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Abstract

This paper describes a new method for estimating the fire interval distri-

bution of a region using historical wildfire boundary data. The new procedure

does not assume a specific parametric model and can adapt to various types of

fire interval relationships. The estimator first averages the proportions of cer-

tain age classes which burn across time and weights these proportions by the

amount of available fuel. Then, rather than fit known theoretical models, we

use local linear smoothing methods to ascertain the overall relationship between

fuel age and burning. In Los Angeles County, California, detailed information

on wildfires has been made available through the use of geographic informa-

tion systems (GIS) technology. The proposed procedure is applied to GIS data

covering the years 1878–1996 and reveals an apparent nonlinear threshold-type

relationship with burn area. The result is compared with two well-known para-

metric models and the relationship appears to conform to the well known Olson

model for a fire interval distribution.

Key words: Coverage process data; Time-since-fire distribution; Wildfire risk;

Local linear smoothing
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1 Introduction

Wildfire incidence is known to depend critically on numerous covariates including

wind, precipitation, fuel moisture, temperature, topography, and many others (see

e.g. Flannigan and Harrington, 1988; Renkin and Despain, 1992; Viegas and Viegas,

1994). One particularly important component for understanding a wildfire regime

is the fire interval distribution, defined as the distribution of the time until a given

location reburns. Estimation of the fire interval distribution involves examining the

relationship between burn area and fuel age (also called time-since-fire), which is

specified for each location and time as the time expired since that location last burned.

This paper examines the problem of estimating the fire interval distribution for

Los Angeles County, California. Los Angeles County is one of the most active wildfire

regimes in the United States and its history is well documented (Hanes, 1971; Minnich,

1983; Pyne et al., 1996; Keeley and Fotheringham, 2001). Wildfires are responsible

for significant amounts of property damage in Los Angeles County and are a subject

of research for fire managers, fire scientists, urban planners, and ecologists.

Accurate estimation of the fire interval distribution is of interest because there is

some disagreement over the relationship between fuel age and burn area in South-

ern California. Minnich (1983) suggested that the largest fires in recent Southern

California history are linked to the increased availability of older fuels. Based on

Landsat imagery from Southern California and Northern Baja California, Minnich

claimed that the policy of total fire suppression in Southern California created exten-

sive stands of very old age classes. These older stands, he argued, had accumulated

fuels over the years and were therefore ripe for burning. Minnich also claimed that
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fuel age is the most important variable affecting the spatial properties of fires, in that

fires tend to burn up to the boundary of another (recent) fire and then stop for lack

of fuel.

Despite the fact that Minnich’s paper was highly influential and was used as

support for modern prescribed burning policies, many other works contradict his

findings. Van Wagner (1978) and Johnson and Larsen (1991) suggested that fuel

age has little or no effect on risk and that it may be reasonable to assume uniform

flammability of forest stands with age. Van Wagner also noted that since large fires

typically burn through stands of many different ages, fuel age is irrelevant when

looking at the larger and more destructive fires.

More recently, Keeley et al. (1999), using data from the California Statewide Fire

History Database, provided evidence showing that the mean fire size in Southern Cal-

ifornia has not increased over time and that large fires are not necessarily dependent

on old age classes of fuels. They went further to suggest that age class manipulation

(i.e. prescribed burning) is unlikely to prevent catastrophic fires in Southern Califor-

nia. The authors examined some of the largest fires in the database and showed that

for those fires there was no apparent relationship between the proportions of fuels

burned and the age classes of the fuels (e.g. see their Figure 4).

1.1 Previous Work with Fire Interval Distributions

The lack of full agreement over the precise role of fuel age in contributing to fire risk is

not surprising. In general, it is difficult to make precise quantitative statements about

fuel age without imposing assumptions. For decades researchers have been using time-
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since-fire maps, which show the time of the most recent fire for every location in the

study area. Johnson and Gutsell (1994) described a useful method for summarizing

and quantifying the information stored in these maps, and for producing numerical

estimates of quantities such as the fire cycle and average fire interval. They used

survivor curves to estimate the probability of an area surviving without fire beyond a

certain age. This probability is estimated by computing the proportion of unburned

fuel which is beyond a certain fuel age. For example, the probability of an area

surviving 30 years (or more) without reburning is estimated using the proportion of

the study area which is currently 30 years old or older. The empirical survival function

is then fit to a theoretical model using regression. Similar work and applications of

this methodology can be found in Johnson and Van Wagner (1985) and Johnson and

Larsen (1991).

Often, time-since-fire maps are the only information available to researchers. How-

ever, when more detailed information on the fire history is available, one can hope to

obtain a more accurate picture of reburn activity in the area. In this situation the

survivor curve method is not optimal for several reasons. First, the time-since-fire

maps only show the most recent fires and do not contain information on the pattern

of overburning that occurs over time. This makes estimates of average time until

reburn more dependent on recent observations. Second, the survivor curves, which

depend critically on the particular year of observation, tend to be statistically unsta-

ble. Finally, the parametric models suggested by Johnson and Gutsell (1994) place

some restrictions on the nature of the relationship between fuel age and risk.

Fire interval distributions are often studied by modelling the associated hazard

functions. There have been a number of parametric models proposed for describing
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such hazard functions. Choosing a particular model depends on specific knowledge

of the study area and can be a potentially difficult task. Johnson and Gutsell (1994)

use negative exponential and Weibull models for their survivor curves. The negative

exponential model assumes a constant risk of burning as fuel age increases. This kind

of relationship seems implausible for Los Angeles County given the previous research

done on the growth cycle of chaparral (the dominant vegetation) and the rate of

accumulation of fuels (see e.g. Minnich and Chou, 1997, and references therein).

However, the Weibull model, which assumes a linear increase in risk with fuel age,

seems equally unrealistic. We have no reason to believe that the risk of burning

should increase to infinity as fuel age increases.

Li et al. (1996) and McCarthy et al. (2001) suggest alternative theoretical forms for

the fire interval distribution such as Olson, logistic, and fuel moisture models. These

models encompass a range of different relationships between fuel age and wildfire

risk. In research similar to that conducted in this paper, Gill et al. (2000) estimate

the “probability of ignition at a point function” using 16 years of Australian satellite

image data (pixelized) and compare their results to standard fire interval curves such

as the negative exponential model.

Even with a portfolio of parametric models available, it is still likely that the fire

interval distribution falls outside the range of existing options. This paper presents

a flexible nonparametric method for estimating the fire interval distribution from

detailed wildfire boundary data. The proposed estimator relies on relatively few

mathematical assumptions and appears to have good statistical properties. Our work

differs from that of Gill et al. (2000) in that we employ a nonparametric smoothing

step to capture a wider range of fire interval relationships. We also propose a boot-
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strap method for estimating the variability of the fire interval curve. In Section 2 we

begin with a description of the data used for the current analysis. Section 3 outlines

our method for estimating the fire interval distribution and for obtaining estimates

of variability of the curve. This section elaborates on ideas described in Schoenberg

et al. (2002). Section 4 shows the results of applying our method to data on fire his-

tory in Los Angeles County and discusses some statistical properties of the estimator.

In Section 5 we summarize our results and outline some subjects for future research.

2 Los Angeles County Wildfire Data

Los Angeles County has a long history of collecting detailed information on wildfires.

Maps of Los Angeles County wildfires have been recorded by the Los Angeles County

Department of Public Works (DPW) and the Los Angeles County Fire Department for

roughly the past century. These maps, originally recorded on paper, have since been

transferred to the geographic information systems (GIS) software package ArcInfo

and stored in coverage files. In those coverage files each fire is stored as a polygon

outlining the fire boundary and the date on which the fire originated.

The data from DPW consist of maps of approximately 2000 fires occurring between

the years 1878 and 1996. Figure 1 shows the frequency with which different parts of

Los Angeles County have burned in the years 1878–1996. This map was constructed

by placing a fine grid over the county and counting the number of times each grid

square intersected with a polygon in the dataset. One can see that much of the

fire activity in Los Angeles County occurs in a band stretching from the northwest

to the eastern part of the county. The major exception is in the Malibu area (the
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region protruding from the western part of the county) where there are some of

the highest levels of fire activity in the whole county. Additional information on

topography was obtained from the U.S. Geological Survey and the UCLA Institute

of the Environment. In Figure 2 we see that the formation of the mountains largely

determines the pattern of fire activity in the County. Much of the burning occurs in

the higher elevations and around the mountains.

After a wildfire has occurred the Fire Department sends a team of engineers

to the location to trace the boundary of the fire on a map. These maps are then

converted into a machine readable format for use in a GIS program. Figure 3 shows

the fire boundaries for 1980, a typical year in the dataset. The measurement of the

fire boundaries is quite precise: Fire Department officials estimate that the polygon

boundaries are accurate to within about 16 meters on each side of the boundary. For

the purpose of measuring burn area we regard the errors in the polygon boundaries as

negligible. Figure 4 shows the total area burned in each year of the dataset. Although

there appears to be a slight increase in total area burned over the years, that is at

least partly due to the fact that in the early part of the century smaller fires were

significantly underreported. Fire department officials believe that the data from years

after 1950 form a complete listing of wildfires burning more than 1 acre.

Figure 5 shows two groups of fires from the northwestern part of the county. This

is a typical example of how fuel age might affect the spatial configuration of the fire

boundaries. For the fires in 1963 and 1964, a one year interval, the 1964 fires burn

around the border of the 1963 fire and stop (Figure 5a). However, when looking at

the years 1928 and 1968, a 40 year interval, we see that the 1968 fire burns right over

the 1928 fire (Figure 5b). It should be clarified that in the intervening years between
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1928 and 1968, there was almost no overburning of the 1928 fires in Figure 5(b) —

the 1968 fire is the first instance of significant overburning at this location.

3 Methodology

Our method of estimating the fire interval distribution from the boundary data has

two steps. First, for each year in the dataset and for each fuel age u of interest, we

compute the amount of u-year-old fuel which was available for burning in that year

and the proportion of u-year-old fuel which actually burned. Because of the size of

the dataset and the complexity of the polygons, this is a computationally intensive

task. Using the computed proportions, we then construct the fire interval curve by

applying local smoothing techniques.

3.1 Processing the Wildfire Boundaries

We first define three quantities:

1. Bi = the total area burned in year i.

2. yi(u) = the total amount of u-year-old fuel available for burning in year i.

3. pi(u) = the total amount of available u-year-old fuel which burned in year i.

All three quantities are defined for the entire County. Let B0 be the total amount

of burning which occurred in the first (earliest) year of the dataset. For a particular

year i > 0, we compute yi(1) = Bi−1, the total amount of burning which occurrred

in the previous year. Then pi(1) is simply the proportion of yi(1) which burned. In
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general, for i > 1 and u = 2, 3, . . . ,

yi(u) = yi−1(u− 1) [1− pi−1(u− 1)] .

For u > i, yi(u) cannot be computed from the data and is not defined.

Consider a small example: suppose a study area has experienced only three fires in

its history — a small fire in 1920, one fire in 1940, and one in 1960. This hypothetical

study area is shown in Figure 6. The region labeled INT is the interesection between

the 1940 and 1960 fire boundaries; i.e. the reburn region. In this case, the amount of

20-year-old fuel available in 1940 is Area(1920 Fire) and the amount of 20-year-old

fuel available in 1960 is Area(1940 Fire). Similarly, the amount of 20-year-old fuel

which burned in 1940 is 0 and the amount of 20-year-old fuel which burned in 1960

is equal to Area(INT). Therefore,

y1940(20) = Area(1920 Fire) ; p1940(20) =
0

Area(1920 Fire)
= 0.

y1960(20) = Area(1940 Fire) ; p1960(20) =
Area(INT)

Area(1940 Fire)

Note that computing pi(u) and yi(u) for each u involves intersecting and differ-

encing the fire boundaries, which are very large polygons, each with many vertices.

Hence, the computational cost can be substantial, but it is by no means prohibitive.

We used the R statistical computing environment (Ihaka and Gentleman, 1996) to

write most of the software needed to construct the estimator. For the polygon ma-

nipulations we used the very fast General Polygon Clipper software library written

by Alan Murta (see http://www.cs.man.ac.uk/~amurta/software).
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3.2 Estimating the Fire Interval Curve

We define the quantity of interest, h(u), as the proportion of u-year-old fuel expected

to burn each year. If pi(u) and yi(u) are defined as in Section 3.1, then our estimate

for each u is

ĥ(u) =

∑n
i=1 pi(u)yi(u)∑n

i=1 yi(u)
. (1)

Another possibility is a naive estimator such as the average burn proportion h̄(u) =

(1/n)
∑n

i=1 pi(u). Note, however, that ĥ(u) has a nice interpretation in the context

of the current application. Since ĥ(u) is an average of the observed proportions of

overburning weighted by the amount of available fuel, years for which there was more

fuel available get more weight. This scheme makes intuitive sense — if in a given

year, 1% of 1, 000 available u-year-old hectares burns, this year should influence our

estimation of hazard more than an observation of a year where 1% of 10 available

hectares burns.

After computing ĥ(u) for many different fuel ages u, we use a local linear smoother

to construct the estimated fire interval curve and highlight the overall trend. The

function h(u) is sometimes referred to as the flammability function (see e.g. McCarthy

et al., 2001). The kernel function used for the local linear smoother was simply the

Normal density function. When estimating the bandwidth parameter for the local

linear smoother, we employed cross-validation and the direct plug-in methodology

of Ruppert et al. (1995). The results of the different procedures are compared in

Section 4. For more details on the local linear smoother and bandwidth estimation

procedures, we refer the reader to Bowman and Azzalini (1997) and Wand and Jones

(1995).
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For the estimator in (1) we make the implicit assumption that for each i and u,

Var (pi(u) | yi(u)) = ϕ
h(u)

yi(u)
(2)

where ϕ is an unknown constant of proportionality independent of u. The intuition

behind (2) is that if the entire study area were divided into small 1-unit pieces,

and each unit burned independently of the others, then yi(u) would represent the

number of u-year-old pieces that are available in year i and pi(u) would represent

the proportion that burn. In this case, Var (pi(u) | yi(u)) ∝ 1/yi(u). We believe that

relation (2) provides a reasonable approximation for the variance behavior of pi(u).

For example, if yi(u) is very small, then it is more likely that either we will observe

total reburning or no reburning. Therefore, pi(u) will be 1 or 0 and Var (pi(u) | yi(u))

will be high. If yi(u) is large, then the distribution of pi(u) is spread more uniformly

between 0 and 1 and will have lower variance. We check this variance relationship in

Figure 7 by plotting the log of the sample conditional variance of p(u) given y(u) is

plotted against log [ĥ(u)/y(u)] for all values of u. To construct this plot the values of

the observed pi(u)’s were binned according to values of log ĥ(u)/yi(u). Then in each

bin, the sample variance of the pi(u)’s was used as an estimate of Var (p(u) | y(u)).

The superimposed dotted line has a slope of 1 and an intercept fitted to the data.

The linear relationship in Figure 7 appears consistent with (2) and (3). A variant

of Figure 7 was constructed using h̄(u) in place of ĥ(u), however there was little

difference between the resulting figure and Figure 7.

A more formal framework for this problem, which agrees with the intuition above,

is the binomial model with possible overdispersion. That is, define xi(u) = pi(u)yi(u)

and then model xi(u) ∼ Binomial(yi(u), h(u)). Given this model, the natural estimate
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of h(u) is simply

ĥb(u) =

∑n
i=1 xi(u)∑n
i=1 yi(u)

which is identical to the estimator in (1). Then the variance model would be

Var (pi(u) | yi(u)) = ϕ
h(u)(1− h(u))

yi(u)
(3)

where ϕ could be interpreted now as an overdispersion parameter. In this case,

overdispersion would be a result of dependence between the burning of different lo-

cations in the County. Although the variance models in (2) and (3) are of slightly

different forms, they are similar because for the relatively small values of h(u) that

we expect in this situation, h(u) ≈ h(u)(1− h(u)).

Given (2), ĥ(u) is simply the weighted least squares estimate of h(u), where the

weights are proportional to the inverses of the variances. Therefore, ĥ(u) is the

best linear unbiased estimate of h(u) for each u. Alternatively, using the binomial

model framework, one could formulate ĥ(u) as a maximum quasi-likelihood estimate

of h(u), using (2) for the variance relationship. In that setting one must assume that

the proportions of each fuel age which burn from year to year are independent. Since

quasi-likelihoods behave much like regular likelihoods, estimates derived from quasi-

likelihoods share many of the desirable properties of standard maximum likelihood

estimates (Wedderburn, 1974; McCullagh, 1983). For example, under general condi-

tions, estimates of the type in (1) are consistent and asymptotically normal (Jennrich,

1969).

When assessing the variability of the fire interval curve, we relax the distribu-

tional assumptions of the full binomial model and construct approximate 95% con-

fidence bands using the bootstrap. Since the binomial model assumes that neigh-
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boring spatial units burn independently of each other, it is unlikely to be suit-

able for this situation. For each fuel age u, we sample with replacement the pairs

{pi(u), yi(u)} to get {p∗i (u), y∗i (u)}. From the bootstrap samples we compute ĥ∗(u) =

(
∑

i p
∗
i (u)y∗i (u)) / (

∑
i y

∗
i (u)). After computing ĥ∗(u) for all fuel ages u we refit the

kernel smoother. This procedure is then repeated 1000 times and confidence bounds

are constructed using the percentile method (Efron and Tibshirani, 1993).

4 Results and Discussion

The result of applying our method to the Los Angeles County DPW boundary data is

shown in Figure 8. Figure 8(a) shows the curve with the bandwidth chosen by cross-

validation and Figure 8(b) shows the curve using the Sheather-Jones direct plug-in

methodology. Cross-validation produced a bandwidth estimate of approximately 10.4

while the plug-in method selected a bandwidth of about 4.2. While the estimated

curve in Figure 8(b) appears somewhat noisier than the curve in Figure 8(a), both

curves tell a similar story. Using data from the past century, it is apparent that as

fuel age increases from 1 year to 30 years, the proportion of available fuel that burns

steadily increases. However, for fuel ages greater than 30 years or so, the proportion

does not increase. Thus, the relationship between fire risk and fuel age appears to

be nonlinear. There is considerable scatter around the estimated fire interval curve.

However, the statistical significance of this overall increase and leveling off of the

estimated curve is supported by the bootstrap 95% confidence bands for the curve.

The type of nonlinear threshold relationship detected in Figure 8 is distinctly dif-

ferent from the linear models in common use. The fit resembles the model described
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by Olson (1963) where the hazard of burning increases to an asymptote at a rate

determined by properties of the vegetation. The shape of the fire interval curve is in

general agreement with our knowledge of the vegetation in Los Angeles County. Typ-

ically, chaparral, the dominant vegetation, does not burn easily until it has reached

about 30 years of age, while older chaparral will burn readily (Pyne et al., 1996). The

estimated fire interval curve indicates that after an area reaches a certain age, it does

not necessarily become more flammable or hazardous. One possible interpretation is

that large wildfires occur when conditions are ripe, i.e. when fuel age is at least 30

to 40 years, but that there is little distinction, with regard to risk based on fuel age,

between conditions that are sufficient and conditions that are extreme.

Figure 9 shows two parametric models fit to the data with 95% confidence bounds.

The negative exponential model is the constant hazard h(u) = α and the Olson model

sets

h(u) = β0 + β1(1− exp(−β2u)).

The parameters of the Olson model (β0, β1, β2) were estimated from the data using

nonlinear least squares. The negative exponential model clearly overestimates the

proportion of fire burned for younger fuels. The best-fitting Olson model appears to

indicate a rapid increase in hazard for fuel ages between 1 and 20 years. After a fuel

age of about 20 years, the fitted Olson model essentially levels off. However, the local

linear smooth of the data indicates that the proportion of fuel burned increases to

fuel ages of about 35 to 40 years.

It should be noted that small fires burning less than 1 acre were not included

in our dataset. Ed Johnson (personal communication, October, 2001) has pointed
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out that an apparent decrease in hazard in locations having recently burned could

perhaps be partially attributed to an increase in the rate of very small undetected fires

during the vegetative regeneration cycle. However, as such small fires are thought to

account for only a tiny fraction of total burn area, it is unlikely that these fires are

solely responsible for the apparent decrease in hazard in Figure 8.

In order to take into account some of the spatial inhomogeneity of the fires, the

fire interval curve was also estimated for separate sub-regions of Los Angeles County.

These sub-regions are shown in Figure 10 and their estimated fire interval curves are

shown in Figure 11. For these four plots, the bandwidths were chosen using the direct

plug-in method. Each of the curves displays a threshold similar to the estimated curve

for the entire County; for each region there is no significant increase in the estimated

hazard curve after 25–30 years. However, only in region 3 do we see an increase in

hazard for fuel ages between 1 and 15 years. Estimation of the fire interval curve in

these cases was constrained by the lack of data in the smaller sub-regions and the

estimates tended to be somewhat more unstable. In addition, cross-validation could

not be used to select bandwidths because in some cases the minimum of the cross-

validation criterion could not be found via a grid search (instead the plug-in method

was used). Therefore, for regions 1, 2, and 4 it is difficult to say whether there is

simply not enough data to detect an increase in hazard or whether there is genuinely

no increase.

15



4.1 Stability of the Estimates

We compare the stability of ĥ(u) to the estimate corresponding to the survivor func-

tion in (4) proposed by Johnson and Gutsell (1994) by computing each estimator for

consecutive sample sizes. Johnson and Gutsell (1994) model the the survivorship of

a location based on fuel age information in time-since-fire maps. Specifically, if T is

the “lifetime” of a location (i.e. the time until it reburns), then they propose, as an

estimator of P(T > u), the empirical survivor function defined via

Ŝ(u) =
∑
k≥u

yn(k)

/∑
k≥1

yn(k) . (4)

Here, yn(k) has the same meaning as in Section 3.1 and n is the year in the dataset

closest to the present. From (4) it is possible to get the corresponding hazard function

via the relation h(u) = − d
du

log S(u).

We start with a small subset of the dataset and progressively increase the sample

size by one year, each time computing both estimators, until the entire dataset is

used. Let hJG
k (u) and ĥk(u) denote the Johnson and Gutsell (1994) estimator and

the estimator from (1), respectively, estimated from a sample of size k. Figure 12

shows both estimators for u = 1 and for increasing values of k. It is apparent that

as k increases, ĥk(u) tends to stabilize and converge while hJG
k (u) continues to vary.

Note that the y-axes on the Figures 12(a) and 12(b) are different; the weighted least

squares estimate in 12(b) varies on a much smaller scale.

This process is then repeated for all u. Rather than show hJG
k (u) and ĥk(u) for

each u, we take the sample standard deviation of the set {ĥk(u) : k = 1, 2, . . . } for

values of u between 1 and 50. The results are shown in Figure 13. The estimator

ĥ(u) appears to exhibit significantly less variation than the survivor curve estimate.
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The reason behind this is simple: ĥ(u) uses all of the data up to the current year

of observation (year k). When data from year k + 1 is added, its effect on ĥ(u) is

counterbalanced by all of the reburn intervals recorded from years 1 to k. If ĥk(u) is

the current estimate of h(u), then given data from year k + 1, the updated estimate

for each u is

ĥk+1(u) = ĥk(u) +
yk+1(u)∑k+1
j=1 yj(u)

[
pk+1(u)− ĥk(u)

]
.

Hence, the estimate moves from its old value ĥk(u) toward the new observation

pk+1(u), but only by the fraction yk+1(u)
/∑k+1

j=1 yj(u) . By contrast, the survivor

curve method relies only on the most recent burn in each location and hence is heav-

ily dependent on the most recent observations.

4.2 Bootstrap Methodology

Applications of bootstrap methodology to spatial data is still an active area of re-

search and clear prescriptions for conducting resampling or simulation are rare. As

with any situation involving the use of the bootstrap, the difficulty lies in approxi-

mating the probability mechanism which generates the observed data. In Section 3.2

we proposed one possibility for using the bootstrap to assess the variability of the

estimated fire interval curve. Resampling the pi(u)’s for each u assumes that given

a fuel age, the proportion of that fuel age which burns is independent from year to

year. Our exploratory analysis of the data indicated that the data do not appear to

be in gross violation of this assumption. For example, plots of the sample autocor-

relation function for the sequences p1(u), . . . , pn(u) did not indicate any significant

intra-sequence dependence.
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4.3 Extension to Wildfire Risk Estimation

For the general problem of wildfire risk estimation, one could use the methodology

described in Section 3 in a number of ways. Given a location z and the fuel age uz at

that location, it seems feasible to model the hazard of fire as a function of ĥ(uz) and

other meterological, topographical, and socio-economic covariates. Hence, we could

have hazard(z) = f(ĥ(uz), xz), where xz represents a vector of covariates for location

z. A simple example for f would be a linear model where hazard(z) = ĥ(uz) + β′xz

and β is a vector of parameters. For an example of the use of linear models in fire

prediction, see Mandallaz and Ye (1997).

5 Conclusions

This paper presents a new technique for estimating the fire interval distribution of

a region using historical wildfire boundary data. It has already been noted by other

authors that fuel age and the fire interval distribution are important to understand-

ing the overall behavior of wildfire. The estimator presented here can capture more

complex relationships than previously developed methods because it does not im-

pose a parametric model. As a weighted least squares estimate ĥ(u) possesses good

statistical properties such as consistency and asymptotic normality and is the best

linear unbiased estimator. Johnson and Gutsell (1994) proposed a useful estimator

when the available data consist of time-since-fire maps. In Section 4.1 we showed that

this estimator can be highly variable from year to year since it does not efficiently

incorporate historical fire data. The estimator proposed here is better suited for the

situation when historical data on wildfires are available.
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Using our estimator, we demonstrated that for Los Angeles County, the proportion

of area burned increases steadily for fuels less than 30 years old, but remains nearly

constant thereafter. The data suggest that the proportion of fuel burned and age of

the fuel have a nonlinear threshold-type relationship. This relationship is distinctly

different from the commonly used negative exponential and Weibull models.

The characterization of the relationship between burn area in Los Angeles County

and fuel age is intended to be useful to fire hazard modelers. The focus on fuel age by

no means is meant to underemphasize the importance of other factors in influencing

fire risk. These other factors include land use policies, population density, and fire

prevention policies, as well as meteorological and topographic variables. For example,

the expansion of the urban-wildland interface has introduced a major proliferation of

fires in previously uninhabited areas. Also, wind is a major factor affecting the size

of wildfires. Large catastrophic fires are often driven by high winds and are generally

immune to fire suppression (Keeley et al., 1999). Examining the interactions between

these variables and their effect on burn area is still an important direction for future

research.

While Los Angeles County represents a significant wildfire regime, an important

subject for future research is to investigate the application of our method to wildfire

data from other regions. In particular, differences in vegetation life cycles and spatial

configurations of fuels may considerably alter the observed relationship between burn

area and fuel age. Finally, properties of the bootstrap procedure described in Sec-

tion 3.2 for estimating confidence bounds for renewal densities of coverage processes

require further attention. Modifications to the procedure would be needed for the

case where the pi(u)’s display significant serial autocorrelations. The development
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of useful bootstrapping methods for coverage data is an issue of fundamental impor-

tance for the problems discussed in this paper and should continue to be actively

investigated.
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A Appendix: Figures
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Figure 1: Frequency with which different areas of Los Angeles County have burned

between 1878 and 1996.

24



Figure 2: Centroids of fire boundaries for years 1878–1996 with elevation (meters).
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Figure 3: Fire boundaries for the year 1980, with elevation.
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Figure 4: Total area burned in each year of the dataset (ha).
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(a) (b)

Figure 5: Overburning for different fuel ages. (a) Fires from the years 1963 (gray)

and 1964 (white). There is relatively little overburning (black) — approximately 50

hectares. (b) Fires from 1928 (gray) and 1968 (white). The overburning here is much

more extensive — 237 hectares.
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Figure 6: Hypothetical study area with three fires.
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Figure 7: A plot of the log conditional variance of p(u) | y(u) vs. log h(u)/y(u) for

all values of u. Given n years of fire history data {(p1(u), y1(u)}, . . . , {(pn(u), yn(u)},

the values of pi(u) are binned according to values of log ĥ(u)/yi(u). In each bin, the

variance of the pi(u)’s is used as an estimate of Var (p(u) | y(u)).
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Figure 8: Estimated fire interval curves for the Los Angeles County data using a local

linear smoother and bandwidth chosen by (a) cross-validation and (b) Sheather-Jones

direct plug-in method.
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Figure 9: Estimated parametric fire interval curves for the Los Angeles County data;

(a) Negative exponential model; (b) Olson model.
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Figure 10: Four sub-regions of Los Angeles County. The points represent the centroids

of the fire boundaries.
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Figure 11: Estimated fire interval hazard curve for each of the sub-regions of Los

Angeles County.
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Figure 12: Estimated values of h(1) using (a) the estimate based on (4) and (b) the

weighted least squares estimate (1).
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Figure 13: Standard deviations for ĥ(u) and hJG(u).
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