
UCLA
UCLA Electronic Theses and Dissertations

Title
Statistical Analysis of Wildfire Count and Size Distributions

Permalink
https://escholarship.org/uc/item/2v20m46r

Author
Huang, Yu

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2v20m46r
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Statistical Analysis of Wildfire Count and Size Distributions

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Applied Statistics

by

Yu Huang

2019



c© Copyright by

Yu Huang

2019



Abstract of the Thesis

Statistical Analysis of Wildfire Count and Size Distributions

by

Yu Huang

Master of Science in Applied Statistics

University of California, Los Angeles, 2019

Professor Frederic R Paik Schoenberg, Chair

Forest fires are one of the biggest ecological disasters in Canada. Counts and

sizes of fires vary substantially from year to year. In this study, the data is col-

lected from Northwest Territories in Canada. We assume that fire counts appear

to follow the Gamma-Poisson distribution, and fire sizes approximately follow

the Gamma-Exponential distribution. The Maximum Likelihood Estimation and

Random Search are used to estimate the parameters of two models. Identifi-

ability issues regarding parameters in the two models are explored. The Kol-

mogorov–Smirnov test is used to check for goodness of fit. For fire sizes data, al-

though the Kolmogorov–Smirnov test shows a low p-value, by plotting theoretical

and empirical distribution, we can see that the Gamma-Exponential distribution

fits adequately.
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CHAPTER 1

Introduction

As population increases in the world, human activities are affected directly

when natural hazards happened(Grid-Arendal UNEP, 2002). Natural hazards

cause hundreds thousands deaths and threaten people’s daily life(Guha-Sapir et

al., 2013). Fire disasters have become studies for numerous scholars(Wang et al.,

2005; Cheng and Wang, 2008). In order to manage public expectations and to

assist forest managers with wildfire preparedness, it is important to be able to

estimate the distributions of wildfire sizes and counts as accurately as possible

The dataset that is analyzed in this paper is from Northwest Territories in

Canada. It contains records for the recorded lightning-caused fires.

The Poisson distribution is widely used to investigate count data. In some

previously studies, the Poisson distribution was used to estimate the distributions

of fires counts and fire sizes(Mandallaz and Ye, 1997). However, sometimes this

may not be very accurate because most of the data are heavily skewed, such as

the data we used in this study. If we assume the distribution is the Poisson

distribution, then the variance of data should be the same as the mean. However,

variance is often much larger than the mean for the real data, meaning that the

data in real world are often overdispersed. In this study, we will use mixture

distributions to solve the issue with overdispersed data.

Many different models have also been used to investigate the distribution of

forest fires. Some fire sizes distributions have been investigated with Pareto dis-

tribution(Robertson, 1972). In previous research, models have been used to deal
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with over-dispersion data, such as Negative Binomial and other compound Pois-

son models(Bliss and Fisher, 1953; Hinde, 1982). The assumptions for this fire

data are that fire counts follow a Gamma-Poisson distribution, and fire sizes fol-

low a Gamma-Exponential distribution. Lawless (1987) showed that the negative

binomial distribution can arise from a mixture of the Gamma and Poisson distri-

butions, and a mixture of Gamma and exponential distirbutions can result in the

Pareto distribution.

The structure of the rest of this thesis is as follows. The second chapter

introduces the maximum likelihood method to estimate the unknown parame-

ters in Gamma-Poisson and Gamma-Exponential distribution, when one has ob-

served data. Analysis on fire counts and fire sizes distribution includes fitting

the proposed distribution to data and check for goodness of fit by using Kol-

mogorov–Smirnov test and graph method. The third chapter focuses on the

analysis on distribution of fire counts, with the assumption of Gamma-Poisson

distribution. In the fourth chapter, we have the analysis on distribution of fire

sizes, with the assumption of Gamma-Exponential distribution. Conclusions and

areas for further improvements are discussed in chapter 5.
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CHAPTER 2

Maximum Likelihood Estimates for

Gamma-Poisson and Gamma-Exponential

Distributions

2.1 Maximum Likelihood Estimation

Maximum Likelihood Estimation is a commonly used method that estimates

the unknown parameters of a distribution by using observations, and is advo-

cated by numerous scholars(Laird, 1978; Cohen, 1965). Maximum Likelihood

Estimation aims to maximize the likelihood function in order to find the unknown

parameters. Suppose x1, x2, x3, x4, ..., xn is a random sample of size n from a distri-

bution that has parameter θ. The joint probability density of n random variables

is:

L = f(x1, x2, ..., xn; θ)

In this case, L is the likelihood function. In principle, Maximum Likeli-

hood Estimation selects the value of θ to maximize the likelihood function L.

If X1, X2, ..., Xn are independent, the likelihood function can be expressed as:

L = f(x1, x2, ..., xn; θ) = f(x1; θ)× f(x2; θ)× ...× f(xn; θ)

Now, we can maximize L with respect to θ. Usually, we can make the derivation

easier if we take log of L. Then, we take the derivative of the loglikelihood function

3



with respect to θ and solve for θ.

2.2 Gamma-Poisson Distribution

Because real fire counts are overdispersed, the distribution for such data have

been modeled by such distributions as the negative binomial, or Gamma-Poisson

distribution(Lindén and Mäntyniemi, 2011). In this study, let ni denote the fire

numbers in year i in a particular region. Thus, the number of fires is modeled as

a Poisson random variable with a mean that is in turn variable from year to year,

and is some multiple of a variable drawn from a Gamma distribution. A possible

justification for such a model may be that the variable νi represents the effect of

the mean temperature in the region during year i. This mean temperature may

vary substantially from year to year, and conditionally, given this temperature,

the number of wildfires may be modeled as Poisson. Our assumption is that:

ni ∼ poisson(λi)

λi = λνi

νi = Γ(1, α)
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The probability density function of ni given λ = λνi is:

P (ni|λi = λνi) = (λνi)ni

ni!
e−λνi

∵ f(νi) = αe−ανi

∴P (ni) =
∫ ∞

0

(λνi)ni

ni!
e−λνiαe−ανidνi

= λni
ni!
α
∫ ∞

0
νni
i e
−(α+λ)νidνi

∵
∫ ∞

0
xα−1e−βxdx = Γ(α)

βα

∴ = λniα

ni!
Γ(ni + 1)

(α + λ)ni+1

= λniα

ni!
ni!

(α + λ)ni+1

= ( λ

α + λ
)ni( α

α + λ
)

∴ L =
(

α

α + λ

)N N∏
i=1

(
λ

α + λ

)ni

where N is the number of observations.

Thus, the loglikelihood function is obtained:

l =
∑

nilnλ−
∑

niln(α + λ) +Nlnα−Nln(α + λ)

=
∑

nilnλ−
(∑

ni +N
)
ln(α + λ) +Nln(α)
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Then, we take the derivatives of loglikelihood function and get:

∂l

∂λ
=
∑
ni
λ
− (∑ni +N)

α + λ
= 0

⇒ α
∑

ni + λ
∑

ni = λ
∑

ni + λN

⇒ λ = α
∑
ni

N

∂l

∂α
= N

α
− (∑ni +N)

α + λ
= 0

⇒ αN + λN = α
∑

ni + αN

⇒ α = λN∑
ni

The resulting analytical solutions for λ and α are from the same identity.

Therefore, there are more than one solution for λ and α. Note that Negative

Binomial distribution is also a Gamma mixture of Poisson(Joe and Zhu, 2019).

Therefore, one can easily see that ni also follows Negative Binomial distribution

with r = 1 and p = λ
α+λ . Hence, for Gamma-Poisson distribution in this paper,

we have:

E[ni] = λ

α

var[ni] = λ

α

(
1 + λ

α

)

Although the exact values for λ and α are unidentifiable, we can still use the

relationship to fit the distribution to data and check for goodness of fit. The

likelihood function is maximized when λ
α

= E[ni], which is the mean of ni. This

relationship is very handy for analyzing the data. After deriving the analytical

solution for Gamma-Poisson distribution, we now proceed to find the maximum
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likelihood estimates for the parameters in Gamma-Exponential distribution. The

procedures are pretty similar.

2.3 Gamma-Exponential Distribution

The most common distribution used for fire sizes seems to be the Pareto(

Schoenberg, Peng, and Woods, 2003). Pareto distribution could also be written

as a Gamma-Exponential mixture. Hence, Let xij be the size of jth fire in year i,

we have

xij ∼ Exp(µi)

µi = µξi

ξi ∼ Γ(1, α)

In a similar way, the probability density function of Xij can be obtained by:

P (xi1, xi2, xi3, ..., ximi
|µ, α) =

∫
P (xi1, xi2, xi3, ..., ximi

|µξi)P (ξi)

=
∫ mi∏

j=1
µξiexp(−µξixij)× αexp(−αξi)dξi

=
∫
µmiξmiexp(−µξi

mi∑
j=1

xij)αexp(−αξi)dξi

= αµmi

∫
ξmi
i exp[−(µ

mi∑
j=1

xij + α)ξi]dξi

= αµmi

Γ(mi + 1)(
µ
∑mi
j=1 xij + α

)mi+1

The likelihood function can be written as:
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L =
N∏
i=1

P (xi1, xi2, xi3, ..., ximi
|µ, α)

=
N∏
i=1

αµmi
Γ(mi + 1)(

µ
∑mi
j=1 xij + α

)mi+1

After taking logs:

lnL =
N∑
i=1

[lnα +milnµ+ lnΓ(mi + 1)− (mi + 1)ln(µ
mi∑
j=1

xij + α)]

= Nlnα +
N∑
i=1

milnµ+
N∑
i=1

lnΓ(mi + 1)−
N∑
i=1

[(mi + 1)ln(µ
mi∑
j=1

xij + α)]

= Nlnα + tlnµ+ c−
N∑
i=1

[(mi + 1)ln(µXi + α)]

where t = ∑N
i=1 mi, c = ∑N

i=1 lnΓ(mi + 1), and Xi = ∑mi
j=1 xij. The meaning of

each term here will be introduced in the next chapter.

In contrast with the fire counts distribution(Gamma-Poisson distribution), an-

alytical solution is hard to find due to the complexity of loglikelihood function. In

order to find the values of α and µ, the optim function in R is very useful to find

the parameters. The use of optim function will be explained in the next chapter

as well.
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CHAPTER 3

Fire Counts Distribution Analysis

The motivation for this study is both applied and theoretical. In this chapter,

we will use the maximum likelihood estimates derived in section 2.1 to analyze

the empirical fire counts data. The Gamma-Poisson distribution seems to be a

good fit for our dataset. In future studies for fire counts dataset, we may apply

similar statistical techniques used in this chapter to analyze other datasets and

even simulate future fire data.

3.1 Likelihood Maximization

In this section, we will use the plot of negative loglikelihood function of

Gamma-Poisson distribution to visualize where the minimum occurs. Recall from

Chapter 2, where we have derived the following relationships:

E[ni] = λ

α

var[ni] = λ

α

(
1 + λ

α

)

A plot of L function can visually check where the maximum value occurs. I

also take negative value of loglikelihood function, so that we will need to find the

minimum in the plot now. One can generate the negative loglikelihood function

by:

l <- function(par, n) {

9



Figure 3.1: Plot of Negative Loglikelihood Function

lambda <- par[1]
alpha <- par[2]
logl <- log(lambda)*sum(n) - (sum(n)+length(n))*log(alpha+lambda)
+length(n)*log(alpha)
return(-logl)

}

Figure 3.1 shows that the minimum value occurs at a straight line, in agreement

with the analytical solution. Although α and λ are not identifiable, the minimum

of negative loglikelihood function can be achieved whenever λ
α

= E[ni]. We may

be able to identify the exact values by including a constraint on α or λ, but in

this study we do not have such information. In following sections and codes, we

denote k = λ
α

for simplicity.

3.2 Goodness-of-fit Assessment

In many studies, Kolmogorov–Smirnov test has been introduced to check

for goodness of fit for distributions(Massey Jr., 1951; Brown, Riccardo Barbi-

eri, Ventura, Kass and Frank, 2002). K-S test is a non-parametric test to de-

termine if two data samples come from the same distribution. In this section,
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Kolmogorov–Smirnov(K-S) Plot will be conducted to compare the theoretical cu-

mulative probability function and empirical probability function. Figure 3.2 shows

the K-S plot for fire counts of 1965 to 2008. The red 45-degree line means that

the theoretical cumulative probability function is exactly the same as empirical

probability function. The blue dashed line is 95 percent confidence interval, and

green dashed line is 99 confidence interval. The 0.05 and 0.01 level significance

for sample size greater than 35 are 1.36 and 1.63 (Massey Jr., 1951). If the black

points fall into the confidence interval, then the sample and empirical distributions

are not significantly different.

In Figure 3.2, overall the distribution fits fire counts data pretty well; however,

there are some data points exceeding the confidence level, meaning that some of

the data samples are not from the distribution we assumed. Figure 3.7 shows

the histogram of fire counts for all years. The dashed blue line in Figure 3.7 is

the theoretical distribution. We can see that the distribution fits data quite well,

except for some departures from optimal fit. In order to investigate this issue

further, I separate the fire counts into four time frames: fire counts from year

1965 to 1975, 1976 to 1985, 1986 to 1995 and 1996 to 2008. For each time frame,

the K-S plot is used to test if the sample data follow the theoretical distribution.

The value of k should be re-calculate by taking the mean of fire counts for each

time frame.

Figure 3.3 is the K-S plot for year from 1965 to 1975. All of points fall in

95 percent confidence interval, meaning that the Gamma-Poisson distribution we

proposed fits the data very well. Same as year from 1996 to 2008(Figure 3.6),

all of the points fall in 95 percent confidence interval. Therefore, our proposed

distribution is well fitted to these two time frame. Figure 3.8 and Figure 3.11 show

the histograms for these two time frames: although there are still some departures

from optimal distribution, Gamma-Poisson fits empirical data quite well because

variations in y-axis are smaller, showing the same results as K-S plots.
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Figure 3.4 shows the K-S plot from 1976 to 1985. There are only few data fall

out of 99 percent confidence interval, and those points are very close to confidence

interval. Histogram in Figure 3.9 also shows that the theoretical distribution fits

data quite adequately.

However, from 1986 to 1995, the histogram shows that there are large amount

of departures from optimal distribution(Figure 3.10). The K-S plot also shows the

same results because lots of points fall very far from confidence intervals. This

may explain why the fit of the given distribution is quite poor during this time

frame. Parametric model is very hard to capture local variations in data. There

may be some missing information for year 1986 to 1995 that is not captured by

our theoretical distribution. Overall, however, the Gamma-Poisson distribution

fits well to our fire counts data.

A sample code to produce the K-S plot and histogram is following:

########### Construct Histogram versus Theoretical Distribution
##########

k_65_75 = mean(fc_65_75)
h <- hist(fc_65_75,breaks = 0:200, xlab ="Fire␣Number",ylab="Counts",

main =
"Histogram␣against␣Theoretical␣Distribution␣for␣1965␣to␣1975")

x = 0:200
y = (k_65_75/(1+k_65_75))ˆx * (1/(1+k_65_75))
N = length(fc_65_75)
lines(x,y*N,lty = 2, col=4,lwd=1.5)

########### Construct KS Plot and Confidence Interval ##########

Fx_hat = Fx = cumsum(y)
ni = fc_65_75
N = length(fc_65_75)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))

12



plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4, xlab = ’
Empirical␣CDF’,

ylab = ’Theoratical␣CDF’, main = ’KS␣Plot␣with␣Parameter␣k␣=␣
45.62␣for␣1965␣to␣1975’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds","45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c
(2,2,5), cex=0.8)

Figure 3.2: K-S Plot for all Years
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Figure 3.3: K-S Plot for 1965 to 1975
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Figure 3.4: K-S Plot for 1976 to 1985

Figure 3.5: K-S Plot for 1986 to 1995
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Figure 3.6: K-S Plot for 1996 to 2008
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Figure 3.7: Fire Counts Histogram for all Years

Figure 3.8: Fire Counts Histogram for 1965 to 1975
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Figure 3.9: Fire Counts Histogram for 1976 to 1985
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Figure 3.10: Fire Counts Histogram for 1986 to 1995

Figure 3.11: Fire Counts Histogram for 1996 to 2008
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CHAPTER 4

Fire Sizes Distribution Analysis

In addition to the distribution of fire counts, the distribution of wildfire sizes is

also of great interest to practitioners. We want to see if the Gamma-Exponential

distribution fits the empirical data. In this chapter, we will derive a method

combining Random Search and the optim function in R to estimate the unknown

parameters. Using this method, the parameters are found and goodness-of-fit is

assessed. The motivation of this analysis is to provide a statistical procedure that

we can also apply to other fire sizes dataset in the future.

4.1 Negative Loglikelihood Function

In order to investigate the unknown parameters in fire size distribution, we

derive the negative loglikelihood function because the optim in R minimize the

function by default. Recall the distribution assumption for fire sizes:

xij ∼ Exp(µi)

µi = µξi

ξi ∼ Γ(1, α)

The loglikehood function is:

lnL = l = Nlnα + tlnµ+ c−
N∑
i=1

[(mi + 1)ln(µXi + α)]

20



where t = ∑N
i=1 mi, c = ∑N

i=1 lnΓ(mi + 1), and Xi = ∑mi
j=1 xij.

• xij : fire size of jth fire in year i

• N : length of years

• mi: number of records in year i

• Xi: total fire size in year i, length of Xi is N

• t: total number of records

• c: constant

Since c is a constant, l is proportional to: Nlnα+tlnµ−∑N
i=1[(mi+1)ln(µXi+

α)], and the negative loglikehood function is simply:

−lnL = −l = −Nlnα− tlnµ+
N∑
i=1

[(mi + 1)ln(µXi + α)]

4.2 OPTIM Function

Negative loglikelihood function is useful since the built in function optim in R

minimize the function by varying parameters. Optim is a general-purpose opti-

mization takes initial values of parameters and function, and returns the minimum

of the function with value of the parameters. The basic syntax is:

optim(init, f)

The next step is to simulate some data using random α and µ, and use the

optim function to see if it can recover the same value of α and µ. The reason to

perform this procedure is to make sure the likelihood function is correct.
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4.3 Random Search

Random Search is very competitive when we want to find the global minimum

of a function having many local minimums and when we don’t have much infor-

mation of unknown parameters(Solis and Wets, 1981). In our case, the optim

function needs to take some initial values of parameters; however, we have no

assumptions about the initial values for parameters α and µ. In addition, our

likelihood function may have many local minimums. Hence, a useful way to find

the global minimum is to randomly generate a large number of α and µ, and set

them as initial values for optim function. If the optim function returns a smaller

value, then we keep the resulting parameters from the optim function.

For example, if we assume that α = 10.6 and µ = 15.7. I simulate 100 years

and 10,000 fire records for each year, meaning that i is from 1 to 100 and j is from

1 to 10,000. In R:

a = 10.6
u = 15.7
vi = rgamma(100,1,1/a)
ui = (1/u)*vi
x = matrix(nrow= 100, ncol = 10000)
for (i in 1:100) {
x[i,]=rexp(10000,1/ui)

}
Xi = rowSums(x)
N = 100
t = sum(100*10000)
mi = rep(10000,100)

Negative likelihood function is generated by:

f <- function(par) {
s = numeric(N) #this is the last term in the summation of

#negative loglikelihood function
u <- par[1]
a <- par[2]
for (i in 1:N) {
s[i] = (mi[i]+1) * log(u*Xi[i]+a) #this loop generates the last term
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#of negative loglikelihood function
}
logL = (N*log(a) + t*log(u) - sum(s))
return(-logL)

}

If we use optim function directly to find the parameters, we need to set initial

values for optim function. Suppose we do not know the initial values, as in our

fire sizes case. Set initial α = 8 and λ = 3(this is a guess because we do not know

where to start). The optim function returns α = 4.0 and λ = 6.4, which are not

even close to the true value(α = 10.6 and λ = 15.7). Therefore, optim function

cannot optimize correctly if there are local minimums. Therefore, Random search

is very useful in this case.

Next step is to create a random amount of sets of α and λ. Here I create 500

sets of parameters:

n = 500
a = runif(n, 5, 20)
u = runif(n, 13, 19)

a0 = runif(1, 5, 20) #random intial number
u0 = runif(1, 13, 19) #random initial number

Then, for each set of α and λ, we use optim to find the local minimum. If

the new local minimum is smaller than current local minimum, we replace current

local minimum with the new one. After 500 times, we can approximately find the

global minimum.

temp = optim(par=c(u0,a0), fn=f)
logL_value = temp$value
estimates = temp$par
logL = matrix(0, n, n)
k = 0 #check the number of replacements made
for (i in 1:n){

for (j in 1:n){
temp = optim(par=c(u[i], a[j]),fn=f)
if (temp$value < logL_value) {
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logL_value = temp$value
estimates = temp$par
k = k+1
print(k)
print(logL_value)
print(estimates)

}
}

}
logL_value
estimates

Random search returns α = 9.72 and λ = 15.75, which almost recover the true

values. Therefore, a combination of random search and optim function is very

pragmatic to find the parameters for our distribution.

4.4 Finding α and µ for Fire Sizes Distribution

In this section, we use the combination of random search and optim function

to find estimates of parametes α and µ. Using the codes in section 4.3, we get

α = 0.067 and µ = 0.038. One can simulate data by:

set.seed(1024)
u = .038
a = .067
vi = rgamma(N,1,1/a)
ui = u*vi
xi = numeric(0)
for (i in 1:N) {

c = rexp(mi[i],ui[i])
xi = c(xi,c)

}

A way to check goodness of fit is to compare the simulated data with observed

data. To perform a direct K-S test, one can use the built in function ks.test in R:

ks.test(xi,tdata$Hectares[tdata$Hectares]) #xi is simulated data,
#hectares is the observed data
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The p-value is 3.441e-6, indicating a statistically significant departure from

the modelled distribution, although visually the fit does not appear to be poor.

Let fire sizes be x, a better way to visualize the goodness of fit is to take log of fire

sizes, then plot it against logS(x), where S(x) = 1− F (x) and F (x) = P (y ≤ x).

y1 = sort(xi)
n = length(y1)
plot(y1,(n:1)/n,log = "xy", type=’l’,col =’red’,ylab = "logS(x)",

xlab = "log(x)" )

y2 = sort(tdata$Hectares)
lines(y2,(n:1)/n,log = "xy",col =’black’, lty =1)

Figure 4.1 shows the plot of comparison between simulated and observed fire

sizes. Simulated and observed data seems to follow the same trend and they are

pretty close. According to the plot, our proposed distribution fits the data rela-

tively well. From Figure 4.1, two distributions start to deviate at log(x) = 1e3

Figure 4.1: Comparsion between Simulated and Observed data

approximately. If we set x = 103, we are observing 635 points in real dataset, and
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469 points in simulated dataset, meaning that we observe an excess of approxi-

mately 166 wildfires above this size threshold in our dataset relative to what we

would expect according to the fitted distribution.
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CHAPTER 5

Future Discussion and Conclusion

5.1 Future Improvement and Discussion

5.1.1 Outliers

Although the Gamma-Exponential distribution fits our fire sizes pretty well,

there are still some deviations between empirical and theoretical distributions.

One of the potential problems may be that there are some outliers of records in

certain years. For example, the fire sizes data in our study contains 44 years in

total. Each year there are many different records: some fire sizes are very big

and some are very small. Outliers may cause a poor fit between distribution and

empirical data. Therefore, in order to eliminate the effect of outliers, one can use

Q-Q plot and box plot to detect the outliers, or built in function outlier.test in

R. However, one should be always be cautious with removing outliers in dataset.

Before removing outliers, we should investigate the reason that cause the outliers,

rather than deleting it directly. Moreover, if there are too many outliers, there

may be something interesting going on with data that we should look further into.

5.1.2 Hidden Features

In this paper, we investigate if Gamma-Poisson and Gamma-Exponential dis-

tributions fit to empeirical fire data. In real life, there may be some hidden features

in the model, such as human accident, time, locations and etc. One may develop

a better model and understand the dataset better by fitting a regression model

27



to data, including other hidden factors. Other models may be helpful such as

random effect model.

5.1.3 Transformation

In some studies, transformations of the count data are conducted for a better

fit(Schoenberg, Peng and Woods, 2003). Various models and transforms could be

used to examine data, such as lognormal, half-normal, exponential and etc. In

addition to Kolmogorov–Smirnoff test that we mainly used in this study, other

goodness of fit criteria can also be used and compared, such as Cramer–von Mises

statistics.

5.1.4 Gradient Descent

In addition to random search, gradient descent is another good method to find

the unknown parameters. Gradient descent is used to minimize likelihood function

by iteratively moving in the direction of steepest descent. We can continuously

update parameters and eventually find the parameters in our model. A sample

code that I used in R is provided here, but it needs some further developments:

l <- function(u, a) {
s = numeric(N)
for (i in 1:N) {
s[i] = (mi[i]+1) * log(u*Xi[i]+a)

}
logL = (N*log(a) + t*log(u) - sum(s))
return(-logL)

}

grad_a = function(u,a){
N/a - sum((mi+1)/(u*Xi+a))

}

grad_u = function(u,a){
t/u - sum((mi+1)*Xi/(u*Xi+a))

}
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gradient = function(u,a){
c(grad_u(u,a),grad_a(u,a))

}
h = .0000001 #learning rate
a0 = u0 = 5
k=1
while (abs(grad_a(u0,a0)) >1e-3 & k < 50000) {
l_old = l_new
a_new = abs(a0 - h*grad_a(u=u0,a=a0))+1e-4
u_new = abs(u0 - h*grad_u(u=u0,a=a0))+1e-4
l_new = l(u_new,a_new)
a0 = a_new
u0 = u_new
k = k+1

}
print(c(a0,u0))
l_new

5.1.5 Evaluating the Goodness of Maximum Likelihood Estimators

Besides the maximum likelihood estimates derived in chapter 2, we also want

to know how good are our parameters, which is usually measured by the MSE.

We know that MSE(θ̂) = E(θ̂ − θ)2 = bias2 + var(θ̂). By central limit theorem

for maximum likelihood estimators, we have: θ̂ ∼ N(θ, I(θ)−1), where I(θ) is the

fisher information and could be estimated by Hessian matrix (Lehmann, 2004).

Hessian matrix is the second derivative of the log-likelihood function(Gourieroux,

Monfort and Trognon, 1984).

However, sometimes the Hessian matrix may be too complicated to derive and

compute, like in our case. We could also appeal to Bootstrap method to get the

variance of our estimators. To simply implement it, we sample with replacement

from our observations, and find the corresponding MLE to the sample data (e.g

repeat 1000 times), and the variance of the computed MLE will be unbiased

estimate of the variance of MLE.
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5.2 Conclusion

In this study, we propose two distributions: Gamma-Poisson and Gamma-

Exponential distribution. Two distributions are used to fit fire counts and fire

sizes data from Northwest Territories in Canada. Northwest Territories is the

second-largest and the most populous in Northern Canada. Understanding the

fire distributions can help prevent fire hazard in a certain way.

For fire counts distribution, we propose Gamma-Poisson distribution and de-

rive the negative loglikelihood function in order to estimate unknown parameters.

K-S plots are used to check for goodness of fit. In four time frames, year from

1965 to 1975 and 1996 to 2008 are well fitted by proposed distribution. There

are some deviations between theoretical distribution and fire counts from 1976 to

1985 and 1986 to 1995. Overall, Gamma-Poisson distribution is a good fit for this

empirical data.

For fire sizes distribution, we propose Gamma-Exponential distribution and

derive the negative loglikelihood function as well. However, fire sizes distribution

is more complex than fire counts distribution. Built in function optim in R and

method of random search were used to find the parameters. We check for goodness

of fit by simulating fire sizes data and using K-S test. Although p-value is somehow

small, it still shows that the Gamma-Exponential distribution fits our data pretty

well. In addition, Figure 4.1 shows that empirical and theoretical function are

pretty similar, indicating proposed distribution is a good fit to our data.
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Appendix

#read data to R
tdata <- read.csv("˜/desktop/thesis/tdata.csv")

############ Fire Count Analysis ############

#neg_l function returns negative loglikelihood
neg_l <- function(par, n) {
lambda <- par[1]
alpha <- par[2]
logl <- log(lambda)*sum(n) - (sum(n)+length(n))

*log(alpha+lambda)+length(n)*log(alpha)
return(-logl)

}

#likehood estimation by plot
lambda <- seq(30,100, len=50)
alpha <- seq(1,10, len=50)
z <- outer(lambda, alpha, neg_l)
persp(lambda, alpha, z,theta=30,phi=30)

#find estimation of fire number
sum(tdata$FIRE_NUM)/length(tdata$FIRE_NUM)
k = mean(tdata$FIRE_NUM)

#Construct KS plot: compare theoretical cdf and empirical cdf, overall
x = 0:200
y = (k/(1+k))ˆx * (1/(1+k))
Fx_hat = Fx = cumsum(y)
ni = tdata$FIRE_NUM
N = length(tdata$FIRE_NUM)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))
plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4,

xlab = ’Empirical␣CDF’, ylab = ’Theoratical␣CDF’,
main = ’KS␣Plot␣with␣Parameter␣k␣=␣39.266’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
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lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds",
"45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c(2,2,5),

cex=0.8)

#Histogram against theoretical
h <- hist(tdata$FIRE_NUM,breaks = 0:200, xlab ="Fire␣Number",ylab="

Counts", main = "Fire␣Counts␣Histogram␣against␣Theoretical␣
Distribution␣for␣All␣Years",plot = TRUE)

x = 0:200
y = (k/(1+k))ˆx * (1/(1+k))
N = 1435 #length of data
lines(x,y*N,lty = 2, col=4,lwd=1.5)

#seperate data in different time frames
summary(tdata$FIRE_YEAR)
fc_65_75 = tdata$FIRE_NUM[tdata$FIRE_YEAR <= 1975]
fc_76_85 = tdata$FIRE_NUM[tdata$FIRE_YEAR >1975 & tdata$FIRE_YEAR <=

1985]
fc_86_95 = tdata$FIRE_NUM[tdata$FIRE_YEAR >1985 & tdata$FIRE_YEAR

<=1995]
fc_96_08 = tdata$FIRE_NUM[tdata$FIRE_YEAR >=1996]

######Real data vs. distribution between 1965-1975#####
## Construct Histogram versus Theoretical Distribution ##

k_65_75 = mean(fc_65_75)
h <- hist(fc_65_75,breaks = 0:200, xlab ="Fire␣Number",ylab="Counts",

main = "Histogram␣against␣Theoretical␣Distribution␣for␣1965␣to␣1975"
)

x = 0:200
y = (k_65_75/(1+k_65_75))ˆx * (1/(1+k_65_75))
N = length(fc_65_75)
lines(x,y*N,lty = 2, col=4,lwd=1.5)

## Construct KS Plot and Confidence Interval ##

Fx_hat = Fx = cumsum(y)
ni = fc_65_75
N = length(fc_65_75)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
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upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))
plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4, xlab = ’

Empirical␣CDF’, ylab = ’Theoratical␣CDF’, main = ’KS␣Plot␣with␣
Parameter␣k␣=␣45.62␣for␣1965␣to␣1975’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds","45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c
(2,2,5), cex=0.8)

######Real data vs. distribution between 1976-1985#####
## Construct Histogram versus Theoretical Distribution ##

k_76_85 = mean(fc_76_85)
h <- hist(fc_76_85,breaks = 0:200, xlab ="Fire␣Number",ylab="Counts",

main = "Histogram␣against␣Theoretical␣Distribution␣for␣1976␣to␣1985"
)

x = 0:200
y = (k_76_85/(1+k_76_85))ˆx * (1/(1+k_76_85))
N = length(fc_76_85)
lines(x,y*N,lty = 2, col=4,lwd=1.5)

## Construct KS Plot and Confidence Interval##

Fx_hat = Fx = cumsum(y)
ni = fc_76_85
N = length(fc_76_85)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))
plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4, xlab = ’

Empirical␣CDF’, ylab = ’Theoratical␣CDF’, main = ’KS␣Plot␣with␣
Parameter␣k␣=␣27.89␣from␣1976␣to␣1985’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
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lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds","45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c
(2,2,5), cex=0.8)

#####Real data vs. distribution between 1986-1995#####
## Construct Histogram versus Theoretical Distribution ##

k_86_95 = mean(fc_86_95)
h <- hist(fc_86_95,breaks = 0:200, xlab ="Fire␣Number",ylab="Counts",

main = "Histogram␣against␣Theoretical␣Distribution␣for␣1986␣to␣1995"
)

x = 0:200
y = (k_86_95/(1+k_86_95))ˆx * (1/(1+k_86_95))
N = length(fc_86_95)
lines(x,y*N,lty = 2, col=4,lwd=1.5)

## Construct KS Plot and Confidence Interval##
Fx_hat = Fx = cumsum(y)
ni = fc_86_95
N = length(fc_86_95)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))
plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4, xlab = ’

Empirical␣CDF’, ylab = ’Theoratical␣CDF’, main = ’KS␣Plot␣with␣
Parameter␣k␣=␣54.68␣from␣1986␣to␣1995’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds","45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c
(2,2,5), cex=0.8)

#####Real data vs. distribution between 1996-2008#####
## Construct Histogram versus Theoretical Distribution ##
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k_96_08 = mean(fc_96_08)
h <- hist(fc_96_08,breaks = 0:200, xlab ="Fire␣Number",ylab="Counts",

main = "Histogram␣against␣Theoretical␣Distribution␣for␣1996␣to␣2008"
)

x = 0:200
y = (k_96_08/(1+k_96_08))ˆx * (1/(1+k_96_08))
N = length(fc_96_08)
lines(x,y*N,lty = 2, col=4,lwd=1.5)

## Construct KS Plot and Confidence Interval##

Fx_hat = Fx = cumsum(y)
ni = fc_96_08
N = length(fc_96_08)
for (i in 0:200){
Fx_hat[i+1] = sum(ni<=i)/N
}
upperconfidence_99 = Fx + 1.63/(Nˆ(1/2))
lowerconfidence_99 = Fx - 1.63/(Nˆ(1/2))
upperconfidence_95 = Fx + 1.36/(Nˆ(1/2))
lowerconfidence_95 = Fx - 1.36/(Nˆ(1/2))
plot(Fx , Fx_hat,pch=16, xlim=c(0,1), ylim=c(0,1),cex = .4, xlab = ’

Empirical␣CDF’, ylab = ’Theoratical␣CDF’, main = ’KS␣Plot␣with␣
Parameter␣k␣=␣28.8␣from␣1996␣to␣2008’)

lines(x=0:1,y=0:1, col=’red’,lty=5)
lines(x=Fx,y=upperconfidence_99, col =’green’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_99, col = ’green’,cex = 1.5,lty=2)
lines(x=Fx,y=upperconfidence_95, col =’blue’,cex = 1.5,lty=2)
lines(x=Fx,y=lowerconfidence_95, col = ’blue’,cex = 1.5,lty=2)
# Add a legend
legend("topleft", legend=c("95%␣Confidence␣Bounds", "99%␣Confidence␣

Bounds","45␣Degree␣Line"), col=c("blue", "green", "red"), lty=c
(2,2,5), cex=0.8)

############ Fire Size Analysis ############

N = 2008-1965+1 # Total Years: length of i
mi = NA # Number of records in year i
Xi = NA # Total Fire Size in year i

for (i in 1965:2008) {
mi[i] = length(tdata$Hectares[tdata$FIRE_YEAR == i])

}
mi = as.vector(na.omit(mi))
length(mi) == N
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t = sum(mi)
c = sum(gamma(mi+1)) # c is 3rd term in loglikelihood function

for (i in 1965:2008) {
Xi[i] = sum(tdata$Hectares[tdata$FIRE_YEAR == i])

}
Xi = as.vector(na.omit(Xi))
length(Xi) == N

f <- function(par) {
s = numeric(N)
u <- par[1]
a <- par[2]
for (i in 1:N) {
s[i] = (mi[i]+1) * log(u*Xi[i]+a)

}
logL = (N*log(a) + t*log(u) - sum(s))
return(-logL)

}

# random search
n = 100
a = runif(n, .003, .1)
u = runif(n, .005, .09)

a0 = runif(1, 0.03, .1)
u0 = runif(1, 0.05, .09)
#temp = optim(a[i], mu[j], logL, ...)

temp = optim(par=c(u0,a0), fn=f)
logL_value = temp$value
estimates = temp$par
logL = matrix(0, n, n)
dim(logL)

k = 0
options(error = expression(NULL))

for (i in 1:n){
for (j in 1:n){
temp = optim(par=c(u[i], a[j]),fn=f)
if (temp$value < logL_value) {
logL_value = temp$value
estimates = temp$par
k = k+1
print(k)
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print(logL_value)
print(estimates)

}
#logL_value = logL_value + (temp$function_value < logL_value)*(temp$

function_value - logL_value)
}

}
logL_value
estimates

####Simulate Fire size data and check goodness of fit####

set.seed(1024)
u = .038
a = .067
vi = rgamma(N,1,1/a)
ui = u*vi
xi = numeric(0)
for (i in 1:N) {

c = rexp(mi[i],ui[i])
xi = c(xi,c)

}
hist(xi, nclass =500)
hist(tdata$Hectares,nclass =500)
ks.test(xi,tdata$Hectares[tdata$Hectares])

y1 = sort(xi)
n = length(y1)
plot(y1,(n:1)/n,log = "xy", type=’l’,col =’red’,ylab = "logS(x)", xlab =

"log(x)" )

y2 = sort(tdata$Hectares)
lines(y2,(n:1)/n,log = "xy",col =’black’, lty =1)
legend("bottomleft", legend=c("Observed␣Fire␣Sizes","Simulated␣Fire␣

Sizes"),
col=c("black", "red"), lty=c(1,1), cex=0.8)

data_point_for_sim_greater_1e3 = y1[y1>1e3]
data_point_for_observ_greater_1e3 = y2[y2>1e3]

length(data_point_for_sim_greater_1e3) #=469
length(data_point_for_observ_greater_1e3) #635

37



References

[1] A. Clifford Cohen. 1965. Maximum Likelihood Estimation in the Weibull Dis-
tribution Based On Complete and On Censored Samples. Technometrics, 7:4,
579-588, DOI: 10.1080/00401706.1965.10490300.

[2] A. Lindén, and Samu Mäntyniemi. 2011. Using the Negative Binomial Distri-
bution to Model Overdispersion in Ecological Count Data. Ecology, vol. 92, no.
7, pp. 1414–1421, JSTOR.

[3] Bliss, C. I., and R. A. Fisher. 1953. Fitting the Negative Binomial Distri-
bution to Biological Data.. Biometrics, vol. 9, no. 2, pp. 176–200. JSTOR,
www.jstor.org/stable/3001850.

[4] Cheng T, Wang J. 2008. Integrated spatio-temporal data mining for forest fire
prediction. Trans GIS 12(5):591–611.

[5] C. Gourieroux, A. Monfort and A. Trognon. 1984. Pseudo Maximum Likelihood
Methods: Applications to Poisson Models. Econometrica, Vol. 52, No. 3, pp.
701-720

[6] D Mandallaz and R Ye. 1997. Prediction of forest fires with Pois-
son models. Canadian Journal of Forest Research, 27(10): 1685-1694,
https://doi.org/10.1139/x97-103

[7] Emery N. Brown , Riccardo Barbieri , Valerie Ventura , Robert E. Kass , and
Loren M. Frank. 2002. The Time-Rescaling Theorem and Its Application to
Neural Spike Train Data Analysis. Neural Computation, 14:2, 325-346

[8] E.L. Lehmann. 2004. Elements of Large-Sample Theory. Springer Science &
Business Media.

[9] Frank J. Massey Jr. 1951. The Kolmogorov-Smirnov Test for Goodness of Fit.
Journal of the American Statistical Association, 46:253, 68-78.

[10] Frederic Paik Schoenberg, Roger Peng, James Woods. 2003. On the Distri-
bution of Wildfire Sizes. Environmetrics 14.6 (2003): 583-92.

[11] Francisco J. Solis and Roger J-B. Wets. 1981. Minimization by Random
Search Techniques. Mathematics of Operations Research, vol. 6, no. 1, pp.
19–30. JSTOR.

[12] Guha-Sapir D, Hoyois P, Below R. 2013. Annual disaster statistical review
2012: the numbers and trends. Centre for Research on the Epidemiology of
Disasters (CRED).

38



[13] Grid-Arendal UNEP. 2002 State of the environment and policy retrospective.
(Norway) United Nations Environment Programme (UNEP).

[14] Hinde J. 1982. Compound Poisson Regression Models. In: Gilchrist R. (eds)
GLIM 82: Proceedings of the International Conference on Generalised Linear
Models. Lecture Notes in Statistics, vol 14. Springer, New York, NY.

[15] Harry Joe and Rong Zhu. 2019 Generalized Poisson Distribution: The Prop-
erty of Mixture of Poisson and Comparison with Negative Binomial Distribu-
tion. Biometrical Journal 47.2 (2005): 219-29.

[16] Lawless JF. 1987. Negative binomial and mixed Poisson regression. The Cana-
dian Journal of Statistics, Vol. 15, No. 3, 1987, Pages 209-225.

[17] Nan Laird, 1978 Nonparametric Maximum Likelihood Estimation of a Mixing
Distribution. Journal of the American Statistical Association, 73:364, 805-811,
DOI: 10.1080/01621459.1978.10480103.

[18] Robertson C. 1972. Analysis of forest fire data in California. Technical Report
No. 11, Department of Statistics, University of California, Riverside.

[19] Wang F, Lu S, Li C. 2005. Analysis of fire statistics of China: fire frequency
and fatalities in fires. International Association for Fire Safety Science: Fire
Safety Science.

39




