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ABSTRACT OF THE THESIS 

 

Using Quantitative Encephalography Measures 

to Predict Clinical Outcomes of Major Depressive  

Disorder in a Multi-Site Sertraline Trial 

 

by 

 

Bhavna Ramesh 

 

Master of Science in Bioengineering 

University of California, Los Angeles, 2021 

Professor Wentai Liu, Chair 

 

 Neuroimaging data has proven to be a useful biomarker for clinical outcomes in 

antidepressant treatment. Changes in quantitative electroencephalography (qEEG) measures such 

as delta-theta/alpha (DT/A) ratio and regional theta cordance have been associated with clinical 

improvement in patients with major depressive disorder (MDD). The relationship between 

changes in these measures after one week of treatment and remission or response was examined 

in a large cohort of subjects from the EMBARC study who received either placebo (N = 92) or 

sertraline (N = 86) treatment. A Week 1 decrease in central theta cordance from an 18-channel 

montage was associated with response in sertraline-treated subjects, but not placebo-treated 

subjects. However, neither DT/A ratio nor prefrontal theta cordance from a 30-channel montage 
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were predictive of remission or response in this dataset. These findings suggest that Week 1 

changes in central theta cordance may serve as a biomarker for sertraline outcome in MDD 

patients. 

  



iv 

The thesis of Bhavna Ramesh is approved. 

Andrew Leuchter 

Nanthia Suthana 

Wentai Liu, Committee Chair 

 

University of California, Los Angeles 

2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

Table of Contents 

List of Figures ............................................................................................................................... vii 

List of Tables ............................................................................................................................... viii 

List of Acronyms ........................................................................................................................... ix 

Glossary ......................................................................................................................................... xi 

Acknowledgements ....................................................................................................................... xii 

1    Introduction ................................................................................................................................1 

1.1 Major Depressive Disorder (MDD) ...............................................................................1 

1.2 Electroencephalography (EEG) and MDD ....................................................................2 

1.3 Previous Work Studying EEG Measures as Biomarkers of MDD ................................3 

1.4 Cordance and MDD .......................................................................................................5 

2 Methods......................................................................................................................................9 

2.1 Data Collection ..............................................................................................................9 

2.2 EEG Data Preprocessing ..............................................................................................10 

2.3 Data Analysis ...............................................................................................................15 

2.3.1 Statistical Analysis of Power and Ratio Measures ....................................15 

2.3.2 Statistical Analysis of Cordance Measures ................................................15 

3 Results ......................................................................................................................................19 

3.1 Subject demographic and clinical characteristics ........................................................19 

3.2 Effect of placebo or sertraline treatment on DT/A ratio and the relationship between 

change in DT/A ratio and remission ............................................................................20 

3.3 Change in theta cordance as a predictor of clinical outcome .......................................21 

3.3.1 Regional theta cordance and response at Week 8 ......................................21 



vi 

3.3.2 Theta cordance and change in response from baseline to Week 8 ............22 

4 Discussion ................................................................................................................................25 

5 Limitations and Future Work ...................................................................................................29 

6 References ................................................................................................................................30 

  



vii 

List of Figures 

Figure 1: 30 channel cordance montage ........................................................................................14 

Figure 2: 18 channel cordance montage ........................................................................................14 

Figure 3: Regional groupings of 30-channel cordance montage ...................................................16 

Figure 4: Regional groupings of 18-channel cordance montage ...................................................18 

Figure 5: Distribution of clinical HAMD-17 scores at baseline and Week 8 of treatment for 

placebo and sertraline cohorts ........................................................................................................20 

Figure 6: Change in theta cordance (30-channel montage) after 1 week of treatment across 

responders and non-responders in placebo and sertraline group ...................................................22 

Figure 7: Change in theta cordance (18-channel montage) after 1 week of treatment across 

responders and non-responders in placebo and sertraline group ...................................................23 

 

 

 

 

  



viii 

List of Tables 

Table 1: Clinical and demographic characteristics for placebo and sertraline cohorts ..................19  

Table 2: Statistical significance (p-values) of linear regression models analyzing relationship 

between early changes in theta cordance and clinical outcome .....................................................24  

  



ix 

List of Acronyms 

MDD Major depressive disorder 

rTMS Repetitive transcranial magnetic stimulation 

CBT Cognitive behavioral therapy 

SSRI Selective serotonin reuptake inhibitor 

EEG Electroencephalography  

fMRI Functional magnetic resonance imaging 

PET Positron emission tomography 

FFT Fast Fourier transform 

ADHD Attention-deficit hyperactive disorder 

OCD Obsessive compulsive disorder 

rACC Rostral anterior cingulate cortex 

OFC Orbitofrontal cortex 

qEEG Quantitative electroencephalography  

DT/A Delta-theta/alpha 

rCBF Regional cerebral blood flow 

HAMD Hamilton Rating Scale for Depression 17-item 

IDS-SR Inventory of Depressive Symptomology-Self-Report 

CGI-I Clinical Global Impression-Improvement Inventory 

EMBARC Establishing Moderators and Biosignatures of Antidepressant Response 

for Clinical Care for Depression 

 

MRI Magnetic resonance imaging 

CU Columbia University  



x 

MG Massachusetts General Hospital 

TX University of Texas Southwestern Medical Center 

UM University of Michigan 

FIBSER Frequency, Intensity, and Burden of Side Effects Rating 

FASTER Fully Automated Statistical Thresholding for EEG artifact Rejection 

ROC Receiver operator curve 

CC Central theta cordance 

DBS Deep brain stimulation 

 

 

 

  



xi 

Glossary 

Absolute power Area under the power spectrum curve within a given 

frequency range 

Central theta cordance Theta cordance averaged across electrodes overlying the 

central region of the brain—specifically, Fz, C3, Pz, and 

C4 

Cordance A qEEG measure of cerebral blood flow combining 

absolute and relative power 

Prefrontal theta cordance Theta cordance averaged across electrodes overlying the 

prefrontal region of the brain—specifically, FP1. FP2, 

and FPz 

Relative delta-theta/alpha ratio A power measure calculated by dividing the amount of 

relative delta-theta power by the amount of relative 

alpha power in an EEG signal 

Relative power The amount of absolute power in a given frequency 

band relative to the total absolute power across all four 

frequency bands 

Theta cordance Cordance calculated specifically in the theta frequency 

band (4-8 Hz) 

 

 

 

 

 



xii 

Acknowledgments 

 I would like to express my deepest gratitude to Juliana Corlier and Andrew Wilson for 

their supportive mentorship and extensive assistance with EEG data preprocessing protocols and 

manuscript revision. 

 



1 

Introduction 

1.1 Major Depressive Disorder (MDD) 

 Major depressive disorder (MDD) is a highly prevalent mental illness characterized by 

changes in mood, sadness, an inability to experience pleasure, and other symptoms which greatly 

impact one’s daily functioning [1]. More than 264 million people suffer from depression 

worldwide and the World Health Organization has labeled this disorder as a leading cause of 

disability in all populations [2][3]. While many treatments for MDD exist, including repetitive 

transcranial magnetic stimulation (rTMS) and cognitive behavioral therapy (CBT), to name a 

few, pharmacological treatments are often the first line of treatment for MDD, as they have been 

thoroughly studied and are typically more accessible than alternative treatment options [4]. One 

prominent class of antidepressants is selective serotonin reuptake inhibitors (SSRI). SSRIs are 

effective in treating chronic, moderate, and severe depression, and studies have shown that 40-

60% with moderate to severe depression showed improvement in their symptoms after six to 

eight weeks of SSRI treatment [5]. 

 While the efficacy of antidepressants has been demonstrated extensively, patients often 

must try several medications before discovering which one will work best for them. To 

overcome this obstacle, research has turned to biological markers such as cognitive deficits or 

structural and functional neuroimaging abnormalities to better understand how MDD presents 

itself among individuals. Identifying biomarkers that can help predict antidepressant response 

aids clinicians in providing a personalized course of treatment and subsequently reduces the time 

it takes for patients to receive effective treatment [6]. With most antidepressants, patients are at 

risk of experiencing some side effects, such as nausea, headaches, or insomnia, that may or may 

not improve over time [7]. Therefore, determining the best option for that patient early on in their 
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course of treatment is essential to alleviate the harmful symptoms of depression and reduce the 

chances of a patient experiencing any adverse side effects more than once. 

1.2 Electroencephalography (EEG) and MDD 

 One widely used neuroimaging tool for identifying biomarkers of depression is 

electroencephalography (EEG). EEG measures the electrical activity of neurons from the scalp 

by characterizing neural oscillations, which represent the balance of excitation and inhibition 

produced through the synchronous firing of neuronal populations and are assumed to be 

sinusoidal in shape [8][9]. Although it has lower spatial resolution relative to other neuroimaging 

techniques such as functional magnetic resonance imaging (fMRI) or positron emission 

tomography (PET), EEG has a very high temporal resolution that provides information on a 

neuronal scale and is noninvasive, quick, cost-effective, and generally better tolerated by clinical 

patients [10][11]. EEG signals are typically recorded using an elastic cap embedded with several 

electrodes connected to one another that is placed on the head, and the number of electrodes on 

an EEG headset can vary significantly [12][13].  

EEG signals, which are typically recorded in units of voltage and contain a frequency 

component, have corresponding power spectrums, which can be analyzed by applying a linear 

magnitude fast Fourier transform (FFT) to the original EEG waveform, which will output 

spectral peaks corresponding to the frequencies of oscillations that are present in the data [14]. 

The EEG signal is often characterized by the following spectral bands for ease of analysis: delta 

(1.3-3.5 Hz), theta (4-7.5 Hz), alpha (8-13 Hz), beta (12.5-30 Hz), and gamma (30-40 Hz) [15]. 

It is important to note that the upper and lower limits of the frequency bands may vary slightly 

across studies or clinical populations. Delta and theta frequencies are commonly associated with 

sleep or drowsiness, alpha frequencies are present during an awake and alert state, and beta 
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frequencies are present during active thinking [16]. Studies with EEG typically conduct power 

analyses in each of the frequency bands to better understand the complex EEG waveform, with 

power calculated as the squared amplitude of the oscillations, which represents the strength of a 

frequency found in the signal [17][18]. Absolute and relative power are often calculated in each 

of the frequency bands, where absolute power is the area under the power spectrum curve within 

a given frequency range, and relative power represents the amount of absolute power in a given 

frequency band relative to the total absolute power across all four frequency bands [19].  

Understanding the extent to which a specific frequency is present in a signal through 

patterns or differences in power during tasks or certain brain events (such as seizures) provides 

insight into the activation of or connectivity between specific brain regions [20]. EEG spectral 

data have also been associated with certain emotional states and are therefore extensively 

analyzed as a biomarker for various psychiatric disorders such as depression, attention deficit-

hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and more [15][21][22]. 

Various studies have investigated the relationship between EEG measures and depression to 

determine what biomarkers may predict the onset or progression of MDD, and these studies 

operate on the basis that serotonin has been shown to play a significant role in rhythmic 

oscillations of the brain in the range of 2.5-12 Hz, which encompasses delta, theta, and alpha 

activity [23][24]. For example, several studies found a relationship between SSRI treatment and 

changes in prefrontal oscillations in the delta, theta, or alpha frequency bands [25][26][27].  

1.3 Previous Work Studying EEG Measures as Biomarkers of MDD 

There is significant evidence that higher posterior baseline alpha power characterizes 

antidepressant responders but not non-responders, suggesting that analyzing changes in alpha 

power in certain regions of the brain could be relevant to identifying EEG biomarkers of MDD 
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[28][29][30][31]. Furthermore, it has been hypothesized that frontal alpha power asymmetry is 

linked to deficits in reward processing, which is a key characteristic of depression onset [32]. 

Additionally, because certain emotional states can influence attention, studying the lower end of 

frequencies in the alpha band, which was found to reflect certain features of attention, 

specifically vigilance and expectations, may be important in understanding MDD [33][34].  

With respect to the theta frequency band, one study found greater theta current density in 

the rostral anterior cingulate cortex (rACC) and orbitofrontal cortex (OFC) in patients who 

responded to antidepressants [35]. These findings were further supported by a meta-analysis that 

found 19 studies highlighting the relationship between increased pre-treatment rACC activity 

and antidepressant response [36]. Another study found that greater pre-treatment relative delta 

power in the right hemisphere was associated with treatment responders while the opposite was 

associated with non-responders [37]. Together, these studies reflect the well-established link 

between SSRIs and EEG measures, thus setting the precedent for further research into the use of 

certain EEG biomarkers for predicting the course of treatment of MDD with antidepressants. 

One prominent study analyzed if quantitative encephalography (qEEG) data, which is 

obtained through the processing of digital EEG signals using complex computer algorithms, in 

patients treated with the SSRI escitalopram were correlated with any changes in or remission of 

symptoms of MDD relative to patients treated with only placebo [38][39]. The researchers 

explored changes in relative prefrontal delta-theta and alpha power as well as the delta-

theta/alpha ratio for the different treatment groups. As mentioned before, the effects of serotonin 

have been pronounced in these frequency bands; therefore, shifts in the balance between the 

slower (delta and theta) and faster (alpha) wave bands could be associated with improved 

physiological response to treatment. Researchers found that average prefrontal delta-theta power 
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increased significantly after one week of active treatment while alpha power decreased. Neither 

of these measures were found to have changed significantly with placebo treatment. More 

specifically, the study found that increases in the delta-theta/alpha (DT/A) ratio early on in 

treatment were associated with non-remission after seven weeks of treatment with medication 

[39].  

1.4 Cordance and MDD 

Although power has proven to be a useful measurement of brain activity, its relationship 

to other physiological correlates of electrical activity such as cerebral blood flow (perfusion) or 

energy metabolism has not been thoroughly explored. In order to better understand and 

characterize this relationship, another qEEG measure of electrical activity called cordance was 

developed [40]. Specifically, cordance combines absolute and relative power measures using a 

three-step algorithm detailed by Leuchter, et al 1994. First, absolute power for each bipolar pair 

(denoted by lines connecting electrodes as in Figs. 1 and 2) was calculated. Then, the absolute 

power for each electrode pair that included a single electrode was averaged to obtain a single re-

attributed power value for that electrode. Secondly, relative EEG power was calculated based on 

the reattributed absolute power values. The absolute and relative power values were then z-

transformed for each electrode, resulting in normalized absolute (Anorm) and relative power 

(Rnorm) values. Finally, z-score values were summed (Anorm + Rnorm) to obtain a cordance value, 

Z, at each electrode [26][40][41]. 

This measure is sensitive to cortical deafferentation, or the interruption of nerve afferents 

in the cerebral cortex, and provides information on levels of brain activity [40][42]. The 

algorithm outputs a numerical value that is either negative (associated with a “discordant” state 

that reflects low perfusion or metabolism) or positive (associated with a “concordant” state that 
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reflects high perfusion or metabolism) at each of the recording electrodes. Cordance is studied 

within each of the EEG frequency bands; for example, theta cordance reflects the relative and 

absolute power derived from the theta frequency band (4-8 Hz). Studies using PET neuroimaging 

techniques have found abnormal regional cerebral blood flow (rCBF) and metabolic changes in 

depressed patients, particularly in prefrontal brain regions like the anterior cingulate cortex, the 

dorsolateral prefrontal cortex, and frontal gyri, which are known to be involved in mood 

regulation and the progression of depression [43][44][45][46][47][48]. Together, such findings 

suggest that studying cerebral perfusion and metabolism through a measure such as cordance can 

be important in predicting treatment response.  

A study of cordance in patients with major depressive disorder found that a reduction in 

prefrontal theta cordance was predictive of bupropion treatment response [49]. In contrast, a 

separate study showed that non-responders to escitalopram treatment displayed an early increase 

in prefrontal theta cordance [37]. A more recent study investigated changes in prefrontal and 

midline right frontal theta cordance at the start of treatment and changes in depressive symptoms 

and found that the combination of the three was most predictive of response to escitalopram, 

bupropion, or a combination of the two [50]. Of the studies analyzing cordance data and MDD 

outcome, one analyzed the role of absolute theta power, relative theta power, and theta cordance 

across specific regions as indicators of clinical response to treatment with medications fluoxetine 

or venlafaxine or a placebo drug. qEEG data were collected prior to treatment, 48 hours after 

treatment, and one-week post-treatment. The clinical outcome of interest was a final Hamilton 

Rating Scale for Depression 17-item (HAMD) score less than or equal to 10, and theta cordance 

was measured using a 35-channel montage. Subjects were grouped according to the following 

groups: placebo responders, placebo non-responders, medication responders, and medication 
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non-responders. Results found that although changes in theta power did not show a significant 

association with clinical outcome in any of the subject groups, changes in prefrontal theta 

cordance were associated with the medication responder group. These findings suggest that 

prefrontal theta cordance may play a role in response to antidepressant treatment [26]. 

A more recent study analyzed the effects of rTMS instead of pharmacological treatment 

on clinical outcome for major depressive disorder using solely the qEEG measure of theta 

cordance [41]. qEEG data from a 21-electrode montage were collected prior to rTMS treatment 

and one-week post-treatment and clinical outcomes were obtained from the Inventory of 

Depressive Symptomology-Self-Report (IDS-SR) score and the Clinical Global Impression-

Improvement Inventory (CGI-I). Cordance was measured across electrode groupings that 

corresponded to the following spatial regions of the brain: prefrontal, midline-and-right-frontal, 

midline-and-left-frontal, central, orbital, midline-and-right-orbital, and midline-and-left-orbital. 

Results found that a decrease in theta cordance across electrodes in the central brain region after 

the first week of treatment predicted later improvement in clinical scores [41]. 

While studies have analyzed the relationship between SSRI treatment and cordance for 

drugs such as escitalopram, venlafaxine, and bupropion, no studies to date have investigated the 

relationship between sertraline outcome and cordance and other EEG power measures. Earlier 

studies were further limited in their inclusion of relatively small sample sizes of subjects. 

Furthermore, including cordance as an EEG biomarker on top of power measures provides a 

larger, more cohesive understanding of how underlying electrical activity in the brain affects 

onset and outcomes of major depressive disorder. The findings of studies by Leuchter, et al and 

Hunter, et al show that EEG power measures can be used as biomarkers of MDD response. 

Importantly, such research provides some insight into the optimal treatment plan for patients 
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struggling with depression. Being able to determine the efficacy of a certain antidepressant based 

on an individual’s EEG data allows for more personalized treatment and could significantly 

reduce the need for that patient to undergo various trials of pharmacological treatment before 

finding which would work best for them, which would be more time and cost-effective. Because 

the severity of MDD varies from patient to patient, establishing a more personalized treatment 

plan early on could increase the likelihood that a patient reaches remission sooner rather than 

later.  

Therefore, taking inspiration from studies done by Leuchter, et al. and Hunter, et al., this 

project will process and analyze electroencephalography (EEG) and clinical data from the 

Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care for 

Depression (EMBARC) study, in which 300 patients were enrolled, to determine if baseline or 

early changes in EEG power and cordance measures can predict sertraline outcome. Specifically, 

data analysis methods will be replicated from the aforementioned studies to determine if 

measures such as relative power, delta-theta/alpha ratio, or cordance are predictors of clinical 

outcome in a randomized, placebo-controlled sertraline trial for MDD. 
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Methods 

2.1 Data Collection 

The Establishing Moderators and Biosignatures of Antidepressant Response in Clinical 

Care (EMBARC) study was funded by the National Institution of Mental Health (NIMH) and 

was completed over the course of five years from 2011 to 2016 [51]. It was a randomized, 

placebo-controlled clinical trial that investigated the ability of certain biomarkers to predict 

clinical outcomes in response to the commonly used the SSRI sertraline for MDD. Four different 

sites contributed to the collection and analysis of clinical, electroencephalography (EEG), and 

magnetic resonance imaging (MRI) data for 296 enrolled subjects: Columbia University Medical 

Center (CU), Massachusetts General Hospital (MG), University of Texas Southwestern Medical 

Center (TX), and University of Michigan (UM).  

The primary inclusion criteria for this study consisted of those who were between the age 

18-65, had a current diagnosis of nonpsychotic early onset, recurrent, or chronic MDD as 

determined by the Structured Clinical Interview for DSM-IV, had a Quick Inventory of 

Depressive Symptomatology - Self Report score of greater than or equal to 14, and had not failed 

any antidepressant trials in the current episode. The study was conducted in two stages, the first 

of which spanned eight weeks and investigated differences in treatment outcomes between 

sertraline and placebo treatment for MDD. The second stage also spanned eight weeks and 

explored the mediators of treatment outcomes between sertraline and bupropion. In this stage, 

responders from Stage 1 continued with their original randomly assigned treatment, while 

sertraline non-responders received bupropion and placebo non-responders received sertraline. 

Data from a healthy control group of 40 people, 10 from each of the four participating sites, were 

also collected.  
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The primary outcomes that were tested include symptom reduction, which was assessed 

using the HAMD, and treatment tolerability, which was assessed using the Frequency, Intensity, 

and Burden of Side Effects Rating (FIBSER). While clinical data from multiple surveys were 

collected periodically throughout each of the stages, neuroimaging data were collected only at 

baseline and the end of week one of the study [51]. Although EEG and MRI data were collected 

and made available for this dataset, only the EEG data will be considered for this project. Of the 

publicly available EEG data, only files for those subjects who had an EEG recorded at baseline 

and after one week of active or sham treatment were downloaded. 

2.2 EEG Data Preprocessing 

Prior to conducting data analysis, the EEG data needed to first be pre-processed. Raw 

EEG data in various formats (.bdf, .raw, .cnt) were downloaded from the online repository for 

the EMBARC study. Different research sites used different EEG technology to acquire the data 

and therefore had different raw file formats as well as a varying number of channels (between 64 

and 128). Across all sites, EEG data were collected at baseline (pre-treatment) and after one 

week of active or sham treatment. Three of the four sites (MG, TX, and UM) acquired 

continuous EEG data at a sampling rate of 250 Hz while one site (CU) acquired data at a 

sampling rate of 256 Hz [52]. After downloading the data, EEGLAB, a program of MATLAB, 

was used to convert all the different formats into a .set file and all files were resampled at 250 Hz 

to create a uniform dataset [53]. For each of the subjects whose data qualified, their two EEG 

files were then combined into one larger .set file to allow for uniform processing at later steps. 

Finally, all combined .set files were re-referenced to the Fz electrode.  

The next major pre-processing step was to run all files through Fully Automated 

Statistical Thresholding for EEG artifact Rejection (FASTER), a software embedded within 
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EEGLAB [54]. Each research site (CU, MG, TX, and UM) had a unique FASTER .eegjob file 

associated with it to account for the different number of channels, and all FASTER output files 

were referenced to the common average. After performing automated artifact rejection, the 

combined files were split back into individual files representing baseline and post one week of 

treatment. Next, only the channels common to all four sites, of which there were 55, were 

selected and .set files that only contained these channels were generated for analysis.  

Then, a built-in function within EEGLAB, called ICLabel, was used to filter through the 

individual components of each of the files. Each individual component was classified as having 

some amount of 7 different classes of components: brain, muscle, eyes, heart, line noise, channel 

noise, or other, where brain components were given the label “1,” muscle components were 

given the label “2,” and so on [55]. The class with the highest numeric classification value in an 

individual component was then determined, and those components whose class label was “1,” 

indicating it had the highest percentage chance of being brain, were kept while the remaining 

were rejected. After this step, the number of non-brain components in the file was calculated. 

Then, while iterating through all of the .set files, any that would not contain more than 5 

individual components after rejecting the non-brain components were flagged as requiring 

manual visual inspection.  

Next, the EEG power measures were obtained for each subject. The range for the 

individual frequency bands were defined as follows: delta (0.5-4 Hz), theta (4-8Hz), alpha (8-

12Hz), and beta (12-20Hz). After calculating relative and absolute power for each of these bands 

and plotting the corresponding power spectrum at channels F3 and Oz, files were run through an 

algorithm which flagged certain subjects as requiring visual inspection if  
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• Any one of the following conditions were true: a greater than 1.5-unit difference between 

relative delta power and alpha power in Oz, more delta power than theta power in Oz, or 

more delta power than beta power in Oz OR 

• Any one of the following conditions were true: a greater than 1.5-unit difference between 

relative delta power and alpha power in F3, more delta power than theta power in F3, and 

more delta power than beta power in F3 OR 

• There was no significant IAF in Oz 

Initially, for the first condition, simply specifying greater average delta power than alpha power 

led to files that did not have unwanted noise being flagged. Therefore, multiple modifications 

were tested before finalizing a 1.5-unit difference between relative delta and alpha power in Oz 

as the final condition. Assigning this numeric value resulted in only files whose power spectrums 

visually had high delta power, and subsequently unwanted noise, being flagged. Other relevant 

values that were calculated include the relative delta-theta/alpha power ratio at each channel, the 

mean relative delta-theta/alpha ratio across bipolar electrode pairs FPz-F7 and FPz-F8, and 

cordance in frequency bands delta, theta, alpha, and beta.  

After all files were run through the visual inspection algorithm, those that were flagged 

were individually assessed by looking through all 55-channel data and deleting any epochs that 

had excessive noise or other significant artifacts. To ensure the commonly accepted adequate 

data length for EEG datasets in literature, any files that had less than 5 minutes of usable data 

were rejected entirely and removed from the file repository for further analysis. Some files 

showed significant eye or cardiac artifacts. For these files, individual component activations 

were plotted and those that resembled a pattern like the one present in the original file were 

removed manually, and then visual inspection was performed. Once visual inspection was 
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complete, the calculated power and cordance measures were extracted from each of the files. 

When calculating power, an FFT of 1000 data points was applied to 4 second epochs of data with 

a sampling rate of 250 Hz.  

After quantifiable data had been extracted from the final subset of EEG files for the 

various subjects, the clinical data was downloaded and each patient’s HAMD score at baseline 

and one-week post-treatment was extracted. Some patients that had EEG recorded at the two 

time points did not have a HAMD score recorded post one-week of treatment, so their clinical 

and EEG data were excluded for data analysis. Lastly, the files were sorted into those that 

received active treatment with sertraline (n = 86) and those that received sham treatment with a 

placebo drug (n = 92).  

For cordance measures, data were collected from two montages: a 30-channel montage 

and an 18-channel montage (Fig. 1-2). These montages were generated based on 19- and 35-

channnel montages defined in a cordance manual provided by the UCLA Department of 

Psychiatry and Biobehavioral Sciences, where the cordance measure was developed [42]. Some 

electrodes included in the original montages provided by this document were named differently 

in the EMBARC data and were substituted as such. For example, electrodes T3 and T4 from the 

original montage corresponded to electrodes T7 and T8 and electrodes T5 and T6 corresponded 

to electrodes P7 and P8. Any electrodes from the original montage that were not present in the 

EMBARC datasets were excluded from the montage. These electrodes included Cz, AF1, AF2, 

PO1, and PO2, of which Cz was excluded from the original 19-channel montage and all five of 

which were excluded from the original 35-channel montage. 
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Figure 1: 30 channel cordance montage 

 

Figure 2: 18 channel cordance montage 
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2.3 Data Analysis 

2.3.1 Statistical Analysis of Power and Ratio Measures 

 Statistical analysis was conducted with the primary outcome of interest set to remission 

(HAMD score ≤ 7) after 8 weeks of treatment as per Leuchter, et al 2017 [39]. First, within-

group t-tests were done within the two treatment groups to determine if there was a significant 

difference between ratio measures at baseline versus Week 1. Then, a between-group t-test 

analyzed the average change in DT/A ratio across bipolar pairs FPz-F7 and FPz-F8 at Week 1 in 

the placebo versus sertraline groups. A chi-square analysis was also done to understand 

remission likelihood in the active and sham groups.  

 Once this initial statistical analysis was complete, binary logistic regression models were 

generated and receiver operator curve (ROC) analysis was conducted to evaluate early changes 

in DT/A ratio as a continued predictor of remission. In addition to these univariate regressions, 

multivariate logistic regression was performed while controlling for the effects of gender, age, 

baseline HAMD score, and baseline DT/A ratio as covariates. Finally, additional univariate 

binary logistic regressions were done using quartiles of average change in DT/A ratio values in 

the placebo and sertraline groups separately as predictors of remission likelihood. The 

percentage of remitters within each quartile was also calculated in conjunction.  

2.3.2 Statistical Analysis of Cordance Measures 

 Next, statistical analysis was done using theta cordance in the 30-channel montage as a 

predictor of clinical response at Week 8 of treatment (HAMD ≤ 10) according to methods 

outlined in Cook, et al [26]. Theta cordance was grouped by the following regions and averaged 

across the listed electrodes:  

• Prefrontal: FP1, FPz, FP2 
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• Central: FC1, FC2 

• Left temporal: T7, P7 

• Right temporal: T8, P8 

Once the data was separated by region, the subjects were then separated into four groups: 

placebo responders (P-R), placebo non-responders (P-NR), sertraline responders (S-R), and 

sertraline non-responders (S-NR). Theta cordance in the 30-channel montage was analyzed for 

group differences in the prefrontal, central, right temporal, and left temporal regions using 

separate one-way analysis of variance (ANOVA) (Fig. 3). For any regions that returned 

statistical significance (p < 0.05), t-tests and linear regression analyses were conducted.  

 

Figure 3: Regional groupings of 30-channel cordance montage  

The regional groupings of the electrodes are labeled as follows:  

blue = prefrontal, red = central, purple = left temporal, pink = right temporal 
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Finally, statistical analysis was carried out for theta cordance in the 18-channel montage 

(Fig. 4) as a predictor of treatment response (measured by a percent change in HAMD score ≥ 

50%) as per methods outlined in Hunter, et al [41]. First, theta cordance values were grouped by 

region as follows and averaged to obtain one value for each subject:  

• Prefrontal: FP1, FP2 

• Midline-and-right-frontal: Fz, FP2, F4, F8 

• Midline-and-left-frontal: Fz, FP1, F3, F7 

• Central: Fz, C3, Pz, C4 

• Midline-and-right-occipital: P4, O2, Pz 

• Midline-and-left-occipital: P3, O1, Pz 

• Occipital: O1, P3, Pz, P4, O2 

After grouping the data, individual linear regression models were generated for average theta 

cordance across each region as single predictors of clinical response after 8 weeks of treatment. 

Then, any region that returned a significant overall model (p < 0.05) was further examined in a 

linear regression model that also controlled for age, gender, and baseline HAMD score. 

Significant regions were also examined with a linear regression model that used pretreatment 

baseline cordance as a single predictor of change in clinical outcome. Finally, any region that 

obtained statistical significance when using change in theta cordance as a predictor was 

evaluated in relationship to percent change in HAMD score from baseline to 2 weeks and 4 

weeks after treatment using Pearson’s bivariate correlation. These analyses were first carried out 

for the original 55-channel montage and were then replicated for the two additional montages. 

The same set of electrode groupings were used for these additional montages except for the 18-

channel montage, which did not include FPz in any of the regions. 
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Figure 4: Regional groupings of 18-channel cordance montage 

The regional groupings of the electrodes are labeled as follows: blue = prefrontal,  

green = midline-and-right-frontal, maroon = midline-and-left-frontal, red = central,  

pink = midline-and-right-occipital, purple = midline-and-left-occipital, yellow = occipital 
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Results 

3.1 Subject demographic and clinical characteristics 

 

 Clinical and demographic data for the placebo (N = 92) and sertraline (N = 86) treatment 

groups are presented in Table 1. Between placebo and sertraline remitters (HAMD ≤ 7 at week 

8), age was the only variable that demonstrated significant difference (p = 0.0426) [56]. Between 

remitters and non-remitters within the treatment groups, age (p = 0.0211) and baseline HAMD 

score (p = 0.0167) were found to be significantly different in the placebo group, but not in the 

sertraline group. Finally, remission rates were not significantly different (p = 0.2) between the 

sertraline group (45.35%) versus the placebo group (35.87%). 

 
Table 1: Clinical and demographic characteristics for placebo and sertraline cohorts 
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Figure 5: Distribution of clinical HAMD-17 scores at baseline and Week 8 of treatment for 

placebo and sertraline cohorts 

 

3.2 Effect of placebo or sertraline treatment on DT/A ratio and the relationship between 

change in DT/A ratio and remission  

 

We did not find any significant differences in Week 1 changes in the mean relative delta-

theta/alpha (DT/A) ratio across FPz-F7 and FPz-F8 between placebo and sertraline groups. 

Between-group differences in the mean change in DT/A ratio or baseline DT/A ratio were also 

not significant. Binary logistic regressions showed that DT/A ratio was not a significant predictor 

of remission in the placebo nor sertraline groups. For the placebo group, the multivariate 

regression model examining gender, age, baseline HAMD score, and baseline DT/A ratio as 

covariates found age (p = 0.0106) and baseline HAMD score (p = 0.0113) as significant 

predictors of remission. None of the covariates were found to be significant predictors of 

remission in the sertraline group. A binary logistic regression analysis of DT/A ratio by quartile 

also did not return any significant results in neither group.  
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3.3 Change in theta cordance as a predictor of clinical outcome 

3.3.1 Regional theta cordance and response at Week 8 

Significant differences in change in theta cordance using the 30-channel montage 

between sertraline responders and non-responders were found at some electrodes (Fig. 6). While 

no statistically significant group differences were found within any of the four regions, change in 

theta cordance from baseline to Week 1 was significantly different between placebo responders 

and sertraline responders at electrode F8 (p = 0.0338) and between placebo non-responders and 

sertraline non-responders at electrode FC5 (p = 0.014). Due to a lack of significant findings in 

the regional analysis, no further statistical analysis was pursued using these parameters.  
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Figure 6: Change in theta cordance (30-channel montage) after 1 week of treatment across 

responders and non-responders in placebo and sertraline group 

Using the 30-channel montage, no significant differences in theta cordance were found between 

placebo responders and non-responders. Between sertraline responders and non-responders, a 

significant difference was found in change in theta cordance after one week of treatment at 

electrodes T7 (p = 0.0471), P3 (p = 0.0329), P4 (p = 0.0257), and PO8 (p = 0.026). 

 

3.3.2 Theta cordance and change in response from baseline to Week 8 

 A significant difference in change in theta cordance using the 18-channel montage 

between sertraline responders and non-responders was found at one electrode (Fig. 7).  
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Figure 7: Change in theta cordance (18-channel montage) after 1 week of treatment across 

responders and non-responders in placebo and sertraline group 

For this 18-channel montage, no significant differences in theta cordance were found between 

placebo responders and non-responders. Between sertraline responders and non-responders, a 

significant difference was found in change in theta cordance after one week of treatment at 

electrode P4 (p = 0.0021). 

 

Results from the linear regression analyses found that early changes in central theta cordance 

(CC) were significantly associated with percent change in HAMD score from baseline to Week 8 

(Table 2). CC remained the only significant predictor of clinical response (p = 0.0185) in a 

multiple regression model that controlled for age, gender, and baseline HAMD score as 

predictors. Trend-level significance was found when examining pretreatment baseline central 
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theta cordance as a single predictor of clinical outcome (p = 0.092). As suggested by the results 

of the initial linear regression, there was a significant correlation between a decrease in central 

theta cordance and higher percent change in HAMD score (greater improvement) from baseline 

to Week 8 (r = -0.2559, p = 0.0174), but there was no significant correlation at Week 2 or 4.  

 
Table 2: Statistical significance (p-values) of linear regression models analyzing 

relationship between early changes in theta cordance and clinical outcome 
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Discussion 

The primary findings of this study posit evidence for treatment-emergent changes in theta 

cordance as a predictor of higher improvement in clinical scores for MDD patients treated with 

sertraline. In the given subset of the EMBARC study subjects, a decrease from baseline to Week 

1 of treatment in theta cordance in the central brain region (CC) was associated with a greater 

percent change in HAMD score from baseline to Week 8 of treatment in sertraline-treated 

subjects, but not in placebo-treated subjects. When compared to clinical or demographic 

characteristics such as age, gender, and baseline depression severity, CC in the 18-channel 

montage remained the only significant predictor of treatment response. Data also suggested a 

trend, though not significant, between pretreatment baseline theta cordance and clinical outcome 

in the sertraline group. While these results do not perfectly replicate the Hunter, et al. finding of 

early changes in central theta cordance as a predictor of rTMS outcome, they demonstrate that 

the same biomarker could be used to predict sertraline outcome, which is important considering 

that antidepressants are often the first line of treatment for MDD patients. Furthermore, these 

findings warrant further research into the potential efficacy of pairing sertraline with rTMS 

treatment in order to improve MDD outcome. They further suggest that the underlying 

neurophysiological mechanisms of rTMS and sertraline treatment in depressed patients may 

share some similarities. 

Although a previous study found that a change in the mean relative DT/A ratio was 

predictive of remission likelihood in the active but not sham treatment group, similar findings 

were not replicated in this dataset [39]. This discrepancy could be attributed to slight differences 

in the EEG preprocessing pipeline and stringent artifact rejection methods that were 

implemented for this dataset. Most notably, the original paper used a 35-channel montage with a 
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Pz reference while recording, while this dataset pulled a 55-channel data from differing size 

montages and re-referenced all data to electrode Fz. It is also possible that additional differences 

in the EEG recording protocol were present across the four different sites, which could have 

contributed to the introduction of unwanted noise. 

Traditionally, manual visual inspection would ensure that the highest quality of EEG 

signal was preserved; however, this protocol was not practical given the number of subjects 

(200+) and length of recordings (~8-10 minutes). Therefore, automated artifact rejection was 

completed through FASTER, then individual component rejection was done using ICLabel, and 

finally the remaining files were automatically filtered for visual inspection based on spectral 

power distribution [54][55]. In each of these three steps, it is possible that built-in conditions to 

the programs are mistaking signal for noise and thus rejecting significant data. Generally, the 

main sources of noise in EEG signal originate near the frontal region of the brain, so automated 

removal of such noise may also be extracting signal that would be relevant to calculating a delta-

theta/alpha ratio representative of that subject’s data. In particular, removal of eye movement 

artifact, which is often picked up by prefrontal and frontal electrodes (such as FP1, FP2, F7, F8) 

and is usually reflected by high power in the lower end of the delta band, may be subsequently 

deleting important delta signal at the electrodes of interest.   

When testing changes in theta cordance using a 30-channel montage as a biomarker of 

medication responders, the identification by several previous studies of early changes in average 

prefrontal theta cordance as predicting improved MDD outcome (HAMD ≤ 10) was not 

replicated [26]. Within-group t-tests at each electrode found significant differences in Week 1 

change in theta cordance between sertraline responders and non-responders at several electrodes 

but no significant differences for the placebo group. However, further research would have to be 
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done to validate and confirm these findings. A number of previous studies have found that early 

changes in prefrontal theta cordance predict response to different antidepressant treatments, 

including fluoxetine, venlafaxine, citalopram, ketamine, rTMS, as well as to deep brain 

stimulation (DBS) and experimental antidepressant compounds but not to placebo 

[25][26][57][58][59]. It is not clear why this measure was not a robust predictor of response in 

these subjects, nor did it differentiate placebo from sertraline responders.  

There are a number of factors that could contribute to the failure to replicate earlier 

studies. First, most studies examined medications other than sertraline. It is possible that EEG 

biomarkers developed on different medications or treatments are not applicable to sertraline, 

although previous research suggests that these biomarkers are independent of specific 

medication. Second, the current study used a different semiautomated pipeline for artifact 

identification and removal, in contrast to previous studies that relied primarily or exclusively on 

visual inspection to remove segments contaminated by artifact. It is possible that this new artifact 

removal technique also removed EEG activity of cerebral origin that was associated with 

differential treatment outcome. Next steps in this project will include reprocessing of the data 

using different strategies for artifact removal to determine if this yields different results. Third, it 

is possible that the absence of certain prefrontal electrodes (e.g., AF3 and AF4) in the EMBARC 

recording montage diminished the biomarker signal present in the EEG recordings. Next steps 

also include reanalyzing these data following interpolation of the missing electrodes. 

Additionally, five electrodes that were included in in the original study—AF1, AF2, Cz, PO1, 

and PO2—were not part of this study’s 30-channel montage. Therefore, the connections 

surrounding the electrodes in the prefrontal region of the brain (FP1, FPz, and FP2) were very 

different, and this could have contributed to significant differences in the calculated average 
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prefrontal theta cordance values. Had the montages been the same, there may have been an 

association between prefrontal theta cordance and the sertraline responder group. Additionally, 

as was the case with the DT/A ratio protocol, qEEG data was collected using a Pz referential 

montage, which was not the case for this dataset. 
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Limitations and Future Work 

While this study’s findings reflect a large sample size (N = 178) and a placebo-controlled 

dataset with which to compare findings, several limitations must be considered. Firstly, the lack 

of distinct clinical separation between the placebo and sertraline groups of this subset of subjects 

may have inherently limited any potential findings of neurophysiological differentiation between 

the two treatment groups. Furthermore, the original study used a 21-channel montage, while this 

study used an 18-channel montage. These differences likely contributed to a lack of significant 

findings or trends in other regions of the brain. In addition, the “central” electrode grouping 

implemented (Fz, C3, Pz, C4) varied slightly from that of the original study (Fz, C3, Pz, C4, Cz). 

It is possible that the inclusion of Cz in this dataset could have resulted in stronger associations 

not only with change in cordance as a predictor, but perhaps pretreatment baseline cordance as a 

predictor as well.  

In order to test the previously identified potential sources of error, future work will first 

remove the condition regarding higher delta power than alpha power as implemented in the final 

flagging algorithm. If no prominent differences or trends are seen, changes will be made further 

back in the preprocessing pipeline, especially in FASTER and ICLabel, to simplify the artifact 

removal process through the implementation of less stringent conditions. Such modifications 

could help better understand the effects of each artifact removed within the different processing 

steps. Finally, implementing more or less dense cordance montages, defining different electrode 

groupings, or choosing different brain regions over which cordance was measured could result in 

more unique findings or biomarkers. These steps will bolster the initial findings of this study and 

allow for more robust conclusions to be made regarding other potential biomarkers of treatment 

outcome in MDD patients.  



30 

References 

 

[1] R. H. Belmaker and G. Agam, “Major Depressive Disorder,” New England Journal of 

Medicine, vol. 358, no. 1, pp. 55–68, Jan. 2008, doi: 10.1056/NEJMra073096. 

[2] S. L. James et al., “Global, regional, and national incidence, prevalence, and years lived 

with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a 

systematic analysis for the Global Burden of Disease Study 2017,” The Lancet, vol. 392, 

no. 10159, pp. 1789–1858, Nov. 2018, doi: 10.1016/S0140-6736(18)32279-7. 

[3] W. World Health Organization, “Depression.” https://www.who.int/news-room/fact-

sheets/detail/depression (accessed Jun. 02, 2020). 

[4] A. J. Bayes and G. B. Parker, “Comparison of guidelines for the treatment of unipolar 

depression: a focus on pharmacotherapy and neurostimulation,” Acta Psychiatrica 

Scandinavica, vol. 137, no. 6, pp. 459–471, 2018, doi: https://doi.org/10.1111/acps.12878. 

[5] National Center for Biotechnology Information, U. S. N. L. of M. 8600 R. Pike, B. MD, 

and 20894 Usa, Depression: How effective are antidepressants? Institute for Quality and 

Efficiency in Health Care (IQWiG), 2020. Accessed: Apr. 25, 2021. [Online]. Available: 

http://www.ncbi.nlm.nih.gov/books/NBK361016/ 

[6] G. Voegeli, M. L. Cléry-Melin, N. Ramoz, and P. Gorwood, “Progress in Elucidating 

Biomarkers of Antidepressant Pharmacological Treatment Response: A Systematic Review 

and Meta-analysis of the Last 15 Years,” Drugs, vol. 77, no. 18, pp. 1967–1986, Dec. 2017, 

doi: 10.1007/s40265-017-0819-9. 

[7] Mayo Clinic, “Antidepressants: Selecting one that’s right for you,” Mayo Clinic. 

https://www.mayoclinic.org/diseases-conditions/depression/in-depth/antidepressants/art-

20046273 (accessed May 08, 2021). 



31 

[8] G. Buzsáki and K. Rogers, “Neural oscillation | Definition, Types, & Synchronization,” 

Encyclopedia Britannica, Jun. 25, 2018. https://www.britannica.com/science/brain-wave-

physiology (accessed May 08, 2021). 

[9] S. R. Cole and B. Voytek, “Brain Oscillations and the Importance of Waveform Shape,” 

Trends in Cognitive Sciences, vol. 21, no. 2, pp. 137–149, Feb. 2017, doi: 

10.1016/j.tics.2016.12.008. 

[10] S. Olbrich, R. van Dinteren, and M. Arns, “Personalized Medicine: Review and 

Perspectives of Promising Baseline EEG Biomarkers in Major Depressive Disorder and 

Attention Deficit Hyperactivity Disorder,” NPS, vol. 72, no. 3–4, pp. 229–240, 2015, doi: 

10.1159/000437435. 

[11] C. M. Michel and M. M. Murray, “Towards the utilization of EEG as a brain imaging tool,” 

NeuroImage, vol. 61, no. 2, pp. 371–385, Jun. 2012, doi: 

10.1016/j.neuroimage.2011.12.039. 

[12] B. Farnsworth, “What is EEG (Electroencephalography) and How Does it Work?,” 

imotions. https://imotions.com/blog/what-is-eeg/ (accessed Dec. 07, 2020). 

[13] J. N. Acharya, A. J. Hani, J. Cheek, P. Thirumala, and T. N. Tsuchida, “American Clinical 

Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position 

Nomenclature,” The Neurodiagnostic Journal, vol. 56, no. 4, pp. 245–252, Oct. 2016, doi: 

10.1080/21646821.2016.1245558. 

[14] BIOPAC Systems, Inc., “#AS122 - Power Spectrum Analysis.”  

[15] J. J. Newson and T. C. Thiagarajan, “EEG Frequency Bands in Psychiatric Disorders: A 

Review of Resting State Studies,” Front Hum Neurosci, vol. 12, Jan. 2019, doi: 

10.3389/fnhum.2018.00521. 



32 

[16] H. Cai et al., “A Pervasive Approach to EEG-Based Depression Detection,” Complexity, 

vol. 2018, p. e5238028, Feb. 2018, doi: 10.1155/2018/5238028. 

[17] S. Suurmets, “Neural Oscillations - Interpreting EEG Frequency Bands - iMotions,” 

Imotions Publish, Feb. 19, 2018. https://imotions.com/blog/neural-oscillations/ (accessed 

May 08, 2021). 

[18] B. Farnsworth, “EEG (Electroencephalography): The Complete Pocket Guide - iMotions,” 

Imotions Publish, Aug. 27, 2019. https://imotions.com/blog/eeg/ (accessed Apr. 23, 2021). 

[19] R. Yuvaraj et al., “On the analysis of EEG power, frequency and asymmetry in Parkinson’s 

disease during emotion processing,” Behavioral and Brain Functions, vol. 10, no. 1, p. 12, 

Apr. 2014, doi: 10.1186/1744-9081-10-12. 

[20] W. Bomela, S. Wang, C.-A. Chou, and J.-S. Li, “Real-time Inference and Detection of 

Disruptive EEG Networks for Epileptic Seizures,” Scientific Reports, vol. 10, no. 1, Art. no. 

1, May 2020, doi: 10.1038/s41598-020-65401-6. 

[21] M. McVoy, S. Lytle, E. Fulchiero, M. E. Aebi, O. Adeleye, and M. Sajatovic, “A 

systematic review of quantitative EEG as a possible biomarker in child psychiatric 

disorders,” Psychiatry Research, vol. 279, pp. 331–344, Sep. 2019, doi: 

10.1016/j.psychres.2019.07.004. 

[22] A. S. Dharmadhikari, A. L. Tandle, S. V. Jaiswal, V. A. Sawant, V. N. Vahia, and N. Jog, 

“Frontal theta asymmetry as a biomarker of depression,” East Asian Archives of Psychiatry, 

Mar. 2018, Accessed: Apr. 18, 2021. [Online]. Available: 

https://search.informit.org/doi/abs/10.3316/informit.485791584679253 

[23] C.-H. Lai, “Promising Neuroimaging Biomarkers in Depression,” Psychiatry Investig, vol. 

16, no. 9, pp. 662–670, Sep. 2019, doi: 10.30773/pi.2019.07.25.2. 



33 

[24] P. Celada, M. V. Puig, and F. Artigas, “Serotonin modulation of cortical neurons and 

networks,” Front Integr Neurosci, vol. 7, Apr. 2013, doi: 10.3389/fnint.2013.00025. 

[25] M. Bares et al., “Early reduction in prefrontal theta QEEG cordance value predicts response 

to venlafaxine treatment in patients with resistant depressive disorder,” European 

Psychiatry, vol. 23, no. 5, pp. 350–355, Aug. 2008, doi: 10.1016/j.eurpsy.2008.03.001. 

[26] I. A. Cook et al., “Early Changes in Prefrontal Activity Characterize Clinical Responders to 

Antidepressants,” Neuropsychopharmacology, vol. 27, no. 1, pp. 120–131, Jul. 2002, doi: 

10.1016/S0893-133X(02)00294-4. 

[27] A. F. Leuchter et al., “Comparative effectiveness of biomarkers and clinical indicators for 

predicting outcomes of SSRI treatment in Major Depressive Disorder: Results of the 

BRITE-MD study,” Psychiatry Research, vol. 169, no. 2, pp. 124–131, Sep. 2009, doi: 

10.1016/j.psychres.2009.06.004. 

[28] N. van der Vinne, M. A. Vollebregt, M. J. A. M. van Putten, and M. Arns, “Frontal alpha 

asymmetry as a diagnostic marker in depression: Fact or fiction? A meta-analysis,” 

Neuroimage Clin, vol. 16, pp. 79–87, Jul. 2017, doi: 10.1016/j.nicl.2017.07.006. 

[29] A. K. Kaiser, M.-T. Gnjezda, S. Knasmüller, and W. Aichhorn, “Electroencephalogram 

alpha asymmetry in patients with depressive disorders: current perspectives,” 

Neuropsychiatr Dis Treat, vol. 14, pp. 1493–1504, Jun. 2018, doi: 10.2147/NDT.S137776. 

[30] G. E. Bruder, J. P. Sedoruk, J. W. Stewart, P. J. McGrath, F. M. Quitkin, and C. E. Tenke, 

“Electroencephalographic Alpha Measures Predict Therapeutic Response to a Selective 

Serotonin Reuptake Inhibitor Antidepressant: Pre- and Post-Treatment Findings,” 

Biological Psychiatry, vol. 63, no. 12, pp. 1171–1177, Jun. 2008, doi: 

10.1016/j.biopsych.2007.10.009. 



34 

[31] C. E. Tenke et al., “Current Source Density Measures of Electroencephalographic Alpha 

Predict Antidepressant Treatment Response,” Biological Psychiatry, vol. 70, no. 4, pp. 

388–394, Aug. 2011, doi: 10.1016/j.biopsych.2011.02.016. 

[32] J. K. Morgan, T. M. Olino, D. L. McMakin, N. D. Ryan, and E. E. Forbes, “Neural 

response to reward as a predictor of increases in depressive symptoms in adolescence,” 

Neurobiology of Disease, vol. 52, pp. 66–74, Apr. 2013, doi: 10.1016/j.nbd.2012.03.039. 

[33] W. Klimesch, M. Doppelmayr, H. Russegger, T. Pachinger, and J. Schwaiger, “Induced 

alpha band power changes in the human EEG and attention,” Neuroscience Letters, vol. 

244, no. 2, pp. 73–76, Mar. 1998, doi: 10.1016/S0304-3940(98)00122-0. 

[34] P. Fernández-Palleiro et al., “Brainwaves Oscillations as a Potential Biomarker for Major 

Depression Disorder Risk,” Clin EEG Neurosci, vol. 51, no. 1, pp. 3–9, Jan. 2020, doi: 

10.1177/1550059419876807. 

[35] A. S. Korb, A. M. Hunter, I. A. Cook, and A. F. Leuchter, “Rostral Anterior Cingulate 

Cortex Theta Current Density and Response to Antidepressants and Placebo in Major 

Depression,” Clin Neurophysiol, vol. 120, no. 7, pp. 1313–1319, Jul. 2009, doi: 

10.1016/j.clinph.2009.05.008. 

[36] D. A. Pizzagalli, “Frontocingulate Dysfunction in Depression: Toward Biomarkers of 

Treatment Response,” Neuropsychopharmacology, vol. 36, no. 1, Art. no. 1, Jan. 2011, doi: 

10.1038/npp.2010.166. 

[37] A. Baskaran et al., “The comparative effectiveness of electroencephalographic indices in 

predicting response to escitalopram therapy in depression: A pilot study,” J Affect Disord, 

vol. 227, pp. 542–549, Feb. 2018, doi: 10.1016/j.jad.2017.10.028. 



35 

[38] L. Livint Popa, H. Dragos, C. Pantelemon, O. Verisezan Rosu, and S. Strilciuc, “The Role 

of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders,” J Med Life, vol. 13, 

no. 1, pp. 8–15, 2020, doi: 10.25122/jml-2019-0085. 

[39] A. F. Leuchter, A. M. Hunter, F. A. Jain, M. Tartter, C. Crump, and I. A. Cook, 

“Escitalopram but not placebo modulates brain rhythmic oscillatory activity in the first 

week of treatment of Major Depressive Disorder,” Journal of Psychiatric Research, vol. 84, 

pp. 174–183, Jan. 2017, doi: 10.1016/j.jpsychires.2016.10.002. 

[40] A. F. Leuchter et al., “Cordance: A New Method for Assessment of Cerebral Perfusion and 

Metabolism Using Quantitative Electroencephalography,” NeuroImage, vol. 1, no. 3, pp. 

208–219, Jun. 1994, doi: 10.1006/nimg.1994.1006. 

[41] A. M. Hunter, T. X. Nghiem, I. A. Cook, D. E. Krantz, M. J. Minzenberg, and A. F. 

Leuchter, “Change in Quantitative EEG Theta Cordance as a Potential Predictor of 

Repetitive Transcranial Magnetic Stimulation Clinical Outcome in Major Depressive 

Disorder,” Clin EEG Neurosci, vol. 49, no. 5, pp. 306–315, Sep. 2018, doi: 

10.1177/1550059417746212. 

[42] UCLA Department of Psychiatry and Biobehavioral Sciences, “Cordance Manual.”  

[43] C. J. Bench, K. J. Friston, R. G. Brown, L. C. Scott, R. S. Frackowiak, and R. J. Dolan, 

“The anatomy of melancholia--focal abnormalities of cerebral blood flow in major 

depression,” Psychol Med, vol. 22, no. 3, pp. 607–615, Aug. 1992, doi: 

10.1017/s003329170003806x. 

[44] C. J. Bench, K. J. Friston, R. G. Brown, R. S. Frackowiak, and R. J. Dolan, “Regional 

cerebral blood flow in depression measured by positron emission tomography: the 



36 

relationship with clinical dimensions,” Psychol Med, vol. 23, no. 3, pp. 579–590, Aug. 

1993, doi: 10.1017/s0033291700025368. 

[45] C. Fu, D. Shi, Y. Gao, and J. Xu, “Functional assessment of prefrontal lobes in patients 

with major depression disorder using a dual-mode technique of 3D-arterial spin labeling 

and 18F-fluorodeoxyglucose positron emission tomography/computed tomography,” 

Experimental and Therapeutic Medicine, vol. 14, no. 2, pp. 1058–1064, Aug. 2017, doi: 

10.3892/etm.2017.4594. 

[46] F. Biver et al., “Frontal and parietal metabolic disturbances in unipolar depression,” 

Biological Psychiatry, vol. 36, no. 6, pp. 381–388, Sep. 1994, doi: 10.1016/0006-

3223(94)91213-0. 

[47] J. Sacher, J. Neumann, T. Fünfstück, A. Soliman, A. Villringer, and M. L. Schroeter, 

“Mapping the depressed brain: A meta-analysis of structural and functional alterations in 

major depressive disorder,” Journal of Affective Disorders, vol. 140, no. 2, pp. 142–148, 

Oct. 2012, doi: 10.1016/j.jad.2011.08.001. 

[48] A. F. Leuchter et al., “Effectiveness of a quantitative electroencephalographic biomarker 

for predicting differential response or remission with escitalopram and bupropion in major 

depressive disorder,” Psychiatry Research, vol. 169, no. 2, pp. 132–138, Sep. 2009, doi: 

10.1016/j.psychres.2009.04.004. 

[49] M. Bares et al., “The change of prefrontal QEEG theta cordance as a predictor of response 

to bupropion treatment in patients who had failed to respond to previous antidepressant 

treatments,” European Neuropsychopharmacology, vol. 20, no. 7, pp. 459–466, Jul. 2010, 

doi: 10.1016/j.euroneuro.2010.03.007. 



37 

[50] S. de la Salle, N. Jaworska, P. Blier, D. Smith, and V. Knott, “Using prefrontal and midline 

right frontal EEG-derived theta cordance and depressive symptoms to predict the 

differential response or remission to antidepressant treatment in major depressive disorder,” 

Psychiatry Research: Neuroimaging, vol. 302, p. 111109, Aug. 2020, doi: 

10.1016/j.pscychresns.2020.111109. 

[51] M. H. Trivedi et al., “Establishing moderators and biosignatures of antidepressant response 

in clinical care (EMBARC): Rationale and design,” Journal of Psychiatric Research, vol. 

78, pp. 11–23, Jul. 2016, doi: 10.1016/j.jpsychires.2016.03.001. 

[52] C. E. Tenke et al., “Demonstrating Test-Retest Reliability of Electrophysiological Measures 

for Healthy Adults in a Multisite Study of Biomarkers of Antidepressant Treatment 

Response,” Psychophysiology, vol. 54, no. 1, pp. 34–50, Jan. 2017, doi: 

10.1111/psyp.12758. 

[53] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial 

EEG dynamics including independent component analysis,” Journal of Neuroscience 

Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004, doi: 10.1016/j.jneumeth.2003.10.009. 

[54] H. Nolan, R. Whelan, and R. B. Reilly, “FASTER: Fully Automated Statistical 

Thresholding for EEG artifact Rejection,” Journal of Neuroscience Methods, vol. 192, no. 

1, pp. 152–162, Sep. 2010, doi: 10.1016/j.jneumeth.2010.07.015. 

[55] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “ICLabel: An automated 

electroencephalographic independent component classifier, dataset, and website,” 

Neuroimage, vol. 198, pp. 181–197, Sep. 2019, doi: 10.1016/j.neuroimage.2019.05.026. 

[56] M. Hamilton, “A RATING SCALE FOR DEPRESSION,” J Neurol Neurosurg Psychiatry, 

vol. 23, no. 1, pp. 56–62, Feb. 1960. 



38 

[57] M. Bares et al., “QEEG Theta Cordance in the Prediction of Treatment Outcome to 

Prefrontal Repetitive Transcranial Magnetic Stimulation or Venlafaxine ER in Patients 

With Major Depressive Disorder,” Clin EEG Neurosci, vol. 46, no. 2, pp. 73–80, Apr. 

2015, doi: 10.1177/1550059413520442. 

[58] M. Haghighi et al., “In patients suffering from major depressive disorders, quantitative 

EEG showed favorable changes in left and right prefrontal cortex,” Psychiatry Research, 

vol. 251, pp. 137–141, May 2017, doi: 10.1016/j.psychres.2017.02.012. 

[59] J. Horacek et al., “Subanesthetic dose of ketamine decreases prefrontal theta cordance in 

healthy volunteers: implications for antidepressant effect,” Psychol Med, vol. 40, no. 9, pp. 

1443–1451, Sep. 2010, doi: 10.1017/S0033291709991619. 

 

 

 




