approaches that fragment molecules into significantly less

flexible pieces, search those relatively thoroughly, and either incrementally recon-

struct the partial solution or make use of some type of crossover procedure. The idea

is that a molecule with, for example, 11 rotatable bonds may be broken into three

fragments by severing two torsions. If the torsion-breaks are chosen carefully, the

three resulting fragments will each have three rotatable bonds. Coarse sampling of

three such fragments yields less than 100 total conformations (3 × (33)), and more
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thorough sampling produces about 600 (3× (63)). This compares to roughly 200,000

for coarse sampling of the unfragmented molecule. If it is possible to produce rea-

sonable alignments for the conformations that will form part of a close to optimal

solution independently of one another, then such a strategy can be very effective in

identifying high similarity poses. The broken torsions receive their configurations

during a reconstruction process.

The question of whether independence is a good assumption or not is essentially an

empirical one. However, certain molecular types present known difficulties, such as a

molecule with a small central scaffold from which emanate multiple substituents that

can clash with one another. In such a case, independent alignment of the substituents

may lead to incompatible geometries for successful reconstruction of a high similarity

final pose. Crossover procedures that recombine full solutions instead of incrementally

constructing partial solutions can be effective even in these cases. Such procedures

were developed initially for docking,29,30 and they have been adapted for similarity

optimization as well.

2.3.2 Alignment Optimization

Similar to the challenge of conformational optimization, the problem of alignment

falls into fast sampling approaches that attempt to make more clever choices based

on the context of the particular molecules in question.

Figure 2.4 shows a strategy for generating alignments of a conformation of one

molecule A onto a query conformation B. In the example, the query conformation of

biotin (as bound to streptavidin in PDB code 1STP) has been canonically aligned

within the Cartesian frame. In a case where one has a highly similar molecule (here

biotin is shown as the ligand to be aligned) and the conformational sampling is

adequate, simple canonicalization of A can yield a result very close to optimal. Here,
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Figure 2.4: Canonicalization of alignment and sampling thoroughness.

beginning with a randomized initial biotin conformation, sampled agnostically as

described above, each of the conformations is placed in the canonical alignment to

the Cartesian frame. The conformations include the one shown in Figure 2.4, which

is clearly very close to the identity alignment. The alignments are generated without

any computation of or consideration of molecular similarity. In cases of molecules

with highly similar shapes, very limited alignment sampling of a reasonably thorough

conformational sample can produce excellent results very quickly. This requires only

limited evaluation of the similarity function and local optimization in order to produce

close to optimal molecular overlays.

As molecules begin to differ, the major axes may align well, but minor axes may

not line up correctly, in which case generating a flip or a sampled spin around the axis

will help identify high-similarity alignments. Of course, the same principle applies for

the major axis, and vertical flips may also be required. Figure 2.4 shows the systematic

spinning of biotin around its major axis. It may also be necessary to consider the

“flip” of each conformation along its major axis. But as molecules become less similar,

finding close to optimal alignments becomes increasingly challenging. The problem

can be treated generally by choosing some minimal spatial sampling interval and

ensuring that alignments will be generated to cover the chosen density. This can be
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done efficiently by treating a conformation as an elliptical body to be spun around

its long axis and rotated such that its poles mark out a spherical tessellation.

At the right of Figure 2.4, the uniform sampling of major axis rotation and of

axis-direction to sphere tessellation is shown for a single conformation of biotin. In

such a sampling, the “nose” of each conformation of the molecule explores each point

on a uniformly sampled sphere and also spins around its own axis evenly. One further

complication arises with molecules of very different size. An assumption of centroid

correspondence may be very poor, and this can be avoided by additional sampling

(e.g. along the major axis of the molecule to be aligned). One approach to ameliorate

this alignment complexity may involve a coarse sampling within this type of scheme

(e.g. the major and minor axis flips of the canonical alignment).

Another approach for addressing alignment optimization is to make specific choices

of alignments on the basis of the particular conformation or conformational fragment

to be aligned. For example, one can seek to identify matching triplets of points be-

tween a conformation of the molecule to be aligned and the query conformation. By

ensuring that the triangle edge lengths are similar and possibly that the characteris-

tics of the corresponding points themselves are similar, alignments can be produced

quickly by identifying the rigid-body transform that minimizes the least-squares dis-

tance differences between the corresponding triangle vertices. The Surflex-Sim ap-

proach offers both an aggressive “blind” alignment enumeration as well as a proce-

dure that generates alignments by making correspondences between observer points

of each molecule based on conformation-specific information about the molecule being

aligned.
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2.4 Scoring Function Methodology

There are three broad classes of scoring functions in wide use in the molecular docking

field: 1) functions based directly on the theoretical physics that underlie molecular

mechanics force-fields; 2) those based on knowledge of contact preferences and related

to the statistical physics approach that employs potentials of mean force (PMF);

and 3) empirical methods where protein-ligand complexes of known structure and

binding affinity are used to directly estimate the parameters of the scoring function.

An introduction to physics-based methods was provided in Section 1.3. Knowledge-

based methods are based on an idea in classical statistical physics, where one can use

observed distributions of geometries in order to deduce the potential that gave rise to

the observed distribution. These methods are typified by PMF and DrugScore,31,32

with the PMF approach representing an alternative scoring function for DOCK and

other programs. Related work on such potentials has also been influential in protein

folding.33

The work presented here builds on a different approach that makes use of an em-

pirically derived function that relates to the processes driving protein-ligand binding.

Some of the earliest influential work was by Bohm, resulting in the scoring function

used in LUDI.34 The idea is straightforward. Define a function composed of terms

that are related to processes that underlie ∆Gbind, and estimate the function’s pa-

rameters based on experimentally determined protein-ligand complexes with known

affinities. Bohm’s approach had terms for hydrophobic contact, polar interactions,

and entropic fixation costs for loss of torsional, translational, and rotational degrees

of freedom. The scoring function used in Hammerhead and Surflex-Dock borrowed

heavily from the approach of Bohm.35–38
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σ(x, y) = e
−x2

y (2.8)

ω(x) =
1

1 + ex
(2.9)

γ(x) = (min(0, x))2 (2.10)

r =
(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
)1/2 −Ri −Rj (2.11)

d = ω(−n3(bij · vi)(bij · vj) − n10) (2.12)

q = (1 + n11ci)(1 + n11cj) (2.13)

S(r) = l1σ(r + n1, n2) + l2ω(n3(r + n4)) + l3γ(r + n5) (2.14)

P (r) = l4σ(r + n6, n7)(d)(q) + l5ω(n3(r + n8)) + l3γ(r + n9) (2.15)

R(r) = l6σ(r + n12, n13)(d)(q) (2.16)

pKd =
m∑
i=1

n∑
j=1

S(r) +
m∑
i=1

n∑
j=1

P (r) +
m∑
i=1

n∑
j=1

R(r) + (l7nrot) + (l8 log(MW ))

(2.17)

The overall function is parameterized in pKd units and is a combination of Gaus-

sian (σ), sigmoidal (ω), and quadratic (γ) functions of molecular surface distance r.

Surface distances (Eq. 2.11) between atoms are defined using fixed radii for each ele-

ment, with negative values indicating interpenetration. Each atom on the protein and

ligand is labeled as being nonpolar (e.g. the H of a C-H,) or polar (e.g. the H of an

N-H or the O of a C=O), and polar atoms are also assigned a formal charge, if present.

The steric term S (Eq. 2.14) is computed for all pairs of protein-ligand atoms and

offers a Gaussian reward for favorable contact and sigmoidal and quadratic penalties

for interpenetration. The polar term P (Eq. 2.15) is computed for all complementary

pairs of polar protein-ligand atoms, and it has very similar form to the steric term.

Note that the Gaussian reward is scaled by a directional attenuation factor (Eq. 2.12)

and by a charge scaling term (Eq. 2.13). The term for same-charge interactions (Eq.
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Parameter Description Value Parameter Description Value

l1 Steric Gaussian scale 0.0898 n1 Steric Gaussian location 0.1339

l2 Steric sigmoid scale -0.0841 n2 Steric Gaussian spread 0.6213

l3 Steric penetration -0.9450 n3 Sigmoid steepness 10.0000

l4 Polar Gaussian scale 1.2388 n4 Steric sigmoid inflection n1 + o

l5 Polar sigmoid scale -0.1796 n5 Steric VdW allowance 0.1000

l6 Polar repulsion -2.5200 n6 Polar Gaussian location 0.6313

l7 Conf. fixation -0.2137 n7 Polar Gaussian spread 0.3234

l8 Rigid body fixation -1.0406 n8 Polar sigmoid inflection n6 + o

n9 Polar WdW offset 0.7000

o Repulsion offset 0.4880 n10 Polar directionality inflection 0.6139

n11 Charge scale factor 0.5000

n12 Polar rep. Gaussian location 0.5010

n13 Polar rep. Gaussian spread 0.5000

Table 2.1: Summary of scoring function terms in Surflex-Dock.35,37,38

2.16) is computed for non-complementary pairs of protein-ligand atoms. The inter-

penetration portions of the steric and polar terms are also computed for intra-ligand

atom pairs that are not 1-2 or 1-3 related and have at least one intervening rotatable

bond. The final overall score (Eq. 2.17) includes terms for conformational entropy

loss and translational and rotational energy loss. Table 2.1 gives the values of the

linear and non-linear parameters for the standard Surflex-Dock scoring function.

The original scoring function35 was parameterized using only positive training

data, which resulted in very low values for repulsive terms (hard clashes are not typical

features of good protein-ligand interactions). Consequently, and ad hoc treatment

of the parameters for clashes was used. Subsequent work introduced the idea of

synthetic negative data,37 where decoy molecules that showed inappropriately high

scores were used to estimate values for the repulsive terms, thereby producing the

values shown in Table 2.1. The italicized values in the table are constants, so there
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are a total of 17 real-valued parameters required for the specification of the Surflex-

Dock scoring function. The full multiple-instance estimation regime can be used to

tune the Surflex-Dock scoring function for particular targets or families of targets38

using information that includes complexes with known affinities, protein targets with

known binders and decoys thought not to bind, and also protein-ligand complexes

with known cognate ligand geometry and decoy cognate ligand poses. Figure 2.5

shows plots of the hydrophobic term and the polar term for a hydrogen bond (left).

The hydrophobic term (bottom curve, solid line) yields approximately 0.1 pKd units

per ideal hydrophobic atom/atom contact. The top curve (dashed line) shows that

a perfect hydrogen bond yields about 1.2 pKd units and has a peak corresponding

to 1.97Åfrom the center of a donor proton to the center of an acceptor oxygen. The

value was learned based entirely on the empirical data and corresponds closely to the

expected range.
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Figure 2.5: Surflex-Dock primary scoring function terms (left) with the polar term
compared to a naive physics treatment (right).

Despite the large difference in the value of a single hydrophobic contact versus a

single polar contact, the hydrophobic term accounts for a larger total proportion of
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ligand binding energy on average. This is because there are many more hydrophobic

contacts than polar contacts in a typical protein-ligand interaction. This comports

well with the understanding that the hydrophobic effect tends to dominate protein-

ligand binding. Note that while it may be intuitive to simply equate the empirically

derived steric scoring term with the purely enthalpic Lennard-Jones term, the param-

eters shaping the empirical term have been learned in a regime that tries to estimate

∆Gbind. So, the shape and weighting reflect the fact that, for example, a protein-

ligand hydrophobic contact implicitly suggests the displacement of water.

The preceding discussions of molecular similarity, conformation and alignment

optimization, and scoring molecular interactions has introduced the technological

framework that has given way to various avenues of computer-aided research that

include molecular docking, ligand-based morphological screening, and (relevant to the

work presented in this dissertation) quantitative binding affinity prediction to name

a few. The following section will discuss quantitative structure-activity relationships,

and introduce our contributions to this field and what remains to be the core work

of this dissertation.

2.5 Quantitative Structure-Activity Relationships

Quantitative Structure-Activity Relationships (QSAR) is a technique used for quan-

titatively predicting the interaction between a molecule and binding region of a spe-

cific target. A medicinal chemistry lead optimization project will typically require

design and synthesis of several hundred to a few thousand small molecules. The de-

sign process seeks to increase or maintain potency (affinity for the desired biological

target) while simultaneously addressing aspects of selectivity, solubility, absorption,

distribution, metabolism, excretion, and toxicity due to undesirable off-target effects.

Potency is just one part of the puzzle, but it is a important part, and since it can
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generally be measured quickly with in vitro assays, it is the subject of direct optimiza-

tion. Strategies to address other properties require making alterations in either the

substituents or basic scaffolding of a chemical series while trying to maintain gains in

potency, which in many cases presents a significant challenge. The central importance

of the affinity of a ligand for its desired protein target has driven the field of QSAR

modeling.

The ligand-based form of the prediction problem is illustrated in Figure 2.6 (left)

with a typical series of highly-related analogs, where discrete substitutions at each of

a small number of positions on a central scaffold are to be explored. The most widely

used methods for addressing the affinity prediction problem are easy to apply in such

cases. These methods require a user to provide a three-dimensional alignment of a sin-

gle conformation of each training and test ligand. For such methods, alignments are

typically made using a core ring system and by choosing a single low-energy confor-

mation for each molecule. Given such series of molecules, modeling approaches may

be employed that amount to regression analyses of correlations between substituent

changes and binding affinity.

Figure 2.6 (right) also shows a more realistic example, where ligands from different

chemical series form both the training and testing sets. The top row of compounds

are muscarinic antagonists: atropine, azatadine, and oxybutynin. These pre-dated

a lead optimization project that involved chemical series exemplified by structures

from the bottom six compounds. This case represents the norm in drug discovery,

where multiple chemical series have known biological activity and multiple series are

under active optimization. In these cases, it is not possible to treat the prediction

problem by considering discrete substituents on a common scaffold. There are four

critical challenges: 1) choice of the relative alignments and bioactive conformations

of ligands (poses) is necessary, but the correspondence of parts between series may

32



QSAR Case: Realistic Case:

pKi = 8.2

QSAR Case:
Training Molecules

Kd = 5 nM

Realistic Case:
Training Molecules

OH
O

N

el M
od

el

O

O

In
du

ce
 a
 M

od

In
du

ce
 a
 M

N O

67nM13nM

Kd = 980 nM

pKi = 4.0
Activity 
Model

Activity 
Model

Predicted 

Kd  980 nM

O

S
O

O

H2N

N
H

N N
H

NN

O

Predicted Activity: 7.8
Experimental:         7.2

New Molecule

Activity?

New Molecules

Figure 2.6: A typical case of a congeneric series that can be modeled using com-
mon QSAR approaches (left) contrasted with what is seen in practice during a lead
optimization project (right).

not be obvious, and the conformations may not be near global energetic minima;

2) the combined effects of substituents may not be additive; 3) changes in ligand

structures induce changes in ligand pose relative to a binding pocket; and 4) molecular

activity may depend upon the detailed shape of the binding pocket cavity and the

complementarity between pocket and ligand.

Most QSAR approaches derive a mathematical relationship between molecular

descriptors and activity that is often only tangentially related to the physical pro-

cess of ligand binding. The most widely used methods for activity prediction include

field-based approaches such as CoMFA (and variants such as CoMSIA and Topomer
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CoMFA),39–41 pharmacophoric approaches (e.g. Catalyst and Phase),29,42–45 and

descriptor-based approaches.46 These approaches do not meet the four challenges.

CoMFA and related methods have three serious limitations. First, they assume

fixed alignments that either ignore the effects of substitutions or the potential for

the modeled site to influence a ligand’s pose. Second, they assume that the effects

of multiple substitutions will be additive. Third, they offer no means by which to

choose molecular pose based on the modeled binding site. Pharmacophoric methods,

while addressing aspects of pose choice and of the influence of an activity model on

pose, do not provide models of activity model the effects of the detailed shape of

a protein binding pocket. The descriptor-based approaches, as a class, move quite

far from physical reality, relying upon correlations between potentially hundreds of

descriptors (typically not dependent on molecular pose) and activities. The field of

QSAR was the subject of an incisive critique by Stephen Johnson, who suggested

that the correlation/causation logical fallacy has been responsible for a great deal of

the disappointment in real-world accuracy of QSAR predictions.47

Methods such as CoMFA can have utility in organizing and rationalizing large

quantities of structure-activity data, but only in cases where ligands share a com-

mon scaffold, ligand poses change relatively little with substitutions, the effects of

substitutions are close to additive most of the time, and where the substituents offer

limited flexibility. Within a limited domain of applicability, such models can also be

predictive enough to help facilitate design. Pharmacophoric methods can be of use

in helping deduce relative poses of ligands with different scaffolds, but they cannot

effectively model the very common case where specific shapes of hydrophobic sub-

stituents have a large impact on binding affinity. They also are relatively stronger in

identifying positive aspects responsible for ligand binding compared with identifying

and representing negative aspects responsible for non-binding.
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Figure 2.7 shows an illustration of the interplay between pocket shape, molecular

alignment, and activity. The central scaffold (left), with the unsubstituted furan,

is substantially improved by adding a phenyl or by changing to a benzofuran (top

and bottom). The compound that combines the two modifications is less potent than

either of the parent compounds. A very simple explanation for this is that the binding

cavity is simply too small to accommodate both large substituents at the same time.

In the general case, additivity should not be expected. Changes in the substituents on

a scaffold generally lead to changes in the preferred alignment of the scaffold relative

to the binding pocket. If two substituents disagree as to the preference in geometry

of the central scaffold, the effects of making a compound with both substituents will

not be the sum of the changes in energy of each individually. Nominally, this is a case

where standard QSAR approaches can be applied, owing to the common underlying

scaffold. However, the most common approaches assume linear additivity of either the

effects of substituents or descriptors. Here, the combination of the two substituents

from the middle pair of ligands, each of which contributes to a significant potency gain

separately, together yield worse potency when combined. If the example is discretized

such that the threshold for active is 100nM, the problem is exactly isomorphic to the

XOR problem. In the late 1960s, Marvin Minsky and Seymour Papert48 used this

example to successfully discredit the subfield of machine learning that relied upon

linear network models (principally the perceptron approach49).

The broad field of QSAR is populated with approaches that rely upon correlations

between descriptors and activities that are not based on a physically realistic repre-

sentation of the protein ligand binding process. When such approaches work, they do

so within a narrow domain of applicability. The centrality of ligand potency in drug

design, coupled with clear physical requirements for models to address, argues for a

methodology that closely resembles the protein-ligand binding processes.
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Figure 2.7: The QSAR problem is isomorphic to the XOR problem.

Founded on previous extensive work in surface-based molecular similarity,26,28,50–53

flexible molecular docking,30,35–38,54–56 and multiple-instance learning,6,27,35,37,38,57,58

we have developed an approach to affinity prediction59–61 that addresses all four of the

theoretical challenges listed above. We call the approach Surflex-QMOD (“Quantita-

tive Modeling” built within the Surflex computational platform), or just QMOD. The

QMOD approach builds on the earlier Compass approach, which offered solutions to

both the pose problem and the detailed shape problem.6,27,57 However, the models

themselves were mathematically abstract and could be physically unrealizable, lead-

ing to difficulties in interpretation and visualization. The Compass work introduced

the idea of multiple-instance machine-learning. This specifically supported derivation

of a virtual binding pocket at the same time as the precise relative poses of training

ligands were identified. The process iterated between model refinement and pose re-

finement, where the model itself was used to choose the poses. The QMOD approach

deviates from Compass by constructing physical models that are directly analogous

to protein binding pockets.

The QMOD approach transforms the QSAR problem into one of physical binding
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pocket construction coupled to a fitting process that is similar to molecular docking.

By inducing a physical pocket, we naturally obtain the dependence of ligand pose

on its structure, non-additivity of substituent activity, and models that reflect the

physical complexities and mechanistic behavior of true protein binding pockets. The

result is a binding site composed of molecular fragments that can be treated as a target

for molecular docking. The binding site model consists of molecular fragments that

can account for multiple positions of protein residues. It is not a literal reconstruction

of a single configuration of protein residues. New molecules are docked directly into

the binding site, with their highest scoring poses serving as the prediction of binding

geometry and the corresponding score being the predicted affinity. In deriving a

virtual binding pocket at the same time as we identify the relative poses of ligands,

the key analogy is that one can treat a computational model of a binding site as one

treats a protein binding pocket. We seek the optimal fit of ligands into the binding

site. One begins with a guess as to the initial alignment of ligands and then constructs

a model of activity that depends on the ligands poses. The model can be thought

of as a virtual receptor. Next, poses are explored for each ligand that optimize their

interaction with the virtual receptor. The virtual receptor is refined, making use of

the new ligand poses, and the process iterates between pose refinement and virtual

receptor refinement. As the virtual receptor evolves, the changes in ligand scores

due to pose optimization decrease. When the iterative process converges, the final

poses of the ligands are optimal with respect to the final virtual receptor. The virtual

binding pockets constructed are called pocket models or pocketmols for short. Figure

2.8 illustrates the key concepts involved in model construction. Transformation of the

QSAR problem into one of pocket construction and ligand fitting directly addresses

the four central challenges in a manner that is unique to the QMOD approach within

the QSAR field.
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Figure 2.8: The QMOD approach takes structure-activity data and produces a phys-
ical model of a binding pocket, to which new ligands can be docked and scored for
predictions of both affinity and bound pose.

2.6 Conclusion

The theoretical basis for protein-ligand binding is well understood, but it does not lend

itself easily to direct computational simulation that is practical for binding affinity

predictions. The challenges of quantifying predictions of ligand binding affinity has

many forms. Considerations of molecular representations, conformation and align-

ment variation, and complexities related to scoring molecular interactions serve as

foundational concepts that must be addressed. In this chapter we have introduced

our approach to ligand affinity prediction that addresses the major theoretical chal-

lenges facing the field of QSAR. The QMOD approach functions by constructing phys-

ical models that are directly analogous to protein binding pockets. New molecules

are flexibly fit directly into the virtual binding site, with their highest scoring poses

serving as the prediction of binding geometry and the corresponding score being the

predicted affinity. The QMOD methodology forms the core of the work presented in

this dissertation, and will be discussed in detail in the following chapters.
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Chapter 3

Quantitative Modeling of a Protein

Binding Pocket

3.1 Abstract

Computational methods for predicting ligand affinity where no protein structure is

known generally takes the form of regression analysis based on molecular features that

have only a tangential relationship to a protein-ligand binding event. Such methods

have limited utility when structural variation moves beyond a congeneric series or

when significant ligand structural novelty plays a hand in molecular design strategies.

The focus of this dissertation is centered on developing a novel approach based on

the multiple-instance learning, where a physical model of a binding site is induced

from ligands and their corresponding activity data. This method is call Quantitative

Modeling (QMOD). This multiple-instance learning approach was adopted by the

previously established Compass method for ligand affinity prediction. A QMOD

model consists of molecular fragments that can account for multiple positions of

literal protein residues. In this work we demonstrate the applicability of this method

on DNA Gyrase ligands by training on a series with limited scaffold variation and

testing on numerous ligands with variant scaffolds. Predictive error was between 0.5

and 1.0 log units (0.7-1.4 kcal/mol), with statistically significant rank correlations.
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Accurate activity predictions of novel ligands were demonstrated using a validation

approach where a small number of ligands of limited structural variation known at

a fixed time point were used to make predictions on a blind test set of molecules

discovered at later time point.

3.2 Introduction

All of the molecules used in this chapter were taken from a lead optimization pro-

gram conducted at Vertex Pharmaceuticals. This program involved the optimization

of benzimidazole based inhibitors of the bacterial gyrase heterotetramer.62 The se-

ries used in this study consisted of 426 compounds. The sequence of synthesis and

binding activities (pKi units) for all of the molecules were known a priori. The data

set was organized in temporal batches with the first 39 ligands used for model in-

duction and subsequent batches organized in groups of 50 molecules. This chapter

will focus the basic method for binding pocket model induction and touch on test

results for the temporal window of molecules immediately following the training lig-

ands used for model induction. The enzyme target is a type II topoisomerase that

alters chromosome structure through modification of double stranded DNA. Antibac-

terials such as the fluoroquinolones target the non-ATP catalytic sites of gyrase. In

contrast, the benzimidazole inhibitors were discovered in a high-throughput ATPase

assay of the GyrB subunit. These were then optimized for activity against the ATP-

binding site of GyrB, with an eye toward activity against the ATP site of the ParE

subunit (topoisomerase IV) as well. Both of these subunits are responsible for sup-

plying energy for catalysis. In the present study, only activity data from GyrB assays

were used for modeling and compound selection. Figure 3.1 shows typical examples

of structures and GyrB activities from the initial training set. The position 2 sub-

stituents of all inhibitors used in this study were either alkyl-urea (e.g. compound 1)
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or alkyl-carbamate (e.g. 4). Structural exploration was predominated by variation in

the position 5 substituent of the benzimidazole, with some substitutions also being

made at other positions on the central scaffold (especially position 7). The content

presented here is in part discussed in our recent publication in the the Journal of

Medicinal Chemistry (Varela/Jain61).

Figure 3.1: Examples of gyrase ligands in the initial training set, which contained the
first 39 made from a total of 426 gyrase inhibitors (both pKi and synthetic sequence
number are given). Training molecule activities ranged from a pKi of 8.2 to 4.7. The
3 most active compounds of the training set (boxed) were used to generate the initial
alignment hypotheses.
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3.3 Methods

3.3.1 Modeling Procedure

The core computational methods for molecular alignment based upon molecular sim-

ilarity was presented in Section 2.2 and 2.3 and has been reported in previous papers

(26,28) and will be described only briefly here. The methods for binding site model

induction will be presented in detail. Figure 3.2 shows an example of the steps in-

volved during model induction. Overall, there are six steps to construct and employ

a physical binding pocket for activity prediction (a pocketmol):

A) Generation of an initial alignment hypothesis

Input: structures of the two or three most active training ligands

Output: a mutual alignment that maximizes the overall three-dimensional

similarity while minimizing the overall volume

B) Generation of an initial pool of ligand poses

Input: initial alignment hypothesis

Output: 100-200 alignments for each training ligand are produced

C) Generation of an initial set of molecular probes to form the binding pocket

Input: pool of poses for each active training ligand

Output: a large set of molecular probes surrounding the ligands, where

each probe makes a near-optimal interaction with at least one active lig-

ands pose

D) Selection of an optimal minimal pocket model based on fit to the experimental

binding data and model parsimony

42



Input: the ligand pose pool from step B, the dense set of probes from

step C, and activity values for each ligand specified as exact values or

inequalities

Output: an optimal set of probes such that nominal interaction scores

against this set lie within a specified accuracy

E) Refinement of the pocket model by modifying probe positions interleaved with

refining ligand poses

Input: the initial pocketmol from step D, the training ligand pose pool,

and the molecular activities

Output: a refined pocketmol with refined ligand poses such that further lo-

cal optimization of ligand poses against the pocketmol yields little change

in scores and where the final scores are close to the experimentally mea-

sured ones

F) Testing of new putative ligands within the pocket model

Input: a new molecular structure, the final pocket model, and a selection

of training molecules for use in alignment generation

Output: predicted score and pose alternatives for the new ligand using a

procedure analogous to docking ligands into a protein active site

The following several paragraphs describe in detail the algorithms and computa-

tional procedures used for model building and testing.

3.3.1.1 Ligand Alignment Hypothesis

The initial alignment of training ligands proceeds in two stages. First, a small number

of molecules (usually two or three) are selected from which to build an alignment
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Figure 3.2: Derivation and testing of a QMOD pocketmol proceeds in six automated
steps: A) an alignment seed hypothesis is constructed from 2-3 ligands; B) 100-200
alignments for each training ligand are produced; C) a large set of probes (many
thousands) are created where interactions may exist; D) a small near-optimal set is
selected based on fit to experimental binding data and model parsimony; E) probe
positions and ligand poses are refined iteratively; F) new molecules are tested by
flexible fitting into the pocket to optimize score. The final pocketmol is used in a
fixed configuration, but conformational flexibility within the corresponding protein
pocket is represented by probes being places in multiple positions.

hypothesis. The methods used for this procedure have been described in previous

papers and consist of the morphological similarity algorithm26 along with the ligand-

based structural hypothesis algorithm that depends upon it.28 The former is a method

to compute molecular surface similarity (both shape and polar aspects) between two
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molecules along with algorithms to enable rapid optimization of conformation and

alignment of molecule onto a specific pose of another. The latter uses this procedure

in order to produce a joint superimposition of multiple ligands that simultaneously

maximizes mutual similarity while minimizing overall volume. Previous in our work in

our lab has shown that such superimpositions can yield biologically relevant relative

poses and that such joint superimpositions can be used effectively as surrogates for

protein structures in virtual screening, even in cases where molecular flexibility is

substantial.(Cleves2006,Cleves2008,Jain2000,Jain2004a) Note that it is also possible

to select protonation and tautomeric states in this procedure if they are ambiguous.

Figure 3.3 shows the highest-scoring alignment hypothesis of the boxed pair of

ligands from Figure 3.1, which served as the seed alignment for the model induction

process.

The benzimidazole central scaffold and adjacent urea are in tight alignment, with

the pyrimdine rings all aligned such that common polar moieties towards the top of

the ligands could interact with a common putative hydrogen bond donor near the

cyclic nitrogens or adjacent oxygens. Figure 3.4 depicts the quantitative differences

and similarities between these three molecules as computed by the morphological

similarity method. The differences include the lack of a donor attached towards the

top of the pyrimidine ring of ligand 3, and an additional steric envelope derived from

the tert-butyl on molecule 2 compared to 1 and 3. The depiction of the similarities

shows strong surface concordance over the entire ligands.

The similarity function makes use of observer points (small spheres surrounding

each molecule) in order to compare molecular surfaces. In the optimized alignments,

the differences are very minor, resulting in a similarity of 0.86 (scale of 0-1) between

molecules 1 and 2, 0.83 between 1 and 3, and 0.78 between 2 and 3. These small

differences manifest as rods in the upper panels, with length proportional to the
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Figure 3.3: The highest scoring mutual alignment of molecule 1, 2, and 3 is shown,
with the panel at right being the view from the side of the panel at the left. The pro-
cedure seeks to maximize joint molecular similarity while minimizing overall volume.
The procedure is able to identify joint poses where the steric envelopes are remarkably
similar, with the benzimidazole-urea and pyrimidine substructures tightly aligned and
the carboxylate and ester oxygens of 1 and 2 being able to accept hydrogen bonds
from the same part of space.

magnitude of the difference. Panel A shows the difference and similarities of molecule

1 and 2. The gray rods indicate steric differences. The longer gray rods stem from the

protrusion of the tert-butyl group on 2 relative to 1 at the top of panel A. The surface

of molecule 1 is shown in grey skin, and 2 is shown in green skin. Panel B shows

the differences between 1 and 3. The blue rods indicate differences due to positive

polar moieties. The longer blue rods are due to a missing hydrogen bond donor

on 3 where 1 has a protonated amine. Red rods highlight differences in negative

polar moieties. Long red rods are due to missing hydrogen bond acceptor group

46



on 3 relative to the carboxylate on 1. The other differences are minor. Difference

between molecule 2 and 3 highlight both steric and polar differences towards the top

of the molecule alignments (not shown). The bottom panels illustrate similarity of the

surface of 1 and 2 in A, and 1 and 3 in B. Green rods indicating high shape similarity,

red indicating high similarity for negative polar moieties, and blue indicating high

similarity for positive polar moieties.

3.3.1.2 Ligand Pose Sampling

This initial alignment hypothesis serves as a template for generation of multiple al-

ternative poses for all training ligands. Since the similarity computation makes no

use of activity data and since the relative importance of specific molecular features

is not known a priori, the gross balance of the importance of shape vs polar char-

acteristics is also not known. The learning paradigm chooses ligand poses as the

model of activity is developed, so the issue at the outset is to have a pool of poses

for each training ligand that covers the reasonable possibilities. The procedure aligns

each training ligand to each of the molecules in the seed hypothesis, using M differ-

ent weightings of the relative strength of polar versus steric surface features (default

weightings: 1.0 and 0.1). For each training ligand, N poses are generated (default

100), which include the N /M highest joint similarity values to the alignment seed

hypothesis for each of the M different weighting choices. We have shown previously

that the numerical scores of joint similarity to an alignment hypothesis is effective in

virtual screening. (REFS 35,28) This amounts to a distinction between ligands with

measurable activity (roughly pKd ¿ 6.0) and nonligands (roughly pKd ¡ 4.0) that is

sufficiently quantitative to yield an enrichment of active compounds at the top of a

ranked list.

The poses generated in this manner do provide an adequate pool from which to
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Figure 3.4: The similarity function makes use of observer points (small spheres sur-
rounding each molecule) in order to compare molecular surfaces. In the optimized
alignments, the differences are very minor, resulting in a similarity of 0.86 (scale of
0-1) between molecules 1 and 2, 0.83 between 1 and 3, and 0.78 between 2 and 3.
These small differences manifest as rods in the upper panels, with length proportional
to the magnitude of the difference. Panel A shows the difference and similarities of
molecule 1 and 2. The gray rods indicate steric differences. The surface of molecule
1 is shown in grey skin, and 2 is shown in green skin. Panel B shows the differences
between 1 and 3. The blue rods indicate differences due to positive polar moieties.
Difference between molecule 2 and 3 highlight both steric and polar differences to-
wards the top of the molecule alignments (not shown). The bottom views illustrate
similarity of the surface of 1 and 2 in A, and 1 and 3 in B. Green rods indicating
high shape similarity, red indicating high similarity for negative polar moieties, and
blue indicating high similarity for positive polar moieties.
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derive a more detailed model of activity. Note that when model construction begins, a

particular ligand may have very different alternative poses in the initial pool. Figure

3.5 shows the alignments of training ligands arising from different weights for polar

surface features for molecule 5. For molecules X and Y, the optimal alignments under

the different weightings were very similar to one another.

Figure 3.5: Ligand pose sampling is carried out at two polar weightings: 0.1 and 1.0.
Shown in cyan is the hypothesis alignment of molecule 2. Hypothesis molecules 1 and
3 were also used during initial alignment (not shown here for visual simplicity). In
atom-colored sticks are the poses sampled for molecule 5 during initial alignment. At
left shows a fraction of the poses sampled for molecule 5 at polar weighting 0.1. At
center shows a fraction of the poses sampled for molecule 5 at polar weighting 1.0. At
right shows the entire pool of poses generated during initial alignment of molecule 5.
Higher polar weighting produces pose samples sharing higher polar concordance near
the carboxylate ester near the top of molecules 2 and 5, while lower polar weighting
enables sampling of slightly more discordant alignments in this example. The union
of poses resulting from both alignment strategies is used in learning.
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3.3.1.3 Probe Generation

Our procedure must accommodate a multiplicity of choices for what the ultimate

pocket will look like. In general, we should expect that multiple solutions are possible,

all of which may yield equally good fits to the training data. Our approach is to

generate a large number of potential probe positions, any of which may be selected

and refined in subsequent steps of the procedure. Figure 3.6 illustrates the procedure.

We choose a single pose for each active training ligand (defined here as those ligands

with pKi > 6.0) using the highest scoring alignment from the polar surface feature

weighting of 1.0 (Figure 3.5). For each ligand, we tessellate its surface using probes of

three types: hydrophobic (methane), donor (N-H), and acceptor (C=O). These probes

are precisely those used in the Surflex-Dock “protomol” approach for characterizing

protein cavities.28 As in that approach, the probes are subjected to local optimization

using the Surflex-Dock inter-molecular scoring function, and probes having high scores

are retained unless they are redundant with another probe that has already been

accepted. Figure 3.6 shows the resulting probes (with the methane probes devoid of

hydrogen atoms for clarity) along with the hypothesis alignments of 1, 2, and 3. The

positions of the probes represent reasonable possibilities as to where an interaction

from a pocket may lie, but they are too numerous to form a reasonable pocket in a

physical sense.

3.3.1.4 Pocket Model Initialization

At this point, we have a pool of poses for each training ligand, both active and inactive,

as well as a pool of pocketmol probes. Thus far, activity information has been used

only minimally (e.g., by using only the active ligands for probe generation). To select

a small set of probes that makes use of the activity data, both active and inactive

ligands in the training set are used. We construct a matrix of scores between a pose for
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Figure 3.6: The initial alignments of active ligands are used to produce a large number
of molecular probes that interact well with at least one pose of one active ligand (panel
B, with hydrophobic probes shown without hydrogens for clarity). Panel A shows the
initial ligand alignment of the training molecules. Panel B shows the initial probe
superset (atom-color) in comparison to the hypothesis alignments (cyan) used for
seeding the initial alignment.

each ligand and each of the pocket probes generated. Given such a matrix, selection of

a subset of probes that yields scores close to experimental activities can be treated as

an optimal search programming problem, since the predicted activity for a molecule

is simply the sum of its scores against a set of chosen probes. To accomplish this task

we designed a search procedure that function like a genetic search algorithm (GA),

that selects a minimal subset of probes that yields a cumulative interaction score with

each ligand such that the mean-squared-error (MSE) among all the training ligands is

within 0.05 log units of the experimentally measured activity. This approach enables
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full consideration of the multiplicity of poses for each ligand while probes in a manner

that is agnostic of the number and types of probes selected. The procedure accepts

as input the ligand pose pool and dense set of probes from the preceding initialization

steps along with the binding activity for each training ligand. The procedure creates

an initial population of randomly selected probe subsets (individuals). Every probe

subsets is evaluated and the fraction of individuals yielding the best (lowest) MSE

are retained for reproduction of progeny subsets. Progeny reproduction involves the

random selection of pairs of retained individuals followed by a stochastic combination

process that produces a progeny probe subset containing inherited probe selection

from both parents. The selection and reproduction process is repeated until a probe

set yielding a MSE within 0.05 log units is found or until a predetermined maximum

number of progeny generations have been explored. Figure 3.7 shows a schematic of

the genetic algorithm search procedure used for probe initialization.

We also introduce methodological enhancements to the model construction pro-

cedure that includes multiple biases beyond fidelity to experimental activity values.

For the purposes of denovo model induction described in this chapter, the biases in-

clude a measure of model parsimony and conservation of the pocket model size. The

conservation bias is a linearly-scaled penalty corresponding to the number of probes

present in an evolving model. A model with fewer probes is favored than otherwise.

Model parsimony is described by similarly active training ligands adopting similar

binding poses. Given molecules with similar activity, a parsimonious model is one

that explains their binding in geometrically similar ways. The quantitative measure

of parsimony is formulated as a weighted sum of pair-wise similarities of all final lig-

and poses, where molecule pairs with similar activity receive higher weight than those

with different activity values. Figure 3.8 shows an example of similarily active ligands

represented by a parsimonious model versus a non-parsimonious model. The parsi-

monious representation provides a physically concordant depiction of how molecules
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Figure 3.7: The probe initialization search procedure functions like a genetic algo-
rithm, that selects a minimal subset of probes that yields a cumulative interaction
score with each ligand such that the mean-squared-error among all the training lig-
ands is within 0.05 log units of the experimentally measured activities.

X and Y may be geometrically similar in their respective bioactive poses.

The resulting small set of probes is shown with thick sticks with skin in figure 3.9.

This parsimonious set of probes captures the key interactions that have been described

in previous studies of the design and optimization of benzimidazole inhibitors with the

GyrB ATP binding pocket (e.g., ref Charifson et al.62). Pocket probes complementing

the h-bond acceptor, donor, and multiple hydrophobic elements were automatically

selected on the basis of the requirement to match the activity pattern of the molecules.

The small set of selected probes leaves large gaps in the pocket surface, so the search

proceeds in a 3-step process that searches for an optimal probe subset, followed by
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Figure 3.8: Poses of similarly active training ligand exhibiting contrasting levels of
model parsimony. Panels A and B show the results of ligand poses derived with and
without parsimony consideration during probe initialization. Panel A shows the poses
of molecules 1 and 2 derived from an initial probe/model search with the parsimony
bias turned off. Panel B shows a contrasting view of molecules 1 and 2 produced from
model initialization with the parsimony bias turned on. When parsimony was turned
on, the search procedure favored poses that were highly geometrically concordant, as
can be observed with the correspondence between the amines and oxygens located
on the carboxylate and ester in panel B. A disconcordant representation of these
functional groups were observed when parsimony was turned off as seen in panel A.

a quick refinement step that refines the positions and orientations of the probes and

poses relative to one another, followed by an additional search that uses the partially

refined probes and pose pool to form the bases of the final search. This requirement

is a consequence of using the multiple-instance learning approach. Since ligand poses

will change in order to optimize activity relative to the model, overly sparse models

allow too much freedom in alignment adaptation. For example, a ligand that is

inactive because of a large steric protrusion can adapt to occupy empty space with its

extra bulk. To allow the model freedom to cover all parts of space surrounding the
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training molecules, probes are added back from the larger pool iteratively, including

new probes not near any existing ones. In this work, the tolerances for nearness were

3.5 for hydrophobic probes and 2.0 for polar probes, measured using RMSD in Å.

The add back search employs an additional search bias that favors the preservation of

probes provided as a search template, in this case the partially refined probes from the

initial probe search. Figure 3.9B shows the resulting probe set after partial refinement

and search. Notice the probe subset derived after quick refinement provides better

overall coverage of training molecule 1 while maintaining key polar interactions with

the urea towards the lower region of the molecule and preserving key polar interactions

with the carboxylate and pyrimidine nitrogens towards the head of the ligand.

3.3.1.5 Pocket Model Refinement

At this point in the procedure, there exists a pool of poses for each training ligand

and an initial pocket model consisting of donor, acceptor, and hydrophobic probes

(26 total in the gyrase case). The problem now involves local optimization of both the

probes and the ligand poses. The goal is a binding site model in which the computed

activity is close to experimentally measured activity (while allowing for ligands to

optimize their poses within the model). Probe position and orientations are optimized

in order to minimize the mean-squared error (MSE) of computed vs actual activity

across all ligands. A steepest descent procedure is employed based on the gradient of

the MSE with respect to probe positions. Activity is computed for each molecule using

the Surflex-Dock scoring function.35,63,64 A single step of gradient descent requires

computation of the change in MSE across all ligands with respect to probe position

and orientation for each probe in the pocketmol. This gradient computation is made

using the maximally scoring pose for each ligand, where the procedure maintains a

set of the poses of each ligand explored during model refinement (this is called the
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Figure 3.9: The QMOD probe initialization search procedure identifies an optimal
subset of probes that fits the ligand binding data. The search procedure is carried
out in a three-step process that involves an initial probe search, followed by a quick
refinement step, and completed with an additional probe search using the partially
refined probe subset as a search seed. A) The subset of probes that optimally fits
the training ligand binding data. B) The probe subset derived after quick refinement
followed by an additional probe search using the the partially refined probe positions
from A and an augmented pose pool that includes partially refined ligand poses.

pose cache). Gradient steps for the probes are made simultaneously for all probes,

using a step size that ensures small movements (less than 0.1 Å).

After 100 steps of gradient optimization of probe positions (or if the computed

MSE is less than 0.05), the positions are fixed as the current model. Then by use

of the current model, each of the ligands pose caches are optimized. Poses for each

ligand are subjected to all-atom optimization to maximize the Surflex-Dock scoring

function. Note that the scoring function contains both inter-molecular and intra-
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molecular terms, so ligand internal strain is quantitatively traded for interaction with

the binding pocket. This iterative process is repeated (probe position optimization

followed by ligand pose optimization). During initial learning, the scores of the ligands

change substantially during pose cache optimization. In cases where the learning

procedure converges, as the learning progresses, these changes decrease in magnitude,

and the overall MSE reaches a plateau. The process terminates when the MSE based

on ligand scores (after pose cache updating) is less than 0.05. A maximum of 50

rounds of probe and ligand optimization are used. Figure 3.10 shows the final pocket

model (atom-colored sticks) along with the initial probe positions (blue). The changes

in this example were very subtle, with the most significant rearrangements being in

the positions of the acceptor probes that interact with the pyrimidine nitrogens and

nearby amine (see discussion for Figure 3.9) of the training ligands. The refinement

procedure takes a few hours on standard desktop hardware and is the lengthiest step

in the overall process.

3.3.2 New Ligand Binding Affinity Prediction

New ligands are flexibly fit into the final pocket model and are scored as if it were a

protein binding site. The scoring procedure enables the direct use of training ligand

poses to help guide the alignment of test ligands, which results in more reliable pose

generation at a reasonable computational cost. Testing a new ligand takes on the order

of minutes. The procedure is analogous to the initial alignment procedure described

previously, with the exception that the top scoring alignments based upon similarity

to the specified ligands are subject to scoring and local optimization within the fixed

pocket model itself. The default parameters make use of 2 similarity weightings (1.0

and 0.1 for polar surface features), 100 best poses from each alignment to each training

ligand target, and 5 final poses representing the best optimized fit to the pocket model
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Figure 3.10: Full model refinement produces an optimal pocket model and poses where
optimality is defined by their relative positions and fit of the calculated interaction
scores to the known training ligand binding activity. A) The model probes derived
from probe initialization (blue) are shown superimposed with the fully refined pocket
model (atom-colored). B) The final pocket model (atom-color with skin) is shown
with the volume of the final optimal training ligand poses.

for each test ligand.

3.3.2.1 Quantifying Prediction Confidence

In addition to providing a quantitative prediction of activity and physical represen-

tation of proposed binding pose, the QMOD method can also provide a measure of

prediction confidence. Figure 3.11 shows the initial QMOD pocketmol derived from

39 training molecules (atom-color thin sticks with surface). The pose of compound

2, which was part of the initial training set, is shown along with the optimal pose of
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compound 9 (the 47th molecule in the synthetic series). Molecule 9 was predicted

with high confidence (0.92/1.0) to have high activity (predicted pKi of 8.2), yielding

an error of 0.3 log units when compared with experimental activity. The confidence

measure is defined as the maximal 3D molecular similarity between a test molecule

and any of the training molecules (each in its optimal pose according to fit within

the pocket model). Here, the most similar training compound to 9 was 2, with the

high similarity obvious in the 2D representations, and with the optimal poses of both

molecules being concordant, even including volume overlap of the differing left-hand

side substituents.

3.4 Results and Discussion

At a minimum, the goal of QSAR approaches is to make accurate predictions of lig-

and activity. Preferably, the methods should also yield predictions of relative binding

modes, be amenable to visualization, and offer some guidance on the confidence as-

sociated with specific predictions. Figure 3.11 depicts the final learned pocket model

(atom-colored sticks with skin) along with final optimal pose of the test ligand 9. As

previously described this provides an example of a very accurate prediction made with

high confidence. The overall pocket was well enclosed. The interplay between the

evolving pocket and the ligand poses was generally subtle, with most ligands showing

only minor movement when comparing the initial preferred poses to the final optimal

poses.

3.4.1 Performance on the Next Temporal Window of Molecules

Overall the model performed very well on the 50 blind test molecules, producing an

average prediction error of 0.52 log units and a Kendall’s Tau Rank correlation of
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Figure 3.11: The initial QMOD binding site model is shown (right), derived from
39 training molecules. The probes comprising the pocket are shown in atom-colored
thin sticks with surfaces. Training compound 2 is shown in yellow, with 2D at left
and in its predicted optimal pose at right. Compound 9 (number 47 in the synthetic
series) was predicted with high confidence to have a pKi of 8.2, very close to the
experimental value of 7.9 (shown at right in atom colored sticks).

0.35 (p < 0.01). The model performed systematically better on predictions made

with higher confidence, yielding an average error of 0.4 log units and a Kendall’s Tau

score of 0.85 (p < 0.01) for predictions made with confidence ≥ 0.85.

Figure 3.13 shows molecule 10 in its final predicted pose inside the pocket model.

The novel substituent stemming from the nitrogen on the right side provided sig-

nificant clashes with the pocket model, producing a lower interaction score due to

excessive steric clashing with this portion of the model. This scenario highlights a

major challenge with ligand-based models that are highly dependent on the breadth
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Figure 3.12: Plots of experimental (X-axis) versus computed/predicted pKi for the
final optimized binding pocket for the 39-molecule training set (A) and the 50 blind
molecule set (B). Mean error of fit for the training set was 0.2 pKi units. Prediction
error on the 50-molecule holdout set was 0.5 units, with a Kendalls Tau rank corre-
lation of 0.35 (p < 0.01 by permutation). Bottom panels highlight two contrasting
types of predictions made: those accurate predictions made with high confidence, and
those inaccurate predictions made with low confidence.

and quality of training data. In this case a limited number of training molecules with

little structural variability near the benzimidazole core scaffold provided negligible

information to be learned about potential structural variability in this region. Meth-

ods for identifying structurally novel test compounds that may interact with a given

model differently that training ligands will be discussed in the following chapter.
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Figure 3.13: The initial QMOD binding site model is shown (right), derived from
39 training molecules. The probes comprising the pocket are shown in atom-colored
thin sticks with surfaces. Training compound 11 is shown in yellow, with 2D at
left and in its predicted optimal pose at right. Compound 10 (number 50 in the
synthetic series) was predicted with low confidence to have a pKi of 5.3, revealing
a 1.8 log unit deviation to the experimental value of 7.1 (shown at right in atom
colored sticks). Molecule 10 exhibited significant structural novelty compared to the
39 training molecules and consequently interacted very differently with the binding
pocket model. Shown in cyan is the novel substituent near the benzimidazole nitrogen
that clashed with the right portion of the model causing a significant shift in the final
optimal binding pose of test compound 10.

3.4.2 Relationship to Protein Pockets

The pocketmol that was developed is physical in the sense that it represents real

atomic positions of molecular fragments.

The pocket model showed a direct physical relationship to the gyrase subunit
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B ATP binding pocket, both in overall shape and detailed accounting of key inter-

action region within the pocket. Figure 3.14 shows the superimposition of the final

pocket model (yellow skin) with the final optimal training poses (atom-colored sticks)

compared with the surface of the gyrase binding pocket (blue). The model provides

excellent overall coverage of the pocket and the final optimal training poses are phys-

ically realistic relative to the concavity of the actual binding pocket. It is important

to note, that structure of the gyrase binding pocket was not used in any way during

model induction or guidance, but rather served as a validation of model correctness

post-facto.

Figure 3.14: The final pocket model (yellow skin) and final optimal training poses
(atom-colored sticks) are shown superimposed with the x-ray crystal structure of the
ATP binding site of the gyrase B subunit. The model captures the overall shape
of the binding pocket while providing physically realistic representations of the final
optimal poses of the 39 training molecules.
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The group of acceptor probes that interact with the urea nitrogens represents

Asp1073 that is known to be critical in binding with this class of compounds.62

Similarly, several hydrophobic probes captured funnnel-like concavity towards the

bottom of the pocket represented by Ala1047, Val1071, Thr1165, ILe1094, ILe1078,

and Pro1079. Figure 3.15 shows the correspondence between the model and the

binding pocket.

Figure 3.15: The final pocket models capture key residues important for ligand bind-
ing. Bottom-left panel shows the final pocket model (yellow) compared with the x-ray
crystal structure of the gyrase binding pocket (blue). Training molecule 1 (cyan) is
shown to provide a frame of reference. Labels A-C are displayed in zoomed-in view
in panels A-C respectively. Acceptor probes represent the Asp1073 known to play
a critical interactions with the urea NH groups. Several hydrophobic probes are in
good spatial agreement with several residues defining the shape of the binding pocket
as shown in panels B and C.
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3.5 Conclusion

The Surflex-QMOD approach addresses the physical linkage between activity model

and molecular binding mode with pockets having detailed structure comparable to

true protein binding sites. Because the model building process results in a model that

selects ligand alignments based on mutual interaction, there is a direct correspondence

between the physical process of protein-ligand binding and the act of prediction. No-

tions of model parsimony and prediction confidence are intuitively related to physical

notions of shared ligand binding modes and appear to bear directly on the quality of

predictions.

Practical approaches for ligand activity prediction in lead optimization that do not

rely upon well-determined protein structures must address predictions of ligand pose

as well as ligand activity. In this work, a multiple-instance learning approach has been

developed for induction of physical models of binding sites. In the challenging test

case on gyrase presented here, predictive accuracy on temporarily segregated com-

pounds was excellent, both in terms of numerical accuracy and in terms of geometric

concordance with x-ray structure of the binding site. Important challenges remain,

including validation on large numbers of targets, identifying structurally novel lig-

and interactions, development of rigorous approaches to guide model refinement and

active learning, and implementation of formal methods to integrate protein struc-

tural information in the model induction process. These issue foreshadow detailed

discussions in the following chapters.
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Chapter 4

Iterative Refinement of a Binding

Pocket Model

4.1 Abstract

Computational approaches for binding affinity prediction are most frequently demon-

strated through cross-validation within a series of molecules or through performance

shown on a blinded test set. This chapter shows how such a system performs in

an iterative, temporal lead optimization exercise. A series of gyrase inhibitors with

known synthetic order formed the set of molecules that could be selected for “syn-

thesis.” Beginning with a small number of molecules, based only on structures and

activities, a model was constructed. Compound selection was done computation-

ally, each time making five selections based on confident predictions of high activity

and five selections based on a quantitative measure of three-dimensional structural

novelty. Compound selection was followed by model refinement using the new data.

Iterative computational candidate selection produced rapid improvements in selected

compound activity, and incorporation of explicitly novel compounds uncovered much

more diverse active inhibitors than strategies lacking active novelty selection.
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4.2 Introduction

The field of computational structure-activity modeling in medicinal chemistry has

a long history, going back at least 40 years.65 The preceding chapter discussed the

method of denovo model induction, highlighting the methodological underpinnings

driving the derivation of a pocket model with a single training set of ligand structure-

activity data. One main concepts was introduced related to how molecules may be

evaluated when tested against a given model: prediction of ligand activity with a

measure of confidence driven by 3D molecular similarity. This chapter considers this

aspect of predictive activity modeling but adds new dimensions. This chapter intro-

duces a method for quantifying molecular novelty in the context of a given model,

and shows how considerations of molecular novelty can improve model refinement and

predictive power. Rather than focus purely on how well a model can predict activity

based on a fixed, particular set of compounds, this chapter instead discusses how a

method can guide a trajectory of chemical exploration in a protocol that incorporates

iterative model refinement. Further, in addition to considering prediction accuracy

and the efficiency of discovering active compounds, this chapter discusses considera-

tions of how selection strategies and modeling methods affect the structural diversity

of the chemical space that is uncovered over time. The results presented here will

show that there is a direct benefit for active selection of molecules that will “break” a

model by venturing into chemical and physical space that is poorly understood. The

results also show that modeling methods that are accurate within a narrow range of

structural variation can appear to be highly predictive but guide molecular selection

toward a structurally narrow endpoint. Conservative selection strategies and conser-

vative modeling methods can lead to active compounds, but these may represent just

a fraction of the space of active compounds that exist. The content presented here is

in part discussed in our recent publication in the the Journal of Medicinal Chemistry
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(Varela/Jain61).

As previously described Surflex QMOD (Quantitative MODeling) works by con-

structing a physical binding pocket into which ligands are flexibly fit and scored to

predict both a bioactive pose and binding affinity.59,60,66 Initial QMOD development

focused on demonstrating the feasibility of the approach, with a particular empha-

sis on addressing cross-chemotype predictions, as well as the relationship between

the underpinnings of the method to the physical process of protein ligand binding.

Those studies considered receptors (5HT1a and muscarinic), enzymes (CDK2), and

membrane-bound ion channels (hERG).59,60,66 The present work addresses two new

areas. First, QMOD performance is examined in an iterative refinement scenario,

where a large set of molecules from a lead-optimization exercise62 was used as a

pool from which selections were made using model predictions. Multiple “rounds”

of model building, molecule selection, and model refinement produced a trajectory

of molecular choices. Second, the present work considers the effect of active selec-

tion of structurally novel molecules that probed parts of three-dimensional space that

were unexplored by the training ligands for each round’s model. Figure 5.2 shows a

diagram of the iterative model refinement procedure. Selection of molecules for “syn-

thesis” for the first round took place from a batch of molecules made after the initial

training pool had been synthesized. A full discussion for this initial model build is

discussed in Chapter 3. Subsequent rounds allowed for choice from later temporal

batches, along with previously considered but unselected molecules. The approach

was designed to limit the amount of ”look-ahead” for the procedure. The space for

molecular selections within each round formed a structural window that reflected the

changing chemical diversity that was explored over the course of the project. The

iterative procedure was carried out until all molecules were tested. The primary pro-

cedural variations involved use of different modeling and selection methods, and the

analyses focused on the characteristics of the selected molecular populations, and the
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relationship of the models to the experimentally determined structure of the protein

binding pocket.

Figure 4.1: The inhibitors first synthesized were used for initial training. All sub-
sequent molecules were divided into sequential batches of 50 candidates each. At
the completion of each build/refine iteration, the next sequential batch and all previ-
ously considered but unchosen molecules formed a “window” for molecular selections.
Based upon model predictions, ten molecules were selected and added to the train-
ing set for each round of model refinement. Two selection schemes were employed.
The standard method selected molecules based on high-confidence predictions of high
activity or based on 3D structural novelty. The control procedure made selections
purely based on activity predictions.

All of the molecules discussed in this chapter were taken from a lead optimization

program conducted at Vertex Pharmaceuticals. Figure 3.1 from Chapter 3 shows
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typical examples of structures and GyrB activities from the initial training set.

4.3 Methods

In the preceding chapter several biases were introduced that included that of model

parsimony and conservation of a pocket model size. The former relating the 3D

geometric concordance between the final optimal poses of similarly active training

ligands, and the later describing the preference for smaller and more succinct pocket

models. This chapter is a direct extension of the discussion of Chapter 3 with an em-

phasis on application of the QMOD method in an iterative modeling protocol. In this

context, an additional bias (model preservation), is employed during model induction

between successive rounds of refinement. Note, model refinement in this context does

not describe local pocket model refinement that is carried out immediately follow-

ing probe search/initialization (Figure 3.2E), but rather refers to the re-application

of the entire modeling procedure with the addition of a pocket model serving as an

input template guide. Model preservation is expressed as the percentage of model

components retained after refinement.

As foreshadowed in the preceding chapter, the initial model derived from the 39

training molecules formed the root of two branches for molecular choice: one making

use of a novelty computation and the other focusing only on activity. The nov-

elty evaluation procedure facilitates the identification of molecules that provide novel

model-ligand interaction and enables a rigorous interrogation of physical components

of an evolving model.
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4.3.0.1 Quantifying Molecular Novelty

In addition to predicting ligand affinity, the QMOD procedure can also quantify

molecular novelty of a given test molecule. Evaluating molecular novelty extends

beyond pair-wise structural evaluation of small molecules. Upon testing a new ligand,

the procedure comparatively quantifies the molecule’s interactions with a given model.

Figure 4.2 depicts an example of the novelty computation relating to a substitution at

position 1 of the benzimidazole scaffold. Molecular novelty is a quantitative measure

of the degree to which a new molecule explores the space of the binding pocket with

new chemical functionality. It is defined using statistics based on the interactions

of training molecules with the pocket model and the interactions with unoccupied

space near the pocket model (termed the anti-model). The statistics characterize

the scores for each probe against the optimal poses for each training molecule and

additional poses that sample ligand configurations that are close to optimal. The anti-

model is constructed such that it borders on the explored pose pool but excludes the

space immediately around the pocket model. Novelty is quantified by comparing the

interactions made with the pocket model/anti-model to those made by the training

ligands. Compound 10 had the highest novelty score among all 50 molecules in

the first batch of compounds from which selections were made. Compound 10 was

predicted incorrectly to have low activity, and it was correctly flagged as a low-

confidence prediction. Its novelty score was 51.6, corresponding to a normalized

Z-score of 5.7 standard deviation units greater than the mean of the remaining pool

from those molecules upon which the initial model was tested. The extreme relative

magnitude highlights the novelty of the pattern of interaction scores associated with

the substitution at position 1 of the central scaffold.

Molecules that interact with the Pocket model and surrounding region differently

than the training ligands receive a higher novelty score than otherwise. This defini-
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Figure 4.2: The molecular novelty computation compares the interaction score pro-
file of the training molecules in their explored poses (yellow surface, Panel A) to that
of a new molecule’s probable poses (blue surface, Panel B). The scoring profiles are
computed against the the Pocket model (green surface) and anti-Pocket model (red
surface), which occupies space that would otherwise be empty. Compound 10, from
the initial batch of 50 candidate ligands, contained a novel substitution (shown in
blue). This substituent has a natural clash with the Pocket model when aligned to
training molecules (blue arrow). The clash produced a tilted pose (not shown), result-
ing in a low-confidence prediction that was significantly lower than the experimental
value.

tion of novelty is highly context dependent and quite different from pure molecular

similarity computations. For example, a single methyl group addition to a training

molecule will generally have very low impact on a similarity computation. However,
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if the methyl group pushes into unexplored space (which may or may not contain a

pocket model probe), the novelty score will tend to be high.

4.4 Results and Discussion

4.4.1 Effects of Selection Strategy on Experimental Activities of Chosen

Molecules.

The ideal experiment in which to assess different design strategies for lead optimiza-

tion would require independent synthetic teams of equivalent capabilities, each totally

isolated from the other. Given an initial starting point, the teams would make a fixed

number of compounds over a set time period, with common protocols involving com-

pound testing and provision of assay feedback to the design teams. Although resources

needed to carryout such an experiment were not available, a balanced comparison was

performed. Here the 39 initial training molecules and their GyrB activities form a

common initial starting point, and it is interesting to consider the effects of differ-

ent computational approaches in terms of the properties of the molecules that are

selected from among the remaining 387 that were part of the series. In the standard

procedure, half of the molecules selected were chosen to maximize predicted activ-

ity and half were chosen as being structurally novel in order to inform the model

in areas that had not been explored. In the control procedure, all of the molecules

were chosen to maximize activity. Figure 4.3 shows the distributions of experimental

activities of molecules chosen using the QMOD standard procedure compared with

the QMOD control procedure (recall Figure 5.2). The two distributions within the

standard procedure were very different (p << 0.01 by Kolmogorov-Smirnov (KS)),

with the novelty-driven selections exhibiting a wider dispersion of experimental activ-

ity and a much larger proportion of poorly active molecules (roughly 30% with pKi <
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6.5 compared with < 5% from the activity-driven selections). Despite being informed

quite differently in terms of structure-activity data, the distribution of activities for

molecules selected for activity under the standard protocol were not different than

those selected in the control procedure (see Figure 4.3B). The structural characteris-

tics of the resulting pools were very different, and this will be discussed in the next

section.
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Figure 6.
Active selection of molecules by the QMOD method, coupled with fully automatic
iterative model refinement identified a much larger fraction of potent molecules than
those that resulted from the temporal sequence of human design. Panel A shows
histograms of experimental potencies and panel B shows the corresponding cumulativehistograms of experimental potencies, and panel B shows the corresponding cumulative
histograms. The red curves show activities for the actual 80 molecules designed and
synthesized (after the initial 39). Green curves show activities for the 40 molecules
selected by QMOD based on high confidence predictions of high potency, and blue
curves show the 40 molecules selected by QMOD based on the novelty computation. A:
Molecules selected for predicted high potency with confidence (green) have a higher
distribution of activities compared to those derived from human design (red). B: Under
QMOD potency selection (compared with historical synthetic sequence) QMOD pickedQMOD potency selection (compared with historical synthetic sequence) QMOD picked
2/3 fewer molecules with activities < 7.0 pKi (green vs. red). Fully 50% of the molecules
selected by QMOD for potency had activities of at least 7.7 pKi, compared to 20% of the
historically synthesized molecules (vertical marker). Some molecules selected for novelty
(blue) had low activity, but a surprising fraction had high activities (40% of at least 7.7
pKi).

Figure 4.3: Plot A shows the distribution of experimentally measured activity for the
QMOD standard procedure, comparing the 40 molecules chosen based on predictions
of high potency (green curve) and the 40 molecules chosen based on structural novelty
(blue curve). Plot B shows the comparison between the QMOD standard procedure
(green curve) and the control procedure (magenta curve), which made selections based
solely on potency predictions.

The comparison between the two QMOD procedure variations fits our compara-

tive experiment ideal, with fully independent “synthetic teams” employing different

design strategies in isolation. If we consider the distribution of experimental activ-

ities of the next 80 molecules actually made after the initial 39 in the training set,

we deviate from our ideal. First, the project chemists were interested in address-
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Experimental Activity of Molecule Selections
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Figure 6.
Active selection of molecules by the QMOD method, coupled with fully automatic
iterative model refinement identified a much larger fraction of potent molecules than
those that resulted from the temporal sequence of human design. Panel A shows
histograms of experimental potencies and panel B shows the corresponding cumulativehistograms of experimental potencies, and panel B shows the corresponding cumulative
histograms. The red curves show activities for the actual 80 molecules designed and
synthesized (after the initial 39). Green curves show activities for the 40 molecules
selected by QMOD based on high confidence predictions of high potency, and blue
curves show the 40 molecules selected by QMOD based on the novelty computation. A:
Molecules selected for predicted high potency with confidence (green) have a higher
distribution of activities compared to those derived from human design (red). B: Under
QMOD potency selection (compared with historical synthetic sequence) QMOD pickedQMOD potency selection (compared with historical synthetic sequence) QMOD picked
2/3 fewer molecules with activities < 7.0 pKi (green vs. red). Fully 50% of the molecules
selected by QMOD for potency had activities of at least 7.7 pKi, compared to 20% of the
historically synthesized molecules (vertical marker). Some molecules selected for novelty
(blue) had low activity, but a surprising fraction had high activities (40% of at least 7.7
pKi).

Figure 4.4: The three distributions of experimental activities shown are all highly
significantly different from one another: 40 compounds selected for potency (green),
40 selected for novelty (blue), and the next 80 actually synthesized after the 39 that
formed the QMOD initial training set (red).

ing issues beyond just potency against GyrB. The considerations included activity

against ParE, physical properties of compounds, complexities of synthesis given ex-

isting routes and materials, and a host of other items. Clearly, however, they were

interested in maximizing potency against GyrB. Second, the project chemists had

access to information well beyond what the QMOD modeling procedures had, includ-

ing crystallographic guidance and knowledge of other inhibitors of the ATP binding

sites of gyrase. Bearing this in mind, it is interesting to consider the comparison

between the QMOD selections in the standard procedure and the activities of the

next 80 molecules actually synthesized after the initial 39. Figure 4.4 shows the three

distributions, each of which is highly statistically different from one another. This

comparison is not meant to suggest that the QMOD selection approach is definitively
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“better” in any sense than the efforts of human designers. The comparison provides

context for what the space of designable compounds looked like within a fixed frame

of temporal exploration measured in numbers of compounds made.

Figure 4.5 provides additional detail, showing the experimental activities in tem-

poral selection order for the QMOD standard protocol, the control protocol with no

novelty bias, and the next 80 molecules synthesized. Figure 4.5A shows the trajectory

of activity observed with the 40 QMOD standard potency-based selections, nearly all

of which had activity greater than 7.0 pKi. Toward the end of the eight rounds of

selection, nearly all molecules had potencies of 8.0 or higher. The corresponding

novelty selections (Figure 4.5b) exhibit much wider dispersion, with both “winners”

and “losers” being selected across the entire sequence. Notably, maximally active

molecules were chosen earlier through novelty-based selection than through potency-

based selection in the standard procedure. Again, for contextual purposes, and with

the caveats described above, Figure 4.5c shows the sequence of experimental activi-

ties for molecules in the synthetic sequence numbered 40–119. The high dispersion

and downward trend were probably driven by many factors, but clearly there were

challenges in meeting multiple design criteria while maintaining or increasing potency

against GyrB. The QMOD control procedure (Figure 4.5d) exhibited stable perfor-

mance, reliably picking a preponderance of molecules with activity greater than a

pKi of 7.5. Recall that while the distributions corresponding to plots A–C were all

significantly different, conditions A and D produced indistinguishable distributions

in a statistical sense.
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Figure 7.
When molecule potency and novelty were used for selections during iterative model
refinement, QMOD rapidly converged on identifying highly potent molecules with
confidence. Panel A shows the sequence of molecules selected for potency with high
confidence (40 total) with the standard procedure. Active selection converged on

Selection Sequence Under Each Protocol

confidence (40 total) with the standard procedure. Active selection converged on
molecules with experimental activities ≥ 7.9 pKi after overall selection 62. The window-
averaged line illustrates the activity trend of selected molecules and the standard
deviations (shown as bars) highlight the convergence of selecting such potent molecules.
Panel B shows that molecules selected for novelty by the standard procedure (40 total)
also identified molecules with near maximal activity (exp ≥ 8.0 pKi), and these selections
enhanced the QMOD model by incorporating structurally diverse molecules with a
broad range of activity Panel C shows the historical sequence of 80 molecules (40-119)broad range of activity. Panel C shows the historical sequence of 80 molecules (40-119)
synthesized during original optimization efforts. There was no clear trend toward
convergence on high potency inhibitors over time. Panel D shows the effect of ignoring
the novelty computation and making QMOD selection based solely on potency (80
total). Highly potent molecules were still identified, but variance in experimental
potency varied more than in the procedure that made active selections of novel ligands.

Figure 4.5: The experimental activity of molecules selected is plotted against selection
order under different protocols.

4.4.2 Effects of Selection Strategy on Structural Diversity of Chosen Win-

ners

The molecular pools selected using the standard procedure or one without a novelty

bias exhibited indistinguishable distributions of GyrB activity. However, the actual

value of a given pool of potent inhibitors is affected by chemical composition. A single

potent inhibitor along with several nearly identical variants will generally be less
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useful that the same inhibitor along with several equipotent but structurally different

variants. We defined a threshold of pKi ≥ 7.5 to identify molecules with desirably

high potency (“winners”) and compared the structural diversity the winners from

the different selection procedures. The standard selection procedure that combined

novelty with potency found structurally diverse potent molecules. The plots in Figure

4.6 show the distribution of pairwise 2D (left) and 3D (right) similarities of the

winners. The diversity of winners resulting from the standard QMOD procedure

is shown in green, and that resulting from the control procedure without novelty

is shown in magenta. The distributions of 2D similarity differed primarily in the

tails, with the standard procedure showing very few highly similar winning pairs

compared with the control procedure. Also, the standard procedure identified a

small population of divergent pairs that were missed by the control procedure. The

3D similarity distributions exhibited much more substantial differences, with a very

significant shift toward lower mutual similarity within the population of winners from

the standard procedure. Figure 4.6 shows an example of a typical highly similar

pair (compounds 9 and 12) from the control procedure along with a structurally

divergent pair (compounds 13 and 14) from the standard procedure. The protrusion

of 13 (lower right, in blue) is particularly stark. Notably, inhibitors containing 7-

position substitutions also possessed markedly improved potency against ParE,62 with

dual-inhibition of GyrB and ParE being desirable in the context of antibacterial

development.

The use of a novelty bias in compound selection drove the exploration of structural

diversity. This is easily seen in the evolutionary design tree shown in Figure 4.7. Two

selection pathways are depicted that led to two structurally different, yet potent,

gyrase inhibitors. In round 2 (left side of Figure 4.7), 15 (dashed arrow) was selected

for novelty because of the new interactions made with the model from the benzyl-

ester substitution at position 7 of the benzimidazole. In round 7, 16 was selected
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Figure 4.6: The structural diversity among the molecules selected using the QMOD
procedure that included an active novelty component was significantly higher in both
2D (left) and 3D (left). At bottom, example pairs of molecules are given from the
control procedure (left) and the standard procedure (right).

for potency, where confidence was derived from 15. In round 8, 17 was selected

confidently based on similarity to 16. QMOD converged on making more accurate

predictions on the position 7-substituted molecules over time: errors in prediction

for 15, 16, and 17 were 0.5, 0.4, and 0.3, respectively. On the right-hand side of

Figure 4.7, a separate branch of selections without a substituent at position 7 was

also elaborated. In round 3, 18 was selected for potency (similar to 3). In round 8,

QMOD identified one of the most potent compounds in the entire set. Compound 19

was accurately predicted with high confidence (similar to 18). Molecules 17 and 19
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are examples of the most potent and structurally dissimilar molecules in the entire

pool.

Figure 4.7: Examples of molecular selection based on novelty or on high-confidence
predictions of high potency give rise to a branched pattern of chemical exploration.

A significant driver of the 3D structural diversity in the standard procedure arose

based on the discovery of multiple potent inhibitors (e.g. compound 13) with sig-

nificant 7-position substituents. Figure 4.8 shows the surface envelope of the win-

ners from the standard selection procedure (green) along with that from the control

procedure (magenta). These poses were derived by docking into an experimentally
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determined GyrB protein structure to provide a common target for visualization of

the spatial exploration of the binding pocket. The corresponding circled areas iden-

tify the binding pocket space that was explored based on active selection of novel

molecules that was missed when focusing solely on potency. One of the pitfalls in ex-

ploring a binding pocket without the benefit of an experimentally determined protein

structure is that the degree to which the pocket can be defined is driven purely based

on synthesis and assay of compounds. In this purely apples-to-apples comparison of

two computationally driven selection procedures, it was clear that a quantitatively

driven strategy to explore space beyond what had been mapped led to the discovery

of a cavity capable of offering increases in inhibitor potency. The class of 7-position

substituted inhibitors showed notably better dual-inhibition profiles,62 illustrating a

concrete biological benefit of this type of structural diversity.

Figure 4.8: The structural diversity among the molecules selected using the QMOD
procedure that included an active novelty component was significantly higher in both
2D (left) and 3D (right).

In addition to considering the two variants of the QMOD approach, we also ran

a descriptor-based QSAR approach that combined 2D molecular fingerprints with
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the random forest learning method (termed “RF”).67–69 Two procedures using of the

RF approach were run, paralleling the two procedures used by QMOD (see Figure

5.2). Selection of novel molecules with the RF approach was done by clustering

compounds in the selection pool based on their fingerprints and identifying cluster

centers. Among the pools of molecules selected for potency by either the QMOD of RF

method, whether or not active novelty bias was employed, no significant differences

in the distributions of experimental activities were found (KS test p-value > 0.05 in

all pairwise comparisons).
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Figure RF.
Random forest and QMOD aproaches produce very different structures.

Figure 4.9: Structural diversity among the winners chosen by the RF procedures was
much lower than for QMOD (left plot). This lack of diversity stemmed from the lack
of diverse selections from the overall project chemical population (right plot).

However, the RF approach, either with or without a novelty component within

the selection procedure, produced far less diverse pools of winners. Figure 4.9 shows

the 3D similarity distributions of pairwise winner comparisons for the two QMOD

variants and the two RF variants. Use of diverse fingerprint cluster centers failed to

make an impact on the structural diversity of winners for the RF approach (KS test p-

value = 0.33). However, while the QMOD standard approach produced a much more
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diverse pool of winners than the control approach without active novelty selections,

the QMOD control approach produced a significantly more structurally diverse pool

of winners than either RF procedure (KS p-value << 0.01). The lack of diversity is

directly evident in the histogram of synthetic sequence numbers shown in Figure 4.9,

with the RF approach exhibiting just two primary peaks corresponding to early- and

mid-project. The QMOD approach exhibited four peaks, including a set of potent

inhibitors from late in the project. Compounds 13, 16, and 17 (Figure 4.6 and Figure

4.7) all corresponded to the rightmost peak, and all of which were made after any

experimentally potent selections from the RF procedures.

From the middle peak of winners in the synthetic sequence order was a winner

shared between the QMOD and RF approaches (sequence #219). Among the winners

from the RF protocol, 55% had extremely high 3D similarity to that single compound

(≥ 8.50), compared with just 12% of the QMOD control winners. The RF procedure

was certainly successful in identifying potent inhibitors, but the procedure, even with

a novelty bias, ended up strongly over-represented with multiple examples of highly

similar molecules.

One property of sophisticated regression methods such as random forest learning

is that many aspects of the population statistics of a training set are well-modeled in

order to reduce errors when tested on new data. The models are explicitly affected

by both the prevalence of output values and particular features. In a molecular

modeling application, it is frequently the case that one specifically designs molecules

that literally reach beyond those whose behavior has been modeled. Consider two

design candidate molecules, both of which will turn out to be highly potent. Suppose

that one of the molecules is highly similar to a pre-existing training molecule in terms

of its computed features and one is not. A sophisticated correlative machine such as

a random forest predictor will correctly assign a high potency to the former potent
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ligand. But, it will tend to predict a value for the latter ligand that is close to the

maximum likelihood value based on the distribution of training molecules’ activities

(typically close to the mean or median activity). A mid-range prediction for an

“unknown” is a wise play in a probabilistic sense, but it reflects no knowledge of

the structure-activity relationship. This “near neighbor” effect manifested itself here

very directly. The compounds that were correctly ranked highly during the selection

process for the RF method tended to be structurally similar to pre-existing potent

compounds.

To test this directly, we constructed an RF model using the same final training

molecules as were used for the final QMOD standard model. Both methods identified

potent compounds among their top 10 ranked predictions (mean experimental pKi

in both cases of 8.0). However, the 2D structural similarity of the top-ranked RF

molecules to the training molecules was much higher than for the QMOD approach

(KS p-value << 0.001). This was also seen in the reverse direction. Among the test

compounds with pKi was ≥ 7.9, there was significant variation in the 2D similarity of

each compound to its nearest training neighbor. The set of 10 furthest neighbors from

the training set were arguably the most interesting compounds from the perspective

of requiring an accurate computational prediction. They had a mean experimental

activity of 8.2. For these, the RF predictions averaged just 7.0, with a single com-

pound predicted to have pKi ≥ 7.5. For QMOD, the predictions averaged 7.8, with

7/10 compounds predicted to have pKi ≥ 7.5. The full set of training compounds

had experimental activity with mean 6.9±0.92 and median activity of 7.1. The RF

prediction simply regressed to the wisest a priori population-based guess of activity

for the most difficult compounds. The QMOD predictive methodology has no abil-

ity to make use of population-based information, but despite that, for these difficult

compounds, made predictions that correctly identified most as highly active.
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One of the surprising aspects of the results is that multiple approaches yielded

quite similar population and correlation statistics in terms of the activities of the

molecules chosen under different selection protocols. These approaches would all be

reasonably characterized as working well on that basis. However, when considering

the characteristics of the structures of the pool of potent selected molecules, very

sharp differences arose.

4.4.3 Active Learning: Abstract versus Physical Models

What we have described in terms of explicit design bias toward novel compounds

is related to other active learning approaches, both in the broader machine learning

field as well as within computer-aided drug discovery (see the review by Kell70 for a

broad overview). Warmuth et al.71 used active learning in combination with support-

vector machine (SVM) classifiers to iteratively construct QSAR models with the goal

of identifying active compounds quickly. They found that a selection strategy of

seeking highly confident actives (similar to our potency selections) was effective for

finding active ligands and that a strategy of decision-boundary selections was most

effective for improving the QSAR models themselves. The study treated activity

as a binary variable and did not structure the selection task temporally to mirror

lead optimization. The focus was on activity alone and did not assess questions

of structural diversity. Fujiwara et al.72 studied active learning in the context of

virtual screening and considered the question of structural diversity. As with the

Warmuth study, compound activity was considered as a binary variable and temporal

considerations were not taken into account. They showed advantages for combining

a diversity-driven model building strategy with a selection method that sought new

ligands on which different models produced maximally divergent predictions.

We have explicitly focused on procedures designed to mimic the constraints of
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a lead optimization exercise, with real-valued compound activities and temporally

ordered chemical space exploration. Our direct comparison of the QMOD approach

with a parallel random-forest approach exposed differences that relate to the as-

sumptions underpinning a physical QMOD model compared with an abstract math-

ematical model. The central assumption made by machine-learning methods such as

the random-forest approach or support-vector machines is that training and testing

examples are drawn randomly from the same population. So, the distributional char-

acteristics of the activities of molecules and of the structural descriptors are assumed

to be the same. Under conditions where these assumptions are true, such methods

can produce reliably accurate predictions, where the distribution of test errors will

match estimates made by techniques such as cross-validation. The detailed algorith-

mic underpinnings of such methods actively “game” these assumptions, in order, for

example, to reduce the effect of putative outliers in a training set on learned decision

boundaries. However, in a lead optimization exercise, both the structural characteris-

tics and activity profiles of compounds made later will be quite different (by design!)

than those of compounds made earlier. With the RF approach, even when making

active selection of structurally diverse molecules, no increase in structural diversity

among the highly active selected molecules was observed (see Figure 4.9, red and blue

curves in the left-hand plot).

In order for the iterative selection/test/refinement procedure to identify a pool

of highly active molecules that are also structurally diverse, two things must be

true. First, the selection strategy should incorporate structural diversity. Second,

the predictive modeling method must be able to incorporate information from novel

compounds so as to correctly identify new compounds that are both active and struc-

turally novel compared with previously known actives. Recall from Figure 4.3, the

structurally novel molecules included significant numbers with low activity. It is not

enough merely to seek novelty in a selection procedure. The predictive models must
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be capable of making risky “bets” in order to discover a pool of highly active molecules

that exhibit a wide range of structural characteristics. A pro-diversity bias alone, as

with the novelty-biased RF method, does not guarantee a diverse pool of actives at the

end of iterative lead optimization. The QMOD approach makes use of each training

molecule to come up with a single physical model. A molecule whose high activity and

unusual descriptors might be essentially “shrugged off” by an RF or SVM learning

machine will be incorporated into a QMOD Pocket model in a manner that maxi-

mizes model parsimony while also explaining the high activity. Because the QMOD

model is capable of correctly predicting activity values at or beyond the extremum

observed during training, and because it may do so for structurally novel molecules,

the iterative procedure that combined predictions of potency with selections of novel

molecules produced a diverse pool of winners.

4.4.4 Relationship of the Induced Binding Pockets with the GyrB ATP

Binding Site

The foregoing discussion has addressed questions about the numerical and structural

qualities of the ligands produced by different selection schemes. While there were

clearly benefits to the QMOD approach over the pure machine-learning RF method,

perhaps the most salient advantage from a molecular design perspective is depicted in

Figure 4.10. The QMOD approach induces the structure of an actual binding pocket,

and that pocket has a direct relationship to the true biological active site that was

responsible for the activity patterns observed. The QMOD pocket forms a funnel-like

shape, with an open area corresponding to where solvent exists. Compound 20 is

shown in its predicted conformation along with the experimentally determined one,

reflecting no significant deviations and capturing all pendant conformational flips

correctly.
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Figure 4.10: The relationship of the final QMOD standard pocket model to the GyrB
binding site. Compound 20 in its optimal predicted QMOD pose (atom color) had
RMSD of 0.5Å from the experimentally determined bound state (yellow). Alignment
of the QMOD Pocket model and optimal ligand poses to the protein structure was
done with a single alignment transformation that produced a close alignment of the
benzimidazole inhibitor core. Configurational deviations are reflected primarily in
the pendant moieties.

In total, 11 structures of bound inhibitors were aligned to one another based on

protein pocket similarity,73 and the predicted poses from the QMOD approach were

compared to the bound configurations using the alignment from Figure 4.10. The

predicted poses from the QMOD final Pocket model had mean RMSD of 1.2Å, with

all but 2 having RMSD less than 1.5Å. Note that RMS deviation is somewhat difficult

to interpret here. Barring a grossly different QMOD prediction of the benzimidazole

core, which moved very little in the GyrB structures, the measured RMSD would

tend to be relatively small. Another measurement of concordance between the Pocket

model and protein compares the contact patterns for each ligand to the Pocket model
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or to the protein. The degree of concordance can be quantified by permutation of

atom numbers. In all but three cases, there was a statistically significant relationship

in the contact patterns (p < 0.05).

Figure 4.11: The QMOD standard procedure yielded a pocket model where there was
a direct correspondence of many probes to particular atoms in the actual GyrB bind-
ing pocket. Pocket model probes that do not interact with compound 20 have been
omitted from the display for clarity, and the protein has been trimmed to highlight
areas of correspondence. The two views shown are flipped front to back.

Figure 4.11 shows additional detail, illustrating the direct correspondence between

Pocket model probes and key moieties on the protein. The left-hand view highlights

the reason behind the conformational choice for the methyl-ester substituent of com-

pound 20, which was correctly predicted (marked with a blue arc). The carbonyl

89



ester oxygen makes a hydrogen bond with the N-H probe of the Pocket model, which

parallels the same interaction with Asn-1046. The terminal methyl of the ester makes

a hydrophobic interaction with a methane Pocket model probe, paralleling an inter-

action with Ile-1094. The right-hand view highlights two carbonyl probes that mimic

the effect of Asp-1073 and two N-H probes that mimic Arg-1136. This degree of qual-

itative correspondence between Pocket model and protein is typical of our previous

work.59,60

Figure 4.12 shows the analogous depiction of compound 20, but using the final

QMOD Pocket model that arose from the control procedure. Recall that the struc-

tural variation of the final pool of potent selected ligands was much reduced and that

the spatial probing of the binding pocket bordered by Asn-1046 and Ile-1094 was

shallow (see Figure 4.8). The prediction for 20 was both numerically poor (low by

2.1 log units) and predicted the incorrect orientation of the 7-position methyl ester.

The induced pocket here was unable to correctly accommodate the substituent, also

showing a shift of the central scaffold away from its optimal position. While there

were areas of good correspondence, especially with respect to the surface shape of the

based of the binding pocket, the model induction process is sharply limited by the set

of selected compounds. For the 11 inhibitors for which we had bound structures, just

3/11 had concordant contact patterns (compared with 8/11 for the QMOD standard

predictions). In operational use of such modeling methods during lead optimization,

mindful production of chemical variations that explicitly probe the “edges” of a model

can produce significant improvements in the correspondence of refined models with

biological reality.

For completeness, because we had bona fide structures of the GyrB binding pocket,

we also made a comparison of the QMOD predictions to docking and scoring the final

pool of unselected molecules. Using a single structure and the score of the top-ranked
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Figure 4.12: The QMOD pocket model that resulted from the procedure lacking an
explicit novelty bias produced a poor prediction for compound 20. The depiction
here is analogous to that from Figure 4.11.

docking for each inhibitor did not produce a significant rank correlation. It is conceiv-

able that a more sophisticated procedures such as MM-PBSA74 might have yielded

a reasonable correlation. Brown and Muchmore reported an average RMSE for pre-

dicted pKi using MM-PBSA on three targets of 0.75 (range 0.66–0.89) using linearly

rescaled predictions to account for extreme slope and intercept deviations between

computation and experimental values. The QMOD final standard model yielded 0.76

RMSE with no scaling correction on the 317 remaining unselected molecules, which

is clearly comparable. Molecules pairs whose activity was different by 0.5 pKi units
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or greater were correctly ranked more than 70% of the time (p << 0.01). Rank cor-

relation of this quality is challenging because over 80% of the experimental activity

values fell within 1.5 log units of one another and over 90% within 2.0 units. It is en-

couraging that a method such as QMOD, with no information of any kind regarding

either the bound configuration of ligands or of the actual binding site composition

and geometry, could produce predictions of both activity and bound pose that are

competitive with sophisticated structure-based methods.

4.5 Conclusion

This study has approached the QSAR modeling question in a novel manner. We ex-

plored how different computational selection strategies shaped the observed molecular

trajectory derived from a sequence of hundreds of compounds that arose from a real-

world lead optimization exercise. There were four primary results. First, the iterative

QMOD procedure rapidly converged on models that reliably identified highly potent

molecules. Second, explicit computational selection of novel molecules directly lead

to a much more structurally diverse pool of potent inhibitors, despite not producing a

pool with a different distribution of experimental activities than a control procedure

with no novelty focus. Third, the induced binding site model showed strong con-

cordance with the experimentally determined binding site, both in terms of absolute

predicted poses as well as ligand/pocket contact patterns. Fourth, direct comparison

with descriptor-based QSAR methods showed that while such models yielded similar

distributions of activity among selected molecules, the structural diversity of selected

potent molecules was much lower than for QMOD. QMOD identified examples of

potent molecules across the entire arc of the project’s chemical exploration, but the

descriptor-based approaches instead produced many examples of highly similar minor

variants clustered around the mid-point of the project’s history.
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There are two major lessons to be learned from this work, which we hope to further

validate on additional systems in the future. First, there appears to be a significant

hidden cost to reliance upon molecular design strategies that do not actively seek to

probe new chemical functionality in a spatial sense. While such strategies may well

identify compounds with desirable properties, they may completely miss the iden-

tification of entire classes of active compounds. Here, for example, potent activity

against GyrB and ParE was exhibited by compounds discovered through the selection

procedure that sought three-dimensional structural novelty in order to test the phys-

ical boundaries of the evolving models. Second, statistical regression methods whose

fundamental basis for prediction relies upon correlations between features and desired

output values impose hidden costs. They do so by being strongly dependent upon the

existence of near-neighbors with known activity in order to accurately predict a new

compound to have similar activity. In molecular potency optimization, effort is often

placed on design goals toward or even beyond the extreme end of the distribution

of known molecular activities. Truly potent molecules that are structurally novel in

the descriptor space being used by a correlative machine will be underpredicted as a

consequence of the gaming strategy employed by statistical regression methods.

The issues of confirmation bias and correlation fallacies discussed in a recent per-

spective66 appear naturally in the iterative application of predictive modeling for

design of potent molecules. Given a method that depends on non-causative correla-

tions to predict potency, selection of the molecules predicted to be potent will tend

to automatically self-confirm, because only those candidate molecules that are highly

similar to known molecules with high potency will tend to be top-ranked. The struc-

turally novel compounds that would have been shown to be potent remain invisible in

practice, because they will have been predicted to have middling potency. In typical

machine-learning problems, inductive bias issues will show up in the distribution of

prediction errors on different types of test objects. In the case of medicinal chem-
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istry lead optimization, such bias issues may altogether suppress the production of

non-confirmatory test objects.

By making use of a different molecular selection strategies, each of which is nom-

inally equally accurate in aggregate behavior, very different outcomes will arise from

repeated temporal iteration. The resulting molecules having the high potency sought

during optimization will reflect the hidden or explicit biases embedded in the predic-

tive modeling approaches. An approach whose basis for prediction is a close match

to the protein ligand binding process, coupled with an explicit selection strategy de-

signed to expand model coverage, will tend to identify a diverse pool of molecules.

The structural diversity will most likely manifest itself in properties that were not

directly optimized. When making use of purely correlative learning machines, the un-

seen cost can manifest itself as a numerous but narrow pool of molecules. Given the

challenging problem of drug discovery, we would argue that generation of a diverse

pool is generally the more desirable outcome.
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Chapter 5

Structure-Guided Quantitative

Modeling

5.1 Abstract

Binding affinity prediction is frequently addressed using computational approaches

demonstrated through cross-validation within a series of molecules or through perfor-

mance shown on a blind test set. Here, we present a demonstration on how such a

system performs when employing an structure-guided modeling strategy that lever-

ages molecular similarity, docking, and multiple-instance learning in cases with limited

protein structures but with high ligand diversity. Many QSAR methods have utility

in making predictions within a highly related chemical series, but cannot generally be

fruitfully applied to novel compounds due to limited domains of applicability. Molec-

ular docking has found utility in applications such as virtual screening, off-target pre-

diction, and structure-based modeling, however it is not generally reliable for affinity

prediction toward lead optimization. Previous reports of the Surflex-QMOD approach

demonstrated its ability to produce accurate and scaffold-independent predictions of

binding affinity by constructing an interpretable physical model of a binding site based

solely on the structures and activities of ligands. Here we introduce an enhanced

QMOD method demonstrating its ability to integrate protein structure information
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as well as ligand structure-activity relationships to construct more robust physical

models. The derived structure-guided models are capable of accurately predicting

binding affinities over a broad class of compounds while producing more physically

accurate representations of the protein pockets and ligand binding modes. Results

will be presented establishing significant performance improvements in binding pocket

induction and ligand affinity predictions in cases with limited protein structures but

with high ligand diversity.

5.2 Introduction

The preceding chapters discussed in detail the underpinnings driving QMOD model

induction and its application towards guiding molecule selection/design in a lead op-

timization effort. The present study considers these aspects of predictive activity

modeling but adds new dimensions. Rather than focus purely on how well a method

can predict activity based on solely ligand structure-activity data, we instead ask

how a method can integrate information of protein structures and ligand structure-

activity relationships. Such a strategy has produced predictive models that are more

widely applicable and accurate for ligand affinity prediction while providing a ra-

tional representation of the binding pocket that explains binding activity. Further,

in addition to considering prediction accuracy and broad applicability of discovering

active compounds, we consider how information usage and modeling methods affect

the predictive power attained by a model. We show that there is a direct benefit

when integrating structural information of a protein-ligand binding event that guides

towards more generalizable predictions of molecules of different types. Traditional use

of information can lead towards nominally accurate activity predictions in the case

of purely ligand-based modeling within a congeneric series or molecular docking in

the context of rank ordering and pose prediction. Integrating protein structures and
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ligand structure-activity relationships can enable the predictive accuracy necessary

for lead optimization while providing broader applicability and increased predictive

performance on structurally diverse molecules.

The present work addresses a new area of data integration that utilizes physi-

cal constraints provided by protein structures and structure-activity relationships of

known competitive small molecules. We examined the performance of such a method

in a lead optimization scenario with an eye towards accurate prediction of cross-

chemotype ligands on a large scale and the physical relationship between an induced

model and a binding site in challenging cases of significant protein flexibility.

A set of 80 congeneric CDK2 inhibitors75–77 and 26 temporally consistent x-ray

crystal structures78 offered the ability to consider an structure-guided modeling ap-

proach for which the therapeutic target of interest provided well studied structure-

activity relationships and protein structures. The series was split between 30 for

training and 50 for testing, and five protein structures were chosen based on their

combined coverage of the structural diversity present among the pool of proteins con-

sidered. In addition, a set of 56 PDB co-crystal structures of CDK2 bound to non-

covalent inhibitors was identified from Binding MOAD79 and were mutually aligned

in order to provide a direct comparison between the QMOD-generated model and

the actual CDK2 binding site under normal conformation variation. A second set

consisting of the first crystallographically determined structure of the adenosine A2A

receptor (PDB code: 3EML80) and 93 A2A antagonists offered an opportunity to

examine the integrated modeling approach on a much more challenging case with

a therapeutic relevant target for which limited structural information was available.

The structural flexibility of the single A2A structure was computationally explored

and provided a conformational ensemble from which 5 structures were chosen based

on combined structural coverage. The A2A inhibitors were organized temporarily and
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split between 63 used for training and 30 used for testing. Model predictive perfor-

mance was examined with respect to activity prediction and model coverage of the

A2A binding site.

Figure 5.1 provides an example of the CDK2 data set. Molecules 1-3 are N2, O6

substituted guanines and are the three most active compounds in the CDK2 con-

generic series. Molecules 4-9 are molecules inherited from the 5 crystal structures

chosen for structural guidance (1QMZ, 1KE6, 1KE8, 1H07, 1JVP). We considered

the effect of utilizing protein structures and bound ligand geometries on model induc-

tion and predictive performance on the 50 congeneric test set and more widespread

applicability on the set of 56 diverse CDK2 inhibitors for which x-ray crystal struc-

tures were available for post-facto evaluation. Note molecule number references do

not reflect a relationship to the gyrase ligand numbers in the preceding two chapters.

Figure 5.2 shows a diagram of the structure-guided QMOD procedure. QMOD

employs a multiple-instance machine learning procedure for model induction where

optimality involves fitting the pocket model to binding activity data and fitting ligand

poses to the model. The QMOD procedure has been described in previous work59–61,66

and a brief description here will highlight new developments of the structure-guided

approach. The structure-guided procedure begins with multiple protein structures

with bound ligands that provide insights to the conformational variability that may

exist between the protein pocket and bound molecules. An alignment hypothesis is

generated that aims at determining plausible bioactive poses of the ligands used for

model induction, the N2, O6 substituted guanines in this case. This is accomplished

by docking the most active training ligands (molecules 1-3) against the 5 representa-

tive crystal structures and caching the top 100 highest scoring poses for each ligand.

A single docked pose for each molecule is selected such that the combined mutual

3D similarity with the bound crystal ligands is maximized, yielding an alignment
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Figure 5.1: CDK2 Ligands used for the alignment hypothesis. Molecules 1-3 are
the top 3 most active ligands derived from the CDK2 congeneric series used in this
study. Molecules 4-9 are the bound ligands extracted from the 5 protein structures
chosen for structural guidance. Crystal ligands for which binding activity was readily
available (compounds 5-9) were included in the training set.

hypothesis that is informed by optimal fitting with the proteins and 3D geometric

concordance with bound crystal ligands. The hypothesis alignment seeds the align-

ment of the remaining training ligands, producing several hundred pose variants per
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molecule. A rich set of molecular fragments (probes) are generated providing a physi-

cal view of where the protein may exist. Probes types include hydrophobic (methane),

donor (N-H), and acceptor (C=O). The initial probe set is generated using the stan-

dard tessellation procedure that positions probes on the surface of the initial ligand

alignment, followed by a process that removes probes that are not within the vicinity

of similar type fragments observed in the protein binding pockets. A comparison of

panels A and D in Figure 5.2 reveals good overall coverage of the binding site between

the protein structures in A and the initial probe set in D. Regions at the front and

right-side are adequately covered by the initial rich probe set, while the hinge-biding

region at the top is correctly represented by steric and polar probes, and the opening

of the pocket at left remains unoccupied. The standard model induction procedure

proceeds with a probe search and iterative probe and ligand pose refinement until a

fully refined pocket model (termed pocket model) is derived (Figure 5.2E). Testing of

new molecules is carried out by flexibly fitting the ligand into the pocket model while

keeping the model fixed (Figure 5.2F).

There were three primary results of this study. First, the structure-guided QMOD

procedure produces models that are highly predictive within a congeneric series in two

contrasting cases where structural information was abundant, and where structural

information was severely limited for a suspected highly flexible pocket. The structure-

guided procedure performed comparatively well with the purely ligand-base approach

with respect to affinity prediction and rank ordering of the CDK2 congeneric test se-

ries. In the more challenging A2A case the structure-guided procedure performed

significantly better than standard ligand-based approach, highlighting the benefit of

integrating structural information in a case where protein flexibility is likely an im-

portant contributing factor in accurate activity and pose prediction. Second, the

structure-guided modeling procedure is more widely applicable and accurate in ac-

tivity and pose predictions across a wide variety of structurally diverse molecules.
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Figure 5.2: Derivation and testing of a QMOD pocket model proceeds in six auto-
mated steps: A) collection of multiple protein structures with bound ligands; B) an
alignment seed hypothesis is constructed from the 2-3 most active ligands, guided by
their fit to the protein pockets and similarity to corresponding bound poses; C) 100-
200 alignments for each training ligand are produced; D) a large set of probes (many
thousands) is created where interactions may exist, spatial arrangement is guided by
location of similar type fragments in the protein pockets; E) a small near-optimal set
is selected based on fit to experimental binding data and model parsimony, followed
by iterative probe and pose refinement; F) new molecules are tested by flexible align-
ment into the pocket to optimize score. The final pocket model is used in a fixed
configuration, but conformational flexibility within the corresponding protein pocket
is represented by probes being places in multiple positions.

On the structurally diverse CDK2 set the structure-guided QMOD procedure outper-

forms the standard ligand-based QMOD procedure with respect to rank correlation

and activity prediction error. The structure-guided procedure performs equivalently

well in ranking diverse molecules compared to molecular docking, but provides the
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additional benefit of lower prediction errors with better predicted pose performance.

Third, the structure-guided procedure produces models that shared high physical con-

cordance with the protein targets under investigation. In the CDK2 case the induced

model showed a direct relationship with key binding site elements known for their role

in ligand recognition. In the more challenging A2A case, the induced model showed

a direct correspondence to the shape and electrostatic characteristics of the pocket

while providing a testable hypothesis of protein flexibility and specific interactions

with ligand moieties.

The Surflex-QMOD methodology has been validated in prior studies.59,61,66 The

significance here relates to strategic data integration in the context of protein mod-

eling and ligand affinity prediction with an emphasis on binding site elucidation in

the presence of structural variability and cross-chemotype predictions on a scale that

pushes the boundaries of applicability of traditional 3D-QSAR and molecular docking

approaches. There is a dramatic benefit in making use of protein structural informa-

tion in the presence of significant protein flexibility and ligand structural diversity.

In the case of the congeneric chemical series studied here, it was not surprising

that the structure-guided QMOD procedure performed competitively well with the

purely ligand-based approach in a purely numeric sense with respect to prediction

errors and activity ranking. However, the benefit of utilizing protein structures mani-

fested itself with more accurate representations of the physicality of the protein-ligand

binding event. The structure-guided procedure also predicted the structurally diverse

molecules more accurately than the standard ligand-based procedure and ranked such

molecules equivalently well as molecular docking while yielding more accurate pre-

dictions of binding pose. The structure-guided modeling procedure demonstrated the

ability to leverage the strengths of both purely ligand-based and structure-based ap-

proaches. Structure-guided modeling provides the level of affinity prediction accuracy
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necessary for lead optimization and more wide spread applicability of ligand ranking

and pose prediction on structurally diverse molecules. In addition, the structure-

guided procedure provided a physically realistic model of the binding pocket that

intuitively highlights physical characteristics of the pocket important for ligand bind-

ing.

We believe that this approach of studying protein modeling and affinity prediction,

subject to the integration of different computational techniques, offers a means by

which to assess the real-world behavior of modeling systems. The results clearly

encourage the use of physically sensible approaches that maximizes information usage

by means of rational data integration.

5.3 Methods

5.3.1 Quantitative Modeling with Structural Guidance

The structure-guided QMOD procedure is initially guided by structural information

through ligand guidance during the alignment hypothesis generation. The top three

most active ligands are computationally docked to the protein structures and a single

pose for each ligand is chosen such that the combined mutual similarity with the

crystal bound ligands are maximized. Figure 5.3 shows the hypothesis alignment of

the top 3 most active CDK2 ligands used for model induction. Panel A shows the

selected poses in comparison with a bound ligand (compound 5) derived from one of

the protein structures used as input (PDB code: 1KE6). This example highlights the

high structural concordance provided by the matching polar moieties at the top-right,

matching ring orientation at center, and matching shape and electrostatically exposed

profile at the left. Panel B shows the the same alignment hypothesis in comparison to

the bound pose of a close analogue (compound 10). This example shows the structural
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Figure 5.3: Alignment hypothesis yields conformational concordance among highly
active CDK2 ligands while satisfying physical constraints of observed bound confor-
mations: A) the hypothesis alignment of the top three most active CDK2 ligands
(1-3) with crystal structure bound pose of 5.; B) hypothesis alignment of ligands 1-3
with bound pose of structurally related analog 10 (PDB code: 1H1S). Compound 10
was not used during the hypothesis alignment generation.

relevance provided by a structure-guided alignment hypothesis procedure. Molecule

10 was not used during the hypothesis alignment generation or model induction,

but served as an excellent validation of the structure-guided alignment hypothesis

procedure. Model induction was carried out as previously described (see Figure 5.2)

and predictive performance was evaluated.
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5.3.2 Initial Probe Generation Guided by Protein Structures

A rich set of molecular fragments (probes) are generated providing a physical view

of where the protein may exist. The initial probe set is generated using the standard

tessellation procedure that positions probes on the surface of the initial ligand align-

ment, followed by a process that removes probes that are not within the vicinity of

similar type fragments observed in the protein binding pockets. A detailed compari-

son of the top-left and bottom-right panels in Figure 5.4 reveals good overall coverage

of the binding site between the protein structures and the filtered probe set. Regions

at the front and right-side are adequately covered by the initial rich probe set, while

the hinge-biding region at the top is correctly represented by steric and polar probes,

and the opening of the pocket at left remains unoccupied.

Figure 5.5 provides a detailed look at the hinge binding coverage retained by the

filtered probe set. Shown on the right is a zoomed-in view of the top portion of the

pocket revealing a multiplicity of polar probe positions covering residues Glu81 and

Leu83 in the hinge binding region.

The standard model induction procedure proceeds with a probe search and iter-

ative probe and ligand pose refinement until a fully refined pocket model is derived

(see Figure 5.2E). Testing of new molecules is carried out by flexibly fitting the ligand

into the pocket model while keeping the model fixed (see Figure 5.2F).
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Figure 5.4: The structure-guided initial probe set provides good coverage of the CDK2
binding pocket. At the top-left shows the 5 CDK2 crystal structures used for model
guidance in comparison to the volume occupied by the initial ligand alignment. At the
top-right shows the initial probe set immediately following the standard tessellation
procedure and at bottom-right shows a sample of the probes remaining after filtering.
The filtered probe set provides good overall coverage of the pocket that mimics phys-
ical constraints provided by the protein (top-left) while leaving unoccupied regions
exposed.

5.4 Results and Discussion

5.4.1 Effects of Integrating Structural Information on Model Predictive

Performance

As described above (and shown in Figure 5.2), model induction followed a hybrid ap-

proach utilizing molecular docking and 3D similarity during the alignment hypothesis

generation. Protein structural guidance was enforced during the initial probe pool

generation, and the procedure followed the previously established QMOD learning
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Figure 5.5: The structure-guided initial probe set provides good coverage of hinge
binding region known to play a critical role in ligand binding in the ATP binding site
of CDK2. Shown on the right is a zoomed-in view of the top portion of the pocket
revealing a multiplicity of polar probe positions covering residues Glu81 and Leu83
in the hinge binding region.

protocol to produce a physically realistic model of the protein binding pocket. Figure

5.6 shows the final pocket model at left and prediction performance of the 50 CDK2

congeneric compounds at right. The model was highly predictive within this con-

generic series, producing an average error of 0.61 log units and a Kendall’s Tau rank

correlation of 0.73 (p < 0.01). At left shows the final pocket model with the predicted

pose of molecule 12 with high confidence stemming from training molecule 11. The

predicted activity of compound 12 was 7.7, a 0.5 log unit deviation of its pK i of 7.2.

At right shows the overall prediction performance on the entire set, highlighting an

excellent correlation between the predicted and experimentally determined binding

activities.
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Figure 5.6: The induced CDK2 pocket model produced nominally accurate predic-
tions within the CDK2 congeneric series. At left shows the final pocket model in thin
sticks and skin with molecule 12 (atom-colored sticks) in its final predicted pose with
high confidence derived from training molecule 11 (cyan). The predicted activity of
12 was 7.7, a 0.5 log unit deviation of its pK i of 7.2. At right shows the activity
prediction performance on the entire congeneric test set. The overall prediction error
was 0.61, with a Kendall’s Tau rank correlation of 0.73 (p < 0.01, by permutation
analysis), and an R2 of 0.71.

In addition, 7 out of the top 10 confidently predicted most active test molecules

appeared among the top 10 bonafide most potent molecules in the entire test set.

Table 5.1 shows a detailed breakdown of the prediction performance on the 50 blind

test molecules with the top 10 confidently predicted most active ligands highlighted

with a bold underline.

108



Table 5.1: Performance of the CDK2 pocket model on the 50 blind congeneric ligands
(Compound numbers as listed in Reference 3)a. 7 out of 10 of the confidently predicted
most active molecules (boldface underlined) were among the top 10 bonafide most
active ligands.

Rank Mol. Exptl. Pred. Error Conf. Rank Mol. Exptl. Pred. Error Conf.
1 29 8.3 7.7 0.6 0.91 26 55 5.8 5.6 0.2 0.72
2 64 7.3 7.6 0.3 0.74 27 33 5.6 7.2 1.6 0.51
3 46 7.2 7.7 0.5 0.87 28 34 5.6 5.6 0.0 0.84
4 44 7.2 7.1 0.1 0.87 29 31 5.6 5.5 0.1 0.75
5 45 7.0 6.9 0.1 0.88 30 56 5.3 6.5 1.2 0.83
6 59 6.9 7.8 0.9 0.74 31 30 5.3 4.9 0.4 0.67
7 53 6.9 6.8 0.1 0.91 32 80 4.9 5.7 0.8 0.49
8 58 6.8 8.5 1.7 0.77 33 36 4.9 5.6 0.7 0.78
9 78 6.7 9.1 2.4 0.83 34 20 4.8 4.9 0.1 0.63
10 47 6.7 7.0 0.3 0.84 35 27 4.8 4.9 0.1 0.51
11 50 6.7 6.9 0.2 0.91 36 7 4.8 4.8 0.0 0.67
12 49 6.7 6.3 0.4 0.86 37 15 4.8 4.2 0.6 0.46
13 70 6.6 7.8 1.2 0.50 38 17 4.7 5.2 0.5 0.44
14 74 6.6 7.6 1.0 0.73 39 19 4.7 4.7 0.0 0.44
15 71 6.6 6.8 0.2 0.70 40 24 4.5 5.1 0.6 0.55
16 69 6.5 8.0 1.5 0.71 41 16 4.5 5.1 0.6 0.60
17 60 6.5 7.6 1.1 0.82 42 18 4.5 4.7 0.2 0.39
18 72 6.5 6.8 0.3 0.44 43 13 4.5 4.6 0.1 0.64
19 37 6.4 6.8 0.4 0.83 44 3 4.3 4.9 0.6 0.64
20 63 6.3 8.0 1.7 0.75 45 10 4.3 4.6 0.3 0.61
21 62 6.3 7.5 1.2 0.80 46 2 4.3 4.4 0.1 0.65
22 61 6.3 7.1 0.8 0.71 47 26 4.2 6.2 2.0 0.51
23 41 6.2 6.0 0.2 0.84 48 23 4.2 5.1 0.9 0.63
24 52 6.1 6.4 0.3 0.46 49 11 4.2 5.1 0.9 0.47
25 28 6.0 5.9 0.1 0.77 50 4 4.1 4.3 0.2 0.61

aExperimental, predicted, and error values are units of pK i.

The significant benefit of integrating protein structural information with the QMOD

learning procedure manifested itself with excellent predictive performance on the 56

diverse CDK2 inhibitors. Predictive performance was quantified by deviations of affin-

ity predictions from known pK i measurements, comparative ranking of molecules by

predicted affinity and pK i, and root-mean-squared deviations between the model’s

predicted binding pose compared to bound ligand poses determined by x-ray crystal-

lography. On the entire test set the structure-guided model yielded an average activity

prediction error of 1.0 log unit and an average RMSD 1.84Å, with a Kendall’s Tau

rank correlation of 0.26 (p < 0.01). The model performed systematically better on

ligands for which confidence was higher. At confidence levels of 0.5 and higher the
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Figure 5.7: The structure-guided modeling procedure produced accurate pose and
activity predictions on the diverse set of 56 CDK2 inhibitors. Panels A-D show four
examples of diverse CDK2 ligands in their predicted poses (atom-colored) superim-
posed with their crystal structure bound pose (green).

model produced an average error of 0.9 and an average RMSD 1.57Å, with a Kendall’s

Tau rank score of 0.32 (p < 0.01). At confidence levels of 0.7 and above the model

yielded an average error of 0.7 and an average RMSD of 1.2Å, with a Kendall’s Tau

ranking score of 0.74 (p < 0.01). Figure 5.7 shows examples of predictions made

on the diverse test set, highlighting excellent performance on predicted affinity and

bioactive geometry.
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5.4.2 Relationship of the Induced Pocket Model with the Cyclin-dependent

Kinase 2 ATP Binding Site

In the forgoing we have discussed the effects of integrating protein structural infor-

mation on model performance with respect to accurate prediction of ligand activity

and bioactive pose with the protein pocket. Another attribute worth evaluating is

the physical relationship of the induced model with the protein binding pocket. The

pocket model presents a view of the protein that is directly informative of the physical

characteristics that best explain the activities of known ligands (i.e. the training set)

while highlighting pocket elements that enable broader compatibility with diverse

ligands exhibiting potentially significant structural novelty. Figure 5.8 highlights the

physical relationship between the model and the crystallographically determined bind-

ing site of 2G9X with a bound ligand. Key interaction points on the hinge binding

region are well represented by the induced pocket model. Electrostatic interactions

provided by Asp86 are modeled by an acceptor probe, and two hydrophobic probes

flanking the right and left sides of compound 13 closely match physical constraints

provided by Asp86 and ILe10 (Figure 5.8A). The backbone carbonyl of Glu81 is mod-

eled by an acceptor probe and the NH of Leu83 is represented by donor probes (Figure

5.8B). Panel C shows an outward view of the buried portion of the pocket highlight-

ing structural concordance between a series of hydrophobic probes and the arc-like

shape of the pocket defined by ILe10, Ala31, Val64 and hinge binding residues 80-83.

The electrostatic interaction observed between Lys89 and the sulfonamide groups is

modeled by a donor probe (Figure 5.8D).

In addition, the pocket model provided a highly concordant physical shape of

the binding pocket, sharing not only key binding elements but the overall structural

configuration. Figure 5.9 shows examples of these shared characteristics.
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Figure 5.8: The induced pocket model matches key physical characteristics of the
binding pocket. The predicted pose of compound 13 (grey) is shown with the bound
pose (green) to provide a frame of reference. Panels A-D provide detailed snapshots of
key regions of the binding pocket that are well represented by the pocket model. (A)
Polar aspects provided Asp86 are captured by an acceptor probe and two hydrophobic
probes provide matching physical constraints on the right and left-side of the pocket.
(B) The backbone carbonyl of Glu81 is modeled by an acceptor probe and the NH
group of Leu83 is captured by two donor probes. (C) Hydrophobic probes model
the physical shape of the buried pocket region defined by ILe10, Ala31, Val64, and
hinge residues 80-83. (D) Lys89 is represented by a donor probe at the opening of
the pocket.

5.4.3 Effects of Structure-guided Modeling compared to Purely Structure-

Based or Ligand-Based Approaches

Intuitively using more information gathered from a protein crystal structure may

guide one towards developing a more concise understanding of the physical proper-
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Figure 5.9: The Structure-guided QMOD procedure produces a pocket model that
captures the overall shape and electrostatic elements of the CDK2 binding pocket.
The 2G9X binding pocket is shown in blue skin with the final pocket model in thick
sticks with yellow skin. The predicted pose of compound 13 (atom-colored sticks) is
shown with the bound pose (green sticks) for a frame of reference. The front-view
highlights the strong physical concordance the pocket model exhibits with the binding
pocket, overall coverage of the perimeter of the binding cavity. The side-view shows
a rotated clipped view of the pocket model and protein highlighting concordance in
overall volume between the pocket model and binding pocket.

ties governing protein-ligand binding. To directly assess this effect we carried out

controls that employed purely ligand-based and structure-based approaches individu-

ally. We compared the predictive performance of the structure-guided QMOD proce-

dure against the standard ligand-based QMOD approach and results produced from

Surflex-Dock. Although employing these methods individually may yield informative

results within relevant applications, the structure-guided approach was observed to be
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more broadly applicable and accurate in predicting ligand affinity, binding modes, and

identifying key protein residues responsible for ligand binding. In the ligand-based

approach we carried out an analogous experiment to the structure-guided procedure

using the same set of 30 CDK2 training ligands and the top 3 most active ligands (see

Figure 5.1 compounds 1-3) for the hypothesis alignment generation. The standard

QMOD procedure61 was carried out using only information derived from the train-

ing ligand structures and activities. Within the congeneric test series the standard

ligand-based approach yielded excellent predictions with an average prediction error

of 0.5 with a Kendall’s Tau rank score of 0.73, equivalently powerful compared to the

structure-guided QMOD model. The benefits provided by the structure-guided pro-

cedure became evident when testing the 56 structurally diverse CDK2 inhibitors. On

the entire set of diverse ligands the structure-guided model yielded a Kendall’s Tau

rank score of 0.26 (p < 0.01) whereas the standard ligand-based model produced a

0.07 Kendall’s Tau with an insignificant p-value of 0.25. The structure-guided model

predicted 75% of the molecules with confidence greater than 0.5 with an average

prediction error of 0.9, average RMSD of 1.57Å, and a Kendall’s Tau rank score of

0.32 (p < 0.01). The standard model predicted 50% of the compounds with confi-

dence greater than 0.5 with an average error of 2.17, average RMSD of 3.84Å, and a

Kendall’s Tau rank score of 0.08 (p = 0.30). A close examination of the prediction

errors again revealed the dramatic benefit the structure-guided procedure provided.

Figure 5.10 shows a cumulative distribution of the prediction errors produced by

the structure-guided and standard QMOD procedures. The structure-guided pocket

model produced significantly fewer prediction errors than the standard ligand-based

model. The structure-guided model predicted 46% of the inhibitors with errors less

than 0.75 log units, 63% with errors less than 1.0, and 77% less than 1.5. The stan-

dard ligand-based model predicted 11% of the compounds with errors less than 0.75,

18% with errors less than 1.0, and 30% less than 1.5.
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Figure 5.10: The structure-guided QMOD procedure (green) performed more accu-
rately than a purely ligand-based approach on the structurally diverse CDK2 com-
pounds. The structure-guided pocket model produced significantly fewer prediction
errors than the standard ligand-based model. The structure-guided model predicted
46% inhibitors with errors less than 0.75 log units, 63% with errors less than 1.0,
and 77% less than 1.5. The standard ligand-based procedure predicted 11% of the
compounds with errors less than 0.75, 18% with errors less than 1.0, and 30% less
than 1.5.

From a purely structure-based approach one may nominally resort to molecular

docking in attempt to rank order a set of molecules and identify highly active ligands

as leads for further optimization. In this light we employed molecular docking with

the intention of producing accurate ligand rankings and identifying highly active

compounds within our diverse set of 56 CDK2 inhibitors. We started with similar

conditions used for the structure-guided QMOD approach which included the same
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5 protein crystal structures with bound ligands (see Figure 5.2A). The intention here

was to provide a direct comparison of the structure-guided QMOD procedure with

a standard docking approach and compare their predictive performance. On the

entire set of 56 inhibitors the structure-guided QMOD method produced a 0.26 (p

< 0.01) Kendall’s Tau rank score with an average activity prediction error of 1.0 log

unit and an average RMSD of 1.8Å (see Figure 5.7 for examples). At confidence

levels of 0.5 and higher the structure-guided model ranked 42 molecules with a 0.32

Kendall’s Tau score with an average error of 0.9 and an average RMSD of 1.4Å. At

confidence levels of 0.7 and higher the structure-guided model ranked 11 molecules

with a 0.74 Kendall’s Tau score with an average error of 0.7 and an average RMSD of

1.2Å. Overall the docking procedure performed notably well in ranking highly active

ligands (i.e. pK i > 8.0) over those with low activity (i.e. pK i < 6.0). However,

compared to the structure-guided approach, molecular docking was less predictive

with molecules for which QMOD predicted with moderate to high confidence. Sets

of molecules predicted with higher confidence had notably narrow ranges of binding

activity. The entire set of 56 inhibitors provided a pK i range of 3.5-9.9 spanning

6.4 log units. The set of ligands predicted with 0.5 confidence and higher provided a

pK i range of 4.5-9.9 spanning 5.4 log units, and the set predicted with 0.7 confidence

and higher provided a pK i range of 5.0-8.5 spanning 3.5 log units. On the entire set

56 inhibitors, Surflex-Dock produced a Kendall’s Tau rank score of 0.26 (p < 0.01)

yet with an average RMSD of 2.3Å. On the set of ligands QMOD predicted with

at least 0.5 confidence, docking produced a Kendall’s Tau of 0.29 (p < 0.01) also

with an average RMSD of 2.3Å. On the set of ligands QMOD predicted with at least

0.7 confidence, docking produced a Kendall’s Tau score of 0.38 with an insignificant

p-value of 0.10 determined by permutation analysis, with minimal improvement of

pose prediction averaging 2.1Å RMSD. Table 5.2 shows a detailed breakdown of the

prediction performance on the 56 diverse CDK2 inhibitors.
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Table 5.2: Test summary of 56 structurally diverse CDK2 inhibtors. The test set
was evaluated in 3 categories: molecules for which QMOD predicted with confidence
greater than 0.7, 0.5, and all molecules. Structure-guided QMOD provided reliably
better predictive performance for predictions made with increased confidence. Surflex-
Dock ranked the entire set comparably well, yet was nominally less applicable among
the sets of molecules with narrow activity ranges (i.e. confidence categories 0.5 and
0.7).

Structure-guided QMOD
Confidence NMols pK i range Average Errora Kendall’s Tau (p < 0.01) RMSD (Å)

0.7 11 5.0-8.5 0.7 0.74 1.2
0.5 42 4.5-9.9 0.9 0.32 1.6
all 56 3.5-9.9 1.0 0.26 1.8

Surflex-Dock
Confidence NMols pK i range Average Errora Kendall’s Tau (p < 0.01) RMSD (Å)

0.7 11 5.0-8.5 2.3 0.38b 2.1
0.5 42 4.5-9.9 2.0 0.29 2.3
all 56 3.5-9.9 1.9 0.26 2.3

aError values are units of pK i.
bp = 0.10

5.4.4 Structural guidance in the Presences of Limited Protein Structure

Information

It is often the case that one will possess limited structural information for the protein

target under investigation. With limited structures one inherits several challenges

with respect to predicting ligand binding behaviors. To demonstrate applicability of

the structure-guided modeling procedure in this more challenging scenario we applied

the protocol to another therapeutically relevant target, the adenosine A2A receptor.

Structural determination of the adenosine A2A receptor has historically proven to be

challenging and limited. For structural guidance we used the first determined x-ray

crystal structure of the adenosine A2A receptor (PDB code: 3EML80). A set of 90

A2A antagonists was gathered from studies carried out in recent design efforts aimed

towards developing potent and selective pyrimdine-based compounds as human A2A

receptor antagonists.81–85 The data spanned 5 optimization efforts, training and test

ligands were organized temporally, and divided between 60 used for training (pK i
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range 6.0-9.7) and 30 used for testing (pK i range 7.4-9.7). Figure 5.11 provides

examples of the ligands used in this experiment. In addition, three compounds 17-

1980,86 were included with the intention of providing structurally relevant guidance

during the hypothesis alignment and model induction procedure. Molecule 17 was

the first A2A bound ligand observed via x-ray crystallography (PDB code: 3EML,

2008). Molecules 18 and 19 were previously identified and well established potent

A2A antagonists.

The structure-guided modeling procedure was carried out as described previously

(see Figure 5.2) with a slight augmentation of the initial preparation of the protein

and hypothesis alignment. We employed the Rosetta Backrub protocol87 to computa-

tionally examine the receptor’s structural flexibility. An ensemble of 100 alternative

backbrub conformations were generated from which 5 structures were chosen based

on their combined structural coverage of the pool of conformations. The hypothesis

alignment was generated by employing a similarity-based alignment of compounds

19 and 20 to a joint target that included the crystal ligand 17 and the highest scor-

ing docked pose of molecule 18. The structure-guided modeling procedure continued

as described previously, producing a pocket model that performed well with respect

to activity prediction and model coverage of the binding site. Among the 30 test

molecules, the structure-guided procedure yielded an average error of 0.85 log units

with a Kendall’s Tau rank score of 0.60 (p < 0.01). 7 out of 10 of the confidently

predicted most active ligands were among the top 10 bonafide most active molecules.

Table 5.3 shows the prediction performance on the entire test set with the top 10

confidently predicted most active ligands highlighted with a bold underline.

In addition to excellent numerical predictive performance, the induced model cap-

tured the detailed shape of pocket while providing a good representation for specific

polar contacts of the A2A binding pocket. Figure 5.12 highlights the relationships
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Figure 5.11: Training molecules used for induction of the adenosine A2A pocket model.
The A2A data set consisted of a congeneric series of 90 ligands ligands developed dur-
ing optimization efforts of a pyrimdine-based antagonist of the human adenosine A2A

receptor.81–85 The ligands were organized temporarily and separated into 60 training
molecules and 30 test ligands. Molecules 20-23 are examples of this series. Molecules
17-1980,86 were included with the intention of providing structurally relevant guid-
ance during the hypothesis alignment and model building procedure. Molecule 17
was the first A2A bound ligand observed via x-ray crystallography (PDB code: 3EML,
2008). Molecules 18 and 19 were previously identified and well established potent
A2A antagonists. Compounds 17-20 served as the bases for the structure-guided
alignment hypothesis.
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Table 5.3: Performance of the induced binding pocket model on the 30 blind A2A

ligands (Compound numbers as listed in ChEMBL 1388). 7 out of 10 of the confidently
predicted most active molecules (boldface underlined) were among the top 10 bonafide
most active ligands.

Rank Mol. Exptl. Pred. Error Conf. Rank Mol. Exptl. Pred. Error Conf.
1 429125 9.7 7.8 1.9 0.82 16 256125 8.9 8.7 0.3 0.83
2 256123 9.5 8.4 1.1 0.80 17 256327 8.9 8.6 0.3 0.71
3 404863 9.5 8.3 1.2 0.89 18 255911 8.7 7.9 0.8 0.78
4 253317 9.5 8.1 1.4 0.82 19 256546 8.6 8.4 0.2 0.76
5 256124 9.5 7.8 1.8 0.83 20 255699 8.4 7.7 0.7 0.83
6 401895 9.4 8.8 0.6 0.77 21 255267 8.4 7.9 0.6 0.88
9 403846 9.3 8.7 0.6 0.72 22 404864 8.4 7.2 1.2 0.84
8 256332 9.3 8.5 0.8 0.83 23 402781 8.2 7.2 1.1 0.74
7 256331 9.3 8.4 0.9 0.86 24 255860 8.2 8.0 0.1 0.76
10 403845 9.2 8.5 0.6 0.79 25 255649 8.1 7.0 1.1 0.81
11 253528 9.2 7.8 1.4 0.81 26 404739 8.1 6.8 1.3 0.72
12 429850 9.0 7.9 1.2 0.65 27 255859 7.9 7.1 0.8 0.82
13 256547 9.0 8.1 0.9 0.83 28 255861 7.9 7.6 0.3 0.72
14 256548 9.0 7.8 1.2 0.82 29 255647 7.8 7.0 0.8 0.76
15 256755 8.9 8.9 0.1 0.86 30 404744 7.4 7.2 0.2 0.70

aExperimental, predicted, and error values are units of pK i.

between the pocket model and the A2A binding pocket. Two acceptor probes were in

excellent spatial agreement with the carboxylate side-chain of Glu169. The alignment

of multiple A2A receptor binding pockets revealed significant flexibility of Glu169, and

highlighted the potential for interactions with the protonated amine commonly found

within this series of compounds. Donor and acceptor probes captured polar interac-

tions provided by Asn253 on the furan oxygen and pyrimidine nitrogen, also common

among the ligands used in this study. Hydrophobic probes provided a well defined

contour of the binding pocket that was in good spatial agreement with ILe64, Phe159,

Met168, Trp384, Leu387, His388, and ILe412 (details not shown).

For the sake of thoroughness, a ligand-based control was employed using the stan-

dard QMOD procedure. A model was induced using the same 60 A2A training ligands,

using the top 2 most active compounds for the hypothesis alignment. The standard

model performed nominally well, yielding an average error of 0.87 and a Kendall’s

Tau rank score of 0.42 (p < 0.01). The performance improvements of the structure-
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Figure 5.12: The structure-guided model showed a direct relationship with the shape
and polar characteristics of the A2A binding pocket. (A) A side clipped view of the
the A2A binding pocket (PDB code: 3EML, blue skin) shown in comparison to the
induced model shown with sticks and yellow skin. There is high congruence between
the shape of the pocket model and the crystal structure of the binding pocket (3EML).
(B) Shown is test molecule 24 (atom-colored) in its final predicted pose displayed
with training molecule 25 (cyan) from which the confidence measure was derived.
The predicted activity of compound 24 was 8.9, revealing a 0.2 log unit deviation
from its pK i of 9.1. Shown in thin sticks are multiple crystal structures displaying
the degree of flexibility exhibited by Glu160 (3EML, 2YDO, 2YDV, 3PWH, 3QAK,
3REY, 3UZA, 3VG9, 4EIY) and in thick sticks are the corresponding acceptor probes
modeling their potential interactions with the protonated amines of compounds 24
and 25. (C) Donor and acceptor probes are well matched with interactions provided
by Asn253 (3EML, thin sticks).

guided model was not only apparent with respect to ligand ranking but the model

showed a higher congruence with the protein binding pocket and more plausible pre-

dictions of bioactive poses. Figure 5.13 shows the different model configurations
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presented by the standard and structure-guided modeling procedures. The standard

procedure presents a horizontally extended configuration of the training ligands and

pocket model, an arrange that would suggest ligand-induced conformation arrange-

ment of the pocket to accommodate such a binding mode. The structure-guided model

presents an upright configuration of the training ligands with the pocket model sug-

gesting a binding geometry that is more consistent with the upright position of the

crystal ligand 17 and the optimally docked pose of molecule 18. To our knowledge

a co-crystal structure of the A2A receptor with the pyrimidine inhibitors discussed in

this study (i.e. molecules 20-23) has not been determined. This scenario presents

challenges with respect to pose prediction validation for this particular data set; how-

ever, this provides an interesting testable hypothesis addressing the general binding

configuration of such pyrimdine-based ligands and how the level of protein flexibility

plays a factor in such binding.

5.5 Conclusion

We believe that this study has approached the QSAR modeling question with a unique

focus of data integration. We explored how different computational modeling strate-

gies performed within narrow and broad chemical classes. There were three primary

results. First, the structure-guided QMOD procedure produced models that were

highly predictive within a congeneric series in two separate test cases. The structure-

guided procedure performed comparatively well with the purely ligand-base approach

with respect to affinity prediction and rank ordering of the CDK2 congeneric test se-

ries. In the more challenging A2A case the structure-guided procedure performed no-

ticeably better than standard ligand-based approach with respect to ranking ligands

and sharing physical congruence with the binding site. These results highlighted the

benefit of integrating structural information in a case where protein flexibility is likely
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Figure 5.13: The standard and structure-guided QMOD procedures present different
binding modes and model configurations of how the training ligands may fit inside the
binding pocket. (A) The standard pocket model (atom-colored sticks with skin) and
final optimal training poses (wires and sticks with gold skin) present a horizontally
extended configuration of the potential binding interaction. Training molecule 20
(thick sticks) is shown below in its final predicted pose. (B) The structure-guided
pocket model (atom-colored) and the final optimal training poses (wires and sticks
with gold skin) display a vertically extended conformation.

an important contributing factor in accurate activity and pose prediction. Second,

the structure-guided modeling procedure was more widely applicable and accurate in

activity and pose predictions across a wide variety of structurally diverse molecules.

On the structurally diverse CDK2 set the structure-guided QMOD procedure outper-

formed the standard ligand-based QMOD procedure with respect to rank correlation

and activity prediction error. The structure-guided procedure performed equivalently

well in ranking diverse molecules compared to molecular docking, but provided the
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additional benefit of better overall performance at higher confidence levels. Third,

the structure-guided procedure produced models that shared high physical concor-

dance with the protein targets in this study. In the CDK2 case the induced model

showed a direct relationship with key binding site elements known for their role in

ligand recognition. In the more challenging A2A case, the induced model showed

a direct correspondence to the shape and electrostatic characteristics of the binding

pocket while providing a testable hypothesis of protein flexibility and interactions with

specific ligand moieties. We demonstrated the applicability of the structure-guided

QMOD procedure in two contrasting scenarios: one in which protein structural infor-

mation was abundant as seen with CDK2, and one in which structural information

was very limited as in the A2A case.
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Chapter 6

Conclusion and Future Directions

The field of computational structure-activity modeling in medicinal chemistry has a

long history, with methods development going back at least 40 years.65 Such methods,

however, have frequently relied upon models that only bear a tangential relationship

to the physical process of protein-ligand binding. The QMOD approach, by directly

addressing the underlying physical phenomena of protein-ligand binding, is able to

provide predictions for both binding affinity and binding mode, and it is able to do

so with a broad domain of applicability. Models can be induced, and predictions

profitable made, on structurally diverse scaffolds.

In the context of real-world application of QSAR methods, modeling is generally

done in the context of an iterative process of lead optimization. The models them-

selves are refined using data that is produced, in part, based on predictions derived

from model guidance. Reliance upon models that have a narrow applicability domain

have a hidden cost when used iteratively. Sophisticated machine learning methods

that rely upon correlation will tend to make “guesses” on structurally novel com-

pounds toward the middle range of activity seen among training compounds (the

middle generally being the most statistically likely given the priors). So, a compound

that is both structurally novel and is actually among the most potent seen so far will

generally be significantly underpredicted. Selections made using methods that have

an implicit bias against novel compounds will guide a chemical trajectory that will
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make incremental modifications to known active molecules and will passively steer

away from many profitable avenues of exploration.

The QMOD approach has no such bias, because it is a physical model. Molecules

whose optimal pose produces a high score need not be statistically “similar” to any

training compounds. Further, the QMOD approach allows for the explicit compu-

tation of structural novelty: the degree to which a new molecule physically explores

space that has not been explored before. By making use of this novelty computa-

tion to explicitly select some molecules that will broaden the structural scope of the

model, it is possible to dramatically increase the diversity of potent molecules that

result from synthetic exploration. The use of QMOD in such a scenario was explored

on a series of gyrase inhibitors, for which synthesis order was known.61 The molecules

used in the study were taken from a lead optimization program conducted at Vertex

Pharmaceuticals. While there are many details to the study worth highlighting,61

the impact of active selection of structurally novel compounds is particularly strik-

ing. Active pursuit of structurally novel compounds uncovered a series of potent

compounds, sharing a core scaffold with others, but branching so as to occupy an

unexplored pocket. These branched compounds also yielded novel biological effects

in terms of their selectivity profiles when compared with the linear family.

In the broader aspect of computer-aided drug design, ligand structures and as-

sociated activities can be profitably exploited to make better use of experimentally

determined protein structural information. In this work, we have also shown how to

construct QMOD pocket models to represent protein binding sites in a manner that

is constrained to make use of direct structural information. The clear extension to

the method is to dispense with the pocketmol formalism and instead to refine the

structures of an ensemble of aligned protein binding pockets. The goal would be to

use the refined ensemble directly, with a simple docking-based scoring scheme, for
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affinity prediction. This requires a simple extension to the multiple-instance learning

formalism, where in addition to the ligands having the potential for variation, the

binding site itself would also be represented as variants. The score for a ligand given

an ensemble of protein pocket variants would simply be the one resulting from the

optimal fit to any of the variants. Such an approach fits in the gap between the

approach described here and the purely physics-based simulation-oriented methods.

In any event, the results reported here encourage the development and use of

hybrid methods that maximize information gleaned from different sources, includ-

ing both biophysical information on protein structure and activity information from

experimental determination of ligand activities. We believe that a shift in QSAR

modeling that embeds more physical realism is both feasible and is a valuable direc-

tion for the field to take.
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Appendix A

QMOD Usage

Descriptions for all the command-line options discussed in this dissertation are shown

here. Surflex Library v2.716, QMOD v1.500

Command sf-qmod runsetup QMF QMF has parameters and pointers to other files. The

Input QMF TrainMols runsetup command produces scripts to drive the

Output RunSetup-qm training procedure. The TrainMols argument contains

RunTrain-qm[012] pathnames to molecule files and activity data.

Command source RunSetup Hypothesis generation, initial ligand alignement, probe

Input [Files auto-generated by runsetup] set generation

Output qm-loghypo-hypo*.mol2

Command source RunTrain-qm0 Pocketmol 0 build, optimal training poses, assessment

Input [Files auto-generated by runsetup] of model parsimony. Note that the same procedure

Output final-qm0-best-pocketmol.mol2 would be followed for RunTrain-qm1 and

final-qm0-best-poses.mol2 RunTrain-qm2, producing analogous files.

final-parsim-qm0

Table A.1: Generating an initial set of models from data with Surflex-QMOD.
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Command sf-qmod runtest QMF 0 round0-TestList Initial test of the round0

source RunTest-qm0 model, specifically selecting

Input round0-TestList model 0 (of three).

Output qm0-selectmols-report.mol2

qm0-topresults.mol2

Command sf-qmod runrefine QMF 0 round0-NewTrain Refinement of the original

source RunRefine-qm0-ref01 round0 model proceeds in the

Input round0-NewTrain same folder and requires new

Output final-qm0-ref010-best-pocketmol.mol2 training data and explicit

final-qm0-ref010-best-poses.mol2 specification of the desired

QMODRunFile-qm0-ref01 model number.

Command sf-qmod runtest QMF-qm0-ref01 0 round1-TestList Testing of the round1 model

source RunTest-qm0-ref01 is analogous to testing of the

Input round1-TestList original model. Model

Output qm0-ref010-selectmols-report.mol2 numbers for refined models

qm0-ref010-topresults.mol2 are always 0.

Command sf-qmod runrefine QMF-qm0-ref01 0 round1-NewTrain Refinement of the round1

source RunRefine-qm0-ref02 model requires the

Input round1-NewTrain automatically generated

Output final-qm0-ref020-best-pocketmol.mol2 QMOD refinement run file

final-qm0-ref020-best-poses.mol2 and requires new training

QMF-qm0-ref02 data.

Command sf-qmod runtest QMF-qm0-ref02 0 round2-TestList Testing of the round2 model

source RunTest-qm0-ref02 is analogous. Iteration repeats

Input round2-TestList the runrefine and runtest

Output qm0-ref020-selectmols-report.mol2 commands while

qm0-ref020-topresults.mol2 incrementing round number.

Table A.2: Iterative predictive testing and refinement of a QMOD pocketmol.
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