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ABSTRACT 

 

Subject-Oriented Finite Fault Inversions and their Applications 

 

by 

 

Mareike N. Adams 

 

Accurate images of the growth of slip and faulting are critical in understanding the 

physics of earthquakes, and subsequently aid in the prediction of the ground motion that 

could be expected from future rupture events. Many methods, namely finite fault 

inversions, have been developed that use observed seismic waveforms and static 

deformations to constrain the spatiotemporal rupture evolutions of great earthquakes. 

This work explores the development of novel inversion methods to further the 

investigation into properties of earthquake physics.  

 

Earthquakes lead to the overall reduction of stress across the ruptured fault plane, and 

stress drop is a key parameter in accurately estimating the strong ground motion. Thus, 

we have developed a new procedure to determine if it is possible to robustly constrain an 

uncertainty range for the co-seismic stress drop of large earthquakes. For a given 

earthquake, we loop through a series of target stress drops, and for each case we conduct 

a modified finite fault inversion to find the solution that matches the seismic and/or 

geodetic data, and also matches a prescribed stress drop value. From this, we can 

determine a relationship between the resulting misfit between our synthetic model and the 
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observations, and the pre-assigned target stress drop value.  

 

This new inversion technique is applied to several rupture events with varying datasets in 

order to test its robustness. First, we examine the 2014 Mw 7.9 Rat Islands earthquake 

using far-field data and discovered that only the lower bound of the average stress drop 

could be well constrained. To investigate whether such a conclusion also holds for near 

field data, the slip distribution and the stress drop of the 2015 Mw 7.8 Gorkha, Nepal 

earthquake was studied using GPS and InSAR data. Our results revealed similar patterns: 

that even a comprehensive geodetic dataset could also only constrain the lower bound of 

stress drop. Furthermore, one of the important uses of stress drop for earthquake physics 

is in the study of energy partitioning. The average stress drop is equivalent to twice the 

ratio of apparent available energy to the total seismic potency, and so our result has a 

direct impact on the study of the earthquake energy budget. As stress drop is proportional 

to the available seismic energy, our results imply that only the lower bound of the 

available energy can be constrained.  

 

The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the 

northern part of the South Island. Available information indicates that this earthquake 

involved multiple fault segments of the Marlborough fault system (MFS). Additionally, 

slip might also have occured on the subduction interface of the Pacific Plate under the 

Australian Plate, beneath the MFS. The exact number of involved fault segments as well 

as the temporal co-seismic rupture sequence has not been fully determined. We propose 

two inversion strategies to determine the fault geometry and spatiotemporal rupture 

history: first we use teleseismic and strong motion waveforms to determine point-source 
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focal mechanisms for all of the faults that participated in the rupture; second, we use 

seismic and geodetic data to invert for the kinematic rupture parameters on a limited 

number of fault segments. The first approach allows us to determine a rupture timing 

sequence for different fault segments. Once we have the timing among fault segments, 

we invert the seismic and geodetic data for the spatial and temporal kinematic 

parameters. Both of these methods allow us to evaluate the potential of slip on the 

Hikurangi subduction interface. 
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1. Introduction 

Detailed mapping of the spatial and temporal slip distribution of large earthquakes 

is one of the principal goals of seismology. In the last few decades, many methods have 

been developed that use observed seismic waveforms and static deformations, such as 

GPS and InSAR data, to constrain the spatiotemporal rupture evolution of large events. 

The results have led to theoretical breakthroughs in earthquake physics and have been 

used to predict the damage of future large earthquakes.  

These methods, which are classified as finite-fault inversions, involve finding the 

values of fault parameters, such as displacement and rupture velocity, which can 

minimize a misfit or objective function. This function characterizes the differences 

between observed and synthetic data calculated using a user-designed fault model and the 

propagation effects produced by an assumed Earth model. Despite the principal goal of 

retrieving the slip history of a particular rupture event, the strength of the finite fault 

inversion method is its flexibility and versatility. Analogous to subject-oriented 

programming (e.g., Harrison & Ossher, 1993), this method can be molded slightly 

differently based on the data types available and the types of operations applied to these 

data structures. My research involves the development of novel approaches or 

modifications of this particular inversion approach to further investigate certain 

properties of earthquake ruptures.  

The modern scientific method is becoming increasingly intertwined with 

technology and relies more and more on our ability to include the ever-growing 

computational power into our approaches. In computing, subject-oriented programming 

is a software paradigm in which the state and behavior of objects are not seen as intrinsic 
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to the objects themselves, but are described by various subjective perceptions of the 

objects (e.g., Harrison & Ossher, 1993). For example, a tree to a passerby may have a 

measurable height or leaf-type, but for a bird this same tree may have a relative value for 

food or as a potential nesting location.  

In classic finite fault inversions one investigates the temporal and spatial history 

of fault slip. One does not directly invert for other physical properties, such as on-fault 

stress change. Our goal is to manipulate established inversion methods to query the data 

about particular properties of the rupture. For example, what can our understanding of the 

rupture process tell us about the physical processes leading to varying amounts of ground 

shaking? Consequently, how can we relate our knowledge of subsurface fault physics to 

other problems such as surface seismic hazard analysis? What other physical properties 

of the dynamic Earth can be appraised just with a different perception and 

implementation of these methods? Thus, subject-oriented programming organizes classes 

that describe objects into “subjects”, which can be combined to form larger subjects. 

Hence, we combine our tested finite fault inversion methods with hypothesized physical 

relationships and with growing computational power to push the boundaries of our 

geophysical knowledge.  

In particular, earthquakes lead to the overall reduction of stress across the 

ruptured fault plane. Stress drop is an important physical parameter that has been long 

studied in seismology (e.g., Aki, 1967; Brune, 1970; Kikuchi & Fukao, 1988; Madariaga, 

1979; Noda et al., 2013). Though the stress drop due to the rupture of a large earthquake 

is not spatially uniform, most often just its average value, ∆𝜏, can be constrained with the 

limited seismic observations. Stress drop is a key parameter in accurately estimating the 
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strong ground motion (e.g., Brune, 1970; Hanks, 1979; Aki, 1984). Uncertainties in stress 

drop estimates lead to uncertainties in predicting seismic hazards (e.g., Cotton et al., 

2013). Thus, one focus of my research has been to develop a new procedure to determine 

if it is possible to robustly constrain an uncertainty range for the co-seismic stress drop of 

large earthquakes. In particular, we use the energy based average stress drop (𝛥𝜏!) (e.g., 

Kanamori & Allen 1986; Shao et al. 2012; Noda et al. 2013). In chapters two and three of 

my dissertation I will describe this novel inversion method and apply it to data from two 

major earthquakes: 2014 Mw 7.9 Rat Islands earthquake and 2015 Mw 7.8 Gorkha, Nepal 

earthquake.   

The procedure is simple in concept. For each earthquake we consider a series of 

target stress drops; for each target we compute a modified finite fault inversion to find the 

solution that matches not only the seismic and/or geodetic data, but also matches the 

target stress drop. From this series of target stress drops we plot the overall misfit (the 

difference between synthetic seismograms and geodetic values and the observations) 

against the pre-assigned target stress drop.  

In order to test the robustness of this subject-oriented finite fault inversion we 

consider several recent rupture events with varying datasets. First, we examine the 2014 

Mw 7.9 Rat Islands earthquake using far-field data. Here we found that only the lower 

bound of the average stress drop could be well constrained. We then applied the same 

technique to the 2015 Mw 7.8 Gorkha, Nepal earthquake using only geodetic data, GPS 

and InSAR. Our results revealed a similar pattern to that found for the Rat Islands 

earthquake. Namely, we could only constrain a lower bound for the average stress drop.  
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One of the important uses of stress drop for earthquake physics is in the study of 

energy partitioning. The average stress drop is equivalent to twice the ratio of apparent 

available energy to the total seismic potency. Our result has a direct impact on the study 

of the earthquake energy budget (Heaton & Heaton, 1989). Apparent available energy 

can be divided into fracture energy, energy expended as the increased dissipation at the 

rupture front, and the rest as radiated seismic energy (Kanamori & Rivera, 2006). With 

stress drop proportional to the available seismic energy; our results imply that only the 

lower bound of the available energy can be constrained. Following this and strictly 

mathematically speaking, the inferred fracture energy then also has no detectable upper 

bound. However, because infinite stress and infinite fracture energy are not physically 

plausible, we must modify our finite fault inversion method to incorporate more physical 

constraints to constrain the important physical properties of large earthquakes. This will 

be explored in chapter 3.  

The 2014 Rat Islands earthquake occurred below the central segment of the 

Aleutian Arc; it is the largest intermediate-depth earthquake recorded by modern 

instrumentation (Ye et al., 2014). It is a normal faulting event with a significant strike-

slip component. In chapter 2 we use 30 P- and 31 SH-velocity waveforms recorded at 

teleseismic distances to study the slip history of this event and to test our inversion 

method with the added goal of determining an uncertainty range for the average static 

stress drop. We found that the waveform misfit associated with the inverted model 

decreases quickly as the average stress drop, ∆𝜏!, increases from 0.5 to 5.0 MPa, but 

varies negligibly as ∆𝜏! increases from 10 to 50 MPa. Thus, the lower bound of this 

physical property is discernable, but its upper bound is unconstrained. We attribute this to 
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the limited resolution of the fine-scale roughness of the fault slip. As a consequence of 

not constraining the upper bound of the average stress drop, we cannot determine the 

upper bound of the available energy. However, we find that ∆𝜏! correlates with the 

roughness of fault slip. This allows us to replace traditional arbitrary smoothing 

constraints on slip with a new physical constraint on smoothing that is based on the 

ability to determine a lower bound for ∆𝜏!.   

In chapter 3 we study the slip and static stress drop of the 2015 Mw 7.8 Gorkha, 

Nepal earthquake. We use excellent near-source static observations in our finite fault 

inversion algorithm with the constraint on its average stress drop. Similarly, we find that 

with an appropriate subfault size, the misfit reduces as ∆𝜏! increases to 7-8 MPa. The 

misfit then remains essentially constant, albeit with small fluctuations, as ∆𝜏! increases. 

Our results reveal that only the lower bound of the average stress drop of the Gorkha 

earthquake (~7MPa) can be constrained with near fault geodetic measurements. This 

conclusion is consistent with the results in chapter 2 where we used far field seismic data 

in the inversion.  

As the lower bound of ∆𝜏! leads to a lower bound of the apparent available 

energy and an upper bound of the seismic radiation efficiency, this approach improves 

our understanding of the earthquake energy budget. We find that for an elongated rupture 

similar to the Gorkha earthquake, rupture could propagate fast but still dissipate most of 

the available energy in fracturing of the fault. We strongly support using the lower bound 

of the energy-based stress drop to replace arbitrary slip-smoothing constraints to stabilize 

finite fault inversions.    
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Additionally, finite fault inversion methods involve large assumptions about the 

fault geometry over which the rupture propagates. Generally, one large fault plane 

constitutes the rupture area, extending for several hundred kilometers. However, many 

earthquakes are made up of a multitude of connecting faults that may slip during a single 

earthquake. Consequently, knowledge of the kinematics of these complex fault 

interactions has important implications for our understanding of global seismic hazards.  

The 2016 Mw 7.8 Kaikoura, New Zealand earthquake occurred along the east 

coast of the northern part of the South Island. The local tectonic setting is complicated 

with the central South Island being dominated by oblique continental convergence while 

the southern part of this island experiences eastward subduction (Kaiser et al., 2012). 

Available information (e.g., Hamling et al. 2017; Holden et al. 2017) indicate that this 

earthquake involved multiple fault segments of the Marlborough fault system (MFS) as 

the rupture propagated northwards for more than 150 km. Additional slip might also 

occur on the subduction interface of the Pacific Plate and the Australian Plate, beneath 

the MFS. However, the exact number of fault segments as well as the temporal co-

seismic rupture sequence is uncertain despite the abundance of geodetic and geological 

observations. Thus, understanding the Kaikoura earthquake will hopefully provide insight 

into how one incorporates multi-fault ruptures into seismic-hazard models. In this final 

chapter, we will discuss the application of two different methods to study this rupture 

event: a multiple double-couple inversion to determine the spatiotemporal sequence of 

various fault planes involved (Shao et al., 2012), and a finite fault inversion using 

multiple datasets such as teleseismic, strong motion and purely static GPS offsets to 

produce a more detailed slip history of the complex event. We find that a combination of 

ten crustal faults, including offshore faults, can model the strong motion and static data. 
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2. Exploring the uncertainty range of co-seismic stress drop estimations 

of large earthquakes using finite fault inversions	  

 

This chapter appeared in this form in: 

Adams, M., Twardzik, C., & Ji, C. (2017). Exploring the uncertainty range of coseismic 
stress drop estimations of large earthquakes using finite fault 
inversions. Geophysical Journal International, 208(1), 86-100, 
https://doi.org/10.1093/gji/ggw374 
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2.1 Abstract 

A new finite fault inversion strategy is developed to explore the uncertainty range for the 

energy based average co-seismic stress drop (Δ𝜏!) of large earthquakes. For a given 

earthquake, we conduct a modified finite fault inversion to find a solution that not only 

matches seismic and geodetic data but also has a Δ𝜏! matching a specified value. We do 

the inversions for a wide range of stress drops. These results produce a trade-off curve 

between the misfit to the observations and Δ𝜏!, which allows one to define the range of 

Δ𝜏! that will produce an acceptable misfit. The study of the 2014 Rat Islands Mw 7.9 

earthquake reveals an unexpected result: when using only teleseismic waveforms as data, 

the lower bound of Δ𝜏!  (5-10 MPa) for this earthquake is successfully constrained. 

However, the same dataset exhibits no sensitivity to its upper bound of Δ𝜏! because there 

is limited resolution to the fine scale roughness of fault slip. Given that the spatial 

resolution of all seismic or geodetic data is limited, we can speculate that the upper bound 

of Δ𝜏! cannot be constrained with them. This has consequences for the earthquake energy 

budget. Failing to constrain the upper bound of Δ𝜏! leads to the conclusions that 1) the 

seismic radiation efficiency determined from the inverted model might be significantly 

overestimated; 2) the upper bound of the average fracture energy EG cannot be 

constrained by seismic or geodetic data. Thus, caution must be taken when investigating 

the characteristics of large earthquakes using the energy budget approach. Finally, 

searching for the lower bound of Δ𝜏! can be used as an energy-based smoothing scheme 

during finite fault inversions. 
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2.2 Introduction 

Seismologists use static stress drop (Δτ) to denote the difference between the state of 

stress before and after the earthquake. In reality Δτ varies locally over the fault surface, 

and in most circumstances only its average (Δτ) can be retrieved using seismic (Brune, 

1970) and/or geodetic observations. In the literature, this stress drop is generally defined 

as the stress drop averaged over an area on the fault surface (Δ𝜏!), i.e., Δ𝜏! =
!
!

ΔτdA! , 

here A is the area of the fault plane where slip has occurred. Previous studies based 

mainly on seismic data indicated that the median of earthquakes’ average stress drop is 

roughly constant (3-4 MPa) over a large range of seismic moment (e.g., Kanamori & 

Anderson, 1975; Allmann & Shearer, 2009). However, it is of interest to point out that 

the stress drop estimates of individual earthquakes can deviate from this median value by 

a factor of 4 (Allmann & Shearer 2009; Cotton et al., 2013). As the strong ground motion 

parameters are often related with the stress drop, large uncertainties in stress estimation 

suggest large uncertainties in predicting seismic hazard (Cotton et al., 2013).   

 

Such a large deviation in estimates of stress drop might reflect the intrinsic uncertainty 

introduced by the methods to estimate them; though the local tectonics (e.g., Scholz, 

2000; Allmann & Shearer, 2007) and source physics (e.g., Candela et al., 2011) can also 

be the cause. Most available stress measurements, particularly for Mw<5 earthquakes, 

were made using Brune-type methods (e.g., Brune, 1970; Madariaga, 1976; Kaneko & 

Shearer, 2014) which assumes that earthquake rupture occurs on a circular fault plane 

with uniform stress drop and constant rupture velocity. Although there are some 

variations, the Brune-type stress drop of an earthquake (hereafter referred to as Δ𝜏!) can 
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be represented as 𝑐𝑀!𝑓!! , where 𝑀!  and 𝑓!  are the seismic moment and the corner 

frequency of this event, respectively. Often, c is treated as a constant in practice (e.g., 

Allmann & Shearer, 2007) but it strongly depends on the pre-assumed rupture velocity 

(𝑣!) since 𝑐 ∝ 𝑣!!!. Regardless of the difficulty to estimate precisely the corner frequency 

and rupture velocity of an earthquake using seismic data, the rupture event often has 

heterogeneous slip on a noncircular fault area as suggested by the studies of large 

earthquakes (see the collection of slip models in http://equake-rc.info/SRCMOD, Mai & 

Thingbaijam (2014)). Significant discrepancy between Δ𝜏! and Δ𝜏! can also be produced 

if the difference in the shape of the slip distribution is ignored (Madariaga, 1979, Kaneko 

& Shearer, 2015). Unfortunately, because of the limited resolution of seismic 

observations, except in some unique observational conditions (e.g., Dreger et al., 2007; 

Kim et al, 2016) the shape of the slip distribution for small earthquakes cannot be 

precisely constrained. 

 

For the relatively large earthquakes (Mw>5.5), researchers often have the luxury of 

directly estimating Δ𝜏!  using already published slip models (e.g., Somerville et al., 

1999). Causse et al. (2013) recently estimated the average stress drop of 31 slip models of 

21 crustal earthquakes (Mw 5.7-7.7). They concluded that finite-source rupture models 

could provide important information regarding the distribution of stress drop as their 

uncertainty analysis for the static stress drop yielded an aleatory variability (stemming 

from the natural randomness of the rupture) of 0.3, which is equivalent to deviating from 

the mean by a factor of ~2. This deviation is still significant but is considerably smaller 

than the average deviation in stress drop mentioned above.  
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On the other hand, the peak strong ground motion of large earthquakes is more closely 

related to the slip heterogeneity rather than the average slip over the entire rupture area. 

For example, Miyake et al. (2003) found that the strong ground motions were often 

generated in areas where the stress being released was the largest. These areas 

approximately coincided with the asperities, i.e., regions on the fault that have large slip 

relative to the average slip of the rupture area (e.g. Mai et al., 2005). The methods to 

estimate Δ𝜏! and Δ𝜏! either ignore or reduce the impact of such heterogeneity.  

 

Shao et al. (2012a) recently introduced the weighted average stress drop (Δ𝜏!) to avoid 

the ambiguity in choosing the “effective” fault area (Somerville et al., 1999) when 

estimating the average stress drop.  It is defined as: 

Δ𝜏! =
ΔτDdA!

𝐷𝑑𝐴!

                                                            (1) 

where D denotes the slip. When the rupture has uniform slip, Δ𝜏! is the same as Δ𝜏!. In 

more natural heterogeneous cases, because the stress and slip distributions are correlated, 

i.e., fault patches with high co-seismic slip are often associated with high stress drop; 

Δ𝜏! is larger than Δ𝜏! (Shao et al., 2012). A careful theoretical analysis for this argument 

can be found in Noda et al. (2013). Using the 2008 Mw 5.4 Chino Hills earthquake as an 

example, Δ𝜏! estimated by Shao et al. (2012) is 22 MPa, while Δ𝜏! is 38 MPa, 72% 

larger. Two reasons motivate us to estimate Δ𝜏! rather than Δ𝜏!. First, as the fault slip D 

is used to weight the local stress drop, Δ𝜏!  is more sensitive to the stress within 

asperities, which are often the regions that produce larger ground motion (e.g., Miyake et 

al, 2003). Second, Shao et al. (2012a) and Noda et al. (2013) noticed that Δ𝜏!  is 
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equivalent to twice the ratio of the “apparent” available energy (!
!

ΔτDdA! , Kanamori 

& Rivera, 2006) to the total seismic potency ( 𝐷𝑑𝐴! , Heaton & Heaton, 1989). It led 

Noda et al. (2013) to name it as the energy based average stress drop (Δ𝜏!), which we 

will also use during the rest of the discussion. Therefore, systematically studying the 

scaling relation of Δ𝜏!  is important for understanding the earthquake energy budget 

(Shao et al., 2012a; Noda et al., 2013). 

 

The uncertainty of the estimate of the average stress drop caused by the non-uniqueness 

of slip inversions has not been fully explored despite this uncertainty affecting both the 

approximations of Δ𝜏!  and Δ𝜏! . Conventional finite fault inversion methods do not 

directly invert for on-fault stress change. Given the fact that slip models with different 

peak slip could fit the observations roughly equally well (e.g., Shao & Ji, 2012b), the 

variation of average stress drop could be significant. This contradicts somewhat the result 

of Causse et al. (2013). They studied the variation of average stress drop among 

published models of the same earthquakes and found that the epistemic variability is only 

0.06, equivalent to deviating from the mean by a factor of ~1.15. However, the 

uncertainties of the average stress drop caused by widely used inversion regulations could 

be largely overlooked. 

 

Here we develop a nonlinear finite fault inversion procedure to directly link the 

uncertainty of the energy based average stress drop with the misfit between synthetic and 

observed seismic waveforms. This algorithm allows us to search for the solution 

matching the observed seismic and/or geodetic data under the condition that the average 
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stress drop is close to a pre-assigned value, i.e. the target stress drop. We perform 

inversions with different target stress drops to obtain the relationship between the average 

stress drop of the inverted slip model and the minimum waveform misfit. As an example, 

we use P and SH displacement waveforms recorded at teleseismic distances from the 

2014 Mw 7.9 Rat Island intermediate depth earthquake to determine its average stress 

drop, Δ𝜏!. An unexpected large uncertainty in the estimation is found. Our discussion 

will further reveal that such a large uncertainty will be associated with all finite fault 

inversions using surface observations. 

 

2.3 Method 

Assume that the rupture of an earthquake occurs on a rectangular fault plane, which is 

further divided into Lx (along-strike) by Ly (down-dip) cells or subfaults. We use (j, k) to 

denote the position of one subfault, i.e., j=1, 2,..., Lx and k=1, 2,..., Ly. The hypocenter is 

at subfault (𝑗!,  𝑘!). The displacement  at site  could be approximated as the 

summation of the contributions of a regular grid of subfaults (e.g., Olsen & Apsel, 1982, 

Hartzell & Heaton, 1983; Ji et al., 2002): 

 

𝑢 𝑡, 𝑥 = 𝐷!"[cos 𝜆!" 𝑌!"! 𝑡 − Δ𝑡!" + sin 𝜆!" 𝑌!"! 𝑡 − Δ𝑡!" ] ∗ 𝑠!"(𝑡)
!!
!!!

!!
!!!    (2) 

 

Here, 𝐷!"  , and 𝑠!"(𝑡)  are the dislocation amplitude, rake angle, and rise-time 

function, respectively. The terms 𝑌!"! 𝑡   and 𝑌!"! 𝑡  are the subfault Green's functions for a 

unit slip in the strike direction and down-dip direction, respectively, and Δ𝑡!" denotes the 

rupture initiation of the subfault. During conventional finite fault inversions, we constrain 

u(t, x) x

jkλ
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the fault model m in terms of 𝐷!", , and 𝑠!"(𝑡) by matching the synthetic seismograms 

and/or static displacements with the surface observations. 

 

The slip on the fault surface will also lead to the stress change across the fault. The static 

shear stress drop at the center of subfault (i, j) can be estimated as 

 

𝜏!"! (𝑚) = 𝐷!"! (𝑚)𝜎!",!"
!,! + 𝐷!"! (𝑚)𝜎!",!"

!,!                                                             (3)
!!

!!!

!!

!!!

 

where 𝜏!"!    𝑚 ;   𝑓𝑜𝑟  𝑛 = 1,2 denotes the left-lateral (n=1) or thrust shear (n=2) stress at 

this location, respectively for a given model m, and 𝐷!"
! 𝑚 ; 𝑓𝑜𝑟  𝑝 = 1,2  is the 

corresponding left-lateral (p=1) or thrust (p=2) displacements of the subfault (k, l).  𝜎!",!"
!,!  

is a kernel function, which states the shear stress response 𝜏!"!  caused by the unit 𝐷!"
!  and 

can be pre-calculated using various synthetic algorithms (e.g., Okada, 1992; Cotton et al., 

1998). Therefore, the static stress drop at the center of each subfault can be estimated 

simultaneously with the slip distribution. An alternative approach that resamples the 

inverted slip distribution (e.g., Ripperger & Mai, 2004) will be considered in future 

efforts.  

 

Following Shao et al. (2012a) and Noda et al. (2013), we calculate the energy based 

average stress of a model m as 

∆𝜏! 𝑚 =
𝜏!" 𝑚 ∙ 𝐷!" 𝑚

!!
!!!

!!
!!!

𝐷!" 𝑚
!!
!!!

!!
!!!

                                                          (4) 

where 𝜏!"(𝑚) denotes the stress drop at the center of subfault (𝑖, 𝑗) caused by the fault slip 

jkλ
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of model m.  

 

During a conventional nonlinear finite fault inversion, we look for the solution that 

minimizes the following error function: 

𝐸 𝑚 = 𝐸!" + 𝜆!𝐸!"!#$% + 𝜆!𝐸!"##$! + 𝜆!𝐸!"#$                                                             (5) 

where 𝐸!"(𝑚)  denotes the cumulative misfit between the observed and synthetic 

seismograms (and/or static displacements). To stabilize the inversion, three additional 

types of regularizations are chosen: 𝐸!"!#$%  minimizes the difference between the 

inverted seismic moment and the value based on long period seismic data, such as the 

GlobalCMT solution (Ji et al., 2002); 𝐸!"##$! minimizes the difference between the slip 

on adjacent subfaults using a Laplacian operator (Ji et al., 2002), and Etime compresses the 

irregularity of the rupture front (Shao et al., 2011). The weights 𝜆!, 𝜆! and 𝜆! have a 

default value of 0.1. 

 

Since the average stress drop and slip distribution can now be determined concurrently, 

we can force the average stress drop of the inverted slip model to be close to a target 

value. This can be achieved by introducing a stress constraint, 𝐸!"#$!! 𝑚 , defined as 

ln  (!!! !
!!"#$%!

) . The logarithmic function is used to limit the range of variation and impact 

of this function. When Δ𝜏! 𝑚  is close to 𝜏!"#$%!, ln  (
!!! !
!!"#$%!

)  converges linearly to zero 

as 
!!! ! !!!"#$%!

!!"#$%!
. The new error function then becomes,  

𝐸 𝑚 = 𝐸!" + 𝜆!𝐸!"!#$% + 𝜆!𝐸!"##$! + 𝜆!𝐸!"#$ + 𝜆!𝐸!"#$!!                                                    (6)  
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where 𝜆! is the weight of the stress constraint. The weighting coefficient λτ is introduced 

to monitor the effect of minimizing the difference between the calculated stress drop and 

the target during the inversion. Our preliminary tests indicate that compared to the 

tradeoff between 𝐸!"  and 𝐸!"#$!! , the interference between 𝐸!"#$!!  and 𝐸!"#$  can be 

ignored. However, the interference between 𝐸!"#$!! and 𝐸!"##$! is significant. So in all 

subsequent inversions, we let 𝜆!  and 𝜆!  remain the default values of 0.1, choose a 

negligible 𝜆! value of 10-4, and carefully select 𝜆!. On one hand, if there is conflict 

between 𝐸!" and 𝐸!"#$!!, the inversion using a small 𝜆! might not be able to find a model 

matching 𝜏!"#$%! . However, using a very large 𝜆!  and a small 𝜏!"#$%!  together, the 

simulated annealing inversion can freeze and fail to find the global optimal solution. In 

our study, for each pre-assigned stress drop, we conduct multiple finite fault inversions 

with gradually increasing 𝜆! until the relative difference between 𝜏!"#$%!  and the stress 

drop of the inverted model becomes acceptable, i.e. <10%.  

 

2.4 Applications 

The 2014 Mw7.9 Rat Islands earthquake, which occurred below the central segment of the 

Aleutian Arc on June 23rd, 2014 at 20:53:09 UTC, is the largest intermediate-depth 

earthquake recorded by modern instrument (Ye et al., 2014). As shown in Figure 1, it is a 

normal faulting event but with a significant strike-slip component. Ye et al. (2014) and 

Twardzik & Ji (2015) have studied the slip history of this earthquake using teleseismic 

data. Although their inverted slip distributions are generally consistent, the inferred stress 

drop is significantly different. Ye et al. (2014) reported a stress drop of 11 MPa, while 

Twardzik & Ji (2015) estimated a range of 3.2-5.0 MPa using three representative slip 
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models. This discrepancy likely derives from the differences in estimating the shape and 

size of the rupture area, as both studies use ∆𝜏! to determine the stress drop. Because we 

use the energy based stress drop in our study, we are not biased by the estimation of the 

rupture area. Thus, our approach might be able to shed some light on this discrepancy. 

 

We adopt the same high angle rectangular fault plane as Twardzik and Ji (2015). It is 

oriented 308.40oN and dips 84.36o to the north-northeast, inferred from the GCMT 

solution (http://www.globalcmt.org). The fault plane is 178.5 km along-strike and 

extends 112.5 km down-dip. The fault plane spans a depth range of 51.5 to 163.5 km, 

with the hypocenter at a depth of 107.5 km. The fault plane is further divided into 315 

subfaults measuring 8.5 km (along-strike) by 7.5 km (down-dip). As the fault slip, rake 

angle, rupture initiation time, and the shape of the asymmetric cosine function of each 

subfault are constrained simultaneously, there are a total of 1575 free parameters without 

considering the target stress drop. We use 30 P and 31 SH waveforms recorded at 

teleseismic distances. The station distribution is shown in Figure 1. We use velocity 

waveforms because they are, in principle, more sensitive to the finer details of the rupture 

process. The analysis using displacement waveforms has been conducted as well and can 

be found in the supplementary material (Figures S2-S6). The total number of wavelet 

coefficients used in this study is 12526. We use the Preliminary Reference Earth Model 

(PREM, Dziewonski and Anderson, 1981) without the water layer to approximate the 

earth structure and have pre-calculated a Green’s function table, which has a frequency 

range from DC to 2 Hz, using the FK algorithm (Zhu and Rivera, 2002). The PREM Q 

model is included during the synthetic calculation. We interpolate the teleseismic 

responses at selected stations using this table.  
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Over the depth extent of the source, the rigidity of the PREM model changes from 

6.64x104 to 6.76x104 MPa. Thus, a half-space model with constant rigidity of 6.7x104 

MPa is a sufficient approximation to the source region of this earthquake. It allows us to 

quickly pre-calculate 𝜎!",!"
!,!  and 𝜎!",!"

!,!  using the program DC3D written by Okada (1992).  

 

2.5 Results 

We have tested sixteen different target stress drops ranging from 0.5 to 50 MPa. For each 

target stress drop, we let the weight of the stress constraint λτ change from a negligible 

value of 1.0x10-4 to 0.1, and select the model with the smallest λτ value under the 

condition that the difference between the average stress drop Δ𝜏! and the target is less 

than 10%. Figure 2 shows the relationship between Δ𝜏! of selected models and their 

waveform misfits. Readers can also find a visual representation of the relationship 

between the stress-coefficient λτ and Δ𝜏!, i.e. the waveform misfits for all 176 models, in 

Figure S1.  

 

As shown in the upper-inset of Figure 2, the waveform misfit decreases quickly as Δ𝜏! 

increases from 0.5 MPa to 4-5 MPa, and becomes essentially constant when Δ𝜏! 

increases from 10 MPa to 50 MPa. It clearly illustrates the fact that seismic waveform 

data used here allows us to define the lower bound of the average static stress drop of an 

earthquake but fails to constrain its upper bound. The same relationship can be seen when 

displacement data is used (Figure S2). This result is counterintuitive. Seismologists are 

aware that the distribution of co-seismic stress drop inferred from source inversions is 
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often heterogeneous, and that local stress drop can be very large (e.g., Dreger et al., 2007; 

Shao et al., 2012; Causse et al., 2013). However, it is generally believed that the average 

stress drop of large earthquakes will be more stable, with an uncertainty less than a factor 

of two (e.g., Venkataraman & Kanamori, 2004; Causse et al., 2013).  

 

To establish the lower bound of Δ𝜏! for the Rat Islands earthquake, we examine models 

with a Δ𝜏! of 2 to 15 MPa in closer detail (Figure 2). It can be seen that the value of the 

misfit function generally decreases with an increase in Δ𝜏! ; it reaches the global 

minimum around Δ𝜏!  =10 MPa and then is nearly constant with small fluctuations 

(Figure 2). The misfit value of the model with a Δ𝜏! of 8 MPa is slightly larger than that 

of the model with a Δ𝜏! of 7 MPa. However, such a difference may also be caused by 

random variations in the initiation of the inversions. We have conducted 10 inversions 

with fixed target stress drops and stress constraint λτ but with different random seeds, 

which yield slightly different values for the misfit function. The standard deviation 

among these 10 models is 2.8x10-4 (Figure 2), which is compatible with the 

aforementioned difference between models with Δ𝜏! of 7 and 8 MPa.  

 

Figure 2 only illustrates the possibility of defining the lower bound of Δ𝜏! using seismic 

data, its exact value is still model dependent and can vary within a small range. For 

example, as the fluctuations of the misfit function become much smaller beyond 10 MPa, 

it could be defined as the lower bound of Δ𝜏!. The mean misfit value of the models with 

Δ𝜏! larger than 10 MPa is 0.2694 (black dashed line, Figure 2). If only considering the 

error caused by random seeds, we might argue that, with 95% confidence, the average 
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stress drop (Δ𝜏!) of this earthquake cannot be smaller than 5 MPa (red dashed line, 

Figure 2). The lower bound of Δ𝜏! then falls in the range of 5-10 MPa. The estimate of 

the lower bound also slightly depends on using velocity waveforms or displacement 

waveforms. As shown in the Appendix (Figure S2), using the same procedure, the lower 

bound of Δ𝜏! using displacement waveforms falls in the range of 7-10 MPa. During the 

following discussions, we choose the more conservative estimate of 5 MPa as the lower 

bound of Δ𝜏!.  

 

To investigate the reason why seismic waveform fits are insensitive to the model with 

large Δ𝜏! , we first compare the synthetic seismograms predicted by these selected 

models. As a reference, Figure 3 shows the comparison of observations and synthetic 

seismograms predicted using the model with a Δ𝜏! of 5 MPa. The synthetic seismograms 

visually match the velocity waveforms reasonably well, except at nodal stations such as 

OBN and KURK for P waves and KWAJ and KNTN for SH waves. To highlight the 

sensitivity to the average static stress drop of seismic data, we further compare the 

observations at four selected stations with the synthetic seismograms predicted using slip 

models with Δ𝜏! from 0.5 to 4 MPa (Figure 4). The observations are depicted in dashed 

black lines while the red area represents the range of synthetic seismograms at any given 

time. It can be seen that the stress constraint indeed produces visible impacts to the 

synthetic seismograms. Relatively, the SH synthetic seismograms have a greater spread 

in values than P wave synthetic seismograms, indicating the inversion is more sensitive to 

SH waves than to the P waves. Furthermore, this range in synthetic waveforms is even 

more prominent in the displacement data (Figure S3-S4) as there exists larger variability 
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in the individual displacement waveforms. Figure 5 shows the same P wave and SH wave 

observations, but the red area now represents the range of synthetic waveforms predicted 

using the models with Δ𝜏! from 5 to 50 MPa. These plots clearly show a much narrower 

range for the synthetics, particularly for the SH waves, than those for the low 0.5-4 MPa 

stress drops. This is unsurprising in view of the “flattening” of the misfit curve when Δ𝜏! 

varies from 5 to 50 MPa (Figure 2).  

 

Figure 5 also demonstrates that, with the current source representation and Green’s 

functions, we have reached a certain point where our inversions are unable to improve the 

fit to the higher frequency signals. This can be taken as evidence that the true average 

stress drop of this earthquake is higher than the lower bound defined above. However, far 

field radiation can be represented as the spatial and temporal integration of the local 

moment rate functions. Then, if these functions lack high frequencies, the far field 

radiation will also lack the higher frequencies, regardless of whether local roughness of 

final slip on the fault is large or small. Hence, readers should be aware that, in principle, 

the difference between this lower bound of Δ𝜏! and its true value is not correlated with 

the fit to the data. Improving the fit to the higher frequencies would very possibly, but not 

necessarily, lead to a closer estimate of Δ𝜏!. 

 

Second, we explore the variations in slip and static stress drop distributions among these 

selected slip models with Δ𝜏! ≥ 5MPa. In Figures 6a and 6b the slip distributions of the 

models with Δ𝜏! of 5 and 30 MPa are compared. Their moment rate functions are shown 

in Figure 7. For the convenience of further discussion, we refer to them as “Model-
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5MPa” and “Model-30MPa”, respectively. We find that as the Δ𝜏! increases, the fine 

scale roughness of the slip distribution does change dramatically, but the centroid 

locations of the major asperities are approximately in the same places on the fault despite 

the increased fine-scale heterogeneity. As shown in Figure 6a, the Model-5MPa includes 

three major asperities. Asperity A has a dimension of 25 km (along strike) and 45 km 

(down-dip). The peak slip is approximately 1.9 m, and the hypocenter is located at its 

western edge. Most of the seismic slip occurs in asperity B, which roughly extends 60 km 

along strike from 20 km to 80 km, and spans from 90 km to 140 km in depth. The peak 

slip is 4.2 m. Asperity C is located at the east of asperity A, and has a dimension of 25 

km along-strike and 30 km down-dip with a peak slip of ~2.8 m. The rupture initiates at 

asperity A and triggered the rupture of Asperity B at 12-13 s (Figure 7), and that of 

asperity C at 15 s. The effective rupture duration (the smallest time over which 95% of 

the total moment is released, Ekstrom and Engdahl (1989)) is 37 s, which is the same as 

previous analyses by Ye et al. (2014) and Twardzik and Ji (2015). In the slip distribution 

of Model-30MPa (Figure 6c), the centroids of asperities A and C are still in the same 

locations, but the asperity B splits into two parts, B1 and B2, along strike. It is of interest 

to note that asperity B1 is located at the east edge of asperity B in Model-5MPa, while 

asperity B2 is located at its western edge. This might suggest that the seismic waves are 

more sensitive to the edge of asperities, which are considered to be the regions radiating 

higher frequency seismic waves (Madariaga, 1977, 1983). The peak slip increases by 

about a factor of three from the low stress drop model to the higher one. Finally, the 

down-dip extensions of these asperities are generally consistent.  
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Figure 6c and 6d show the static stress drop distributions of Model-5MPa and Model-

30MPa, respectively. Given that earthquakes have spatially variable slip, the stress drop 

is consequently highly variable on the fault plane. The more heterogeneous slip 

distribution of Model-30MPa leads to a more heterogeneous stress distribution (Figure 

6d). The peak stress drop of Model-30MPa is about four times greater than Model-5MPa, 

compatible with the increase in the peak slip. The subfaults with large slip are also the 

subfaults with large stress drop, and negative stress drop (i.e. stress increase) appears in 

the vicinities of high slip patches. The high correlation between slip and stress 

distributions is the reason that Δ𝜏! is always larger than Δ𝜏!. 

 

Figure 7a compares the cumulative moment rate functions of three models: Δ𝜏! of 2, 5 

and 30 MPa, respectively. Regardless of the significant differences in Δ𝜏!, these moment 

rate functions are remarkably similar. Their effective rupture durations vary from 36 to 

37 sec. They have similar energy concentrations, with the main pulses within the time 

window between 20 and 35 sec. The similarity of the moment rate functions to some 

extent explains why the teleseismic data alone cannot distinguish the selected models 

with Δ𝜏!   >5 MPa. This conclusion also can be seen in the spectra of these moment rate 

functions (Figure 7b). Similar rupture durations lead to similar corner frequency values, 

and then these models will have a similar Δ𝜏! regardless of their big difference in Δ𝜏!.  

 

Forcing the inverted model to have a given average stress drop can be viewed as a 

perturbation/constraint on the inversion process. It is of interest to investigate whether 

other kinematic parameters of the 2014 Rat Islands earthquake, such as average slip, 
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average rise time, average slip rate, and average rupture velocity of these models are 

affected by these average stress perturbations. Again, the fault slip is used as a weighting 

function because first, the kinematic parameters of the subfaults with larger slip are 

generally better constrained (e.g., Ji et al., 2002) and second, it can avoid the ambiguity 

of defining the “effective” fault plane.  These parameters are calculated by: 

𝐷 =
𝐷!"!!!

𝐷!"!!
                                                                        (7𝑎) 

𝑇 =
𝐷!"𝑇!"!!

𝐷!"!!
                                                            (7𝑏) 

𝐷 =
𝐷!"

𝐷!"
𝑇!"!!

𝑫𝒋𝒌!!
                                                            (7𝑐) 

𝑣! =
𝐷!"

𝐿!"
𝑡!"!!

𝐷!"!!
                                                            (7𝑑) 

where for the jkth subfault Tjk, 𝐿!"  and 𝑡!"denote its rise time, on-fault hypocenter 

distance, and rupture initiation time. 𝐷, 𝑇, 𝐷, and 𝑣! are the weighted average slip, rise 

time, slip rate, and rupture velocity, respectively. Figure 8 shows their relationships with 

average static stress drop. As mentioned earlier, using the current dataset, the models 

with stress drop larger than 5 MPa are indistinguishable. Thus we will limit our attention 

to models with Δ𝜏! ≥ 5 MPa. As Δ𝜏! was forced to increase from 5 MPa to 50 MPa, the 

average slip changed from 2 m to 7 m, a factor of 3.5. Given that this change does not 

significantly affect the waveform fits, it is safe to conclude that the weighted average slip 

𝐷 is poorly constrained by the teleseismic data used in this study (Figure 8a). Figure 8b 

shows the variation in average rise time. There exists a tradeoff between spatial and 
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temporal resolution. The large rise times can smooth out high frequency radiation 

produced by a heterogeneous slip distribution. Thus, we might expect the average rise 

time to also increase with Δ𝜏!. However, Figure 8b exhibits a different trend. In fact, 𝑇 

stays nearly constant (3.94 ± 0.12 s) when Δ𝜏! is less than 25 MPa but increases by 30% 

when Δ𝜏! further increases by a factor of two to 50 MPa. Hence, the rise time estimate is 

robust to the perturbation in Δ𝜏!. Figure 8c shows the impact of the average rupture 

velocity from the hypocenter. We can see that this parameter is also very stable 

(~2.4±0.03 km/s), though we do see some notable variation when Δ𝜏!<5MPa. Finally, 

we estimate the weighted average slip rate, 𝐷 (Figure 8d), and again, we see that 𝐷 

increases with the Δ𝜏! . However, the variation is much smaller compared to the 

variations of 𝐷. Among the models with Δ𝜏! ≥ 5MPa, 𝐷 changes by a factor of 2 from 

0.7 m/s to 1.4 m/s. For steady state dynamic rupture, the dynamic stress drop (Δ𝜏!) can 

be approximated as !
!!!

𝐷 (Kanamori, 1994). The corresponding average dynamic stress 

drop varies from 7.7 MPa to 14.3 MPa. Unlike the nearly linear increase in 𝐷, the 

increase of 𝐷 and Δ𝜏! becomes much less when Δ𝜏! is larger than 10 MPa.  

 

2.6 Discussion 

Before further discussion, it is worthwhile emphasizing that here we are studying the 

average source parameters of an earthquake. We suspect that the uncertainty of results 

should be related to the relative spatial resolution, i.e., the resolution relative to the entire 

fault length. In this perspective, the resolution issues we encounter during this study of 

the Mw 7.9 Rat Islands earthquake using teleseismic data are similar to what would be 

faced during the study of a Mw 6-7 earthquake using strong motion data. A teleseismic 
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study is also chosen to introduce this method because, in our experience, the azimuthal 

coverage of teleseismic data is often much better than a strong motion dataset for finite 

fault studies of large earthquakes. Furthermore, we admit that in the above analysis, 

several factors that can lead to significant uncertainties, such as station distribution, fault 

geometry, velocity structure, have been ignored. These factors can affect our estimates of 

the lower bound of Δ𝜏! but will not affect our argument regarding the upper bound of 

Δ𝜏!.  

 

The difficulty in constraining the upper bound of Δ𝜏! leads us to question its practicality. 

While an earthquake has its respective Δ𝜏!, we cannot constrain its upper bound using 

far-field data. This can be explained intuitively using the two models (A and B) shown in 

Figure 9. The model A has unit slip (D=1) on a square fault patch with unit area (S=1). In 

model B, all slip uniformly concentrates in a small square patch with S=1/9, and at the 

center the slip is 9. Hence, the two models have the same potency as well as the same 

average slip within the solid gray box (S=1). Because the static stress drop of the uniform 

slip on a square patch can be represented as 𝑐𝜇𝐷/𝑆!/!, c is a constant, the peak static 

stress drop of model B is 27 times that of model A. The average stress drop Δ𝜏! of 

models A and B over the solid gray box (S=1) are different by about 3 times. In fact, this 

ratio will be smaller if one considers the stress increase in the vicinity of the high stress 

drop/high slip patch. The Δ𝜏! of the two models averaged over the same area changes by 

a factor of 27, which is the same as the difference in peak static stress drop. We could 

view model B as the true rupture scenario and model A as its approximation. They can 

represent the entire fault or a single subfault. When the seismic data is band-limited, it is 
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possible that both models will predict indistinguishable synthetic seismograms at surface 

stations. The simplest way to achieve this is to reduce the size of the solid gray box 

(Figure 9), i.e., reduce the size of the subfaults. Hence, for a given dataset, no matter 

whether one uses seismic or geodetic data, the upper bound of Δ𝜏!  cannot be fully 

constrained, as the subfault size can be reduced indefinitely. Note that this argument also 

holds for Δ𝜏!. 

 

In this study, the finite fault inversion using seismic data matches the broadband seismic 

waveforms. It is well known that the spatial resolution of seismic data is proportional to 

the wavelength of the seismic signal (e.g., Spudich and Archuleta, 1987; Guatteri and 

Spudich, 2000; Shao and Ji, 2012). The long period signals can constrain the centroid 

location of the entire rupture (e.g., GlobalCMT), or individual asperities, depending on 

their wavelengths. Then, the images of small-scale heterogeneities of slip distributions 

rely on the high frequency signals. As far field high frequency observations are 

dominated by the signals excited along the edge of asperities (e.g., Madariaga, 1977), the 

locations of these asperity edges are often better imaged. However, the amplitude of final 

static slip at asperity edges are less well constrained because of the intrinsic trade-off 

between the rise time duration and slip in exciting high frequency signals. In other words, 

the rupture scenario with high total slip and long rise time can produce similar high 

frequency radiation as a rupture scenario with small total slip but short rise time. The 

difference between Figure 6a and Figure 6b illustrates the power and limitations of finite 

fault inversions using teleseismic data. This is different with the inversions using distant 

geodetic data, which are often poorer in constraining the edge of the asperities. The 

failure to constrain the small-scale roughness of fault slip with available seismic data is 
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the reason why the Δ𝜏! of inverted slip models of the 2014 Rat Islands earthquake has no 

detectable upper bound.  

 

Large small-scale roughness in fault slip leads to large local stress drops. The question is 

then whether it is possible to have very high local stress drops during one earthquake. 

Finite fault studies using some of the best available datasets have revealed that 

abnormally high stress drops at small spatial scales can indeed occur (e.g., Dreger et al., 

2007; Shao et al., 2012; Beroza & Spudich, 1988; Ripperger & Mai, 2004). Dreger et al. 

(2007) indicated that the peak stress drop can be one order of magnitude larger than the 

frictional strength estimated using hydrostatic pore pressure and is consistent with shear 

strength determined from fresh rock fracture experiments (Ohnaka, 2003). If local stress 

drops can be very high, then high average stress drops cannot be completely ruled out.  

 

2.6.1 Implications to the earthquake energy budget 

As the average stress drop (Δ𝜏!) is equivalent to twice the ratio of the “apparent” 

available energy to the total seismic potency (Shao et al, 2012; Noda et al, 2013), our 

result has a direct impact on the study of the earthquake energy budget. From equation 

(1), the “apparent” available energy (Δ𝑊!) (Venkataraman & Kanamori, 2004; Kanamori 

& Rivera, 2006) can be approximated as 

Δ𝑊! =
1
2 ΔτDdA

!
=
Δ𝜏!𝑀!

2𝜇                                   (8)     

Here 𝑀! is the seismic moment and 𝜇 denotes the rigidity of the source region. Generally 

the seismic moment is well constrained for large earthquakes. As we showed above, we 

can give only a lower bound for Δ𝜏!. Consequently, we can only determine a lower 
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bound for the available energy of an earthquake. However, as pointed out by Noda et al. 

(2013), for a heterogeneous slip distribution Δ𝜏! is always larger than either Δ𝜏! or Δ𝜏!. 

In other words, the lower bound of Δ𝑊! estimated using Δ𝜏! would be larger than that 

estimated using Δ𝜏! or Δ𝜏!. 

 

The “apparent” available energy, Δ𝑊!, can be further divided into fracture energy (EG), 

the energy that is expended as the increased dissipation at the rupture front, and the rest 

as radiated seismic waves (ER) (e.g., Kanamori and Heaton, 2000; Abercrombie and Rice, 

2005). Subsequently, we can define the seismic radiation efficiency ( 𝜂!)  (e.g., 

Venkataraman & Kanamori, 2004) as: 

𝜂! =
𝐸!
Δ𝑊!

=
𝐸!

𝐸! + 𝐸!
                                                            (9) 

where ER can be estimated using observed seismic data. In principle, the seismic radiation 

efficiency will be less than one. Venkataraman & Kanamori (2004) reported that for most 

crustal earthquakes they studied, 𝜂  ! is larger than 0.25. However, for some well-studied 

earthquakes, such as the 1992 Landers earthquake, the estimate of 𝜂! actually exceeds 1. 

Venkataraman & Kanamori (2004) suggested that it might imply that the rupture has a 

more complicated energy release scenario, e.g., one that allows undershoot, and so more 

energy than Δ𝑊! can be released. Noda et al. (2013) noticed that the Δ𝑊! estimated using 

Δ𝜏! or Δ𝜏! is smaller than that using Δ𝜏!, and then suggested that an underestimated 

Δ𝑊! might be an alternative interpretation. Here, we further illustrate that Δ𝑊! inferred 

from the slip model is only the lower bound of the “true” available energy, and 

subsequently the seismic radiation efficiency (𝜂!) might be overestimated. Ye et al. 

(2014) calculated the radiated energy of the 2014 Rat Islands earthquake and yielded an 
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estimate of 1.1-2.7x1016 J, dependent on the assumption of the Earth’s attenuation. Using 

5MPa as the lower bound for Δ𝜏!, the upper bound of 𝜂! then ranges from 0.29 to 0.72. 

If we use 10MPa instead, the upper bound will be a factor of two smaller.  

 

Even with considerable uncertainty, ER can be estimated using seismic observations (e.g., 

Choy & Boatwright, 1995; Venkataraman & Kanamori, 2004). Then in a purely 

observational perspective, the estimate of EG using distant data has no upper bound. Here 

fracture energy is defined in a slip-weakening constitutive friction law. For the rupture of 

natural earthquakes, it includes the energy losses due to all the processes other than the 

constant interface friction. These energies include those due to plastic yielding near the 

advancing fault tip, off-fault cracking, and thermal energies involved in fluid 

pressurization and melting (e.g., Kanamori & Rivera, 2006; Mai et al., 2006).  

 

As mentioned above, the failure to constrain the small-scale roughness of fault slip with 

seismic data is the reason why an upper bound for Δ𝜏! and the weighted average slip 

cannot be constrained; consequently the inferred fracture energy EG also has no 

detectable upper bound. This result is consistent with previous observations. Analyzing 

the slip distributions of previous earthquakes suggested that EG is not a constant. It scales 

with the average fault slip by (𝑙𝑜𝑔!" 𝐸! ~(1.28− 1.35)𝑙𝑜𝑔!"(𝐷) (Abercrombie & Rice, 

2005; Causse et al., 2013), and the degree of slip heterogeneity (Causse et al., 2013). The 

former might be caused by thermal lubrication (e.g., Kanamori & Heaton, 2000; 

Abercrombie & Rice, 2005; Di Toro et al., 2011). Causse et al., 2013 pointed out that if 

the degree of roughness of slip asperities reflects the fault surface irregularities, the latter 

can be explained with the laboratory result of Ohnaka & Shen (1999). They noticed that 
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EG is correlated with irregularities on the fault surface. Hence, the models with higher 

Δ𝜏!  and 𝐷  cannot be ruled out simply because of the consequent abnormally high 

fracture energy EG.  

 

However, physically speaking, the values of Δ𝜏! and EG of an earthquake cannot be 

infinite. Our above analysis basically rules out the possibility of constraining the upper 

bound of Δ𝜏! of an earthquake using band-limited seismic and/or geodetic data. This 

argument might even hold for Δ𝜏! . Thus, new conditions/constraints have to be 

introduced to explore the upper limit. For instance, we might use the shear strength 

obtained from fresh rock fracture experiments (Ohnaka, 2003) to constrain the maximum 

local stress drop. Another plausible way is to assume that the heterogeneous stress can be 

modeled as a stochastic process (e.g., Smith and Heaton, 2011). Then one either inverts 

for the stochastic parameters using available data or directly adopts the results of 

previous studies. For example, assuming the degree of slip roughness reflects the fault 

surface irregularities, we might be able to constrain the inverted slip model with the 

scaling laws of fault roughness found in previous field or laboratory studies (e.g., 

Brodsky et al., 2016). However, this is beyond the scope of this article. 

 

2.6.2 Implications to the study of intermediate depth earthquakes 

A classic axiom in seismology is that the average stress drop of earthquakes is constant 

over all magnitudes (e.g., Aki, 1967,1972; Kanamori & Anderson, 1975). These studies 

and others indicate that shallow earthquakes have similar average stress drops. The 

median stress drop is nearly constant though there is significant scatter (e.g., Allmann & 

Shearer, 2009) with earthquakes over a wide range of magnitudes. It is noteworthy that in 
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these studies, the slip of rupture is assumed to be uniform and the small-scale 

heterogeneities are ignored. Intermediate depth and deep focus earthquakes (depth 70-

670 km) have been shown to have higher stress drops, despite how the relationship of 

stress drop versus depth changes (e.g., Wyss & Molnar, 1972; Kikuchi & Fukao, 1987). 

Vallée (2013) recently systematically studied the durations and peaks of the moment rate 

functions of 1700 6<Mw<9 earthquakes estimated with teleseismic data. He found that 

the data is consistent with the hypothesis that the average strain drops of earthquakes are 

constant over depth. Then, the increase in stress drop with depth is due to the increase in 

shear modulus with depth. For the depth range of just intermediate depth earthquakes (70 

km to 300 km), the shear modulus is about 2.6 times that of the upper crust. The result of 

Vallée (2013) suggests that the median of the average stress drop of intermediate depth 

earthquakes is in the order of 8 MPa. This is consistent with the lower bound of Δ𝜏! for 

the 2014 Rat Islands earthquake found in this study.  

 

However, as shown in Figure 7, the moment rate functions of the models with very 

different Δ𝜏! (from 2 to 30 MPa) can have similar durations and peak amplitudes. In 

other words, the average stress/strain estimate based only on the duration and peak 

amplitude of an earthquake’s moment rate function is not unique. Previous waveform 

analyses revealed that the along-strike extensions of large intermediate depth earthquakes 

are often much larger than the extensions in the down-dip direction (e.g., Tibi et al., 

2002). The approach Vallée (2013) used considers, to some extent, the rupture 

heterogeneity of these intermediate depth earthquakes in the along-strike direction but 

still suffers from the uncertainty in the down-dip extensions. Note that when the duration 

and peak of a moment rate function are fixed, the width of the fault reduces by a factor of 
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two, and the stress drop will increase by a factor of four. In fact, evidence suggests that 

the stress drop estimate using near-epicenter records, which better constrains the rupture 

area, can be several times larger. For example, Takeo et al. (1993) estimated a stress drop 

of 42 MPa for the Mw7.6 1993 Kushiro-Oki, Japan earthquake using near- and far-field 

data and the aftershock distribution. Essentially, more work needs to be done to further 

constrain the lower bound of the average stress drop for intermediate depth and deep 

focus earthquakes.  

 

2.6.3 Energy based smoothing constraint during the finite fault slip inversion   

Finite fault source inversion is one of the most well known ill-posed geophysical inverse 

problems (e.g. Mai et al., 2016). Researchers often have to use hundreds to thousands of 

free parameters to represent the spatiotemporal earthquake rupture history, regardless of 

the fact that only a portion of them could be well constrained by the observations (e.g., 

Shao and Ji, 2012). Various regularizations are then used to stabilize the solution. A 

smoothing constraint applied to the fault slip is one that is used by most conventional 

inversion algorithms (e.g., Hartzell & Heaton, 1983). When several different models fit 

the data equally well, common in ill-posed situations, this regularization ensures that the 

solution with the smoothest slip distribution is chosen. As we discussed above, the 

inverted models with stress drop larger than 5 MPa are essentially indistinguishable using 

only teleseismic data. Because the models with higher Δ𝜏! have more heterogeneous slip 

distributions (e.g., Figure 6), they will not be the final solution of the conventional 

inversion algorithms. We suspect this is the reason why the deviations of the average 

stress drop of earthquakes in previous studies are often limited (e.g., Causse et al., 2013). 

 



 36 

The definition of slip roughness, which is minimized during the finite fault inversion, is 

not unique. For example, Hartzell & Heaton (1983) favored a simple smoothing scheme, 

i.e., 𝐷! − 𝐷! ≅ 0, where 𝐷! and 𝐷! are the slip of adjacent subfaults. Because the slip 

difference between adjacent subfaults is related to the local stress drop, this constraint 

achieves a smoothing model by minimizing the local stress drop. Du et al. (1992) defined 

the fault roughness as the Laplacian of the inverted slip distribution along the fault 

surface. To some extent, this constraint achieves a smoothing model by minimizing the 

local gradient of inferred stress drop. If solving the finite fault inversion using singular 

value decomposition (SVD), the smoothing of the fault slip can also be achieved by 

properly truncating the small eigenvalues (Hartzell & Heaton, 1983). All of these 

methods can lead to smoothing, but their impacts on the inverted slip distributions are 

different. For example, the Laplacian smoothing method will have a stronger smoothing 

effect on the asperity edge than simply constraining the difference in slip between 

adjacent subfaults.  

 

A trade-off exists between how well a model fits the data and also satisfies smoothing 

constraints that are used to stabilize the inversion. Their relative impacts to the overall 

misfit can be adjusted with a particular weight, such as in Equation 5. How to properly 

select the value of the smoothing constraint is one of the unanswered questions in 

seismology (e.g., Harris & Segall, 1987; Somerville et al., 1999; Sekiguchi et al., 2000). 

During our inversions, we have used the trial and error approach proposed by Hartzell & 

Heaton (1983), which is subjective to the modelers. On the other hand, more quantitative 

methods have been introduced. Ide et al. (1996), Sekiguchi et al. (2000) and Fukahata et 

al. (2004) proposed to select the weight value quantitatively using Akaike's Bayesian 
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Information Criterion (ABIC). Du et al. (1992) and Mendoza & Hartzell (2013) 

suggested selecting it by inspecting the trade-off curve between data misfit and roughness 

of the inverted slip, i.e. the L-curve (e.g., Henson & O’Leary, 1993; Mendoza & Hartzell, 

2013). To some extent, this kind of curve is similar to what is shown in Figure 2, though 

here Δ𝜏! replaces the roughness of inverted slip as the horizontal axis. 

 

As shown in Figure 10, there is a positive correlation between the energy based average 

stress drop Δ𝜏! and the fault roughness defined using the Laplacian of the inverted slip 

distribution. It implies that the smoothing of the inverted slip model can also be achieved 

by reducing the pre-assigned Δ𝜏!value. Therefore, to some extent, looking for the lower 

bound of Δ𝜏! for a given earthquake is analogous to looking for the optimal weight of the 

aforementioned smoothing constraints during the finite fault inversion. Obviously, the 

lower bound of Δ𝜏! has a much clearer physical meaning. With the current global seismic 

network, the seismic moment or potency of Mw>6 earthquakes can be well constrained. 

Then the search for the lower bound of Δ𝜏! is equivalent to the search for the lower 

bound of the available energy. Each dataset has its individual spatial resolution of the 

fault slip, which controls the resolution of the lower bound of the available energy. Hence 

such a lower bound is extremely important for the scientists who want to use them. This 

new approach can be named as the energy based smoothing constraint. It can also be 

applied to the inversions using geodetic data. More in-depth aspects of this approach need 

to be explored to, for example, more quantitatively select Δ𝜏! using the L-curve or ABIC 

method mentioned above. However, they are beyond the scope of this work and we leave 

it to future efforts. 



 38 

 

2.7 Conclusion 

The static stress drop varies locally over the fault surface. In most cases only its average 

value can be determined using seismic observations and often with large uncertainties. In 

this study, we focus on the energy based average stress drop Δ𝜏! estimated from the 

inverted finite fault slip model. Conventional finite fault inversions do not directly invert 

for on-fault stress change; thus it is unclear whether models with significantly different 

stress drops can match the observations equally well. To address this concern, we 

developed a new nonlinear inversion strategy to explore the uncertainty range of Δ𝜏! for 

large earthquakes. For a given earthquake, we loop through a series of target stress drops; 

for each case we conduct a modified finite fault inversion to find the solution that 

matches not only the seismic and geodetic data but also matches a prescribed Δ𝜏!. As an 

example, we use teleseismic waveforms to constrain Δ𝜏! of the 2014 Mw 7.9 Rat Islands 

intermediate depth earthquake. We found that the waveform misfit associated with the 

inverted model decreases quickly as Δ𝜏! increases from 0.5 MPa to 5.0 MPa, but varies 

negligibly as Δ𝜏! increases from 10 MPa to 50 MPa. Hence we are able to define the 

lower bound of Δ𝜏!  but fail to constrain its upper bound. Our further investigation 

indicates that this is caused by the fact that teleseismic data only has limited resolution of 

the fine scale roughness of fault slip. Because the spatial resolutions of all seismic or 

geodetic data are limited, this leads to the conclusion that the upper bound of Δ𝜏! cannot 

be determined from inversions of this data. 
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Regarding the earthquake energy budget, failing to constrain the upper bound of Δ𝜏! 

leads to the following conclusions: 

1) The upper bound of the available energy (e.g., Kanamori & Heaton, 2000) 

cannot be retrieved using only seismic and/or geodetic data. 

2) The observed seismic radiation efficiency is close to its upper bound.  

3) The upper bound of average fracture energy EG cannot be retrieved only with 

seismic or geodetic data. 

 

Forcing an inverted slip distribution to have a pre-assigned Δ𝜏! will strongly influence 

the inversion. It impacts other average kinematic parameters as well. As expected, when 

Δ𝜏! increases by one order-from 5 MPa to 50 MPa the weighted average slip increases 

monotonically 3.5 times. In contrast, the impact on the average rupture velocity is 

negligible, and the effect on the average rise time is much smaller (<30%). The average 

slip rate, which is influenced by both slip and rise time, increases by a factor of two, 

which might suggest that the average dynamic stress drop rises by a factor of two when 

the static stress drop increases by a factor of ten.  

 

Finally, Δ𝜏! is correlated with the roughness of fault slip. Looking for the lower bound of 

Δ𝜏!  for a given earthquake is analogous to looking for the optimal weight of the 

smoothing constraints during the finite fault inversion but with a much clearer physical 

meaning. Such an energy based smoothing scheme needs to be further investigated. 
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Figure 1: Left: Location and GCMT focal mechanism of the 2014 Mw 7.9 Rat 

Islands earthquake with the positions and names of the global seismic stations used 

(red triangles). Right: Surface projection of the causative high-angle fault plane 

superimposed on a map of the bathymetry of the Aleutian arc.  
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Figure 2: Energy based average stress drop (Δ𝜏!!!!!!) of selected inverted slip models 

versus the corresponding waveform misfit. Upper-right inset shows the entire range of 

stress drops we have surveyed. Note that the waveform misfit is essentially constant 

when Δ𝜏!!!!!! is larger than 10 MPa. The red box highlights the stress range of 2-15 MPa, 

which is enlarged as the main figure. The black dashed line denotes the average misfit 

for inverted models with Δ𝜏!!!!!! ≥10 MPa. The red dashed line then denotes this average 

line plus two times the standard deviation of the waveform misfit range due to the 

choice of the initial model. See text for details.  
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Figure 3: Comparison of 61 teleseismic P and SH velocity waveforms (black lines) and 

synthetic seismograms (red lines) predicted by the inverted model with Δ𝜏!!!!!! equal to 5 

MPa. The station names are indicated to the left of the traces, along with the epicenter 

distance and azimuthal angle in degrees. At the end of each trace, the peak amplitude of 

the observation (µm/sec) is given.  
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Figure 4: Comparison of P and SH synthetic seismograms at select stations. The red 

area shows the range of synthetic waveforms predicted using the inverted fault 

models with Δ𝜏!!!!!! ranging from 0.5 to 4 MPa. The observation is plotted as the black 

dashed line for comparison. 

Figure 5: Similar to Figure 4 but here the red area shows the range of synthetic 

waveforms predicted using the inverted fault models with Δ𝜏!!!!!! from 5 to 50 MPa. 
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Figure 6: (a) Slip distribution of the Model-5MPa. A, B and C label the three major 

asperities; (b) slip distribution of the Model-30MPa. (c) and (d) show the stress drop 

distributions of these two models respectively. Color denotes the amplitude of the slip 

or stress drop. The contour lines show the rupture initiation locations at 5 sec intervals. 

See text for details.  
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Figure 7: (a) Comparison of the cumulative moment rate functions of three selected 

inverted models with Δ𝜏!!!!!! equal to 2, 5 and 30 MPa, respectively. (b) Comparison of 

the Fourier spectra of the three models shown in (a), accompanied by the spectrum of 

a 𝜔! model with corner frequency of 0.0275 Hz as reference. 
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Figure 8: Variation of weighted average slip (a), weighted average rise time (b), 

weighted average rupture velocity (c), and weighted average slip rate (d) with Δ𝜏!!!!!!. 

The vertical dashed lines mark Δ𝜏!!!!!!=5MPa. See text for details. 
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D= 1
S= 1
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Figure 9: A cartoon illustrating the potential uncertainty of the estimate of the 

average stress drop due to limited spatial resolution. Two models, A and B, are 

embedded in a homogeneous medium. Model A has unit slip (D=1) on a square fault 

patch with unit area (S=1). Model B has all of its slip concentrated in a small square 

patch (the shaded grey area) with an area of 1/9, but the uniform slip in this grey 

patch is 9. Note that the two models (A and B) have the same seismic moment but 

the stress drop of model B is 27 times that of model A.  
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Figure 10: Variation of Δ𝜏!!!!!! with the fault roughness defined using the summation of 

the Laplacian of the corresponding inverted fault slip at all subfaults.  
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2.9 Appendix 
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Figure S1: Variation of the waveform misfits of 176 inverted models with average 

stress drop (Δ𝜏!!!!!!) and stress coefficient, λτ. Each circle denotes one inverted model 

with the color showing the value of the corresponding waveform misfit. As 

mentioned in the main text, we let the target stress drop change from 0.5 MPa to 50 

MPa. However, when the target stress drop is small, for example 0.5 MPa, Δ𝜏!!!!!! of 

the inverted model might be significantly larger than the target. The respective 

waveform misfit colors each test, where high misfits are in red and low in blue. As 

the stress coefficient is increased the waveform misfit also increases, emphasizing 

the need to use the minimum λτ that still ensures the inversion converges to the target 

stress drop.  
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Figure S2: Variation of waveform misfit with Δ𝜏!!!!!!. Upper-right inset shows the entire 

range of stress drops we have surveyed. Note that the waveform misfit is essentially 

constant when Δ𝜏!!!!!! is larger than 10 MPa. The red box highlights the stress range of 2-

15 MPa, which is enlarged to be the main figure. The black dashed line denotes the 

average misfit for inverted models with Δ𝜏!!!!!! ≥10 MPa. The red dashed line further 

denotes this average line plus two times the standard deviation of the waveform misfit 

range due to the choice of the initial model.  
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Figure S3: Comparison of P and SH synthetic ground displacement seismograms at 

select stations. The red area shows the range of synthetic displacement predicted using 

the inverted fault models with Δ𝜏!!!!!! ranging from 0.5 to 4 MPa. The observation is 

plotted as the black dashed line for comparison. The unit of vertical axis is 𝜇𝑚. 

 

Figure S4: Similar to Figure S3 but here the red area shows the range of synthetic 

ground displacement waveforms predicted using the inverted fault models with Δ𝜏!!!!!! 

ranging from 5 to 50 MPa. 
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Figure S5: Distribution of the rise time (sec) for selected slip models with Δ𝜏!!!!!! equal 

to a) 5 MPa, and b) 30 MPa. Color denotes the rise time values of the subfaults with 

significant slip (> 10% of inverted peak slip). The corresponding slip and stress 

distributions are shown in Figure 7.  
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Parameter Search Range 

Slip (m) 0 – 15 

Rake Angle (o) 215 – 275 

Rupture Velocity 
(km/sec) 1.5 – 4.5 

Rise Time (sec) 1.0 – 8.0 
 
 
 
 
 
 
 
  

Table S1: Search range for inverted parameters. 
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Figure S6: Average slip (m) for all inversions calculated using the simple definition: 

𝐷!!"#$%& =
1
𝑛!𝐷!

!

!!!

                                                                (𝑠1) 

where Di is the slip at the ith subfault, and n is the number of subfaults with slip 

greater than 10% of the peak slip. The average slip increases monotonously with 

average stress drop from 0.66 m to 4.68 m (a factor of ~7).  
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Table S2: The average slip values for the two test cases shown in Figure 6, Model-

5MPa and Model-30MPa, calculated using the simple and weighted average slip 

formulae. Also, the simple and weighted average slip for each main asperity for each 

of the two test cases, as labeled in Figure 6, is given. Finally, the peak slip (m) for 

each model as a whole, and for each asperity, is also shown. The weighted average 

slip is given by equation 7(a), and the simple average slip is given by equation (s1). 

 
 Simple Average Slip 

(m) 
Weighted Average 

Slip (m) 
Peak Slip (m) 

Model-5MPa 1.53 2.01 3.97 

Model-5MPa A 0.97 1.21 1.86 

Model-5MPa B 1.92 2.51 3.97 
Model-5MPa C 0.92 1.25 2.38 

Model-30MPa 3.44 4.75 14.39 
Model-30MPa A 1.55 1.96 3.43 
Model-30MPa B1 3.98 7.27 14.39 
Model-30MPa B2 3.97 6.06 14.36 

Model-30MPa C 1.42 5.77 4.78 
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3. Energy based average stress drop and its uncertainty during the 2015 

Mw 7.8 Nepal earthquake constrained by geodetic data and its 

implications to earthquake dynamics  

 
This paper has been submitted to Geophysical Journal International, and has been 

accepted with minor revisions.  
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3.1 Abstract 
 
The slip and static stress drop of the 2015 Mw 7.8 Gorkha, Nepal earthquake has been 

studied using its excellent near-source static observations and a newly developed finite 

fault inversion algorithm with an average stress drop constraint. A series of non-linear 

inversions with different target stress drops are conducted to search for the solution that 

not only most accurately fits the geodetic data, but also has an energy based stress drop, 

Δ𝜏!, matching the target value. Our result reveals that the misfit to the geodetic data 

gradually decreases when the Δ𝜏! of the inverted slip model increases from 2 to 7 MPa; 

but becomes nearly constant when Δ𝜏! further increases. Hence, only the lower bound of 

Δ𝜏!, i.e. Δ𝜏!
!"#(~7MPa), of the Gorkha earthquake can be constrained with near fault 

geodetic measurements, consistent with our previous study using just far field seismic 

data. The upper bound of Δ𝜏!  can be constrained with an extra constraint on the 

maximum local stress drop. An artificial upper bound can also be reached if using a large 

subfault size to represent the source. The lower bound of Δ𝜏! leads to the lower bound of 

the apparent available energy and the upper bound of the radiation efficiency (𝜂!, 0.09-

0.15), though the latter is also sensitive to the determination of the radiated seismic 

energy. We find that the lower 𝜂! and the reported high rupture velocity (80-93% shear 

wave speed) can be reconciled by considering the aspect ratio of the dominant slip patch. 

We recommend using Δ𝜏!
!"# to replace various slip smoothing constraints to stabilize 

the finite fault inversion because of its clear physical meaning. 
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3.2 Introduction 
 
Accurate images of the growth of slip and faulting are critical in understanding the 

physics of earthquakes, and subsequently aid in the prediction of the ground motion that 

could be expected from future rupture events. However, the constraints of geophysical 

surface observations, such as seismic and geodetic measurements, to the underground 

earthquake rupture processes are generally limited, leading to non-unique solutions (e.g., 

Beresnev, 2003; Razafindrakoto et al., 2015). It is common practice for geophysicists to 

reduce the non-uniqueness of the inverse process by restricting the complexity of the 

target earth system. Two principal approaches have been widely adopted in earthquake 

source studies. First, by aiming to understand the average parameters of earthquakes, 

researchers only attempt to constrain a few inverted parameters by directly assuming a 

simple rupture scenario. The results of such analyses are mathematically over-determined 

but come with significant inherent uncertainties caused by simple source 

parameterization (e.g., Adams et al., 2017). For example, by assuming the earthquake as 

the rupture of a circular crack with constant rupture velocity, its average stress drop can 

be estimated based on only the corner frequency of recorded spectra and the seismic 

moment (Brune, 1970; Madariaga, 1979; Kaneko & Shearer, 2014): 

Δτ! = cM!f!!                                                                                (1)  

where M0 is the seismic moment, fc is the corner frequency, and c is a constant dependent 

on the rupture speed.  

 

Second, in order to explore the evolution of slip on faults, the source process is 

parameterized to be as realistic as possible (e.g., Olson & Apsel, 1982; Hartzell & 

Helmberger, 1982; Ide et al., 1996; Ji et al., 2002). Hundreds of free parameters are often 
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used, despite the fact that not all of them are well constrained by the available 

observations. Consequently, regularizations, such as smoothing constraints applied to the 

fault slip, are implemented to stabilize the solutions. Thus, the uncertainties of individual 

parameters are often difficult to access because they are not only caused by the limited 

data, but also these regularizations. Different constraints inevitably result in differences 

in inverted slip model distributions (e.g., Hartzell et al., 1991), though the long-

wavelength features tend to be well preserved.  

 

Recently, we have started to explore the uncertainty of average fault parameters using a 

realistic source representation. These parameters, such as average stress drop, can also be 

estimated using inverted slip models. In fact, previous analyses using published slip 

models yield significantly smaller deviations from the expected value of the average 

stress drop than the spectrum approach as mentioned above (Causse et al., 2014). 

However, it is not clear whether these results are caused by the use of more realistic fault 

parameterizations, or simply due to the regularizations used to smooth the inverted fault 

slip. To answer this question, in our companion work (Adams et al., 2017), we developed 

a new finite fault inversion strategy to explore the uncertainty range for the energy based 

average stress drop (𝛥𝜏!) of large earthquakes, which is defined as  

𝛥𝜏! =
𝛥𝜏𝐷𝑑𝐴!

𝐷𝑑𝐴!

                                                                    (2) 

where D and 𝛥𝜏 is on-fault static slip and stress drop, respectively (e.g., Kanamori & 

Allen, 1986; Kikuchi & Fukao, 1988; Shao et al., 2012; Noda et al., 2013). Noda et al. 

(2013) named Δ𝜏! the energy based average stress drop because it is equivalent to twice 
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the ratio of the “apparent” available strain energy (Δ𝑊! =
!
!

Δτ𝐷dA! ; Kanamori & 

Rivera, 2006) to the total seismic potency ( 𝐷𝑑𝐴! ; Heaton & Heaton, 1989). For a 

given rupture event, such as the 2014 Mw 7.9 Rat Islands earthquake (Twardzik & Ji, 

2015), a series of modified finite fault inversions are conducted to search for the solution 

that not only fits seismic and geodetic data, but also has a Δ𝜏!  matching a given value. 

This procedure results in a trade-off curve between Δ𝜏!  and the misfit to the 

observations, allowing us to explore the range of Δ𝜏! constrained by a given geophysical 

dataset to be robustly defined. The application of this inversion strategy revealed that 

only the lower bound of Δ𝜏!, hereafter referred to as Δ𝜏!
!"#, could be constrained with 

far field seismic data (Adams et al., 2017). Unlike the temporal kinematic rupture 

process, the static stress drop of an earthquake can, in principle, be constrained with only 

geodetic observations. Here we will demonstrate that the same arguments hold for the 

source slip inversion using only near-field static data. 

 

As mentioned above, various regulations have to be applied to finite fault studies to 

stabilize the inversions. These regulations inevitably affect the inverted solutions but how 

to appropriately select them is a challenging task for source modelers. For instance, slip-

smoothing constraints are used in most inversion algorithms (e.g. Hartzell & Heaton, 

1983), though there is no reason that fault slip necessarily needs to be smooth. 

Subsequently, the true target of these finite fault inversion algorithms becomes “the most 

spatially smooth slip model that still explains the observations well”. The definition of 

the slip model roughness, which is concurrently minimized during the inversions, is, 

however, not unique. Hartzell & Heaton (1983) favored a simple smoothing scheme, i.e., 



 69 

𝐷! − 𝐷! ≅ 0, where 𝐷! and 𝐷! are the slip on adjacent subfaults. Du et al. (1992) defined 

the fault roughness as the Laplacian of the inverted slip distribution along the fault 

surface. If the finite fault inversion is carried out with the singular value decomposition 

(SVD) method, the smoothing of the fault slip might also be achieved by properly 

truncating the small eigenvalues (e.g., Hartzell & Heaton, 1983). These methods impact 

the inverted slip distribution differently (Adams et al., 2017), and there is no physical 

reason to select one approach over the others.  

 

Adams et al., (2017) noticed the good correlation between the Laplacian of the slip 

distribution and energy based average stress drop Δ𝜏!, and suggested that the Δ𝜏!
!"# can 

be used as an alternative way to smooth the fault slip. Unlike the constraints mentioned 

above, this regulation, which we name as “minimum average stress drop” constraint, has 

a clear physical meaning. Because of the aforementioned relationship in equation (2), and 

the fact that the seismic potency of a large earthquake can often be well constrained, 

searching for the lower bound of Δ𝜏! is equivilant to searching for the lower bound of the 

available energy (Δ𝑊!) of this earthquake. In other words, we can replace the previous 

target of finite fault inversions, the smoothest slip distribution that can explain the 

observations well, with a more physical and well defined new target: the slip model with 

the lowest available energy that can explain the observations well.  

 

The ability to estimate the lower bound of the available energy is important in studying 

the physics of the source process. For example, a lower bound for the available energy 

infers an upper bound for the seismic radiation efficiency (𝜂!), which is defined as the 
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ratio of the radiated seismic energy to the available energy, 𝜂! =
!!
!!!

 (e.g. Husseini, 

1977; Venkataraman & Kanamori, 2004). Husseini (1977) and Venkataraman & 

Kanamori (2004) showed that 𝜂!  is positively correlated with the average rupture 

velocity. Thus, a rupture with a small radiation efficieny implies more energy is 

dissipated as fracture energy to create the rupture plane. Ye et al. (2016) systematically 

analyzed 110 Mw>7 earthquakes in the world and reported the average value of 𝜂! to be 

0.34 (logarithmic) or 0.49 (linear). 

 

Here we study the slip distribution and static stress drop of the 2015 Mw7.8 Gorkha, 

Nepal earthquake, which has some of the best near-field geodetic observations for 

earthquakes with similar or larger magnitudes (e.g., Yue et al., 2016; Mcnamara et al., 

2016; Lindsey et al., 2015, Wang & Fialko, 2015). The Gorkha earthquake has previously 

been extensively studied with seismic and geodetic data individually or combined 

together (e.g., Avouac et al., 2015; Lindsey et al., 2015; Mcnamara et al., 2016; Yue et 

al., 2016; Denolle et al., 2016; Lay et al., 2016). These studies revealed that this 

earthquake has a fast average rupture velocity, varying from 2.8 to 3.2 km/s (Avouac et 

al., 2015; Fan & Shearer, 2015; Zhang et al., 2016), 83-92% of the shear wave speed (3.5 

km/s) in the depth of coseismic rupture. In this study, we will first explore the lower and 

upper bounds of Δ𝜏! during the 2015 Nepal earthquake that are consistent with this 

excellent near-field static data. Second, a classic L-curve method is introduced to 

quantitatively define the lower bound of Δ𝜏!, i.e., Δ𝜏!
!"#. The lower bound of Δ𝜏! leads 

to the upper bound of the radiation efficiency, i.e., 𝜂!!"#, which is in fact much smaller 

than the previous reported mean values of global large earthquakes (Ye et al., 2016). We 
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subsequently show that the low 𝜂! and the high rupture velocity can be reconciled by 

considering the shape of the slip patch. In the end, we recommend using Δ𝜏!
!"# to 

replace various slip smoothing constraints in order to stabilize the finite fault inversion.    

 

3.3 Tectonic Background and Observations 

 

The April 25th, 2015 MW 7.8 Gorkha earthquake occurred at 06:11:25 (UTC) on the Main 

Himalayan thrust (MHT) as a result of thrust faulting on or near the main thrust interface 

between the subducting India plate and the overriding Eurasia plate (Avouac et al., 2015) 

(Figure 1). Previous geodetic studies revealed that the MHT is the primary fault interface 

accommodating 20 mm/yr of convergence between these two plates (Avouac, 2003; 

Larson et al., 1999; Molnar, 1988). Using interseismic GPS observations, Ader et al., 

(2012) concluded that the MHT is locked from the surface to approximately 20 km depth. 

The segment of the MHT where the Gorkha earthquake occurred previously ruptured in 

1833, with a rupture length of 100 km (Bilham et al., 2001), comparable to the 2015 

Gorkha earthquake.  

 

We use co-seismic geodetic data distributed to the public domain in this analysis. The 

unwrapped InSAR data was downloaded from http://topex.ucsd.edu/nepal/, which counts 

the LOS (line-of-sight) surface deformation between 02/22/2015 and 05/03/2015 

measured by Advanced Land Observing Satellite 2 (ALOS-2, operated by Japanese 

Aerospace Exploration Agency) (Lindsey et al., 2015). The data has been subsampled to 

678 points using the QuadTree resampling method (Lohman & Simons, 2005). The co-

seismic displacements at four near-fault GPS stations deployed by the Caltech Tectonics 
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Observatory (e.g., Avouac et al., 2015) were processed by Advanced Rapid Imaging and 

Analysis Center for Natural Hazards at Jet Propulsion Laboratory (JPL) using GIPSY-

OASIS software (Galetzka et al., 2015). Figure 2a illustrates the distribution of the LOS 

displacement measurements, with the locations of the InSAR and GPS points. The color 

maps the LOS displacements, which change from -70.9 to 107.6 cm. The southern end 

shows a larger and positive coseismic LOS offset compared to the northern region, and 

implies a greater uplift compared to the smaller subsidence in the north. 

 
 
3.4 Method 
 

Without loss of generality, assume that the rupture of the earthquake occurs on a 

rectangular fault plane, that is then divided into N (along-strike) by M (down-dip) 

subfaults. Let (j, k) denote the position of an arbitrary subfault, where j = 1, 2, …, N, and 

k = 1, 2, …, M. 𝑢 𝑥  represents the static response of this earthquake at location 𝑥, which 

can be calculated by adding the contributions of all subfaults (e.g., Olson & Apsel, 1982; 

Ji et al., 2002):  

𝑢 𝑥 = 𝐷!" 𝑐𝑜𝑠 𝜆!" 𝑌!"! (𝑥)+ 𝑠𝑖𝑛 𝜆!" 𝑌!"! (𝑥)
!

!!!

!

!!!

                        (3)  

Where Djk and λjk are the dislocation amplitude and rake angle respectively. 𝑌!"!  and 𝑌!"!  

are the subfault Green’s functions for unit slip in the strike and down-dip direction, 

respectively. Ordinarily, during the finite fault inversion with geodetic data, the fault 

model m, described by Djk and λjk, is determined by minimizing the difference between 

the synthetic and observed static displacements. 
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The shear stress drop at the center of the (i, j) subfault can be calculated by: 

𝜏!"! 𝑚 = 𝐷!"! 𝑚 𝜎!",!"
!,! + 𝐷!"! 𝑚 𝜎!",!"

!,!
!

!!!

                                                              (4)
!

!!!

 

where 𝜏!"! 𝑚 ; for r = 1,2 denotes the left-lateral (r = 1) or thrust shear (r = 2) stress at 

this location, respectively, for a given model m, and 𝐷!"
! 𝑚 , for p = 1,2, is the 

corresponding left-lateral (p = 1) or thrust (p = 2) displacements at the (k,l) subfault. 

Various synthetic algorithms (e.g. Okada, 1992; Cotton & Campillo, 1995) can then be 

used to pre-calculate a kernel function, 𝜎!",!"
!,! , that represents the shear stress response at 

the center of subfault (i,j) caused by the unit slip on subfault (k,l). Thus, the energy based 

average stress drop (e.g., Shao et al., 2012; Noda et al., 2013) of a model m can be 

calculated as: 

Δ𝜏! 𝑚 =
𝜏!" 𝑚 ∙ 𝐷!" 𝑚!

!!!
!
!!!

𝐷!" 𝑚!
!!!

!
!!!

                                                              (5) 

where τij(m) is the stress drop at the center of the (i,j) subfault, as the response to the fault 

slip of model m. As suggested by Noda et al. (2013), when the components of stress drop 

and slip in the overall slip direction dominate, 𝜏!"  and 𝐷!"  in equation (5) can be 

approximated as their components in the overall slip direction. This approximation is 

used in this study. 

 

Following Adams et al. (2017), we evaluate the slip model (m) using the objective 

function E(m) defined as: 

𝐸 𝑚 = 𝐸!"# + 𝜆!𝐸!"!#$% + 𝜆! 𝑙𝑛
Δ𝜏!(𝑚)
𝜏!"#$%!

                                                (6) 
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In this study, we simply define Efit(m) as the root mean square (RMS) of the difference 

between the observed and synthetic static displacements. Emoment is a function of the 

discrepancy between the inverted seismic moment and the value based on other methods, 

such as the GCMT solution. The weight λ1 is fixed at 0.1 in this study for all inversions. 

However as we discuss later, changing this to a negligible value (10-4) does not affect our 

conclusions. Finally, the last term is called the “fixed average stress drop constraint”, and 

it is zero when the Δ𝜏!(𝑚) of the inverted slip model m is equal to the pre-assigned 

𝜏!"#$%!. The logarithm function is selected here to limit the range of variation due to 

different Δ𝜏!(𝑚). Note that as Δ𝜏!(𝑚) approaches 𝜏!"#$%! , 𝑙𝑛
!!!(!)
!!"#$%!

converges to 

zero as 
!!! ! !!!"#$%!

!!"#$%!
. λτ is the coefficient balancing the effects of Efit(m) and the “fixed 

average stress drop constraint”. It can be selected using a grid search approach (Adams et 

al., 2017).  

 

During this study, we let 𝜏!"#$%! vary within a large range and a simulated annealing 

algorithm (Ji et al., 2002a) is used to search for the minimum of E(m) for each given 

𝜏!"#$%! (Adams et al., 2017).  

 

3.5 Fault Geometry and velocity structure 

We approximate the fault with a single rectangular fault plane inferred from the GCMT 

solution (http://www.globalcmt.org), the USGS epicenter (28.231oN, 84.731oE) and a 

slightly shallow hypocenter depth of 12 km. It is oriented with a strike of 293o and dips 7o 

to the north. Similar fault geometry is also used in previous studies (e.g., Yue et al, 2016). 
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After some preliminary tests, the final fault plane used in this study extends 176 km 

along-strike and 80 km down-dip, spanning a depth range of 8.3 to 18.1 km.  The fault 

plane is divided into 880 subfaults measuring 4.0 km (along-strike) and 4.0 km (down-

dip). The fault slip and rake angle of each subevent are inverted, leading to a total of 

1760 free parameters. To test the impact of the subfault size, we also conduct inversions 

using a subfault size of 8 km by 8 km, resulting in a total of 440 free parameters. It is 

important to recognize that the 4x4 km subfault case is under-determined as we have 

fewer data points (678) than free parameters, whereas the 8x8 km case is not.  During the 

inversion, the slip on individual subfaults is allowed to change from 0.0 to 15 m, and the 

rake angle is allowed to vary from 80o to 140o. We also limit the slip at the edges of the 

fault plane to less than 0.01 m. 

 

We use a one-dimensional layered velocity model (Figure 3) interpolated from the Global 

CRUST 2.0 model (Bassin et al., 2000), to approximate the earth structure in the source 

region. It is important to note that from a depth of 0.6 to 21.5 km, which encompasses the 

depth region of coseismic rupture, the S wave speed is 3.5 km/s, according to this model. 

The corresponding rigidity is then 3.31x104 MPa. While the surface static displacements 

of the layered structure are computed using the method of Xie and Yao (1989), the 

constant velocity and density in the source depth range allow us to quickly calculate the 

on-fault stress change using the analytic solution for a half-space earth (Okada, 1992). 

 
 
3.6 Results 
 
We have conducted three sets of inversions to explore the upper and lower bounds of Δτ! 

and the potential uncertainties associated with subfault size and the maximum local stress 
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drop. We will first investigate the results using 4 km by 4 km subfaults and then discuss 

the uncertainties. 

 

3.6.1 𝚫𝝉𝑬
𝒎𝒊𝒏 of the 2015 Gorkha earthquake 

 

We have conducted inversions with 22 different target stress drops (𝜏!"#$%!) ranging from 

2 to 50 MPa. The subfault size of all fault models is 4 km by 4 km. Inversions are 

allowed a variety of different initial models, but the number of iterations is fixed to 400 

after preliminary tests. For each 𝜏!"#$%! , we conduct multiple inversions with the 

coefficient λτ gradually increasing from a negligible value of 10-4 until 0.1, and select the 

model with the smallest λτ value that still could guarantee the difference between Δ𝜏! of 

the inverted model and 𝜏!"#$%! to be less than 10% (Adams et al., 2017). Figure 4 shows 

the relationship between Δ𝜏! of the inverted models and the value of the corresponding 

misfit function 𝐸!"#. It can be seen that 𝐸!"#  generally decreases quickly as Δ𝜏! increases 

from 2 MPa to 7 MPa, and then remains essentially constant when Δ𝜏! increases from 7 

MPa to 50 MPa, albeit with small fluctuations. The pattern is identical to our previous 

work using teleseismic data (Adams et al., 2017).  

 

In principle the simulated annealing algorithm should be independent of the initial 

models, but in practice, because of the limitations such as a fixed maximum iteration 

number, small dependences are often observed. We conduct 10 additional inversions with 

different initial models for the same 𝜏!"#$%! of 7 MPa. The 𝐸!"#  values of these models 

have a mean of 2.694 cm and a standard deviation (𝜎) of 0.011. The two red dashed lines 

in Figure 4a define the ±2𝜎 misfit range due to the choice of the initial model. Note that 



 77 

all 𝐸!!"  values of models with Δ𝜏!>7 MPa fall within this range. Hence, this excellent 

geodetic dataset allows us to define the lower bound of Δ𝜏! but fails to constrain its 

upper bound, similar to our previous conclusion using teleseismic data (Adams et al., 

2017).  

 

All inverted models with Δ𝜏! ≥ 7  𝑀𝑃𝑎 explain the data well. Figure 2c shows the 

distribution of the residuals (observed-synthetics) of the worst scenario, i.e., the solution 

with Δ𝜏! = 7  𝑀𝑃𝑎. The misfits for the majority of the InSAR points across the actual 

fault plane are near zero. However, relatively large discrepancies are found in the points 

far to the south and near the bottom left-hand corner of the assigned fault plane. As large 

misfits for measurements in similar regions can also be seen in other studies, the misfits 

are likely caused by errors unrelated to the coseismic rupture.  

 

The exact lower bound of Δ𝜏!, or Δ𝜏!
!"#, depends on the errors and limitations of 

observations, the synthetic earth response, and the inversion procedure. If only 

considering the error caused by the choice of the initial model, we might argue that, with 

95% confidence, the Δ𝜏! of 2015 Nepal earthquake is about 7 MPa (upper red dashed 

line, Figure 4a (Adams et al., 2017). Alternatively, Adams et al. (2017) found that the 

Δ𝜏! of the inverted model changes monotonically with the roughness of the inverted slip 

model measured as the Laplacian of fault slip. One of the classic methods that is widely 

used to deal with the trade-off between data misfit and the roughness of the inverted slip 

model is the L-curve method (e.g., Hansen & O’Leary, 1993; Mendoza & Hartzell, 

2013). We adopt it here to deal with the balance between Δ𝜏! and 𝐸!"#. Analogously, 
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Δ𝜏!
!"# is defined as the “corner” or the point with the maximum curvature of the 

log(Δ𝜏! )–log(𝐸!"#)  plot. Following Hansen & O’Leary (1993), a local smoothing 

polynomial function is applied before a 2D spline curve is used to fit the set of points that 

make up the L-curve: which are the average stress drops of the model and their respective 

inversion misfit values. Then, the point of maximum curvature on this spline curve is 

computed and the “corner” becomes the data point closest to this calculated point. After 

applying this algorithm, the corner, i.e. the lower bound, of the misfit versus stress drop 

curve is at 7 MPa (Figure 5a), which is consistent with our earlier results. 

 

As pointed out by Adams et al. (2016), there is a positive correlation between Δ𝜏! and 

the fault roughness defined using the Laplacian of the inverted slip distribution. For a 

comparison, in Figure 5b we show the RMS misfit and fault roughness of every model 

used in Figure 5a. The two dashed lines denote the values of these two parameters 

associated with the model with Δ𝜏!
!"#, respectively. Visually these models also fall in a 

L-shape curve and the location of the model with Δ𝜏!
!"# is near the point of maximum 

curvature of this inferred L-shape curve (Figure 5b). Hence, even using the slip 

roughness as a constraint, the model with Δ𝜏!
!"# is still one of its optimal solutions. This 

similarity implies that the solutions using conventional finite fault methods will have a 

similar Δ𝜏! that is close to Δ𝜏!
!"# if all of them use similar datasets. This is consistent 

with the previous analysis of the published slip models (Causse et al., 2014). 

 

Figure 6a shows the slip distributions of the models with Δ𝜏! = Δ𝜏!
!"#

, hereafter 

referred to as  “Meb-7MPa”. It has a cumulative seismic moment of 7.55x1020 Nm (Mw 



 79 

7.8). The inverted peak slip is 8.67 m. The weighted average fault slip amplitude 𝐷, 

defined as 𝐷 =
!!"
!

!!

!!"!!
  , where Djk is the slip amplitude of subfault (j,k) (Ji et al., 2002), 

is 4.3 m (Figure 7b). The slip distribution of this model is compact, as only 43% of all 

subfaults have significant slip, which is here defined as slip larger than 0.87 m, 10% of 

the peak slip. Most of the subfaults with significant slip are within the largest slip patch 

with an inverse triangular shape, which is outlined by the 10% peak slip contour in white 

(Figure 6a). Several small slip patches can also be seen at the edges of the fault plane, 

which are likely caused by errors in the observations.  

 

According to the values of the objective function, all models with Δ𝜏! ≥7MPa cannot be 

distinguished simply by their fit to the observations (Figure 2a); all of them also have a 

similar seismic moment. Figure 6b shows the slip distribution of one such representative: 

the model with Δ𝜏! equal to 20 MPa, which we will refer to as “Meb-20MPa”. Note that 

the edges of the asperities are again outlined using the same criterion as above, by 

contours of 10% of the peak slip. Comparing Figure 6a with 6b, we can see that as Δ𝜏! 

increases, the fine scale roughness intensifies. The peak slip of Meb-20MPa is ~15 m, and 

its weighted average fault slip 𝐷 is 5.7 m, 25% larger than that of model Meb-7MPa. On 

the other hand, the spatial extent and location of the main slip asperity remains relatively 

intact, despite the increased heterogeneity. For example, it can be seen that the shape of 

the large triangular asperity in model Meb-20MPa spans nearly the same area as that of 

Meb-7MPa (white contour line, Figures 6a and 6b). Figure 7a illustrates the difference 

between Meb-7MPa and Meb-20MPa. On the individual subfaults, the differences range 

from -5.85 to 9.32 m, which is notable considering the peak slip of model Meb-7MPa is 
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only 8.67 m. The mean of the differences is 0.002 m and the standard deviation is 1.67 m. 

Over the main slip asperity, regions of the slip distributions of the two models generally 

differs in the range of -4 m to +4 m. Figure 7a then highlights the difficulty to constrain 

the slip of individual subfaults using available geodetic data. Then, as shown in Figure 

7b, the weighted average fault slip 𝐷 increases almost linearly from 4.3 m to 8.5 m as 

Δ𝜏! increases from 7MPa to 50 MPa. 

 

Figures 8a and 8b show the static stress drop distributions of Meb-7MPa and Meb-20MPa, 

respectively. The heterogeneity of the slip distributions is clearly reflected in the stress 

distributions, with the most variability in the model with the higher stress drop. The 

subfaults with the large stress drop are also correlated with the subfaults with high slip. 

The peak stress drop of Meb-20MPa is about 2 times greater than that of Meb-7MPa. 

 

Furthermore, tests were conducted that relaxed the moment constraint, i.e. 𝜆! was set to 

0.0001 rather than 0.1, and the inverted seismic moment increased by 8% (6.98x1020 Nm 

versus 7.55x1020 Nm). The misfit value also decreased slightly from 2.71 to 2.69. The 

only noticeable difference was that when the moment constraint was less strict, the peak 

slip was slightly more: 9.3 m versus 8.7 m.  

 

3.6.2 Can we constrain 𝚫𝝉𝑬
𝒎𝒂𝒙 of the 2015 Gorkha earthquake? 

 

We have explored the possibility of constraining the maximum of Δ𝜏! and found that 

under two circumstances 𝐸!"# will increase again when Δ𝜏! becomes large enough. First, 

we find that the pattern of the 𝐸!"# vs. Δ𝜏! curve shown in Figure 4a depends on the 
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subfault size. For comparison, we have repeated the above analysis with models using 8 

km by 8 km subfaults, i.e. four times larger in area. The number of inverted free 

parameters is subsequently reduced by a factor of 4. As shown in Figure 4b, the value of 

the misfit function 𝐸!"# decreases quickly as Δ𝜏! increases from 2 MPa and reaches the 

minimum when Δ𝜏! equals 7-8 MPa, consistent with the above analyses using 4 km by 4 

km subfaults. However, as expected the minimum value of 𝐸!"# is 3.395, larger than the 

analysis using 4 km by 4 km subfaults. When Δ𝜏! further increases, the value of 𝐸!"# 

starts to increase as well, particularly when Δ𝜏! exceeds 18 MPa (Figure 4b). Hence, 

when using large subfaults, the 𝐸!"# vs. Δ𝜏! curve seems to suggest the upper bound of 

Δ𝜏! can also be constrained using geodetic data. Note that using a larger subfault size 

limits the shortest wavelength of the spatial variation of slip allowed, and subsequently, 

the shortest wavelength of the local stress drop variation. Adams et al. (2017) pointed out 

that the difficulty to constrain the upper bound of the energy based average stress drop 

Δ𝜏! is due to the difficulty to constrain the shortest wavelength of the local stress drop 

variation with surface data. Thus, this result with static data is an expected artifact.  

 

Second, the above inversions with the fixed average stress drop constraint only have a 

weak sensitivity to the stress drop at individual subfaults. As shown in Figure 8a, the 

average stress drop is only 7 MPa but the maximum local stress drop is much higher at 46 

MPa. We have attempted to further constrain the maximum local stress drop by adding 

one more term to the objective function 𝐸 𝑚 : 

𝐸 𝑚 = 𝐸!"# + 𝜆!𝐸!"!#$% + 𝜆! 𝑙𝑛
𝛥𝜏!(𝑚)
𝜏!"#$%!

+ 𝜆!!"#$!𝐸!!"#$!                                                 (7) 
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with  

 𝐸!!"#$! =
0 𝑖𝑓  ∆𝜏!" < 𝛥𝜏!"#

∆!!"!!"!"#

!"!"#
𝑖𝑓  ∆𝜏!" ≥ 𝛥𝜏!"#!"     (8) 

∆𝜏!" denotes the stress drop at subfault (i,j) and 𝛥𝜏!"# is the pre-assigned maximum local 

stress drop. λ!!"#$! is the local stress coefficient, which is set to the minimum value 

possible while still ensuring 𝐸!!"#$!  is less than 0.1, i.e., the stress drop at any subfault 

cannot be 10% larger than the given 𝛥𝜏!"#. We name this new physical regulation the 

“maximum local stress drop constraint”. Figure 4c shows the Δτ! vs. 𝐸!"#  curve in blue 

after we set 𝛥𝜏!"# to 25 MPa, in comparison to the case without the maximum local 

stress drop constraint in red. It can be seen that the two curves are nearly overlapping 

when Δ𝜏! is less than 15 MPa. However, 𝐸!"# starts to increase again as 𝜏!"#$%! increases 

past ~15 MPa if 𝛥𝜏!"# is constrained to 25 MPa. While our final estimate of Δ𝜏!
!"# still 

holds in this case (𝛥𝜏!"# < 25  𝑀𝑃𝑎), one can also expect it to be affected if a much 

smaller 𝛥𝜏!"#, for example 7MPa, is chosen. While 𝛥𝜏!"# is unfortunately unknown, 

the 25 MPa assumed in this case is not abnormally high. It is less than one third of the 

maximum shear stress at a depth of 10-15 km, estimated with the empirical relationship 

proposed by McGarr (1999).  Furthermore, Shao et al. (2012) reported that Δ𝜏! and the 

peak stress drop of the 2009 Mw 5.4 Chino Hills earthquake are 38 MPa and 80 MPa, 

respectively, at a source depth of about 15 km. 

 

Figures 6c and 6d show the inverted slip distributions using equations (7) and (8) as the 

objective function, with a 𝜏!"#$%!  of 7MPa and 20 MPa, respectively. We refer to them as 

“Mls-7MPa” and “Mls-20MPa”, respectively. It can be seen that the constraint to the local 
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stress drop has negligible impact to the general shape of the slip asperities, which are 

similar to the first set of models (Figure 6a and 6b). The peak slips for these models are 

similar to the first two models at 8.8 and 10.4 m, respectively. Also, both Mls-7MPa and 

Mls-20MPa exhibit fewer patches of high slip, i.e. considering only the ruptured area, the 

asperity itself has a more homogeneous slip distribution, than Meb-7MPa and Meb-20 

MPa, respectively. Overall, these four models do have similar slip extensions and the 

asperity boundary in all cases considered here are well constrained.  

 

Regardless of the promise to constrain the upper bound of Δ𝜏!  with additional 

information of the maximum local stress drop 𝛥𝜏!"# , readers should be aware that 

𝛥𝜏!"# mentioned here is different than what has been found in the laboratory. The 𝛥𝜏!"# 

is the maximum stress drop across a fault length proportional to the subfault size, i.e., on 

the order of kilometers. In contrast, the rock units used in laboratory experiments are 

generally on the order of meters or less (e.g., Mclaskey et al., 2014). The 𝛥𝜏!"# should 

then be less than the maximum local stress drop found in laboratory experiments. 

 
3.7 Discussion 
 
Our previous study of the 2014 MW 7.9 Rat Islands earthquake (Adams et al., 2017) 

revealed that using teleseismic waveforms, only the lower bound of Δ𝜏!  could be 

constrained. We interpreted it as a result of the limited resolution to the fine scale 

roughness of the fault slip. In this study, we reach the same conclusion for the 2015 MW 

7.8 Gorkha, Nepal earthquake with its excellent near-source geodetic observations. We 

further illustrate that the upper bound of Δ𝜏! can be accessed only when the highest local 
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stress drop is known. Also, we must caution readers about the potential for a pseudo 

upper bound, caused by using too large a subfault size.  

 

3.7.1 Preferred slip model of the 2015 Gorkha event and its uncertainty 

 

All models with Δ𝜏! > Δ𝜏!
!"#

 match the data indistinguishably. Considering the large 

differences amongst these models (e.g., Figure 7a), it is not meaningful to discuss the slip 

distributions without additional constraints to Δ𝜏!. As mentioned above, Δ𝜏! is related to 

the “apparent” available strain energy (Δ𝑊!), i.e., Δ𝑊! =
!
!
Δ𝜏!𝑃,  where P denotes the 

seismic potency (Kanamori & Rivera, 2006). Δ𝑊! is the portion of the total strain energy 

responsible for creating a new fault plane and radiating seismic waves. Since the seismic 

potency is often well constrained, the solution with Δ𝜏! = Δ𝜏!
!"#

 is then the model with 

the minimum available strain energy (Δ𝑊!
!"#) that also matches the data.  

 

We have conducted 10 additional inversions with different initial models but with the 

same target stress drop of  𝜏!"#$%! = Δ𝜏!
!"# (7 MPa). While what is shown in Figure 6a 

and Figure 8a can be viewed as one representative model, here Figure 9a and Figure 9b 

show the mean slip distribution of all of these slip models and the corresponding standard 

deviations for individual subfaults, respectively. We find that besides the similar seismic 

moment and Δ𝜏!, the weighted average slip, 𝐷, defined above is also incredibly stable, 

changing negligibly from 4.30 to 4.41 m among these models. The variation of slip on 

individual subfaults is still notable but much smaller than what is shown in Figure 7a. 

The average standard deviation of slip is only 0.42 m (5% of the peak slip), though on 
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individual subfaults the standard deviation of slip can be up to 1.5 m (18% of the peak 

slip). However, amongst these models the peak slip varies from 8.5 m to 11.7 m, 

suggesting that peak slip is not a well-constrained variable. 

 

Given the small standard deviation, it is unsurprising that the mean of these slip models 

(Figure 9a) is visually identical to what is shown in Figure 6a, and has a cumulative 

seismic moment of 7.55x1020 Nm (Mw 7.8). The peak slip of this mean slip distribution 

is 8.36 m, and also has a compact slip distribution as only 389 (44%) subfaults have 

significant slip, i.e., slip larger than 10% of the peak slip. Most of the subfaults with 

significant slip are within the aforementioned large slip patch with an inverse triangle 

shape (Figure 7a). It extends 152 km along-strike and 56 km down-dip, and the 

corresponding depth extension is limited to 9.3-15.2 km.  

 

Figures 9c and 9d further show the average stress distribution of the models with Δ𝜏!
!"# 

and its respective standard deviation. The average stress drop varies from -13.3 to 32.5 

MPa over the fault (Figure 9c) but has large uncertainty. The standard deviations on 

individual subfaults are up to 12.6 MPa with a mean of 3.7 MPa. Considering such a 

large uncertainty, it is not surprising that in Figure 8c even when we set the maximum 

local stress drop to 25 MPa (Figure 8c), the inverted model still can explain the data 

equally well. In other words, in the case where a local maximum stress drop is enforced, 

the distribution of the average stress drop across the total fault plane does not vary 

drastically, but there are more individual patches of subfaults with high stress drop, as 

Δτ! is still being forced to τtarget. In Figure 9c, the circles denote the epicenters of 379 
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M>4.5 aftershocks that occurred between 4/25/2015 and 5/12/2015 and were relocated 

using the local network data (Adhikari et al., 2015). Although some of them may have 

occurred outside the fault plane that hosted the mainshock, it can be seen that in map 

view most of them are located in regions of negative shear stress drop, as expected 

(Mendoza & Hartzell, 1988). 

 

The group of slip models with Δ𝜏!
!"# are our preferred models. These solutions are 

generally consistent with previous analyses using seismic and geodetic data (e.g., Avouac 

et al., 2015; Galetzka et al., 2015; Wang & Fialko, 2015; Yue et al., 2017) in terms of the 

location of the dominant asperity and its along-strike and down-dip extension. However, 

we admit that the peak slips of our models are considerably higher than previous 

analyses, which are less than 6.5 m (Avouac et al., 2015; Galetzka et al., 2015; Wang & 

Fialko, 2015; Yue et al., 2017). The cause of this discrepancy is not unique. Differences 

in fault plane depth, subfault size, the weight of the smoothing constraint and the choice 

of data used are potential reasons. As we mentioned above, the value of the peak slip is 

not well constrained. Nevertheless, in comparison with the previous Laplacian smoothing 

constraints, it appears that our new approach tolerates more small-scale variations.  

 

3.7.2 𝚫𝝉𝑬
𝒎𝒊𝒏 and the energy budget 

 

Our estimate of the seismic potency due to the 2015 MW 7.8 Gorkha earthquake is 2.28 x 

1010 m3 (Meb-7MPa). This value is close to the value inferred from GCMT, 2.54 x 1010 

m3, as well as the potency from the USGS W-Phase, 2.01 x 1010 m3 (using the same 

rigidity of 3.3x104MPa). Just considering Δ𝜏!
!"# = 7 MPa, the minimum “apparent” 
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available strain energy, ∆𝑊!
!"#, during this earthquake is 7.99 x 1016 J. Such an estimate 

is also data dependent. Using their slip model constrained by teleseismic body waves, 

Lay et al., (2016) estimated the Δ𝜏! of the Gorkha earthquake to be 3 MPa, a factor of 

two smaller than our Δ𝜏!
!"#value. We suspect that this discrepancy simply reflects the 

fact that the near fault static observations better resolve the small scale spatial variations 

of the fault slip than the teleseismic body waves, i.e., Δ𝜏! estimated using teleseismic 

data might be systematically lower. Consequently, an underestimation of Δ𝜏! will lead to 

an underestimation of ΔW0. 

 

The radiated seismic energy of the Gorkha earthquake has been estimated using 

teleseismic data by multiple researchers (see a review in Lay et al., 2016), varying within 

a factor of 2 from 7.1x 1015 J to 12.5 x 1015 J (e.g., Lay et al., 2016). The corresponding 

ratio of ER and M0 is 0.8-1.5x10-5 and the apparent stress drop is 0.3-0.5 MPa. Both are 

compatible with the global average values of large thrust earthquakes (ER/M0, 1.06-

1.81x10-5, Convers and Newman, 2011; Ye et al, 2016). Using the ∆𝑊!
!"#

 mentioned 

above, the inferred seismic radiation efficiency (ηR = ER/ΔW0) is only 0.09-0.15. This 

estimate of ηR is close to its upper bound, i.e., 𝜂!!"# , unless ER was significantly 

underestimated during the previous studies (e.g., Lay et al., 2016). It is considerably 

lower compared with estimates of other large earthquakes. Ye et al. (2016) systematically 

analyzed the finite fault solutions of 114 Mw>7 earthquakes constrained by teleseismic 

body waves. The mean of their estimates of ηR is 0.34 (logarithmic) or 0.49 (linear) (Ye 

et al., 2016). However, as mentioned above, ηR estimates in Ye et al. (2016) might be 

systematically higher because of the underestimated ΔW0 using teleseismic data. 
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Understanding the upper bound of ηR has important implications for rupture dynamics. 

Previous theoretical analyses and observations (e.g., Venkataraman & Kanamori, 2004) 

indicated a positive correlation between ηR and the rupture speed. Then an upper bound 

of ηR would help us to define an upper bound for the rupture velocity under some 

assumptions of the source physics. This inferred maximum rupture velocity could be used 

in comparison with the observations and subsequently help to verify the underlying 

source physics. For instance, if the rupture can be modeled as a dynamic mode III crack 

obeying the slip weakening law, Venkataraman & Kanamori (2004) showed that the 

rupture velocity satisifies the relation: 

𝜂! = 1− (1− !!
!!
)/(1+ !!

!!
)     (9) 

where 𝑉!  and 𝑉!  are the rupture velocity and shear velocity of the source region. A 

maximum ηR of 0.15 suggests that the rupture velocity (VR) would be less than 16% of 

the shear wave velocity (𝑉!), i.e., 0.6 km/s. However, the Gorkha earthquake was reported 

to have a fast rupture velocity, ~2.8-3.2 km/s (Avouac et al., 20015; Galetzka et al., 2015; 

Lay et al., 2016, Yue et al., 2016), 80-93% of the local shear velocity. This difference of 

a factor of 5 in the rupture velocity cannot be explained as just an error in the inverted 

rupture velocity. Furthermore, the rupture velocity of this event is well constrained by the 

strong motion and high-rate GPS stations that sit on top of the rupture plane.  

 

Though the explanations to this result are not unique, we suspect that it is partially caused 

by the shape of the rupture patch, which is ignored by equation (8). As mentioned above, 

the majority of the fault slip during the Gorkha earthquake occurred as unilateral rupture 
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within a large triangular slip patch (Figure 6), with a length (L) of 152 km and width (W) 

of 56 km. The L/W ratio is roughly 2.7. According to our best knowledge, Kikuchi & 

Fukao (1988) first noticed that earthquakes with large L/W ratios often have lower 

radiation efficiencies, and this has also been confirmed with recent dynamic modeling 

(Kaneko & Shearer, 2014). Using a quasi-static elliptic crack model similar to Sato & 

Hirasawa (1973), Kikuchi & Fukao (1988) found that 𝜂R can be approximated as   

𝜂!~(
!!
!!
)!𝜀!!   (10) 

where 𝜀 is the aspect ratio of the elliptic fault patch. According to equation (10), an 

elliptic fault with large 𝜀, i.e. L/W>>1, would result in a 𝜂! close to zero. This surprising 

prediction can be explained intuitively. For the constant rupture propagation on such a 

long fault, its moment rate function can also be approximated as an isosceles trapezoid 

function, i.e., a Haskell model. Far-field seismic radiation in this approximation is only 

associated with the beginning and end parts of the moment rate function, which scales 

with the cube of the width of the fault (W3) if the stress drop and rupture velocity are 

constant. In contrast, the fracture energy is proportional to (LW2). Thus, 𝜂! should be 

close to zero for large L/W. However, the decay rate due to the aspect ratio of this simple 

kinematic approach is slower than the more precise prediction using the dynamic elliptic 

crack model, i.e., equation (10). 

 

Using !!
!!

 = 0.8-0.93 and approximating 𝜀 as the L/W ratio mentioned above, the predicted 

𝜂! using equation (10) is 0.09-0.12, consistent with our estimation. However, readers 

should be aware that in the model of Kikuchi and Fukao (1988), the slip within the main 

asperity varies smoothly. Then, the heterogeneous rupture process during the Gorkha 
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earthquake suggested by the inverted slip (Figure 6 and 9) and stress drop distributions 

(Figure 7) will radiate more seismic energy than a quasi-static elliptic crack rupture. 

Nevertheless, our result suggests that the earthquake rupture could propagate quickly and 

still dissipate most of the available strain energy in fracturing the fault plane. Hence, 

investigating the upper bound of 𝜂! provides an additional but interesting angle to study 

the earthquake rupture process. 

 

3.7.3 Effect of subfault size  

The choice of the subfault size is one of the most important a priori conditions affecting 

the source inversion (e.g., Hartzell & Helmberger, 1982; Beresnev, 2003). While small 

subfaults can provide a more detailed description of the earthquake rupture process, 

limitations in the station distribution and bandwidth of the data that can be modeled 

forces modelers to use a large subfault size and to sometimes even ignore slip in one 

dimension to decrease the number of unknowns (e.g. Bouchon & Vallee, 2003). For the 

inversion using seismic data, spatial changes less than the smallest wavelength within a 

certain frequency range of the seismic waves for the analysis cannot be constrained by 

the data (e.g., Sekiguchi et al., 2000). Thus, in some instances, this has been considered a 

rough guide for the choice of the subfault size (e.g., Shao & Ji, 2012). For geodetic 

inversions, efforts have been made to use irregular subfault sizes according to data 

resolution (e.g., Fialko et al., 2001; Lohman & Simons, 2005; Page et al., 2009).  

 

When we discuss the uncertainty of inverted parameters, the effect of the subfault size 

cannot be ignored. As stated in the methods section, the stress change is estimated at the 

center of each subfault. Thus it can only represent a low-pass filtered version of the target 
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stress distribution. The maximum wavenumber is !
!∆!

, where ∆𝑥 is the subfault size. In 

other words, solutions in the model space cannot represent the spatial variation of stress 

on a scale smaller than two times the subfault size. Such a limitation will inevitably affect 

the stress estimation of the inverted result (e.g., Dreger et al., 2007), and as it is an a 

priori condition its impact can only be explored by comparing the final results using 

different subfault sizes. The comparison shown in Figure 4b suggests that the low bound 

of Δ𝜏! defined here is stable in terms of the subfault size but the upper bound of Δ𝜏! is 

not. Readers should also be aware that such a conclusion is for the relatively “small” 

subfault sizes of 4 to 8 km. If we instead use a much larger subfault size, even the low 

bound of Δ𝜏!  could be affected. For a given earthquake, the “small” or “large” subfault 

sizes mentioned here are not absolute values. Instead it is correlated with not only the 

data used but also the earthquake itself. A stable Δ𝜏!
!"!

 can, therefore, be used as one of 

the conditions during the search for an appropriate subfault size for the given 

observations. 

 

The uncertainty of Δ𝜏!  has received considerable attention in the source inversion 

community. Duputel et al. (2015) estimated the uncertainty of Δ𝜏! during the 2014 Mw 

8.1 Iquique earthquake by analyzing the ensemble of accepted solutions obtained during 

their Bayesian inversion. They found the posterior probability density of Δ𝜏! has a peak 

around 10 MPa, and is negligible for Δ𝜏!<5 MPa and Δ𝜏!>25 MPa. In principle all 

accepted solutions during Bayesian inversions should have good misfit values, and to 

some extent the probability of the solutions are correlated with the misfit values. The low 

posterior probability density for models with smaller Δ𝜏! is then consistent with our 
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result, and Δ𝜏!
!"# is close to 5 MPa. At first glance, the low posterior probability density 

for the models with large Δ𝜏! is inconsistent with our result. However, as we mentioned 

above (Figure 4a), such an apparent Δ𝜏!
!"# of about 25 MPa can simply be an artificial 

result of using large subfaults. Besides, it is noteworthy that the inferred posterior 

probability density of one model also depends on the topology of the model space near 

this optimal solution. For example, even the two arbitrary optimal solutions have the 

exact same misfit value, the one associated with a broad and flat “basin” type minimum 

in terms of the misfit value has a higher posterior probability density than the other with a 

narrow “valley” type minimum. Therefore, it is also possible that the latter scenario is 

associated with the optimal models with large Δ𝜏! . Nevertheless, the low posterior 

probability density for the models with large Δ𝜏! found by Duputel et al. (2015) cannot 

be used as unique evidence against our statement that the Δ𝜏!
!"#of an earthquake cannot 

be solely constrained by the surface geophysical observations. Instead, it might provide 

supplementary information on this interesting source property. 

 
3.7.4 Using 𝚫𝝉𝑬

𝒎𝒊𝒏 as a new inversion constraint 
 
We end our discussion by outlining the finite fault inversion strategy using the “minimum 

average stress drop constraint”. After the routine data and Green’s functions preparation, 

this new inversion procedure starts with a grid search for Δ𝜏!
!"#. The subfault size will 

then gradually be reduced until Δ𝜏!
!"#

 becomes stable and the flat pattern shown in 

Figure 4b can be observed in the trade-off curve between the misfit and Δ𝜏!. A method 

such as the L-curve algorithm mentioned above is then applied to more rigorously 

determine the point of maximum curvature. The corresponding stress drop thus becomes 
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Δ𝜏!
!"# of this earthquake, which is data dependent. To explore the epistemic uncertainty 

in the inverted slip and stress drop distributions, multiple inversions with 𝜏!!"#$% =

Δ𝜏!
!"#

 are then conducted, with the only difference in this part being the choice of the 

initial model. Other types of perturbations, such as bootstraping the data (Custodio et al., 

2009) or allowing a perturbation in the alignment of data and synthetics (Hartzell et al., 

2007) when using seismic data, could be included in a future study. It is of interest to 

note that the new procedure has no parameter that needs to be assigned empirically. 

However, as hundreds of inversions need to be conducted, this procedure is time 

consuming. Nevertheless, all individual inversions are independent and identical in a 

computational perspective. The entire procedure is then easily made parallel and can take 

full advantage of desktops or clusters with a modern multiple core CPU or GPU. 

 

3.8 Conclusion  
 
Resolving the state of stress on the fault is a key component in understanding the physics 

of earthquakes, and it has important implications to the earthquake energy budget. As a 

continuation of our companion work (Adams et al., 2017), we found that only the lower 

bound of the energy based average stress drop Δ𝜏! can be constrained using teleseismic 

data, and here we demonstrate that this argument holds even with excellent near-source 

geodetic data for the 2015 MW 7.8 Gorkha earthquake. The lower bound of Δ𝜏!  or 

Δ𝜏!
!"# during this earthquake is ~7 MPa. We also show numerically that the upper 

bound of Δ𝜏!  may also be constrained if an extra constraint to the maximum local stress 

drop is available (e.g. via laboratory experiments). At the same time, readers should be 
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cautious about a potential pseudo-upper bound of Δ𝜏! resulting from the use of a large 

subfault size to represent the source.    

 

The lower bound of Δ𝜏! leads to the lower bound of the apparent available strain energy 

ΔW0 (7.99x1016 J) and an upper bound of the seismic radiation efficiency (ηR), though 

the latter is also affected by the large uncertainty of the observed seismic radiated energy. 

Both of these are important parameters in earthquake energy budget analyses. The 

estimate of 𝜂!!"# is 0.09-0.15, despite the high rupture velocity (VR=83-94% of the shear 

wave speed). We point out that the low ηR and high VR can be reconciled by considering 

the aspect ratio of the dominant slip patch. The earthquake rupture with large aspect ratio 

could propagate quickly but still dissipate most of the available strain energy in fracturing 

the fault plane. Finally, we have introduced a new, more physical constraint to smooth 

the inverted fault slip during finite fault inversions, the “minimum average stress drop 

constraint”, which is based on finding the slip and stress distribution with the minimum 

available strain energy of the earthquake.  

 

.  
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Figure 1: Tectonic setting of the 2015 MW 7.9 Gorkha earthquake with the GCMT 

solution and focal mechanism shown. The star locates the hypocenter that was used in the 

finite fault inversions, and the slip contours (in m) of the preferred inverted model are 

superimposed in blue.  
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Figure 2: (a) Distribution of the resampled points of InSAR LOS measurements (black 

triangles) and GPS stations (black circles), accompanied with the image of the 

unwrapped ALOS-2 LOS displacement field. The color bar denotes the motion 

amplitude.  The black and red arrows show the GPS observed and synthetic vertical 

offsets, respectively.  See text for details. (b) Similar to (a) but synthetic image of the 

LOS displacement field. The black and red arrows show the GPS observed and synthetic 

horizontal offsets, respectively.  (c) Distribution of the resampled points (triangles) with 

the colors showing the amplitude of the residuals (observed-synthetic).  
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Figure 3: 1D Velocity model used in all inversions. The P-wave velocity (km/s), S-wave 

velocity (km/s), and the density (g/cm3) are shown in blue, red and green, respectively.  
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Figure 4: (a) Energy based average stress drop (Δ𝜏!, MPa) versus RMS misfit (cm) for 

inversions using a subfault size of 4x4 km. Only the fixed average stress drop constraint 

is used (equation 6). The misfit first decreases as Δ𝜏! increases, suggesting it is possible 

to define a clear lower bound. The average misfit for Δ𝜏! ≥ 7 MPa is plotted as the black 

dashed line, and ±2σ of the misfit range due to the choice of the initial model is plotted as 

the red lines. 

(b) Comparison of the relationships of the energy based average stress drop (Δ𝜏!, MPa) 

and misfit (cm) for inversions using a subfault size of 8x8 km (in red) and 4x4 km (in 

blue). Only the fixed average stress drop constraint is used. The misfit in both cases first 

decreases as Δ𝜏!  increases, suggesting it is possible to define a clear lower bound. 

However, only the misfit in the tests using 8x8 km subfaults increases significantly again 

as Δ𝜏!>25 MPa. 

(c) Comparison of the relationships of the energy based average stress drop (Δ𝜏! in MPa) 

and misfit (cm) for inversions using the additional fixed maximum local stress constraint 

(in blue), and inversions without (in red), both with 4x4 km subfaults and the fixed 

average stress drop constraint. The misfit in both cases first decreases as Δ𝜏! increases, 

suggesting it is possible to define a clear lower bound. The local stress constraint imposes 

a maximum local stress drop of 25 MPa. Thus, the blue curve cannot converge to any 

values greater than 25 MPa. The blue curve also increases rapidly as Δ𝜏! increases and 

approaches the local maximum. 
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Figure 5: (a) L-curve illustrating the trade-off between the average stress drop (in MPa) 

and the misfit (cm). Black dots denote the models used, which are treated as data.  A 

fourth order 2D spline curve used to fit the data is in blue. The corner, or the point of 

maximum curvature of the blue line, is located near Δ𝜏! = 7 MPa. See text for details. (b) 

Fault roughness (Laplacian of slip) versus RMS misfit (cm). The dashed lines represent 

the values of the Laplacian and the RMS of the model with Δ𝜏! = 7 MPa.  
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Figure 6: Slip distributions for inversions with just the fixed average stress drop 

constraint, (a) and (b), and also with the additional maximum local stress constraint, 

(c) and (d). Figures (a) and (c) have Δ𝜏!!!!!! equal to 7 MPa, and (b) and (d) have Δ𝜏!!!!!! = 

20 MPa. Contours outline the areas with slip (m) greater than 10% of the peak slip 

value. Visible greater degree of heterogeneity in tests done with a higher Δ𝜏!!!!!!, though 

the overall shape of the large slip patch is well resolved in both distributions. 
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Figure 7: (a) Map projection of the difference between the slip distributions of Meb-

20MPa and Meb-7MPa. (b) Variation of weighted average slip (m) for subfaults with 

displacement greater than 10% of the peak slip value versus stress drop (MPa). The 

vertical dashed line marks Δ𝜏! = 7 MPa, and the horizontal line shows the corresponding 

average slip value.  
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Figure 8: Stress distributions for inversions using just the fixed average stress drop 

constraint, (a) and (b), and with the additional maximum local stress constraint, (c) and 

(d). Figures (a) and (c) have Δ𝜏! equal to 7 MPa, and (b) and (d) have Δ𝜏! = 20 MPa. 

Shear stress drop in the overall slip direction (rake angle of 96o) is shown. Visible greater 

degree of heterogeneity in the tests done with a higher Δ𝜏!, though the overall regions of 

high stress are well resolved in both distributions. Clearly, imposing a local maximum 

allowable stress drop forces a generally smoother and more widely distributed stress 

distribution, (c) and (d). In all cases, the respective slip distribution (shown in Figure 6) is 

contoured and superimposed on the stress distributions here.  
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Figure 9: (a) Average slip distribution for ten different models, varying only the choice 

of the initial model, with Δ𝜏!
!"# = 7  𝑀𝑃𝑎, and (b) distribution of the standard deviation 

of the ten models. Contours outline the area where greater than 10% of the peak slip 

occurs. (c) Average stress distribution of the ten models and (d) the distribution of the 

standard deviation of the ten different models used to create the average model. Contours 

outlining the slip distribution in (a) are superimposed on the stress distributions in (c) and 

(d).  
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4. Insights into the fault geometry and rupture history of the 2016 

MW 7.8 Kaikoura, New Zealand, earthquake 
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4.1 Abstract 

The November 14th 2016 MW 7.8 Kaikoura, New Zealand earthquake occurred along the 

east coast of the northern part of the South Island. The local tectonic setting is 

complicated. The central South Island is dominated by oblique continental convergence; 

whereas the southern part of this island experiences eastward subduction of the 

Australian plate. Available information (e.g., Hamling et al., 2017; Bradley et al., 2017) 

indicate that this earthquake involved multiple fault segments of the Marlborough fault 

system (MFS) as the rupture propagated northwards for more than 150 km. Additional 

slip might also occur on the subduction interface of the Pacific Plate under the Australian 

Plate, beneath the MFS. However, the exact number of involved fault segments as well as 

the temporal co-seismic rupture sequence has not been fully determined with geodetic 

and geological observations. Knowledge of the kinematics of complex fault interactions 

has important implications for our understanding of global seismic hazards, particularly 

in the modeling of multi-segment ruptures. Understanding the Kaikoura earthquake will 

provide insight into how one incorporates multi-fault ruptures in seismic-hazard models. 

We propose two inversion strategies to determine the fault geometry and spatiotemporal 

rupture history: first we use teleseismic and strong motion waveforms to determine point-

source focal mechanisms for all of the faults that participated in the rupture; second, we 

use seismic and geodetic data to invert for the kinematic rupture parameters on a limited 

number of fault segments. In the first approach we approximate the Kaikoura earthquake 

as the summation of multiple subevents. This allows us to determine a rupture timing 

sequence for different fault segments. It also allows us to evaluate the potential of slip on 

the Hikurangi subduction interface. Once we have the multiple double-couple solution 
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and timing among fault segments, we invert the seismic and geodetic data for the spatial 

and temporal kinematic parameters.  
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4.2 Introduction  
 
New Zealand’s tectonic setting is unique in the sense that it is characterized by two 

subduction systems: 1) in the North Island the Pacific Plate subducts obliquely under the 

Australian Plate known as the Hikurangi subduction zone; 2) the central South Island is 

dominated by oblique convergence, whereas the southern part of this island experiences 

eastward subduction of the Australian Plate (Kaiser et al., 2012). Furthermore, the 

majority of the relative plate motion in the central South Island is taken up along the 

transpressional plate-boundary: the Alpine Fault. The Marlborough fault system (MFS) 

makes up part of the transition from the Hikurangi subduction zone to convergence in the 

South Island (Kaiser et al., 2017). The MW 7.8 Kaikoura earthquake occurred on 

November 14th 2016 along the east coast of the upper South Island, New Zealand. 

Available information indicated that this earthquake involved multiple fault segments of 

the Marlborough fault system (MFS) as the rupture propagated northwards for more than 

150 km (Figure 1). However, the exact number of involved fault segments is still 

debated. Geodetic data show that 21 faults ruptured from the southwest to the northeast 

of the MFS (e.g. Litchfield et al., 2016; Hamling et al., 2017; Clark et al., 2017). On the 

other hand, Nicol et al. (2018) documented the surface rupture characteristics, e.g. fault 

scarps, and determined that the Kaikoura earthquake produced significant displacement at 

the ground surface on 17 active faults.   

 

Several groups have investigated the complex faulting during the Kaikoura earthquake 

using a myriad of data sets and methods: field observations, seismic waveforms, InSAR 

and geodetic data, and tsunami recordings. First, a large nondouble-couple component 
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was present in the GCMT and USGS W-phase moment tensors suggesting that multiple 

faults within the MFS ruptured during the Kaikoura earthquake. Overall the composite 

focal mechanism indicated that both right-lateral and thrust slip occurred. Duputel & 

Rivera (2017) used long-period teleseismic data and a four-point-source model. They 

determined that the earthquake initiated as a small strike-slip rupture followed by the 

largest moment release after ~60 seconds. Hollingsworth et al. (2017) calculated a finite 

source kinematic model from the back-projection of teleseismic P waves. They use two 

faults in their model: the Kekerengu fault and a deeper, low-angle offshore fault to satisfy 

the long-period seismic data.  

 

As an added complication, the subducted Pacific plate to the north has been found to 

extend beneath the South Island (Eberhart-Phillips & Bannister, 2010). It is possible that 

slip occurred on this subduction interface during the Kaikoura earthquake; another 

possibility is that slip occurred on a large shallow-dipping thrust fault that extends just 

below the shallow strike-slip crustal faults. Tsunami records were combined with 

teleseismic data in Bai et al. (2017) and Furlong & Herman (2017) who proposed that the 

major source of the tsunami (5 m run-up on the Bank Peninsula) is caused by slip on the 

megathrust fault below the crustal fault system.  

 

This region has dense geodetic and strong motion networks. Satellite radar data can be 

acquired from the European Space Agency’s C-band Sentinel-1 spacecraft paths and the 

Japan Aerospace Exploration Agency L-band Advanced Land Observing Satellite-2 

(ALOS-2) paths. Both the ascending and descending interferograms maintain good 

coherence across most of the area, with maximum line-of-sight (LOS) changes of ~-3-1.3 
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m in the descending and ascending tracks, respectively (Hamling et al., 2017). The 

Institute of Geological and Nuclear Sciences (GNS) in New Zealand operates 162 3-

component accelerograms in the region, providing valuable near-field seismic 

observations. The previous analyses based solely on the local data did not support the co-

seismic rupture along the plate interface. Hamling et al. (2017) used GPS and InSAR data 

and provided two different models, one with 19 crustal fault segments and another with 

an additional 20th segment representing the subduction interface. The surface 

displacements could be fit reasonably well with both models, however the models had 

trouble modeling the tsunami waveforms. However, Clark et al. (2017) indicated that the 

tsunami excitation and coastal uplift data can be explained by the co-seismic rupture on 

an offshore low-angle thrust fault, the Point Kean fault. The existence of the Point Kean 

fault, which was previously unmapped and had a large inverted offset of 6-8 m (e.g., 

Clark et al., 2017; Kääb et al., 2017), is also consistent with the relocated aftershock 

distribution (Cesca et al., 2017). Seismologically, Holden et al. (2017) demonstrated that 

high-rate GPS and local strong motion observations can be well modeled with slip only 

on the crustal fault. They then argued that the Hikurangi subduction thrust most likely did 

not slip during the rupture event. However, the scenario of coseismic rupture on the 

Hikurangi subduction interface also cannot be completely ruled out (Clark et al., 2017; 

Cesca et al., 2017; Holden et al., 2018; Xu et al., 2018). For example, using geodetic data 

only, Xu et al. (2018) presented 3 different finite fault models: the first with only crustal 

inland fault segments, the second with crustal inland fault segments and the subduction 

interface, and the third with crustal inland fault segments and the Point Kean fault. They 

concluded that the estimated slip on the subduction interface or on the Point Kean fault 

could not be reliably constrained.  
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Efforts have also been made using both local and teleseismic observations. Cesca et al., 

(2017) further showed that a multi-fault segment model consisting of such a shallow 

dipping thrust fault with large slip connected to two shallow strike-slip faults can explain 

the GPS and teleseismic body wave waveforms well. In contrast, Wang et al. (2018) 

studied this earthquake with a joint inversion of the waveforms of local strong motion 

observations, teleseismic body waves, GPS vectors and INSAR images. They found that 

almost half (45%) of the released moment is distributed on the subduction interface. 

However, Wang et al. (2018) didn’t take the Point Kean fault into consideration. 

 

 

The Papatea fault is another important fault with a surface uplift up to 8 m (Clark et al., 

2017). Early studies such as Hamling et al. (2017) and Clark et al. (2017) could not 

recreate the deformation pattern observed around the Papatea fault using an elastic earth 

model. They attribute the observed pattern to anelastic deformation within a fault-

restraining bend. As such, they do not include it in their slip inversions. Holden et al. 

(2017) used various tests in an attempt to isolate the impact of slip on this fault had on the 

local waveforms and found it had a minor contribution despite its large slip value. They 

partially attribute this result to the fact that there are no nearby seismic or high-rate GPS 

stations around the Papatea fault. Also, this fault has a complicated geometry and is 

difficult to represent as a single plane. This contributes to the uncertainty of modeled 

rupture on this fault. Recently, Xu et al. (2018) and Wang et al. (2018) demonstrated that 

the large static deformation on the surface could be modeled with elastic dislocation on 

this fault; they found up to 18 m of slip at shallow depths near the intersection of the 
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Papatea fault and Kekerengu fault. However, in the model of Xu et al. (2018), the thrust 

motion dominates the rupture of this fault, but in the model of Wang et al. (2018) it is 

mainly a strike-slip fault.  

	  

In short, despite many sophisticated modeling approaches, and the availability of GPS, 

InSAR, teleseismic, and strong motion data, there is still a large debate about whether or 

not slip occurred on the Hikurangi subduction zone. From the published models, results 

show that the inclusion of slip on the subduction interface generally improves the fit to 

long-period seismic and tsunami data, while geodetic data and strong motion 

observations can be well modeled with just a shallow crustal fault system. Furthermore, 

the temporal rupture sequence of these fault segments depends heavily on whether a 

crustal fault system is used versus a crustal and interface fault system. Knowledge of the 

kinematics of complex fault interactions has important implications for our understanding 

of global seismic hazards, particularly in the modeling of multisegment ruptures. 

Understanding the Kaikoura earthquake will hopefully provide insight into how one 

incorporates multi-fault ruptures in seismic-hazard models. 

 

The one common thread of all these published studies is that the Mw 7.8 Kaikoura 

earthquake is highly complex and that fault systems involving diverse orientations, slip 

directions, and intricate mechanical linkages can produce lengthy and highly energetic 

ruptures. A clear rupture sequence and timing has yet to be agreed upon. Here our study 

is composed of two parts. First, we apply a multiple double-couple inversion (MDC) to 

constrain the centroid time and seismic moment of a static fault model (Clark et al., 2017) 

with long period strong motion observations. The results are then used to forward predict 
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the long period seismic data. Second, we conduct a finite fault inversion on a crustal fault 

system consisting of 10 different fault segments to determine a more detailed 

spatiotemporal slip history, using both seismic and geodetic data. Campaign and 

continuous GPS data will also be jointly inverted for with the local seismic data. With 

these combined results, we include in our study a discussion on the potential role of the 

Hikurangi subduction zone.  

 

4.3 Data Processing 

In this study we use three different datasets. First, we selected 16 three-component strong 

motion stations within 110 km of the fault plane sequence. All waveforms were 

integrated to velocity and down-sampled to dt = 0.25 seconds. During the multiple 

double-couple (MDC) analysis, the data are further band-passed between 10 and 50 

seconds. For the finite fault inversion the data are band-passed between 2 and 50 seconds. 

 

Second, we use the vertical and transverse components of 26 displacement waveforms at 

teleseismic distances that are band-passed between 166.67 and 250 seconds. Our Earth 

model of the teleseismic data is the 1D Preliminary Reference Earth Model (PREM, 

Dziewonski & Anderson, 1981). Initially, we used waveforms from more than 40 stations 

in our inversions. However, we noticed in the first set of teleseismic results that the 

timing and alignment of the synthetics and the centroid locations were consistently 

erroneous. 

 

To correct the alignment and centroid locations we modeled a Mw 6.4 aftershock that also 

occurred on November 14th (the distance between mainshock and aftershock epicenters is 
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20 km) to recalibrate the data that we used in the inversions of the mainshock. Generally, 

in inversion modeling there are two sets of unknowns: one is the source and the other is 

the Earth structure. To reduce the impact of the inaccurate Earth structure in the modeling 

of the source, we correct for the path effects. For this reason, we didn’t invert for the 

focal mechanism and location of the aftershock. Instead we assumed the hypocentral 

location given by GNS is correct, and then used it to forward predict the synthetic 

seismograms at the selected stations. If the Earth model along one source to station pair is 

correct, the synthetic seismogram will match the observations. Usually this is not the 

case, but the match can be improved by slightly time-shifting the observations. This time-

shift is viewed as the correction to the inaccurate Earth structure and applied to the data 

of the mainshock. However, the drawback of applying this method is it strongly limits the 

number of waveforms that can be used. Hence the reason we only consider 16 stations.  

 

4.4 Multiple Double-Couple Inversion 

4.4.1 Methods 

 
For rupture on such a complex causative fault system, it is a challenge to define the fault 

geometry. First, we attempt to solve this problem by using a Multiple Double-Couple 

inversion approach (MDC) (Li et al., 2014). In general this involves approximating an 

earthquake as a summation of multiple subevents, i.e. double-couples, and then inverting 

for their magnitude and location. 

 

Due to the use of 1D synthetic seismograms, we model the subevents as double-couples 

rather than as full moment tensors. Henry et al. (2002) demonstrated that spurious large 
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non-double-couple components obtained in inversions for the full deviatoric moment 

tensor for shallow crustal earthquakes can be obtained as the result of inaccurate Earth 

models. This typical “best double-couple” solution does not generally provide the optimal 

estimate of a double-couple mechanism, and is only consistent when the non-double-

couple component of the full deviatoric solution is small. Due to the dominant double-

couple mechanism of common crustal, tectonic earthquakes and the normal error 

involved in using 1D Earth models to generate the synthetic Earth response, we choose to 

approximate each subevent, or the source of moment release for each fault segment in 

this case, as a double-couple rather than a full deviatoric moment tensor.  

 

Using this approach, each subevent is represented by a total of nine parameters 

characterizing its fault geometry (strike, dip and rake), seismic moment, centroid time, 

half-duration, and location (latitude, longitude and depth). The half-duration (th) is often 

not well constrained. Here we set the half-duration by the empirical relationship: 

𝑡! = 2.26×10!! ∗𝑀!
!/!, where M0 is the inverted seismic moment in Nm (Ekström et 

al., 2005). Thus, the number of independent variables of each point source is 8. We use 

relatively long period seismic data recorded at local or distant stations, and use a 

combination of L1 and L2 norms to calculate the misfit between data and synthetic 

seismograms in the wavelet domain (Ji et al., 2002). We search for the MDC model 

associated with the minimum of the objective function using the simulated annealing 

algorithm.  

 

4.4.2 Inversions using only teleseismic long period data 
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The first set of tests conducted was simply trying to reproduce only the teleseismic long 

period data with a variable number of point sources; stations used are shown in Figure 3a. 

In other words, we progressively increased the number of point sources used in the MDC 

inversion until the additional source could not produce significant improvement to the 

observations. Inversions were done with 1-5 sources, allowing a combination of the 

geometry, location, and timing to vary.  

 

After many tests, the results were inconclusive as there was no resolution beyond a two-

point source model (Figure 2). Using just the long-period teleseismic data, a model with 2 

or 3 sources produced only marginal differences in the resolution of the far-field data and 

could not illuminate the complexity of this earthquake. Figure 3c and 3d show the 

locations and focal mechanisms of the 2-source model (misfit = 0.756) and 3-source 

model (misfit = 0.652), respectively.  

 

Both models place sources in the far southwest and northeast of the MFS and miss the 

middle Kekerengu fault section. Interestingly, the 3-source model places a source of 

energy on the Point Kean fault. The moment rate functions for both models (Figure 3b) 

show two very different rupture patterns. The 2-source model has the largest moment 

release within the first 20 seconds; whereas the 3-source model does not produce any 

energy release in this time interval. Both models show a similar peak between ~55-80 

seconds. The cumulative moment (tensor summation) of the 2-point source model is high 

1.32x1021 Nm (Mw 8.01). The seismic moment of the 3-point source model is only 

slightly lower at 1.03x1021 Nm (Mw 7.94). Thus, looking at Figures 2 and 3, we can see 

that the results from both the 2- and 3-source models are significantly variable. Most 
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striking perhaps are the cumulative focal mechanisms for both of these models: mostly 

thrust motion with a high non-double couple component (ε = -0.29 for the 2-source 

model and -0.45 for the 3-source model). Neither model resembles the GCMT solution. 

Considering these results, it is difficult to differentiate between models. Moreover, the 

main locations of slip for either model is not well constrained.  

 

4.4.3 Inversions using both the long period strong motion and teleseismic data  

Due to the lack of resolution from long-period teleseismic seismograms, we will not 

discuss the tests discussed in section 3.2 in the subsequent sections. We will only 

consider the following MDC inversion tests using strong motion data, and the finite fault 

inversion tests using both strong motion and geodetic data to increase our resolution of 

this rupture event.    

 

As mentioned previously, Hamling et al. (2017) developed a model using geodetic data 

that involved 19/20 faults. Using the same method described in Hamling et al. (2017), 

Clark et al. (2017) later updated this model by including a refined fault geometry, adding 

the Point Kean fault, incorporating the new Lidar measurements of coastal deformation 

and including vertical uplift data for offshore faults. 

 

We use the fault geometry and results from Clark et al. (2017) because they used as 

complete a geodetic dataset as possible. We assume that this data type can constrain the 

fault locations and geometries most accurately. However, these types of models lack the 

timing element and cannot produce a rupture sequence. Hence, in our approach, we fix 

the fault geometry but invert for the centroid time, allowing a rapid inversion and 
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focusing on the less well-constrained element of the rupture event. It is important to note 

that this approach has its disadvantages: namely that any error present in the model of 

Clark et al. (2017) will of course propagate through our inversions as well. Because we 

treat the slip on each fault segment as a point source with a fixed shape for the moment 

rate function, the detailed short period waveforms cannot be properly matched. We 

therefore choose a period range of 10-50 seconds for the MDC inversions. In order to 

tackle this challenge, we consider finite fault inversions in section 4.  

 

Figure 4 shows the surface projections of 20/21 fault segments Clark et al. (2017). The 

number of faults depends on inclusion of an interface source. Their best-fitting slip model 

consists of each fault segment represented as an individual finite fault source, which has 

then been divided into a series of subfaults, each with its own slip value. Using these 

results we estimate the cumulative seismic moment, focal mechanism and centroid 

location of each fault segment. The total seismic moment of the Clark et al. (2017) model 

is 8.0 x 1020 Nm, Mw 7.87. Out of their 21 fault segments, eight have an individual Mw 

larger than 7.0. The plate interface subevent has a moment of 6.62x1019 Nm (Mw 7.1), 

making up 8.3% of the total cumulative seismic moment.  

 

We determine the centroid location, i.e. the latitude, longitude and depth, for each fault 

segment by averaging the location of each subfault weighted by the slip in the subfault. 

We plot the focal mechanism for each centroid location on the surface projection of each 

fault segment sized with their relative contribution to the overall seismic moment (Figure 

4). In the case without a subduction interface, we have 20 fault segments resulting in 8 

parameters*20 fault segments = 160 unknowns. Note we have 8 parameters and not 9 
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because we calculate the half-duration based on the seismic moment. In the second case, 

which includes a large fault for the Hikurangi subduction interface, we have 8*21 = 168 

unknowns. Using the FK code (Zhu & Rivera, 2002) we have constructed a 1D Green’s 

function lookup table. In this table, the hypocenter depth changes from 1 km to 40 km 

with a spatial interval of 2 km; the horizontal range varies from 0 to 300 km, with a 

spatial interval of 0.5 km. 

 

Inverting for the geometry, moment, and centroid time of each fault segment leads to a 

large number of unknowns: so we invert for only a subset of all parameters. First, we 

consider just the crustal fault system (20 fault segments) and ask whether or not we can 

reproduce the strong motion waveforms by inverting for just the centroid time – hereafter 

we call Case 1. Thus, we fix the fault geometry and centroid location. This reduces the 

number of unknowns to 20. The centroid time for each of the point sources is shown in 

Table 1. Case 2, adds an additional unknown the seismic moment, M0, bringing the total 

number of unknowns to 40.  Seismic moment for each fault segment is allowed to vary 

±40% from the corresponding values of the geodetic models.  Because the geodetic data, 

such as INSAR and campaign GPS, includes the post-seismic deformation, the model 

based on geodetic data might over-predict the co-seismic rupture. Of course, due to the 

complexity of the tectonic setting of the MFS, an important question is whether there are 

other sources of slip, namely the subduction interface? Including an interface source, 

Case 3 is equivalent to Case 1 and Case 4 is equivalent to Case 2. The natural question is 

whether incorporating this subduction interface fault segment improves the waveform fit.  
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An important result from Hamling et al. (2017) is that using only geodetic data they 

cannot distinguish between models with or without the added subduction interface. 

Furthermore, static tests do not shed light on timing and so the temporal distribution of 

the fault rupture is still unclear. Using the updated fault geometry from Clark et al. (2017) 

and our MDC inversion approach, we attempt to determine a rupture timing sequence for 

the Kaikoura earthquake. It is unknown whether all 20 fault segments ruptured co-

seismically. It is also unknown whether slip on the subduction interface explains the far-

field seismic, strong motion and geodetic data better than just the crustal faults.  

 

4.4.4 Comparison of Case 1 and Case 3 
 
 

The waveform misfits for the four cases are given in Table 1. The largest misfit (0.283) is 

for Case 1, and the smallest misfit (0.251) is for Case 4. Regardless of the number of fault 

segments (20 or 21) allowing the seismic moment to vary produces a smaller misfit. 

Models that incorporate an interface also have a lower misfit than the ones without, i.e. 

Case 1 versus Case 3, and Case 2 versus Case 4, resulting in a better fit to the strong 

motion waveforms.  

 

Considering Case 1 and Case 3, i.e. the Clark et al. (2017) model with just the added time 

parameter, we would like to answer the question whether slip on the interface is 

significant or not. The fit to the waveforms visually increases, Figure 6. In particular, the 

later pulse in station SCAC and GVZ, and the amplitude of peaks at station LTZ are 

better predicted by Case 3 than in Case 1. The misfit from Case 1 to Case 3 decreases by 

only 1.6%; however the number of unknowns between cases increases by 5% (from 20 to 
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21 because of the addition of the timing of the interface). This decrease in the misfit is 

not significant. On the other hand, this slight difference in misfit may only indicate the 

lack of resolution of the local dataset to the deep rupture and cannot disprove the 

existence of any interface rupture.   

 

Once we have the timing, location and moment of each point source determined from the 

inversions using the strong motion data, we can use these parameters as constraints to 

conduct a forward prediction of the teleseismic long-period data (Figure 8). Case 1 and 

Case 3 tend to slightly over-predict the waveforms, e.g. stations SBA, JOHN and QSPA 

(Figure 8a and 8b). The difference between these fits is marginal; one can say that Case 3 

approximates the waveform peaks slightly better at stations PMG, TATO and QIZ.  

 

Comparing the cumulative moment rate functions for Case 1 and Case 3 (Figure 9a) we 

can see that these two cases produce similar moment rate patterns: energy is released in 

three large bursts. Faults 1-6 rupture in the first 20 seconds, are the most southwestern 

faults in the crustal system, Faults 7-10 have a rupture time of ~20-40 seconds, and help 

in the transmission of the energy from the earthquake source to the long Kekerengu fault 

zone to the northeast, where the majority of the energy is released. The peak moment rate 

occurs at ~70 seconds with the largest slip pulse between 40 and 80 seconds coming 

predominantly from faults 11-18. This makes up ~84% of the total seismic moment.  

 

Figure 4a shows the multiple double-couple results for the complex fault system of Case 

3. On the map, the focal mechanisms for each fault segment are sized relative to their 

contribution to the overall moment. Note, the focal map for Case 1 is not shown because 
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it is the same as Case 3 (minus the interface fault segment, fault 21), as the only 

difference between these two cases is the timing, which is not shown in this plot. The 

cumulative moment for Case 1 is 6.09x1020 Nm (equivalent to Mw 7.79), and for Case 3 

is 6.24x1020 Nm (Mw 7.8), which are 10% and 7.4% lower than the Global CMT value of 

6.7x1020 Nm, respectively. This value of the total seismic moment is the tensor 

summation of all components of all 20 or 21 fault segments, i.e., the total moment is 

calculated from the piecewise addition of all the moment tensor components for each 

subevent. This could lead to an underestimation of the total seismic moment because of 

the cancellation with some of the negative components. On the other hand, the total scalar 

seismic moment for Case 1 is 7.3x1020 Nm (Mw 7.84) and for Case 3 it is 8.01x1020 Nm 

(Mw 7.87) — 8.2% and 16.4% higher than the Global CMT value. The moment of the 

interface source in Case 3 is 6.69x1019 Nm, only 8% of the total cumulative moment.  

 

The cumulative focal mechanism for Case 3 is also plotted in Figure 4a and compared to 

the Global CMT solution, which has a significant non-double-couple component. Case 1 

and Case 3 also exhibit a large non-double component with a value of ε equal to -0.0813 

and -0.1423, respectively. Further examining the rupture process, the southwest portion 

of the MFS is dominated by thrust motion, and releases only a small portion of the total 

moment. The coastal and offshore faults also are dominated by thrust motion. This then 

transitions into strong strike-slip motion in the northeast, where the largest amount of 

moment is released.  

 

Table 2a and 2b lists the values for the fault geometry, centroid location, and inverted 

rupture timing and seismic moment for Cases 1 and 3, respectively. Figure 5a illustrates 
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the individual moment rate functions for each subevent for Case 1 and 3. Faults 14-18 

exhibit the largest moment rates and rupture between ~55-80 seconds. Fault 12, the 

offshore Point Kean fault, has a centroid time of ~52 seconds and makes a considerable 

contribution to the total energy released, ~9%. The interface source provides considerable 

moment and with a centroid time of 67 seconds ruptures within the same time interval as 

the faults in the Kekerengu-Needles fault sequence, Faults 14-18, between ~60-80 

seconds. The difference in moment rate between Case 1 and Case 3 is marginal for most 

fault segments except for Faults 11 and 13, which have a minimal contribution to the 

overall moment. These two faults both rupture ~20 seconds later in Case 3 than in Case 1. 

This is interesting, as this fault segment is the transition to the initial part of the large 

Kekerengu-Needles fault line, where the majority of the energy of this event is released. 

This could suggest that in the case with the subduction interface, this large fault rupture 

sequence in the northeast has a delayed rupture time, or in the case without the interface 

it suggests that there is a more rapid energy transfer from the southeastern fault segments 

to the northeast.  

 

4.4.5 Comparison of Case 2 and Case 4 

Next, we consider the same cases as in section 3.4, except with the added variation in the 

seismic moment. It might allow us to explore whether there is significant postseismic 

deformation present in the geodetic models and whether the strong motion data requires 

more slip on the plate interface.  Case 2 has 40 unknown parameters and Case 4 has 42. 

Here the misfit decreases from 0.25889 to 0.25134, a 2.9% decrease. As expected, the 

cases that inverted for centroid time and Mo generally produced better results than the 

cases that only inverted for centroid time when comparing Case 1 to 2 and Case 3 to 4. 
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When the seismic moment can be perturbed, the waveform fits can be significantly 

improved (Figure 7). For most stations, the synthetics in both cases do a good job of 

matching the observations; a few exceptions are stations WTMC, CECS, KIKS, and 

KEKS. The early pulse of station WTMC is not well fit by the synthetics; this could be 

due to the station’s proximity to the hypocenter of the event. Similarly, the large pulse at 

station KIKS is not re-created by the synthetics, despite the addition of the offshore Point 

Kean fault. With the additional moment added from the interface source in Case 4, the 

later peaks of the waveforms are slightly better fit than in Case 2, e.g. stations SCAC and 

SJFS. Generally, the stations with the largest misfit are located near the surface break of 

fault segments, where the impact of fault finiteness is more significant.       

 

Now, in all four cases, considerable misfit can be seen. This is largely due to the fact that 

we are approximating sizeable fault segments as a single point source. Inevitably, this 

simplification will lead to a lack of higher frequency information in the predictions. 

Furthermore, there will be additional error introduced in the solution for Case 3 and 4 

because we are approximating a large fault segment on the subduction interface by a 

single point source.  

 

Case 2 and Case 4 produce somewhat different predictions of the far-field data (Figure 8c 

and Figure 8d, respectively). In general, these two cases tend to under-predict the 

teleseismic data as compared to Cases 1 and 3. Interestingly, when the moment is allowed 

to vary, the results with the addition of the interface source, Case 4, tend to under-predict 

the teleseismic data at stations VNDA, SBA, QSPA as compared to Case 2. Thus, it is 
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still difficult to confidently say that a significant amount of slip occurred on the 

Hikurangi thrust as we get under- and over-predictions of the far-field data between all 

cases studied. 

 

Figure 9b illustrates the cumulative moment rate for Case 2 and Case 4. Similar to the 

previous 2 cases, there are 3 large bursts of energy, with the predominant moment release 

between 40 and 80 seconds. The addition of varying the moment, i.e. from Cases 1&3 to 

Cases 2&4, does not change the pattern of energy release. However, it can be seen that 

when the moment is allowed to vary, the highest peak at ~70 seconds is less than the 

previous cases, i.e., Case 3 peaks at ~7x1019 Nm/sec and Case 4 at ~6x1019 Nm/sec.  

 

This phenomenon can also be seen in Figure 10, which explores the effect of allowing 

more variation in the seismic moments determined from purely static data. A comparison 

of the individual moments of each of the 20 subevents is given in Figure 10a, and the 21 

subevents in Figure 10b. For almost every single fault segment, when inverting for the 

seismic moment (Cases 2 & 4) this source parameter decreased from the values that were 

determined using the static model and left unchanged (Cases 1 & 3). The most drastic 

changes were found in the faults in the northeastern section: the Kekerengu and Needles 

faults, or Faults 14-18. The search range for the seismic moment in Cases 2&4 is ±40% 

from the values in Cases 1&3. And in general, considering the significant changes in 

subevent moments in Figures 10a and 10b, and the decrease in misfit, it suggests that the 

seismic moments determined from geodesy are not necessarily the optimal values to fit 

the strong motion data and forward predict the teleseismic data. When the moment is 
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allowed to change we see a decent improvement in the misfit between cases, 8.5-9.7% for 

Case 1 to 2 and Case 3 to 4, respectively.  

 

Figure 4b and 4c show the distribution of the focal mechanisms of the different subevents 

for Case 2 and Case 4. First the cumulative seismic moments for these two cases are 

4.24x1020 Nm (Mw 7.68) and 4.49x1020 Nm for Case 4 (Mw 7.7), respectively, which are 

approximately 65% that of the Global CMT solution (6.7 x1020). The scalar summation 

cumulative moments for these two cases are much more similar to the GCMT model at 

5.16x1020 Nm (Mw 7.74) for Case 2 and for Case 4 it is 6.06x1020 Nm (Mw 7.79). 

Similarly, these two cases have considerable non-double couple components with ε equal 

to -0.10 and -0.21, respectively.  Looking at the maps, we can see that in general, the 

distribution of focal mechanisms are similar throughout all the cases with thrust motion 

in the southwest progressing to strike-slip motion in the northeast. However, the 

differences in the relative sizes of the beach balls between Case 2 and Case 4 are 

noticeable, especially in Faults 15 and 12. The moment of the interface source in Case 4 

is 9.27x1020 Nm, 39% larger than in Case 3. But this is still only 15% of the inverted 

cumulative seismic moment.  

 

The decrease in seismic moment from Case 1 to Case 2 or Case 3 to Case 4 could be 

interpreted as the presence of significant postseismic deformation included in the 

geodetic data. However, in view of the large difference in seismic moment between 

models based on strong motion data and global CMT, we think it is more plausible to 

explain it as the result of the poor sensitivity of local strong motion data to the total 
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seismic moment (Shao et al., 2011). It is then important to include the long period 

teleseismic data into the study of this large event. 

 

Finally, inversion results for the source properties of each subevent for Case 2 and Case 4 

are given in Tables 2c and 2d. Examining the individual moment rate functions for these 

two cases (Figure 5b) we can see that for almost all subevents the rupture initiation time 

is not significantly different between the two cases. The largest contribution comes from 

Faults 14-18, along the Kekerengu-Needles fault segment, which is consistent with the 

size of the beach balls in Figure 4b and 4c, and Fault 12, the Point Kean fault. In this 

case, the Point Kean fault also has a centroid time of 52 seconds; the interface source in 

Case 4 ruptures between 60 and 80 seconds.  

 

4.5 Preliminary Results of the Finite Fault Inversion 
 

For the last set of analyses, we explore the complexity of this rupture event in even finer 

detail with a finite fault inversion strategy to understand the spatiotemporal slip pattern 

on this complex fault system. We conduct two inversion tests: first, we use strong motion 

data only (which we call case FF1), and secondly, we jointly invert for strong motion and 

GPS data (FF2). 

 
 
4.5.1 Methods 
 
To better understand the complex rupture pattern we implement a finite fault model to 

describe the coseismic displacement. For this model we use rectangular fault segments of 

different lengths and widths and various orientations to approximate the ruptured faults. 



 137 

Each fault segment is then further divided into 3.5 km by 4 km subfaults and we invert 

for slip amplitude, rake angle, and rise time. Ten fault segments are chosen to 

approximate this complex earthquake; details of the fault segments are given in Table 3. 

Note that the fault dimensions of Faults 2 and 6 are different in models FF1 and FF2. 

Because the results of FF1 showed considerable slip near fault edges, we extend those 

two fault planes in FF2 accordingly to explore the true edge of the slip asperities. The 

geometry of the fault segments is designed to represent the main faults shown in Figure 

1: the Humps fault at the initiation of the source, then branching into the Hundalee fault, 

before moving into the large southwest to northeast system of the Kekerengu and Needles 

faults. In this test, we have not included a fault segment for the Hikurangi subduction 

interface. Instead we have implemented an offshore shallow dipping, ~35o, relatively 

long fault (length = 35 km and width = 48 km) to approximate the Point Kean fault 

(Clark et al., 2017; Holden et al., 2017; Xu et al., 2018). This fault geometry is based on 

the aftershock distribution (e.g., Cesca et al., 2017), and its relation to the structure of the 

Papatea fault.  

 

We use four different datasets to constrain the fault model. As the source of this 

earthquake is now represented with more details compared to the above MDC analysis, 

i.e. we have more parameters on the fault due to discretization, seismic signals with 

higher frequency content can be used to constrain the free parameters. Velocity 

waveforms from the selected sixteen strong motion stations are used after applying a 

bandpass filter from 0.02 Hz to 0.5 Hz. We also use the GPS coseismic vectors at 20 

continuous and 64 campaign sites (Hamling et al., 2017). Finally, we selected the 
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broadband waveforms of 51 P and SH waves, as well as the transverse and vertical 

components of 65 long period whole waveforms at teleseismic stations.  

 

We then invert for the slip history on each fault segment using the inversion method 

described in Ji et al. (2002) by minimizing the difference between the observations and 

the synthetics in the wavelet domain. 

 

4.5.2 Results 
 
Figures 13 and 16a illustrate the comparison between the observed velocity strong motion 

waveforms and the synthetic predictions for FF1 and FF2, respectively. Both models fit 

the strong motion data nearly equally well, though both FF1 and FF2 do not reproduce 

the early pulse at stations WTMC and CULC, suggesting that the fault geometry near the 

rupture initiation needs to be further improved. The model cannot explain the high 

frequency information at station CECS, likely due to the inaccurate velocity structure.  

 

Furthermore, Figure 16b shows the comparison of the synthetic waveforms produced by 

FF2 and the broadband P and SH waveforms at teleseismic distances. The majority of the 

P waves are fit quite well, however the later pulse, at ~80-100 s, of the SH waves is 

generally not as well reproduced. Finally, Figure 16c shows that the transverse 

component of the teleseismic waves is consistently replicated, except for station JOHN. 

On the other hand, model FF2 systematically under-predicts the amplitude of the vertical 

component at stations to the north-northeast, such as MIDW, FUNA, WAKE and TARA.  
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Now, while including the static offsets in the inversion does not greatly affect the 

prediction of the strong motion data (Figure 13 versus Figure 16a), it does alter the 

resulting slip distribution. Figure 11 shows the finite fault slip distribution for case FF1— 

the inversion done using just strong motion data. Slip originates in the southwest on the 

Humps fault before progressing northeast towards the Kekerengu and Needles faults. The 

strongest slip is in the northeast portion of the fault system. The maximum slip, 11.5 m, 

occurs near station KEKS on the Kekerengu fault, Fault 9.  

 

Figure 12 allows us to examine the slip distribution of FF1 in more detail. We have 

broken down the rupture sequence into four groups of fault segments. In the first group, 

near the hypocenter, there is a maximum of ~8 m of slip on Fault 2. The following group 

has a minor amount of slip in the shallower portions of Faults 4 and 5. The northeastern 

section, Faults 8-10, shows large slip asperities again in the shallower portion of the 

faults. The fourth group of fault segments consists of the Point Kean fault and the Papatea 

fault, Faults 6 and 7 respectively. The largest slip asperity on the Point Kean fault is near 

the deepest portion of the fault and ruptures from 60-80 seconds (Figure 12b). The 

Papatea fault has its largest dislocation in the shallower half but also ruptures 

predominantly between 60-80 seconds. Faults 8 and 10 are the other largest sources of 

energy for this rupture event and also rupture within the time frame of 60-80 seconds. 

These results are similar to the MDC inversion results in section 3 where the predominant 

energy release is in this same time interval.   

 

FF2 is the inversion with both seismic and geodetic data. The slip distribution for FF2 is 

shown in Figure 14. The slip history is similar to FF1 with slip propagating from 
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southwest to northeast. However, FF2 has a larger peak slip, 15.1 m, occurring on Fault 

8, the Jordan-Kekerengu fault. Both FF1 and FF2 show little slip in the Humps fault 

zone, or near the hypocenter, with a steady increasing slip towards the Kekerengu and 

Needles fault zones. The cumulative seismic moment release, scalar summation, for FF1 

is 7.06×1020 Nm (Mw 7.83), which is similar to Case 4 in the MDC inversion results; FF2 

is higher at 1.07×1021 Nm (Mw 7.95), and based on a vector summation it is 8.37x1020 

Nm (Mw 7.88). 

 

The surface trace of the newly mapped Point Kean fault is on the outer shelf in ~50 m 

water depth. Considerable slip on the offshore Point Kean fault is seen in both finite fault 

models, with a peak slip for this segment of 11.5 m for FF1 and 9.13 m for FF2, and a 

seismic moment of 1.4 – 2.3x1020 Nm (Mw 7.4). Slip is distributed over two asperities 

(Figure 15a). The shallow asperity has a peak slip of 6.8 m. It is much larger than the 

result of Clark et al. (2018) (3 m) but consistent with the Model III of Xu et al. (2018). 

However, our model has an additional deep asperity at a depth of 24 km, which has a 

peak slip of 9.13 m (FF2). The shallow rupture of this fault initiated at 30 s, consistent 

with Holden et al. (2017). They included the Point Kean fault in their models and found 

that it ruptured 31 seconds after the origin time before continuing onto the northern 

faults. However, the rupture of the deep asperity occurs much later, from 60 s to 80 s 

(Figure 15b). 

 

For both FF1 and FF2 rupture on the Papatea fault initiates as early as 22 seconds — the 

earliest allowable value in our search range and ends at about 80 seconds. This fault also 

releases a relatively large amount of slip, 6.1 m for FF1 and 13 m for FF2, giving it a 
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cumulative seismic moment of 0.73-1.1x1020 Nm (Mw 7.3-7.4), slightly lower than the 

results of Xu et al. (2018) who found a seismic moment of 1.23x1020 Nm. However, the 

Papatea fault is invisible in the MDC inversion results. Examining Figures 12b and 15b 

this release of energy occurs over a long time period. The inverted fault slip is slow and 

steady for nearly a minute. It explains why it is difficult to resolve using strong ground 

motion data (Holden et al., 2017). The slip models of Xu et al. (2018) using geodetic data 

feature a maximum thrust slip of 18 m on the shallow part of the Papatea fault near the 

intersection with the Kekerengu fault, which is significantly higher than our result. Wang 

et al. (2018) also determined a very high slip of ~12 m on this fault, similar to FF2, but 

this large slip asperity occurred at a depth of around 5 km.   

 

Comparing these two slip distributions, we see that, in general, FF2 has higher values of 

slip than FF1, especially on the Papatea fault, as the result of better spatial coverage and 

broader frequency content by using both seismic and geodetic data. The large slip 

asperities on the Kekerengu faults vary between both models, but are slightly lower than 

other published results such as Holden et al. (2017) who show that the Kekerengu fault 

has a large slip asperity with peak slip ~20 m.  

 

Figures 15a and 15b illustrate the slip distributions and moment rate functions of each 

individual fault in FF2, helping to examine the timing and location of the largest slip 

asperities. The majority of the energy release occurs between 60-80 seconds, and is found 

primarily on faults 6 (Point Kean fault), 8 (Jordan-Kekerengu fault) and 9 (Kekerengu 

fault). As the earthquake initiates, the first major pulse of energy release occurs on Fault 

2 within the first 20 seconds. This then gets transferred to the next block of faults and 
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Fault 4 shows a fair amount of slip occurring between 20 and 40 seconds. During this 

time, slip begins to initiate in the shallow regions on the Point Kean fault at ~30 s. Next, 

there is very little slip occurring anywhere between 50-60 seconds except on the Point 

Kean fault, deeper than the first asperity, and ever so slightly on Faults 8 and 9. Thus, this 

time frame could represent the splitting of energy from the Point Kean fault to the 

Papatea fault and from the Point Kean fault to the Kekerengu faults section. 

Subsequently, the largest slip asperities occur in the next 20 seconds (from 60-80 s) on 

the Kekerengu faults and the deepest part of the Point Kean fault, at ~28 km, which is 

critical and is discussed in the following section. Finally, in the final 20 seconds slip 

decreases to a negligible amount on Fault 10, before terminating at ~100 s.      

 

Figure 18 illustrates the comparison of the cumulative moment rate functions between 

FF1 and FF2. Here we can see that the inversion produces a higher moment release when 

the GPS data are included, again suggesting that there was some postseismic 

deformation. Similar to the MDC results, there are multiple episodes of large energy 

release, with the largest one occurring between 60-80 seconds.   

 

The comparison between observed static offsets and synthetics is shown in Figure 17. 

Both the horizontal component (Figure 17a) and the vertical component (Figure 17b) 

match the observed static offsets quite well. In Figure 17b we see that just east of the 

hypocenter there are negative offsets suggesting potential subsidence in this region. 

Hamling et al. (2017) had difficulty reproducing the static offsets near the Point Kean 

fault, probably due to their exclusion of this fault in their model. Now, as discussed here, 

Clark et al. (2017) did include the Point Kean fault in their refined slip model as a NE-
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striking reverse fault with ~3 m of predominantly reverse slip extending to depths of 20 

km, although relatively poorly constrained at such depths, and found that the inclusion of 

this fault provided a significantly better fit to the tide gauge data. Clark et al. (2017) also 

show that the coastal deformation record in general, including the geodetic data near and 

offshore the Kaikoura peninsula, is consistent with a shallow source on this offshore 

reverse fault. 

 

4.5.3 Discussion of the role of the subduction interface 

Primary questions about the 2016 Kaikoura earthquake are how the different faults 

ruptured in this complex earthquake, and whether this was a purely crustal event or if the 

Hikurangi subduction thrust also slipped. In this study we first applied a MDC approach 

to analyze the role of this plate interface in this rupture event. Next we investigated the 

finer details of the rupture history of this earthquake by applying a finite fault inversion 

to a 10-segment crustal fault model.  

 

One of the benefits of the MDC inversion, section 3, is its efficiency and use of fewer 

unknown parameters. Despite the simplicity of this method, it can still capably deduce 

important information about the general rupture characteristics. By setting up multiple 

cases with and without the interface, and inverting for different source parameters, we 

consistently saw an improvement to the fit of the strong motion waveforms when the 

interface source was included. Slip on the interface accounted for only ~8% of the entire 

seismic moment of the Kaikoura earthquake in Clark et al. (2017). Even when we 

allowed the moment of subevents to change (Case 4), the inverted fault slip on the 

interface using just strong motion data is still only 15% of the total cumulative seismic 
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moment. We cannot expect the addition of this source to lead to a significant change in 

the inverted fault model of the crustal faults. However, despite its minor contribution to 

the source, it did lead to slightly better predictions of the observations as expected. Thus, 

we cannot disregard the idea that the interface was involved.  

 

In section 4 we conducted a finite fault inversion of 10 fault segments using strong 

motion and geodetic data. In this case, we did not include an interface source. However, 

in Figures 12 and 15 the depth of the large slip asperity on the Point Kean fault, Fault 6, 

is 25 km. This could be on the subduction interface. This fault segment has a moment of 

1.93x1020 Nm, Mw 7.46. If we add the moment of the interface source and shallow depth 

Point Kean fault subevent in the MDC inversion model we get 1.49x1020 Nm, which is 

consistent with our finite fault inversion result. Also, the rupture time of this large 

asperity on the Point Kean fault corresponds with the centroid time of the interface source 

in the MDC models, 67 seconds. Furthermore, the Point Kean fault in the MDC inversion 

has a shallow depth rupturing at ~52 seconds, which is consistent with the rupture time of 

the second slip asperity on the Point Kean fault in the finite fault inversion.  

 

Thus, despite our different inversion techniques, all of these preliminary results cannot 

necessarily confirm that the Hikurangi subduction thrust slipped. So the debate continues. 

The next logical step would be to test our finite fault model with an additional fault plane 

representing this interface.  

 
 
4.6 Conclusion  
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In Part I of this study, we use a multiple-double couple method and seismic data to 

evaluate the “crustal” and “crustal+interface” slip models constructed with geodetic data 

by Clark et al. (2017). We estimate the focal mechanisms and centroid locations of 

subevents directly from the geodetic models and perturb only the centroid time and Mo of 

each subevent to fit the strong motion data. 

 

Both slip models can explain most bandlimited (0.02 – 0.1 Hz) strong motion data well 

except for a few stations right in close proximity of the hypocenter and those right on the 

fault segments. In the second approach, we invert for the spatio-temporal slip history of a 

ten-segment finite fault model representing the complexity of the Marlborough Fault 

System. Instead of considering slip on the subduction interface we include the Point Kean 

fault— a low-angle (dipping 35o) thrust fault extending to depths of ~28 km. This 

improves the fit to the data. 

 

So, based on the multitude of tests we can see that just using the MDC inversion 

approach, we cannot definitively say whether we favor a model that includes the 

subduction interface. On one hand it does help to consistently improve the fit to the 

strong motion waveforms, but also, the interface source only marginally contributes to 

the overall seismic moment, potentially due to the poor sensitivity of local strong motion 

data to the total seismic moment. In the application of the finite fault models, we show 

that a model without including the subduction interface can match multiple datasets 

simultaneously, though the solution has an important contribution from the offshore low-

angle dipping Point Kean fault. The inversion of this model with just the strong motion 

data reproduces the waveforms well but tends to under-estimate the slip that has been 
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seen in other models and field data. With the inclusion of the geodetic GPS data, we are 

able to better resolve the slip values that are seen in other studies. We model the static 

offsets exceptionally well.  
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Figure 1: Overview of the tectonic setting of New Zealand (left panel), with the 

Marlborough Fault System (MFS) outlined in purple. Zoomed in topographic map of 

the MFS in the northern part of the South Island of New Zealand (right panel). Crustal 

fault segments are traced in red with the names of the large main faults labeled. The 

hypocenter of the 2016 Kaikoura earthquake is plotted as a red star and the aftershocks 

with Mw > 4 are plotted as black dots. Strong motion stations are represented by 

triangles and high-rate GPS stations are plotted as squares. 
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Figure 2: Comparison of the vertical and transverse components of 26 

teleseismic waveforms (black lines) and synthetic seismograms (red lines) 

calculated for (a) the 2-point source model, and (b) the 3-point source model. 

The station names are indicated to the left of the traces, along with the 

epicenter distances and azimuthal angle in degrees. At the end of the trace, the 

peak amplitude (mm) of the observation is given.  
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Figure 3: (a) Location and GCMT focal mechanism of the 2016 Mw 7.8 Kaikoura 

earthquake with positions and names of the global seismic stations used (red 

triangles). (b) Comparison of the cumulative moment rate functions of the 2-source 

model (red) versus the 3-source model (blue). (c) & (d) Locations and focal 

mechanisms of resulting inverted MDC solution for the 2-source model and 3-source 

model, respectively. Outline of the fault segments used in Clark et al. (2017) are in 

blue, with the hypocenter in pink. The cumulative focal mechanism for each model is 

compared to the GCMT solution.    
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Figure 4: Multiple double-couple inversion results for (a) Case 3, (b) Case 2 and (c) 

Case 4. Surface projections of each fault segment are plotted with centroid locations 

and respective focal mechanisms. Solid lines are the surface break of each fault 

segment, and dashed lines are the down-dip edges of each fault segment. Each fault 

segment is numbered accordingly. Strong motion stations are plotted and the ones 

used in the inversions are in red. The inverted cumulative focal mechanism is also 

plotted in comparison with the Global CMT solution.  
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Figure 5: Individual moment rate functions (dyne*cm/sec) for each fault 

segment for (a) Case 1 (red) compared to Case 3 (blue), (b) Case 2 (red) 

versus Case 4 (blue) (on following page). Order of plots corresponds to 

sequence of faults numbered in Figure 4a.   
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Figure 6: Comparison of 16 three-component (vertical, radial and transverse) 

strong motion waveforms (black lines) and synthetic seismograms (red lines) 

calculated for (a) Case 1 and (b) Case 3 (following page). The station names are 

indicated to the left of the traces, along with the epicenter distances and azimuthal 

angle in degrees. At the end of the trace, the peak amplitude (cm/sec) of the 

observation is given.  
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Figure 7: Comparison of 16 three-component (vertical, radial and transverse) strong 

motion waveforms (black lines) and synthetic seismograms (red lines) calculated for 

(a) Case 2 and (b) Case 4 (following page). The station names are indicated to the 

left of the traces, along with the epicenter distances and azimuthal angle in degrees. 

At the end of the trace, the peak amplitude (cm/sec) of the observation is given.  



 164 

(a) 

(b) 

0 1000 2000 3000
P

FUNA
Z 3.37e-0110

34

JOHN
Z 1.90e-0119

61

KIP
Z 1.34e-0128

69

PTCN
Z 7.41e-0188

49

RPN
Z 6.95e-01103

63

QSPA
Z 2.21e-01180

47

SBA
Z 2.73e-01182

35

VNDA
Z 3.80e-01184

35

CASY
Z 8.47e-02213

40

MBWA
Z 7.45e-01278

49

0 1000 2000 3000
P

WRAB
Z 7.75e-01292

39

QIZ
Z 5.71e-01301

84

DAV
Z 5.92e-01306

65

TATO
Z 5.25e-01314

82

PMG
Z 6.90e-01318

40

TARA
Z 2.14e-01359

43

EFI
T 6.02e-01150

75

QSPA
T 4.59e-01180

47

VNDA
T 5.68e-01184

35

NWAO
T 5.11e-01263

44

0 1000 2000 3000
P

MBWA
T 2.32e-01278

49

TATO
T 5.24e-01314

82

SSE
T 6.43e-01317

87

MAJO
T 5.94e-01332

85

HNR
T 9.72e-01337

35

ERM
T 5.30e-01338

88

0 1000 2000 3000
P

FUNA
Z 3.37e-0110

34

JOHN
Z 1.90e-0119

61

KIP
Z 1.34e-0128

69

PTCN
Z 7.41e-0188

49

RPN
Z 6.95e-01103

63

QSPA
Z 2.21e-01180

47

SBA
Z 2.73e-01182

35

VNDA
Z 3.80e-01184

35

CASY
Z 8.47e-02213

40

MBWA
Z 7.45e-01278

49

0 1000 2000 3000
P

WRAB
Z 7.75e-01292

39

QIZ
Z 5.71e-01301

84

DAV
Z 5.92e-01306

65

TATO
Z 5.25e-01314

82

PMG
Z 6.90e-01318

40

TARA
Z 2.14e-01359

43

EFI
T 6.02e-01150

75

QSPA
T 4.59e-01180

47

VNDA
T 5.68e-01184

35

NWAO
T 5.11e-01263

44

0 1000 2000 3000
P

MBWA
T 2.32e-01278

49

TATO
T 5.24e-01314

82

SSE
T 6.43e-01317

87

MAJO
T 5.94e-01332

85

HNR
T 9.72e-01337

35

ERM
T 5.30e-01338

88

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 165 

  

(c)	  

(d)	  
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Figure 8: Comparison of the vertical and transverse components of 26 teleseismic 

waveforms (black lines) and synthetic seismograms (red lines) that were forward 

predicted from the MDC inversion results for (a) Case 1, (b) Case 3, (c) Case 2, and 

(d) Case 4. The station names are indicated to the left of the traces, along with the 

epicenter distances and azimuthal angle in degrees. At the end of the trace, the peak 

amplitude (mm) of the observation is given. 
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Figure 9: Comparison of the cumulative moment rate function (dyne*cm/sec) for (a) 

Case 1 versus Case 3, and (b) Case 2 versus Case 4. Fault segment numbers, 

corresponding to Figure 4, are plotted with respect to their centroid time to illustrate 

the faults that contribute to certain energy pulses.  
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 # Fault 
Segments 

Invert for 
centroid time 

Invert for 
Moment Misfit ε 

Case 1 20 Yes No 0.28304 -0.081 

Case 2 20 Yes Yes 0.25889 -0.100 

Case 3 21 Yes No 0.27838 -0.142 

Case 4 21 Yes Yes 0.25134 -0.211 

Table 1: Description of case studies for the Multiple Double-Couple inversions 

using the fault geometry in Clark et al. (2017) and strong motion data.  
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Figure 10: Seismic moment (dyne*cm) for each fault segment in (a) Case 1 versus 

Case 2; and (b) Case 3 versus Case 4.  

(a)	  

(b)	  
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Table 2: Inverted parameter values for all fault segments for (a) Case 1, (b) Case 

3, (c) Case 2, and (d) Case 4.  

(d)	  

(c)	  
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Table 3: Fault geometry details of each of the fault segments used in (a) FF1 and 

(b) FF2.  

(a)	  

(b)	  
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Figure 11: Finite fault slip distribution of the 10-fault segment model described in 

section 4.2 using strong motion data only. Strong motion stations are shown as 

black triangles.  
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Figure 12: (a) Detailed slip history of all ten fault segments used in the finite fault 

inversion of strong motion data only, FF1. Faults are numbered according to the 

sequence seen in Figure 11, and the thick red lines are the mapped surface fault 

traces. (b) Moment rate functions (dyne*cm/sec) for each individual fault segment 

in (a).   
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Figure 13: Comparison of 16 three-component velocity strong motion waveforms 

(black lines) and synthetic seismograms (red lines) for FF1. The station names are 

indicated to the left of the traces, along with the epicenter distances and azimuthal 

angle in degrees. At the end of the trace, the peak amplitude (cm/s) of the observation 

is given.  
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Figure 14: Finite fault slip distribution of the 10-fault segment model using strong 

motion and GPS data. Strong motion stations are shown as black triangles, and faults 

are numbered in sequence from southwest to northeast.  
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Figure 15: (a) Detailed slip history of all ten fault segments used in the finite 

fault inversion of strong motion and GPS data, FF2. Faults are numbered 

according to the sequence seen in Figure 12, and the thick red lines are the 

mapped surface fault traces. (b) Moment rate functions (Nm/sec) for each 

individual fault segment in (a).   
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Figure 16: (a) Comparison of 16 three-component velocity strong motion 

waveforms (black lines) and synthetic seismograms (red lines) resulting from the 

joint inversion of strong motion and GPS data. (b) Comparison of 51 P and SH 

broadband waveforms; and (c) comparison of the transverse and vertical 

components of 65 long period whole waveforms at teleseismic stations. The 

station names are indicated to the left of the traces, along with the epicenter 

distances and azimuthal angle in degrees. At the end of the trace, the peak 

amplitude (cm/s for strong motion, 𝜇𝑚 for teleseismic body waves, and mm for 

long period whole waveforms) of the observation is given.  
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Figure 17: Observed and modeled displacements at continuous and campaign GPS 

stations resulting from the joint inversion of strong motion and geodetic data. (a) 

Observed horizontal component (black arrow) compared with synthetic 

displacement (red arrow); (b) vertical component.  
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Figure 18: Comparison of the cumulative moment rate function (Nm/sec) for 

FF1 in red, the inversion done with strong motion data only, and for FF2 in blue, 

the joint inversion. 
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Table 4: Seismic moment (Nm), average slip (m), average slip rate (m/s) and 

average rise time (s) calculated according to formula (1) – (4) for (a) FF1 and (b) 

FF2.  

(a)	  

(b)	  




