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ABSTRACT 

 

Novel Magnetic Nanoparticle Adsorbents for Organic and Inorganic Contaminants 

 

by 

 

Yuxiong Huang 

 

Water is not only a resource, but a life source. However, water pollution is one of the 

most challenging global issues that seriously threatened to people's life and sustainable 

development. With the continual concern over the presence of naturally-occurring and 

anthropogenic organic and inorganic contaminants in the aquatic environment, there is a 

growing need for the implementation of innovative treatment methods for the elimination of 

these contaminants from natural waters and wastewater effluents. Featuring high adsorption 

capacity, good regenerability, and surface area accessibility, magnetic nanoparticles (MNPs) 

have emerged as a new generation of sorbent materials for environmental decontamination 

in the past few years. Due to their superparamagnetic property that can be attracted to a 

magnetic field, it is easy to separate these MNPs adhered with contaminants from aqueous 

solution or complicated matrices by simply applying an external magnetic field; no filtration, 

centrifugation or gravitational separation is needed, making them a much more sustainable 

option than more traditional approaches for removing organic and inorganic contaminants. 

In this doctoral research, 4 different novel magnetic-core composite nanoparticle sorbents 

were developed for organic and metal contaminants remediation in aquatic systems. These 

sorbents have a core-shell structure with a magnetite core and a silica porous layer that 
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permanently confines surfactant micelles (namely as Mag-PCMAs, targeting organic 

contaminants removal) or are functionalized with metal-binding organic ligands (namely as 

Mag-Ligands, targeting metal contaminants removal). The physicochemical properties of 

these magnetic nanoparticle sorbent was fully characterized via transmission electron 

microscopy, scanning electron microscopy, thermogravimetric analyses, fourier transform 

infrared spectroscopy, superconducting quantum interference device magnetometer, X-ray 

diffraction and BET porosimeter. The removal efficiencies of organic contaminants such as 

PAHs, emerging organic contaminants (EOCs, including pharmaceuticals, industrial 

additives) onto Mag-PCMAs and metal contaminants such as cadmium, lead, mercury, 

chromium and etc. onto Mag-Ligand were evaluated across a wide range of environmental 

conditions (e.g. pH, water hardness). The adsorption isotherms and kinetics of various 

contaminants onto the magnetic nanoparticle sorbents were determined respectively. 

Competitive sorption studies were conducted to determine the selectivity sequence among 

multiple metal ions onto Mag-Ligands. Isothermal titration microcalorimetry (ITC) was used 

to obtain key quantitative thermodynamic binding data of the interactions between Mag-

Ligand and metal ions, providing the enthalpy, entropy and free energy of binding values as 

well as binding constants. Micelle swelling agent was used to optimize Mag-PCMAs’ 

porous structure for increasing pore volume and surface area to achieve higher removal 

efficiency and sorption kinetics. In addition, study was investigated on simultaneous 

removal of metal contaminants and PAHs across a variety of environmental conditions. The 

regenerability and reusability of these magnetic nanoparticle sorbents were also studied; 

both Mag-PCMAs and Mag-Ligand can be regenerated via rinsing with methanol or dilute 

acid, and can be reused for several treatment cycles without significant decrease on 
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efficiency. This study has provided a rapid, effective and more sustainable approach for 

organic and metal contaminants remediation from aquatic systems.   
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Chapter 1. Introduction  

1.1. Organic and Inorganic Contaminants in Aquatic Systems 

Water is one of the world’s most abundant resources, but less than 1% of the global 

supply of water is available and safe for human consumption (Grey et al. 2013). According 

to the World Health Organization, over 760 million people were without adequate drinking 

water supply in 2011 (WHO 2013). Where it is available, the cost of potable water is rising 

due to increasing energy costs, growing populations, and climatic or other environmental 

issues (Grey et al. 2013, Levin et al. 2002). In addition, an increasing number of drinking 

water sources are showing evidence of contamination, especially by emerging pollutants like 

pharmaceuticals and personal care products (Houtman 2010, WHO 2012). 

1.1.1. Organic Contaminants 

Recently, one particular concern is ‘emerging organic contaminants’ (EOCs). EOCs 

cover not only newly developed compounds but also compounds newly discovered in the 

environment, and compounds that have only recently been categorized as contaminants 

(Lapworth et al. 2012). EOCs include a wide array of different compounds such as 

pharmaceuticals and personal care products (PPCPs), pesticides, veterinary products, 

industrial compounds/by-products, food additives, as well as engineered nano-materials 

(Bolong et al. 2009). It is now established that these compounds enter the environment from 

a number of sources and pathways: wastewater effluents from municipal treatment plants, 

septic tanks, hospital effluents, livestock activities including waste lagoons and manure 

application to soil, subsurface storage of household and industrial wastes, as well as 

indirectly through the process of groundwater–surface water exchange (Pal et al. 2010). 
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The presence of these synthetic chemicals may contaminate ecosystems and surface and 

drinking water supplies.  This is a public health concern because little is known about 

potentially chronic health effects associated with long term ingestion of mixtures of 

biologically active compounds, such as pharmaceuticals and pesticides, through drinking 

water (Ikehata et al. 2008). Recent studies have shown that EOCs may have biological 

effects and even potential ecotoxicological impacts on invertebrates (such as daphnids), fish, 

algae, mussels, and also human embryonic cells (Carlsson et al. 2006, Lai et al. 2009, 

Lyssimachou and Arukwe 2007, Pomati et al. 2006).  

1.1.2. Metal Contaminants 

Another major global concern is metals contaminants, which have been excessively 

released into the environment due to rapid industrialization. Cadmium, zinc, copper, nickel, 

lead, mercury and chromium are often detected in industrial wastewaters, which originate 

from metal plating, mining activities, smelting, battery manufacture, tanneries, petroleum 

refining, paint manufacture, pesticides, pigment manufacture, printing and photographic 

industries, etc. (Kadirvelu et al. 2001, Williams et al. 1998). Heavy metals are persistent, and 

therefore, very difficult to eliminate naturally from the environment, even when present at 

trace amounts. Nearly all heavy metals are highly toxic, non-biodegradable, non-

thermodegradable and readily accumulate to toxic levels in living tissues, causing various 

diseases and disorders (Tuzen et al. 2008). For example, Cd2+ in the environment can affect 

human health with the potential to cause kidney damage, renal disorder, Itai-Itai 

(excruciating pain in the bone), hepatic damage, cancer, and hypertension (Igwe and Abia 

2007, Kurniawan et al. 2006a, b).  
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1.1.3. Conventional Water Treatment Technologies 

Conventional water treatment technologies generally designed on the basis of bulk water 

chemistry, and the mechanism involves adsorption (Mittal et al. 2007, Ni et al. 2007), 

oxidation (Huber et al. 2005, Rosal et al. 2010), photocatalysis (Badawy et al. 2006, Wang and 

Lemley 2002), membrane based separation (Bhatnagar and Sillanpää 2011, Phenrat et al. 2010), 

biological treatment (Khan and Ongerth 2004, Onesios et al. 2008, Salgado et al. 2011), 

coagulation and precipitation (Baskan and Pala 2009, Song et al. 2006) etc.. 

There are many environmental impacts associated with the various current water 

treatment technologies that are largely dependent on the method used and on the situation in 

which is it used. While there are many effective existing technologies for treating water, 

many of them are expensive or inefficient, and many emerging contaminants such as PCPPs 

and endocrine disrupting compounds (EDCs) are not easily removed or degraded by 

traditional means, indicating a need for alternatives.  

1.2. Application of Nanotechnology in Water Remediation 

1.2.1. Nanotechnology 

In recent years, nanotechnology has been developing very rapidly. Generally, 

nanoparticles are commonly defined as materials with at least one dimension below 100 nm 

(e.g. diameter, thickness, length or width) (Borm et al. 2006), although more broadly 

nanotechnology refers to nanomaterials incorporated into products that make use of 

properties that are unique to the nanoscale. Due to the size effect, the physicochemical 

properties of nanoparticles are different with their bulk material, with some special 

properties, typically including: (1) size effects (reducing the particles size can lead to the 
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change of solubility, color, absorption or emission wavelength, and conductivity); (2) 

composition effects (different compositions of nanoparticles result in a different physical 

and chemical behavior); and (3) surface effects (the surface behavior of nanoparticles are 

changed by their dispersibility, conductivity and other related properties) (Borm et al. 2006). 

Engineered nanomaterials (ENMs) are now being widely manufactured and applied in 

multiple fields, including agriculture (Zhao et al. 2012), catalysts (Zhou et al. 2011), 

coatings, paints and pigments (Gopalakrishnan et al. 2011), composites (Petrov and 

Georgiev 2012), cosmetics (Sabitha et al. 2012), electronics & optics (Song et al. 2012), 

energy (Serrano et al. 2009), environmental remediation (Khin et al. 2012), filtration & 

purification (Dhakras 2011).  

Regarding to the application of ENMs for water treatment, researchers have investigated 

their potential to act as effective adsorbents (Tofighy and Mohammadi 2011), filters (Brady-

Estévez et al. 2008), disinfectants (Dankovich and Gray 2011, Li et al. 2008, Musico et al. 

2014), and reactive agents (Chen et al. 2003, Crane and Scott 2012), as well as showing the 

promise for full scale water treatment and environmental remediation (Mellor et al. 2015, Qu 

et al. 2013, Ren et al. 2013). 

1.2.2. Carbonaceous Nanomaterials for Water Treatment 

Carbon nanomaterials (C-ENMs) are composed entirely (or mainly) of carbon atoms. 

They include carbon nanotubes (single-walled, SWCNTs or multi-walled, MWCNTs), 

carbon nanofibers, fullerene, graphene and derivatives, and amorphous carbonaceous 

composites (Chen et al. 2011c, Gupta and Saleh 2013, Iijima 1991, Zhu et al. 2010). C-

ENMs characteristically have exceptionally high surface area, which make them ideal 

candidates for adsorption of pollutants (Bacsa et al. 2000, Gai et al. 2011, Zhang et al. 2014, 
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Zhu et al. 2010). In addition, the surfaces of these inherently hydrophobic materials can be 

functionalized to target specific pollutants via chemical or electrical interactions (Wang et al. 

2013). Some C-ENMs may be aligned to form efficient filters or incorporated into 

conventional membranes for removal of pollutants (Han et al. 2013, Mostafavi et al. 2009).  

1.2.3. Metal and metal oxides for Water Treatment 

Metal and metal oxide engineered nanomaterials (Me/MeO ENMs) are a diverse class of 

nanomaterials that are composed of one, two, or, less commonly, three metals and their 

oxides (Li et al. 2008, Pradeep and Anshup 2009, Stoimenov et al. 2002, Xu et al. 2012). 

Although there are several types, the Me/MeO ENMs most-commonly applied for water 

treatment/environmental remediation are nanoscale zero-valent iron (nZVI) (Karn et al. 2009, 

Lacinova et al. 2012, Mueller et al. 2012), TiO2 (Bennett and Keller 2011, Lu et al. 2013, 

Soni et al. 2008, Yang et al. 2002, Yang et al. 2013), Ag (Dankovich and Gray 2011, Ehdaie 

et al. 2014, Georgekutty et al. 2008, Ren et al. 2013, Yang et al. 2013, Zodrow et al. 2009), 

and ZnO (Alikhani et al. 2012, El-Kemary et al. 2010). Some of the mechanisms for water 

treatment or remediation include adsorption, chemical degradation, photodegradation, and 

chemical disinfection. 

1.3. Magnetic-core Composite Nano/Micro Particles Sorbents  

1.3.1. Magnetic-core Composite Nano/Micro Particles Sorbents 

Known as one of the cutting edge ENMs, magnetic particles are particularly attractive 

due to their superparamagnetic nature as well as their unique physicochemical properties 

such as high dispersibility, relative large surface area and the high ratio of surface to volume 

resulting in a higher adsorption capacity. Generally the core consists of magnetic elements 
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such as iron, nickel, cobalt or their oxides and alloys, such that magnetic particles show 

ferromagnetic or superparamagnetic properties, which make them behave like small 

permanent magnets once magnetized as well as form lattice or aggregate due to magnetic 

interaction. Specifically, ferromagnetic particles have a permanent magnetism and removal 

of the magnetic field results in a lattice form, while superparamagnetic particles are attracted 

to a magnetic field but retain no residual magnetism after the field is removed. 

Superparamagnetic nano-adsorbents are particularly attractive as they can be easily retained 

and separated from treated water by applying external magnetic fields (as shown in Figure 1), 

which overcomes many of the issues present in filtration, centrifugation or gravitational 

separation, generally requiring less energy to achieve a given level of separation.  

 

Figure 1. Procedure of applying magnetic-core composite nano/micro particles in water 

treatment 
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Iron oxides, such as magnetite (Fe3O4) and maghemite (γ-Fe2O3), are the most popular 

option owning to their small size and high surface area. However, pure iron oxide particles 

are prone to the formation of large aggregates due to the magnetic interaction, which results 

in changes of their magnetic properties, such as the loss of magnetism (Chen et al. 2011b). In 

addition, their bare surface lacks selectivity, which eliminates their range of application and 

remediation capacity (Giakisikli and Anthemidis 2013). Thus, researchers usually modify the 

surface of the iron oxide particles (as magnetic core) with specific functional groups and 

coatings forming a core-shell structure to overcome the above limitations (Giakisikli and 

Anthemidis 2013). The coating onto MPs’ surface, also known as a shell, can be obtained by 

the attachment or binding of inorganic components (e.g., silica or alumina, etc.) (Jiang et al. 

2012, Karatapanis et al. 2011) or organic molecules (e.g., polymer or surfactant, etc.) (Faraji 

et al. 2010b, Huang et al. 2010). With appropriate surface coating in this core-shell structure,  

it can help to improve their chemical stability (Ditsch et al. 2005), prevent their oxidation (Li 

et al. 2010b) as well as lower their implication to the environment (Chen et al. 2011a), and 

provide specific functionalities like selectivity for ion uptake (Koehler et al. 2009) or 

enhancing the water solubility of HOCs (Wang et al. 2009).  

The synthesis of a magnetic-core composite nano/micro particles typically involves three 

steps (shown as Figure 2.): 

1. Synthesis of magnetic particles, usually iron oxide (magnetite or maghemite) 

nanoparticles. Some studies (Huang and Keller 2013) may use the commercial iron oxide 

nanoparticles to skip this step. 

2. Coating onto the magnetic core. 

3. Surface modification of the coating layer. 
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Figure 2. Functionalization of a core–shell type structure of magnetic-core composite 

nano/micro particles 

1.3.2. Synthesis of Magnetic Nanoparticles 

There are many chemical methods that can be chosen to prepare magnetic nanoparticles, 

including classical chemical coprecipitation (Cornell and Schwertmann 2006, Schwarzer and 

Peukert 2004, Sugimoto 2003), sol-gel syntheses (Dai et al. 2005, Duraes et al. 2005, Fouad 

et al. 2006), hydrothermal and high temperature reactions (Hyeon et al. 2001, Sun et al. 

2004), surfactant mediate/template syntheses (in constrained environments) (Deng et al. 

2003, Inouye et al. 1982),  sonochemical reactions (Koltypin et al. 1996, Shafi et al. 1997), 

hydrolysis and thermolysis of precursors (Kimata et al. 2003), flow injection 

syntheses(Salazar-Alvarez et al. 2006), microemulsions (Geng et al. 2006, Solans et al. 

2005), biomimetic mineralization (Allen et al. 2003, Rice et al. 2004), aerosol/vapor 

methods (Alexandrescu et al. 2005, Morales et al. 2003),  and electrospray syntheses (Pascal 



 

 9

et al. 1999, Reetz et al. 1996). Among these methods, the chemical coprecipitation synthesis 

is one of the simplest and most efficient way for the preparation of magnetite particles 

(Laurent et al. 2010). In this method, iron oxides (Fe3O4 or γFe2O3) are prepared by an aging 

stoichiometric mixture of ferrous and ferric salts in aqueous medium (generally involves the 

dissolution of a mixture of a solution of FeCl3·6H2O and FeCl2·4H2O in deionized water 

under nitrogen atmosphere with vigorous stirring at 70–85 °C and the immediate addition of 

aqueous ammonia) (Jolivet et al. 2004). 

1.3.3. Coating onto Magnetic Core 

Nowadays, there are various materials to coat the magnetic core, including silica (Huang 

and Keller 2013, Wang et al. 2009), alumina (Tavallali 2011), carbon (including carbon-

based materials, e.g. activated carbon (Faraji et al. 2010a), carbon nanotube (CNT) (Rastkari 

and Ahmadkhaniha 2013) and graphene/graphene oxide (Liu et al. 2011)), polymer (Li et al. 

2010a), surfactant(Zhao et al. 2008) and biomass (e.g. pollen grains) (Thio et al. 2011). The 

mechanism of coating varies from covalent binding to electrostatic force, and the coating 

process also varies from sol-gel reaction to dissolution. For example, to conduct a silica 

coating onto magnetic core, the Stôber method (Stöber et al. 1968) through a sol–gel 

reaction (generally using an alkoxy silane (e.g. tetraethoxysilane) in acidic or basic media) is 

preferred. And during the coating process, the silane polymer can bind the magnetic iron 

oxide particles via a covalent bond (Yamaura et al. 2004), and enable the particles to have a 

strong affinity toward silica coating.  

1.3.4. Surface Modifications 

To enhance remediation efficiency (Huang and Keller 2013, Wang et al. 2009), the 

modifications with functional groups onto magnetic-core composite nano/micro particles’ 
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surface are usually needed. Typically, the surface modifications may involve the attachment 

of surfactants (Huang and Keller 2013, Wang et al. 2009), cyclic oligosaccharides (e.g. β-

Cyclodextrin (Ji et al. 2009)), functional groups (e.g. amine(Chen et al. 2013), thiol 

(Suleiman et al. 2009), carboxylic (Carpio et al. 2012) and C18 (Sha et al. 2008)), chelators 

(e.g. EDTA (Koehler et al. 2009)) and etc.. 

1.3.5. Silica-coated Magnetic-core Composite Nano/Micro Particle Sorbents 

Silica is the most popular option for coating in terms of the mechanical and chemical 

stability under various environment (e.g. acidic conditions), high mass exchange as well as 

the high thermal resistance (Chen et al. 2011b). Another advantage of a silica coating is that 

different functional groups can be attached onto the surface of silica-coated MPs by 

silanation using silane coupling agents (e.g. amine (Chen et al. 2013), thiol (Suleiman et al. 

2009), carboxylic (Carpio et al. 2012) and C18 (Sha et al. 2008)) to enhance the selectivity 

and sorption capacity. A basic schematic diagram for the synthesis of silica-coated magnetic-

core composite nano/micro particles modified with different functional groups is shown in 

Figure 3. 

 

Figure 3. Schematic diagram of the synthesis of silica-coated magnetic-core composite 

nano/micro particles (MNPs) modified with different functional groups. 
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Recently magnetic permanently confined micelle arrays (Mag-PCMAs) were developed 

to treat hydrophobic organic contaminants (Wang et al. 2009). Mag-PCMAs are a novel 

composite material consisting of a mesoporous silica matrix, a co-deposited cationic 

surfactant micelle array, and a nano-scale magnetic silica iron oxide core. They have been 

applied to the removal of very hydrophobic compounds (Wang et al. 2009), pesticides (Clark 

and Keller 2012b), natural organic matter (Wang et al. 2011), oxyanions (Clark and Keller 

2012a) and emerging organic contaminants (Huang and Keller 2013). Mag-PCMAs can be 

recovered and reused many times, reporting nearly all (>95%) of the sorbed hydrophobic 

organic compounds (HOCs) could be recovered, with easy regeneration of Mag-PCMAs in 

five cycles of regeneration and reuse (Wang et al. 2009). The relatively low cost 

(~$4/kg)(Huang and Keller 2013) make it a sustainable approach for water treatment. In 

addition, researchers also studied the different types of confined surfactants’ (cationic and 

nonionic surfactant) performance on HOCs’ remediation (Clark and Keller 2012b). The 

cationic surfactant (3-(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride 

(TPODAC))-based Mag-PCMAs had better average recovery of the HOCs studied compared 

to the nonionic surfactant (Triton X-100)-based Mag-PCMAs, and was, in general, 

comparable to activated carbon. 

1.3.6. Other Materials Coated Magnetic-core Composite Nano/Micro Particle Sorbents 

Carbon-based nanomaterials (e.g. activated carbon (Oliveira et al. 2002),  CNTs (Gupta 

et al. 2011), graphene/graphene oxide (Ai et al. 2011)) can exhibit high chemical and 

thermal stability and biocompatibility, and the possibility of surface modification and 

additional porosity make them a promising coating material for magnetic particles (Xie et al. 

2014). 
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Besides silica and carbon-based materials, there are other inorganic substance (e.g. 

hydrous aluminum oxide (Zhao et al. 2010), manganese oxide (Kim et al. 2013), zirconium 

dioxide (Sarkar et al. 2010), titanium dioxide (Chang and Man 2011) ) that have been used 

to coat magnetic-core composite nano/micro particles, to stabilize the magnetic particles 

under different environmental conditions (e.g. acidic solutions) and/or to provide high 

affinity binding sides to specific contaminants (Pommerenk and Schafran 2005). 

Polymers can also be chemically or physically anchored on magnetic particles by 

covalent bonding or by electrostatic interaction (Xie et al. 2014). Other organic materials 

such as dimercaptosuccinic acid (DMSA) (Yantasee et al. 2007), EDTA (Warner et al. 2010), 

chitosan (Zhou et al. 2009), and humic acid (Liu et al. 2008), etc., can form coating shell or 

surface functional groups for magnetic-core composite nano/micro particles to be tailored to 

adsorb different pollutants. 

1.4. Organization of the Dissertation  

This dissertation focuses on developing novel magnetic nanoparticle sorbents to 

remediate contaminants in aquatic systems. The objective is to develop a fast, convenient, 

efficient, and sustainable approach to treating both organic and inorganic pollutants in 

aquatic systems, while also developing recommendations for using the sorbents to eliminate 

contaminants under various environmental conditions. 

In Chapter 2, a regenerable magnetic ligand particle (Mag-Ligand) which includes a 

metal-binding organic ligand (EDTA) attached to an iron oxide nanoparticle was developed 

for rapid removal of Cd2+ and Pb2+ as well as other metals from contaminated water. The 

adsorption capacity of Cd2+ and Pb2+onto Mag-Ligand was evaluated, the adsorption 

isotherms and kinetics was determined as well. In addition, the remediation performance of 
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Mag-Ligand for Cd2+ removal under various environmental conditions (e.g. range of pH and 

water hardness) as well as the regenerability and reusability were studied. This Chapter has 

been published in Water Research (Huang and Keller 2015). 

Natural aquatic systems contain a wide variety of dissolved heavy metal ions at trace 

level (e.g. Cr, Pb, Cd, Hg, Zn and Cu). It’s important to evaluate the remediation 

performance of Mag-Ligand for multiple metal ions in competitive sorption. In addition, 

though the primary application of Mag-Ligand is wastewater treatment, it could be extended 

to adsorb or collect ions of valuable elements, for instance, rare earth elements from process 

water, contaminated groundwater or mining leachate. Furthermore, to scale the use of Mag-

Ligand for real world applications, a quantitative knowledge of the kinetics and 

thermodynamics of Mag-Ligand/metal ion interactions is needed to ascertain the minimum 

amount of Mag-Ligand particles needed to remove metal cations to a specified level in 

complex matrices with multiple metals. Thus, in Chapter 3, the adsorption capacity, 

isotherms and kinetics of nine different metal ions, including three rare earth elements, onto 

Mag-Ligand, at different initial metal ion concentrations in individual sorption was 

evaluated. Furthermore, the isothermal titration calorimeter technology was applied for the 

thermodynamic quantification of the interactions between nanoparticle sorbents and metal 

ions. 

On the other side, the recognition that pharmaceuticals, personal care product chemicals, 

and endocrine disruptors, collectively known as EOCs can cause deleterious effects on 

humans and organisms has led to search for new approaches for removing them from 

contaminated waters (Petrovic et al. 2003). So far, only a few studies have investigated EOC 

removal. Based on Mag-PCMAs’ great performance on the removal of hydrophobic 

compounds (Wang et al. 2009), pesticides (Clark and Keller 2012b), natural organic matter  
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(Wang et al. 2011) and oxyanions (Clark and Keller 2012a), extending Mag-PCMAs to treat 

EOCs in the aquatic systems would be a potential novel solution. In Chapter 4, study was 

investigated to determine the effectiveness of Mag-PCMAs to remove EOCs from water. For 

comparison, two legacy contaminants (e.g., ethylbenzene, 2-chlorophenol) were also 

evaluated. This Chapter has been published in ACS Sustainable Chemistry & Engineering 

(Huang and Keller 2013).  

Current structure of Mag-PCMAs contains a magnetite core and a silica porous layer that 

permanently confines surfactant micelles within the mesopores. The surfactant, TPODAC, 

has a reactive endgroup –Si(OCH3)3 on its hydrophilic head, which permanently anchor on 

the silica framework through –Si–O–Si– covalent bonding. This feature can help to 

completely eliminate surfactant loss during its applications and thus allows for sorbent 

regeneration. However, the pore space within the mesoporous silica framework is almost 

completely filled by surfactant, leaving less space for contaminant adsorption, which limits 

the adsorption capacity. Thus, Chapter 5 investigated study on increasing the surface area 

and pore volume of Mag-PCMA by introducing swelling agent during the synthesis. The 

adsorption capacity of EOCs and PAHs onto modified Mag-PCMAs was evaluated, the 

adsorption isotherms and kinetics was determined as well. 

Numerous wastewater is contaminated with both heavy metal ions and organic 

compounds, posing a major threat to public health and the environment. Thus, finding 

effective ways to treat these pollutants, especially for their simultaneous removal is 

considered as one of the most challenging areas of water treatment. Chapter 6 focuses on 

developing Mag-PCMAs with a silica porous layer that permanently confines nonionic 

surfactant micelles within the mesopores. The removal efficiency of Mag-PCMAs on Cd2+ 

and acenaphthene was evaluated under a range of initial ions concentrations and sorbent 
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dosage, as well as the competitive adsorption with both simultaneous presence across 

various environmental conditions. 

Chapter 7 concludes this doctoral research, and proposes future works. 
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Chapter 2. EDTA Functionalized Magnetic Nanoparticle Sorbents for 

Cadmium and Lead Contaminated Water Treatment1  

2.1. Introduction 

Heavy metal ions such as cadmium (Cd) and lead (Pb) are considered as serious threat to 

the environment and human health due to their high toxicity and non-degradable 

characteristics (Kah et al. 2012). Cd can be released into the environment both from natural 

sources (e.g. volcanic eruptions and forest fires) (Bandara et al. 2008) and anthropogenic 

activities (e.g. non-ferrous metals production (Vromman et al. 2008), electroplating 

(Islamoglu et al. 2006), manufacturing of Ni-Cd batteries and pigments (Fthenakis 2004), 

application of phosphate fertilizers (Mortvedt and Osborn 1982), and burning of fossil fuels 

(Vouk and Piver 1983)). Pb also is emitted from natural sources and anthropogenic activities 

(e.g. lead-based batteries, residual lead paint, lead-based fuel additives) (Reimann and de 

Caritat 2005). They are bioaccumulated (Tête et al. 2014), so even at trace levels they can 

concentrate in living organisms acting as carcinogens. For example cadmium may cause 

damage to lungs (Boudreau et al. 1988), kidneys (Jamall et al. 1989), livers (Koyuturk et al. 

2007), and reproductive organs (Alvarez et al. 2004, Bonda et al. 2004). Recently, studies 

have been reported that grains such as rice and soybean have been contaminated by cadmium 

(Su et al. 2014), and this has become an emerging food chain supply threat, especially in 

Asian countries (Shute and Macfie 2006). On the other hand, lead contamination could occur 

when water flows through lead-containing pipes (Xie and Giammar 2011), which also would 

                                                 
1 This chapter was published in Water Research: Huang, Y., A. A. Keller. (2015) EDTA 

Functionalized Magnetic Nanoparticle Sorbents for Cadmium and Lead Contaminated Water 
Treatment. Water Research, doi: 10.1016/j.watres.2015.05.011. 
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enter the food chain through drinking water. Therefore, to develop effective and rapid 

cadmium and lead remediation technique is of great importance. 

Chelating agents, for instance ethylenediaminetetraacetic acid (EDTA), are widely used 

as extractive reagents for heavy metals decontamination (Martinez et al. 2006, Ngah and 

Hanafiah 2008). Due to its strong metal chelating ability and low cost, EDTA has been used 

to functionalize a variety of materials from inorganic oxides to biomass, including silica gel 

(Repo et al. 2009), chitosan (Repo et al. 2010), polyamine composites (Hughes and 

Rosenherg 2007), polystyrene (Wang et al. 2010), mercerized cellulose and sugarcane 

bagasse (Júnior et al. 2009), wood sawdust and sugarcane bagasse (Pereira et al. 2010), rice 

husk (Xiong et al. 2010), and baker’s yeast biomass (Yu et al. 2008). However, a 

comparison of results shows that the adsorption efficiency was significantly influenced by 

the type of supporting material (Repo et al. 2011), and post-treatment separation needs to be 

taken into consideration. 

In the past few years, nano-scaled magnetic particles have been proposed as sorbents for 

environmental decontamination (Huang and Keller 2013, Su et al. 2015), and due to their 

superparamagnetic nature as well as their unique physical and chemical properties such as 

high dispersibility, relatively large surface area, and high ratio of surface-to-volume, they 

exhibit a high adsorption capacity (Bagheri et al. 2012). With an appropriate coating, which 

can be either inorganic (e.g., silica or alumina) (Jiang et al. 2012, Karatapanis et al. 2011) or 

organic (e.g., modified with polymer or surfactant, etc.) (Faraji et al. 2010, Huang et al. 

2010), these magnetic core hybrid particles can be applied to remove heavy metal ions (Ge et 

al. 2012), hydrophobic compounds (Wang et al. 2008), pesticides (Clark and Keller 2012b), 

natural organic matter (Wang et al. 2011), oxyanions (Clark and Keller 2012a) and emerging 

organic contaminants (Huang and Keller 2013).  
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Recent studies investigated EDTA-modified magnetic nanoparticles for metals 

remediation. Zhang et al. (2011) reported a route for EDTA immobilization on the surface of 

amine-terminated Fe3O4 nanoparticles (Fe3O4–NH2/PEI-EDTA) for treatment of Cu2+, Cd2+, 

and Pb2+ from aqueous solutions. The results suggested that solution pH plays an important 

role on removal efficiency, with 98.8% Pb2+ removal at pH 5, but decreasing removal at 

higher pH. Dupont et al. (2014) decorated magnetic (Fe3O4) nanoparticles with N-[(3-

trimethoxysilyl)propyl]ethylenediamine triacetic acid (TMS-EDTA) for rare earth elements 

adsorption, and found increasing removal of Gd3+ as solution pH increased. However, none 

of the previous researchers considered the potential competitive adsorption between heavy 

metal ions and Ca2+ or Mg2+, which usually are present at much higher concentration than 

these trace heavy metal ions. 

To decrease the impact of solution pH and water hardness (i.e. Ca2+ or Mg2+), we 

developed a nanomaterial (Mag-Ligand) with a magnetic core covered by an organic ligand 

(EDTA) that can serve as an effective sorbent for metal ions from realistic aquatic systems. 

The initial application under consideration is the treatment of industrial wastewater, but 

Mag-Ligand could be to remove metal ions from contaminated groundwater or mining 

leachate. We evaluated the adsorption capacity of Cd2+ and Pb2+ onto Mag-Ligand at 

different initial Cd2+ and Pb2+ concentrations as well as determined the adsorption isotherms 

and kinetics. In addition, the remediation performance of Mag-Ligand for Cd2+ removal 

under various environmental conditions (e.g. range of pH and water hardness) as well as the 

regenerability and reusability were studied. The results demonstrated that Mag-Ligand is a 

rapid, effective, regenerable and more sustainable sorbent for Cd2+ and Pb2+ and thus a 

promising material for metal ion decontamination. 
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2.2. Experimental 

2.2.1. Chemicals 

Maghemite (iron (III) oxide) nanoparticles (30 nm in diameter) and pyridine were 

purchased from Alfa Aesar (USA).Cadmium and lead standard for AAS (1000 mg/L 

Cd2+/Pb2+ in nitric acid) and (3-aminopropyl)triethoxysilane (99%) were purchased from 

Sigma-Aldrich (USA). Cadmium chloride anhydrous, lead chloride, 

ethylenediaminetetraacetic acid (EDTA), nitric acid, hydrochloric acid, citric acid, tris 

(hydroxymethyl)aminomethane, acetic acid, sodium bicarbonate and sodium carbonate were 

purchased from Fisher Scientific (USA). Diethylether and sodium dihydrogen phosphate 

were purchased from Acros Organics (Geel, Belgium). Sodium hydroxide and toluene were 

purchased from EMD Millipore (USA). All chemicals were used as received, without further 

purification. All solutions were prepared with deionized water (18 MΩ-cm) from a 

Barnstead NANOpure Diamond Water Purification System (USA). 

2.2.2. Synthesis of Mag-Ligand 

Maghemite nanoparticles (1.0 g) were dispersed into 40 mL of toluene in a flask. After 

mixing well, 0.4 mL of 3-aminopropyltriethoxysilane (APTES) were added to attach an 

amino group to the maghemite particles. Then the flask was connected to a reflux system 

(WU-28615-06, Cole-Parmer, USA), which was then rotated at 30 rpm (revolutions/minute) 

in a water bath at 90 ºC, and refluxed for 2 h. After the solution cooled to room temperature 

(22 ºC), 2 mM EDTA and 60 mL pyridine were added. The mixture was again rotated at 30 

rpm in a water bath at 90 ºC in the reflux system for 2 h. After the solution cooled down to 

room temperature, 100 mL of sodium bicarbonate (0.5 M) was added to adjust pH. A magnet 
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(Eclipse Magnetics N821 permanent, 50 mm ×50 mm ×12.5 mm; 243.8 g; pull force: 40.1 N) 

was applied to the bottom of the flask to recover the nanoparticles while the supernatant was 

decanted. Deionized (DI) water was used to rinse the particles twice and then decanted while 

retaining the particles with the magnet. The same rinsing procedure was performed twice 

with ethanol and then diethylether. The particles were dried at room temperature for 24 h, 

and stored in a capped bottle prior to use.  

2.2.3 Characterization of Mag-Ligand 

Transmission electron microscopy (TEM) images were obtained using a JEOL 1230 

Transmission Electron Microscope operated at 80 kV. Scanning electron microscopy (SEM) 

studies were performed on an FEI XL40 Sirion FEG Digital Scanning Microscope with an 

Oxford EDS analysis system. The thermogravimetric analyses (TGA) were used to 

investigate the amount of EDTA coated on the magnetic core, using a Mettler Toledo 

TGA/sDTA851e apparatus with an air flow of 100 mL/min and a heating rate of 5 °C/min. 

Magnetization measurements were performed on a Quantum Design MPMS 5XL SQUID 

Magnetometer. The functional groups of the Mag-Ligand composite were detected using a 

Fourier transform infrared (FTIR) spectrometer on a Nicolet iS 10 FT-IR Spectrometer. 

2.2.4. Batch Sorption of Cd2+ and Pb2+ 

For most experiments 5.0 mg of Mag-Ligand particles were mixed with 25 mL of Cd2+ 

or Pb2+ solution (10 mg/L) in 50 mL conical tubes, and the pH was adjusted to the desired 

condition (range from 4 to 10) by using a pH buffer. An acetic acid buffer was used for the 

pH interval between 3.5 to 5.5, citric acid was used for pH 6.0; pH 7.0 was obtained by 

using sodium dihydrogen phosphate buffer, pH between 7.5 to 9.5 was obtained by using tris 

(hydroxymethyl)aminomethane buffer, and sodium carbonate buffer was used to obtain pH 
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10.0. All buffer solutions were prepared at 100 mM concentration but the concentration of 

pH buffer was always kept below 10 mM to minimize other interactions. Then, these tubes 

were placed in an end-over-end shaker on a Dayton-6Z412A Parallel Shaft (USA) roller 

mixer with a speed of 70 rpm at room temperature for 24 h to ensure sufficient equilibration 

time. Adsorption kinetics studies were carried out at the same conditions as previously stated 

but for a set amount of time, varying from 15 min to 24 h, with pH = 7. After this mixing, 

the Mag-Ligand particles were separated from the mixture with the Eclipse magnet. All 

experiments were conducted at ambient temperature (22-25 °C).  

The concentration of adsorbent was varied from 0.04 to 0.28 g/L to study the adsorption 

isotherms of Cd2+ or Pb2+ onto Mag-Ligand at pH 7. Additionally, solutions with varying 

initial concentrations of Cd2+ or Pb2+, which ranged from 1 mg/L to 100 mg/L were treated 

with the same procedure as above at pH 7 and 5.0 mg Mag-Ligand.  

In order to study the effect of ionic strength (e.g. water hardness), on the removal 

efficiency of Mag-Ligand, Ca2+ (ranging from 1 mg/L to 100 mg/L) and Mg2+ (ranging from 

0.6 mg/L to 60 mg/L) were added to some of the experiments, at pH 7. 

2.2.5. Regeneration and Reuse of Mag-Ligand 

To investigate the regeneration and reuse of Mag-Ligand, 10 mg/L Cd2+ were used with 

the same adsorption process, followed by separation of the Mag-Ligand from solution with 

the handheld magnet. The Mag-Ligand collected was then washed with 1% HCl (10 minutes, 

room temperature), and the Cd2+ concentration in the supernatant solution (the solution pH is 

around 1.70) was determined by ICP. The regenerated Mag-Ligand particles were then 

reused for subsequent Cd2+ sorption experiments. The sorption, extraction, and reuse 
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processes were repeated for five times. Changes in sorption capacity and Mag-Ligand 

particle recovery were determined at every cycle. 

2.2.6. Analysis 

A Thermo iCAP 6300 inductively coupled plasma with atomic emission spectroscopy 

(ICP-AES) was used to analyze the concentration of Cd2+ and Pb2+ (Adeleye et al. 2013, 

Adeleye and Keller 2014, Huang et al. 2014). All tests were performed in triplicate and 

analysis of variance (ANOVA) was used to test the significance of results. A p<0.05 was 

considered to be statistically significant. 

Metal ions removal efficiency and sorption capacity was calculated as:  

 0
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where C0 and Ct are the initial and final concentrations of metal ions (mg/L), m is the 

mass of Mag-Ligand (g), and V is the volume of solution (L). 

Mag-Ligand recovery efficiency was calculated as: 

0

100%wC
Recovery efficiency

C
                               (3) 

where C0 (mg/L) is the initial concentrations of Cd2+ ions in solution, and Cw (mg/L) is 

the concentrations of Cd2+ ions in the extracted solution (after regeneration). 

The Cd2+ and Pb2+ equilibrium adsorption was evaluated according to Langmuir and 

Freundlich isotherms using Eq. 4 and Eq. 5, respectively (Morel and Hering 1993):  
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where Ce is solute concentration (mg/L) at equilibrium and qe is amount adsorbed (mg/g), 

qm is the maximum sorption capacity (mg/g). KL and KF is the Langmuir and Freundlich 

sorption equilibrium constant (L/mg), respectively. 

Kinetics were analyzed using the pseudo-first-order and pseudo-second-order models 

using Eq. 6 and Eq. 7 (Coleman et al. 1956):  
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where k1 (h-1) and k2 (
g

mg h
) are the equilibrium rate constants of kinetics. 

2.3. Results and discussion 

2.3.1. Mag-Ligand Synthesis and Characterization 

The synthesis of Mag-Ligand consists of two steps, which are schematically presented in 

Figure 1. First, the maghemite nanoparticles were coated with APTES to deposit 

aminopropylalkoxysilane on the surface of the magnetite core. In the hydrolysis reaction, the 

alkoxide groups (−OC2H5) of APTES were replaced by hydroxyl groups (OH) to form 

reactive silanol groups, which condensed with other silanol groups to produce siloxane 

bonds (Si–O–Si) to generate silane polymer (Yamaura et al. 2004). Then these polymers 

coated the maghemite nanoparticles to form a covalent bond with OH groups (Yamaura et al. 

2004). After APTES coating, the maghemite nanoparticles were functionalized with an 

amino group. 
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Then, EDTA was attached to the APTES coated maghemite nanoparticles. The covalent 

attachment of EDTA to particles was achieved by the formation of amide bonds between the 

carboxylic acid groups of the complexing agent and amino groups provided by the APTES 

coating (Bernkop-Schnürch and Krajicek 1998). The SEM micrograph (Figure 2A and B) 

shows the porous surface structure of Mag-Ligand. The core/shell structure of Mag-Ligand is 

shown in the TEM micrograph (Figure 2C and D), and the shell layer (attached EDTA) is 

approximately 100 nm as determined by TEM (Figure 2D). Figure 2 demonstrates that the 

hydrated particles are 1 to 10 µm in size with very high porosity in the nanoscale. Figure S3 

(Supplementary Material) indicates that Mag-Ligand is negatively charged (zeta potential 

from -27 to -47 mV) for pH ranging from 4 to 10. 

The FTIR spectra of unmodified maghemite nanoparticles and Mag-Ligand are shown 

in Figure 3A. The Mag-Ligand presented peaks for N-H ( N Hv  , 3267 cm-1), C=O ( C Ov  , 

1633 cm-1), N-H ( N Hv  , 1580 cm-1), C-N ( C Hv  , 1400 cm-1) and C-NH2 ( C Hv  , 1119 cm-1); 

all these functional groups are expected from EDTA. These peaks were not present in the 

spectra of unmodified maghemite nanoparticles, indicating that the synthesis procedure had 

successfully attached EDTA on the surface of maghemite nanoparticles. 

The TGA curves of as-synthesized Mag-Ligand (Figure 3B) show four weight loss steps 

at about 220, 292, 338, 424, and 742 °C, as demonstrated in the derivative curve, which can 

be ascribed to the decomposition of quaternary ammonium group (Wang et al. 2008), the 

decomposition of EDTA and transition from Na2EDTA to Na2CO3, the decomposition of 

Na2EDTA, and the complete oxidation of carbon, respectively (Wendlandt 1960). The 

weight percentage of EDTA attached onto iron oxide particles of Mag-Ligand can be 

determined by the difference of initial and final mass of the sample in the TGA curve 
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(Figure 3B) and was approximately 12.5% of the total mass of Mag-Ligand. The high 

fraction of EDTA and porous surface structure provides many active binding sites for metal 

ion removal.  

Magnetic characterization with a superconducting quantum interference device (SQUID) 

magnetometer at 300 K indicated that maghemite and Mag-Ligand have magnetization 

saturation values of 59.0 and 52.8 emu/g, respectively (Figure 4A), indicating a high 

magnetization. The maghemite content in the macroporous composites is calculated to be as 

high as 35 weight %. Additionally, no remanence was detected in either maghemite or Mag-

Ligand particles, indicating a superparamagnetism feature due to the nanosized maghemite. 

Due to the strong magnetization, Mag-Ligand suspended in water (0.2 g/L) can be quickly 

separated from the dispersion with a magnet (1000 Oe), as shown in Figure 4 B and C. 

These results indicate that the Mag-Ligand possesses excellent magnetic responsivity.  

2.3.2. Sorption isotherms of Cd2+ and Pb2+ 

Adsorption isotherms of Cd2+ and Pb2+ onto Mag-Ligand were obtained at pH 7 as 

shown in Figure 5. Both Cd2+ and Pb2+ removal efficiency gradually increased up to the 

optimum dosage (0.2 and 0.125g/L for Cd2+ and Pb2+, respectively), beyond which the 

removal efficiency (above 97%) did not change with increasing adsorbent dosage (Figure 

5A), since there are a fixed number of adsorption sites (Sekar et al. 2004).  

The effect of initial [Cd2+] (ranging from 1 mg/L to 50 mg/L) and [Pb2+] (ranging from 1 

mg/L to 30 mg/L) on adsorption is shown in Figure 5B. For both ions, removal increased 

first and then decreased with increasing initial ion concentration, once the maximum 

adsorption capacity was reached. The initial ion concentration provides the necessary driving 

force to overcome the resistance to mass transfer of ions between the aqueous and solid 
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phases, and enhances the interaction between Cd2+/ Pb2+ and Mag-Ligand (Kumar et al. 

2010). Figure 5B indicates that Mag-Ligand has stronger affinity for Pb2+ than Cd2+.  

The Pb2+ and Cd2+ isotherm sorption data was fitted using the Langmuir (Figure 5C) and 

Freundlich (Figure 5D) adsorption isotherm models. The Langmuir model provided a 

slightly better fit for Cd2+, while the Freundlich model fitted Pb2+ adsorption better (Table 1). 

Results of adsorption experiments in this study showed that the maximum adsorption 

capacity of 79.4 mg/g for Cd2+ and 100.2 mg/g for Pb2+ onto Mag-Ligand. This agrees with 

the sequence of the EDTA complex formation constants (log K, 25 °C): 18.04 and 16.46 for 

Pb2+ and Cd2+, respectively(Harris 2010). Table S1 (Supplementary Material) presents a 

direct comparison between the collected results from this study versus other previously 

published data of magnetic ligand particles, indicating Mag-Ligand has a higher sorption 

capacity for Pb2+ and Cd2+ than previous materials, as well as a wide range of optimum pH. 

2.3.3. Sorption kinetics of Cd2+ and Pb2+ 

Time dependent removal of metal ions (initial concentration = 10 mg/L) by Mag-Ligand 

(0.2 g/L) showed rapid adsorption of Cd2+ in the first hour (~95% removal efficiency), and 

thereafter, the adsorption rate decreased gradually. Cd2+ equilibrium adsorption was reached 

(above 97% removal efficiency) in about 2 h (Figure 6A). Equilibrium for Pb2+ was achieved 

much faster (~15 min) with above 97% removal efficiency, as shown in Figure 6A. Mag-

Ligand has very fast metal ion sorption kinetics due to the large amount of EDTA accessible 

to the metal ions in solution, and the difference in kinetics between the metal ions also 

corresponds with the EDTA affinity sequence (Harris 2010).  

The pseudo-first-order (Figure 6B) and pseudo-second-order (Figure 6C) kinetic models 

were used to investigate the adsorption rate of Cd2+ and Pb2+ onto Mag-Ligand. The removal 
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of both Cd2+ and Pb2+ by Mag-Ligand followed pseudo-second order rate (R2>0.99) better 

than pseudo-first-order (R2<0.88) (Table 2). The k2 values (in 
g

mg h
) for Cd2+ and Pb2+ 

were determined as 0.235 and 7.960, respectively, indicating Mag-Ligand has a much faster 

removal rate for Pb2+ which is due to the stronger binding constant with EDTA (Harris 

2010). 

2.3.4. Effect of pH on Cd2+ removal 

The influence of pH on the removal efficiency is important in industrial wastewater, 

particularly for cadmium. No significant difference in Cd2+ removal efficiency was found 

between pH 3 and 7, and the removal efficiency stabilized at around 97% (Figure 7). Above 

pH 7, Cd2+ removal efficiency decreased gradually as pH increased, to about 86% at pH 10.  

Simulation of the aqueous speciation of cadmium using Visual MINTEQ (Gustafsson 

2006) software indicates that for pH from 3 to 10, cadmium in DI water at these 

concentrations is mostly present as Cd2+. Cd2+ has a strong complex formation constant with 

EDTA (at 25ºC,    Cd2+ + EDTA4-  Cd (EDTA)2-, log K=14.7; Cd (EDTA)2- + H+  Cd 

(HEDTA)-, log K=2.5 ) (Martell and Smith 1989), which agrees well with our result: Mag-

Ligand showed high removal efficiency across different pH, especially from pH 3 to 7. 

However, starting from pH 8 there is increasing formation of Cd (OH)2 (Zirino and 

Yamamoto 1972), which decreases 2( )Cd EDTA   and ( )Cd HEDTA   formation.  

2.3.5. Effect of water hardness on Cd2+ removal 

Water hardness varies in different water matrices, such as tap water, groundwater, river 

water, lake water and sea water, which is usually expressed as the total amount of Ca2+ and 
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Mg2+ present in the water. Compared to the trace heavy metal ions, the concentrations of 

Ca2+ and Mg2+ ions present in natural water systems is typically much higher, and they can 

also interact with EDTA to form complexes (Yappert and DuPre 1997). Figure 8 shows the 

removal performance of Cd2+ using Mag-Ligand in the presence of different concentrations 

of Ca2+ or Mg2+. No significant difference in Cd2+ removal efficiency was found as Mg2+ 

concentration increased up to 60 mg/L in the solution (Figure 8A). Only at high 

concentration of Ca2+ (above 50 mg/L) was there a decrease in Cd2+ removal efficiency 

(Figure 8B). These results indicate that Ca2+ or Mg2+ did not compete strongly with Cd2+ in 

the complexation reaction with EDTA; this agrees with the sequence of the EDTA complex 

formation constants (log K, 25 °C): 8.79, 10.69 and 16.46 for Mg2+, Ca2+ and Cd2+, 

respectively (Harris 2010). 

2.3.6. Regeneration and reuse of Mag-Ligand 

To demonstrate the regenerability and reuseability of the Mag-Ligand, the recovery of 

Cd2+ sorbed onto the Mag-Ligand was investigated using a 1% HCl wash. Cd2+ removal and 

Mag-Ligand recovery during five continuous cycles of regeneration and reuse are shown in 

Figure 9. It was found that a large fraction of the sorbed Cd2+ (>80%, over 8 mg/L) could be 

recovered, indicating easy regeneration of Mag-Ligand (Figure 9). Some loss (within 10% 

change) of Cd2+ sorption capacity was observed for the regenerated Mag-Ligand after 5 

cycles (Figure 9), indicating good reusability of Mag-Ligand. The decreased chelating 

capacity was likely due to irreversibly bound metals or loss of chelator (Koehler et al. 2009).  

2.4. Conclusions 

Mag-Ligand represents a significant improvement in metal ion decontamination in a 

wide range of aqueous matrices, since (1) Mag-Ligand only requires a simple synthesis 



 

 42

procedure and exhibits high metal ion removal capacity; (2) the superparamagnetic Fe2O3 

core allows rapid separation of Mag-Ligand after sorption; (3) Mag-Ligand can be easily 

recovered, regenerated and reused, significantly increasing treatment efficiency and reducing 

operation cost; (4) Mag-Ligand exhibits high removal efficiency under different 

environmental conditions (e.g. pH range from 4 to 10; up to 60 mg/L Ca2+ or Mg2+ present 

in the solution); (5) the residual Cd2+ and Pb2+ in solution represents a very small fraction of 

the initial contaminated mass and volume; and (6) sorption kinetics indicate fast removal of 

metal ions. The most likely mechanisms of Cd2+adsorption onto Mag-Ligand are (1) 

complexation reactions with EDTA and (2) adsorption of Cd2+ or Pb2+ on the surface porous 

structures. Future work will address the current synthesis process, seeking a more 

sustainable approach with an aqueous-based synthesis. 

Therefore, Mag-Ligand are reusable sorbents for the fast, convenient, and highly 

efficient removal of Cd2+ and Pb2+ from contaminated aquatic systems. It is expected that the 

Mag-Ligand will have potentially wide application in the removal of other heavy metal 

pollutants from aquatic systems. 
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Table 1. Isotherm parameters for Cd2+ and Pb2+ sorption on Mag-Ligand 

 



 

 44

Table 2. Kinetic parameters for Cd2+ and Pb2+ sorption on Mag-Ligand 
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Figure 1. Schematic representation of Mag-Ligand synthesis (note: the core and shell are 

not drawn to scale). 
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Figure 2. (A) SEM micrographs of Mag-Ligand at 2500×, scale bar=10 µm and (B) at 

10,000×, scale bar=2 µm; (C) TEM micrographs of Mag-Ligand at 80,000×, scale bar 

=100nm and (D) at 200,000, scale bar=100nm. 
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Figure 3.  (A) FTIR spectra of unmodified magnetite nanoparticles and Mag-Ligand; (B) 

Thermogravimetric analysis (TGA) of Mag-Ligand. 



 

 48

 

 

Figure 4. (A) The magnetic hysteresis loops of iron oxide nanoparticles and Mag-Ligand; 

(B) Mag-Ligand particles are introduced into a vial containing contaminated water; (C) A 

permanent magnet is placed at the side of the vial to attract the magnetic particles, 

demonstrating the rapid removal of Mag-Ligand from the suspension within seconds of 

applying a magnetic field.
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Figure 5. Adsorption of Cd2+ and Pb2+ onto Mag-Ligand (characterized by Cd2+ (□) and 

Pb2+ (○)) (A) at pH 7 as a function of adsorbent dose with a fixed initial ions concentration 

of 10 mg/L; (B) at pH 7 as a function of initial ions concentration with a fixed adsorbent 

concentration of 2 g/L; (C) Langmuir and (D) Freundlich adsorption isotherms fit at pH 7, 

symbols represent experimental data, and red line represents model prediction. 
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Figure 6. Cd2+ and Pb2+ (A) sorption uptake versus time; and sorption kinetics fitted by 

(B) Pseudo-first order and (C) Pseudo-second order onto Mag-Ligand in solution at pH 7. 
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Figure 7. Adsorption of Cd2+ onto Mag-Ligand in solution as a function of pH, 

characterized by the removal efficiency (○) and adsorption capacity (□).  
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Figure 8. Adsorption of Cd2+ (10 mg/L initial concentration) onto Mag-Ligand (removal 

efficiency (○) and adsorption capacity (□)) in the presence of (A) Mg2+ (from 0.6 mg/L to 60 

mg/L) and (B) Ca2+ (from 1 mg/L to 100 mg/L) at pH 7. 
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Figure 9. Cd2+ (10 mg/L initial concentration) removal efficiency (○) from solution and 

Cd2+ recovery (□) from Mag-Ligand during five regeneration cycles 
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2.5. Appendix. Supporting Information 

2.5.1. Characterization of Mag-Ligand post acid wash regeneration treatment  

 

Figure S1. (A) TEM micrographs of Mag-Ligand at 150,000×, scale bar =100nm and (B) 

at 250,000, scale bar=100nm. 

The TEM image (Figure S1.) shows the core/shell structure of Mag-Ligand particles 

after acid wash treatment.  Comparing Figure 2 C. & D. with Figure S1., no significant 

difference can be noted before and after dilute acid wash, which indicates that 1% HCl wash 

did not cause the dissolution of maghemite particles. Furthermore, since acid wash treatment 

is a short period (Mag-Ligand was mixed with 1% HCl for 10 minutes at room temperature), 

not significant dissolution of maghemite was detected when using the ICP to determine the 

Cd (II) and Fe concentration in the supernatant solution. 
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2.5.2. Effect of pH (With/without pH Buffers) 

 

Figure S2. (A) Adsorption of Cd2+ onto Mag-Ligand in solution as a function of pH with 

and without pH buffers presented; (B) Cd2+ contaminated water pH change prior and post 

Mag-Ligand sorption treatment. 
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Considering pH effect on Mag-Ligand sorption performance, sorption experiments either 

with or without pH buffers was performed; no significant difference was found in the 

removal efficiency, as shown in Figure S2 A. However, without buffers present, the pH of 

Cd(II) contaminated water would vary significantly after treatment, while with buffers 

presented, we can report the pH of actual treatment, as shown in Figure S2 B.   

The concentrations of these buffers was based on the minimum needed to adjust the 

solution to the desired pH. Furthermore, these buffers increased the ionic strength, which is 

very common in actual water treatment, so it is more realistic.  

Considering the possible competitive sorption between Cd(II) and the ions from pH 

buffers, we chose sodium salt pH buffers, which has very low complex formation constant 

(log K=1.66, 25 °C) with EDTA. Furthermore, as noted in the manuscript as “3.4. Effect of 

water hardness”, we discussed competitive sorption between Cd(II) and Ca(II) or Mg(II), and 

no significance impacts on the sorption capacity were found even regarding to higher 

concentration (up to 100 mg/L) and higher complex formation constant (Ca(II): log K=10.69; 

Mg(II): log K=8.79, 25 °C). 

The results indicate that the use of pH buffers would not have a significant impact on the 

Mag-Ligand sorption capacity of Cd2+, and they can help to control the solution pH for 

testing.   

2.5.3. Surface charge 

The surface charge (zeta (ζ) potential) of the Mag-Ligand was measured with a Zetasizer 

Nano-ZS90 (Malvern, UK) using folded capillary cells. Each data point obtained with the 

Zetasizer was an average of three repetitions of 10 or more runs each. Figure S3 indicated 

the zeta (ζ) potential of  Mag-Ligands as a function of pH. 
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Figure S3. Mag-Ligand zeta potential as a function of pH. 
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Table S1. Comparison of adsorption capacities of various magnetic adsorbents for heavy 

metal ions (Dupont et al. 2014, Liu et al. 2013, Mahmoud et al. 2013, Zhang et al. 2011).  
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Chapter 3. Adsorptive Removal of Multiple Metal Ions from 

Contaminated Water with EDTA Functionalized Superparamagnetic 

Nanoparticles: Equilibrium, Kinetics and Thermodynamics  

3.1. Introduction 

Chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), zinc (Zn) and copper (Cu) are 

considered hazardous metals as well as significant threat to the environment and public 

health due to their high toxicity and accumulative characteristics (Ge et al. 2012). They can 

be released into the environment through a number of activities, such as mining, metal 

processing and finishing, welding and alloy manufacturing (Fu and Wang 2011) , the use of 

metals in vehicles, coal combustion, as well as volcanic eruptions and forest fires (Huang 

and Keller 2015). These metals can enter the food supply chain via pesticides or fertilizers 

where they are found as impurities, causing progressive toxic effects with gradual 

accumulation in living organisms over their life span (Huang et al. 2014, Su et al. 2015, Su 

et al. 2014). Therefore, to develop effective and rapid metal remediation techniques is of 

great importance. 

Recently, magnetic core hybrid nanoparticles have been proposed as sorbents for 

environmental decontamination (Huang and Keller 2013, 2015, Su et al. 2015, Su et al. 

2014). Besides the relatively large surface area, and high ratio of surface-to-volume, these 

novel sorbents could take advantage of their superparamagnetic nature in post-treatment 

separation, which simply involves applying an external magnetic field to extract the 

adsorbents. In this way, these sorbents can overcome many of the issues present in filtration, 

centrifugation or gravitational separation, generally requiring less energy to achieve a given 
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level of separation, providing a more sustainable approach. In previous studies, these 

magnetic nanoparticle sorbents had successfully been applied to remove heavy metal ions 

(Huang and Keller 2015), hydrophobic compounds (Wang et al. 2008), pesticides (Clark and 

Keller 2012b), natural organic matter (Wang et al. 2011), oxyanions (Clark and Keller 2012a) 

and emerging organic contaminants (Huang and Keller 2013).  

In a recent study (Huang and Keller 2015), we reported a magnetic nanoparticle sorbent, 

namely Mag-Ligand, which is structured as a magnetic nano-scale core coated with a silica 

porous layer that covalently bonds with an organic ligand, ethylenediaminetetraacetic acid 

(EDTA). The attached EDTA can bind the dissolved metal ion contaminant, while the 

magnetic core allows for rapid separation of the Mag-Ligand from solution by applying a 

magnetic field. Mag-Ligands have proven to be effective sorbents for removal of individual 

metal ions such as Cd2+ and Pb2+ under various environmental conditions (e.g. range of pH 

and water hardness) as well as showing good regenerability and reusability.  

However, in realistic aquatic systems, like industrial wastewater, there are usually 

several metal ions. It’s important to evaluate the remediation performance of Mag-Ligand 

for multiple metal ions in competitive sorption. In addition, though the primary application 

of Mag-Ligand is wastewater treatment, it could be extended to adsorb or collect ions of 

valuable elements, for instance, rare earth elements from process water, contaminated 

groundwater or mining leachate. Furthermore, to scale the use of Mag-Ligand for real world 

applications, a quantitative knowledge of the kinetics and thermodynamics of Mag-

Ligand/metal ion interactions is needed to ascertain the minimum amount of Mag-Ligand 

particles needed to remove metal cations to a specified level in complex matrices with 

multiple metals. 
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In this study, we evaluated the adsorption capacity, isotherms and kinetics of nine 

different metal ions, including three rare earth elements, onto Mag-Ligand, at different initial 

metal ion concentrations in individual sorption. In addition, we determined the remediation 

performance of Mag-Ligand for Pb2+ removal under various environmental conditions (e.g. 

range of pH and water hardness). Three groups of competitive sorption studies were 

conducted to determine the selectivity sequence among multiple metal ions. Isothermal 

titration microcalorimetry (ITC) was used to obtain key quantitative thermodynamic binding 

data of the interactions between Mag-Ligand and metal ions, providing the enthalpy, entropy 

and free energy of binding values as well as binding constants. The results demonstrated that 

Mag-Ligand is a rapid, effective, regenerable and more sustainable sorbent for removal of 

multiple metal ions. Furthermore, Mag-Ligand can also have wide application in the 

recovery of highly valuable elements such as rare earth elements with stable removal 

performance across a range of pH and water hardness. 

3.2. Experimental 

3.2.1. Chemicals 

Maghemite (iron (III) oxide) nanoparticles (30 nm in diameter), indium (III) chloride and 

pyridine were purchased from Alfa Aesar (USA). (3-aminopropyl)triethoxysilane (99%) 

were purchased from Sigma-Aldrich (USA). Cadmium chloride anhydrous, lead chloride, 

ethylenediaminetetraacetic acid (EDTA), sodium bicarbonate were purchased from Fisher 

Scientific (USA). Mercury (II) nitrate monohydrate, zinc (II) chloride, copper (II) chloride, 

gallium (III) chloride, cerium (III) chloride, chromium (III) chloride and diethylether were 

purchased from Acros Organics (Geel, Belgium). Toluene was purchased from EMD 

Millipore (USA). All chemicals were used as received, without further purification. All 
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solutions were prepared with deionized water (18 MΩ-cm) from a Barnstead NANOpure 

Diamond Water Purification System (USA). 

3.2.2. Batch sorption of metal ions 

For most experiments 5.0 mg of Mag-Ligand particles were mixed with 25 mL of metal 

ion (Cd2+/Pb2+/Cu2+/Zn2+/Hg2+/Cr3+/Ga3+/In3+/Ce3+) solution (10 mg/L) in 50 mL conical 

tubes, and pH was adjusted by using 0.1 M NaOH and HCl. Then, these tubes were mixed in 

an end-over-end shaker on a Dayton-6Z412A Parallel Shaft (USA) roller mixer with a speed 

of 70 rpm at room temperature for 24 h to ensure sufficient equilibration time. Adsorption 

kinetics studies were carried out at the same conditions as previously stated but for a set 

amount of time, varying from 1 min to 24 h, with pH = 7. After mixing the Mag-Ligand 

particles with dissolved contaminants for a specified time, the particles were separated from 

the mixture with the Eclipse magnet. All experiments were conducted at ambient 

temperature (22-25 °C).  

Competitive sorption was conducted in three groups: (1) Cd2+ and Pb2+, for which Mag-

Ligand has the highest sorption capacity; (2) rare earth elements: Ga3+, In3+ and Ce3+; (3) six 

non-rare earth elements: Cd2+, Pb2+, Cu2+, Zn2+, Hg2+ and Cr3+. In each group, 10 mg of 

Mag-Ligand particles were mixed with 25 mL of equal concentrations (varied from 1 to 20 

mg/L) of each metal ion.  

The concentration of adsorbent was varied from 0.04 to 0.28 g/L to study the adsorption 

isotherms of metal ions onto Mag-Ligand at pH 7. Additionally, solutions with varying 

initial concentrations of metal ions, which ranged from 1 mg/L to 30 mg/L were treated with 

the same procedure as above at pH 7 and 5.0 mg Mag-Ligand. 
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 A Thermo iCAP 6300 inductively coupled plasma with atomic emission spectroscopy 

(ICP-AES) was used to analyze the concentration of metal ions.  

3.2.3. Binding constant between metal ions and Mag-Ligand 

A TA Instruments Nano Isothermal Titration Calorimeter (ITC) instrument was used to 

measure the heat exchange between Mag-Ligand particles and metal ions at 298 K to 

determine the binding constants. Generally, a well-dispersed suspension of Mag-Ligand 

particles (degassed DI water) was placed in the 1 mL ITC sample cell, and a metal ion(s) 

solution (1000 mg/L) was loaded into the 100 μL injection syringe. Metal ions were titrated 

into the sample cell as a sequence of 20 injections of 4.91 μL aliquots. The rotational speed 

of the stirrer was 250 min−1 and the equilibrium time between two injections was set at 800 s 

for the signal to return to the baseline. 

Estimated binding parameters were obtained from the ITC data using the NanoAnalyze 

Data Analysis software (Version 3.30). Data fits were obtained using the independent set of 

multiple binding sites model (Freire et al. 1990), for which the analytical solution for the 

total heat measured, Q (kJ) is determined by the formula: 
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                  (1) 

Where V is the volume of the calorimeter cell, ΔH is enthalpy (kJ/mol), [LT] is metal 

ions concentration, [M] is Mag-Ligand particles concentration, n is the molar ratio of 

interacting species, and Kd (M-1) is the equilibrium binding constant. Free energy, ΔG 

(kJ/mol), was determined from the binding constant ( lnG RT K   , where R is the gas 
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constant and T is the absolute temperature in Kelvin) and entropy, ΔS (kJ/mol), from the 

second law of thermodynamics ( G H T S     ). 

3.3. Results and discussion 

3.3.1. Sorption isotherms of individual metal ions 

Figure 1 presents the experimental results of the non-competitive sorption for each metal 

ion (Cr3+, Cu2+, Ce3+, Zn2+, In3+, Ga3+, Hg2+, Cd2+ and Pb2+) for the range of concentrations 

studied, as well as the fit of the Langmuir isotherm model (fitted parameter values are 

summarized in Table 1.).  

Pb2+ exhibited the highest adsorption capacity onto Mag-Ligand (112.4 mg/g) while Cr3+ 

exhibited the lowest sorption capacity (18.17 mg/g). These differences reflect the different 

interaction strengths between the individual metal ions and Mag-Ligand particles. 

Interestingly these results do not follow the sequence in conventional formation constants for 

metal-EDTA complexes(Harris 2010) (log K, 25 °C) strictly, which are 23.40 for Cr3+ and 

18.04 for Pb2+. According to our previous study(Huang and Keller 2015), EDTA was 

covalently attached to the APTES coated maghemite nanoparticles by the formation of 

amide bonds between the carboxylic acid groups of the complexing agent and amino groups 

provided by the APTES coating. This covalent attachment would make EDTA loose at least 

one of its carboxylic acid groups, which would have influence on its complexing capability 

(BernkopSchnurch et al. 1997). Therefore, the binding capacity of EDTA attached to Mag-

Ligand particles is different from the unbound EDTA. The binding constants and 

thermodynamic data between Mag-Ligand particles and each individual metal ion 

specifically will be investigated in the following sections.  
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3.3.2. Sorption kinetics of individual metal ions 

Time dependent removal of metal ions (initial concentration= 10 mg/L) by Mag-Ligand 

(0.2 g/L) showed rapid adsorption of Pb2+ in the first 15 minutes with above 97% removal 

efficiency, and thereafter, the rate decreased gradually and reached equilibrium, as shown in 

Figure 2A. Since most of the metal ion sorption onto Mag-Ligand occurred in the first 15 

minutes, the individual metal ions sorption kinetics were conducted with mixing times of  1, 

5, 10, 15 and 30 minutes. The kinetic model was then used to investigate the adsorption rate 

(Figure 2B). The removal of metal ions by Mag-Ligand particles followed pseudo-second-

order (R2>0.99), as summarized in Table 2. The effective ionic radius of each metal ion 

serves to determine the adsorption rate (Unlu and Ersoz 2006), as generally reflected by the 

relation between ionic radius and k2 (Figure 2C). Smaller metal ions such as Cr3+ and Cu2+ 

have much faster equilibrium rates than larger ions (e.g. Cd2+ and Pb2+). This result can be 

expected because the adsorption is controlled either by diffusion into Mag-Ligand’s porous 

structure or by a second-order chemical reaction (Kantipuly et al. 1990) with the chelating 

functional groups present on Mag-Ligand’s surface (Huang and Keller 2015), both of which 

are influenced by metal ion size. 

3.3.3. Competitive sorption of multiple metal ions 

Since waste water usually contains a wide variety of dissolved metal ions we conducted 

competitive sorption with three groups of metal ions, with equal initial metal ion 

concentrations ranging from 1 to 20 mg/L. In Group 1 (Cd2+ and Pb2+) removal efficiency of 

both metal ions increased first and then decreased with increasing initial ion concentration, 

once the maximum adsorption capacity was reached (Figure 3A). In Group 2 (Ga3+, In3+ and 

Ce3+) and Group  3 (Cd2+, Pb2+, Cu2+,Zn2+, Hg2+ and Cr3+), the removal efficiency of all the 
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metal ions decreased with increasing initial ion concentration, as shown in Figure 3B and 3C, 

respectively.  

Figure 3A indicates that Mag-Ligand has stronger affinity for Pb2+ than Cd2+ in 

competitive sorption, with the maximum adsorption capacity of 49.6 mg/g for Pb2+ and 19.3 

mg/g for Cd2+ (Table S3), which agreed with the trend in individual sorption (Table 1). A 

similar trend was observed in Group 2 (Figure 3 B), where the affinity was Ga3+ > In3+ > 

Ce3+, which also followed the sequence of individual sorption (Table 1).  

However, in Group 3 Cu2+ had much higher sorption capacity (21.4 mg/g) than other 

metal ions, especially at the higher initial concentration range (Figure 3C), while, Cu2+ 

exhibited relatively lower sorption capacity in individual sorption compared to other metal 

ions (Table 1). This could reflect the faster kinetics of Cu2+ (Table 2), with a larger rate 

constant (7.6 g/h·mg).  

The competitive isotherm sorption data was analyzed using the Langmuir isotherm 

model (Figure S3A, S3B and S3C), and the fitted parameters are listed in Table S1. The 

maximum adsorption capacities of all metal ions onto Mag-Ligand in competitive sorption 

(Table S1) are noticeably lower than that in individual sorption (Table 1). This is expected 

since there are a fixed number of adsorption sites on the Mag-Ligand particles which are 

shared by the various metal ions (Huang and Keller 2015).  

As shown in Figure 4, the trend in maximum adsorption capacity of metal ions onto 

Mag-Ligand in competitive sorption (based on the Langmuir model) generally agreed with 

the sequence of k2 (equilibrium kinetic rate constant). Thus, in competitive sorption, as the 

number of binding sites on Mag-Ligand particles is limited, metal ions with higher 

adsorption rate occupy the sites first, leading to higher removal rate, regardless of the affinity. 

This also explains the fact that Cu2+ showed slightly lower removal efficiency than other 
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metal ions at low initial concentration (Figure 3C), as there were sufficient absorption sites 

and Cu2+ has lower affinity to Mag-Ligand. 

3.3.4. Binding constants between Mag-Ligand and metal ions  

To quantify the strength of binding of various metal ions to the Mag-Ligand particles, 

nine different metal cations were titrated into a suspension with Mag-Ligand particles in 

individual experiments using ITC. The integrated binding isotherms for metal ions are 

presented in Figure 5 (A), and the independent set of multiple binding sites model (Equation 

1) was applied to calculate the thermodynamic parameters (Table 3). Cr3+ has the weakest 

interaction toward Mag-Ligand with a binding constant of 3.492×102 M-1, while Pb2+ 

showed the highest affinity with a binding constant of 4.412×103 M-1, which is more than a 

10-fold difference. Table 3 indicates the sequence of the metal ion affinity to Mag-Ligand, 

which follows the pattern Cr3+ < Cu2+ < Zn2+ < Ga3+ < Cd2+ < In3+ < Ce3+ < Hg2+ < Pb2+. 

This trend is similar to the sequence of maximum sorption capacity predicted by the 

Langmuir isotherm sorption model (Figure 5B).   

The difference in magnitude of binding for Mag-Ligand with different metal ions is 

likely the result of a combination of several factors, including the geometry of the metal 

complexes, ionic radii of the metal cations and metal valence. A similar trend in sorption 

capacity and kinetic rate and binding constants indicated that the most likely mechanisms of 

interactions between metal ions and Mag-Ligand are complexation reactions and adsorption 

onto porous structures. 

All metal Mag-Ligand interactions showed negative enthalpy (ΔH) of reaction values at 

25 °C (Table 3), implying that these interactions are all enthalpically favored. We obtained 

negative changes in the entropy (ΔS) of binding and negative changes in the free energy (ΔG) 
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of reaction values in our experiments, indicating all of the studied metal Mag-Ligand 

interactions are enthalpically driven reactions as well as energetically favored at 25 °C.  

3.4. Conclusions 

We demonstrated that the Mag-Ligand is an effective and efficient sorbents because of 

fast removal rate, high sorption capacity and convenient application to removal of multiple 

metal ions from contaminated aqueous systems. Mag-Ligand can also have wide application 

in the recovery of highly valuable elements such as rare earths. Mag-Ligand exhibits stable 

removal performance across a range of pH and water hardness. In individual sorption 

experiments, Pb2+ showed highest sorption capacity (112.4 mg/g) following by Cd2+, Hg2+, 

Ga3+, In3+, Zn2+, Ce3+, Cu2+, while Cr3+ has the lowest sorption capacity (18.17 mg/g). A 

similar trend was observed in competitive sorption experiments, except that Cu2+ is 

preferentially adsorbed due to its higher sorption kinetic rate constant. The kinetic and 

thermodynamic parameters for chelation reactions between metal cation and Mag-Ligand 

particles were determined, giving the sequence of binding constants as: Cr3+ < Cu2+ < Zn2+ < 

Ga3+ < Cd2+ < In3+ < Ce3+ < Hg2+ < Pb2+. The difference in magnitude of binding of Mag-

Ligand with different metal ions is likely the result of a combination of several factors, 

including the geometry of the metal complexes, ionic radii of the metal cations and metal 

valence. The similar trend in sorption capacity and kinetic rate constant and binding 

constants indicated that the most likely mechanisms of interactions between metal ions and 

Mag-Ligand are complexation reactions and adsorption onto porous structures. 
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Table 1. Langmuir isotherm model fitted parameters for sorption of each individual 

metal ion onto Mag-Ligand  
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Table 2. Pseudo-second-order model fitted parameters for the adsorption kinetics of each 

individual metal ion onto Mag-Ligand 
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Table 3. Fitting parameters ∆H, Kd and n from ITC analysis of the integrated heats with 

independent model and calculated ∆G and ∆S from Kd and ∆H values. 
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Figure 1. Adsorption of individual metal ions (Cr3+, Cu2+, Ce3+, Zn2+, In3+, Ga3+, Hg2+, 

Cd2+ and Pb2+) onto Mag-Ligand with Langmuir adsorption isotherms fit at pH 7, symbols 

represent experimental data, error bars represent standard deviation from the mean (n =3), 

and red line represents model prediction. 
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Figure 2.  (A) Pb2+ sorption uptake versus time at pH 7; (B) individual metal ions (Cu2+, 

Hg2+, Cd2+, Pb2+, Zn2+, Cr3+, Ga3+, In3+ and Ce3+) sorption kinetics fitted by Pseudo-second 

order onto Mag-Ligand in solution at pH 7; (C) equilibrium rate constants of kinetics k2 (red 

dots) versus effective ionic radii (blue bars)(Shannon 1976) (in pm, 1 pm=10-12m), data for 

ionic radii from Shannon, 1976 (Shannon 1976), 
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Figure 3. Competitive sorption of multiple metal ions (A) Group 1: Cd2+ and Pb2+; (B) 

Group 2: Ce3+ In3+ and Ga3+; and (C) Group 3: Cr3+, Zn2+, Cd2+, Hg2+, Pb2+ and Cu2+ onto 

Mag-Ligand at pH7 as a function of initial ions concentration with a fixed adsorbent 

concentration of 4 g/L;  
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Figure 4. Langmuir model predicted maximum adsorption capacity (qe) of metal ions 

onto Mag-Ligand in group competitive sorption (blue bars) versus the equilibrium kinetic 

rate constant, k2 (red dots). 
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Figure 5. (A) The integrated binding isotherms as a function of molar ratio of metal ions 

(Cr3+, Cu2+, Ce3+, Zn2+, In3+, Ga3+, Hg2+, Cd2+ and Pb2+) to Mag-Ligand particles were fitted 

with independent model, symbols represent experimental data, and red line represents model 

prediction; (B) Langmuir model predicted maximum adsorption capacity of metal ions onto 

Mag-Ligand in individual sorption (blue bars) versus the binding constant log Kd (red dots). 
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3.5. Appendix. Supporting Information 

3.5.1. Synthesis of Mag-Ligand 

The synthesis protocol followed our previously reported method (Huang and Keller 

2015). Briefly, Maghemite nanoparticles (1.0 g) were dispersed into 40 mL of toluene in a 

flask. After adding 0.4 mL of 3-aminopropyltriethoxysilane (APTES), the flask was 

connected to a reflux system (WU-28615-06, Cole-Parmer, USA), which was then rotated at 

30 rpm (revolutions/minute) in a water bath at 90 ºC, and refluxed for 2 h. After the solution 

cooled to room temperature (22 ºC), 2 mM EDTA and 60 mL pyridine were added. The 

mixture was again rotated at 30 rpm in a water bath at 90 ºC in the reflux system for 2 h. 

After the solution cooled down to room temperature, 100 mL of sodium bicarbonate (0.5 

M/L) was added to adjust pH. A magnet (Eclipse Magnetics N821 permanent, 50 mm ×50 

mm ×12.5 mm; 243.8 g; pull force: 40.1 N) was applied to the bottom of the flask to recover 

the nanoparticles while the supernatant was decanted. Deionized (DI) water was used to 

rinse the particles twice and then decanted while retaining the particles with the magnet. The 

same rinsing procedure was performed twice with ethanol and then diethylether. The 

particles were dried at room temperature for 24 h, and stored in a capped bottle prior to use. 

The characterization of Mag-Ligand particles were reported in our previous study (Huang 

and Keller 2015). 

3.5.2. Analysis  

A Thermo iCAP 6300 inductively coupled plasma with atomic emission spectroscopy 

(ICP-AES) was used to analyze the concentration of metal ions. All tests were performed in 
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triplicate and analysis of variance (ANOVA) was used to test the significance of results. A 

p<0.05 was considered to be statistically significant. 

Metal ions removal efficiency and sorption capacity were calculated as:  

 0

0

100%tC C
Removal efficiency

C


                          (S1) 

 0( )t
e

C C V
Sorption capacity q

m

 
                             (S2) 

where C0 and Ct are the initial and final concentrations of metal ions (mg/L), m is the 

mass of Mag-Ligand (g), and V is the volume of solution (L). 

Mag-Ligand recovery efficiency was calculated as: 

0

100%wC
Recovery efficiency

C
                            (S3) 

where C0 (mg/L) is the initial concentrations of Cd2+ ions in solution, and Cw (mg/L) is 

the concentrations of Cd2+ ions in the extracted solution (after regeneration). 

The Cd2+ and Pb2+ equilibrium adsorption was evaluated according to Langmuir 

isotherms using Eq. 4, respectively (Morel and Hering 1993):  

1e e

e L m m

C C

q K q q
 


                               (S4) 

where Ce is solute concentration (mg/L) at equilibrium and qe is amount adsorbed (mg/g), 

qm is the maximum sorption capacity (mg/g). KL is the Langmuir sorption equilibrium 

constant (L/mg). 

Kinetics were analyzed using the pseudo-second-order models using Eq. 5 (Coleman et 

al. 1956):  

t
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where k2 (
g

mg h
) is the equilibrium rate constant of kinetics. 

3.5.3. Effect of pH on Pb2+ removal 

Adsorption of Pb2+ onto Mag-Ligand was also performed at various solution pH. The 

pH was varied from 4 to 7, and pH was adjusted by using 0.1 M NaOH and HCl. In order to 

study the effect of ionic strength, especially water hardness, on the removal efficiency of 

Mag-Ligand on metal ions, two different common ions, Ca2+ and Mg2+ were used at 

concentrations ranging from 1 mg/L to 100 mg/L. The experiments were done as described 

earlier at pH 7. 

Pb2+ was selected as an example to study the influence of pH on the removal efficiency, 

given its high abundance in waste water. The removal efficiency was found to decrease 

gradually as pH increased between pH 3 and 7, while the sorption capacity stabilized at 

around 50 mg/g at the range of pH 3 to 6 (Figure S1). This is not due to a decrease in affinity, 

but rather a change in Pb2+ speciation. Based on the simulation of lead species using Visual 

MINTEQ (Gustafsson 2006) software, the main Pb species present in the pH range 3 to 6 is 

Pb2+, while the formation of solid Pb(OH)2 starts at pH 6.3 and PbOH3− dominates above pH 

7.0 (Issabayeva et al. 2006). Pb2+ has a strong complex formation constant with EDTA (at 

25ºC log K=18.04)(Harris 2010), which agrees well with our result: Mag-Ligand showed 

high sorption capacity across different pH, especially from pH 3 to 6.  
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Figure S1 Adsorption of Pb2+ onto Mag-Ligand in solution as a function of pH, 

characterized by the removal efficiency (○) and adsorption capacity (□). 

3.5.4. Effect of water hardness on Pb2+ removal  

Water hardness, usually expressed as the total amount of Ca2+ and Mg2+ present in the 

water, varies in different water matrices, and both Ca2+ and Mg2+ can also interact with 

EDTA to form complexes (Yappert and DuPre 1997). Figure S2 shows the remediation 

performance of Pb2+ as a representative metal ion by Mag-Ligand in the presence of different 

concentrations of Ca2+ or Mg2+. No significant difference in Pb2+ removal efficiency was 

found as Mg2+ or Ca2+concentration increased up to 100 mg/L in solution (Figure S2). These 

results indicate that Ca2+ or Mg2+ did not compete strongly with Pb2+ in the complexation 
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reaction with EDTA due to relative low complex formation constants between Ca2+ or Mg2+ 

and EDTA (log K is 8.79 for Ca2+ and 10.69 for Mg2+ at 25 °C) (Harris 2010).  

 

 

Figure S2 Adsorption of Pb2+ (10 mg/L initial concentration) onto Mag-Ligand (removal 

efficiency (○) and adsorption capacity (□)) in the presence of (A) Mg2+ (from 1 mg/L to 

100 mg/L) and (B) Ca2+ (from 1 mg/L to 100 mg/L) at pH 7. 
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3.5.5. Competitive sorption of multiple metal ions 
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Figure S3 Competitive sorption of multiple metal ions fitted by Langmuir adsorption 

isotherms model: (A) Group 1: Cd2+ and Pb2+; (B) Group 2: Ce3+ In3+ and Ga3+; and (C) 
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Group 3: Cr3+, Zn2+, Cd2+, Hg2+, Pb2+ and Cu2+ at pH 7, symbols represent experimental data, 

and red line represents model prediction. 



 

 100

 

Table S1. Langmuir isotherm model fitted parameters for each metal ion in group 

competitive sorption onto Mag-Ligand 
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Chapter 4. Magnetic Nanoparticle Adsorbents for Emerging Organic 

Contaminants2  

4.1. Introduction 

Recent attention has been directed at chemicals that are historically unregulated or not 

commonly regulated as contaminants but has the potential to enter the environment and 

cause known or suspected adverse ecological and human health effects, such as 

pharmaceuticals, personal care products, surfactants, various industrial additives and 

endocrine disruptors, including hormones (Bolong et al. 2009, Kuster et al. 2008, Murray et 

al. 2010). These chemicals are collectively defined as Emerging Organic Contaminants 

(EOCs) (http://toxics.usgs.gov/regional/emc). The presence of these synthetic chemicals in 

the wastewater or surface water may contaminate ecosystems, and surface and drinking 

water supplies. Recent studies have shown that EOCs may have biological effects, and even 

potential ecotoxicological impacts on invertebrates (such as daphnids), fish, algae, mussels, 

and also human embryonic cells (Carlsson et al. 2006, Hoeger et al. 2005, Kim et al. 2007, 

Kolok et al. 2007, Lai et al. 2009, Lyssimachou and Arukwe 2007, Pomati et al. 2006). To 

date, most of the studies have been focused on the occurrence and/or fate of EOCs in surface 

waters (Hao et al. 2006, Lin et al. 2006, Pedrouzo et al. 2007, Xu et al. 2007, Zhang et al. 

2007) and/or wastewater (Chang et al. 2008, Kuster et al. 2008, Nakada et al. 2008, Santos et 

al. 2009, Stulten et al. 2008). However, there are few studies on approaches to remove EOCs 

                                                 
2 This chapter was published in ACS Sustainable Chemistry & Engineering: Huang, Y, 

Keller, AA (2013). Magnetic Nanoparticle Adsorbents for Emerging Organic Contaminants. 
ACS Sustainable Chemistry & Engineering, doi: 10.1021/sc400047q. 
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from aqueous media. Therefore, the development of technologies to remove legacy and 

emerging organic contaminants from water is of great importance. 

In recent years, magnetic particles have received a lot of attention as powerful adsorbents 

because of their inherent superparamagnetic properties make them desirable for magnetic 

field assisted separations (Ambashta and Sillanpaa 2010, Latham and Williams 2008, 

Toprak et al. 2007, Yavuz et al. 2006). For instance, magnetic iron oxides (Fe2O3 and Fe3O4) 

have been reported as potential adsorbents for the removal of pollutants from aqueous media 

(Ai et al. 2008, Shannon et al. 2008, Tuutijarvi et al. 2009, Yantasee et al. 2007). 

The surface characteristics of the sorbents are very important to the effectiveness of the 

adsorption process. Since sorption of organic chemicals can be enhanced by coating of 

surfactants onto the sorbent, in a previous study we synthesized Magnetic Permanently 

Confined Micelle Arrays (Mag-PCMAs), with a magnetite core and a silica porous layer that 

permanently confines surfactant micelles within the mesopores (Wang et al. 2009). The 

magnetic core allows for rapid separation of the Mag-PCMAs from solution by applying a 

magnetic field. Mag-PCMAs have been applied to the removal of very hydrophobic 

compounds (Wang et al. 2009), natural organic matter (Wang et al. 2011) and oxyanions 

(Clark and Keller 2012).  

The objective of this study was to determine the effectiveness of Mag-PCMAs to remove 

EOCs from water. For comparison, two legacy contaminants (e.g. ethylbenzene, 2-

chlorophenol) were also evaluated. The microenvironment of the interactions between the 

mesoporous layers of the Mag-PCMAs and the multiple binding sites on EOCs make it a 

significant study for sorbents in complex chemical environments, such as water treatment. 

Mag-PCMAs have low energy requirements in their synthesis, use and regeneration, 
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compared to other adsorbents such as granular activated carbon (GAC), resulting in a much 

more sustainable material. 

4.2. Experimental 

4.2.1. Chemicals 

Tetramethyl ammonium hydroxide (TMAOH) (25 wt. % in water), 3-

(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC) (72 wt.% in 

methanol), ammonia (28%), methanol, and tetraethyl orthosilicate (TEOS), atenolol, 

gemfibrozil, sulfamethoxazole, d-gluconic acid sodium salt, succinic acid disodium salt 

were purchased from Sigma-Aldrich (St. Louis, MO, USA). Methyl orange, l-3-(3,4-

dihydroxyphenyl)alanine (L-Dopa) were purchased from Acros Organics (Geel, Beligum). 

Ethylbenzene and 2-chlorophenol were purchased from Fisher Scientific (Pittsburgh, PA, 

USA). Maghemite iron (III) oxide nanoparticles (30 nm in diameter) were purchased from 

Alfa Aesar (Ward Hill, MA, USA). All chemicals were used as received, without further 

purification. Relevant physicochemical properties for the contaminants are presented in 

Table 1. 

4.2.2. Synthesis of Mag-PCMAs 

The synthesis procedure for Mag-PCMAs was improved compared to the previous study 

to improve yield and reduce the use of ethanol (Wang et al. 2009). The core-shell structured 

Mag-PCMAs were synthesized through a solvothermal reaction, which is cooperative 

assembly of silica oligomers and TPODAC on the Fe2O3 nanoparticles. This three-step 

preparation of Mag-PCMAs is illustrated in Figure 1. Maghemite iron(III) oxide 

nanoparticles were dispersed in 40 mL of TMAOH solution (25% by weight) under constant 
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mixing overnight to activate the surface. Then 0.5 mL of TPODAC, a cationic surfactant, 

was added to the maghemite suspension under constant stirring. Next, 5 mL of 28% 

ammonium hydroxide were added for base catalyzed sol-gel hydrolysis of TEOS (1.1 mL) to 

cross-link the surfactant onto the magnetic iron core. The three steps are done at room 

temperature (22 oC).  

4.2.3 Scanning electronic microscopy 

Scanning electronic microscopy (SEM) imaging was performed under vacuum on an FEI 

XL40 FEG Digital Scanning Microscope using an accelerating voltage of 5.00kV. 

4.2.4. Batch sorption of emerging organic contaminants 

The adsorption kinetics was determined by batch experiments. 2.0 mg of Mag-PCMAs 

were mixed with 20 mL of a given organic contaminant in 20 mL vials. The initial 

concentration of contaminant was 100 mg/L in all cases. All experiments were conducted at 

pH = 7.0. These vials were shaken in an end-over-end shaker on Dayton-6Z412A Parallel 

Shaft roller mixer with a speed of 70 rpm at room temperature. The concentration of the 

sample was measured at the end of 5 min, 15 min, 30 min, 60 min, 90 min, 120 min and 180 

min. Then the Mag-PCMAs particles with adsorbed contaminants were separated from the 

mixture with a Eclipse Magnetics N821permanent hand-held magnet (Dimension: 50mm×

50mm×12.5mm; Weight: 0.2438kg; Pull force: 40.1N) 

To develop adsorption isotherms, solutions with varying initial concentrations were 

treated with the same procedure as above at room temperature. The equilibration time was 

24 hours uniformly, which was determined to be sufficient to reach the adsorption 

equilibrium. Preliminary experiments indicated that more than 99% of adsorption occurred 
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within the first 120 min. The contaminant concentrations ranged from 10 mg/L to 3000 

mg/L, and the Mag-PCMAs concentration were 100 mg/L. 

The solid-phase concentrations were determined by mass balance, according to Equation 

(1): 

0(C -C )
= e

e

V
q

M


                                                                       (1) 

where 0C  and Ce = the initial and equilibrium concentration of EOC in the liquid phase 

(mg/L), respectively, eq  = the equilibrium concentration of contaminants adsorbed on the 

unit mass of Mag-PCMAs (mg/g), V = the volume of solution, and M = the mass of dry 

Mag-PCMAs (g).. 

4.2.5. Analysis by UV-Spectrophotometry and HPLC 

Two instruments were used: a high performance liquid chromatography HPLC system 

(SPD-M10AVP, Shimadzu, MD), or a UV-Vis spectrometer (BIOSPEC-1601, Shimadzu, 

MD). Each instrument was used to determine the final concentration of organic 

contaminants after adsorption occurred. HPLC was used for the analysis of L-Dopa. The 

HPLC system was equipped with two LC-10AT VP pumps, a Sil-10AF autosampler, a 

DGU-14A degasser, and a SPD-M10AVP diode-array detector. A TSKgel ODS-120A 

column (length, 250 mm; inner diameter, 4.6 mm;) was used. The HPLC analyses were 

carried out with a mobile phase comprised of 30% methanol/70% water. The analyses were 

performed at a constant flow rate of 1.0 ml/min. The ultraviolet detector monitored the 

absorbance at 261 nm for L-Dopa. The UV-Vis spectrometer was used to monitor the 

concentration of organics in water at the absorption maximum for each compound: methyl 

orange at 400 nm, ethylbenzene at 261 nm, 2-chlorophenol at 272.93 nm, atenolol at 274 nm, 
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succinic acid at 218 nm, d-glueonic at 208 nm, sulfamethoxazole at 268 nm, gemfibrozil at 

275 nm. Calibration curves were performed daily with a regression (R2 value) of 0.99 or 

greater. 

4.3. Results and discussion 

4.3.1. Mag-PCMA Characterization 

SEM images show the hydrated particles are 600 nm to 1 um in size (Figure 2). Figure 3 

presents the separation of Mag-PCMAs from the suspension using a simple magnet. The 

dispersed Mag-PCMAs can be separated within a few seconds from the suspension, with a 

very high recovery of the Mag-PCMAs. The energy requirements for the separation of the 

magnetic particles is minimal, particularly if a permanent magnet is used.  

4.3.2. Non-competitive sorption studies 

Figure 4 presents the experimental results for the non-competitive sorption for each 

compound for the range of concentration studies, as well as the fit of a Freundlich isotherm, 

linearized by taking the logarithm of both sides of the equation (Lee 2003): 

log log logf eq K n C                                                                          (2) 

where q is the amount of contaminant adsorbed at equilibrium (mg/g), Ce is the 

equilibrium concentration of contaminant in solution (mg/L), Kf is the Freundlich adsorption 

constant (mg1-n g-1 Ln), and n is a measure of adsorption intensity (dimensionless). The 

Freundlich parameters Kf and n were determined from the intercept and slope of Equation 2. 

Table 2 summarizes the fitted values from all compounds. The Freundlich isotherm was 

used since it provided a better fit than linear or Langmuir models. Additionally, 2-
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chlorophenol, , ethylbenzene, succinic acid and L-dopa were fitted using a non-linear 

exponential model (Langmuir 1997) to provide a better fit: 

log q=nlogCe+n2(logCe)2+logKf                                                        (3) 

Based on the equilibrium sorption concentrations, q, at a given Ce Mag-PCMAs 

exhibited the highest sorption capacity for L-dopa, and the lowest for D-gluconic acid. While 

for more conventional non-ionic and contaminants such as petroleum hydrocarbons and 

chlorinated solvents there is a strong correlation between removal efficiency and the octanol-

water partitioning coefficient (Kow) (Wang et al. 2009) and for anionic compounds removal 

efficiency can be predicted by their Gibbs free energy of adsorption (Clark and Keller 2012), 

the EOC present multiple characteristics that control their affinity for the cationic TPODAC 

surfactant. In general the amount sorbed decreases with increasing Kow (Figure 5), with L-

dopa and D-gluconic acid representing major outliers. The large number of –OH groups on 

both of these compounds results in very different behavior than the other compounds studied. 

The trend is much less conclusive than for a sequence of hydrophobic organic contaminants 

where in fact adsorption increases with hydrophobicity.  For ionizable compounds, their 

adsorption onto Mag-PCMAs generally increases with pKa (Figure 6), although the behavior 

is not easily predictable based on this physicochemical characteristic alone. Further work 

will be done with a broader range of compounds to elucidate more clearly the relationships. 

For nonionic compounds, removal was strongly correlated with the Kow of the 

compounds, a common indicator of hydrophobicity (Figure 6). In general, removal rate was 

found to decrease with hydrophobicity, except for ethylbenzene. Repeated adsorption 

experiments for ethylbenzene resulted in similar results, indicating that some additional 

adsorption mechanism must be involved for this compound. 
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4.3.3. Adsorption Kinetics for Methyl Orange 

Methyl orange was used to evaluate the adsorption kinetics onto Mag-PCMA, given the 

high sorption capacity for this compound. Sorption occured rapidly, even for an initial 

concentration of 100 mg/L. Within the first 60 min almost all of the methyl orange was 

adsorbed, with minimal additional sorption after 2 hours (Figure 8A). Figure 8B shows the 

evident color change in the mixture solution with the passage of time indicating the 

concentration of methyl orange decreased quickly. Note that the image was made after 

concentrating the Mag-PCMAs at the bottom of the vial using a permanent magnet. 

4.4. Conclusions 

Mag-PCMAs with a core-shell structure are fast, convenient, and efficient sorbents for 

removing rather soluble organic contaminants from water. This study has extended the 

application of Mag-PCMAs from removing very hydrophobic compounds, natural organic 

matter and oxyanions to consider emerging organic compounds, including pharmaceuticals 

and personal care compounds. The most likely mechanisms of adsorption of organic 

contaminants onto Mag-PCMAs are hydrophobic interactions, hydrogen bonding and 

electrostatic interactions. Since all of these mechanisms are at play for these mixed 

functionality compounds, it is not easy to predict the adsorption capacity simply on the basis 

of one physicochemical property (e.g. Kow or pKa).  Further work will be done with a 

broader range of compounds to elucidate more clearly the relationships. 

The synthesis procedure for Mag-PCMAs is simple and requires low energy and 

relatively low cost (~$4/kg), and the Mag-PCMAs with adsorbed organic contaminants can 

be easily removed from water via magnetic separation. This can be compared to carbon 

nanotubes (CNTs) which have been considered as adsorbents, with a cost of $500-1,000/kg. 
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This is in part because manufacturing CNTs requires high pressure and temperature, i.e. 

considerable energy. Granular activated carbon (GAC) is < $1/kg, but synthesis of GAC 

requires heating the carbon source several hundreds of degrees to activate the carbonaceous 

surface. Increasing the input energy can shorten the time needed for equilibrium. The 

regeneration of Mag-PCMAs, presented in previous studies (Wang et al. 2009), can be done 

at room temperature using ethanol or methanol to desorb the low Kow compounds, or 

changing pH for the ionic compounds. The Mag-PCMAs perform well in a wide range of 

different organic contaminants with different solubility and pKa. It is expected that the Mag-

PCMAs will have potentially wide application in the removal of emerging organic 

contaminants from water. 
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Table 1. Properties of the compounds for sorption studies 
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Table 2. Fitted parameter values for each compound in non-competitive sorption 
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Figure 1. Mag-PCMA synthesis is done with stepwise reagent addition. Silica is 

interspersed between the surfactant and maghemite covalently securing the micelles to the 

iron oxide core and leaving void space for contaminant sorption. 

 

 

 

Figure 2. SEM of (A) Mag-PCMA at 71281X (B) Mag-PCMA at 8910X. 
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Figure 3. (A) Mag-PCMA particles are introduced into a vial containing contaminated 

water. (B) A permanent magnet is placed at the bottom of the vial to attract the magnetic 

particles, demonstrating the rapid removal of Mag-PCMAs from the suspension, within 

seconds of applying a magnetic field. 
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Figure 4. Non-competitive sorption onto Mag-PCMAs across a concentration range for: 

(A) atenolol; (B) D-gluconic; (C) gemfibrozil; (D) sulfamethoxazole; (E) succinic acid; (F) 

L-dopa; (G) methyl orange; (H) 2-chlorophenol; (I) ethylbenzene. 
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Figure 5. Sorption onto Mag-PCMAs for various compounds as a function of log Kow. D-

gluconic acid not included since it represents a major outlier with a log Kow of -6.0. 
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Figure 6. Sorption onto Mag-PCMAs for various compounds as a function of pKa. All 

ionizable compounds considered. 



 

 123



 

 124

 

Figure 7. (A) Methyl orange equilibration kinetics (B) Methyl orange color change in 

sorption time sequence 
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Chapter 5. Micelle Array Confined Superparamagnetic Nanoparticle 

Adsorbents Porous Structure Optimization for Higher and Faster 

Removal of Emerging Organic Contaminants and PAHs  

5.1. Introduction 

Emerging organic contaminants (EOCs) are relatively new group of unregulated as 

contaminants due to the limited ecotoxicological information available. EOCs include a 

wide range of compounds across various chemical classes, such as pharmaceuticals and 

personal care products (PPCPs), pesticides, surfactants, various industrial additives, and 

endocrine disruptors (EDCs) (Huang and Keller 2013, Murray et al. 2010). The presence 

of these EOCs in fresh water or wastewater poses possible toxicological effects to the 

environment and living organisms (Thomaidi et al. 2015, Yan et al. 2014). Current 

treatment options that are typically considered for the removal of EOCs from aquatic 

systems include adsorption and ozonation or advanced oxidation processes, since 

conventional water treatment processes such as coagulation/flocculation/sedimentation, 

filtration, and chlorination do not provide an effective removal efficiency many EOCs 

(Stackelberg et al. 2004). While conventional and advanced oxidation processes can be 

effective for the removal of EOCs, these processes lead to the formation of oxidation 

intermediates that are mostly unknown at this point. In addition, unwanted oxidation 

byproducts, such as halogenated organic compounds or bromate, form in oxidation 
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processes involving chlorine and ozone (Adams et al. 2002). Several studies have 

evaluated the adsorption of EOCs on activated carbon (Yoon et al. 2003, Yu et al. 2008), 

but high adsorbent usage rates can be expected if activated carbon is employed to adsorb 

polar organic contaminants (Quinlivan et al. 2005).  

Magnetic core hybrid nanoparticle adsorbents have shown promise for application in 

water decontamination owing to their large surface area, and high ratio of surface-to-

volume (Huang and Keller 2013, 2015, Su et al. 2015, Su et al. 2014). With the 

superparamagnetic feature, these nanoparticle sorbents could be extracted and recycled 

from wastewater system via applying an external magnetic field (Huang and Keller 2015, 

Wang and Keller 2008). In previous studies, we synthesized magnetic permanently 

confined micelle arrays  (Mag-PCMAs) with a magnetite core and a silica porous layer 

that permanently confines canonic surfactant micelles within the mesopores, and had been 

successfully applied to remove hydrophobic compounds (Wang and Keller 2008), 

pesticides (Clark and Keller 2012b), natural organic matter (Wang et al. 2011), oxyanions 

(Clark and Keller 2012a) and emerging organic contaminants (Huang and Keller 2013). 

However, since the cationic surfactant is permanently anchor on the silica framework 

through –Si–O–Si– covalent bonding (Wang and Keller 2008), the surfactant would 

occupy most of the pore space. It would reduce the pore space for contaminant adsorption, 

which may lower the adsorption capacity or kinetics. 
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Recently, a micelle swelling agent was used to expand the micelles as well as generate 

cavities within the materials for increasing the removal of HOCs (Shi et al. 2012). Thus, 

one potential strategy to optimize Mag-PCMAs’ porous structure would be to add a 

micelle swelling agent during the synthesis and later remove it to increase pore volume 

and surface area. In this study, we introduced 1,3,5-trimethyl benzene (TMB) as a micelle 

swelling agent to the synthesis of Mag-PCMAs and investigated the effect of different 

amounts of TMB on the porous structure of Mag-PCMAs, as well as the effect on 

removal efficiency and sorption kinetics of three EOCs and two PAHs. Relevant 

physicochemical properties for the contaminants are presented in Table 1. In addition, 

since the optimized Mag-PCMAs can be regenerated and reused, they provide a 

sustainable approach for decontamination of EOCs and PAHs. 

5.2. Experimental 

5.2.1. Chemicals 

Maghemite (iron (III) oxide) nanoparticles (30 nm in diameter) were purchased from 

Alfa Aesar (USA). Tetramethyl ammonium hydroxide (TMAOH) (25 wt % in water), 3- 

(trimethoxysily)propyl-octadecyldimethyl-ammonium chloride (TPODAC)  (72 wt % in 

methanol), ammonia (28%), methanol, tetraethyl orthosilicate (TEOS), gemfibrozil, and 

sulfamethoxazolewere purchased from Sigma-Aldrich (USA). Methyl orange, 

acenaphthene (99% pure), phenanthrene (98% pure), and 1,3,5-trimethyl benzene (TMB) 
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were purchased from Acros Organics (Geel, Belgium). All chemicals were used as 

received, without further purification. All solutions were prepared with deionized water 

(18 MΩ-cm) from a Barnstead NANOpure Diamond Water Purification System (USA). 

5.2.2. Synthesis of Mag-PCMAs 

0.1 g maghemite nanoparticles were dispersed in 40 mL of TMAOH solution (25% by 

weight) under constant mixing overnight as pre-treatment to activate the surface. Then 

2.5 mL of TPODAC and 0.8 mL of TMB were added to maghemite redispersed in water 

and ethanol in a volumetric ratio of 1:6 under constant stirring. 5 mL of 28% ammonium 

hydroxide was added for base-catalyzed sol-gel hydrolysis along with 1 mL of TEOS to 

bind the surfactant onto the magnetic iron core. The mixture was stirred overnight at 

room temperature (22–25 °C), then transferred into a hydrothermal bomb, and treated at 

110 °C for 24 h. After being rinsed with ethanol, the particles were dried under vacuum at 

60 °C overnight to remove TMB. This method was adapted and modified from the 

synthesis of Mag-PCMAs reported in a previous study (Huang and Keller 2013). The new 

material was denominated Mag-PMCAs-30, as the weight ratio of TMB to TPODAC is 

30%. To investigate the effect of the amount of micelle swelling agent on the sorption 

capacity and kinetic for EOCs and PAHs onto Mag-PCMAs, Mag-PCMAs-0 and Mag-

PMCAs-60 were synthesized following the same procedure as Mag-PMCAs-30 except 

that the amount of TMB was changed to 0 mL and 1.6 mL, respectively.  
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5.2.3 Characterization of Mag-PCMAs 

Transmission electron microscopy (TEM) images were obtained using a JEOL 1230 

Transmission Electron Microscope operated at 80 kV. Electron microscopic images were 

analyzed by a Philips Electron Optics environmental scanning electron microscope 

(ESEM) using an accelerating voltage of 3.00 kV. The surface area and pore volume of 

Mag-PCMAs were determined using a computer-controlled nitrogen gas adsorption 

analyzer (TriStar 3000). Before measurements, the samples were degassed at 90 °C in a 

nitrogen flow for 12 h. Thermogravity measurements were used to investigate the amount 

of surfactant confined on magnetic particle sorbents; thermogravimetric analyses (TGA) 

were carried out on a TA Instruments Discovery under an air flow of 25 mL/min with a 

heating rate of 10 °C/min. Magnetization measurements were performed on a Quantum 

Design MPMS 5XL superconducting quantum interference device (SQUID) 

Magnetometer. 

5.2.4. Batch sorption of EOCs and PAHs 

For most experiments 20 mg of the Mag-PCMAs (Mag-PCMAs-0, Mag-PCMAs-30, 

and Mag-PCMAs-60) particles were mixed in 20 ml of glass vial with 20.0 ml of EOCs 

or PAHs solution. Adsorption kinetics studies were carried out at the same conditions as 

previously stated but for a set amount of time, varying from 5 min to 24 h. The sorption 

isotherms of EOCs and PAHs onto Mag-PCMAs were determined by the same procedure 
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as the sorption kinetics determination and the equilibration time was 24 h uniformly, to 

ensure sorption equilibrium to be reached. The concentration of adsorbent was varied 

from 0.05 to 1 g/L to study the adsorption isotherms of EOCs and PAHs onto Mag-

PMCAs. Additionally, solutions with varying initial concentrations of EOCs and PAHs, 

which ranged from 0.5 mg/L to 100 mg/L were treated with 20 mg of Mag-PCMA 

particles. These vials were placed in an end-over-end shaker on a Dayton-6Z412A 

Parallel Shaft (USA) roller mixer with a speed of 70 rpm. After this mixing, the Mag-

PCMAs particles were separated from the mixture with an Eclipse magnet 

N821permanent hand-held magnet (50 mm ×50 mm ×12.5 mm; 243.8 g; pull force: 40.1 

N). All experiments were conducted at ambient temperature (22–25 °C). 

5.2.5. Regeneration and reuse of Mag-PCMAs 

To investigate the regeneration and reuse of the three different Mag-PCMAs, 10 mg/L 

methyl orange were used with the same adsorption process, followed by separation of the 

Mag-PCMAs from solution with the handheld magnet. The Mag-PCMAs collected was 

then extracted with methanol. The regenerated Mag-PCMA particles were then reused for 

subsequent methyl orange sorption experiments. The sorption, extraction, and reuse 

processes were repeated for five times. Changes in sorption capacity was determined at 

every cycle. 



 

 
134

5.2.6. Analysis  

A Shimadzu high performance liquid chromatograph (HPLC) system (SPD-M10AVP, 

Shimadzu, MD) equipped with an Ascentis C-18 column (250 × 4.6 mm, 10 μm) and a 

UV-Vis spectrometer (BioSpec 1601, Shimadzu, MD) were used for EOCs and PAHs 

analysis.  

Removal efficiency and sorption capacity of EOCs or PAHs was calculated as:  
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where C0 and Ct are the initial and final concentrations of EOCs (mg/L), m is the 

mass of Mag-PCMAs (g), and V is the volume of solution (L). 

The equilibrium adsorption of EOCs or PAHs was evaluated according to Langmuir 

and Freundlich isotherms by Eq. 3 and Eq. 4, respectively (Morel and Hering 1993):  
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where Ce is solute concentration (mg/L) at equilibrium and qe is amount adsorbed 

(mg/g), qm is the maximum sorption capacity (mg/g). KL and KF is the Langmuir and 

Freundlich sorption equilibrium constant (L/mg), respectively. 

Kinetics were analyzed using the pseudo-first-order and pseudo-second-order model 

by Eq. 5 (Coleman et al. 1956):  
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where k2 (
g

mg h
) are the equilibrium rate constant of kinetics. 

5.3. Results and discussion 

5.3.1. Mag-PCMAs synthesis and characterization 

The synthesis of Mag-PCMAs is schematically presented in Figure 1, and the 

core/shell structure of Mag-PCMAs is demonstrated by TEM micrograph in Figure 2.  

SEM images (Figure 2A, C and E) show that the roughness of Mag-PCMAs’ surface 

changed by adjusting the ratio of micelle swelling agent to surfactant. It suggests that 

adding TMB during synthesis increases the surface area and pore volume, which is in 

agreement with the specific BET surface area and the total pore volume calculated based 

on the nitrogen sorption data (Table 2). In particular, comparing the SEM observation of 

Mag-PCMAs-0 (Figure 2B) and Mag-PCMAs-60 (Figure 2E), there are large cavities in 

the silica framework of Mag-PCMAs-60, while the surface of Mag-PCMAs-0 was 

smoother without any obvious cells. Similar observation could be obtained in TEM 

micrograph (Figure 2B, D and F), Mag-PCMAs-30 (Figure 2D) and Mag-PCMAs-60 

(Figure 2F) show more mesoporous structure and channels inside their particles, which is 

induced by the micelle swelling agent. 
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The TGA curves of the different Mag-PCMAs (Figure 3) did not show any significant 

difference, suggesting that incorporating TMB in the synthesis and post-synthesis 

removal did not affect the mass percentage of the surfactant confined within the ordered 

silica framework. Surfactant mass percentage can be determined by the difference of 

initial and final mass of the sample in TGA curve, and was around 45.46%, 48.58% and 

44.63% of the total mass of Mag-PCMAs-0, Mag-PCMAs-30 and Mag-PCMAs-60, 

respectively. The derivative curve indicates three weight loss steps at about 220, 310, and 

600 °C, which can be referred to the decomposition of quaternary ammonium group, the 

decomposition and carbonization of alkyl chain, and the burn off of carbon, respectively 

(Wang and Keller 2008). 

Magnetic characterization with a SQUID magnetometer at 300 K indicated that Mag-

PCMAs-0, Mag-PCMAs-30 and Mag-PCMAs-60 have magnetization saturation values of 

5.48, 5.24 and 7.09 emu/g, respectively (Figure 4), indicating a relatively high 

magnetization. Additionally, no remanence was detected in any of the Mag-PCMAs 

particles, indicating a superparamagnetism feature due to the nanosized maghemite. Due 

to the strong magnetization, Mag-PCMAs suspended in water can be quickly separated 

from the dispersion with a magnet (1000 Oe), indicate that the Mag-PCMAs possesses 

excellent magnetic responsivity. 
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5.3.2. Sorption kinetics of EOCs and PAHs  

Time dependent removal of methyl orange (initial concentration= 100 mg/L) by the 

three different types of  Mag-PCMAs (1 g/L) showed rapid adsorption of EOCs in the 

first 30 minutes with above 98% removal efficiency, and thereafter, the rate decreased 

gradually and reached equilibrium, as shown in Figure 5A. However the removal rate 

increased significantly with the amount of TMB used during synthesis (Figure 5 A and B). 

Removal is demonstrated visually in Figure 5B, where the color of methyl orange 

contaminated solution faded to clear after 60, 30 and 15 min treatment with Mag-PCMA-

0, Mag-PCMA-30, and Mag-PCMA-60, respectively. As all of 3 different Mag-PCMAs 

showed fast sorption rates of EOCs, the sorption kinetics were conducted with mixing 

times of 1, 5, 10, 15, 30 and 360 minutes for 3 EOCs and 2 PAHs. The kinetic model was 

then used to investigate the adsorption rate (Figure 5C). The results show that for the 

sorption kinetics of different EOCs and PAHs onto specific Mag-PCMAs, k2 decreased 

with an increasing molecular weight of EOCs or PAHs. It is expected as the EOCs or 

PAHs would first diffuse through the porous silica framework to interact with the 

confined surfactant micelles, and the diffusion rates of different compounds are limited 

by the molecular sizes and weights (Weber and Morris 1963). The negative relationship 

between k2 and molecular weight suggests the sorption kinetics of EOCs and PAHs onto 

Mag-PCMAs are dominated by the diffusion rate (Yeom et al. 1996). For the sorption of 

the same EOCs or PAHs onto different Mag-PCMAs, higher k2 was obtained with higher 
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portion of micelle swelling agent was utilized to synthesize. It was attributed by larger 

pore size and more porous channels presented (Figure 2), which would provide fast rate 

of diffusion and mass transfer. 

5.3.3. Sorption isothermal of EOCs and PAHs 

Figure 6 presents the experimental results of the sorption for EOCs and PAHs along 

with the fit of the Langmuir and Frenundlich isotherm model (fitted parameter values are 

summarized in Table 4.). Based on the correlation coefficients (R2) in Table 4, the 

Freundlich model was a better fit, suggesting it’s likely to be a multilayer sorption process 

(Weber et al. 1991). For the compounds with relatively high logKow (>3.5), the sorption 

of different EOCs or PAHs onto specific Mag-PCMA, KF increased with an increasing 

logKow, suggesting the sorption mechanism was dominated by hydrophobic interaction 

(Schwarzenbach et al. 2005, Wang et al. 2009). While for the compound with relatively 

low logKow (<1), the relationship between KF and logKow was less obvious, and another 

potential mechanism could be electrostatic interactions as the confined surfactant micelles 

are cationic (Clark and Keller 2012a, Huang and Keller 2013). For the sorption of the 

same EOCs or PAHs onto different Mag-PCMAs, higher sorption capacities were 

achieved with increasing percentage of TMB used in the synthesis (Table 4). It suggests 

that with larger pore size and higher pore volume (Table 1) sorption capacity increases. 
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The large amount of surfactant micelles confined in the silica framework (Figure 3) also 

contributed. 

5.3.4. Regeneration and reuse of Mag-PCMAs 

To demonstrate the regenerability and reusability of the modified Mag-PCMAs, the 

recovery of methyl orange sorbed onto the Mag-PCMA was investigated using methanol 

extraction. Methyl orange removal performance by three different Mag-PCMAs during 

five continuous cycles of regeneration and reuse are shown in Figure 7. No significant 

losses of sorption capacity of methyl orange was observed for the regenerated Mag-

PCMA after 5 cycles, indicating good reusability of Mag-PCMAs.  

5.4. Conclusions 

The porous structure of the synthesized magnetic nanoparticle sorbents were 

optimized by introducing a micelle swelling agent and removing it after synthesis. The 

sorbents are core/shell structure with a magnetite core and a silica porous layer that 

permanently confines surfactant micelles within the framework. The surfactant, TPODAC, 

has a reactive -Si (OCH3)3 group on its hydrophilic end, which allows the surfactant 

micelles to permanently anchor on the silica framework through covalent bonding. This 

strong binding of the surfactant enables the Mag-PCMAs to be regenerable at a lower 

operating cost. The optimized Mag-PCMAs showed higher sorption kinetic rate as well as 

higher sorption capacity to EOCs and PAHs. The Mag-PCMAs are promising sorbents 
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for fast, effective and sustainable remediation of EOCs and PAHs. Based on the fast 

sorption kinetics and high sorption capacity for EOCs and PAHs, with high regeneration 

performance of Mag-PCMAs, larger scale continuous batch reactors can be designed for 

water treatment. 
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Table 1. Properties of selected EOCs and PAHs for Sorption Studies (Huang and 

Keller 2013, Watts 1998) 
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Table 2. Surface area and pore volume of Mag-PCMAs-0, Mag-PCMAs-30, and Mag-

PCMAs-60.   
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Table 3. Kinetic parameters for EOCs and PAHs sorption on Mag-PCMAs 
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Table 4. Isotherm parameters for EOCs and PAHs sorption on Mag-PCMAs 
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Figure 1. Schematic representation of Mag-PCMAs synthesis with TMB additive 

(note: the core and shell are not drawn to scale). 
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Figure 2. (A) ESEM micrographs of Mag-PCMAs-0 at 20,000×, scale bar=1 μm; (B) 

TEM micrographs of Mag-PCMAs-0 at 300,000×, scale bar=100 nm; (C) ESEM 
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micrographs of Mag-PCMAs-30 at 20,000×, scale bar = 1 μm; (D) TEM micrographs of 

Mag-PCMAs-30 at 200,000×, scale bar=100 nm; (E) ESEM micrographs of Mag-

PCMAs-60 at 10,000×, scale bar=2 μm; (F) TEM micrographs of Mag-PCMAs-60 at 

150,000×, scale bar=100 nm. 

 

 

 

Figure 3. Thermogravimetric analysis (TGA) of Mag-PCMAs-0, Mag-PCMAs-30, 

and Mag-PCMAs-60. 
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Figure 4. The magnetic hysteresis loops of Mag-PCMAs-0, Mag-PCMAs-30, and 

Mag-PCMAs-60. 
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Figure 5. Methyl Orange sorption onto Mag-PCMAs (A) removal efficiency versus 

time; and (B) visualization of color changes across time sequence; (C) EOCs and PAHs 

(methyl orange, sulfamethoxazole, gemfibrozil, acenaphthene and phenanthrene) sorption 

kinetics fitted by Pseudo-second order onto Mag-PCMAs in solution, symbols represent 

experimental data, and red line represents model prediction. 
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Figure 6. Adsorption of EOCs and PAHs (sulfamethoxazole, gemfibrozil, methyl 

orange, acenaphthene and phenanthrene) onto Mag-PCMA in solution with (A) 

Freundlich and (B) Langmuir adsorption isotherms fit, symbols represent experimental 

data, and red line represents model prediction. 

 

 

Figure 7. Sorption of acenaphthene onto Mag-PCMA during five regeneration cycles. 
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Chapter 6. Magnetic Nanoparticle Adsorbents with Micelle Array 

Confined in the Framework for PAHs and Metal Contaminants 

Simultaneous Removal 

6.1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) and heavy metal ions such as cadmium (Cd) 

have posed severe threat to public health and the environment due to their high toxicity 

and high retention in the environments (Huang and Keller 2015, Vela et al. 2012). 

Numerous sites are contaminated by both PAHs and heavy metals, including e-wasting 

processing sites(Luo et al. 2011), manufactured gas plant sites (Thavamani et al. 2012), 

and river sediments(Feng et al. 2012), which require simultaneous remediation of PAHs 

and heavy metals. However, most of recent studies have focused on the decontamination 

of PAHs (Chen et al. 2015, Lee et al. 2015) or heavy metals (Huang et al. 2014, Sargın et 

al. 2015) individually. There are few studies on simultaneous removal of both heavy 

metals and organic contaminants from soils or sediments (Maturi and Reddy 2006, Reddy 

et al. 2010, Song et al. 2008, Veetil et al. 2013).  

Surfactants can enhance the removal efficiency of hydrophobic organic compounds  

(HOC) (Wang and Keller 2008c) including PAHs and pesticides (Clark and Keller 2012b) 

via micelles, which offer a good hydrophobic environment into which HOCs can partition 

or ‘dissolve’ (Wang and Keller 2008a). Surfactants can also be used for metal 
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contaminant remediation via complexation reactions and electronic interaction (Mulligan 

et al. 1999). However, one major drawback of applying surfactant for aquatic systems and 

soil remediation is the non-specific binding of the surfactants to clays and the organic 

matter naturally present (Wang and Keller 2008b), which would cause the displacement 

and subsequent loss of the surfactant molecules during treatment (Hanna et al. 2002). In 

this study, we proposed using a nonionic surfactant, Triton X-100, confined within a 

mesoporous silica matrix, which would reduce surfactant loss during use. 

Recently, magnetic sorbents have emerged as a new generation of materials for 

environmental decontamination (Huang and Keller 2013, 2015, Su et al. 2015, Su et al. 

2014). In previous studies, we synthesized magnetic permanently confined micelle arrays  

(Mag-PCMAs) with a magnetite core and a silica porous layer that permanently confines 

cationic surfactant micelles within the mesopores, and had been successfully applied to 

remove HOCs (Wang and Keller 2008c), pesticides (Clark and Keller 2012b), natural 

organic matter (Wang et al. 2011), oxyanions (Clark and Keller 2012a) and emerging 

organic contaminants (Huang and Keller 2013). However, the simultaneous removal of 

PAHs and metal contaminants by Mag-PCMAs with nonionic surfactant has not been 

well studied.  

In this study, acenaphthene and cadmium were selected to represent PAHs and metal 

contaminants, respectively, to study their sorption isotherms and kinetics onto Mag-

PCMAs in aqueous solution. Simultaneous removal of acenaphthene and cadmium was 
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investigated. Furthermore, the influence of pH, water hardness (Ca2+, Mg2+), and natural 

organic matters (NOM) on the performance of acenaphthene and cadmium sorption by 

the synthesized sorbent were studied. 

6.2. Experimental 

6.2.1. Chemicals 

Maghemite (iron (III) oxide) nanoparticles (30 nm in diameter) was purchased from 

Alfa Aesar (USA). Tetramethyl ammonium hydroxide (TMAOH) (25 wt % in water), 

Triton X-100, ammonia (28%), methanol, tetraethyl orthosilicate (TEOS), were 

purchased from Sigma-Aldrich (USA). Acenaphthene (99% pure) was purchased from 

Acros Organics (Geel, Belgium). Cadmium chloride anhydrous, calcium chloride 

dehydrate, and magnesium chloride were purchased from Fisher Scientific (USA). 

Standard Suwannee River NOM was obtained from the International Humic Substances 

Society (IHSS, USA). NOM stock solution (100 mg/L) was prepared by mixing a known 

amount of NOM with DI water for 24 h. The pH of the stock solutions was then adjusted 

to 8 with 0.1 M and 0.01 M NaOH and HCl. All chemicals were used as received, without 

further purification. All solutions were prepared with deionized water (18 MΩ-cm) from 

a Barnstead NANOpure Diamond Water Purification System (USA). 
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6.2.2. Synthesis of Mag-PCMA 

The core–shell structured Mag-PCMA were synthesized through a solvothermal 

reaction, which is cooperative assembly of silica oligomers and surfactant on the 

maghemite nanoparticles, as illustrated in Figure 1. 0.1 g maghemite nanoparticles were 

dispersed in 40 mL of TMAOH solution under constant mixing overnight as pre-

treatment to activate the surface, which would help to generate a negative charge on the 

maghemite particles surface resulting in better binding of silicate and surfactant. Then 

1.5 mL of Triton X-100, nonionic surfactant was added to maghemite redispersed in 

water and ethanol in a volumetric ratio of 1:6 under constant stirring. 5 mL of 28% 

ammonium hydroxide was added for base-catalyzed sol-gel hydrolysis along with 1 mL of 

TEOS to bind the surfactant onto the magnetic iron core. The mixture was stirred for 2 h 

at room temperature (22–25 °C). This method was adapted from the synthesis of Mag-

PCMAs reported in a previous study (Huang and Keller 2013).  

6.2.3 Characterization of Mag-PCMA 

Transmission electron microscopy (TEM) images were obtained using a JEOL 1230 

Transmission Electron Microscope operated at 80 kV. Thermogravity measurements were 

used to investigate the amount of surfactant confined on magnetic particle sorbents; 

thermogravimetric analyses (TGA) were carried out on a Mettler Toledo TGA/sDTA851e 

apparatus under an air flow of 100 mL/min with a heating rate of 5 °C/min. Magnetization 
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measurements were performed on a Quantum Design MPMS 5XL superconducting 

quantum interference device (SQUID) Magnetometer. The zeta potential was measured 

using a Malvern Zetasizer (Nano-ZS; Malvern Instruments, Southborough, MA) with pH 

ranging from 4 to 10. 

6.2.4. Batch sorption of PAHs and metal ions 

For the individual isothermal experiments 5.0 mg of Mag-PCMA particles were 

mixed with 20 mL of acenaphthene or cadmium  (Cd2+) solution  (1 mg/L) in 20 ml glass 

vial or 50 mL conical tubes, respectively, and the pH was adjusted to the desired 

condition  (range from 4 to 10) by using 0.1 M and 0.01 M NaOH and HCl. Then, these 

tubes or vials were placed in an end-over-end shaker on a Dayton-6Z412A Parallel Shaft 

(USA) roller mixer with a speed of 70 rpm at room temperature for 24 h to ensure 

sufficient equilibration time. Adsorption kinetics studies were carried out at the same 

conditions as previously stated but for a set amount of time, varying from 1 min to 24 h, 

with pH=7. After this mixing, the Mag-PCMA particles were separated from the mixture 

with an Eclipse magnet. All experiments were conducted at ambient temperature (22–

25 °C). 

The concentration of adsorbent was varied from 0.25 to 1.25 g/L to study the 

individual adsorption isotherms of acenaphthene, NOM, or Cd2+ onto Mag-PCMA at pH 

7. Additionally, solutions with varying initial concentrations of acenaphthene, NOM, or 
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Cd2+, which ranged from 0.5 mg/L to 50 mg/L were treated with the same procedure as 

above at pH 7 and 5.0 mg Mag-PCMA.  

Simultaneous sorption was conducted with various dosages of Mag-PCMA particles 

(1 mg to 25 mg) mixed with 20 mL of acenaphthene and Cd2+ solution (1 mg/L) with or 

without 20 mg/L NOM present. The influence of solution pH and ionic strength on the 

simultaneous removal was investigated by mixing 10 mg of Mag-PCMA particles with 20 

mL of acenaphthene and Cd2+ solution (1 mg/L) under various solution pH (ranging from 

4 to 10) and concentration of Ca2+ or Mg2+ (ranging from 1 mg/L to 50 mg/L), 

respectively. 

6.2.5. Regeneration and reuse of Mag-PCMA 

To investigate the regeneration and reuse of Mag-PCMA, 1 mg/L acenaphthene were 

used with the same adsorption process, followed by separation of the Mag-PCMA from 

solution with the handheld magnet. The Mag-PCMA collected was then extracted with 

methanol. The regenerated Mag-PCMA particles were then reused for subsequent 

acenaphthene sorption experiments. The sorption, extraction, and reuse processes were 

repeated for five times. Changes in sorption capacity was determined at every cycle. 

6.2.6. Analysis  

An Agilent 7900 inductively coupled plasma with mass spectroscopy (ICP-MS) was 

used to analyze the concentration of Cd2+. A Shimadzu high performance liquid 
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chromatograph  (HPLC) system  (SPD-M10AVP, Shimadzu, MD) equipped with an 

Ascentis C-18 column  (250 × 4.6 mm, 10 μm) and a UV-Vis spectrometer  (BioSpec 

1601, Shimadzu, MD) were used for PAH analysis.  

Removal efficiency and sorption capacity of PAHs and metal ions was calculated as:  

 0
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where C0 and Ct are the initial and final concentrations of PAHs or metal ions  (mg/L), 

m is the mass of Mag-PCMAs  (g), and V is the volume of solution  (L). 

The equilibrium adsorption of PAHs and metal ions was evaluated according to 

Langmuir and Freundlich isotherms by Eq. 3 and Eq. 4, respectively (Morel and Hering 

1993):  
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where Ce is solute concentration  (mg/L) at equilibrium and qe is amount adsorbed  

(mg/g), qm is the maximum sorption capacity  (mg/g). KL  (L/mg) and KF  (mg/g)/ (L/mg)-

n is the Langmuir and Freundlich sorption equilibrium constant , respectively. 

Kinetics were analyzed using the pseudo-second-order model by Eq. 4 (Coleman et al. 

1956):  



 

 
165

t
qqkq

t

eet

11
2

2

                                                  (5) 

where k2  (
g

mg h
) are the equilibrium rate constant of kinetics. 

6.3. Results and discussion 

6.3.1. Mag-PCMA characterization 

The core/shell structure of a Mag-PCMAs is shown in TEM images (Figure 2), and 

the shell layer (silica porous framework) is approximately 20 nm as determined by TEM. 

The size of particles varied from hundred nanometers to several micrometers due to the 

aggregation via magnetic forces or crosslinking of the silica framework. The weight 

percentage of surfactant within the silica framework of Mag-PCMA ws determined by the 

difference of initial and final mass of the sample in the TGA measurement and was 

approximately 7.45% of the total mass of Mag-PCMA. Magnetic characterization by 

SQUID magnetometer at 300 K showed that maghemite and Mag-PCMA have 

magnetization saturation values of 52.8 and 14.65 emu/g, respectively (Figure 2C), 

indicating a relatively high magnetization of Mag-PCMA particles even with a thick silica 

coating. The zeta potential in the initial pH range of 4 to 10 is presented in Figure 2D for 

Mag-PCMAs solution in DI water. In this pH range, the zeta potential of Mag-PCMAs 

was negative (-30.11 to -41.65 mv), and decreased slightly as pH increased. Even though 

the surfactant, Triton X-100, is nonionic, due to the pretreatment by TMAOH in the 
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synthesis the surface of maghemite particle was strongly negatively charged (Wang et al. 

2009). It suggests the formation of anionic negatively charged surface complexes on the 

Mag-PCMAs. 

6.3.2. Sorption isothermal of PAHs, metal ions and NOM  

Figure 3 presents the experimental results of the non-competitive sorption for Cd2+, 

acenaphthene and NOM for the range of concentrations studied, as well as the fit of the 

Langmuir and Freundlich isotherm model  (fitted parameter values are summarized in 

Table 1). The Langmuir model provided a slightly better fit for Cd2+, while the Freundlich 

model fitted acenaphthene and NOM adsorption better, based on the correlation 

coefficients (R2) in Table 1. This suggests a multilayer sorption process(Weber et al. 

1991). Since Triton X-100 is a nonionic surfactant confined in micelles within the silica 

framework of Mag-PCMA, there are several potential remediation mechanisms for these 

three different categories of contaminants. Triton X-100 is a poly(ethylene oxide), and 

interactions are predominantly between the ethylene oxide groups and the chlorinated and 

nonchlorinated hydrophobic organic contaminants (Wang and Keller 2008b, c). Due to 

the hydrophobic cores, the surfactant micelles can enhance the apparent acenaphthene 

solubility (Rosen and Kunjappu 2012), which would promote the hydrophobic interaction 

between acenaphthene and the confined micelles. The ethylene oxide  chain on the Triton 

X-100 can form complexes with metal ions(Kikuchi et al. 1992), explaining the sorption 
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of Cd2+ onto Mag-PCMAs. In addition, since the surface of Mag-PCMAs is negatively 

charged, there are also favorable electrostatic interactions with cationic ions such as Cd2+. 

NOM consists of both hydrophobic and hydrophilic regions as well as polar groups, such 

as carboxylic groups(Tan 2014). The sorption mechanism of NOM onto Mag-PCMA 

could be the hydrophobic interaction between the hydrophobic fraction of NOM and 

micelles; or/and the hydrogen bond between carboxylic groups on NOM and poly 

(ethylene oxide) groups on surfactants(Wang et al. 2011). 

6.3.3. Sorption kinetics of PAHs and metal contaminants 

Time dependent removal of acenaphthene and Cd2+ (initial concentration = 1 mg/L) 

by Mag-PCMAs (0.25 g/L) showed rapid adsorption of acenaphthene and Cd2+; around 

95% of the sorption capacities were obtained in the first 30 min, as shown in Figure 4A. 

The pseudo-second-order (Figure 4B and C) kinetic model was used to investigate the 

adsorption rate of acenaphthene and Cd2+ onto Mag-PCMAs, and the kinetic parameters 

were listed in Table 2. Mag-PCMA’s fast sorption kinetics for both acenaphthene and 

Cd2+ is due to the relatively high portion of the confined surfactant micelles. It also 

indicates the silica framework did not show significant effect on the diffusion of PAHs 

and metal contaminants into the micelles. 
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6.3.4. Simultaneous sorption of PAHs, metal contaminants and NOM 

Based on the above studies, Mag-PCMA could remove acenaphthene, Cd2+ and NOM 

from contaminated water, respectively. Thus, it proposed the potential for the 

simultaneous remediation of acenaphthene, Cd2+ and NOM. The simultaneous removal of 

acenaphthene and Cd2+ were presented in Figure 5. Comparing to the individual sorption 

of acenaphthene or Cd2+, the sorption capacities decreased, indicating some competitive 

sorption between acenaphthene and Cd2+. It results from the fact that both acenaphthene 

and Cd2+ interact with the poly (ethylene oxide) groups on the surfactant micelles 

(Kikuchi et al. 1992, Wang and Keller 2008b, c), given that the number of the reactive 

sites is limited. Competitive sorption is also proved by the fact that as Mag-PCMA 

dosage increased, the differences of sorption capacity between individual and 

simultaneous sorption decreased. Noticeably, competitive sorption results in less impact 

on the adsorption capacity of acenaphthene than on Cd2+. This can be explained by the 

faster sorption kinetics on acenaphthene, based on the kinetic constant k2 (Table 2), which 

allows acenaphthene to occupy the available active sites first. This result also agrees with 

the fact the difference was less significant with higher Mag-PCMA dosage, since there 

are more available sites. 

Furthermore, as NOM constitutes a major fraction of the organic matter in water, the 

simultaneous sorption of Cd2+ and acenaphthene in the presence of NOM was also 

investigated, as shown in Figure 6. The sorption capacity of Mag-PCMA for 
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acenaphthene decreased slightly in the presence of NOM. This is not surprising because 

NOM also competes for the limited ethylene oxide groups on the surfactant micelles. 

Furthermore, the concentration of NOM (20 mg/L) was much higher, which would 

promote the interaction via provide higher driving force and result in higher sorption 

capacity. On the other hand, the sorption capacity of Cd2+ increased in the presence of 

NOM, since the significant amount of polar groups (e.g. carboxylic groups) on the NOM 

(Tan 2014) can also complex Cd2+ (Otto et al. 2001). The differences were smaller when a 

higher amount of sorbent was added. 

6.3.5. Effect of pH on simultaneous removal 

pH is an important factor in water chemistry, which may affect the speciation of 

solutes. Acenaphthene has a very high pKa value (>15) (Montgomery 2007), which is 

over the range of pH (4.0–10.0) considered in the current study, suggesting the group  

mainly existed in pronated forms (cationic) within the pH range (Atkins and De Paula). 

Simulation of the aqueous speciation of cadmium using Visual MINTEQ (Gustafsson 

2006) software indicates that for pH from 3 to 10, cadmium in DI water at these 

concentrations is mostly present as Cd2+. Therefore, the protonated form of both Cd2+ and 

acenaphthene are favorable for the electrostatic interactions with Mag-PCMA’s 

negatively charged surface across pH 4 to10 (Figure 2D). In Figure 7, as pH increased, the 

simultaneous sorption of both Cd2+ and acenaphthene increased, particularly, significant 
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increase occurred on the sorption capacity of Cd2+. It agreed with the trend of Mag-

PCMAs’ zeta potential (Figure 2D), more negative surface charge of Mag-PCMA as pH 

increase. It suggests that the dominant mechanism of Cd2+ remediation by Mag-PCMA in 

the simultaneous removal is electrostatic interaction. 

6.3.6. Effect of water hardness on simultaneous removal 

Water hardness is usually expressed as the total amount of Ca2+and/or Mg2+ present in 

the water, which varies in different water matrices. As complexions between 

poly(ethylene oxide) groups on the surfactant micelles and metal ions are not specific, 

thus, Ca2+ and Mg2+ may also compete with simultaneous sorption of Cd2+ and 

acenaphthene (Kikuchi et al. 1992). Figure 8 shows the simultaneous removal 

performance of Cd2+ and acenaphthene using Mag-PCMA in the presence of different 

concentrations of Ca2+ or Mg2+. No significant difference was found on the sorption 

capacity of acenaphthene as either Ca2+ or Mg2+ concentration up to 50 mg/L. However, 

the sorption capacity of Cd2+ sharply decreased when more Mg2+ were presented, while 

no obvious change was observed with Ca2+ presence. It is not surprising as previous study 

suggests that alkaline earth metal ion complexes with Triton X-100, and Ca2+ showed low 

formation constant (Kikuchi et al. 1992). 
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6.3.7. Regeneration and reuse of Mag-PCMA 

To demonstrate the regenerability and reusability of the Mag-PCMA, the recovery of 

acenaphthene sorbed onto the Mag-PCMA was investigated using methanol 

extraction. The removal of acenaphthene during five continuous cycles of regeneration 

and reuse are shown in Fig. 9. No significant losses of sorption capacity of acenaphthene 

was observed for the regenerated Mag-PCMA after 5 cycles, indicating good reusability 

of Mag-PCMA. 

6.4. Conclusions 

Micelle array confined magnetic (Mag-PCMA) nanoparticle adsorbents with nonionic 

surfactant were successfully synthesized, and the novel sorbents performed well to 

remove Cd2+, acenaphthene and NOM, respectively. The isotherm study indicated that 

hydrophobic interaction played an important role in the sorption process of acenaphthene 

while complexation reaction is the most likely dominant mechanism for Cd2+ sorption. 

The kinetic study showed that the Mag-PCMA had a rapid sorption towards PAHs and 

metal contaminants. Mag-PCMA can simultaneously remove Cd2+ and acenaphthene with 

or without NOM presented. The simultaneous sorption of Cd2+ and acenaphthene by 

Mag-PCMAs was no significantly affected by the change of water hardness and increased 

with an increase of pH. Moreover, the sorbent had showed excellent performance of 

regeneration and can be used at least five times without significant loss of sorption 
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capacity for acenaphthene. It demonstrated that Mag-PCMA could provide a fast, 

effective and sustainable approach for simultaneous decontamination of PAHs, metal ions 

and NOM. 
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Table 1. Isotherm parameters for Cd2+, acenaphthene and NOM sorption on Mag-

PCMA 

 

 

 

 

Table 2. Kinetic parameters for Cd2+ and acenaphthene sorption on Mag-PCMA 

 
qe (mg/g) k2 (g/h·mg) R2 

Cd2+ 0.778 0.974 0.978 

Acenaphthene 4.193 1.429 0.975 
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Figure 1. Schematic representation of Mag-PCMA synthesis (note: the core and shell 

are not drawn to scale). 
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Figure 2. TEM micrographs of Mag-PCMA (A) at 400,000×, scale bar=20 nm and 

(B) at 500,000×, scale bar=20 nm; (C) the magnetic hysteresis loops of Mag-PCMA and 

maghemite nanoparticles; (D) zeta potential of Mag-PCMA particles as a function of pH. 
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Figure 3. Langmuir adsorption isotherms fit for (A) Cd2+; (B) acenaphthene; and (C) 

NOM onto Mag-PCMA at pH 7; and Freundlich adsorption isotherms fit for (D) Cd2+; (E) 

acenaphthene; and (F) NOM onto Mag-PCMA at pH 7, symbols represent experimental 

data, and red line represents model prediction.  
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Figure 4. (A) Sorption capacity of acenaphthene and Cd2+ versus time; and sorption 

kinetics fitted by Pseudo-second order of (B) acenaphthene; (C) Cd2+ onto Mag-PCMA in 

solution at pH 7, symbols represent experimental data, and red line represents model 

prediction.  
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Figure 5. Simultaneous sorption of Cd2+ and acenaphthene as a function of adsorbent 

dose with a fixed initial concentration of 1 mg/L Cd2+ and acenaphthene equally. 

Individual sorption capacity of Cd2+ and acenaphthene under same conditions are 

presented for comparison.  
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Figure 6. Simultaneous sorption of Cd2+, acenaphthene and NOM as a function of 

adsorbent dose with a fixed initial concentration of 1 mg/L of Cd2+ and acenaphthene 

equally in the presence of 20 mg/L NOM. 
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Figure 7. Simultaneous sorption of Cd2+ and acenaphthene as a function of pH. 
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Figure 8.  Simultaneous sorption of Cd2+ and acenaphthene in the presence of (A) 

Ca2+ (from 1 mg/L to 50 mg/L) and (B) Mg2+ (from 1 mg/L to 50 mg/L) at pH 7. 

 

 

Figure 9. Sorption of acenaphthene onto Mag-PCMA during five regeneration cycles.  
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Chapter 7. Conclusions and Future Works 

7.1. Conclusions 

This doctoral research developed a series of novel magnetic nanoparticle sorbents 

with different functional groups for organic and inorganic contaminants remediation in 

aquatic systems. The decontamination performance were evaluated under various 

environmental conditions, such as solution pH, in presence of NOM, ionic strength, 

competitive sorption of other species and et al.. Study was also investigated on the 

mechanism of the removal for different categories of pollutants, and optimization were 

carried out to improve the sorption capacities and kinetics. The regeneration and reuse of 

these novel magnetic nanoparticle sorbents were also studied, which proved the 

promising utilization in larger scale of water treatment in the future. This dissertation 

demonstrate a fast, convenient, efficient, and sustainable approach for water treatment. 

In the first study, a multiple-time reusable magnetic ligand particle (Mag-Ligand) 

which includes a metal-binding organic ligand (EDTA) attached to an iron oxide 

nanoparticle was synthesized successfully in a simple procedure. The superparamagnetic 

maghemite core allowed rapid separation of Mag-Ligand after sorption, while the 

attached organic ligand can strongly bind the dissolved metal ion contaminant via 

complexation reactions. Mag-Ligand showed fast removal ability for both Cd2+ (<2 h) and 

Pb2+ (<15 min) with relatively high sorption capacity (79.4 and 100.2 mg/g for Cd2+ and 
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Pb2+, respectively). The remediation performance was relatively stable across a wide pH 

range (4-10), and slightly affected by increased water hardness (up to 100 mg/L Ca2+ or 

60 mg/L Mg2+ present in the solution). The Mag-Ligand exhibited the potentially wide 

application in the removal of metal ions in various aqueous matrices.  

 The second project followed up on the first one by exploring the promising wide 

range of removing metal ions as well as extending the application to adsorb or collect 

ions of valuable elements. In this study, the adsorption capacities, isotherms and kinetics 

of nine different metal ions, including three rare earth elements, onto Mag-Ligand, at 

different initial metal ion concentrations in individual sorption were determined. 

Creatively, the isothermal titration calorimeter technology was utilized to obtain the 

thermodynamic quantification of the interactions between nanoparticle sorbents and metal 

ions. The difference in magnitude of binding of Mag-Ligand with different metal ions led 

to the similar sequence of sorption capacities. In addition, the performance of Mag-

Ligand for multiple metal ions in competitive sorption was investigated to address the 

fact that natural aquatic systems contain a wide variety of dissolved heavy metal ions at 

trace level. The sequence of selective in competitive sorption was demonstrated to be 

associated with the individual sorption kinetics. The study revealed the sorption 

mechanisms in individual and competitive sorption were dominated by complexation 

reaction between metal ions and ligand and adsorption onto the porous structure of Mag-

Ligand. This project provided more thermodynamic data and foundational understanding 
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of using Mag-Ligand in more complex aquatic systems, with pushing the limit to 

engineering side further.  

In the third study, attention was directed at the remediation of EOCs. Magnetic 

permanently confined micelle arrays (Mag-PCMAs) with a core–shell structure were 

synthesized by coating the surface of maghemite particles with a silica/surfactant 

mesostructured hybrid layer. The sorption kinetics and isotherms of 2 legacy 

contaminants and 7 newly occurred synthetic chemicals, including pharmaceuticals and 

industrial additives onto Mag-PCMAs were determined.  The mechanisms of removing 

these rather soluble EOCs were most likely to be the combination of hydrophobic 

interactions, hydrogen bonding, and electrostatic interactions. This project has widely 

extended the categories of contaminants that Mag-PCMAs could be utilized for 

remediation. Furthermore, Mag-PCMAs showed the potential application in separation 

and purification for valuable compounds (e.g. pharmaceuticals) due to its high sorption 

capacity and easy recovery as well as low energy and cost requirement.  

As the previous studies showing the wide application of Mag-PCMAs in the 

environmental decontamination, the fourth project focus on further improving the 

sorption capacities and kinetics for PAHs and EOCs. The porous structure of the 

synthesized magnetic nanoparticle sorbents were optimized via introducing a micelle 

swelling agent and removing it afterward. 3 different Mag-PCMAs were synthesized 

through changed the amount of micelle swelling agent used during the synthesis. The 
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results demonstrate that with higher portion of micelle swelling agent, the sorbents 

obtained higher surface area and pore volume. It results in higher sorption rate and higher 

equilibrium sorption capacities of both EOCs and PAHs, which have various 

hydrophobicity. The enlarged surface area and pore volume enable faster diffusion rate 

for EOCs and PAHs to transfer through the silica framework to have the hydrophobic 

interactions with the confined surfactant micelles.  

As the first four projects were directed on using the magnetic nanoparticle sorbents 

for the treatment of metal ions and organic contaminants individually, the last project was 

designed for simultaneous removal of PAHs and metal contaminants regarding to the fact 

that numerous wastewater is contaminated with various categories of contaminants. Mag-

PCMAs with nonionic surfactant were developed, and it showed good removal of metal 

ions, PAHs and NOM, respectively. Cd2+ and acenaphthene were chose as the 

reprehensive of metal ions and PAHs to study the sorption isothermals and kinetics onto 

Mag-PCMAs. The adsorption mechanisms of PAHs, metal ions and NOM were 

investigated. The sorption process of PAHs and metal ions were dominated by 

hydrophobic interaction and complexation reactions, respectively. The simultaneous 

removal of PAHs and metal contaminants were studied under various environmental 

conditions, such as with the presence of NOM, different solution pH and water hardness. 

The performance of simultaneous removal was relatively stable across a wide range of 
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ionic strength, and increased with an increase of pH. The presence of NOM slightly 

stimulated the removal efficiency of metal ions.  

7.2. Future works 

The primary goal of this study was to develop novel magnetic nanoparticle sorbents 

for the decontamination of organic and metal pollutants and evaluate these sorbents under 

different environmental conditions. Beyond this doctoral research, there are some further 

noteworthy scientific and engineering questions which may need to be answered by future 

studies for the final application in the realistic scenarios. 

7.2.1. Simultaneous removal of numerous low concentration of contaminants 

The magnetic nanoparticle sorbents developed in this dissertation showed the 

promising capability to wide range of different pollutant categories. For most of the 

studies in this dissertation, the isothermal and kinetics were determined via individual 

sorption experiments. With more advanced instrument, such as ICP-MS and LC/MS/MS, 

we are able to push detect limit to much lower concentration of metal ions and organic 

compounds as well as analyze numerous items at one single run. It would be possible to 

evaluate the performance of these novel magnetic nanoparticle sorbents for low 

concentration pollutants. In addition, we can develop high though put method to 

investigate the removal efficiencies of these sorbents on particular classic of contaminants, 

such as PAHs, pesticides and et al.. With these data, we would be able to better 
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understand the mechanisms of the interaction between nanoparticle sorbents and 

contaminants.  

7.2.2. Automated apparatus for continuous utilizing magnetic nanoparticle adsorbents 

in water treatment 

Nowadays, most of the newly developed nanotechnologies for water treatment are 

applied in the laboratory scale only. One major limitation is the cost of the production and 

operation. One outstanding feature of the magnetic nanoparticle sorbents developed in 

this dissertation is its superparamagenic core, which enable for magnetic mixing and 

separation to lower the energy input and operation cost. Furthermore, these sorbents can 

be easily regenerated and showed stable performance on reusing, which could further 

reduce the cost. To further stet into engineering side, a large scale automated apparatus 

for continuous utilizing magnetic nanoparticle adsorbents needed to be designed and 

fabricated.   

7.2.3. Life-cycle analysis and environmental impact of utilizing magnetic nanoparticle 

adsorbents in water treatment  

The projects in this research were focused on the development and optimization of 

novel magnetic nanoparticle sorbents as well as their performance on decontamination. 

These emerging materials did demonstrate higher removal efficiencies on certain 

pollutants, but limited information on cost and environmental impacts are available. 
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Furthermore, as rapid development of these engineered nanomaterials, more and more 

concern were directed at their environmental impact and toxicity.  It is necessary to 

provide such information via conducting life-cycle analysis for further industrial 

utilization.  




