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Abstract

Space Division Multiple Access (SDMA) systems that employ multiple antenna elements at the

base station can provide much higher capacity than single element antenna systems. A fundamental

question to be addressed concerns the ultimate capacity region of an SDMA system wherein a

number of mobile users, each constrained in power, try to communicate with the base station in

a multipath fading environment. In this paper, we express the capacity limit as an outage region

over the space of transmission rates
���

,
���

, ...,
���

from the � mobile users. Any particular set of

rates contained within this region can be transmitted with an outage probability smaller than some

specified value. We find outer and inner bounds on the outage capacity region for the two users case

and extend these to multiple users cases when possible. These bounds provide yardsticks against

which the performance of any system can be compared.

Index Terms

Outage Capacity, Space Division Multiple Access, Capacity Region

I. INTRODUCTION

Time-varying multipath fading is a fundamental phenomenon affecting the availability

of terrestrial radio systems, and strategies to abate or exploit multipath are crucial. Recent

information theoretic research [1], [2] has shown that in most scattering environments, a

multiple-antenna-element (MAE) array is a practical and effective technique to exploit the

effect of multipath fading and achieve enormous capacity advantages.

Next generation wireless systems are intended to provide high voice quality and high

rate data services. At the same time, the mobile units must be small and lightweight. It

appears that base station complexity is the preferred strategy for meeting the requirements of

the next generation systems. In particular, MAE arrays can be installed at the base stations

to provide higher capacity.

A primary question to be addressed is the ultimate capacity limit of a single cell with

constrained user power and multipath fading. Since there are multiple users in the cell, the

capacity limit is expressed as a region of allowable transmission rates such that information

can be reliably transmitted by user � at rate �
	 , user � at rate �� and so on. For a static

channel condition with fixed fade depth at each mobile, the capacity region of the multiple

access channel is then the set of all rate vectors �������
	���������������������� that can be achieved

with arbitrarily small error probability [3], [4]. However, when the channel is time varying

due to the dynamic nature of the wireless communication environment, the capacity region
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is characterized differently depending on the delay requirements of the mobiles and the

coherence time of the channel fading. Two important notions are used in the dynamic channel

case [2], [5]: ergodic capacity and outage capacity. Ergodic capacity is defined for channels

with long term delay constraint, meaning that the transmission time is long enough to reveal

the long term ergodic properties of the fading channel. The ergodic capacity is given by the

appropriately averaged mutual information. In practical communication systems operating on

fading channels, the ergodic assumption is not necessarily satisfied. For example, in the cases

with real time applications over wireless channels, stringent delay constraints are demanded

and the ergodicity requirement cannot be fulfilled. No significant channel variability occurs

during a transmission. There may be nonzero outage probability associated with any value

of actual transmission rate, no matter how small. Here, we have to consider the information

rate that can be maintained under all channel conditions, at least, within a certain outage

probability [6], [7], [8], [9]. The maximal rate that can be achieved with a given outage

percentile p is defined as the p percent outage capacity. Both the ergodic capacity and outage

capacity notions originated from single user case. They are easily extended to cases with

multiple users.

The outage capacity issue for single user Multiple-Input Multiple-Output (MIMO) case

was studied extensively. In [1], the authors characterized the outage capacity for a point-to-

point MIMO channel subject to flat Rayleigh fading. The cumulative distribution functions

for the outage capacity were presented, such that given a specific outage probability, we

will know at what rate information can be transmitted over the MIMO channel. Biglieri and

others [10] considered the outage capacity of a MIMO system for different delay and transmit

power constraints.

However, there are limited results on the outage capacity region of multiple-access

system with multiple antennas at the base station. Most previous studies are constrained to

either fixed channel condition [11], [12] or ergodic capacity region [13]. The SDMA capacity

regions under fixed channel conditions were considered in [11], with both independent de-

coding and joint decoding schemes. An iterative algorithm was proposed in [12] to maximize

the sum capacity of a time invariant Gaussian MIMO multiple access channel. The ergodic

capacity region for MIMO multiple access channel with covariance feedback has been studied

in [13].

In this paper, we consider the outage capacity region for single-cell flat fading SDMA

systems with multiple antenna elements at the base station and multiple mobiles, each with a
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single antenna element. From the outage capacity region, we can determine with what outage

probability a certain rate vector can be transmitted with arbitrarily small error probabilities.

Specifically, we derive outer and inner bounds on the outage capacity region for the two-user

case and explain how the same principles can be extended to multiple-user case.

To find an outer bound on the capacity region, cooperation among the geographically

separated mobile stations is assumed to take place via a virtual central processor, and there is

a total power constraint. The total capacity is found for all combinations of � ����� � ����������� ���
mobile stations in the system. For example, if there are two mobiles, the capacity of each, in

isolation, is found, along with the combination of both treated as having a single transmitter

with two geographically remote antenna elements.

By definition, any realizable approach for which the capacity region can be found forms

an achievable inner bound to the capacity region. Time sharing among users provides a simple

inner bound [14]. We also derive a tighter inner bound by allowing users to transmit at the

same time while performing joint decoding at the base station. It is noted that construction

of the inner bound also provides a method for achieving the inner bound.

Most of our derivations and discussions will be focused on the two-user case since

the results in this case can be easily displayed graphically and provide significant physical

insight. However, along our way, we will point out wherever the results are extensible to

cases involving more than two mobiles.

This paper is organized as follows. Section II contains a description of the channel

model which we use, and also introduces the concept of outage capacity region. Outer and

inner bounds on the outage capacity region are derived in Section III. Numerical results are

presented in Section IV, along with discussions.

II. CHANNEL MODEL AND DEFINITION OF THE OUTAGE CAPACITY REGION

We consider a single cell system where a number of geographically separated mobile

users communicate with the base station. The system is shown in Figure 1. We consider the

reverse link from the mobiles to the base station and model this as a multiple access system.

All mobile are equipped with single antenna element, and the base station is equipped with

multiple receive antenna elements to exploit spatial diversity. We assume that the channel

between each mobile station and each base station antenna element is subject to flat Rayleigh

fading and that the fading between each mobile and each base station antenna element is

independent of that between each other mobile-base station pair. Also present at each antenna
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Fig. 1. Space Division Multiple Access Systems

element is Additive White Gaussian Noise (AWGN). Rayleigh fading between mobile
�

and base station antenna element � is represented by a zero mean, unit variance complex

Gaussian random variable ����� ���
	�� �� ������� � ����	�� �� ��� where ��� ������� � � �� � � � . The

noise components observed at all the receiving antennas are identical, and independent white

Gaussian distributed with power  �� . Each mobile’s transmitted power is limited such that the

average received signal to noise ratio at each base station antenna element is � if only one

mobile is transmitting.

Suppose there are � mobile stations and � antenna elements at the base station. Then

the received signal can be represented as:

 �"!$# �&% (1)

where  is an � element vector representing the received signals, # is a vector with �

elements, each element representing the signal transmitted by one mobile station, ! is the

channel fading matrix with �(' � complex Gaussian elements, % is the received AWGN

noise vector with covariance  ��*)�+-,�+ .

Consider first the simple case where the channel conditions are fixed, that is, ! is

constant. The capacity region of the multiple access channel is then the set of all rate vectors

� � ��� 	�� ������������������ satisfying [3]:

.
/1032 � /5476�8  :9<; / �>=>?A@B� ;DC �FEG?IH@KJ (2)

where 6 stands for mutual information, @ denotes any subset of � � ��� � ������� � � and H@ its

complement, and � denotes the power limitation. In essence, the sum rate of any subset
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of the mobiles � � ��� � ������� � � need to be smaller than the mutual information between the

transmitted and received signals if only the mobiles with the subset are transmitting. We can

express the capacity region concisely as follows:� 	�! ��� � � �� � ��������
.
/1032 � /5476 8  :9<; / �>=>?A@B� ;DC �FE�? H@ J�� �	 (3)

All the rate vectors � within the region
� 	�! ��� � can be achieved with arbitrarily small

probability.

Now, since the channel matrix is a set of random variables, the capacity region is random

and a key goal is to find the cumulative distribution functions of the regions, from which

we can determine the probability that a specific rate vector can be transmitted. With this in

mind, we define the outage capacity region as:
 	�� ��� � � � ���������� 	�� ��� � � (4)

where � is defined as the set of the channel conditions under which the rate vector � is

achievable with arbitrarily small error probability. The set � can be written as:

� � � !��� ? � 	�! �<� � � � (5)

In Equation 4, � ��� is the outage probability and � represents the power limitation. The outage

capacity region

 	�� ��� � contains all the rate vectors that can be achieved with a probability

greater than or equal to � . Alternatively speaking, the probability that a rate vector contained

in

 	�� ��� � cannot be achieved is less than than � ��� .

To simplify notation, we write

 	�� ��� � as


 	�� � and
� 	�! ��� � as

� 	�! � , with the implication

that the power limitation is always specified by � unless otherwise stated.

For the two mobile case, we define ��� and �! as the channel response vectors from

mobile 1 and 2, respectively, to the base station antenna elements, and they can be expressed

as �"� � � � 	 	���� � 	������������ + 	�� 2 and �# � � � 	 � ��� � ������������� + � � 2 , where @ denotes the transpose

operation. As a result, the channel fading matrix ! �%$&���'�! )( . Then the outage capacity region

is given as 
 	�� � � � 	 � 	 ���� � ����*�*� 	�� �+� � � (6)

where � is the set of channel response matrices which satisfy the following three conditions:

� 	 4 � 	1	,�-� � (7)

�� 4 � � 	,�# � (8)

� 	 � �� 4 � 	 � 	�! � (9)
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where
� 	 	,�-� � , � � 	 �! � and

� 	 � 	�! � define the capacity region under the fading condition

specified by ! . For convenience, we write this as:

� �
������
����
� ! ����������

� 	 4 � 	1	 �"� �
�� 4 � � 	 �! �
� 	 � �� 4 � 	 � 	�! �

� ���������	 (10)

In Equation 6,

 	�� � has the same interpretation as in Equation 4; it consists of the rate pairs

	 � 	 ���� � simultaneously achievable with a probability greater than or equal to � , that is, the

outage probability smaller than or equal to � ��� .

III. OUTAGE CAPACITY BOUNDS

In this section, we derive bounds on the outage capacity region with a focus on the two

mobile case. The base station is equipped with � antenna elements. As we shall see, most

of our derivations are not constrained by the number of mobiles, and thus are applicable to

cases with an arbitrary number of mobiles.

A. Outer Bound

To obtain an outer bound on the outage capacity region, we start out by defining the

following rate regions

� 	 	�� � � � 	 � 	 ���� �  ���*�*� 	�� 	 ��� � � (11)

� � 	�� � � � 	 � 	 ���� �  ���*�*� 	�� � ��� � � (12)

��� 	�� � � � 	 � 	 ����� � �������� 	�� � ��� � � (13)

where � 	 , � � and � �
are different sets of channel conditions. The three sets are defines

by the following conditions, respectively:

� 	�� � !��� 	 4 � 	3	,�-� � � (14)

� � � � !���� 4 � ��	,�# � � (15)

� � � � !� � 	 � �� 4 � 	 � 	�! � � (16)

The values
� 	1	,�-� � , � � 	,�# � and

� 	 � 	�! � are the same as those in Equation 10, they jointly

defines the multiple access capacity region under the fading condition ! . As a result of the

definition, the rate pairs in
� 	3	�� � and

� � 	�� � only satisfy the constraint on the individual rates
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Virtual CPU

Fig. 2. Space Division Multiple Access Systems with Coordinated Users

� 	 and �� , respectively; the rate pairs in
� � 	�� � only satisfy the constraint on the sum rate

� 	 � �� . We can now prove the following:

Claim 1:

 	�� � � � 	 	�� � � 
 	�� � � � � 	�� � � 
 	�� � � ��� 	�� �

Proof: For a given 	 � 	 ���� � , if ! ? � , where � is defined in Equation 10, then� 	1	 �"� � � � 	 , � � 	 �! � � �� , and
� 	 ��	�! � � � 	 � �� . By definition, ! ? � 	 , ! ? � 	 ,

and ! ? � 	 . As a result, � � � 	 . This implies that � �*����	 � 	 � � � if � �*�*� 	�� � � � .

Therefore,

 	�� � � � 	 	�� � . Similarly, we can show that


 	�� � � � � 	�� � and

 	�� � � � � 	�� � .

If a set is contained in each of several sets, then it is also contained in the intersection

of those sets. Consequently, we can obtain the following outer bound for the outage capacity

region

Claim 2:

 	�� � ��� 	�� � where � 	�� � � � 	 	�� ��� � � 	�� ��� ��� 	�� � .

In order to obtain the outer bound given in Claim 2, we need to evaluate
� 	1	 �"� � , � � 	 �! �

and
� 	 ��	�! � under every specific fading condition ! . The sum capacity

� 	 � 	�! � is usually

difficult to find. Fortunately, upper bound on the sum capacity are easily obtained. We can

use these upper bounds to find looser outer bounds on the outage capacity region that are

easy to evaluate.

An upper bound
���	 � 	�! � on the sum capacity

� 	 � 	�! � can be obtained by assuming that

both users are connected via some error free channel to a central coordinator as shown in

Figure 2. We also assume that the virtual transmitter formed this way has perfect knowledge

about the channel, thus singular value decomposition and water-filling techniques [2], [3] can

be used to achieve the highest possible capacity. In water-filling, more power is allocated to

better subchannels with higher signal-to-noise ratio, so as to maximize the sum of data rates
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in all subchannels. If we define � � as:

� � �
������
����
� ! ����������

� 	 4 � 	 	 �"� �
��� 4 � � 	 �! �
� 	 � �� 4 ��� 	�! �

� ���������	 (17)

where
��� 	�! � is the water-filling capacity under channel condition ! and it is always greater

than the actual sum capacity
� 	 � 	�! � , it follows that the set � defined in Equation 10 is

always a subset of � � . Consequently, we can use � � to define the following outer bound on

the outage capacity region:
 � 	�� � � � 	 � 	 ����� � �������� 	�� � �+� � � � 
 	�� � (18)

Now let us define the following region:

� �� 	�� � � � 	 � 	����� � ����*�*� 	�� � � �+� � � � � � � � � !��� 	 � �� 4 ��� 	�! � � (19)

Region
� �� 	�� � contains all the rate pairs whose sum rates are constrained by the water-filling

capacity. Following the steps used to prove Claim 1, it is readily shown that:

Claim 3:

 � 	�� � � � 	 	�� � � 
 � 	�� � � � � 	�� � � 
 � 	�� � � � �� 	�� �

Consequently, the following claim provides an outer bound on the outage capacity region:

Claim 4:

 	�� � � 
 � 	�� � � � � 	 	�� ��� � � 	�� ��� � �� 	�� � �

The outer bounds given in both Claim 2 and 4 are very easy to evaluate since the the

outer bounds consists of a set of regions defined by straight lines.

The above derivation can be used to an outer bound for multiple-user outage capacity

region. The only difference is that the outer bound on the outage capacity region will be

defined by a series of planes rather than straight lines, and is therefore in the shape of a

polyhedra instead of a polygon as in the two-user case. Each plane will correspond to an

outer bound on the capacity of one combination of users chosen from the entire set of users.

For example, if there are three mobile users, then we can find the bounding rate regions

for each of the following combinations of the users: � � � , � ��� , ��� � , � � ����� , � � ��� � , � ����� � ,
� � ������� � , and then take their intersection as the outer bound as we have done in Claims 2

and 4 .

In deriving the outer bound in Claim 4, we assumed that the mobiles are coordinated by

a central processing unit, and the channel condition is known at both the base station and the

virtual coordinated transmitter. Thus, for our outer bound, the SDMA system is reduced to a

point-to-point MIMO system. For such as system, it has been shown [2] that the forward and
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reverse channels are reciprocal and have the same capacity. Therefore, the outage capacity

region outer bound given by Claim 4 for the multiple access channel is also a bound for the

broadcast channel.

B. Time Share Bound

We now turn our attention to obtaining inner bounds on the outage capacity region

for the two-mobile case. As we have said previously, any realizable approach for which

the capacity region can be found forms an achievable inner bound to the capacity region.

One such inner bound is the time-share bound, attained by time-sharing the base station

between the two mobiles [14]. For every fading state 	,� ��� �# � , if only mobile � is allowed

to transmit, then it can achieve capacity
� 	,��� � . Similarly, if only mobile � is allowed to

transmit, it can achieve capacity
� 	,�  � . An achievable time share capacity region is given

by � 	 � 	 ���� �  � 	 4�� � 	,�-� � � ��� 4 	 � � � � � 	 �! � �F� 4�� 4 � � .
Let us define an outage capacity region
���� 	�� � � � 	 � 	����� �  ������� 	 � ��� � � (20)

where

� � � !��� 	 4�� � 	,�-� � � ��� 4 	 � � � � � 	 �! � � � 4�� 4 � � (21)

Then,

���� 	�� � contains all the rate pairs that can be achieved by time sharing with an outage

probability smaller than � � � . Thus,

	��� 	�� � is an inner bound on the outage capacity region

defined by Equation 6 since the time sharing capacity region is an achievable region, and

an achievable is, by definition , an inner bound on the actual capacity region. The following

claim reiterates this observation.

Claim 5:

���� 	�� � � 
 	�� �

The boundary of the region

���� 	�� � is defined by all 	 � 	 � �� � pairs that can be achieved

with an outage probability exactly equal to � , as expressed in the following condition

� � ������� 	 � !��� 	 4�� � 	 �"� � � �� 4 	 � � � � � 	,�# � � � 4
� 4 � � � (22)

� ������� 	 ���-�� � 	 4�� � 	,�-� � � � ' ������� 	 ���# � ��� 4 	 � � � � � 	 �! � � � � (23)

since �-� and �# are independent random vectors.

We now show how the boundary given in Equation 23 can be derived in closed form.

Each value
� 	,�"� � and

� 	 �! � is the capacity of an AWGN channel with a single antenna
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element at the transmitter and � antenna elements at the receiver. Thus [1],� 	,��� � � ����� 	 � � � � ��� � � � (24)

where � ��� � � �	� +��
 	 � � ��� � � is a random variable following chi-square distribution with ���
degrees of freedom, and � is the number of receive antennas at the base station. The

complementary cumulative distribution function, H� 	 � � , of � ��� � � is given as [15]:

H� 	� � � ������� 	�� ��� � ���  � � +�� 	./ 
��  /�� ������ �
=�� 	 �� � � / � +�� 	./ 
��  /�� � �=!� (25)

We have �� � � � in the above equation because the Rayleigh fading gain � ��� between mobile

� and base station antenna element
�

is zero mean, unit variance complex Gaussian random

variable, as specified in Section II. As a results, the boundary of " ��� 	�� � is given as:

� �
�� � +�� 	.
/ 
�� �

=!� # �%$'&)( � � �
� * /,+.-0/ 	 � �%$'&)( �

� �
� � � �	

'
�� � +�� 	. C 
�� �

E1� # � $ � (32 	 � ��4 � �
� * C +.-0/ 	 � � $ � (32 	 � ��4 � �

� � � �	 (26)

� H� #5�%$ & ( �
� �

� * H� #6�%$ � (32 	 � �34 � �
� * (27)

Given a certain probability � , the maximum �
	 can be find by setting � � to zero and �

to � in Equation 27. Then for every �
	 between the maximum and zero, we can always sweep

out the possible � � ’s by varying � between � and � and solving the equations numerically.

The same principle and derivations can be applied to multiple users cases to obtain time

sharing bounds. The only difference is that the boundary will be defined by multiple rates

and the condition in Equation 27 will be given by the product of multiple complementary

cumulative functions.

C. Joint Decoding Inner Bound

The time share inner bound may be quite pessimistic since one mobile may transmit at

any time. A tighter inner bound may be obtained by allowing the two mobiles to transmit

simultaneously, but without the coordinating virtual central processing unit that was used to

obtain an outer bound. We now find such an inner bound by allowing the base station to

jointly detect the information from both mobile stations. In this way, an achievable capacity

region for space division multiple access under a particular channel condition 	 �+��� �! � is
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given by [3], [11]:� �	 	,�-� � � ��� � � � � � �-� � �-� � � ��� � � � � � � 	 � (28)� �� 	,�# � � ��� � � � � � �# � �# � � ��� � � � � � � � � (29)� �� 	�! � � ��� � ���� ) � � $ �"� �! ( � $ �-� �# ( ����
� ��� � 	 � � � � 	 � � � � � � � � 	 � � �
� � � 	 � ��� ��� ��� � (30)

where

� 	 � � �"� � � � (31)

� � � � �! � � � (32)� � � ��� � 	 	 � �-� � � �# �
� �-� � � � �# ��
 � (33)

The scalars � 	 and � � are the squared magnitude of the vectors ��� and �! , respectively, and
�

is the angle between ��� and �! . The three scalars � 	 , � � and
�

are independently distributed

random variables. � 	 and � � are chi-square distributed with ��� degrees of freedom and � is

uniformly distributed over 	�� ���� ( . Thus, their joint probability density functions is given by

the product of the individual probability density functions [16]:

����� 	 � 	�� � ����� ��� � � � ��� 	 � 	 � � 	 � � ��� 	�� ��� � � � (34)

where � 	 ; � � �
 � � � ( ��� 	 ��� � � ; � ( � � 	 � ������ � � � � ;���� (35)� 	 ; � � �� � � � ; � � � ; � 4 � (36)

In Equation 35, the function � 	 � � is the Gamma function as defined in [15]. As with the time

sharing case, we can define a rate region based on this joint decoding achievable capacity

region: 
! #" 	�� � � � 	 � 	����� � ����*�*� 	 � �+� � � (37)

where

� �
������
����
� ! ����������

� 	 4 � �	 	,�-� �
�� 4 � �� 	,�# �
� 	 � �� 4 � �� 	�! �

� ���������	 (38)
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The region

! �" 	�� � contains all the rate pairs that fall into the achievable region with an

outage probability smaller than � � � . Again, since it is derived from an achievable region,
  �" 	�� � forms a inner bound to the actual outage capacity region.

The boundary of the region

  �" 	�� � is defined by all the rate pairs that can be achieved

with a probability, � �*����	 � � , exactly equal to � . Next, we show how this probability can be

expressed in terms of � 	 and �� . First, we define the following dummy variables: 	 � � ���& 2���� 4 ��� � � � 	 (39) � � � � �� 2��	� 4 ��� � � � � (40) � � � ���& � 2�
 4 ��� � � 	 � 	 � � � � � � � � 	 � � �
� � � 	 � ��� ��� ���
� � � � 	 � 	 � � � � � � � � 	 � �

� �
� � � 	 � � � ��� � �

� (41)

The values of �	 ,  � and  � are functions of � 	 , � � and
�
, and their joint distribution is given

by:� 	� 	��� ���3 � � � � 	 � 	 � � 	 � � ��� 	�� ��� � � � � � � (42)

� � #  	 � �
� * � #  � � �

� * � # � 	  	 �  � � � �  � �
	  	 � � � 	� � � � � � � * �

� � 	  	 � � � 	  � � � �(43)

where the square matrix
�

is the Jacobian matrix of the transform from 	 � 	�� � ����� ��� � � � to

	  	 �3 ���� � � , given by:

� �
�����

� ��� � �
� � ��� �

� 2 ��� � � � 42 � & � 	 4 � 2 � � � 	 4 � 2 ��� � � & 42 � & � 	 4 2 � � � 	 4 � � �2 � & � 	 4 2 � � � 	 4
������� (44)

As a result, the probability, ������� 	 � � , defining the boundary of the capacity bound given by

Equation 37 can be evaluated as:

� �*����	 � � � � �*�*� 	 � 	 4 � �	 ���� 4 � �� ��� 	 � �� 4 � �� �
� � �*�*� 	 � $'& 4  	 � � $ � 4  ��� � $ &�� $ � 4  � �
� ������ & �� 	������� � �� ������ � &"! � � � 	  	��� ���� � � �� �
� @ 	 � @ � � @$# � (45)
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where @ 	 , @ � and @�# in the above equation are defined as:

@ 	 � � � � � � &� � & �� 	 � � � � &� � � �� �$� ���� & ! � � � 	� 	 �� ���� � � �� � (46)

@ � � � � � � � �� � & �� 	 � �� � � & �� � � �
� � 	� 	 �� ���� � � �� � (47)

@$# � � �� � � � � �� 	�� ���� � �  ��� �
� ��	  	 �� ���3 � � �  � (48)

The variables � , � and � in the above equations are defined as:

� � � $'&�� $ � � � (49)

� �  	 �  � � � (50)

� �  	 �  � � � � 	  	 � � � 	  � � � � (51)

In the Appendix, we will show that @ � and @�# are fairly easy to evaluate. Following the

steps used to prove Claim 5, it can be shown that:

Claim 6: " 	�� � � � 	 � 	 ���� � �@ � � @�# � � � � 
! #" 	�� � � 
 	�� �
The rate region " 	�� � gives another inner bound on the outage capacity region. The boundary

of the region "5	�� � is formed by the rate pairs that satisfy the following equation

� ��@ � � @$# (52)

Given every possible � 	 , we can trace out the corresponding � � by solving Equation 52

numerically using the expressions obtained for @ � and @$# in the Appendix.

Although the approach used in this section may, in principle, also be applied to multiple-

mobile cases, the increased complexity needed to derive the joint probability distribution

functions and evaluate the relevant probabilities prevents us from obtaining closed form

expressions for multiple-mobile cases similar to those shown in Equation 54, 55 and 52.

IV. NUMERICAL RESULTS

The bounding techniques introduced in the previous section will now be applied to

generate numerical results for inner and outer bounds on the outage capacity region for

various values of number of antennas, outage percentage, and signal to noise ratio. Here, we

focus our attention only on the two-mobile case since they are graphically friendly and offer

significant physical insight.

Shown in Figure 3 is the outer bound on the outage capacity region with � and � �
antenna elements at the base station, plotted for outage probabilities of ��� , � ��� , and �*�	� .
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(a) Outer Bound for Two Antenna Elements at the Base Station
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(b) Outer Bound for Sixteen Antenna Elements at the Base Station

Fig. 3. Outer bound on outage capacity regions for 2 and 16 antenna elements at the base station
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Fig. 4. Time Share Bound on Outage Capacity Region

In all cases, the signal-to-noise ratio, � , is ������� . Since these are outer bounds on the outage

capacity region, no rate pair outside the capacity region can ever be achieved with an outage

probability smaller than the designated value � . Rate pairs inside the outer bound region may

or may not be achievable with an outage probability smaller than � . For example, with 2

antenna elements at the base station, any rate pair with one rate higher than 0.9 nat per second

has an outage probability greater than �
	 . We note that the number of antenna elements has

a very significant effect, not only in significantly enlarging the outer bound on the capacity

region but also in reducing the differences between low outage and high outage objectives.
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Fig. 5. Inner Bound on ��� and �	�
� Outage Capacity Region with Different Numbers of Antenna Elements at the Base

Station

Figure 4 shows the time share bound for the ����� outage capacity region for base station

with 2, 4, 8 and 16 antenna elements, respectively. Since these are inner bounds, all rate pairs

within the bound can be achieved with an outage probability smaller than ���	� . For example,

with two antenna elements, both mobiles can transmit at 0.76 nat per second while achieve

an outage probability smaller than ����� . With 16 antenna elements at the base station, both

mobiles can transmit at 2.25 nat per second while achieving an outage probability of ����� .

We notice that all the time sharing bounds are concave.

When both users are allowed to transmit at the same time and joint decoding is performed

at the base station, we get a tighter inner bound on the outage capacity region. Figure 5

shows the joint decoding inner bounds for the ����� and ��� outage capacity regions with 2,

4, 8, and 16 antenna elements at the base station. With two antenna elements at the base

station, both mobiles can simultaneously transmit at 0.72 nat per second with an outage

probability smaller than ��� ; with 16 antenna elements at the base station, the mobiles can

simultaneously transmit at 2.65 nat per second with an outage probability smaller than ��� .

The inner bound given by Claim 6 is obviously much tighter than the time sharing bound in

Claim 5. Unfortunately, this joint decoding bound can not be easily obtained for more than

two mobiles. Once again, we notice that increasing the number of antenna elements greatly

reduces the separation between the � � outage and ���	� outage results.
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Fig. 6. Both Outer and Inner Bounds on ��� and � �
� Outage Capacity Region for
�

and � antenna elements at the base

station

Figure 6 shows both the outer and inner bounds on the ����� and ��� outage capacity

regions with both � and
�

antenna elements. It can be seen from the plot that the inner bound

is reasonably tight for the two antenna elements case. The bounds are very tight near the

corners where one mobile is transmitting at its maximum allowable rate. We also notice that,

when the required outage probability is low, as in the ��� case, there is more performance

improvement by increasing the number of antenna elements than that when the required

outage probability is high, as in the ���	� case. This is no surprise since the cumulative

distribution function of the allowable rates is much sharper when the number of antenna

elements is large.

Figure 7 shows the tight inner bound for both � and
�

antenna elements at the base

station with different outage probabilities. We can see from the plot that when the number

of antenna elements is large, the outage capacity regions at different outage probabilities are

not significantly different. This can be explained by noting that a large number of antenna

elements at the base station is very efficient at combating severe fading, thereby keeping

the allowable transmitting rates relatively constant, and producing a sharper cumulative

distribution function for the allowable rates.

Figure 8 shows the tight inner bound for the ����� outage capacity region with � or
�

antenna elements at the base station and different SNRs. From Equation 30, we would expect,
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Fig. 7. Inner Bound On Capacity Region for
�

and � Antenna Elements under Different Outage Probability
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Fig. 8. Inner Bound on Outage Capacity Region under different SNR for 2 and 8 antenna elements

for large SNR and any fading condition, that the capacity region should increase linearly in

each dimension as � increases linearly in dB. As a result, we would also expect the outage

capacity region to increase linearly in each dimension as � increases. This trend is confirmed

from the regions shown in Figure 8.
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V. CONCLUSION

In this paper, we have studied the use of MAE array at the base station to increase

system capacity. The fundamental question addressed is the ultimate capacity achievable

with a MAE array equipped base station communicating with multiple mobile stations. Since

there are multiple mobiles, the capacity is expressed as a region over the space of transmission

rates from the mobiles. Any particular set of rates contained in the region can be transmitted

with a certain outage probability.

We have obtained both outer and inner bounds for the outage capacity regions. The

outer bounds indicates what is beyond the capability of the space division multiple access

system while the inner bounds indicates what is achievable. As expected, the use of multiple

antennas at the base station can greatly increase the allowable transmission rates from the

mobiles. For example, with two and sixteen antenna elements and joint decoding at the base

station, two mobiles can simultaneously transmit at 0.72 nat per second and 2.65 nat per

second, respectively, and achieve an outage probability smaller than ��� .

Our results show that, although the capacity region can be expanded by allowing higher

outage probability, the increase in allowable rates is much greater when the number of antenna

elements is small. In cases with a large number of antenna elements at the base station, the

strong protection against severe fading provided by the antenna array can keep the maximum

allowable rates relatively constant. We also observe that the outage capacity regions can

increase dramatically with an increase in the signal-to-noise ratio, the capacity regions expand

almost linearly in every dimension as the signal-to-noise ratio increases.

The capacity region bounds derived in this paper provide a yardstick against which the

performance of any space division multiple access technique can be compared.

APPENDIX

EVALUATION OF @ � AND @$# IN SECTION III-C

Now let us examine @ � and @�# more closely. It is easily verified that

� �
� � # � 	� 	 �  � � � �  � �

	� 	 � � � 	  � � � � � � * �  � � � 	� 	 � 	 ; � 	  	 � � � 	  � � � �
� � ;

� 	  	 � � � 	� � � � �
� (53)

Using this result and the complementary cumulative distribution function for chi-square

random variables given in Equation 25, we can further simplify the expressions for @ � and
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@�# :
@�# � � �� � � � � �� 	�� ���� � � #  	 � �

� * � #  � � �
� * �

� � �  �
� � ���� � � � � &

�
� 	 ; � � ; � �� � � � &

�
� 	 � � � �

� H� # � � �%$ �
� �

� * H� # �%$ �
� �
� * (54)

@ � � � ��� � � � � &
�

� � & � &
�

� 	 ; � � ; ������ � � � ��
� 	 � � � �

� � � �
� & � 	 ; � � ; H� # � � �

� � ; *
� � � �

� & � 	 ; � +�� 	.
/ 
�� 8 � � �� � ; J /

=!� � � � ��� �
� � ;

�
+�� 	.
/ 
�� � � ��� �

� � � �
� & ; +�� 	 8 � � �� � ; J /

	�� � � � � =!� � ;
�

+�� 	.
/ 
�� � � ��� �

� � � �
� & ; +�� 	

	 � � � � � =�� /. C 
�� =!�
E1� 	 = � E � � # � � �

� * / � C 	 � ; � C � ;
�

+�� 	.
/ 
�� � � ��� �

�

/. C 
�� # � � �
� * / � C 	 � � � C

E1� 	 = � E � � 	�� � � � � � � �
� & ; + � C � 	 � ;

�
+�� 	.
/ 
�� � � ��� �

�

/. C 
�� # � � �
� * / � C 	 � � � C

E1� 	 = � E � � 	�� � � � � 	 ; � � C� � ; � � C	 �
�
� E

�
+�� 	. C 
�� � � ��� �

� 	 � � � C 	 ; � � C� � ; � � C	 �
E � 	 � � � � � 	 � � E � +�� 	.

/ 
�� # � � �
� * / � C �

	�= � E � �
�

+�� 	. C 
�� � � ��� �
� 	 � � � C
E � 	�� � � � � 	 � � E � # �%$ & � �

� * � � C 8 � 2 � � C 4 $ � � � J +�� 	 � C.
/ 
�� # � � �

� * / �=!� (55)
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