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The facet-specific interaction between molecules and crystalline
catalysts, such as titanium dioxides (TiO2), has attracted much
attention due to possible facet-dependent reactivity. Using surface-
sensitive sum-frequency vibrational spectroscopy, we have studied
how methanol interacts with different common facets of crystalline
TiO2, including rutile(110), (001), (100), and anatase(101), under am-
bient temperature and pressure. We found that methanol adsorbs
predominantly in the molecular form on all of the four surfaces,
while spontaneous dissociation into methoxy occurs preferentially
when these surfaces become defective. Extraction of Fermi reso-
nance coupling between stretch and bending modes of the methyl
group in analyzing adsorbed methanol spectra allows determination
of the methanol adsorption isotherm. The isotherms obtained for
the four surfaces are nearly the same, yielding two adsorbed Gibbs
free energies associated with two different adsorption configura-
tions singled out by ab initio calculations. They are (i) ∼−20 kJ/mol
for methanol with its oxygen attached to a low-coordinated surface
titanium, and (ii) ∼−5 kJ/mol for methanol hydrogen-bonded to a
surface oxygen and a neighboring methanol molecule. Despite sim-
ilar adsorption energetics, the Fermi resonance coupling strength for
adsorbed methanol appears to depend sensitively on the surface
facet and coverage.

titanium dioxide | facet effect | adsorption configuration | sum-frequency
vibration spectroscopy | Fermi resonance

Catalytic activity of a crystal may depend sensitively on its
facet. Thus, recent studies on heterogeneous catalysis on

nanocrystals, including metals, alloys, and oxides, have focused
on controlling their facets to optimize selectivity and efficiency of
catalytic reactions (1–3). It however requires detailed knowledge
about molecular adsorption and reaction on each single facet,
and such knowledge under ambient temperature and atmo-
sphere is still hardly available. This is the case for many oxides.
Titanium dioxide (TiO2) is among the most important photo-
catalysts due to its abundance, nontoxicity, high reactivity, and
chemical stability (4–7). It is also a benchmark model system for
investigating photocatalysis such as water splitting, alcohol dis-
sociation (8), and more recently, reduction of CO2 (3). In fact,
research on facet engineering of oxide catalysts has been mostly
carried out on TiO2 (1–3). Over the years, substantial progress
has been made in comprehending molecular interactions with
different surfaces of TiO2 through both theoretical and experi-
mental means, but a wide gap still exists between the two. Cal-
culations are usually on adsorption energetics of molecules on
well-defined, (nearly) stoichiometric single-crystal surfaces (9–
13), while experiments on catalytic reactions are often on
nanocrystals with a number of different facets (1–3). To seek
consensus with theories and search for understanding of how
reactivity depends on surface crystalline structures, experimental
investigation on individual single crystal surfaces is obviously
essential. Temperature-programmed desorption (TPD) (14–19)
and scanning tunneling microscopy (STM) (20–24) have been
employed in the past for such studies. The former can yield
adsorption energetics of molecules on a surface; unfortunately, it

generally cannot detect as-adsorbed species and their adsorption
configurations. The latter can monitor surface morphology and
energy levels, but has difficulty in identifying chemical species
and their binding configurations. Moreover, these techniques are
usually operable only in ultrahigh vacuum (UHV), and not ap-
plicable to samples in real environment.
Surface-specific sum-frequency vibrational spectroscopy (SFVS)

has been proven to be an effective tool for probing molecular
adsorption on surfaces in real atmosphere (25–27). It can selec-
tively detect adsorbates, provide information on their adsorption
configurations and bonding geometries, and work under a wide
range of pressure and temperature, allowing deduction of ad-
sorption isotherms and energetics of adsorbates on surfaces to
directly compare with theory (28–30). The technique has been
applied to probe adsorption of small molecules, including meth-
anol, on TiO2 (31–40). However, a comprehensive study of mo-
lecular adsorption on different facets of TiO2, in correlation with
theory, has not yet been reported.
In this article, we report an SFVS study of methanol adsorp-

tion on four different TiO2 surfaces: rutile(110), (100), (001),
and anatase(101), which are the commonly investigated facets of
TiO2. Methanol is of particular interest because it not only is a
prototype model reactant, but also has numerous technological
applications (8). The SFVS experiment was conducted with sam-
ples at room temperature and under a wide range of methanol
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vapor pressures, with results corroborated by ab initio calculations.
They provide detailed understanding of how methanol molecules
interact with different surfaces. Whether methanol adsorbs on
TiO2 in the molecular form or dissociates spontaneously has long
been a controversial topic. By monitoring the SF vibrational
spectra in the CH stretching region, we found unambiguously that
on all four surfaces of TiO2 under ambient conditions, meth-
anol only appeared in the undissociated molecular form; dis-
sociation into methoxy was only observed in the presence of
surface defects. In analyzing the SF vibrational spectra, we
discovered the Fermi resonance (FR) coupling, which mixes
the nearly degenerate CH3 symmetric stretching mode (r+) and
bending overtone (2δ) of methanol, was sensitive to the TiO2
surface structure as well as methanol coverage on the surface.
With the FR coupling effect separated, the adsorption isotherm
of methanol on a surface could then be obtained from the
amplitude of the CH3-r

+ mode versus methanol vapor pressure.
For all of the four surfaces of TiO2, fitting the isotherms by
the Langmuir model led to the conclusion that there were
two adsorption configurations with adsorption free energies
of ∼ − 20  kJ=mol and ∼ − 5  kJ=mol, respectively. Our ab initio
calculation showed that the former corresponded to methanol
bonded to a surface Ti atom, and the latter to methanol
hydrogen-bonded to a surface oxygen atom as well as a
neighboring adsorbed methanol. According to the calculation,
sensitivity of the FR coupling to TiO2 surfaces seems to be
correlated with the hydrogen bonding (H-bonding) strength of
the adsorbed methanol molecules. As it is suggested that H
bonds have strong and profound effects on TiO2 surface reac-
tions (41), the significantly longer H-bonding length of methanol
on anatase(101) than on rutile(110) may contribute to the usually
observed higher reactivity on anatase, in particular, anatase
nanoparticles.

Results and Discussion
The basic theory of SFVS is described in detail elsewhere (25,
42). Briefly, when the IR frequency is near a surface vibrational

resonance, the SF signal is proportional to j χ! NR + χ
! 

Rj2, where
χ
! 

NR is the nonresonant background, and

χ
! 

R =
X
q

A
! 

q

ωIR −ωq + iΓq
[1]

is the resonant contribution, with A
! 

q, ωq, and Γq being the am-
plitude, frequency, and damping coefficient of the qth resonance
mode, respectively. Fig. 1 shows the SSP (referring to S-polarized
SF output, S-polarized near-IR input, and P-polarized IR input,
respectively) spectra in the 2,800–3,000-cm−1 range from the
four TiO2 crystal surfaces under various methanol vapor pres-
sures. All spectra exhibit sharp resonance peaks from the
adsorbed methanol, and a nonresonant background from TiO2,
which was minimized by adjusting the azimuthal orientation of
the crystal surface as in previous studies (43) (SI Appendix,
Fig. S1).
We focus here on the methanol CH stretching modes. All

spectra in Fig. 1 can be fitted using Eq. 1 with two dominant
peaks (an example is shown in the Fig. 1A, Inset), centered at
∼2,860 and 2,965 cm−1 for low methanol vapor pressure, and
red-shifted to about 2,840 and 2,950 cm−1 for saturation vapor
pressure (Ps). The lower and higher frequency modes are known
to be the CH3-r

+ and FR modes of methanol, respectively (44,
45), but the latter originates from the overtone (2δ) of the
bending mode and both modes are affected by FR coupling.
Supposedly, there is another, weaker FR mode arising from
coupling between the CH3-r

+ and bending overtone at ∼2,920 cm−1

(46–48), but it is too weak to be observed here by SFVS with the
SSP polarization combination.
Fig. 2 (solid symbols) presents the SSP amplitudes, Ar+ and

AFR, for the methanol CH3-r
+ and FR modes, respectively,

versus the partial pressure of methanol, pr =P=Ps. Since both
modes are from the methyl group, we would expect Ar+ and AFR
to have the same pressure dependence, and with Ar+ and AFR
proportional to the surface density of methanol, their pressure
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Fig. 1. SFVS of methanol adsorbed on various TiO2 single-crystal surfaces: (A) rutile(110), (B) anatase(101), (C) rutile(001), and (D) rutile(100). Different colors
refer to spectra taken under different methanol vapor pressures as labeled in B. All spectra are dominated by the FR-coupled CH3 symmetric stretch mode and
bending overtone at ∼2,840–2,860 cm−1 and ∼2,950–2,965 cm−1, respectively. (A, Inset) Fit of the spectrum on rutile(110) under saturated vapor pressure (PS).
All spectra were taken with SSP (S-SF, S-NIR, P-IR) input/output polarization.
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dependence would describe the adsorption isotherm (29, 30, 49).
However, this is not the case as seen in Fig. 2, which shows that
Ar+ and AFR vary differently with pressure. The discordance
arises because Ar+ and AFR depend on the FR coupling strength
(44, 50), which originates from the anharmonicity of the intra-
molecular potential and is sensitive to the environment of the
molecule (51–54). Specifically, the FR coupling strength varies
with the methanol vapor pressure and thus contributes to the
dependence of Ar+ and AFR on pressure. As we shall discuss later,
such effect on Ar+ and AFR can be extracted in the spectral
analysis, and the procedure then allows us to extract the ad-
sorption isotherms from the data in Fig. 2.
Configuration and energetics of molecular adsorption on a

surface determine the ensuing surface chemistry. However, for
methanol adsorbed on TiO2, despite extensive studies in the
past, much has remained unclear (55). For example, there is still
no consensus on whether methanol adsorbs in the molecular
form or dissociates spontaneously into fragments upon adsorp-
tion (8). Theoretically, cleavage of the methanol O–H bond, and
attachment of the resultant methoxy moiety (CH3–O) to the
surface titanium sites (Tis), was found to be somewhat more
favorable than molecular adsorption on rutile(110) (10, 12), but
less favorable on anatase(101) (11). Experimentally, on the other
hand, TPD and X-ray photoelectron spectroscopy studies con-
cluded that methanol adsorbed in the molecular form on both
rutile(110) and anatase(101) (14), and STM studies showed that
methanol dissociation only occurred near the oxygen vacancy sites
on rutile(110) (24). Calculation by Ferris and Wang (9) suggested
that dissociative adsorption of methanol was favored on the
rutile(100) surface, but TPD measurement detected methanol
dissociation mostly at defect sites on rutile(100) and desorption
of only methanol molecules from rutile(001) at 300 K (18, 19).
Since methanol and methoxy have distinguishable vibrational

modes, SFVS can be a powerful tool to resolve this issue. The
CH3-r

+ and FR modes of methoxy at 2,828 and 2,935 cm−1, re-
spectively, were observed by Shultz and coworkers (31–34) using
SFVS on thin-film samples of anatase nanoparticles comprising
(101) and (001) facets at room temperature. Ren and coworkers
(36, 37) also detected the same methoxy modes from rutile(110)
in UHV at low temperature. In contrast, there is no trace of the
presence of methoxy on all four single-crystal surfaces of TiO2 at
room temperature in our SFVS measurements (Fig. 1). UV ir-

radiation supposedly can create holes and/or surface oxygen
vacancies on TiO2 to help cleave methanol molecules (4, 5, 8),
but we still could not detect any methoxy in our spectra except
for an enhanced nonresonant background (43). Apparently,
methanol dissociation is either unfavorable or unstable on these
single-crystal surfaces under room temperature and ambient
pressure. Previous studies proposed that the back-conversion
energy barrier for dissociation of water and methanol is small
(16), such that dissociated fragments may not last long before
they recombine, or react with other surface species and desorb.
This scenario can explain why methanol dissociation appeared at
low temperature and under low methanol vapor pressure (24,
37). At room temperature and elevated methanol pressure, the
short-lived methoxy, if present, could only be captured by time-
resolved SFVS. We note, however, that we actually could ob-
serve the appearance of strong methoxy modes as soon as the
laser pulses inflicted damages (56) on the TiO2 surfaces (Fig.
3A). This is in accordance with the strong showing of methoxy
signals on nanoparticles (33, 34), suggesting that defects such as
step edges and boundaries between facets, and/or the anatase
(001) facets perhaps being more active, may serve as the active
sites for methanol dissociation and stabilization of dissoci-
ated fragments (33, 34). Further investigation is needed to pin-
point and identify the functional defect structure for methanol
dissociation.
Average orientation of adsorbed methanol molecules on TiO2

can be determined from the polarization dependence of the
CH3-r

+ mode (29). In all cases, the measured ratios of the PPP
and SSP mode amplitudes were nearly the same. Assuming the
C3 axis of methyl group is tilted on average by an angle θM from
the surface normal, we found θM ∼ 40–50°, similar to that
obtained by Ren and coworkers (35) (SI Appendix, Figs. S2 and
S3). Compared with adsorption on fused silica, methanol mole-
cules tilt more toward the TiO2 surfaces.
As mentioned earlier, the amplitudes of the r+ and FR modes,

Ar+ and AFR, depend appreciably on FR coupling. If the effect
can be separated from Ar+ and AFR, the resultant A0

r+ and A0
2δ

should be directly proportional to the surface density of meth-
anol, and its variation with methanol vapor pressure will yield the
proper adsorption isotherm. Note, however, the original ampli-
tude of A0

2δ should be very weak without FR coupling. To dis-
engage the FR coupling effect and find A0

r+ and A0
2δ, we use the
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well-established two-level model with anharmonic coupling,
which was applied to methanol in the liquid phase (50, 51).
Fermi resonance arises from intramolecular coupling, but is
expected to be perturbed by molecules’ interactions with neigh-
boring molecules or the environment (52, 53). The model ap-
plied to liquid methanol should also be applicable to methanol
adsorbed on surfaces. Let the uncoupled states be jφ0

r+i and
jφ0

2δi, and the coupled states be jφr+i and jφFRi (Fig. 3B), and the
energy separation between the two uncoupled (coupled) states
be Δ0ðΔÞ. The uncoupled and coupled states must be related by

jφ0
r+

�
= sjφr+i+ tjφFRi

jφ0
2δ

�
= tjφr+i− sjφFRi

and  s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ+Δ0

2Δ

r
,   t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ−Δ0

2Δ

r
.

[2]

The ratio of the spectral intensities for the vibrational transitions
from the ground state to the two uncoupled (coupled) states is
I0r+ =I

0
2δ (Ir+=IFR), with

Ir+
IFR

=R=
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ+Δ0
p

 
ffiffiffiffiffiffi
R0
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ−Δ0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ−Δ0
p

 
ffiffiffiffiffiffi
R0
p

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ+Δ0
p

�2

,  
I0r+
I02δ

=R0,

where I02δ ≈ 0 without FR coupling and R≈Δ+Δ0=Δ−Δ0 (50).
Now that Δ and R are both available from the measured vibra-
tional spectra, Δ0 and hence  s and t can all be deduced. The FR
coupling coefficient W is related to Δ and Δ0 by

Δ2 =Δ2
0 + 4W 2.

Following Eq. 2 and knowing Ai ∝ hφijĤ intjφgi, we find

A0
r+ = sAr+ + tAFR,   A0

2δ = tAr+ − sAFR.

From the experimentally deduced R, Δ, Ar+, and AFR, we can
then calculate A0

r+ and A0
2δ, which are plotted in Fig. 3C as func-

tions of pr for the four TiO2 surfaces. As expected, A0
2δ is negli-

gible in all cases, showing the self-consistency of the derivation.
Since the methanol orientation remains unchanged with pressure,
the dependence of A0

r+ on pr effectively describes the adsorption
isotherm. The deduced FR coupling coefficients W are plotted in
Fig. 3D as functions of methanol coverage, with the normalized
maximum A0

r+ in Fig. 3C taken as the full coverage (ϑ = 1).
The Langmuir model is known to be a good approximation to

describe adsorption of short-chain alcohols on oxide surfaces
(34, 49). Here the data points for methanol adsorption on the
four surfaces of TiO2 in Fig. 3C can all be well fitted by the
Langmuir adsorption isotherm with two adsorption sites (49)
(solid curves in Fig. 3C),

ϑ=
N

Nmax
=

apr

eΔG
0
a=RT + pr

+
bpr

eΔG
0
b=RT + pr

,

a+ b= 1,

where a and b refer to the fraction of two different types of
adsorption sites, and ΔG0

a and ΔG0
b are the corresponding Gibbs
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free energies of adsorption. The deduced values of a, ΔG0
a, and

ΔG0
b are listed in Table 1. Within experimental uncertainty,

they are quite similar for the four different TiO2 surfaces:
a ranges from ∼42 to 62%, ΔG0

a ≈−20± 3  kJ=mol, and
ΔG0

b ≈−5± 1  kJ=mol. Stronger adsorption on the a site up to
about a half coverage is responsible for the initial rise of the
isotherms. According to ab initio calculations on both rutile
(110) and anatase(101) (refs. 10 and 11 as well as ours in SI
Appendix, section 3), the most stable adsorption configuration
for methanol is with the methanol oxygen (Om) facing the low-
coordinated titanium sites (Tis) on the surface. The heat of adsorp-
tion, ΔH0

Ti =ΔG0
Ti +TΔS, is in the range of ∼−60 to −70 kJ/mol

at about half coverage (10, 11) (SI Appendix, Table S1). Following
the approach by Shultz and coworkers (34), we estimated the
entropy change to be ΔStran ≈−0.15  kJ=ðmol ·KÞ for transla-
tional degrees of freedom, and ΔSrot ≈−0.08  kJ=ðmol ·KÞ for
rotational degrees of freedom (SI Appendix, section 4). At
room temperature, we expect the adsorbed methanol to lose
translational degrees of freedom, but can keep rotational de-
grees of freedom around the adsorption site. We then found
ΔH0

Ti −   TΔStran ≈−15  to− 25  kJ=mol at 300 K, close to the value
of ΔG0

a given above. This agreement indicates that methanol
adsorbed at the a site should have the configuration with its Om
attached to Tis.
At high methanol coverage, different adsorption configura-

tions have been proposed theoretically (10, 11, 13, 36). Since for
site b, ΔG0

b ≈−5  kJ=mol is typical for adsorption of short-chain
alcohols on oxides through hydrogen bonding at 300 K (57), it
suggests that above half coverage, methanol begins to adsorb
with its hydrogen attached to a bridging oxygen (Os) on TiO2 via
H bonding and/or its oxygen accepting a H bond from a neigh-
boring methanol molecule. This is more in agreement with the
predicted configuration of ref. 11 for anatase(101); our ab initio
calculation on anatase(101) and rutile(110) came up with a
similar configuration (Fig. 4D). We therefore associate methanol
adsorption at the b site to such a H-bonding configuration. The
cartoons in Fig. 4 summarize the results of our ab initio calcu-
lations on methanol adsorption on anatase(101) and rutile(110)
that support the picture described above. Methanol adsorbs
predominantly in the molecular form. At low vapor pressure, the
coverage increases rapidly with pressure and methanol adsorbs
with its oxygen (Om) attached to Tis on the surface of TiO2 until
the coverage reaches about half coverage (Fig. 4 A and C). Af-
terward, the coverage grows more slowly with pressure, and
methanol now adsorbs by forming H bonds with Os of TiO2, and
H of a neighboring methanol molecule adsorbed at Tis (Fig. 4 B
and D). It is noted that molecules adsorbed to Tis and Os do not
form a flat monolayer but are arranged in a “bilayer-like”
structure (11), so they are sometime denoted as the first and
second monolayers, respectively.
The above results show that in terms of the Gibbs free energy,

there is not much difference for methanol adsorption on the four
TiO2 surfaces. Our ΔG0

a is also not very different from ΔG0 of
∼−20 kJ/mol found for methoxy adsorption on nanocrystalline
TiO2 surfaces (32, 34). In fact, this seems to be common for
short-chain alcohol adsorbed on oxides [ΔG0 ∼ −19 kJ/mol for

methanol on fused silica (SI Appendix, Fig. S4), and ΔG0 ∼
−16 kJ/mol for ethanol on fused silica (49)]. More sensitive
indicators are needed to differentiate methanol adsorption on
different surface structures. The FR coupling can serve as
such an indicator, as it is known to be sensitive to the mo-
lecular environment (50–54). As seen in Fig. 3D, the FR
coupling coefficient W is very different for methanol adsorbed
on different TiO2 surfaces, and also shows strong dependence
on the methanol coverage. We also plot W of methanol
adsorbed on a fused silica surface in Fig. 3D for comparison,
which clearly has a much weaker coverage dependence than
on TiO2 surfaces. At the full surface coverage, W converges to
about 55 cm−1 for adsorbed methanol on all surfaces. The value is
close to that of methanol in the liquid phase (∼53 cm−1) (50),
indicating that methanol senses more a liquid-like environment
when the surface coverage is high. In this case, as in the case of
liquid, all adsorbed methanol molecules have both their oxygen
and hydrogen of OH moieties H-bonded.
At low surface coverage, however, methanol molecules mainly

adsorb to Tis with their Om. The hydrogen on methanol OH bond
(Hm) can still form H bond with Os of TiO2, but it is weak because
of the large separation. This decrease of the H-bonding strength
can accordingly reduce the FR coupling (52). To see that the
decrease ofW correlates with the reduction of H-bonding strength
on methanol molecules, we calculated the average O–O distance
of H bonds formed by methanol molecules on anatase(101) and
rutile(110), shown in the Fig. 3D (Inset). At full coverage, the bond
lengths are nearly the same for the two surfaces, but at low cov-
erage the H bonds on anatase(101) are appreciably longer than on
rutile(110), indicating a much weaker H-bonding strength (58)
and hence a lower W. As the breakage of methanol OH bond and
the attachment of Hm to Os initiates the dissociation of methanol
(16, 17), the hydrogen-bonding strength can appreciably affect
surface reactions of methanol on TiO2. Indeed, the recent study by
Yang et al. (41) has revealed a profound effect of hydrogen bonds
on water dissociation on TiO2, that while individual H bonds

Table 1. Experimentally deduced fraction of adsorption site a,
and Gibbs free energies for adsorption sites a and b, on four
different TiO2 single-crystal surfaces

Surface a ΔGa
0, kJ/mol ΔGb

0, kJ/mol

Rutile(110) 0.62 ± 0.02 −18.9 ± 0.6 −5.0 ± 0.4
Anatase(101) 0.56 ± 0.03 −19.5 ± 1.2 −4.8 ± 0.5
Rutile(001) 0.61 ± 0.02 −21.1 ± 1.0 −5.9 ± 0.3
Rutile(100) 0.42 ± 0.03 −22.5 ± 3.5 −5.3 ± 0.3
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Fig. 4. Calculated adsorption configurations (top view) of methanol on (A)
anatase(101), half coverage; (B) anatase(101), full coverage; (C) rutile(110),
half coverage; and (D) rutile(110), full coverage. TiO2 lattices are described
by the skeletal model (Ti in gray and O in red), and methanol molecules by
the ball-and-stick model (C in dark gray, O in red, and H in white). Low-
coordinated surface titanium (Tis), surface oxygen (Os) sites, and oxygen on
methanol are indicated by arrows. Dashed lines represent hydrogen bonds.
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promote dissociation, an extended H-bonding network inhibits the
reaction. Hence the different bonding strength between methanol
Hm and Os is likely to contribute to the different reactivity ob-
served for rutile and anatase. The result here also shows that
compared with the Gibbs free energy, the FR coupling can reveal
more information on interaction between adsorbates and sub-
strates. More details on how FR coupling relates to molecular
adsorption on a surface await further investigation.

Conclusions
We have used SF vibrational spectroscopy to study methanol
adsorption on four crystalline surfaces of TiO2 at room tem-
perature and under methanol vapor pressure ranging from 0.1 to
100% saturation value. The experimental results are com-
plemented by ab initio calculations. In all cases, methanol
appeared to adsorb on TiO2 in the molecular form, but disso-
ciate into methoxy on highly defective surfaces. The SF vibra-
tional spectra allow deduction of the FR coupling coefficient for
adsorbed methanol in different environments as well as the ad-
sorption isotherm for different TiO2 surfaces. For all four TiO2
surfaces, the adsorption isotherm could be fit by a Langmuir
model of two adsorption sites with adsorption free energies
of ∼−20 kJ/mol and ∼−5 kJ/mol, respectively, indicating that the
adsorption energetics are very similar on the four TiO2 surfaces.
However, the FR coupling coefficient for methanol adsorbed on
the four surfaces is significantly different for different surfaces,
and can serve as a better sensor to gauge how methanol interact
with different surface structures.

Materials and Methods
Sample Preparation. Rutile(110), (100), and anatase(101) crystals of 2-mm
thickness and rutile(001) crystal of 5-mm thickness, purchased from SurfaceNet
and MaTeck, respectively, were cleaned by successively sonicating in acetone
(analytically pure; Shanghai Dahe Chemicals Co. Ltd), ethanol (analytically pure;
Shanghai Zhengxing No. 1 Chemical Plant), and deionized water (18.2 MΩ·cm)
each for 30 min. The samples were then placed in the measurement chamber
purged with pure oxygen, followed by UV-ozone treatment for 10 min to
remove organic contamination (monitored by sum-frequency vibration spec-
troscopy), and sit in pure oxygen to heal surface oxygen vacancies before the
chamber was evacuated for dosingmethanol. Adsorbed OH species are known
to be difficult to remove, but should be at a low coverage as there was no

prominent OH resonant signal at above 3,000 cm−1 (33). The chamber has a
base pressure <5 Pa. A BaF2 window coated by 35-nm-thick SiO2 film was used
to transmit input and outgoing beams, and was placed at ∼3–4 mm above the
sample to reduce the absorption of IR light by the methanol vapor. The vapor
pressure of methanol (99.9%; J&K Scientific) in the chamber was controlled by
a microadjustable valve, and measured by a Pirani vacuum gauge.

SFGMeasurements. The broadband, multiplex scheme of SFVS was used in our
measurements. A regenerative amplifier (Spitfire; Spectra Physics) seeded by
a Ti:sapphire oscillator (MaiTai SP; Spectra Physics) produced ∼4W of 800-nm,
35-fs pulses at 1-kHz repetition rate. About 2.6 W of the beam was used to
generate a narrowband beam of ∼0.4-nm bandwidth by passing through a
Bragg filter (BPF-800; OptiGrate), and the rest was used to pump an optical
parametric amplifier (TOPAS-C; Spectra Physics) and generate a broadband
IR beam (FWHM ∼ 500 cm−1) centered at about 2,900 cm−1 by pumping an
optical parametric amplifier (TOPAS-C; Spectra Physics) followed by a dif-
ference frequency generation stage (59). The 800-nm narrowband pulse and
the broadband IR pulse with pulse energy of about 15 and 8 μJ, respectively,
were focused and overlapped onto a spot of ∼0.5 mm on the sample surface
with incident angles of 45° and 57°, respectively. The generated SFG signal
was detected by a spectrograph (Acton SP300i; Princeton Instrument) and
CCD camera (PyLoN:400BR eXcelon; Princeton Instruments). The observed
spectra were normalized to that from a z-cut α-quartz. The quartz reference
without methanol vapor and with saturated methanol vapor pressure
showed negligible intensity difference. All experiments were conducted at
room temperature.

Ab Initio Calculation. Calculations were carried out using the spin-polarized
density-functional theory with the generalized gradient approximation of
Perdew–Burke–Ernzerhof implemented in the VASP code. Both anatase(101)
and rutile(110) surfaces were modeled by a (4 × 2) surface supercell. The K-
point sampling was restricted to the gamma point due to the large supercell
size. The interaction between core and valence electrons was described by
the projector-augmented wave method with an energy cutoff of 400 eV.
The force convergence criterion was 0.05 eV/Å (60–63).
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