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Abstract

Experimental Studies of Physiological Flow Through a Cerebral Saccular Aneurysm

by

William W. Tsai

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Ömer Savaş, Chair

Experiments are conducted to model the flow within a cerebral saccular aneurysm

located at the basilar artery bifurcation. The flow phantom modeling the aneurysm consists

of a nearly spherical dome located at the flow divider of a 90◦ bifurcation. To ensure

that the experiments are physiologically relevant, a pulsatile pumping system replicates

a measured basilar artery waveform at the inlet. In addition, the Reynolds and Sexl-

Womersley numbers are matched with physiological conditions. The flow rate through the

outlets of the bifurcation are controlled by a pair of needle valves. This control allows

study of the effect of branching ratio. Three techniques are applied to characterize the

flow. Flow visualization provides pathline images that are used to qualitatively define flow

structures and patterns. Particle image velocimetry is used to measure the flow velocity

across multiple cross sections of the flow. Post-processing of the data allows in-plane wall

shear stresses to be calculated. Lastly, stereoscopic particle image velocimetry allows the
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3D velocity field and in-plane wall shear stresses to be determined on an orthogonal cross

section of the flow. Combining the information obtained through the experiments, the flow

behavior over a single physiological waveform is characterized.

The flow characterization centers around two major features: an inlet wall jet that

originates from the neck of the aneurysm and wraps around the dome and a circulation

region that dominates the center volume of the dome. The motion of these structures during

the waveform are captured and detailed. Wall shear stresses are found for points along the

dome over the course of a waveform. In-plane maximum wall shear stress magnitudes over

the entire dome vary from 6.8-18.6dynes
cm2 in the PIV planes and 13.9-31.0dynes

cm2 in the SPIV

planes. Total wall shear stress magnitudes can be calculated for three points intersection

points. Mean wall shear stress magnitudes at these points range from 3.28-7.94dynes
cm2 . In

particular, the flow conditions that had nearly symmetric outlet flow rates had the lower

WSS magnitudes of the test cases.

The primary effect of the branching ratio on the flow behavior is to alter the

location and displacement of the circulation region and inlet jet. For flows with a large outlet

differentials, the inlet flow shows strong direction preference entering as a wall jet. For flows

with small outlet differentials, the inlet flow forms a expanding inlet jet that does not show

strong direction preferences. The WSS measurements matches well with computational fluid

dynamics simulations of cerebral saccular aneurysms, reinforcing the theory that lower than

normal WSS values plays a role in aneurysm growth. Future experimental research will need

to focus on implementing techniques that provide the complete 3D flow field and that uses

a non-Newtonian working fluid to better simulate the behavior of blood.
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Chapter 1

Introduction

An aneurysm is an uncontrolled dilation of a blood vessel associated with the

weakening of an arterial wall; it may continue to grow until it overwhelms the arterial

wall and ruptures. The rupture can be dangerous if it impairs blood flow to a vital organ

or the resulting hemorrhage creates a life-threatening complication. Cerebral aneurysms,

also referred to as intracranial aneurysms, are particularly dangerous being located among

the brain’s complex vasculature. Current research is still unable to explain the formation,

growth, and rupture mechanisms of cerebral aneurysms. Improving the understanding of

intracranial aneurysms may advance diagnosis and treatment techniques.

The importance of early diagnosis and treatment is underscored by the prevalence

of cerebral aneurysms in the population and the potential harm they can cause. Adults

of any age can develop aneurysms with the majority being in their 50’s to 70’s [14, 44].

It is estimated that 5% of Americans are affected, but the majority of them are unaware

due to symptom absence [55, 65]. Raps et al. [51] found just over half of those diagnosed



2

are asymptomatic and another 15% showed only acute symptoms. Approximately 25-38%

of symptomatic patients have severe headaches, ocular findings, focal neurological defects,

seizures, or altered level of consciousness. These symptoms are associated with other com-

mon ailments, leading to misdiagnoses. Obtaining the proper diagnoses through patient

re-evaluations take anywhere from 24 hours to 6 months, with an average of 6 days [41, 17].

If undiagnosed or allowed to grow untreated, the aneurysm risks rupturing. The

rupture may either be small, causing a contained “warning” bleed, or catastrophic, causing

a subarachnoid hemorrhage (SAH), a type of stroke characterized by bleeding between the

membranes that surround the central nervous system [15]. Without immediate medical

attention, the increased intracranial pressure, decreased usable blood flow, and reduced

oxygen supply causes severe brain damage and possibly death [65]. Studies found that 11-

14% of patients with SAH expire within a week after rupture, while the 6 month mortality

rates were 40-67% [18, 29, 40, 54]. Even with treatment, Longstrech et al. [40] found that

one third of the sample group did not survive past the first month, while another third

never regained full mental capacity and function after rupture. Overall, almost all SAH

survivors experience a quality of life decrease [26].

1.1 Aneurysm Formation, Growth, and Rupture

Given the risks and dangers of cerebral aneurysms, researchers have focused their

efforts on understanding them from beginning to end. The life cycle of an aneurysm consists

of three phases: 1) pathogenesis or the formation, 2) growth, and 3) rupture. The following

sections will present research and theories for each of these stages.
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The pathogenesis of cerebral aneurysms has been examined but capturing the pre-

cise moments of natural formation is nearly impossible. As a result, hypotheses have been

developed using observations, correlations, and artificially induced aneurysms. Reduced

external elastic lamina, supporting perivascular tissue, and medial elastin in the cerebral

arteries make them more susceptible to aneurysm formation compared to the rest of the

circulatory system [28]. However, predispositions alone cannot explain pathogenesis. Most

aneurysm formation theories focus on causes that trigger a localized weakening of the en-

dothelial cells that line the artery wall. One possible candidate is high wall shear stress

(WSS). Fry [20] extracted samples of arterial wall and determined that wall shear stress

values exceeding 379±85dynes
cm2 led to rapid deterioration of the endothelial layer. Kondo et

al. [35] artificially induced cerebral aneurysm formation in rats and found the aneurysms

formed at locations with locally elevated WSS. They found the response to the increased

WSS was artery dilation and thinning the endothelial layer, leaving the artery prone to

aneurysm formation. Inci and Spetzler [30] hypothesized that the primary mechanism of

aneurysm formation is hypertension; blood pressure increase leads to endothelial injury,

occlusion of the vasa vasorum, and disturbance of elastin-collagen synthesis. Krex et al.

[36] proposed that the root causes of aneurysm formation are genetic defects favoring re-

modeling of arterial walls that make it susceptible to aneurysm formation. Hypertension,

atherosclerosis, and exogenous factors play a secondary role in aneurysm formation. Meng

et al. [42] suggested the spatial gradients and distribution of shear stress along the arterial

wall are as much a factor as the magnitude of WSS. It is likely that a combination of these

factors is required to fully explain aneurysm pathogenesis, but given the complex nature of
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the problem, improved research techniques will be required.

Aneurysm growth is equally as challenging to explain. Researchers have been able

to follow the growth of aneurysm in diagnosed patients. While large amounts of data have

been published, even the rate of aneurysm expansion has been difficult to isolate. Allcock

et al. [3] tracked the growth of 82 aneurysms for up to 10 years but found no consistent rate

of growth. Wiebers et al. [66] drew some conclusions by dividing subjects into two groups:

the first group was made up of cerebral aneurysm patients with no history of rupture,

while the second group was made up of cerebral aneurysm patients that had a history of

rupture. The first group had a higher percentage of rupture in large aneurysms (>10mm)

and a lower percentage of rupture in small aneurysms (<10mm) compared to the second

group. This indicated that in the first group the aneurysms grew to a large steady size

and took a long time to rupture, while in the second group aneurysms tended to rupture

while they were smaller and growing. Mitchell and Jakubowski [44] hypothesized that the

aneurysm experienced a period of rapid growth after genesis, estimated to be 41 weeks.

During this period, the aneurysm wall is susceptible to rupture; after this period, growth

rate decelerates dramatically, reducing to nearly zero.

It is difficult to develop a theory that explains these unusual growth patterns;

there are several hypotheses about an explanation. The difficulty lies in the complexity of

the processes involved. Cerebral aneurysm growth cannot be reduced to a simple “balloon”

analysis. Such a model could not predict the erratic growth pattern and irreversibility of

aneurysm growth [9]. Shojima et al. [57] showed that the variations of normal pressures

on aneurysm walls are only 1-2% of peak intravascular pressure suggesting pressure loading
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alone is an unlikely candidate. In addition, it is important to consider, as Peters [48] states:

“Aneurysmal dilation results in a highly dynamic cellular environment which extensive

wound healing and tissue/extracellular matrix remodeling are taking place.” A ballooning

aneurysm growth model would neglect the biological aspects of the aneurysm wall and the

dynamic blood flow within it.

Several theories examine the characteristics of blood flow within an aneurysm,

particularly low WSS and its effects on the wall. Low WSS was initially examined because

of its involvement in the development of atherosclerosis and plaque deposition. Caro et al.

[10] correlated WSS to nutrient and chemical concentration gradients near the wall. Lower

than normal WSS correlated with reduced mass transfer to the endothelial cells. Walpola

et al. [64] found WSS values of approximately 3dynes
cm2 in a modified rabbit aorta generated

a feedback response leading to arterial contraction and endothelial cell count reduction. In

addition, fewer endothelial cells were aligned with the flow direction; they were also less

elongated in the flow direction and contained fewer and shorter microfilaments, signaling

reduced directional strength. Steiger et al. [60] measured WSS in the aneurysm and found

them to be on the order of 50dynes
cm2 , which is considerably lower than the neighboring non-

diseased arterial wall. Shojima et al. [56], using patient-specific CFD simulations, found

the peak WSS magnitude within the aneurysm to be less than half the value in the parent

arteries (16.4 and 36.4dynes
cm2 , respectively). While the simulated values are not as low as

the values discussed in [64], the researchers hypothesized that a severe drop in WSS caused

changes in endothelial cell behavior. Boussel et al. found correlations between low WSS and

regions of aneurysm growth; using MRI and CFD simulations, aneurysm wall expansion
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rates were highest where simulations found a 2.5dynes
cm2 mean WSS. Others have proposed

examining the temporal aspects of WSS. The oscillatory shear index (OSI) measures the

WSS magnitude and direction changes at a point over a period of time. Cebral et al. [11]

hypothesized that a combination of OSI and WSS magnitude plays a role in aneurysm

growth.

An alternative cause of aneurysm growth suggested by Humphrey et al. [28] de-

rives from the combination of the non-linear material properties of the artery wall and the

flow dynamics including transient pressure effects. WSS alone is inconclusive because the

transient behavior of the artery wall must be modeled at the simultaneously. Humphrey

et al. argue the practice of assuming a prescribed outlet pressure field in CFD simulations

skews the results. The focus on WSS in aneurysm growth theories results from the inability

to develop a precise solution for pressure fields. It was proposed that simulations which

couple both fluid and solid changes, a fluid-solid-growth (FSG) model, could accurately

predict aneurysm growth and rupture.

Research into modeling aneurysm rupture has focused on finding correlations that

offer precise indicators. The aforementioned study by Wiebers’ et al. [65] provided mixed

correlations between aneurysm size and rupture. Several geometric characteristics of the

aneurysm (Figure 1.2) are considered. Other studies have shown that a cerebral saccular

aneurysm with an aspect ratio of the maximum diameter, dmax, to the inlet diameter, dinlet,

of >1.6 had a rupture rate near 80% [63, 67]. Crawford [13] and Crompton [14] noted that

the majority of aneurysms (60-70%) failed at the aneurysm tip as opposed to the lateral

walls or at the neck. Humphrey et al. [28] argued that it is not diameter, but Cauchy
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principal stresses that determine rupture location. Shojima et al. [56] suggested that if

low WSS phenomena are responsible for growth, rupture is the byproduct of weakening

the wall until it can not remain intact under the stresses applied. Cebral et al. [11] found

correlations between rupture and the size and strength of the impingement jet that enters the

aneurysm. They found that 74% of the patient-specific simulations had jets that impinged

at the dome walls. However, Burleson et al. [8] found that the highest WSS occurred at

the walls around the inlet of the aneurysm and argued that rupture must start from these

locations and propagate rapidly across the dome. Although the WSS magnitudes were

considerably less than Fry [20], Burleson suggested that the aneurysm’s endothelial cells

were less adaptive to changes in shear stress. Ahn et al. [2] found that the aneurysm tip

was subjected to higher WSS relative to other parts within the dome but still less than the

neck. The researchers suggest a local high WSS and a possible weakness in the material may

play a role in rupture. As with aneurysm growth, there is no accurate theory explaining

the complex nature of aneurysm rupture.

1.2 Examining Cerebral Aneurysm Growth Through In Vitro

Experimental Techniques

Extensive research into cerebral aneurysms has produced no conclusive explana-

tion of formation, growth, and rupture. The long term goals are understanding aneurysm

mechanics, improving detection techniques, and developing treatments. A short term goal

is gathering enough information to construct accurate modeling tools to aid physicians in

evaluating treatment options.
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Basilar Bifurcation

Figure 1.1: The bifurcation of the basilar artery into the posterior cerebral artery relative
to the brain (left) and a magnified inset (right) [24].

The goal of this dissertation is to further the understanding of cerebral aneurysm

growth. The experiments presented in what follows model a cerebral saccular aneurysm that

has formed at the bifurcation of the basilar artery. The basilar artery runs along the spinal

column into the base of the skull, where it bifurcates into the posterior communicating

arteries which supply the Circle of Willis and the network of arteries that distribute blood

to the brain (Figure 1.1). The experiments are conducted on a simplified model of the

saccular aneurysm to determine the basic flow behaviors and physics. Discussion in this

dissertation will be confined to saccular cerebral aneurysms and will not consider fusiform

aneurysms, which entail radial arterial growth (Figure 1.2).

In this dissertation three experimental techniques are used to characterize the flow

field within the aneurysm model. Before discussion of any techniques, the details of the
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Flow Divider

Tip

Neck

(a) Saccular aneurysm (b) Fusiform aneurysm

Fundus

dmax

dinlet

Inlet Flow

Figure 1.2: The geometric differences between (a) saccular and (b) fusiform aneurysms.
The top images represent healthy arterial geometries while the lower images show diseased
arterial geometries. The saccular aneurysm is labeled to define parts that will be commonly
referenced.
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flow model and setup used in all experiments are presented. The qualitative behavior of

the flow is established through the use of flow visualization. With an understanding of

the major structures and characteristics of the flow, particle image velocimetry is used to

determine the 2D velocity fields and in-plane WSS over multiple planes within the dome.

Lastly, stereoscopic particle image velocimetry is used to determine the 3D velocity field

and in-plane WSS on along the center plane of the dome. Each experimental technique is

described in a chapter devoted to the theory of operation, instrumentation setup, results,

and conclusions. Finally, the conclusion of the dissertation involves consolidating the results

and connecting them to the background research and theory that have been presented.
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Chapter 2

Experimental Setup

This chapter describes the simplified physical model of a cerebral saccular aneurysm.

This flow phantom captures basic aspects of the aneurysm and is transparent allowing the

use of visual flow measurement techniques. The test fluid simulates blood flow by ensuring

dynamic conditions similar to physiological conditions. To mimic the oscillatory nature of

physiological blood flow, a pulsatile pumping system controls flow waveform generation.

The experimental variables, the flow rate ratio through the outlets and imaging planes, are

defined at the close of the chapter.

2.1 Flow Phantom

Data are acquired from the flow phantom, a simplified bifurcation with an aneurysm

(Figure 2.1), rather than using a complex physiological model from patient specific magnetic

resonance imaging (MRI) data. The model dimensions are based on patient measurements

by Parlea et al. [47] of a cerebral saccular aneurysm located at the basilar bifurcation.
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The basilar artery is modeled by the inlet pipe, measuring 3.2mm in diameter. The out-

let posterior cerebral arteries (PCA) are modeled by the outlet pipes, measuring 2mm in

diameter. These bifurcate at right angles to the basilar artery, forming a “T” shape. The

aneurysm dome is nearly spherical, with a major diameter of 11.7mm and a minor diameter

of 11.3mm. It replaces the bifurcation flow divider.

The model geometry is the same used in parallel computational fluid dynamics

(CFD) simulations by Oretga et al. [46]. The simulations include a fully developed inlet

boundary conditions which is applied to the experiment. For a laminar flow, the entrance

length required for fully developed flow is

L′ = 0.058dRe, (2.1)

where L′ is the entrance length and Re is the Reynolds number (Section 2.2). For this flow,

the minimum entrance length required is 18 diameters; for safety the inlet length is chosen

to be 25 diameters prior to entering the bifurcation. The outlets are similarly 25 diameters

in length before taking a 90◦ bend so that connections to both the inlet and the outlet can

be mounted in the rear.

The geometry described is cast within a silicone (Polydimethylsiloxane) block en-

cased in acrylic panels (Figure 2.2). While the model is transparent, distortions are intro-

duced by small density variations in the silicone during manufacturing, and by the finish

of the acrylic surfaces. In addition, parts of the experiment requires optical access at 45◦

angle to the walls, which is accompanied by severe distortion. To address these effects, five

optically clear and polished BK-7 glass viewing windows (Figure 2.2) provide views of the

dome and bifurcation through the x-axis, z-axis, and ±45◦ off of the z-axis on the x-z plane.
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Figure 2.1: Dimensions of the simplified model of a cerebral saccular basilar aneurysm.

The glass blocks are placed as close as possible to the dome, minimizing the distortions

introduced by the silicone.

2.2 Flow Parameters

2.2.1 Working Fluid

The working fluid must have a viscosity that allows dimensionless parameters to

match physiological conditions within the capabilities of the experimental setup. In ad-

dition, the working fluid’s index of refraction must match silicone’s (n=1.41) to minimize

optical distortion. The appropriate mixture is chosen through empirically determined op-
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Figure 2.2: Upper: Photograph of the side (left) and front (right) of the flow phantom.
Lower: Diagram of the side (left) and front (right) of the flow phantom. The BK-7 glass
windows are shaded in gray.
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timization equations by Nguyen et al. [45] for modeling blood flows. The fluid used is a

mixture of 55% glycerin and 45% water by weight maintained at 30◦C. The density of the

solution is 1.135g/cm3 [12]. No direct viscosity measurements for this mixture are available.

Using the Grunberg-Nissan model of Type 1 and available information for glycerine-water

solutions, the average mixture activation energy is calculated to be 21.25J/mol, yielding a

dynamic viscosity of μ = 5.73cP [12].

2.2.2 Similarity

Reynolds and Sexl-Wormersley numbers are matched with physiological conditions

to achieve dynamic similarity. The Reynolds number, Re, is the ratio of inertial forces to

viscous forces and is defined as

Re =
ρUL

μ
, (2.2)

where ρ is the density of the fluid, U is the mean velocity magnitude, L is the characteristic

length scale, and μ is the dynamic viscosity of the fluid. For this experiment, the charac-

teristic length scale is the diameter of the basilar artery, d. In this calculation, blood is

assumed to be Newtonian with a dynamic viscosity of 3.5cP [68]; this approximation for a

non-Newtonian fluid is discussed in the next section. Based on measurements made by Kato

[33], Reynolds numbers are determined for the minimum, mean, and maximum flow rates

over one waveform and converted to corresponding experimental flow rates (Table 2.1).

The Sexl-Womersley number, α, is the ratio of oscillatory forcing on the fluid to

the viscous forces within the fluid, or equivalently a ratio of the timescale for diffusion of
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Table 2.1: Reynolds numbers, Re, and volumetric flow rates, Q, for the experimental fluid
[33].

Re Q[ mL
min ]

Peak 376 290
Mean 221 170

Minimum 110 85

vorticity to the timescale for oscillatory forcing. It is defined as

α2 =
r2ω

ν
, (2.3)

where r = d/2 is the radius of the basilar artery, ω is the angular frequency, and ν = (μ/ρ)

is the kinematic viscosity. The Sexl-Womersley number for the physiological condition is

calculated using a frequency of 1Hz, the equivalent to a pulse of 60 beat per minute. The

Sexl-Womersley number is calculated to be 2.23. The Sexl-Womersley number is matched

in the experiments by using a frequency of 1.53Hz for the piston pump.

2.2.3 Newtonian versus Non-Newtonian Fluid Behavior

In the experiment, blood is modeled as a Newtonian fluid. In actuality, blood

is a shear-thinning, non-Newtonian fluid due to its complex mixture of plasma, red blood

cells, platelets, white blood cells, etc. This results in some differences between the behavior

of the working fluid and blood. Fung [21] modeled laminar flow in a tube using a non-

Newtonian model for blood. He found that blood behaves like a Newtonian fluid near the

walls. The velocity profile deviates from the Newtonian flow profile as shear rates approach

zero. Steiger et al. [59] compared the behavior of blood versus a 54% glycerin - 46% water

by weight mixture (Figure 2.3). The viscosity of blood and the mixture do not vary greatly

in the shear rate range of 50-400s−1 [68, 21]. It is in this high shear rate limit beyond
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50 s-1

Blood well 
approximated as 
Newtonian 

, 46% water

Figure 2.3: Comparison of the viscous properties of blood, glycerol, and Separan solution
at shear rates from 0.25 to 400s−1 carried out by Steiger et al. [59].

50s−1 where blood is approximated to be Newtonian with a high shear limit viscosity, μ∞,

of 3.5cP

Through simulations using both Newtonian and non-Newtonian models, the errors

from using the high shear rate limit have been researched and documented. Gijsen et al.

[22, 23] compared experiments and computational models of Newtonian and non-Newtonian

flow steady flows in the carotid bifurcation and unsteady flows in the aortic arch. They

found that using the viscosity corresponding to the average shear rate yielded more accurate

results than the high shear rate limit. However, if the flow is in the high shear rate regime,

this is less applicable. An example of this is the variation in the average shear rate with
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age; the expected characteristic shear rate is higher in older individuals [53]. Ku et al. [37]

found that flow simulations using Newtonian fluids matched well with in vivo MRI flow

rate measurements, with a maximum variation of 10.6%. Khanafer et al. [34] found that

Newtonian fluids underestimated the wall shear stress (WSS) compared to non-Newtonian

fluids, varying 1-3dynes
cm2 or a relative error of up to 25%. Rayz et al. [52] compared Newtonian

and non-Newtonian simulations of fusiform basilar aneurysms and found that the Newtonian

simulations underestimated average WSS values by up to 23%. The highest local variations

(29%) were observed in stagnation regions. In addition, Rayz et al. found that the velocity

fields in the two cases were similar. Based on the literature, the expectation is that the

experiments will capture the overall flow field behavior correctly but will underestimate

WSS values by up to 30%.

2.3 Flow Waveform

The inlet flow must replicate the physiological flow through the basilar artery.

The waveform (Figure 2.4) used here comes from measurements in the basilar artery during

a study of posterior circulation ischemia by Kato et al. [33]. The measurements include

the average flow rates for the healthy control group which are used for scaling the flow

waveform. There is no reverse flow in the basilar bifurcation (q > 0).

2.4 Pulsatile Pumping System

Simulating the pulsatile nature of blood flow is essential in fluid mechanics ex-

periments of the human circulatory system. Flow waveforms at numerous locations in the
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Figure 2.4: Input waveform for pulsatile flow pattern based on measurements by Kato et
al. [33].

body have been measured in vivo using a variety of methods, such as magnetic resonance

imaging (MRI) and Doppler ultrasound (DUS). This allows for the design of pumps capable

of replicating physiological flow conditions in vitro.

A commercially available, dual-chamber pump (Shelly Imaging Systems, London,

Ontario, Canada) uses a reversing cylinder-piston to generate pulsatile flow [19, 25]. The

piston divides the cylinder into two chambers, each with fluid ports at the end. As the piston

is driven under computer control in one direction, the pulsatile waveform is output from

a chamber while its compliment is refilled from the return line. Once the piston has been

driven to one end of the cylinder, the piston reverses and the sequence repeats. All fluid

ports connect to a computer-controlled 4-way valve which sequences the flow directions.

Alternative systems have been developed. Hoskins et al. [27] explored using a



20

signal-controlled gear pump to generate simple pulsatile waveforms. Plewes et al. [49]

advanced the system by improving computer waveform generation through the addition of

a closed feedback calibration circuit. While Plewes’ pump is simpler than the dual-chamber

pump, it requires electronics to carry out initial iterative calibration adjustments for each

new waveform. P. Wong et al. [70] modified the design by introducing a software feedback

loop using real-time velocity feedback from MRI scans.

The pumping system presented in this paper is developed for generating pulsatile

flows in flow phantoms using a variety of fluids (e.g. water, glycerin, isopropyl alcohol, and

their mixtures). This design allows users to optimize the flow parameters and tune the

system to the needs of the experiment.

2.4.1 Pumping System

The pulsatile pumping system consists of a gear and a piston pump in series

(Fig. 2.5). All components are mounted on a plate for easy access. The Teflon coated

stainless steel gear pump provides the steady mean component of the desired flow waveform.

Unlike the aforementioned designs, the output gear pump does not oscillate, and instead is

operated under a constant load. The gear pump is preloaded with a back-pressure valve at

its discharge, keeping the gears in constant contact and preventing reverse flow. The back-

pressure valve also insures that the gear pump operates as a positive displacement device.

For this experimental setup, an Oberdorfer Chemsteel S207 Pump (Oberdorfer Pumps,

Syracuse, NY) is used with a maximum throughput of 300 ml/s. A Nikkiso Hydrogard

back-pressure valve (Nikkiso Pumps, Houston, TX) is placed at the discharge of the gear
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pump.

The piston pump provides the oscillatory component of the flow waveform. It con-

sists of a stainless steel, honed cylinder housing of 5.45cm bore and 10cm stroke containing

a Delrin piston. The capped end of the cylinder has the flow ports. To achieve reverse

output flow, the piston pump draws fluid at a faster rate than the gear pump outputs. The

piston is driven by a servo motor attached to a Thomson Precision Plus Lead Screw with

zero backlash (Thomson BSA, San Jose, CA).

The gear pump is driven by an Applied Motion Products Alpha Series II 600W

Servo Motor, with a rated maximum speed of 3000rpm (Applied Motion Products, Wat-

sonville, CA). A 400W version of the servo motor drives the piston pump. Both motors

connect to Applied Motion Products BluAC5 controllers, which include velocity control

using an external signal. A single PC generates signals for both controllers through a

Measurement Computing PCI-DAS6086 Data Acquisition Card (Measurement Computing,

Norton, MA). The controlling C++ program drives the gear pump with a constant voltage

output to generate the mean flow and drives the piston pump with a variable voltage output

based on a waveform input file. Once connected with an experimental setup, the system

must be tuned. The Quick Tuner Software, included with the controller, allows the user to

adjust the motor parameters and test the settings until an acceptable response is achieved.

A simple closed flow loop filled with distilled water is used for characterizing the

system. The pump is supplied by a reservoir elevated one meter to avoid cavitation at

the inlet of the gear pump. Copper tubing, 57cm long with two 90◦ bends, connects from

the pump outlet to the flow probe. Rigid tubing is selected over compliant tubing to
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avoid corruption of the waveform downstream. Flow rates are measured by a Transonic

4N ultrasonic flow probe in conjunction with a T206 flow meter (Transonic Systems Inc.,

Ithica, NY). Polyester reinforced PVC tubing is used to connect the reservoir to the pump

inlet and the flow probe outlet to the reservoir.

2.4.2 Evaluating System Performance

A series of tests was conducted to evaluate the performance of the pumping system.

The system frequency response is determined by comparing output amplitude (i.e. flow rate)

to a fixed amplitude sinusoidal waveform with varying frequency from 1-8Hz. The accuracy

and repeatability of the system are tested by measuring the output flow rate for a sinusoidal

waveform as well as measured coronary [39] and carotid waveforms [32]. A frequency of

0.5Hz is used for the sinusoidal waveform tests, while a frequency of 1.0Hz is used for the

coronary and carotid waveform tests. Output data are recorded over fifteen waveforms and

compared to the input signal. To characterize the fidelity of the mean output flow rate to

the input signal, the root mean square deviation, σ, between the input signal and the mean

output measurement is calculated.

Sinusoidal test results are displayed in Figure 2.6. The input signal (solid line) is

plotted against the mean output signal (dashed line) and the upper and lower limits (dotted

lines) of the set of 15 output waveforms. At this frequency, the mean output nearly matches

the input waveform.

The frequency response to sinusoidal input is shown in Figure 2.7. It displays

small variations in amplitude response in the 1-2Hz range covering the frequency of most
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Figure 2.5: Diagram (a) and photograph (b) of the gear-piston pumping system.
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experiments modeling physiological blood flows. The frequency response shows a damped

resonant frequency near 5Hz. At higher frequencies, the amplitude decays rapidly, with the

response falling to 28% of original amplitude at 7Hz and less than 10% of original amplitude

at 8Hz. The frequency response depends on the impedance of the downstream flow loop and

the system components. As an example, changing the copper tubing to a shorter segment

with no bends changes the peak response frequency to approximately 3.5Hz. Because of

this sensitivity to impedance, it is important to tune and characterize the system while

connected to the experimental flow loop.

The accuracy and repeatability tests display the performance of the system for

physiological inputs: coronary (Figure 2.8) and carotid (Figure 2.9) waveforms. Root mean

square deviations of the mean output flow curve to the sinusoidal, coronary, and carotid

input waveforms are 0.03, 0.10, and 0.05 respectively. For a system without any feedback

correction, the pumps are capable of replicating physiological waveforms. The greatest

deviations occur when steep changes are present in the waveforms; this effect is evident

in the coronary waveform. The mean, minimum, and maximum curves show a steep slope

response, but the system is clearly unable to generate the instantaneous response requested.

The data from the carotid waveform illustrates that this system has the least error at

constant acceleration. The largest error can be seen in diastole during the small oscillations.

For the purposes of waveform validation for this dissertation, basilar input and

output waveforms from this experiment are compared (Figure 2.10). The basilar artery

flow waveform is set to a frequency of 1.53 Hz. The working fluid is changed from water to

the prescribed glycerine-water mixture. The measurements from the system are obtained
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Figure 2.6: Comparison of the sinusoidal input waveform (solid line), mean output flow
(dashed line), and spread of the extrema (dotted lines).

from flow meters placed at each of the outlet arteries and are phase shifted to adjust for lag

introduced by the flow probes and motor controllers. Validation tests show good agreement

between the input and outlet waveforms (Figure 2.10). While the width of the outlet peak

is wider than the input peak, the major features of the waveform are captured.

2.5 Flow Loop

The flow loop consists of the model, pumping system, flow meter, and other compo-

nents necessary to complete the system. The pumping system draws fluid from an elevated

reservoir and pushes it through rigid 1/2” diameter copper tubing to the flow model. A

heat tape with built-in temperature controller is wrapped around the tubing, maintaining

the fluid at 30◦C. The fluid flows into the model through the inlet fittings. The model’s
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Figure 2.7: Frequency response of the system.

Figure 2.8: Comparison of the coronary waveform [39] (solid line), mean output flow (dashed
line), and spread of the extrema (dotted lines).
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Figure 2.9: Comparison of the carotid input waveform [32] (solid line), mean output flow
(dashed line), and spread of the extrema (dotted lines).

Figure 2.10: Phase-adjusted flow output measurements for a basilar artery bifurcation
experiment. The input waveform (solid line) drives the pump. The output flow is divided
into two outlets (broken lines).
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Figure 2.11: Diagram of the complete experimental setup.

outlet fittings are connected via rigid copper tubing to a pair of Transonic Inline flow probes

mentioned in the previous section. The flow meter is calibrated for the working fluid. Down-

stream of the flow probes, a pair of needle valves allow the operator to control the flow rate

between the two outlets. From the valves, the flows return to the reservoir. To reduce heat

loss, most exposed sections of tubing are insulated.

2.6 Experimental Variables

In the experiments reported in this dissertation, three different techniques are

employed to study the flow: flow visualization (FV), particle image velocimetry (PIV),

and stereo particle image velocimetry (SPIV). The following chapters are a presentation of

each technique in depth including the experimental setup, and results. First, however, it is
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important to establish the parameters that will vary in each of the experiments.

Branching Ratio

The branching ratio is defined as the volumetric flow ratio through the left and

right outputs, where left is in the +z direction and right is in the -z direction (Figure 2.1).

This ratio is controlled by adjusting the needle valves and verified using the flow meter.

A symmetric flow ratio is defined as 50:50. During planning, branching ratios of 20:80,

25:75, 33:67, 50:50 67:33, 75:25, and 80:20 are used. Two more ratios were used after the

preliminary observations. Between the 50:50 and 33:67 cases, a jet within the dome abruptly

change from occupying the left half to the right half of the dome. During experimentation,

this transition was found to occur near a 47:53 branching ratio. The precise ratio could not

be captured because the behavior is highly unstable. As a result, flow ratios of 48:52 and

46:54 are employed to examine this transition regime.

Flow Planes

The views used in image acquisition are limited and vary depending on the type

of experimental technique. For SPIV, images of the x-y plane are captured through the two

45◦ windows; because two views are required, the plane that contains the intersection point

of the windows’ axes is the only one that can be captured. FV and PIV images of the y-z

plane are captured through the windows above and below the dome in the x-direction; the

system is free to move and capture images at any value along the x-axis. Three planes were

selected (Figure 2.12): the midline of the model (“midplane”), half the distance between the

midplane and the upper limit of the dome (“upper quarter-plane”), and half the distance
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Figure 2.12: Planes along which data are collected for FV and PIV.

between the midplane and the lower end of the dome (“lower quarter-plane”).
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Chapter 3

Flow Visualization

Flow visualization (FV) is an extremely useful tool that yields the qualitative

features of flow fields. This tool is particularly useful in observing flow behaviors, structures,

and patterns. FV is an essential compliment to later quantitative experiments. This chapter

will review the principles behind FV, describe the experimental setup, present the results

from the experiments, and discuss the implications of the results.

3.1 FV: Theory

The goal of FV is to visualize a flow that often has no intrinsic visual markers

that can be followed. This problem is exacerbated by the fact that the working fluid in

this experiment is transparent. Thus, FV requires the introduction of visible identifying

markers, usually an attribute of the flow such as density variations or foreign materials.

The latter is used in this experiment in the form of particles added to the working fluid

to seed the flow. The particles are made visible by laser illumination. To be effective, the
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particles must meet two requirements: 1) the particles must reflect, scatter, transmit, or

emit enough light to be visible compared to the working fluid, and 2) the particles must be

of the proper density and size so they do not significantly influence nor significantly deviate

from the flow.

The next consideration is converting a field of visible particles into usable informa-

tion. Because each particle is visible, it appears as a point of light to the camera imaging the

flow. When recording the flow for an exposure time, Δt, the particle will travel a distance

approximately equal to uΔt, where u is the magnitude of the local fluid velocity. During

the motion of the particle, the camera will capture the accumulation of scattered light over

the path incident on the lens. Applying this to the entire field of particles that seed the

flow yields an image with streaks that can provide good approximations to local veloci-

ties throughout the flow if Δt is sufficiently small. If Δt is large, then particle paths are

recorded. For the case of unsteady flow considered here, the path lines will likely overlap,

hence yielding undecipherable images. FV images can be recorded in a sequence to form a

movie which helps visualize flow patterns within the imaging plane. Out-of-plane motions

are captured as particle motion into and out of the laser sheet, causing particles appear or

disappear on images. As a result, streak pictures cannot distinguish between a slow moving

particle and one moving out-of-plane.

3.2 FV: Experimental Setup

This section details the components of the experiment specific to the FV setup.

As introduced in the previous section, FV requires seeding the working fluid with particles,
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illuminating the particles, and imaging the particle field.

3.2.1 Seed Particles

FV requires a flow seeded with particles that reflect or emit enough light to be vis-

ible during imaging. The particles must be small enough to follow the flow without causing

any changes in the flow behavior, while being large enough to be imaged. Duke Scientific

15μm Fluorescent Polymer Microspheres are the particles used for the experiments. The

particles fluoresce at a wavelength 75nm longer than absorbed. In the FV experiments, the

particles absorb 514nm light and fluoresce 589nm light. Fluorescing particles were chosen

over reflective or scattering particles because the fluoresced light can be separated from the

illumination, increasing the contrast and visibility of the particles.

The other consideration is the ability of the particles to follow the flow. Ideally, the

particles should be neutrally buoyant, but this requirement is dependent on the working fluid

and particles available. To evaluate the deviation that gravity may cause, the sedimentation

velocity is considered.

Using Stokes analysis, the sedimentation speed for a spherical particle is given by

[43]:

vs =
[
ρparticle

ρfluid
− 1

]
gd2

particle

18νfluid
, (3.1)

where ρparticle is the particle density and dparticle is the particle diameter. In the ideal case

where the particle is neutrally buoyant, vs = 0. For this experiment, the sedimentation

speed is 10.7μm/s. For an exposure time of 1s, a 10.7μm (0.71 times the diameter of the

particle) drift is negligible given the size of the flow area. Therefore, the effects of gravity
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on the particle are considered a negligible source of error in these experiments.

To ensure that the particles are acceptable for FV usage, another source of error

is considered: the effect of drag on the particles in the direction of travel [50]. The Stokes

response time, ts, also called the relaxation time, is a measure of the time for a particle to

achieve velocity equilibrium with the surrounding fluid. It is defined as

ts =
1
18

ρparticle

μ
d2

particle, (3.2)

Using values for the fluorescent particle and working fluid, the relaxation time is 1.02μs,

which is several orders smaller than the timescales of this experiment. This alleviates any

concern that the particles may deviate during accelerations in the flow.

3.2.2 Illumination

The illumination for the experiment is provided by a Lexel Model 85 Argon-Ion

laser, which outputs a continuous 514nm light beam at 1W. A thin, focused laser sheet

is required for planar flow visualization. This is achieved by directing the laser through a

spherical-cylindrical lens pair (Figure 3.1). A 200mm focal length spherical lens focuses the

beam on the center of the model and a -75mm focal length cylindrical lens expands the

beam into a planar sheet. A negative focal length cylindrical lens is used to avoid focusing

the laser light at the focal line in front of the optics prior to the model. Combined, the

lenses turn the laser beam into a 0.5mm thick laser sheet at the region of interest, which

illuminates the y-z plane (Figure 2.1). The x-coordinate of the laser and optics can be

adjusted providing a single degree of freedom.
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f=200mm f=-75mm 

Light Sheet 

a) Top View

f=200mm f=-75mm 

b) Side View

Sheet
Thickness

Focal Distance

Figure 3.1: Laser sheet lens configuration using a spherical and cylindrical lens as seen from
(a) above (e.g. the point of view of the camera), and (b) the side.
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3.2.3 Imaging

An Integrated Design Tools MotionPro X-3 Camera is used for image acquisition.

The camera has a 1280 x 1024 CCD, capable of capturing full resolution images at rates

of up to 1000Hz. Full resolution images are captured at 100 images per waveform. The

camera aligned with the x-axis (Figure 2.1) above the center of the dome and perpendicular

to the laser sheet. The camera’s position along the x-axis can be adjusted to maintain the

laser sheet in focus. A C-mount to Canon lens adapter is used for commercially available

lenses which control aperture and focus. The primary lens is a Canon f=28mm lens. A set

of +1, +2, and +4 Hoya diopter closeup lenses are mounted in front of the lens to magnify

the image of the dome. Mounted within the C-mount adapter is an Edmund Optics 550nm

longpass glass color filter to allow light of wavelength >550nm to pass. This filter allows

the 589nm light fluoresced from the particles to pass, but blocks the 514nm laser light that

is scattered by the working fluid.

3.3 FV: Results

Figures 3.2-3.28 display images captured for nine branching ratios at three imaging

planes (Figure 2.12). Each figure displays seven FV images and the corresponding points on

the input waveform. The figures are divided into groups based on the image plane. Figures

3.2-3.10 are from the midplane. Figures 3.11-3.19 are from the upper quarter-plane. Figures

3.20-3.28 are from the lower quarter-plane. The streaking provides an estimate of relative

speed but not directionality. The following paragraphs describes the observations that are

apparent in watching the images as a movie in sequence.



37

Figure 3.2: Flow visualization images at the midplane for branching ratio of 20:80 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.3: Flow visualization images at the midplane for branching ratio of 25:75 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.4: Flow visualization images at the midplane for branching ratio of 33:67 over one
cycle indicated by the points in the plot of the waveform cycle.



40

Figure 3.5: Flow visualization images at the midplane for branching ratio of 46:54 over one
cycle indicated by the points in the plot of the waveform cycle.



41

Figure 3.6: Flow visualization images at the midplane for branching ratio of 48:52 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.7: Flow visualization images at the midplane for branching ratio of 50:50 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.8: Flow visualization images at the midplane for branching ratio of 67:33 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.9: Flow visualization images at the midplane for branching ratio of 75:25 over one
cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.10: Flow visualization images at the midplane for branching ratio of 80:20 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.11: Flow visualization images at the upper-quarter plane for branching ratio of
20:80 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.12: Flow visualization images at the upper-quarter plane for branching ratio of
25:75 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.13: Flow visualization images at the upper-quarter plane for branching ratio of
33:67 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.14: Flow visualization images at the upper-quarter for branching ratio of 46:54
over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.15: Flow visualization images at the upper-quarter for branching ratio of 48:52
over one cycle indicated by the points in the plot of the waveform cycle.



51

Figure 3.16: Flow visualization images at the upper-quarter plane for branching ratio of
50:50 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.17: Flow visualization images at the upper-quarter plane for branching ratio of
67:33 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.18: Flow visualization images at the upper-quarter plane for branching ratio of
75:25 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.19: Flow visualization images at the upper-quarter plane for branching ratio of
80:20 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.20: Flow visualization images at the lower-quarter for branching ratio of 20:80 over
one cycle indicated by the points in the plot of the waveform cycle.



56

Figure 3.21: Flow visualization images at the lower-quarter for branching ratio of 25:75 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.22: Flow visualization images at the lower-quarter for branching ratio of 33:67 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.23: Flow visualization images at the lower-quarter for branching ratio of 46:54 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.24: Flow visualization images at the lower-quarter for branching ratio of 48:52 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.25: Flow visualization images at the lower-quarter for branching ratio of 50:50 over
one cycle indicated by the points in the plot of the waveform cycle.



61

Figure 3.26: Flow visualization images at the lower-quarter for branching ratio of 67:33 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.27: Flow visualization images at the lower-quarter for branching ratio of 75:25 over
one cycle indicated by the points in the plot of the waveform cycle.
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Figure 3.28: Flow visualization images at the lower-quarter for branching ratio of 80:20 over
one cycle indicated by the points in the plot of the waveform cycle.
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3.4 FV: Discussion

The following section details the results presented in Figures 3.2-3.28. To organize

the presentation, the sections are divided by phases of the waveform (Figure 3.29). The

interval between the minimum and maximum flow rates on the waveform is referred to

as the ramp up phase. The remaining interval which consists of the drop from the peak

flow rate is referred to as the ramp down phase. Within each of these sections, the basic

flow patterns are discussed for each plane before describing the variations that result from

changing the flow ratio. The latter half of the waveform which ends at the minimum flow

rate, is referred to as the relaxation phase. The discussion of FV results begins with the

relaxation phase to establish the main flow structures present. The discussion continues by

examining the changes that occur through the ramp up and ramp down phases.

3.4.1 Relaxation Phase

The relaxation phase corresponds to points F, G, and A in Figures 3.2-3.28. It is

characterized by relatively little change in the flow structure other than continued decel-

eration of the flow. This phase is examined first to establish the underlying flow pattern.

For clarity, Figure 3.30 identifies some of the salient features frequently referred to in the

discussion below and the following chapters.

The description of the flow begins with the midplane because it shows flow patterns

common to all test cases. The flow enters the bifurcation from the inlet pipe but does not

continue symmetrically. Instead, the flow deflects towards one of the outlets, generally the

side with the higher fraction of the flow. The half of the model that the flow favors will
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Ramp Up Ramp Down Relaxation

Figure 3.29: The division of the waveform that are used to in the discussion of the flow
visualization images.
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      Flow 
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Figure 3.30: A pair of sample flow visualization images during relaxation (above) and rapid
rise (below) labeled with terms that are used in the describing the flow visualization results
from the midplane (top row), the upper quarter-plane (middle row), and the lower quarter-
plane (bottom row).
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be considered dominant. All of flow through the dominant outlet comes directly from the

inlet. The remainder of the inlet enters the dome along the neck above the dominant outlet

and forms a wall jet that travels along the dome wall, wraps around the neck, and exits

through the non-dominant outlet. Based on the streak lines at the bifurcation, almost all of

the flow through the non-dominant outlet originates from within the dome. A circulation

region dominates the flow within the dome. The stagnant center of the circulation region

can be easily seen in the figures because it is surrounded by nearly circular or elliptical

streak patterns.

The flow ratios can be divided into two sets based on which half is dominant. For

flow ratios of 20:80, 25:75, 33:67, and 48:52, the right outlet is dominant and the circulation

region rotates counterclockwise. For flow ratios of 46:54, 50:50, 67:33, 75:25, and 80:20,

the left outlet is dominant and the circulation region rotates clockwise. The critical case of

46:54 appears to deviate from the general pattern described above. When changing the flow

ratio from 33:67 to 50:50, the switch in the dominant direction occurs at 48:52. However,

when changing the flow ratio from 50:50 to 33:67, the switch in the dominant direction

occurs at 46:54. This appears to be a hysteresis effect; the switch in incoming flow direction

does not occur until after the flow has crossed the 47:53 flow ratio. This slight variation is

likely the result of minor asymmetries within the model. This tendency for experiments to

have a direction preference has been studied by Steinmann et al. [61].

The results also provide another means by which the flow rate can be divided.

There are behavior differences based on the ratio of the flow rate through the dominant

outlet to the flow rate through the non-dominant outlet. The behavior of the 46:54, 48:52,
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and 50:50 share common flow behavior, as do the collection of the remaining test cases. For

ease of description, the former can be categorized as having small outlet differentials and

the latter as having large outlet differentials.

In the upper quarter-plane, the flow is dominated by a region of circulation which

is an extension of the midplane circulation region. On the dominant side of the dome, streak

lines originating from the wall indicate out-of-plane flow. A possible source may be the inlet

flow fanning out and expanding in the out-of-plane direction as it travels around the dome.

The stagnant circulation center is clearly visible when there is a large outlet differential.

However, for the 50:50 and critical cases, the circulation region does not appear to be

circular or elliptical.

Similar patterns during this phase of the waveform can be seen in the lower quarter-

plane images. The circulation region occupies much of the dome. For large outlet differen-

tials, the circulation region is relatively well behaved with nearly circular streak lines. For

small outlet differentials, there is a layer of outflow on the non-dominant side. In points G

and A, it is visible as a region of short disorganized streak lines near the wall.

3.4.2 Ramp Up Phase

Unlike the relaxation phase, the ramp up phase is marked by rapid changes in the

behavior of the flow. On the waveform, this phase is defined by a sudden rise of flow rate

through the inlet. Point B captures the beginning of the increase in flow rate. Point C

captures the peak flow rate.

In the midplane, the most noticeable change is the transition of the flow that
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enters the dome. Previously, the inlet flow was a wall jet with little thickness variation.

The sudden increase in the flow rate both accelerates and expands the wall jet into an

expanding inlet jet. The expanding inlet jet is characterized by an inlet flow that fans out

from the inlet with a linear centerline that does not follow the dome wall. The increase of

the inlet flow also leads to a proportionate increase in the outflow through the non-dominant

side. The outflow continues to follow the walls of the dome, but its width increases with

flow rate. As a result, the circulation region decreases in size and the circulation center

moves away from the neck and the dominant side. When peak flow rate is reached, the

circulation region has nearly disappeared in all of the cases.

In the upper quarter-plane, the growing expanding inlet jet disturbs the circulation

pattern, particularly for small outlet differentials. The wall jet widens on the non-dominant

side, presumably due to the expanding inlet jet wrapping around the dome wall in the

out-of-plane direction. This widening forces the circulation region downward and toward

the dominant side. By point C, a counter-flow forms that consists of flow traveling from

the fundus to the outlet down the center of the dome. This structure grows to encompass

half to nearly all of the dome depending on the flow ratio. There is no upwelling motion,

meaning the inlet expanding inlet jet has no direct effect on the flow in this plane.

In the lower quarter-plane, similarities can be seen to the upper quarter-plane in

point B. The wall jet widens causing a slight shift of the circulation center. At the peak

flow rate (Point C), the counter-flow dominates the plane. For large outlet differentials,

the flow is similar to the upper quarter-plane with much of the area being occupied by

the counter-flow. For small outlet differentials, the counter-flow region remains along the
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non-dominant wall. A secondary outflow appears on the dominant side that originates near

the wall. It consists of a converging flow parallel to the midline directed toward the neck.

The secondary outflow is supplied by fluid from outside the plane. The difference in the

two cases will directly affect the flow behavior during the ramp down phase.

3.4.3 Ramp Down Phase

The ramp down phase is the transition from the flow pattern set up by the ramp

up phase back to the behavior seen during the relaxation phase. The ramp down phase

includes points D and E.

Flow in the midplane during this phase shares features with the relaxation phase

as the flow decelerates. Point D is marked by a return of a distinct and visible circulation

region in the upper part of the dome in the dominant half. A divergent flow occurs on the

non-dominant side, where the fluid appears to originate from a point along the dome wall

and fans out in the y-direction. The upper portion of this flow, in combination with the

expansion jet, reform the circulation zone. The lower portion of this flow wraps past the

neck into the outlet. The center portion of this flow is directed toward the inlet jet, where

it is entrained. Point E marks the transition of the expanding inlet jet back to resemble

the wall jet. The jet begins to follow the dome walls, but the thickness still varies with the

entry width being greater than the exit width. The circulation region increases in area and

shifts back toward the center of the dome. The divergent flow decreases in size until it is

replaced by the wall jet in the relaxation phase.

In the upper quarter-plane, the ramp down phase marks the transition from the
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flow being dominated by the counter-flow during the rapid rise phase to the circulation

region during the relaxation phase. For large outlet differentials, the counter-flow reduces

in width and the inlet flow that follows the dominant side wall returns. These combine to

recreate the circulation region by point E or F. For small outlet differentials, the counter-

flow persists in the center of the flow, reducing in width slowly. Two small circulation

regions form on either side of the counter-flow. By point E, the counter-flow returns to

following the dome wall along the non-dominant side, eliminating one of the circulation

zones. The remaining circulation region grows returning to the size and shape seen in the

relaxation phase.

The lower quarter-plane shows evidence of similar changes during the ramp down

phase. For large outlet differentials, the flow more closely resembles the relaxation phase.

At point D, the circulation region begins to return to its original size and position. The

divergent flow seen in the midplane prevents the counter-flow from realigning with the wall

in this view. The circulation region that will come to dominate the flow in the relaxation

phase begins to grow and shift back towards the center of the dome. By point E, the wall

jet returns to following the dome wall. Within the center of the dome the flow is not as

well organized. Rather than the near circular streaklines seen on the exterior, the center

is divided and disrupted by a flow in the z-direction that bisects the dome. It is not until

point F that this flow disappears and the circulation region establishes itself throughout

the entire dome. For small outlet differentials, the counter-flow on the non-dominant side

is disrupted, leaving only the secondary outflow down the center. The flow combines with

the out-of-plane flow along the wall to create two circulation regions. The smaller of the
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two is aligned with the circulation region seen in the midplane and is closer to the fundus

of the dome. The larger circulation region occurs just above the neck on the dominant

side. While the wall jet does not appear by point E, there is a distinct oblong elliptical

flow pattern that resembles it. There remains some out-of-plane flow on the side walls. The

smaller circulation grows and moves towards the center while the larger circulation region

has disappeared.

3.5 FV: Conclusion

The experiments in this chapter describe the overall behavior of the flow in the

cerebral saccular aneurysm model on three planes. The major structures are the inlet wall

jet and the circulation region. The circulation region dominates the flow in all three planes

during the relaxation period. However, during the ramp up period, the jet becomes the

dominant flow feature in the midplane and the counter-flow dominates the quarter-planes.

This suggests that an orthogonal view shows the presence of the inlet jet dividing at the

wall into two flows that travel around the dome. During the ramp down period there is an

upwelling of material across the mid and lower quarter-planes as indicated by the presence

of a divergent flow present near the non-dominant neck. This feature delays the return of

the flow to the patterns seen in the relaxation phase until the upwelling has disappeared.

These experiments were useful in determining the critical conditions where the dominant

side of the flow changes.

While velocity variations are clearly evident in the wall jet, no firm conclusions can

be drawn about spatial gradients and therefore wall shear stress (WSS). WSS magnitude
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and direction will change over the fundus of the dome in the midplane due to the transition

of the flow from a wall jet to an expanding inlet jet. The data does indicate that WSS

in the out-of-plane direction are present and need to be considered. WSS calculations are

understood from quantitative techniques such as PIV and SPIV to provide measurements.

This is the main objective of the work in the following chapters.
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Chapter 4

Particle Image Velocimetry

Particle image velocimetry (PIV) is a tool of choice for field measurements of

fluid flows. Whereas flow visualization (FV) provided a basic understanding of a flow,

PIV measures the planar velocity field in cross sections in a flow field, which are used to

determine quantitative results, such as speed and shear stress. This chapter reviews the

principles behind PIV, describes the setup, presents and discusses post-processing results.

4.1 PIV: Theory

PIV systems share some basic operating principles with FV. In both, the flow

must contain visual markers that travel with the local fluid parcel. The markers, in this

instance particles, require illumination to be visible and an imaging device to record the flow.

Unlike FV, which captures a single image with a long exposure time, PIV records two nearly

simultaneous images in rapid succession. This experiment uses a dual image/single exposure

setup (Figure 4.1). In each PIV image, the particles appear as a collection of illuminated
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points rather than streaks. Between the images in a pair, moving particles are displaced a

small distance. A balance must be achieved when determining the appropriate time between

images in a pair. Insufficient time between images makes is difficult to distinguish between

zero velocity and slow velocities, such as near a wall. Too much time between images allows

time for particles to travel out of plane creating a similar problem to long exposure times

in FV. [50] In addition, long displacements between images causes very large displacements

which can become computationally expensive during the PIV processing.

PIV processing involves converting the image pairs into numerical flow measure-

ments by calculating the displacement of fluid parcels marked by particles between image

pairs. The images are processed by matching the motion of fluid parcels between the two

images. Images are processed through the cross-correlation of subdivisions, or windows,

of the two images. Processing begins by dividing the images into overlapping rectangular

interrogation windows. Intensities of subregions of the image are cross-correlated, searching

for the closest signal match to determine the displacement. With a displacement length and

direction, dividing by the known time between the two images, the projected local velocity

vector is determined. This process is repeated for all of the windows on the first image

generating a velocity field for the entire space.

4.2 PIV: Setup

4.2.1 Illumination

For optical illumination, dual image/single exposure PIV applies more constraints

than FV. The very small exposure times are required to capture the particles and avoid
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Figure 4.1: An illustration of the key components of a PIV setup [50].

streaking. The short exposure time requires shutter speeds beyond the capabilities of the

lenses and cameras available. The particles must fluoresce at a higher intensity than in

FV to compensate for the shorter exposure time. A NewWave Gemini90 Nd:Yag Laser

addresses these concerns. The laser consists of two synchronized lasers, each emitting light

at 532nm in 5-7ns pulses rated at a maximum of 90mJ at a maximum of 30Hz. The dual

laser allows the firing of two pulses in rapid succession, shifting the exposure time control

from the imaging systems to the laser. The timing of the pulses is controlled by a series of

external square waves. The time between image pairs is 800μs for all of the experiments

discussed in this chapter. The spherical-cylindrical lenses used to make the laser sheet in

FV are also used in the PIV setup. As in FV, the laser and optics have a single degree of

freedom in the x-direction (Figure 4.2).
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4.2.2 Seed Particles

The particles for PIV experiments are the same Duke Scientific 15μm Fluorescent

Polymer Microspheres used in FV. Illumination of wavelength 532nm is used for the experi-

ments causing the particles fluoresce at 607nm. The considerations in particle selection are

discussed in Section 3.2.1

4.2.3 Imaging

As with FV, an Integrated Design Tools MotionPro X-3 Camera is used for imag-

ing. For PIV experiments, the camera is set to double exposure mode to capture image pairs

with each trigger. Full resolution frame rates in this mode are well in excess of the 30Hz

available from the laser. The camera has one degree of freedom in the x-axis to maintain a

focus on the laser sheet. The lens configuration is identical to FV. The 550nm band-pass

filter is used, passing the 607nm light from the particles while blocking the 532nm light

from the laser.

4.2.4 Algorithms

In Section 4.1, a basic single pass PIV processing technique was discussed. It lacks

robustness because it assumes the particles move homogeneously and fails to consider any

deformation or rotation of the fluid. A FORTRAN-90 code for processing PIV images in

this experiment uses an adaptive Lagrangian parcel tracking (aLPT) routine based on Sholl

and Savas [58]. The aLPT algorithm takes multiple passes, each refined by modification

of the interrogation windows through calculation of advection and deformation based on
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the local velocity field and gradients. The cross correlations, derivative calculations, and

smoothing operations all computed using fast Fourier Transforms (FFT). The velocity array

is centered in the smallest 2n by 2m array so that the FFT algorithm can be employed for

fast calculation. The data are smoothly extended to zero values at the edges of the newly

constructed FFT domain to insure continuity of the slopes and prevent ringing artifacts

in the frequency domain. In the wave number domain, the transform is multiplied with

the appropriate powers of the wave numbers to construct the transforms of the derivatives,

which can be obtained by subsequent inverse transforms. Derivatives up to the 3rd order

are obtained for aLPT where they are used to reconstruct deformed interrogation windows.

In particular, second order deformations are used where the deformation of a rectangular

fluid parcel is traced to the second order, resulting in a cushion parcel with curved edges

rather than a parallelogram. During these calculations, the raw data are filtered in the

frequency domain using a low pass filter kernel 1 − exp(−1/k2), where k is the modulus

of the wave vector (normalized with the desired cut-off wave number). Before the aLPT

processing begins, a routine PIV correlation technique is used to identify outliers which are

subsequently recalculated at doubled, and if needed quadrupled, windows. If this process

fails, the outliers are replaced with the mean of the neighboring vectors. However, the final

output of aLPT is not scanned for individual outliers, but passed through the low pass

filter kernel. An initial window size of 64 x 64 pixels with a step size of 16 pixels is used

for overall velocity measurements. Because velocities adjacent to the wall are slower than

at the center of the flow, a smaller initial window size of 32 x 32 pixels is used. This allows

for a step size of 8 pixels, doubling the number of points along the wall.
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A problem in PIV arises when interrogation windows include features that are not

part of the flow, such as a wall. This discontinuity causes a bias in the cross-correlations re-

sulting in errors in the calculated velocities along the wall and enforcing the no-slip boundary

condition. To overcome this problem, the image parity exchange (IPX) algorithm devel-

oped by Tsuei and Savas [62] is employed. The algorithm takes a strip of the image on the

flow side of the interface, one window size in width, from the first image. It then mirrors

the strip across the interface and applies it to the second image and vice versa. Applying

the mirrored strip to its complementary image completes the interrogation windows in that

occur along the wall. This alleviates the error in cross correlation while preserving a smooth

gradient across the interface.

4.3 PIV: Post Processing

The processed PIV output is an array of velocities and gradients for each of the

image pairs. The data are post-processed to extract information pertinent to the goals of

this experiment. This section discusses the methods used.

4.3.1 Phase Averaging

Phase shifting of the PIV data improves temporal resolution over a single wave-

form. The laser’s maximum repetition rate of 30Hz combined with the basilar waveform

frequency of 1.53Hz means that a maximum of 19 PIV pairs can be captured in one cycle.

This limits the temporal resolution when trying to determine flow behavior over the entire

waveform. Rather than continuously capturing images at the same points on every wave-
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form, a small phase shift is added. This increases the number of points captured over the

waveform cycle, but not in sequence. By calculating the corresponding location of each PIV

pair to a point on the waveform, it is possible to reorganize the data as a sequence over a

single cycle. Multiple sets are collected and averaged to reduce the effects of the variations

that come from using different waveforms. For the PIV experiments, 6 samples are collected

for each point with a total of 120 points per waveform. This procedure assumes that the

flow is repeatable, meaning it is a behaved flow with few transient variations from one cycle

to the next. However, the averaging will smooth any small scale flow structures, random

behaviors, or characteristics lasting much longer than one cycle.

4.3.2 Wall Shear Stress

Shear stress at a solid surface, τ , is the tangential force that results from the no-

slip boundary condition. Using a tangent, normal, binormal coordinate system relative to

the surface, where u = (ut, un, ub), shear stress is

τ = μ

[(
∂ut

∂n
+

∂un

∂t

)
et +

(
∂ub

∂n
+

∂un

∂b

)
eb

]
. (4.1)

In the model, the force of interest is the wall shear stresses (WSS), τw, along the dome.

Using the model’s coordinate system, the binormal direction is ex. The tangent and nor-

mal directions depend on the local wall coordinates, but are converted to the Cartesian

coordinate system by the IPX code. During PIV processing, only the in-plane component

of WSS is calculated; there is insufficient information to determine the gradients in the ex

direction which are needed for calculation of the out-of-plane component. As seen in FV,

the flow is highly three dimensional and the resultant WSS from that aspect of the flow is
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undetermined. This suggests that the WSS values calculated in this section provide only a

lower limit to the total WSS magnitude.

WSS values in the experiment must be extrapolated with physiological conditions.

It is not sufficient to replace the kinematic viscosity in Equation 4.1. Dynamic and geometric

similarities allow the development of a dimensionless shear stress coefficient. To relate the

two cases, the following scaling method presented by Bale-Glickman [6] is used. This shear

stress coefficient, cτ , is

cτ =
τ

1
2ρU2

, (4.2)

where the denominator is simply the dynamic head. An intermediary step relates the

experimental and physiological velocities using dynamic similarity. Matching Reynolds

numbers

Rep = Ree
ρpUpdp

μp
=

ρeUede

μe
(4.3)

Up

Ue
=

(
ρe

ρp

)(
μp

μe
)(

de

dp

)
, (4.4)

where the subscript p represents physiological conditions and the subscript e represents

experimental conditions. The diameter of the model inlet is based on physiological mea-

surements of the basilar artery; therefore, de
dp

= 1. This relationship combined with Equation

4.2 to convert the gradient results from the PIV data into a physiological WSS as follows

τw,p =
( 1

2ρpU
2
p

1
2ρeU2

e

)
τw,e (4.5)

=
(

ρe

ρp
)(

μp

μe

)2

τw,e. (4.6)

All WSS values presented undergo this rescaling.
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Figure 4.2: Definition of angle from tip that is used to describe dome coordinates in the
PIV WSS plots )

An angular coordinate system is defined to describe WSS at different points along

the dome. For an origin at the center of the dome, all points on the tip can be defined at

an angle relative to the tip (Figure 4.2). The coordinate system is clockwise positive, such

that all points to the right of the tip are defined by a positive angle and all points to the

left of the tip are defined by negative angles.

4.3.3 Second Invariant of the Velocity Gradient, Q

The second invariant of the velocity gradient tensor, Q, is used to determine co-

herent vortex structures [31, 16]. Q is defined as

Q =
1
2
(ΩijΩij − SijSij), (4.7)
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where the rotation tensor, Ωij, is defined as

Ωij =
1
2

⎛
⎜⎜⎝

0 ∂u
∂y − ∂v

∂x

∂v
∂x − ∂u

∂y 0

⎞
⎟⎟⎠ ,

and the strain rate tensor, Sij, is defined as

Sij =
1
2

⎛
⎜⎜⎝

2du
dx

du
dy + dv

dx

du
dy + dv

dx 2dv
dy

⎞
⎟⎟⎠ .

The expression for the Q-criterion for a two dimensional local x-y Cartesian coordinate

system is represented as

Q =
1
4

[
∂u

∂y
− ∂v

∂x

]2

−
[
∂u

∂x

2

+
1
2

(
∂u

∂y
+

∂v

∂x

)2

+
∂v

∂y

2]
(4.8)

Q compares the rotation rate versus the strain rate. Positive Q values indicate

that circulation dominates the flow. Conversely, negative Q values indicate strain dominated

flow. Q has been used in the post processing of the PIV data to isolate concentrated vortex

structures that pass through the plane [31]. It is more effective than evaluating vorticity,

whose values can vary greatly and developing a uniform criterion can be difficult. In these

experiments, Q is used to isolate areas of dominant circulation.

4.4 PIV: Results

Velocity, Q, and WSS are plotted in the following figures in sets that cover the

nine test cases at three planes. Figures 4.3-4.29 plot speed, velocity vector fields, and
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instantaneous streamlines. Each figure contains six plots whose corresponding points in-

dicated on the plot of the flow waveform in the upper left hand corner. The speed range

and color scale are indicated in the upper right hand corner. These plots are designed to

identify the instantaneous and overall flow patterns in the flow; these also serve as a means

of comparing and quantifying the results from FV. Figures 4.3-4.11 are from the midplane.

Figures 4.12-4.20 are from the upper quarter-plane. Figures 4.21-4.29 are from the lower

quarter-plane.

Figures 4.30-4.56 are plots of Q. Each figure contains seven plots whose correspond-

ing points indicated on the flow waveform in the upper left hand corner. These plots are

useful in identifying regions of the flow where rotation dominates such as vortex cores. Fig-

ures 4.30-4.38 are from the midplane. Figures 4.39-4.47 are from the upper quarter-plane.

Figures 4.48-4.56 are from the lower quarter-plane.

Figures 4.57-4.83 are plots of WSS along the dome over a single waveform. Each

figure includes a plot of the curvelinear wall coordinate system along the dome in the lower

left hand corner and a range and color scale in the lower right hand corner. Figures 4.57-

4.65 are from the midplane. Figures 4.66-4.74 are from the upper quarter-plane. Figures

4.75-4.83 are from the lower quarter-plane. The final plots of the WSS data set, Figures

4.84-4.86 , contains the mean WSS over time for each of the points along the dome wall

using the same wall coordinates.
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Figure 4.3: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 20:80 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.4: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 25:75 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.5: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 33:67 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.6: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 46:54 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.7: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 48:52 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.8: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 50:50 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.9: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 67:33 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.10: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 75:25 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.11: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the midplane for a branching ratio of 80:20 over one cycle indicated by the points on
the waveform cycle.
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Figure 4.12: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 20:80 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.13: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 25:75 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.14: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 33:67 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.15: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 46:54 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.16: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 48:52 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.17: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 50:50 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.18: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 67:33 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.19: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 75:25 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.20: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the upper quarter-plane for a branching ratio of 80:20 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.21: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 20:80 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.22: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 25:75 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.23: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 33:67 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.24: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 46:54 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.25: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 48:52 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.26: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 50:50 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.27: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 67:33 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.28: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 75:25 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.29: Velocity vector with velocity vector field and instantaneous streamlines overlaid
for the lower quarter-plane for a branching ratio of 80:20 over one cycle indicated by the
points on the waveform cycle.
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Figure 4.30: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 20:80 over one cycle indicated by the points on the waveform cycle.
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Figure 4.31: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 25:75 over one cycle indicated by the points on the waveform cycle.
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Figure 4.32: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 33:67 over one cycle indicated by the points on the waveform cycle.
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Figure 4.33: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 46:54 over one cycle indicated by the points on the waveform cycle.



116

Figure 4.34: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 48:52 over one cycle indicated by the points on the waveform cycle.
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Figure 4.35: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 50:50 over one cycle indicated by the points on the waveform cycle.
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Figure 4.36: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 67:33 over one cycle indicated by the points on the waveform cycle.
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Figure 4.37: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 75:25 over one cycle indicated by the points on the waveform cycle.
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Figure 4.38: Plots of the second invariant of the velocity gradient tensor for the midplane
for a branching ratio of 80:20 over one cycle indicated by the points on the waveform cycle.
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Figure 4.39: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 20:80 over one cycle indicated by the points on the
waveform cycle.



122

Figure 4.40: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 25:75 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.41: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 33:67 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.42: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 46:54 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.43: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 48:52 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.44: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 50:50 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.45: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 67:33 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.46: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 75:25 over one cycle indicated by the points on the
waveform cycle.



129

Figure 4.47: Plots of the second invariant of the velocity gradient tensor for the upper
quarter-plane for a branching ratio of 80:20 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.48: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 20:80 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.49: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 25:75 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.50: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 33:67 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.51: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 46:54 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.52: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 48:52 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.53: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 50:50 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.54: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 67:33 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.55: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 75:25 over one cycle indicated by the points on the
waveform cycle.



138

Figure 4.56: Plots of the second invariant of the velocity gradient tensor for the lower
quarter-plane for a branching ratio of 80:20 over one cycle indicated by the points on the
waveform cycle.
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Figure 4.57: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 20:80)
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Figure 4.58: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 25:75)
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Figure 4.59: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 33:67)
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Figure 4.60: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 46:54)
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Figure 4.61: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 48:52)
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Figure 4.62: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 50:50)
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Figure 4.63: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 67:33)
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Figure 4.64: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 75:25)
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Figure 4.65: In-plane WSS history along the aneurysm dome in the midplane for a branching
ratio of 80:20)
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Figure 4.66: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 20:80)
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Figure 4.67: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 25:75)
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Figure 4.68: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 33:67)
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Figure 4.69: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 46:54)
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Figure 4.70: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 48:52)
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Figure 4.71: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 50:50)
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Figure 4.72: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 67:33)



155

Figure 4.73: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 75:25)
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Figure 4.74: In-plane WSS history along the aneurysm dome in the upper quarter-plane for
a branching ratio of 80:20)
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Figure 4.75: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 20:80)
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Figure 4.76: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 25:75)
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Figure 4.77: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 33:67)
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Figure 4.78: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 46:54)
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Figure 4.79: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 48:52)
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Figure 4.80: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 50:50)
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Figure 4.81: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 67:33)
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Figure 4.82: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 75:25)
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Figure 4.83: In-plane WSS history along the aneurysm dome in the lower quarter-plane for
a branching ratio of 80:20)
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Figure 4.84: Plot of the mean over time of the in-plane WSS for each point along the
midplane of the aneurysm dome.
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Figure 4.85: Plot of the mean over time of the in-plane WSS for each point along the upper
quarter-plane of the aneurysm dome.
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Figure 4.86: Plot of the mean over time of the in-plane WSS for each point along the lower
quarter-plane of the aneurysm dome.
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4.5 PIV: Discussion

4.5.1 Velocity

The velocity measurements reinforce the observations made in FV. The streamlines

illustrate many of the flow structures, while the velocity fields establish flow direction. The

ramp up phase (points B and C) is associated with the growth of the wall jet/expanding

inlet jet and changes to the circulation region. During the ramp down phase, the divergent

flow on the non-dominant side appear as identified by the streamlines originating from a

point along the lower portion of the dome wall in point D. The counterflow seen in FV in

the lower quarter-planes are identified by the linear streamlines in points C and D. In the

upper quarter-plane, the counter-flow is seen at point C. The curvature of the counter-flow

increases with outlet differential. The convergence of streamlines in the circulation regions

and the formation and termination of streamlines from the walls reinforce the observation

that the flow in the dome is highly three dimensional.

The 48:52 case is unique because its behavior is nearly symmetric during the

ramp up and ramp down phases. This is evidenced by the flow patterns in the midplane

streamline plots. At points C and D, the expanding inlet jet encompasses almost the entire

dome with only a small circulation region on the upper portion of the dominant wall of the

dome. In the upper and lower quarter-planes, the ramp down phase is characterized by the

symmetric counter-flow down the midline of the dome. On either side of the counter-flow

are circulation regions. During the ramp down and relaxation phases, there is no sign of

the dominant circulation region in the upper quarter-plane that is clearly seen in points F
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and A in the lower quarter-plane. The 46:52 case also demonstrates these behaviors but

the flow is not as symmetric as the 48:52 case.

Peak speeds in the dome vary by plane: 0.21-0.25m
s in the midplane, 0.15-0.26m

s

in the upper quarter-plane, and 0.14-0.19m
s in the lower quarter-plane. Peak speeds are

lower for small outlet differentials. In the midplane, the ramp up phase is marked by an

accelerating flow that enters from the neck (point A), moves toward the dome wall (point

B), and reaches the fundus (point C), the upper portion of the dome including the tip

(Figure 1.2). After passing the peak flow rate on the waveform (points E and F), speeds

remain high along the walls while decreasing in the circulation region. In the upper and

lower quarter-planes, peak speeds are associated with the strong counter-flows that develop

within the flow, particularly as they are being narrowed by the expanding circulation region

(point D).

4.5.2 Q

The Q plots highlight regions of circulation dominated flow, reinforcing the ob-

servations made about the circulation patterns described in the previous section. In the

figures, white indicates positive values of Q while black indicates negative values of Q. A

common color scale is used within each figure. As a result, the figures primarily track the

strongest rotation.

The large outlet differential cases clearly show circulation dominated flows in all

three planes associated with points C and D. The motion of the center of the circulation can

be followed from points B-D. A similar pattern is seen in the lower quarter-plane, where Q
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values peak during frame C and remain positive during point D. In the upper quarter-plane,

the strengthening of the circulation region is seen at point D. This matches well with the

observation that a counter-flow dominates near point C and that the circulation reforms

and gains strength over the ramp down phase.

The small outlet differential cases do not see the same circulation dominated flow

seen in large outlet differentials. At points C and D in all three planes, regions of negative

Q are the dominant feature. In the midplane, the expanding inlet jet grows to occupy

most of the dome during the ramp up and ramp down phases causing the circulation region

in the midplane to drastically reduce in area. In the upper and lower quarter-plane, the

counter-flow dominates much of the dome leaving only weak circulation regions along the

sides that do not stand out. Limited restoration of the circulation can be seen toward the

end of the ramp down phase and beginning of the relaxation phase, particularly in the 50:50

case.

4.5.3 WSS

WSS measurements establish the in-plane forces that the wall experiences over the

course of one flow waveform. In all of the cases, the feature that stands out is a band over

the entire waveform where the instantaneous peak WSS region located. The instantaneous

peak WSS region refers to the highest WSS magnitude along the dome at that particular

point on the waveform on the specified plane; it is not necessarily the absolute peak WSS

value over the entire waveform. The description of the WSS data starts at the 0o phase

angle seen in the flow rate plot underneath the WSS distribution. The discussion of the
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overall WSS behavior (Figures 4.57-4.83) is divided based on the outlet differentials. The

final section focuses exclusively on the WSS mean value plots (Figures 4.84-4.86).

Large Outlet Differentials

In the midplane data (Figures 4.57-4.59 and 4.63-4.65), the instantaneous peak

WSS is initially located along the non-dominant side of the dome (-65◦ for right dominant

flows and 65◦ for left dominant flows). During the ramp up phase, the instantaneous peak

WSS region moves toward the tip and crosses onto the dominant side. In the wake of

this shift, WSS on the non-dominant side change direction. During the ramp down phase,

the instantaneous peak WSS region remains at the same angle from the tip. It is not

until the relaxation phase that the region gradually returns across the dome to its starting

position. This is consistent with the change in the flow pattern from the wall jet to the

radiating divergent flow seen in the velocity and FV data. The dominant side of the dome

experiences a magnitude increase. This is most likely a result of the increase in speed due

to the strengthening of the wall jet or change to an expanding inlet jet. The absolute peak

magnitudes are in the range of 12.9-17.5dynes
cm2 .

In the upper quarter-plane (Figures 4.66-4.68 and 4.72-4.74), the instantaneous

peak WSS region is initially located on the non-dominant side of the dome, above the

neck (-60◦ for right dominant flows and 60◦ for left dominant flows). During the ramp

up phase, the region shifts past the tip onto the non-dominant side while two oppositely

signed regions of WSS appear. One region occurs on the dominant side just below the

start point of the instantaneous peak WSS region (< -60◦ for right dominant flows and
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> 60◦ for left dominant flows). This region grows in size and strength during the ramp

up phase but dissipates quickly at the beginning of the ramp down phase, resulting from

the out-of-plane flow. The second region forms along the dominant side, just ahead of the

oncoming instantaneous peak WSS region over the course of the ramp down phase. This

region corresponds to the small circulation region that forms along the wall. The highest

WSS magnitudes in these regions vary from 3-5dynes
cm2 ; the larger the outlet differential, the

weaker these regions are. Maximum values for the absolute peak WSS magnitudes range

from 14.4-18.3dynes
cm2 .

Behavior in the lower-quarter plane (Figures 4.75-4.77 and 4.81-4.83) is quite sim-

ilar to the upper quarter-plane. The trends for both large and small outlet differentials

match the description in the previous paragraph with the modification that the transitions

after the ramp up phase are much more gradual over the ramp down and relaxation phases.

The absolute peak WSS magnitudes vary from 6.8-12.9dynes
cm2 .

Small Outlet Differentials

Of the small outlet differential cases, the 46:54 (Figures 4.60, 4.69, and 4.78 ) and

50:50 (Figures 4.61, 4.70, and 4.79) cases are similar. In the midplane (Figures 4.60 and

4.61), the instantaneous peak WSS region moves across the fundus from the non-dominant

to dominant side (0◦ to -40◦) during ramp up. Compared to the large outlet differentials,

this process occurs over a smaller time span. An oppositely signed WSS develops on the

non-dominant side over the course of this shift at 20◦-80◦. The instantaneous peak WSS

region moves back to the non-dominant side during the relaxation phase. WSS magnitude
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ranges for the 46:54 and 50:50 cases are -9.3-12.7dynes
cm2 and -9.7-12.3dynes

cm2 respectively. WSS

distribution patterns and magnitudes in the upper and lower quarter-planes are quite sim-

ilar to the large outlet differentials, including the formation of two oppositely signed WSS

regions. In the 46:54 case, the WSS magnitudes range from -5.7-10.1dynes
cm2 and -3.8-6.8dynes

cm2

in the upper and lower quarter-planes respectively. In the 50:50 case, the WSS magni-

tudes range from -8.0-15.0dynes
cm2 and -7.3-10.1dynes

cm2 in the upper and lower quarter-planes

respectively.

The plots of WSS distribution for 48:52 critical case (Figures 4.61, 4.70, and 4.79)

all share a symmetry near the tip. This is expected given the symmetric nature of the flow

during ramp up and ramp down. In the midplane, there is an increase in the WSS on both

sides of the dome, spreading along the entire fundus. During the ramp down phase, the

WSS magnitudes subside around the peak areas located ±10◦ away from the tip. WSS

magnitudes are nearly symmetric as well, ranging from -12.2-12.7dynes
cm2 . Symmetry is also

seen in the upper quarter-plane (Figure 4.70), with dual instantaneous peak WSS regions

on opposite sides of the tip and opposing signs. The points move away from the tip on

their respective sides during ramp up and dissipate over the course of the ramp down and

relaxation phase. WSS magnitudes are higher on the dominant half, with a range of -3.8-

6.8dynes
cm2 . The lower quarter-plane behavior (Figure 4.79) mirrors the upper quarter-plane,

as has previously been the case with WSS values ranging from -9.2-8.5dynes
cm2 .
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Mean Values

The plots of mean (averaged over time) WSS magnitudes for each of the points

along the dome wall (Figures 4.84-4.86) represent the overall in-plane force that an en-

dothelial cells feel during a waveform. The data can be divided into three groups: 1) right

dominant flows with large outlet differentials, 2) left dominant with large outlet differentials,

and 3) small outlet differentials.

In the midplane (Figure 4.84), the two large outlet differential groupings are clearly

identified. The right dominant flows have an overall negative mean WSS that are highest in

the fundus. Left dominant flows how a similar trend trend but with oppositely signed WSS.

For the large outlet differentials, the mean values over the much of the dome lie between

2.5-7dynes
cm2 . The behavior of the flow in the 46:54 and 50:50 cases are quite similar to the

left dominant flows. The case that stands out is the 48:52 flow ratio, which experiences

vanishing shear near the tip. For the non-dominant (left) half of the dome, the mean WSS

is positive while for the dominant (right) half of the dome it is negative. There is a point of

vanishing in-plane WSS near the tip ( -11◦). The remaining small outlet differential cases

are similar to the left dominant outlet differentials with the exception that the mean WSS

in the dominant region are lower. This region corresponds to the wall jet and suggest that

the gradients are on average lower, possibly a result of the slight inflow noted in the FV

observations.

The mean plot for the upper quarter-plane (Figure 4.85) exhibits similar behavior

but experiences smaller mean WSS magnitudes over all test cases. For large outlet dif-

ferentials, the pattern continues of an overall negative WSS for right dominant flows and
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positive values for left dominant flows. The highest magnitudes are 6dynes
cm2 and 6.5dynes

cm2 re-

spectively. Small outlet differential cases exhibit a similar pattern of a rapid drop in WSS.

In the 48:52 case, the drop occurs to the left of the tip in the vicinity of -47◦. The drop

goes from 2.5dynes
cm2 to -3dynes

cm2 between -60◦ to 0◦. The 46:54 case experiences a similar drop,

although the change is not as a large, with a shift from 3dynes
cm2 to -1dynes

cm2 between 10◦ and

70◦. The 50:50 case experiences a drop from 5dynes
cm2 to 0.25dynes

cm2 between 20◦ and 80◦. The

46:54 and 48:52 points experience vanishing in-plane WSS over the drop around -50◦ and

60◦ respectively.

The mean WSS plot of the lower quarter plane (Figure 4.86) resembles a scaled

down version of the mean WSS plot for the upper quarter-plane with a smaller range of

WSS values, from -5.5dynes
cm2 -4dynes

cm2 . The behaviors of large and small outlet differentials

are similar. Large outlet differentials form identifiable groupings of left dominant and right

dominant outlet differentials. The small outlet differentials can be identified by the large

drop that occurs in the vicinity of the fundus. For the 46:54 and 48:52 cases, vanishing

in-plane WSS can be found at 35◦ and -20◦ respectively.

4.6 Conclusion

The PIV velocity measurements quantify the observations made in FV. Many of

the observations discussed in Chapter 3 can now be identified through the velocity field and

streamline plots. Flow structures, particularly the circulation region and the counter-flow

are better visualized through the use of streamlines and plots of Q. Of particular interest

is the 46:54 case, where flow patterns for a nearly symmetrical inlet flow are seen. This
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velocity picture is used in conjunction with the SPIV data presented in Chapter 5 to build

a complete picture of flow within the dome.

WSS measurements provide new information in evaluating flow behavior in the

model. The in-plane WSS magnitudes are on the same order as simulations by Steiger

et al. [60]. The highest values are found along the midplane, with peak measurements of

18.3dynes
cm2 . The values from critical case, on the order of 12dynes

cm2 , match measurements made

by Shojima et al. [56]. Overall, increasing the outlet differential corresponds to increases in

WSS magnitude and the amplitude of the displacement of the instantaneous highest WSS

point. The peak magnitudes are above the lower limit of 3dynes
cm2 suggested by Walpola et al.

[64]; however, as Shojima et al. suggest, it is possible that the cells within the aneurysm are

injured and are more sensitive to lower WSS. The mean WSS magnitudes are considerably

lower that the peak values are of the same order as the lower limit. There are multiple

points where vanshing in-plane WSS are identified. In particular, the 48:52 case sees this

phenomena occur in all three planes. Peak and mean WSS magnitudes are well below the

300dynes
cm2 Fry [20] indicated as causing endothelial cell death. However, the argument is

incomplete since these WSS measurements only account for one of the two components of

WSS. The inclusion of a perpendicular velocity measurement is needed to determine the

complete WSS magnitude. The experiments presented in the next chapter provide the

orthogonal component of WSS as well as characterizing the 3D nature of the flow field.
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Chapter 5

Stereoscopic Particle Image

Velocimetry

Stereoscopic particle image velocimetry (SPIV) improves on PIV by allowing three

dimensional velocity measurement at plane within a flow. Unlike conventional particle

image velocimetry (PIV) or flow visualization (FV), SPIV requires images of a flow from

two different angles. Through geometric reconstruction, the images are processed to form

a single 3D velocity field. This chapter reviews the principles behind SPIV, describes the

setup, presents post-processed results, and discusses its significance.

5.1 SPIV: Theory

As with FV and PIV, SPIV requires a flow seeded with visual markers and illu-

minated over a plane. However in FV and PIV, the camera is located along the object

plane’s optical axis. Particle motion parallel to the optical axis (i.e. out-of-plane motion)
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cannot be captured by the camera. In SPIV, two image pairs are captured by cameras at

different angles to the object plane’s optical axis. This creates two unique projections of the

displacement within the laser sheet. Using either geometric reconstruction or calibration,

the distorted images can be mapped into a three dimensional velocity field.

5.1.1 SPIV Imaging Configurations

Stereoscopic PIV systems most commonly use one of two basic configurations:

translational and angular displacement.

Translational SPIV

In the translational configuration, the orientation of the image planes remain par-

allel with the object plane (Figure 5.1a). The cameras are displaced parallel to the object

plane such that the optical axis of the camera and the object are not collinear. This config-

uration preserves uniform magnification and focus over the entire image. However, having

and angled line of sight has disadvantages. Conventional camera lenses are optimized for

maximum image quality in the center, along the optical axis whereas the translational sys-

tem uses the extremities of the lens. The edges of the image plane are prone to distortions

which introduce errors in the displacement measurements. This configuration is unfeasible

in certain applications where the translation required is beyond the view of the lenses.

Arroyo and Greated [5] developed a derivative of the translational configuration

to study an acoustic streaming flow. The modified technique uses two pairs of mirrors

parallel to and offset from the object plane’s optical axis. The lens and object plane are

aligned with the optical axis (Figure 5.1b). The first set of mirrors, located between the
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translational SPIV configuration (b) used by Arroyo and Greated [5].
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lens and the object plane, reflects an oblique view back toward the lens. The lenses focus

the images which then reflect off of another pair of mirrors located between the lens and

image plane. This optical path creates two images focused on the image plane. This

configuration allows a single image plane to capture both images. An obstruction is required

in the line of sight between the lens and the object plane to block out the direct light

path. It also makes the conversion from PIV to SPIV simple; the camera remains in place

while the mirrors are positioned. Unfortunately, this configuration was impractical for the

experiments in this dissertation. Specially modified camera lenses are required to insert the

pair of mirrors between the lens and image plane. The long optical light path and the light

losses incurred by each optic reduce the light intensity from the fluorescent particles below

levels for practical imaging.

Angular Displacement SPIV

In angular displacement, or rotational, configuration, the cameras are rotated such

that the lenses’ optical axes intersect on the object plane (Figure 5.2). This configuration

reduces the limitation on the angle between the image and object plane. It also keeps the

object plane in the center of the lens. However, because the object plane is not parallel

to the image plane, the image is distorted by non-uniform magnification caused by the

variation in the optical path length. The misalignment also means that focusing the entire

image requires greater depth of field. Increasing the depth of field comes at the expense of

reducing the aperture size and therefore the amount of light that reaches the imaging plane.

A balance must be achieved between sufficient depth of field while recovering enough of the
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fluoresced light from the particles. Altenhofen [4] applied the Scheimpflug condition, which

prescribes how to align the image plane relative to the lens to improve the focus of the

object plane. This adjustment reduces the depth of field required but exacerbates the non-

uniformities in magnification. Conventional camera lenses are built with the lens and camera

planes parallel. Customized commercial lenses that implement the Scheimpflug condition

were not available for this experiment. Without the use of the Scheimpflug condition, it is

still possible to conduct rotational SPIV as discussed in Section 5.2.3.

The rotational configuration requires the distorted images to be mapped back

into normal space. Willert et al. [69] discusses three methods to determine this mapping.

The first is ray tracing, which uses complete geometric information of the setup to map

the projected displacements calculated by PIV into a single 3D displacement field. This

technique can be laborious and difficult to implement when parts of the experiment are

inaccessible for measurement. The most common technique is to use a 3D multi-depth

calibration grid parallel to the object plane. A calibration image is captured at each depth

of the target. The set of calibration images are correlated with the real spatial coordinates.

This allows for the development of a mapping from the image space to the object space

without any prior knowledge of the experimental geometry. The final technique is the use of

a 2D calibration target. The loss of the depth element requires that some knowledge of the

geometry of the optics is known. With this calibration, it is possible to adjust the results

into the object space, overcoming the problems posed by the varying magnification [38].

The final technique is the method implemented in the SPIV experiments in this chapter.
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5.2 SPIV: Setup

5.2.1 Seed Particles

Fluorescent particles again seed the flow. The changed imaging configuration

discussed below reduces the magnification of the model in the images. To maintain the

projected particle size on the imaging plane, larger Duke Scientific 107μm fluorescent poly-

mer microspheres seed the working fluid. Its fluorescing characteristics are the same as the

smaller particles used in PIV, absorbing the 532nm laser light and fluorescing at 607nm.

The considerations detailed in Section 3.2.1 are re-evaluated for these particles. The sedi-

mentation speed for these particles is 544μm/s. The sedimentation distance is up to 0.54μm

for a single image pair, which is much smaller than the imaging resolution. The relaxation

time, ts for these particles is 51μs, which is an order of magnitude smaller than the time

between image pairs.

5.2.2 Illumination

Illumination is again provided by a NewWave Gemini Nd:Yag laser. The laser

sheet optics are adjusted slightly. In PIV, a thin laser sheet is desired to avoid capturing the

projection of the out-of-plane velocity component. SPIV requires a laser of finite thickness

to capture the projection of the out-of-plane velocity component. For this experiment, the

PIV (Figure 3.1) laser optics are used but are placed closer to the model to increase the

sheet thickness to 1mm. The time between image pairs range from 400-1000μs.
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5.2.3 Imaging

For the two camera, angular displacement SPIV configuration a MotionPro X-3

camera and MotionPro Y-3 camera are used. The MotionPro Y-3 has identical resolutions

and capture rates as the MotionPro X-3 used in PIV. The camera bodies do vary in the

distance from the lens attachment to the CCD, causing a difference in image plane distance

and magnification even if the same lens is used. As a result, two different lens sets are used.

For the X-3 camera, a C-mount adapter, Vivtar 20mm extension tube, f=50mm Canon lens

(f/8 aperture), and +1 diopter Hoya close up lens are used. For the Y-3 camera, a 3mm

C-mount extension tube, C-mount adapter, and f=50mm Canon lens (f/8 aperture) Canon

lens are used. Both cameras have an Edmund Optics 550nm longpass colored glass filter

installed. The cameras are oriented to align the optical axes with the 45◦ viewing windows.

To match magnification, the cameras are positioned at different distances from the model

(Figure 5.4)

To calibrate the cameras, a 1 cm square target is embedded into the model, aligned

with the laser sheet in the x- and z-direction and offset in the y-direction (Figure 5.5). A 15

x 15 grid of points is printed on to the target. To establish orientation, the grid is marked

with an 0 at the center and numbers marking each quadrant of the target, 1-4. The angled

windows are wide enough to view the dome and the target. The cameras are attached to a

platform mounted on a linear transverse system which allows the cameras to be moved from

the target to the dome while constraining motion in all other directions. Both cameras are

triggered and synchronized through signals generated by the controlling PC.

Without the use of the Scheimpflug modification to the lens, focus cannot be
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achieved over the entire image plane. This confines accurate imaging to the focused center

of the image. The benefit of this configuration is that it minimizes the number of optical

component needed for imaging. The amount of light collected by the camera is a major

issue when using fluorescent particles; as a result, it is important to maximize the amount of

light by reducing components and shortening the optical path. The reduction in complexity

means that there are fewer degrees of freedom to constrain when aligning the setup. Any

variations in magnification are adjusted during preprocessing through calibration and the

use of the target grid.

5.2.4 Algorithms

Dewarping

The images are dewarped prior to PIV processing. The dewarping code consists

of a series of functions written in Interface Description Language (IDL). The algorithm

accepts a warped image of the calibration plane. The first function locates the grid points

on the calibration image using a Sobel edge detection kernel and a search loop that locates

each circular edge [1]. A second function uses the grid points to correlate the warped

coordinates and dewarped target coordinate. The IDL command POLYWARP is used to

find a polynomial curve fit that defines the mapping function that dewarps the image. The

mapping function is then applied to the all of the PIV images. The pre-processed images

are then sent into the PIV software for analysis.
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Processing and Phase Averaging

SPIV processing is done with the adaptive Lagrangian parcel tracking (aLpt) al-

gorithm used in PIV. Image parity exchange (IPX) is used as well to reduce the bias error

introduced by the walls. Dewarped pairs of images from each camera are processed and

phased average as discussed in section 4.2.4. For the SPIV experiments, the sample point

is phased shifted to obtain a resolution of 360 samples per waveform and averaged over 7

image pairs per point.

Displacement Reconstruction

An IDL program processes the two displacement fields by implementing the geo-

metric reconstruction techniques using geometric arguments initially developed by Brücker

[7]. The geometric relations are reconstructed for the experimental configuration used in

this dissertation in a similar manner to Brücker, including corrections to errors made in the

paper. All angles and displacements are defined in Figure 5.3. A pinhole camera approx-

imation is used. Using geometry, the displacement in the x-direction, dx, can be derived

relative to each camera:

dx = dx1 + dz tan α1, (5.1)

dx = dx2 + dz tan α2, (5.2)

Notice that this expression is true whether the cameras are on the same or opposite sides

of the object plane as long as the angles carefully defined. Setting Equations 5.1 and 5.2
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equal, the following expression for the displacement in the z-direction, dz, is derived

dz =
dx2 − dx1

tan α1 − tan α2
. (5.3)

An expression for dx is developed by adding equations 5.1 and 5.2 and plugging

into Equation 5.3 to define dx as

dx =
dx2 tan α1 − dx1 tan α2

tan α1 − tan α2
. (5.4)

By similar methods, it can be shown that the following expression for the displace-

ment in y, dy, is valid as well

dy =
dy2 tan β1 − dy1 tan β2

tan β1 − tan β2
. (5.5)

Those equations can be manipulated using geometric relations, to rewrite the

expressions for dy and dz

dy =
dy1 + dy2

2
+

dx2 − dx1

2

(
tan β2 − tan β1

tan α1 − tan α2

)
, (5.6)

dz =
dy2 − dy1

tan β1 − tan β2
. (5.7)

For cases where the difference between tan β1 and tan β2 are small, Equation 5.6

simplifies to the average of dy1 and dy2. The result of the reconstruction is a single 3D

displacement field for the flow plane for the time between images within a pair. The final

result is a complete velocity field that captures both in and out-of-plane components. Often

the cameras are positioned at small, symmetric β, resulting in small values of tan β1 and

tan β2. Recall from numerical methods that subtraction and division of small numbers, such

as in Equations 5.5 and 5.7, should be avoided. Equations 5.3, 5.4, and 5.6 are used in this

dissertation to reconstruct the 3D velocity field.
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The out-of-plane velocity in the SPIV experiments is w, the z-component of veloc-

ity based on the coordinate system defined in Figure 2.1. This is equivalent to the horizontal

component of velocity in the PIV data. Therefore, SPIV out-of-plane velocity measurements

along the midline should be equal to PIV horizontal velocity measurements along the same

common midline. As a validation, both velocities are plotted at different points along the

flow waveform in Figure 5.6. The velocities match over the relaxation phase. During ramp

up and ramp down phases, the velocity measurements from SPIV are higher than PIV near

the tip where flow reaches a local maximum.

5.3 SPIV:Post-Processing

In PIV, aLPT uses the Fourier transform in cross-correlation to find the velocity

gradients during processing. However, these gradients are inaccurate in SPIV because of

image distortion. A least-squares differentiation is used on the 3D velocity field to find the

local gradients over the entire velocity field [50]. The general form of the local differential

of a discrete function, h, at a point i is

dhi

dx
=

2hi+2 + hi+1 − hi−1 + 2hi+2

10δx
, (5.8)

where δx is the distance between two discrete points along the function [50]. Differentials

can be calculated in the in-plane and x and y directions. Through continuity, the differential

∂w
∂z can be found. However, ∂u

∂z and ∂v
∂z are required for calculation of the out-of-plane terms

of Q and WSS. Plots of Q presented in the results are in-plane values using Eqn. 4.8. The

WSS measurements in this experiment are limited to the in-plane components only except
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Figure 5.6: Validation of SPIV measurements by comparing out-of-plane SPIV velocity
measurements (solid line) to the corresponding PIV velocity (dashed line).
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Figure 5.7: Diagram of the PIV and SPIV planes along the dome from an overhead view,
as well as the intersection points. The middle intersection point is the tip of the dome.

where a common point is shared with the PIV measurements. This occurs at three points

along the fundus where the SPIV plane intersects the upper and lower quarter-planes and

at the tip where it intersects the midplane (Figure 5.7).

An angular coordinate system is defined to describe WSS at different points along

the dome, similar to the one used in the previous chapter. The definition has changed

because the SPIV plane is orthogonal to the PIV planes. For an origin at the center of

the dome, all points on the tip can be defined at an angle relative to the tip (Figure 5.8).

Again, the coordinate system is clockwise positive.

5.4 SPIV: Results

SPIV results are presented in the following figures. Figures 5.9-5.17 plot vector

fields of the in-plane components of velocity and color plots of the out-of-plane velocity
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component. Figures 5.18-5.26 are plots of Q over the dome during the waveform. Figures

5.27-5.35 plot in-plane WSS vs. wall coordinates for the flow ratios. Figures 5.36-5.44 plot

the total WSS magnitude for the 3 intersection points between the PIV and SPIV plane.

Table 5.1 lists the peak magnitudes experienced by the three intersection points. Table 5.2

lists the mean magnitudes experienced by the three intersection points.
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Figure 5.9: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 20:80 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.10: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 25:75 over one cycle indicated by the points in the plot of
the waveform cycle.



198

Figure 5.11: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 33:67 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.12: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 46:54 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.13: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 48:52 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.14: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 50:50 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.15: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 67:33 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.16: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 75:25 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.17: Plot of the in-plane velocity vector field (left) and and out-of-plane velocity
(right) for a branching ratio of 80:20 over one cycle indicated by the points in the plot of
the waveform cycle.
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Figure 5.18: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 20:80 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.19: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 25:75 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.20: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 33:67 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.21: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 46:54 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.22: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 48:52 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.23: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 50:50 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.24: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 67:33 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.25: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 75:25 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.26: Plot of the second invariant of the velocity gradient, Q, for a branching ratio
of 80:20 over one cycle indicated by the points in the plot of the waveform cycle.
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Figure 5.27: In plane WSS history a for a branching ratio of 20:80.
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Figure 5.28: In plane WSS history a for a branching ratio of 25:75.
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Figure 5.29: In plane WSS history a for a branching ratio of 33:67.
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Figure 5.30: In plane WSS history a for a branching ratio of 46:54.
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Figure 5.31: In plane WSS history a for a branching ratio of 48:52.
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Figure 5.32: In plane WSS history a for a branching ratio of 50:50.
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Figure 5.33: In plane WSS history a for a branching ratio of 67:33.
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Figure 5.34: In plane WSS history a for a branching ratio of 75:25.



222

Figure 5.35: In plane WSS history a for a branching ratio of 80:20.
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Figure 5.36: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 20:80.
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Figure 5.37: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 25:75.
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Figure 5.38: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 33:67.
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Figure 5.39: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 46:54.
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Figure 5.40: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 48:52.
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Figure 5.41: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 50:50.
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Figure 5.42: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 67:33.
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Figure 5.43: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 75:25.
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Figure 5.44: WSS magnitudes at the intersection points of the PIV and SPIV imaging
planes for a branching ratio of 80:20.
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Table 5.1: Maximum WSS values at the intersection points of the PIV and SPIV imaging
planes.

Ratio WSS dynes
cm2

Midplane Upper quarter-plane Lower quarter-plane
20:80 13.2 12.8 10.0
25:75 10.7 12.6 13.0
33:67 12.0 15.7 11.9
46:54 14.5 14.3 23.7
48:52 12.8 13.8 17.8
50:50 16.0 15.1 15.4
67:33 14.2 14.6 8.1
75:25 10.6 15.2 8.4
80:20 15.0 13.5 8.0

Table 5.2: Mean WSS values at the intersection points of the PIV and SPIV imaging planes.
Ratio WSS dynes

cm2

Midplane Upper quarter-plane Lower quarter-plane
20:80 5.0 6.8 4.4
25:75 5.1 6.5 6.0
33:67 6.4 8.1 5.1
46:54 6.7 5.7 7.8
48:52 3.7 3.9 4.6
50:50 7.0 6.4 5.6
67:33 6.7 7.9 3.4
75:25 5.4 6.5 3.3
80:20 6.3 6.5 3.8
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5.5 SPIV: Discussion

The following section discusses the velocity (Figures 5.9-5.17), Q (Figures 5.18-

5.26), and WSS (Figures 5.27-5.35) from the SPIV experiments as it relates to understanding

the flow within the dome.

5.5.1 Velocity and Q

The velocity field plots are used to determine the flow patterns in this view. It is

useful to connect the flow structures found in the FV and PIV to those that appear in the

SPIV data. A model of the behavior of the flow within the entire dome can be constructed

from this data in conjunction with the PIV data. For instance, the wall jet appears as a jet

traveling up the midline, but only near the neck where the SPIV plane intersects the jet.

The expanding inlet jet, which travels along the PIV midline, is identified by an upward

jet that is visible from neck to the fundus. The circulation region is primarily identified by

regions of oppositely signed out of plane velocities. The divergent flow does not intersect

the SPIV plane and therefore does not appear in the data.

For the large outlet differentials, the ramp up phase is characterized by the accel-

eration of the wall jet. The cross section of the wall jet depends on where the SPIV plane

divides it. An upward jet can be seen at points A and B where this cross section occurs as

well as out-of-plane flow toward the dominant half of the dome. The fluid adjacent to the

jet accelerates towards the neck, creating two oppositely signed circulation regions. The

circulation regions are driven upward by the jet toward the fundus. As the wall jet deceler-

ates during the ramp down phase, the upward midline jet is replaced with a high velocity
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magnitude downward flow. The circulation regions move back down the dome and away

from the midline as well. This alters the overall dome pattern as out-of-plane flow is drawn

along the dome walls and toward the center before being ejected by the downward jet in the

center. By the relaxation phase, the circulation regions have dissipated and the entire dome

is dominated by fluid motion downward in a column along the centerline drawing from the

entire upper half of the dome like a potential sink.

For small outlet differentials, the expanding inlet jet travels along the length of

the centerline. As a result, the cross section of that jet appears longer than for large

outlet differentials, connecting from the neck to the dome. Impingement of the jet is clearly

visible, driving the flow along the dome wall. A fraction of the flow is driven toward the

neck where it exits the dome. The remainder becomes entrained with the upward jet, which

clearly outline the circulation regions seen in PIV. Overall behavior in the ramp down and

relaxation phases are similar to the large outlet differentials, with the gradual dissipation

of the circulation region and the dominance of flow into the neck.

The out-of-plane velocity plots reinforce the observations made in PIV. During

the ramp up phase, out-of-plane velocities near the dome wall increase in the direction

of the non-dominant side while at the center of the dome, out-of-plane velocities are in

the direction of the dominant side. This corresponds to the circulation region in the PIV

data along the dome wall of the midplane as well as the curved strong counter-flow and

circulation seen in the upper and lower quarter-planes. This pattern persists but reduces

in strength during the remainder of the waveform corresponding to the weakening of the

flow and restoration of the circulation region that dominates the flow in all of the cases. A
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complete picture of the out-of-plane flow allows for some interpolation of the patterns seen

in PIV over the entire dome. This suggests the wrapping motion from the impingement of

the flow caused by the inlet must wrap over the entire upper hemisphere of the dome during

the ramp up and ramp down phase.

The plots of second invariant of the velocity gradient, Q, (Figures 5.18-5.26) pro-

vide little detail of the circulation patterns evidenced in the velocity measurements. Q

measures the balance between rotation and strain rate. Positive values indicate that the

strength of rotation overcomes the strength of the strain locally [16]. Small circulation

regions are visible from the velocity plots on either side of the inlet jet. These circulations

regions appear at the base of the wall/inlet jet and propagate upward during ramp up before

dispersing. The Q plots show no clear sign of these regions. Instead, the only features that

stand out are those in black, indicating negative values of Q. The lack of positive regions of

Q only indicate that there are no dominant circulation regions with concentrated vorticity,

but does not mean that they do not exist.

These observations can be combined to create a model that describes the behavior

of flow within the entire dome. A basic schematic of the projected streamlines are presented

in Figure 5.45 to aid visualization. The key feature is the wall jet/expanding inlet jet in the

PIV data that manifests itself as the upward jet in the SPIV data. During the relaxation

phase, the flow is well behaved. For large outlet differentials, this inlet flow originates from

the dominant side of the neck, wraps expands around the dome wall on the dominant side,

wraps around the dome wall, and merges over the non-dominant half and exits through

the non-dominant half of the neck. During the ramp up phase, the inlet flow accelerates
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Figure 5.45: Simplified streamlines from the front view (left) and right view (middle) and
a diagram of the rotational filament (right) for the general experimental cases.



237

and forms a jet that impinges on the dome wall in the fundus. The main effect of varying

the flow ratio is to change the direction and impingement point of the inlet flow. The

smaller the outlet differential, the closer the impingement point is to the tip of the dome.

From the impingement point, the flow disperses in all directions as it is drawn toward the

non-dominant side of the neck to exit the dome. Looking down upon the dome in the

y-direction (i.e. above the tip looking toward the inlet), the projected flow is similar to a

doublet. During the ramp down phase, the divergent flow seen in the midplane PIV data is

the convergence and divergence of fluid that has wrapped around the dome before exiting

the dome at the neck. As the flow enters the relaxation phase, the divergent flow area is

relieved with the reduction in the inlet flow.

An alternate method of describing the flow is through tracking the evolution of a

rotational filament in the dome as shown in the right column of Figure 5.45. A rotational

filament is similar in concept to a vortex filament, but for low Reynolds number applications.

The filament is the axis of rotation about which fluid parcels around the line rotate around

it. As the wall jet accelerates, a filament forms around the neck and increases in size and

strength as it travels up the dome. The filament is a U-shaped loop whose ends lie along

the wall such that the U-loop encompasses the exposed portion of the wall jet. The filament

occurs around the accelerating front of the wall jet, much like the pattern seen in a vortex

ring generator. In the latter part of the ramp up phase and the ramp down phase, the

cross section of this filament is clearly identified in the PIV Q plots. The magnitude of

Q in these plots suggest that that the filament is normal to the PIV planes and that the

bulk of rotation occurs in-plane. The SPIV Q plots, which show few positive regions that
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stand out, suggest the filament crosses at a skew angle or does not cross the SPIV plane.

By the peak flow rate, the rotational filament lies in the upper part of the dome near the

fundus. During the ramp down phase, the deceleration of the flow causes the filament to

disperse. This dispersion is evidenced by the expansion of the circulation region in the PIV

cross sections. Without the expanding inlet jet forcing it upward, the filament travels back

toward the neck. By the end of the ramp down phase, the filament reaches an equilibrium

point where it will approximately remain throughout the relaxation phase. The filament

continues to disperse, encompassing the entire dome before being disrupted by the start of

the next cycle.

Interestingly, the observations from the small outlet differentials suggest an simple

behavior pattern where the inlet jet is axisymmetric about the midline (Figure 5.46). For

this situation, the rotational filament is a ring instead of a U-loop. As the jet accelerates,

the rotational ring accelerates and is advected upward. At the peak flow rate, the ring

lies just below the fundus. In the velocity plots, this is visualized by the inlet jet rising

up along the midline of the dome until it impinges on the fundus and is forced nearly

axisymmetrically in all directions. During the ramp down phase, the deceleration of the

inlet causes the filament to travel back down the dome and disperse. As with the U-loop,

the ring reaches an equilibrium position where it remains during the relaxation phase and

continues to disperse until the start of the next cycle. The closest case to this ideal situation

is the 48:52 case, where the presence of a pair of circulation regions in the PIV midplane

data support the idea of a rotational ring. Even in this case, the flow is by no means

symmetric over the entire waveform. During the relaxation phase, the inlet jet favors the
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Figure 5.46: Simplified streamlines from the front view (left) and right view (middle) and
a diagram of the rotational filament (right) for an idealized symmetric case.
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dominant side.

5.5.2 WSS

The WSS behavior in the SPIV plots display simpler characteristics than in PIV.

The primary feature is a region of elevated WSS along the fundus (approximately -45◦ to

45◦) during the ramp up and ramp down phase. This is evidenced by the common patterns

in Figures 5.27-5.35. The increase in WSS is symmetric about the tip for small outlet

differentials; peak magnitudes in the range of 24.7-27.3dynes
cm2 are obtained with opposite

directions on either side of the dome. For large outlet differentials, the divide between WSS

directions occurs in the -30◦ to -60◦ range. Unlike the PIV data, there is no change in

WSS over all of the cases. WSS magnitudes for the large outlet differentials range from

15.5-23.2dynes
cm2 .

The complete WSS magnitude is calculated for the three intersection points be-

tween PIV and SPIV imaging planes on the upper half of the dome. WSS is plotted against

the flow waveform for all flow ratios (Figures 5.27-5.35). The points are named by the PIV

plane that intersects them. Behaviors for the points corresponding to the intersection of

the SPIV plane with the PIV midplane, upper quarter-plane, and lower quarter-plane are

similar for a given flow ratio. Peak (Table 5.1) and mean (Table 5.2) WSS magnitudes for

these points are tabulated.

For large outlet differentials, the overall trend is a rapid increase during the ramp

up phase, followed by a rapid drop at the beginning of the ramp down phase. WSS mag-

nitude remains steady for the following duration in the ramp down phase before gradually
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rising during the relaxation phase before slowly decreasing again. This corresponds with

the motion of the instantaneous peak WSS seen in the PIV data, which travels along the

dome over the course of the waveform. During the ramp up phase, this region approaches

the observed points causing the rise in WSS magnitude. After the instantaneous peak WSS

region has momentarily crossed the point, the WSS magnitude drops rapidly. The second

increase during the ramp down and relaxation phase corresponds to the leveling off of WSS

magnitudes seen in the PIV and SPIV data over the entire dome. Peak WSS values for

large outlet differentials are in the range of 8.0-15.7dynes
cm2 (Table 5.1).

For small outlet differentials, the WSS magnitudes correlate with the changes in

flow rate. Magnitudes at all three points rise during the ramp up phase. The trends in the

ramp down phase vary by flow ratio. In the 46:54 case, the midplane and upper quarter-

plane WSS magnitudes remain steady before descending in the relaxation phase. In the

lower quarter plane, the WSS magnitude continues to rise, peaking in the ramp down phase

and falling during the relaxation phase. In the 48:52 case, all three points exhibit a decline

in WSS magnitudes after reaching their peak at the maximum of the flow waveform. The

50:50 case exhibits similar behavior to the large outlet differentials. After the ramp up

phase, there is a slight drop and rise in WSS magnitudes during the ramp down phase,

before gradually declining during the relaxation phase. Peak WSS values for small outlet

differentials are in the range of 12.8-23.7dynes
cm2 (Table 5.1).

Mean WSS values range from 3.3-7.9dynes
cm2 (Table 5.2). Lowest mean WSS values

are on average at the lower quarter-plane point with the exception of the critical cases. For

large outlet differentials, the highest mean WSS is seen at the upper quarter-plane point.
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For the 50:50 case, the highest mean WSS is located at the tip and the lowest mean WSS

at the lower quarter-plane. In the 46:54 case, mean WSS magnitudes are similar at both

the midplane and lower quarter-plane. In the 48:52 case, all mean WSS magnitudes are

consistently in the lower range of values. The mean tip WSS value is well lower than all

of the other cases at 3.7dynes
cm2 . This is the case most closely resembles the symmetric flow,

with the expanding inlet jet centered along the midline of the dome.

The WSS measurements provide some insight into the factors that may play a role

in aneurysm growth. Both the peak ( 20dynes
cm2 ) and mean ( 5dynes

cm2 ) measured are well below

the high WSS damage limit suggested by Fry [20] of 300dynes
cm2 . Mean WSS magnitudes in

all cases are near the low WSS limit of 3dynes
cm2 suggested by Walpola et al. [64]; however,

peak WSS magnitudes are several times higher than this limit. Recall though that the WSS

values from this experiment may underestimate the true in vivo WSS by up to 25% because

a Newtonian fluid was used. Even accounting for this error, the mean WSS values are on the

same order as the values set forth by Walpola et al. In particular, the tip during 48:52 case

mean in-plane WSS becomes vanishingly small in the PIV data and measures 3.72dynes
cm2 when

combined with the SPIV data. This suggests that an aneurysm with a nearly axisymmetric

jet along the midline may have a tip that experiences vanishingly small mean WSS. Such

a state would leave the tip prone to endothelial cell death. Without more evidence, these

data only suggest that high WSS is an improbable factor in WSS growth. Lower than

normal WSS magnitudes occur in the dome suggesting a correlation with aneurysm growth.

However, without establishing causation, low WSS cannot be confirmed as a cause nor

diagnostic criterion at this time.
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Chapter 6

Closing Remarks

A series of experiments were conducted to study the overall flow behavior and the

wall shear stresses (WSS) acting on a cerebral saccular aneurysm. A flow phantom was

constructed that captures the basic geometry of a saccular aneurysm at the basilar artery

bifurcation. To replicate physiological conditions, the model used an inlet profile based

on patient measurements and matching Reynolds and Sexl-Womersley numbers. Three

experiments are detailed in this dissertation. Flow visualization (FV) experiments allow

qualitative features of the flow to be identified. Particle image velocimetry (PIV) exper-

iments measured the in-plane velocity and WSS along three planes. Stereoscopic particle

image velocimetry (SPIV) was used on a plane orthogonal to the PIV plane. This experi-

ment provided a limited 3D velocity field and in-plane WSS measurements. Combined with

the PIV data, the total WSS magnitudes were reconstructed over multiple points over the

dome.

The observations made in FV are combined with the velocity measurements from



244

PIV and SPIV to provide a picture of the flow within the aneurysm model. A strong inflow

manifests itself as a wall jet or expanding inlet jet. The jet wraps around the dome, creating

a circulation region at the center of the dome. The oscillation of the flow rate alters the

behavior of the inlet flow and circulation region. In all of the flows, the flow displayed

direction preference that allowed one of the outlets to be termed dominant. An alternate

approach to characterizing the flow is through the tracking of a rotational filament. The

filament is generated by the acceleration and expansion of the inlet flow. The filament is

advected upwards during the ramp up phase before being drawn back toward the center of

the dome and dissipating during the ramp down and relaxation phases.

The results from the 48:52 branching ratio suggest the possibility of an axisymmet-

ric flow pattern, where neither outlet is dominant. Steinmann et al. [61] argues that com-

putational fluid dynamics (CFD) simulations that assume a perfectly symmetric boundary

condition in aneurysm flows may lose the directional preferences that exist. This experiment

serves as an example for this concern. For a perfectly symmetric model, the expected result

is an axisymmetric inlet flow jet that forms a rotational ring. This perfectly symmetric flow

was impossible to achieve in experiments due to considerations such as small asymmetries

in the model or insufficient resolution of the outlet valves. Real aneurysms may have direc-

tional preferences that are not captured in simulations. It is important for experiments and

patient imaging to determine these directional characteristics and the boundary conditions

associated with them.

One of the main aims of the experiments was to determine the WSS in the

aneurysm model. In-plane WSS magnitudes from PIV and SPIV experiments were as
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high as 18.6dynes
cm2 and 31.0dynes

cm2 respectively. Changes in the spatial distribution of WSS

was primarily seen in the PIV data. Flows with large outlet differentials had the region of

instantaneous peak in-plane WSS travel along most of the dome over the course of a cycle.

Flows with small outlet differentials had the travel of the region of instantaneous peak in-

plane WSS was confined to the fundus. The 48:52 case contained multiple locations where

the PIV in-plane WSS became vanishingly small near the tip. Complete WSS magnitude

measurements were only available at the three intersections of the PIV and SPIV planes,

one of which was the tip. Measured peak WSS magnitudes along the tip ranged from 11.0-

16.0dynes
cm2 , which match well with the values from simulations by Shojima et al. [56]. Mean

WSS magnitudes along the tip ranged from 3.7-7.0dynes
cm2 . The lowest value, found in the

48:52 case, is very close to the 3dynes
cm2 limit for endothelial cell death suggested by Walpola et

al. [64]. If low mean WSS magnitude is directly correlated with aneurysm growth, then the

data suggest that the mean values near the fundus may harbor aneurysm growth. However,

further study is required of endothelial cells and arterial walls to determine the effects of

the mean WSS versus peak WSS before any conclusive cause can be drawn.

While CFD simulations can calculate WSS distributions for an arbitrary geometry,

it is important for experiments to be conducted to validate these results and capture any

characteristics that maybe lost, such as directional preference. However, future work must

be able to determine out-of-plane gradients accurately for a complete WSS measurement.

This model could be improved by the addition of an adjustable target, allowing SPIV

measurements over multiple closely spaced cross-sections. Newer flow measurement tools

such as holographic PIV could capture the flow velocities of a volume of the fluid, although
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the experiment complexity increases considerably. Another refinement would be the use of a

non-Newtonian working fluid that mimics blood’s viscosity profile. Removing this source of

error will greatly improve the accuracy of the WSS measurements. Lastly, it would be ideal

to use a model based on physiological geometry and with inlet and outlet flow rates based

on patient measurements. This experiment has demonstrated that the flow behavior varies

considerably with the branching ratio. To determine how this variance manifests itself in

reality, it would be useful to apply actual patient flow measurements and see how those

results compare with deviations in the boundary conditions. The overall goal of improved

research would be the development of more accurate simulations and the application of

these simulations to diagnostic tools.



247

Bibliography

[1] T. Acharya and A. Ray. Image Processing: Principles and applications. Wiley, Hobo-

ken, NJ, 2005.

[2] S. Ahn, D. Shin, S. Tateshima, K. Tanishita, F. Vinuela, and S. Sinha. Fluid-induced

wall shear stress in anthropomorphic brain aneurysm models: MR phase-contrast study

at 3t. Journal of Magnetic Resonanace Imaging, 25:1120–1130, 2007.

[3] J. Allcock and P. Canham. Angiographic study of the growth of intracranial aneurysms.

Journal of Neurosurgery, 45:617–621, December 1976.

[4] R. E. Altenhofen, editor. Manual of Photogrammetry, chapter Rectification, page 723.

American Society of Photogrammetry, 1980.

[5] M. P. Arroyo and C. A. Greated. Stereoscopic particle image velocimetry. Measurement

Science Technology, 2:1181–1186, 1991.

[6] J. Bale-Glickman. Experimental Studies of Physiological Flows in Replicated Diseased

Carotid Bifurcations. PhD thesis, University of California, Berkeley, 2005.



248
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