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Abstract

We report a facile method to synthesize stereodefined quaternary centers from reactions of arynes 

and related strained intermediates using β-ketoester-derived substrates. The conversion of β- 

ketoesters to chiral enamines is followed by reaction with in situ generated strained arynes or 

cyclic alkynes. Hydrolytic workup provides the arylated or alkenylated products in enantiomeric 

excesses as high as 96%. We also describe the one-pot conversion of a β-ketoester substrate to the 

corresponding enantioenriched α-arylated product. Computations show how chirality is 

transferred from the N-bound chiral auxiliary to the final products. These are the first theoretical 

studies of aryne trapping by chiral nucleophiles to set new stereocenters. Our approach provides a 

solution to the challenging problem of stereoselective β-ketoester arylation/alkenylation, with 

formation of a quaternary center.
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INTRODUCTION

Arynes have historically been avoided as synthetic intermediates as a result of their high 

reactivity.1,2 However, recent studies have demonstrated that arynes can be generated under 

mild reaction conditions,3 trapped regioselectively using predictive models,4 and employed 

in a host of synthetic applications. The utility of arynes is evident, as they have now been 

used to synthesize natural products, ligands, materials, agrochemicals, and pharmaceutical 

agents (e.g., 1−3, Figure 1a).1,5

The majority of reported synthetic applications of arynes are intermolecular reactions that 

lead to achiral or racemic products.5d,e,6 We questioned if arynes and related strained 

intermediates could instead serve as building blocks to generate enantioenriched products 

bearing quaternary centers. Only two methodologies leading to intermolecular, 

stereoselective aryne trappings have been reported and are limited to the synthesis of tertiary 

stereocenters.7,8

We considered the reaction manifold in which β-ketoesters 49 would be trapped with 

strained alkynes 5, to give their corresponding α-arylated products 6 with formation of a 

quaternary stereocenter (Figure 1b).10 As prior efforts to achieve this direct functionalization 

in a racemic sense were accompanied by an undesired C−C bond fragmentation,11 we 

considered a two-step, alternative approach. First, β-ketoesters 4 would be treated with 

amines 7 to afford the corresponding enamines 8.12 Trapping of the enamines 8 with in situ-

generated arynes (or strained cyclic alkynes) would give the α-arylated or alkenylated 

products 6 after hydrolysis in the same pot.13 The use of a chiral amine (i.e., 7) in this 

process would ultimately give rise to enantioenriched products 6 bearing quaternary 

stereocenters.10,14 It should be noted that the enantioselective α-arylation of β-ketoesters has 

remained a challenging synthetic problem.15 Promising developments include the use of 

hypervalent iodine reagents (racemic or modest enantioenrichment),16 the Cu-catalyzed, 

enantioselective coupling of 2-methyl acetates with 2-iodotrifluoroacetanilides,17 and the 

Pd-catalyzed α-arylation of malonates and cyanoacetates (racemic).18 A general method for 

the stereo-controlled α-arylation or -alkenylation of β-ketoesters has not been disclosed.

We report the development of the synthetic sequence shown in Figure 1b, which provides a 

facile method to achieve the stereoselective α-arylation/alkenylation of β-ketoesters.9 In 

addition to providing access to adducts bearing stereodefined quaternary centers, this 

methodology demonstrates that highly reactive arynes and related intermediates can serve as 

building blocks to access enantioenriched products by intermolecular trapping. In addition, 

the origins of stereoselectivity have been revealed by a computational investigation of these 

reactions.

RESULTS AND DISCUSSION

Development of a Racemic and Stereospecific Reaction to Generate Quaternary Centers.

To commence our studies, we selected β-ketoester 9 as an initial substrate for the two-step 

arylation procedure (Figure 2). As the use of enamines and arynes to construct quaternary 

stereocenters was unknown, we first pursued a racemic transformation. Benzylamine was 
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condensed with ketoester 9 to yield enamine 10 quantitatively. Next, enamine 10 was used to 

trap benzyne, which was generated in situ from silyl triflate 11 (1.5 equiv) in DME at 30 °C 

(6 h). After quenching with 1 M HCl(aq), we were delighted to obtain the desired α-arylated 

product 12 in 92% yield with introduction of a quaternary center.19 Furthermore, we 

surveyed several other highly reactive intermediates to gauge the possibility of utilizing 

substituted benzynes and cyclic alkynes. The use of fused arynes 2,3-naphthalyne and N-

Boc-4,5-indolyne20 provided arylated products 13 and 14, respectively.21 In addition, 

trapping with known heterocyclic alkynes22 delivered tetrahydropyridine 15 and 

dihydropyran 16 in 67% and 74% yields, respectively. Regioselectivities for the formation of 

14−16 were in accord with the distortion/interaction model.20,22 These results represent a 

facile means to install aryl and vinyl moieties onto a cyclic β-ketoester with quaternary 

center formation.

Having developed the racemic arylation/alkenylation reaction, we turned our attention to the 

discovery of a diastereoselective variant to access enantioenriched products (Table 1).23 

Thus, a series of enantioenriched chiral amines, readily prepared using Ellman auxiliary 

chemistry (i.e., 18− 24),24,25 were condensed with ketoester 9 to access enamines 17. 

Subsequent arylation under the conditions depicted in Figure 2 furnished 12 in 

enantioenriched form. Utilization of phenyl derivative 18 resulted in the formation of 12 in 

good yield and 74% enantiomeric excess (ee) (entry 1). Employing amine 19, bearing a 

cyclohexyl moiety, gave the desired product in a lower ee of 30% (entry 2). Recognizing the 

importance of the aryl fragment, we examined 1- and 2-naphthyl derived amines 20 and 21, 

which provided 12 in 80% and 56% ee (entries 3 and 4, respectively). With improved results 

in the case of 20, we examined anthracenyl amines 22−24 (entries 5− 7). As the use of ethyl 

derivative 23 furnished 12 with the best combination of yield and ee (entry 6), 23 was 

selected for subsequent studies. It should be noted that the Ellman-approach provides both 

enantiomers of 23, which, in turn, permits access to each enantiomer of the products 

depicted subsequently.26,27

Scope of Methodology.

With a suitable chiral amine identified, we evaluated several cyclic alkynes in the stereo-

selective arylation/alkenylation reaction to form quaternary stereocenters (Figure 3). The 

reaction was tolerant of substituted benzyne intermediates and extended aryl units, giving 

rise to arylated products 28 and 13, respectively.28 Moreover, trapping of an indolyne 

intermediate delivered heterocycle-containing product 14. When applied to non-aromatic, 

strained alkynes, the methodology provided alkenylated products in good yields and 

stereoselectivities. For example, trapping of cyclohexyne29 provided cyclohexene derivative 

29 in good yield and 86% ee. Additionally, by employing heterocyclic alkynes, products 15 
and 16 were obtained in excellent yields and comparable stereoselectivities. As shown in 

Figure 4, the methodology is also tolerant of variation in the nucleophilic component. For 

example, replacement of the ethyl ester with a benzyl ester in the parent substrate gave rise 

to arylated product 32 in 71% yield and 86% ee. Furthermore, piperidinone and 

tetrahydropyranone derivatives could be employed to access heterocyclic products (i.e., 

33−35). Enamines derived from 7-membered ring β-ketoesters could also be utilized, as 

shown by the formation of arylated products 36 and 37 with excellent stereoselectivity. 
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Lastly, the formation of ketoester 38 demonstrates the viability of utilizing this methodology 

for the α-arylation of acyclic β-ketoesters.

One-Pot, Stereoselective Arylation.

As one final application of this methodology, we developed a one-pot variant of the 

methodology to convert ketoester substrate 39 to α-arylated product 36, with recovery of the 

chiral auxiliary (Figure 5). β-Ketoester 39 was reacted with amine 23 to generate enamine 

40 in situ. Addition of CsF and silyl triflate 11, followed by stirring at 30 °C for 6 h, and 

subsequent acid-mediated hydrolysis yielded the desired α-arylated product 36. When 

performed on mmol scale, the reaction gave 36 in 68% yield and 92% ee, in addition to 67% 

recovered amine 23. This protocol provides a promising means to achieve the direct, 

asymmetric α-arylation of β-ketoesters.

Computational Analysis of Chirality Transfer.

Density functional theory (DFT) calculations were performed to understand how 

stereochemical information is transferred from the chiral auxiliary to the newly formed 

quaternary stereocenter. Our laboratories have studied reactions of arynes in nucleophilic 

additions using computations,4 but no theoretical studies of aryne trapping by chiral 

nucleophiles to set new stereocenters have been reported. All calculations described here 

utilize the M06–2X30/def2-TZVPP-SMD31 (diethyl ether)//B3LYP32/6–31+G(d,p) level of 

theory (see the SI for a discussion of the computational methods and results with other 

density functionals).

We first calculated the stereocontrolling transition structures for the reaction of benzyne and 

enamine (S)-41, which possesses the 1-naphthyl group at the chiral center. The 

stereochemistry-controlling transition structures are shown in Figure 6. Each pathway has a 

low barrier (ΔG‡ = 9.6 and 11.6 kcal/mol, respectively). TS1 leads to the experimentally 

preferred stereoisomer, (S)-12, whereas TS2 yields the minor enantiomer, (R)-12.33 The 

difference in free energy of activation (ΔΔG‡) is 2.0 kcal/mol, within error of the 

experimentally observed selectivity of 80% ee (ΔΔG‡ = 1.3 kcal/mol). In both TS1 and TS2, 

an intramolecular hydrogen bond between the NH and ester carbonyl is present. Axial-attack 

by benzyne occurs in both cases, as expected from the preference the forming bond to be 

staggered with respect to the allylic CH bonds (known previously as the Fürst-Plattner rule).
34 Though attack is axial in both cases, and the chiral group is in its favored conformation, 

the interaction of the CH at the stereogenic center is disfavorable in the minor TS.

In TS2, there is a close-contact H−H interaction of 2.1 Å between the chiral center of the 

enamine and methylene of the six-membered ring. This contact is alleviated in TS1, with an 

H−H interaction distance of 2.4 Å. Our laboratory has previously examined the transmission 

of chirality in the reaction of a similar chiral enamine with acrylonitrile, which similarly 

revealed the importance of torsional interactions between forming bonds and allylic bonds.34 

In that case, the same conformations and their energies were found for the chiral enamine 

with a phenyl ring instead of naphthyl. Torsional strain35 controls the stereoselectivity of this 

reaction, where the enamine conformations remain the same for both stereoisomeric 

transition states.
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One might expect that the stereoselectivity cannot be modulated by the size of the 

substituent, but as found here, enamine 25 has improved enantioselectivity with the larger 9-

anthracenyl substituent. We calculated the stereochemistry-controlling transition structures 

for the reaction of chiral enamine 25 and benzyne using methyl groups in place of ethyl 

groups to simplify computations.36 The two lowest-energy transition structures leading to 

the major and minor stereoisomers are shown in Figure 7. TS3 leads to the experimentally 

preferred stereoisomer, (S)-12, whereas TS4 yields the minor enantiomer. The difference in 

free energy of activation (ΔΔG‡) is 2.5 kcal/mol, within error of the experimentally observed 

selectivity of 84% ee (ΔΔG‡ = 1.5 kcal/mol) and 0.5 kcal/mol higher than observed with 20. 

Axial-attack by benzyne again occurs for the two half-chair conformers of the cyclohexene. 

However, here the conformation of the enamine stereogenic group differs between the 

stereoisomeric transition structures. Whereas the conformation of TS3 is analogous to that in 

TS1, the enamine in TS4 is in a higher-energy conformation because the face being blocked 

to form the (R)-isomer is obstructed by the anthracene group. This conformation yields a 

higher-energy penalty than the torsional strain found in TS2, which enables an increase in 

enantiospecificity.

CONCLUSIONS

We have developed the first methodology that allows for arynes and related strained 

intermediates to be trapped intermolecularly for the formation of stereodefined quaternary 

centers. The strategy relies on the facile conversion of β-ketoesters to chiral enamines, 

which undergo nucleophilic trapping of in situ generated strained arynes or cyclic alkynes. 

Hydrolysis in the same pot provides the arylated products in good to excellent enantiomeric 

excesses (up to 96% ee). This strategy circumvents a previously known undesired C−C bond 

fragmentation, while providing a general solution to the challenging problem of 

stereoselective β-ketoester arylation/alkenylation, with formation of a quaternary center. In 

addition, a one-pot procedure for the conversion of a β-ketoester substrate to the 

corresponding enantioenriched α-arylated product was developed. Finally, computations 

show how chirality transfer is achieved from the chiral auxiliary to the final products, a type 

of conformational transmission operating in the trapping of arynes by chiral nucleophiles. 

We expect these studies will enable further developments of intermolecular, stereoselective 

reactions of highly reactive aryne and cyclic alkyne intermediates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Synthetic applications of arynes and strategy for the stereoselective arylation of β-ketoesters.
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Figure 2. 
Discovery of methodology for the arylation/vinylation of β-ketoesters in racemic fashion. 

Conditions for enamine formation: ketoester 9 (1.0 equiv), benzylamine (1.5 equiv), Na2SO4 

(5:1 by wt.), benzene (0.7 M), 80 °C, 16 h. Conditions for arylation/alkenylation unless 

otherwise stated: (i) enamine 10 (1.0 equiv), silyl triflate (1.5 equiv), CsF (7.5 equiv), DME 

(0.1 M), 30 °C, 6 h; (ii) 1 M HCl(aq), 23 °C, 30 min. Yields reflect the average of two 

isolation experiments. aAryne trapping performed for 3 h.
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Figure 3. 
Variation of the electrophile. Conditions unless otherwise stated: (i) enamine 25 (1.0 equiv), 

silyl triflate 26 (1.5 equiv), CsF (7.5 equiv), DME (0.1 M), 30 °C, 6 h; (ii) 1 M HCl(aq), 

23 °C, 30 min. Yields reflect the average of two isolation experiments. aAryne or cyclic 

alkyne trapping performed for 3 h.
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Figure 4. 
Variation of the nucleophilic component 30 in the trapping with 11. Conditions unless 

otherwise stated: (i) enamine 30 (1.0 equiv), silyl triflate 11 (1.5 equiv), CsF (7.5 equiv), 

DME (0.1 M), 30 °C, 3 h; (ii) 1 M HCl(aq), 23 °C, 30 min. Yields reflect the average of two 

isolation experiments. aAryne trapping performed for 6 h.
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Figure 5. 
One-pot, mmol-scale arylation reaction to furnish 36. Conditions for enamine formation: 

ketoester 39 (1.0 equiv), amine 23 (1.0 equiv), benzene (0.7 M), 80 °C, 16 h, followed by 

evaporation of benzene solvent. Conditions for arylation: (i) silyl triflate 11 (1.5 equiv), CsF 

(7.5 equiv), DME (0.1 M), 30 °C, 6 h; (ii) 1 M HCl(aq), 23 °C, 12 h.
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Figure 6. 
Lowest-energy transition structures TS1 and TS2 for the addition of benzyne and the chiral 

enamine derived from amine 20 (M06–2X/def2-TZVPP-SMD (diethyl ether)//B3LYP/6–

31+G(d,p)). Free energy activation barriers (ΔG‡) are compared to separated intermediates. 

The difference in free energies of activation (ΔΔG‡), relative to TS1, is reported in kcal/mol.
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Figure 7. 
Lowest-energy transition structures TS3 and TS4 for the addition of benzyne and chiral 

enamine 25 (M06–2X/def2-TZVPP− SMD (diethyl ether)//B3LYP/6–31+G(d,p)). Free 

energy activation barriers (ΔG‡) are compared to separated intermediates. The difference in 

free energies of activation (ΔΔG‡), relative to TS3, is reported in kcal/mol.
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Table 1.

Survey of Chiral Auxiliaries To Give Optically Enriched Ketone 12
a

a
Reaction conditions: (i) enamine 17 (1.0 equiv), silyl triflate 11 (1.5 equiv), CsF (7.5 equiv), DME (0.1 M), 30 °C, 6 h; (ii) 1 M HCl(aq), 23 °C, 

30 min.
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