
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Tracking multiple mice through severe occlusions

Permalink
https://escholarship.org/uc/item/2sz599wx

Author
Branson, Kristin

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sz599wx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Tracking Multiple Mice through Severe Occlusions

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Kristin Branson

Committee in charge:

Professor Serge Belongie, Co-Chair
Professor Sanjoy Dasgupta, Co-Chair
Professor Gary Cottrell
Professor Virginia de Sa
Professor David Kriegman
Professor Alon Orlitsky

2007

Copyright

Kristin Branson, 2007
All rights reserved.

The dissertation of Kristin Branson is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Co-Chair

Co-Chair

University of California, San Diego

2007

iii

To my family, for always supporting me.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . viii

List of Tables . xiii

Acknowledgements . xiv

Abstract of the Dissertation . xvii

1 Introduction . 1

2 A Mathematical Formulation of Tracking . 5
2.1 Defining the Model . 6
2.2 Inferring Statistics of the Hidden State . 7
2.3 Considerations Specific to Mouse Tracking 8
2.4 Outline . 8

3 Hidden State Representation . 10
3.1 Previous Work . 11

3.1.1 Articulated Structures . 11
3.1.2 Active Shape Models . 11

3.2 Ellipse-shaped Mice . 14
3.3 Contour Templates . 14
3.4 Learning a Hidden State Representation . 15
3.5 Acknowledgements . 17

4 Appearance Models . 22
4.1 Background Modeling . 23

4.1.1 Patch Representation . 24
4.1.2 Parametric Form . 25
4.1.3 Updating the Background Model . 26

4.2 Background Modeling for Mouse Tracking 29
4.3 Foreground Density Tracking . 34

4.3.1 Kernel-Based Tracking . 35
4.3.2 Foreground Likelihood Maximization 36

4.4 Foreground Density Modeling for Mouse Tracking 36
4.5 Region-based Template Matching . 39

4.5.1 Static Image Prototype . 39
4.5.2 Active Appearance Models . 40
4.5.3 Part-Based Models . 41
4.5.4 Online Appearance Models . 41

v

4.6 Feature Point-Based Tracking . 44
4.7 Feature Point-Based Mouse Tracking . 45
4.8 Optical Flow . 45

4.8.1 Horn-Schunck Flow . 48
4.8.2 Lucas-Kanade Flow . 49
4.8.3 Affine Flow . 50
4.8.4 Robust Flow . 51
4.8.5 Motion Segmentation . 52

4.9 Edge-Based Tracking . 53
4.9.1 Contour Likelihood Model . 54

4.10 Contour Tracking for Mice . 56
4.11 Multitarget Likelihoods . 58

4.11.1 Bayesian Multiple Blob Likelihood 60
4.11.2 Sprites . 61
4.11.3 Multitarget Contour Likelihood . 61

4.12 Multitarget Likelihood Models for Mice . 62
4.13 Combining Appearance Features . 63
4.14 Combining Multiple Cues for Mouse Tracking 66
4.15 Acknowledgements . 67

5 Motion Model . 68
5.1 Acknowledgements . 69

6 Online Inference Algorithms . 70
6.1 Greedy Inference . 71
6.2 Approximate Kalman Filters . 71
6.3 Sequential Importance Sampling . 73

6.3.1 Importance Sampling . 74
6.4 Bootstrap Filter . 77
6.5 Approximation Error . 78
6.6 Improvements to Bootstrap Filtering . 80
6.7 Other Choices of Importance Function . 81

6.7.1 Auxiliary Particle Filter . 81
6.7.2 Combining Kalman and Particle Filtering 82
6.7.3 Domain-Specific Methods . 83

6.8 Multitarget Sequential Importance Sampling 83
6.8.1 Radar-Based Tracking . 84
6.8.2 Partitioned Sampling . 87

6.9 Tracking Multiple Mouse Contours (without Too Many Samples) 88
6.9.1 Blob and Contour Model . 88
6.9.2 Blob-Contour Particle Filtering . 88
6.9.3 Experiments . 93
6.9.4 Conclusions and Future Work . 95

6.10 Acknowledgements . 95

vi

7 Acausal Inference Algorithms . 98
7.1 Affine Flow Plus a Hint . 98

7.1.1 Background/Foreground Labeling . 99
7.1.2 Separated Target Tracking . 100
7.1.3 Detection of Occlusion Events . 100
7.1.4 Tracking through Occlusion . 101
7.1.5 Parameter Sensitivity and Computational Considerations 106
7.1.6 Experiments . 107
7.1.7 Discussion and Conclusion . 109

7.2 Monte Carlo Smoothing . 110
7.2.1 Smoothing by Storing the State Vector 111
7.2.2 Smoothing by the Two-Filter Formula 112
7.2.3 Chen and Lai, 2003 . 113
7.2.4 Godsill et al., 2002 . 114
7.2.5 Monte Carlo Smoothing for Mouse Tracking 115

7.3 Acknowledgements . 117

8 Conclusions and Future Work . 118

Bibliography . 120

vii

LIST OF FIGURES

Figure 1.1: Example video frames of a side view of a mouse cage containing three
identical mice. 2

Figure 1.2: An example vivarium at UCSD. Each rack contains tens of mouse
cages. Each mouse cage is about the size of a shoe box, and can contain
between 1 and 6 mice. 3

Figure 1.3: An image of a Static MicroIsolator cage common in research vivaria.
Image taken from [2]. 3

Figure 2.1: In the left column, we show the input video frame. In the right
column, we show the results of simple processing based on models of the
foreground and background appearance. When the mice are not occluding
one another, we can easily use the images on the right to track the mice. . . . 9

Figure 3.1: Example images of a mouse deforming and rotating in three dimen-
sions. This figure illustrates the extreme amount of deformation the mouse
shape undergoes. 10

Figure 3.2: Example articulated structures. (a-c) model a person, while (d) mod-
els a horse. Images are taken from (a) [106] (b) [35] (c) [91] (d) [90]. 11

Figure 3.3: An attempt at finding an articulated model of a mouse. The legs of
the mouse are difficult to detect, and the body and head are very blob-like. 12

Figure 3.4: An active shape model learned for a hand. In each training image, 56
corresponding parts were manually labeled. Two training images are shown
in (a) and (b). (c) shows the learned active shape model. The middle column
of (c) shows the mean landmark positions. Each row corresponds to a 12

Figure 3.5: An attempt to label corresponding landmark points in training images
of mice. Even in this small set of examples in which the mouse is on the floor
of the cage, it is difficult to define corresponding parts. 13

Figure 3.6: Ellipse representation of a mouse. The figure on the left shows the five
parameters of the ellipse. The figure on the right shows an example ellipse fit. 14

Figure 3.7: Contour template representation of a mouse. (a) shows the 12 man-
ually drawn templates. (b) shows the parameterization of the template and
affine transformation. (c) shows an example fit. 15

Figure 3.8: Automatically collected training data. The mice are tracked during
non-occlusions using the background subtraction data. Around the predicted
position of the mouse, we crop subimages. (a) shows the subimage of the
original video frame cropped around the predicted mouse position. (b) 16

Figure 3.9: Blob and contour templates for each level of the hierarchy for mice on
the ceiling. The left image for each cluster is the blob template; each pixel
shows the probability of foreground. The right image for each cluster is the
contour template. Each pixel shows the negative average distance to 18

Figure 3.10: Blob and contour templates for each level of the hierarchy for round
mice on the floor. The left image for each cluster is the blob template; each
pixel shows the probability of foreground. The right image for each cluster
is the contour template. Each pixel shows the negative average distance . . . 19

viii

Figure 3.11: Blob and contour templates for each level of the hierarchy for vertical
mice on the floor. The left image for each cluster is the blob template; each
pixel shows the probability of foreground. The right image for each cluster
is the contour template. Each pixel shows the negative average distance . . . 19

Figure 3.12: Blob and contour templates for each level of the hierarchy for hori-
zontal mice on the floor. The left image for each cluster is the blob template;
each pixel shows the probability of foreground. The right image for each
cluster is the contour template. Each pixel shows the negative average. . . . 20

Figure 3.13: Example results of fitting the 20 · 4 training images to the 3000 · 3
training instances. We plot the local minima of the average distance to an
edge below a threshold for evenly spaced example images. 21

Figure 4.1: Expected background appearance of the mouse cage computed au-
tomatically at different frames in the sequence. These images were com-
puted from the expected value of the Gaussian components of the background
model. 23

Figure 4.2: Background likelihood model applied to a video frame. 24
Figure 4.3: (a-c) Example video frames of an outdoor scene from [58]. The tree

moves in the wind, causing variance in the background appearance at a given
location. (a) Video frame 1. (b) Video frame 30 (≈ 1 second later). (c)
Absolute difference of (a) and (b) (image intensity is scaled). (d-f) 25

Figure 4.4: The background appearance of the mouse cage changes as the bedding
is moved around by the mice. The background model must adapt to these
changes. 27

Figure 4.5: Example video frames of an outdoor scene from [58]. (a) Video frame
1. (b) Video frame 6789 (≈ 4 minutes later). (c) Absolute difference of
(a) and (b). (d) Although the camera is still, the background appearance
changes. First, as highlighted in the top box, a car that was parked in 27

Figure 4.6: Illustration of the similarity in color of the bedding and a mouse. . 30
Figure 4.7: The six features used to represent each patch. Each pixel of the above

images corresponds to a patch. 30
Figure 4.8: Illustration of the decrease in misclassification error when LoG filters

are incorporated. A linear classifier was trained independently at each lo-
cation in the image to distinguish foreground and background patches using
linear discriminant analysis [51]. The training data consisted of 100 31

Figure 4.9: Pixel locations that can never contain foreground because of the struc-
ture of the cage. These locations are always classified as background by our
system. The mask was manually input. 32

Figure 4.10: Results of tracking a football player through a complicated sequence
involving occlusion and complex transformations. The color histogram de-
scribing the region tracked is fairly uniform through this sequence. Images
taken from [25]. 35

Figure 4.11: Examples of the labeled data from which the foreground GMM was
learned. 37

ix

Figure 4.12: Plot of the foreground likelihood learned from the labeled training
data. (a) The projection of the parametric likelihood model onto the first
principal component of the foreground data. (b) The projection of the em-
pirical likelihood of the labeled training data on the first principal 38

Figure 4.13: Results of the rough foreground classifier on example video frames.
The top row shows pixels classified as foreground and masks out pixels clas-
sified as background. The bottom row shows pixels classified as background
and masks out pixels classified as foreground. 39

Figure 4.14: Example warps of an Active Blob template image. Images from [100]. 40
Figure 4.15: (a) Principal components of an active appearance model representing

faces. Each row corresponds to a different principal component. The left
column is the image texture -3 standard deviations along a principal compo-
nent, the middle column is the mean image texture, and the right column is
. 41

Figure 4.16: Active appearance models for mice. We manually labeled 11 corre-
sponding points in 7 images, each 10 frames apart. This corresponds to
about 2 seconds of video in which the amount of out-of-plane rotation and
deformation is small enough that correspondences could be defined. 42

Figure 4.17: (a) Examples of part-based image templates. (b) These part-based
image templates fit to a video frame. Images from [90]. 43

Figure 4.18: Example of the updates to the eigenspace template from [72]. The
large image shows face tracking results in a video sequence with lighting
changes and out-of-plane rotation. The second row shows the current sample
mean, the part of the video frame matched to the template, the closest . . . 43

Figure 4.19: Selected frames of an online tracking algorithm applied to mouse
tracking. The position and therefore the texture of the mouse can change
quickly. As the algorithm implemented uses a local search method to find
the best fit, even from frame (a) to frame (b) the position of the mouse . . . 44

Figure 4.20: Results of running the KLT tracker [105] on the mouse tracking data.
Here, we plot 18 equally-spaced frames of the 100 frame test sequence (frame
numbers are shown for each row at the right of the image). So that we can
reference different mice, the mice are numbered in the first frame. In a 46

Figure 4.21: All the tracks detected in the sequence illustrated in Figure 4.20 over
time. The z-axis corresponds to time. For comparison, tracks are plotted
with the same colors in Figure 4.20 as in this figure. 47

Figure 4.22: Example of segmentation of a video sequence into different objects.
(a) shows example images from the video sequence in which the camera
moves. Because the tree, flower bed, and house are at different depths, their
image motions are distinct. (b) shows the three motion segments 52

Figure 4.23: Illustration of measurement lines on a mouse contour. The number
and locations of edge detections along a measurement line are modeled. pi is
the center of the measurement line and ni is the unit normal of the contour
at the measurement line location. 55

x

Figure 4.24: Comparison of BSE boundary detection and Canny edge detection on
example frames. The left column shows the original video frame, the middle
column shows the soft scores output by BSE, and the third column shows
the Canny edge detection results. We can see that edges in the bedding . . . 57

Figure 4.25: Results of using independent contour likelihood appearance models
for tracking multiple mice. In frame 28, the two target boundaries follow a
single mouse. 58

Figure 4.26: Illustration of BraMBLe appearance model. (a) The log-likelihood
ratio of foreground to background for each patch in the image. This can be
thought of as BraMBLe’s representation of the video frame. (b) A hypothe-
sized joint hidden state of all the mice. (c) Probability that each 60

Figure 4.27: Example results of running BraMBLe on the mouse tracking applica-
tion. In the first row, we see that BraMBLe is very effective at tracking the
mice when there are no occlusions, even when motion is fast. Frame 52 shows
that some errors can occur when background and foreground modeling 64

Figure 4.28: Illustration of the curse of dimensionality associated with multitarget
tracking. In (a) the targets are tracked independently using the single target
contour likelihood described in Section 4.9.1. In (b), the targets are tracked
jointly using the multitarget likelihood described in Section 4.11.3. 65

Figure 5.1: Illustration of the error of the constant velocity model prediction of
the x- and y-coordinates of the center of a mouse. (a) and (b) illustrate the
error for the x-coordinate, (c) and (d) illustrate the error for the y-coordinate.
(a) and (c) show a histogram approximation of the probability of an 69

Figure 6.1: Results of trying the UKF inference algorithm for mouse tracking
using the BraMBLe appearance model. We indicate two standard deviations
of the x and y position by the magenta cross, two standard deviations of the
minor and major axis lengths by the yellow ellipses, and two standard 73

Figure 6.2: Blob and Contour Particle Filtering 90
Figure 6.3: Illustration of the importance functions used in each sampling step.

The x-axis of each plot corresponds to the x-coordinate of the center of one
mouse. The y-axis of each plot corresponds to the x-coordinate of the center
of the second mouse. The z-access indicates probability density. The 91

Figure 6.4: (a) Tracking results for a mouse jumping. (b) Tracking results for
a mouse falling from the ceiling. (c) Tracking results for a mouse turning
quickly. (d) The contour is fit to a tail and the blob is fit to a shadow; the
tracker is robust to scratches on the cage; the contour is flipped. 96

Figure 6.5: The first three occlusion sequences in which our tracking algorithm
performs well. 97

Figure 6.6: The first two occlusion sequences on which our algorithm swaps mouse
identities. 97

Figure 7.1: An example showing how the mean and covariance of the mouse on
the left is linearly interpolated into the mean and covariance of the mouse on
the right, using our algorithm for linear interpolation. The leftmost ellipse
corresponds to (µ1,Σ1) and the rightmost ellipse corresponds to 104

xi

Figure 7.2: The depth-ordering of the mice is evident based on the lowest pixel
belonging to each mouse. 105

Figure 7.3: Tracking results (t, x) plot of results. The x-axis in these images
is time and the y-axis is the x-axis of the original frame. Each column
corresponds to the same scanline of a different frame. 108

Figure 7.4: Example frames showing the raw image frames from an occlusion
event in the top row and the Gaussian parameters estimated by our algo-
rithm. The ellipses correspond to 2 standard deviations of the Gaussians. . 109

xii

LIST OF TABLES

Table 4.1: Parameters used for estimating the background model and background
likelihood for mouse tracking. 34

Table 6.1: Blob-Contour Model. The first column describes the model, the second
column states which section the model was discussed in, the third column
states which mice the model applies to, and the third column shows the
mathwmatical expression for the model at frame t. 89

xiii

ACKNOWLEDGEMENTS

First, I would like to acknowledge my adviser, Serge Belongie. Serge’s passion for

computer vision and the real-world problems it can solve was truly inspirational to me, and

has very much shaped my professional goals in life. Many researchers in computer vision

begin with a fancy algorithm, then create a problem for it to solve. Serge, on the other

hand, seeks out interesting, novel, and usually difficult problems which computer vision can

benefit. I am also grateful to Serge for giving me the freedom to investigate whatever I felt

like. As someone who has had three advisers in graduate school, my research interests have

meandered over many topics in machine learning, computer vision, even classical artificial

intelligence. The trust Serge has had in me throughout my stay at UCSD has given me the

confidence to have ambitious goals.

I would also like to acknowledge my other advisers at UCSD, Sanjoy Dasgupta

and Gary Cottrell. Sanjoy is unlike any other person I have met. When I would get very

stuck on a problem, I would meet with Sanjoy. In 15 minutes, I could explain any problem

to Sanjoy using my awful, complex notation. He could understand the problem in depth

immediately, and provide insightful suggestions. Gary introduced me to the field of machine

learning. As my adviser during my first couple years of graduate school, he taught me how

to do research.

I would also like to acknowledge my pseudo-advisers, Sameer Agarwal and Eric

Wiewiora. Sameer has always been the first person I go to with any question in any field.

He is interested in every problem, and is always willing to devote his full attention to any

crazy problem or algorithm I propose. Sameer is the first person I ever met who is truly

passionate about mathematics and statistics. He has taught me to see the beauty in an

algorithm. Eric, besides instructing me in the way of arts and crafts, has also always been

willing to listen to my crazy ideas. Faults in my ideas found by Eric have saved me countless

wasted hours, and approval of an idea by Eric gave me great confidence.

I would like to acknowledge the younger folk with whom I have discussed my

research, Vincent Rabaud, Daniel Hsu, Lawrence Cayton, and Piotr Dollar. Vincent is

always willing to help anybody with anything; he is possibly the nicest person I have ever

met. I would also like to acknowledge my colleagues who have been there for moral support,

Bianca Zadrozny, Ben Ochoa, Satya Mallick, Manmohan Chandraker, Dave Kauchak, Jong-

woo Lim, Kuang-chih Lee, Andrew Rabinovich, Josh Wills, Craig Donner, William Beaver,

Neel Joshi, Neil Alldrin, Greg Hamerly, Gyozo Gidofalvi, Matt Tong, and Doug Turnbull.

xiv

I would also like to acknowledge professors who have been very influential to me through

their classes: Professor de Sa, Professor Kriegman, Charles Elkan, Professor Freund, Alex

Orailoglu, Professor Bellare, and Professor Micciancio.

I would also like to acknowledge the Smart Vivarium group, without whom I would

not have had such an interesting problem to work on: John Wesson, Keith Jenne, Phil

Richter, and Geert Shmid-Schoenbein. I would like to acknowledge my source of funding

for the last three years – the NASA Graduate Student Researcher Program.

Finally, I would like to acknowledge my family. That they would love me even if

I don’t make it through graduate school is a constant source of comfort. My mother Mary

Woo, father Jim Branson, brother Steven Branson, and boyfriend Kyle Scheihagen have

always been willing to do anything for me. I owe everything to them.

Portions of this dissertation are based on papers that I have co-authored with

others. Listed below are my contributions to each of these papers.

1. Parts of Chapters 3, 4, 5, and 6 are based on the paper “Tracking Multiple Mouse Con-

tours (without Too Many Samples)” by K. Branson and S. Belongie [17]. I developed

the algorithm, performed the experiments, and wrote the paper.

2. Parts of Chapters 3 and 7 is based on the paper “Three Brown Mice: See How They

Run” by K. Branson, V. Rabaud, and S. Belongie. With insights from S. Belongie, I

was responsible for developing the algorithm, performing the experiments, and writing

the paper.

xv

VITA

1979 Born, Hamburg, Germany.

2000 A. B., Harvard University.

2002 M. S. University of California, San Diego.

2007 Ph. D., University of California, San Diego.

PUBLICATIONS

S. Agarwal, K. Branson, and S. Belongie, “Higher-Order Learning with Graphs”, Proceed-
ings of the International Conference on Machine Learning, 2006.

K. Branson and S. Belongie, “Tracking Multiple Mouse Contours (without Too Many Sam-
ples)”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2005.

K. Branson, V. Rabaud, and S. Belongie, “Three blind mice: See how they run”, Proceedings
of the Joint IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking
and Surveillance at the International Conference on Computer Vision, 2003.

G. Cottrell, K. Branson, and A. Calder, “Do expression and identity need separate repre-
sentations?”, Proceedings of the 24th Annual Cognitive Science Conference, 2002.

xvi

ABSTRACT OF THE DISSERTATION

Tracking Multiple Mice through Severe Occlusions

by

Kristin Branson

Doctor of Philosophy in Computer Science

University of California San Diego, 2007

Professor Serge Belongie, Co-Chair

Professor Sanjoy Dasgupta, Co-Chair

In this thesis, I address the problem of tracking multiple identical mice through

severe occlusions from video of a side of their cage. A solution to this problem would

greatly benefit medical research because of the key role animal testing plays in medical

research. As the majority of visual tracking algorithms are intended for tracking people or

cars, they are not directly applicable to the mouse tracking problem. Mice are extremely

deformable, unconstrained three-dimensional objects. They have few trackable features, and

their motion is extremely erratic. In addition, the mice are visually indistinguishable. Thus,

to keep track of identities one must track the mice through sometimes complete occlusions.

Furthermore, because of the constraints of the application, we had little control over the

content of the video sequence. Thus, the bedding of the cage was hard to distinguish from

the mice, and the mice were also occluded by scratches on the front of the cage.

In this thesis, I break up the tracking problem into parts: defining a state represen-

tation for the mice, defining an appearance model, defining a motion model, and inferring

statistics of the positions of the mice for a novel video sequence given the defined model.

Because of the difficulty and uniqueness of the mouse tracking problem, it was necessary to

understand, modify, combine, and invent state-of-the-art approaches to each of these parts

of the tracking problem. In this thesis, I describe and motivate the solutions chosen for

each of these subproblems.

xvii

1

Introduction

In this thesis, I discuss the problem of visual tracking. A visual tracking algorithm

inputs a video sequence and outputs the positions of the targets of interest in every frame.

Tracking is currently one of the most popular fields in computer vision. Most research

focuses on tracking people or cars in very controlled settings. In fact, in the computer

vision literature, the test bed for most tracking algorithms is video of the authors and their

co-workers walking around their lab.

I address a very different tracking problem in this thesis. I discuss the application

of computer vision algorithms to tracking multiple identical mice from a side view of a cage.

Example video frames are shown in Figure 1.1. As mice appear and move in manners sig-

nificantly different from the standard objects of interest, most existing tracking algorithms

were not directly applicable to this problem. Besides being different, I claim that the mouse

tracking problem proposed is one of the most difficult addressed in the computer vision lit-

erature. Mice are extremely deformable, unconstrained three-dimensional objects. They

have few trackable features, and their motion is extremely erratic. In addition, the mice are

visually indistinguishable. Thus, to keep track of identities one must track the mice through

sometimes complete occlusions. Furthermore, because of the constraints of the application,

we had little control over the content of the video sequence. Thus, the bedding of the cage

was hard to distinguish from the mice, and the mice were also occluded by scratches on the

front of the cage.

Because of the uniqueness and difficulty of the problem, it was necessary to under-

stand, modify, combine, and invent state-of-the-art approaches to every part of the tracking

problem. I document in this thesis the successes and failures of algorithms tested for each

subproblem.

1

2

Figure 1.1: Example video frames of a side view of a mouse cage containing three identical
mice.

Besides being interesting from a computer vision standpoint, a solution to the

mouse tracking problem would be of great benefit to the biology and medical research

community. Animal subjects, and mice in particular, are key in modern medical research.

The Foundation for Biomedical Research contends that “animal research has played a vital

role in virtually every major medical advance of the last century” [40]. Mice are the most

popular research subject because they are genetically similar to humans, small and easy to

maintain, and have relatively short life-spans and reproductive cycles [113]. UCSD currently

houses about 100,000 mice for research purposes. Figure 1.2 shows an image of a vivarium

at UCSD. A vivarium is a lab for housing animal subjects. In the world, approximately 25

million mice are used annually.

Because of the huge number of mice used, and the relatively small number of staff

monitoring them (UCSD employs about 100 people to take care of the mice), manual, close

monitoring of the health and behavior of mice is impossible. An automatic method for

closely monitoring the health and behavior of mice would have several benefits. First, it

would decrease the number of mice wasted and improve their quality of life. For example,

sick mice could be detected before they have infected other mice in the vivarium. Second,

new kinds of data could be collected and analyzed because the behavior of the mice could be

analyzed 24 hours per day. This is particularly important because mice are nocturnal, thus

most of their interesting behavior occurs when lab technicians are absent. Currently, I am

working on applying automatic behavior analysis to detecting seizures in mice. These are

rare occurrences, thus this application greatly benefits from the 24 hour nature of automatic

surveillance.

Our goal in this project was to construct a noninvasive system that could auto-

matically monitor the health and behavior of mice and interface easily with existing vivaria.

Thus, we were restricted to placing a camera outside a standard Static Microisolator cage,

an example of which is shown in Figure 1.3. Because of the feeder and water bottle at

the top of the cage, the best view was obtained from a side of the cage. While this view

3

Figure 1.2: An example vivarium at UCSD. Each rack contains tens of mouse cages. Each
mouse cage is about the size of a shoe box, and can contain between 1 and 6 mice.

Figure 1.3: An image of a Static MicroIsolator cage common in research vivaria. Image
taken from [2].

is perhaps ideal for behavior analysis, it is difficult for tracking purposes when there are

multiple mice in the cage. This is because one mouse may be completely hidden from view

by another, a complete occlusion. An example occlusion is shown in the left image in Figure

1.1.

Tracking is a first and essential step to behavior analysis. This is first because it

can be used to obtain many statistics of interest, such as the position and pose of the mouse.

Second, it is necessary because the mice in a single cage are often visually (and sometimes

even genetically) indistinguishable. Thus, the only noninvasive way to keep track of the

identities of the mice is to successfully track them through occlusions.

As tracking the mice through occlusions proved to be a very difficult problem, it

became the focus of my thesis. In the following chapters, I discuss my solutions to the

mouse tracking problem. First, in Chapter 2, I introduce a mathematical formulation of

the tracking problem. This formulation breaks up the tracking problem into the following

4

parts: choosing a hidden state representation (Chapter 3), choosing an appearance model

(Chapter 4), choosing a motion model (Chapter 5), and inferring statistics of the state of

the mice given a novel video sequence and the chosen model (Chapter 6). In Chapter 7, I

discuss acausal inference algorithms. Finally, in Chapter 8, I discuss future directions for

research.

2

A Mathematical Formulation of

Tracking

In tracking, our goal is to estimate some properties of the targets at every instant

given a video sequence. Let zt denote the properties we would like to estimate at time t

and let yt denote the video observation at time t. We break up the tracking problem into

two parts.

The first part is done offline, and involves defining the relationship between the

video sequence and the desired properties of the targets. In online tracking, we would like to

define a function that tells us how certain we are that the targets currently have properties

zt given the video sequence up to the current frame y1:t. We will discuss other types of

tracking in Section 7. We usually give a probabilistic interpretation to this function. We

define a model of the conditional distribution of the desired properties of the targets zt

given the observations y1:t, p(zt|y1:t).

The second problem in tracking is, given the model p(zt|y1:t), inferring statistics

of this distribution for a novel video sequence y1:t. Statistics we are usually interested in

are the maximum-a-posteriori (MAP) properties of the targets, the expected properties of

the targets, and the variance of the estimate of the target properties. Computing these

statistics is nontrivial because there is often no analytical expression for them, or there is

no efficient way of calculating them exactly. Computing these statistics is referred to as

inference.

5

6

2.1 Defining the Model

Specifying the posterior distribution p(zt|y1:t) involves specifying the relationship

between t + 1 variables, at least t of which are high-dimensional vectors. To make this

tractable, we first introduce a hidden state representation of the targets. We denote the

hidden state at time t by xt. One can think of the hidden state xt as a sufficient statistic

of the desired properties of the targets zt and the video sequence y1:t. The hidden state xt

must contain enough information so that we can deterministically compute the properties

of the position desired for our application, zt. In addition, the hidden state at time t should

contain all information about the video sequence up to time t, y1:t, relevant for predicting

the hidden state at time t + 1, xt+1. Finally, the hidden state representation should be

low-dimensional to make inference and modeling tractable.

If we have such a hidden state representation, then we can break down the rela-

tionship between all variables zt and y1:t into the combination of the relationship between

pairs of variables. The relationships that must be defined are the following. First, we must

define the relationship between the hidden state xt and the desired properties zt. We will

assume that this is a simple, deterministic relationship, and will ignore zt in the rest of this

thesis. We will consider our goal to be to estimate statistics of the posterior distribution

of the hidden state, p(xt|y1:t). Second, we must define the relationship between the hidden

state at the current frame xt and the current video frame yt. This is called the appear-

ance model and is sometimes given the probabilistic interpretation of the likelihood of the

observation yt given the hidden state xt, p(yt|xt). Third, we must define the relationship

between consecutive hidden states, xt−1 and xt. This is called the motion model and is

sometimes given the probabilistic interpretation of the distribution of the current hidden

state xt given the previous hidden state xt−1, p(xt|xt−1).

The assumption that the hidden state xt is truly a sufficient statistic is called the

first-order Markov assumption. More specifically, the first-order Markov assumption is that

(1) the current observation yt is conditionally independent of all the other variables given

the current hidden state xt and (2) variables in the future are conditionally independent of

variables in the past given the current hidden state xt.

Given the first-order Markov assumption, we can decompose the posterior distri-

7

bution as

p(xt|y1:t) = p(yt,xt|y1:t−1)/p(yt|y1:t−1) (2.1)

= p(yt|xt,y1:t−1)p(xt|y1:t−1)/p(yt|y1:t−1) (2.2)

= p(yt|xt,y1:t−1)
∫

p(xt,xt−1|y1:t−1)dxt−1/p(yt|y1:t−1) (2.3)

= p(yt|xt,y1:t−1)
∫

p(xt|xt−1,y1:t−1)p(xt−1|y1:t−1)dxt−1/p(yt|y1:t−1) (2.4)

= p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1/p(yt|y1:t−1). (2.5)

Since p(yt|y1:t−1) is a constant that does not depend on the hidden state xt, Equation (2.5)

is a recursive definition of the posterior distribution p(xt|y1:t) in terms of the appearance

model p(yt|xt) and the motion model p(xt|xt−1. Thus, to define the posterior distribution,

we need only specify the appearance and motion models.

For the frequentists, I note that if we choose not to believe the first-order Markov

assumption, we can think of this approach as just assuming a sparse parametric form for

the posterior distribution.

2.2 Inferring Statistics of the Hidden State

The decomposition of the posterior distribution in Equation (2.5) translates into

an iterative algorithm. Given the posterior distribution of the hidden state in the previous

frame p(xt−1|y1:t−1), we can use the motion model to compute a prior on the current hidden

state position:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2.6)

We call this a prior because this distribution does not use information in the current frame,

yt. It is easy to compute this prior if the motion model has a form simple enough to allow

us to estimate this integral. This is usually the case in visual tracking algorithms.

The support of this prior distribution p(xt|y1:t−1) will be small relative to the

hidden state space as the targets cannot, for example, teleport. The regions of the hidden

state space where the prior probability is significant can be thought of as the space we

must search to find the hidden state of the mice at time t. This is the advantage of object

tracking over object detection algorithms, which consider each frame independently. The

prior distribution also defines a preference for one reasonable hidden state over another

8

reasonable state.

Once we have defined a search space, we can compare (most of) the hidden states

in the search space to the current video frame. This is done using the appearance model.

The final posterior score is the product of the appearance score and the motion score.

2.3 Considerations Specific to Mouse Tracking

When we are choosing our hidden state representation, model, and inference algo-

rithm, it is important to consider the following property of mouse tracking. When the mice

are separated, that is, when no mouse is in front of another mouse, tracking is easy. One

approach that works pretty well is background subtraction. When the mice are separated,

as in the frames in Figure 2.1(a), the output of background subtraction can easily be used

for tracking. When the mice are occluding one another, that is, when one mouse is in front

of another mouse, tracking is very difficult. As is evident in the frames in Figure 2.1(b),

the output of background subtraction is hard to interpret during occlusions.

However, when we look at static images of the mice during an occlusion, we can

tell where the mice are pretty well. How are we able to do this? We have a very accurate

model of what shapes are possible mouse shapes, and what a given mouse shape looks like.

In addition, we have a strong model of motions that can occur from one frame to the next.

2.4 Outline

To summarize our progress so far, we have decomposed the tracking problem into

the following subproblems. First, what is the hidden state of the targets? The next two

questions define the relationship between the hidden state at time t and the video sequence

up to time t: What are the appearance and motion models? Finally, given the state

representation and model, how do we estimate statistics of the posterior distribution for a

particular video sequence. That is, how do we perform inference? In this thesis, I address

each of these issues in relation to the mouse tracking application in separate chapters. I

then discuss acausal inference algorithms that estimate the current state given observations

in both the past and future.

9

(a) No occlusions.

(b) Occlusions.

Figure 2.1: In the left column, we show the input video frame. In the right column, we
show the results of simple processing based on models of the foreground and background
appearance. When the mice are not occluding one another, we can easily use the images
on the right to track the mice. We therefore focus our attention on occlusions.

3

Hidden State Representation

One of the most difficult parts of applying tracking algorithms to a new domain is

choosing the representation for the target position. First, the hidden state must contain a lot

of information. This is because of the sparse functional form assumed for the distribution.

Recall that we assume that the current state is a sufficient statistic of the current and past

images. Second, the hidden state must be low-dimensional. This is because the amount of

time and space required to accurately infer statistics of the hidden state generally increases

exponentially with dimensionality. Satisfying both these conflicting criteria is difficult.

The majority of shape modeling algorithms model the 2-D image projection of the

target shape. Mice are very different than other, more standard types of targets, in terms

of the types of shapes and deformations they can take. As a mouse is extremely deformable

in 3 dimensions and is free to rotate in 3 dimensions, there is a huge amount of variability

in the 2-D mouse shape. See Figure 3.1 for example shapes of a mouse.

In this chapter, we first describe state representations used in previous research.

Figure 3.1: Example images of a mouse deforming and rotating in three dimensions. This
figure illustrates the extreme amount of deformation the mouse shape undergoes.

10

11

Figure 2. Left: Body Model. Kinematic tree with fifteen body

parts consisting of 40 degrees of freedom. Six degrees of freedom
are given to the pelvis consisting of global positioning and orien-

tation. Torso, shoulders, hips and neck have all 3 freedoms, while

the elbows and knees have 2 degrees of freedom. Wrists and an-
kles have 1 degree of freedom. Right: Appearance Extraction.

A regular rectangular grid is used to extract pixel values for each

body part in each camera view. Usually a dense grid is used that
covers every pixel.

We introduce a new image likelihood function for artic-
ulated objects based on the visual appearance of the subject
being tracked. We use a robust, adaptive, appearance model
RoAM based on the Wandering-Stable-Lost framework, ex-
tended to the case of articulated body parts. The likelihood
function p(yt|xt) computes a measure of how well a pose
hypothesis xt fits the image observations. By projecting the
body model into the images, we can uniformly extract pixel
information for each body part as shown in Figure 2 Right.
We assign a 1D WSL model to each pixel on each limb of
interest on each camera view.

In fact, for a given pixel we can assign multiple 1D WSL
models corresponding to different image filter responses. A
wide variety of image properties can be used for learning
an appearance model including: image brightness, steer-
able derivative filters, image gradients, color components in
various color spaces, wavelet phases, image statistics, filter
pyramids at different scales, etc.

The RoAM appearance model At at time t consists of all
1D WSL model parameters indexed by r

At = {(µs,t, σs,t, dt−1, mt, M
(0)
t , M (1)

t , M (2)
t)r}, (6)

assigned to each pixel in a grid belonging to each body part
in each view for every type of image filter response.

One advantage for using a kinematic tree model is the
ability to determine, for a body configuration, which re-
gions of the limbs are not visible in each view due to self-
occlusion. A ray-tracer approach can generate the desired
visibility map shown in Figure 3 by computing the depth of
the visible surface at each pixel. This can be avoided how-
ever and a faster procedure can be employed making the
observation that, since the cylinders are convex, there is a
guarantee that no two cylinders can occlude each other. This
means that there always exists a topological order of the

Figure 3. Visibility Map. Left: A label is assigned to each pixel
in the map, denoting the body part visible at that location or the

background. Right: Even if the red cylinder is occluded by the

blue one, it is still possible however that its center is closer to the
camera eye if the two cylinders are disproportionate.

limbs such that rendering the cylinders in this order yields
the correct visibility map. We try to obtain such a topolog-
ical order by sorting the body parts in decreasing distance
from the camera. The distance is taken to be between the
camera eye and the center of the limb. Figure 3 shows an
example were this heuristic could fail, but such failures are
unlikely in the case of proportionate body parts.

The goal is to use stable properties of the body appear-
ance to align coherent structures over extended durations,
identified by high stable ownership probability. We rely on
a good history of stable observations (os) to make predic-
tions and we expect the current observation to be consistent
with the stable component (ps). This suggests an aggregate
energy function based on the log likelihood of the stable
components weighted by the stable ownership probability:

Es(dt(xt)) =
∑

v

os(dv,t) logps(dv,t|µv,s,t−1, σ
2
v,s,t−1).

Here v indexes the WSL models corresponding to pixels
on visible body parts during both the current and previous
frames, and dt(xt) is the entire set of image observations
induced by pose xt.

Sometimes there are not enough stable components to
reliably estimate the matching between a body pose and the
learned appearance model. This is true during initializa-
tion when there is no history of stable structure, or during
rapid changes of appearance. In this case the tracker should
gracefully degrade to frame-to-frame matching. We there-
fore need to incorporate W constraints into the log likeli-
hood estimation. We use a similar energy function corre-
sponding to the wandering component for visible pixels:

Ew(dt(xt)) =
∑

v

ow(dv,t) logpw(dv,t|dv,t−1). (7)

The Es and Ew energy functions can be combined into
an objective function which we seek to maximize. We de-
fine the log likelihood of the image observations condi-
tioned on a given pose as

log p
RoAM

(yt|xt) ∝
1

|{v}|
(Es + εEw), (8)

sec sec sec sec

Figure 9: Walking in a circle. Using three cameras (arrayed here
from top to bottom) a person is tracked over 4 seconds while walk-
ing in a circle. The tracker maintains an accurate lock throughout.
10 annealing layers were used with 200 particles for this sequence.
Download the movie from www.robots.ox.ac.uk/ jdeutsch/HMC/.

[4] Gavrila, D., and Davis, L. 3d model-based tracking of humans in ac-
tion: a multi-view approach. Proc. Conf. Computer Vision and Pattern

Recognition (1996), 73–80.

[5] Geweke, J. Bayesian inference in econometric models using Monte

Carlo integration. Econometrica 57 (1989), 1317–1339.

[6] Goncalves, L., di Bernardo, E., Ursella, E., and Perona, P. Monocular

tracking of the human arm in 3D. In Proc. 5th Int. Conf. on Computer

Vision (1995), 764–770.

[7] Haritaoglu, I., Harwood, D., and Davis, L. : A real-time system

for detecting and tracking people in 2.5D. In Proc. 5th European Conf.
Computer Vision (Freiburg, Germany, June 1998), vol. 1, Springer

Verlag, 877–892.

[8] Hogg, D. Model-based vision: a program to see a walking person. J.

Image and Vision Computing 1, 1 (1983), 5–20.

[9] Isard, M., and Blake, A. Visual tracking by stochastic propagation

of conditional density. In Proc. 4th European Conf. Computer Vision

(Cambridge, England, Apr 1996), 343–356.

[10] Ju, S., Black, M., and Yacoob, Y. Cardboard people: A parameterized

model of articulated motion. In 2nd Int. Conf. on Automatic Face and

Gesture Recognition, Killington, Vermont (1996), 38–44.

[11] Kirkpatrick, S., Gellatt, C., and Vecchi, M. Optimisation by simu-

lated annealing. Tech. rep., IBM Thomas J. Watson Research Centre,
Yorktown Heights, NY, USA, 1982.

[12] MacCormick, J. Probabilistic models and stochastic algorithms for
visual tracking. PhD thesis, University of Oxford, 2000.

[13] MacCormick, J., and Blake, A. A probabilistic exclusion principle for
tracking multiple objects. In Proc. 7th Int. Conf. on Computer Vision

(1999), vol. 1, 572–578.

sec sec sec sec

Figure 10: Stepping over a box. Using three cameras (arrayed here
from top to bottom) a person is tracked over 5 seconds while step-
ping over a box, turning around and stepping over the box again.
The tracker maintains an accurate lock throughout. 10 annealing
layers were used with 200 particles for this sequence. Download
the movie from www.robots.ox.ac.uk/ jdeutsch/HMC/.

[14] MacCormick, J., and Blake, A. Partitioned sampling, articulated ob-

jects and interface-quality hand tracking. In Accepted to ECCV 2000

(2000).

[15] Niyogi, S., and Adelson, E. Analysing and recognising walking fig-
ures in xyt. In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (1994), 469–474.

[16] Rehg, J., and Morris, D. Singularities in articulated object tracking

with 2-d and 3-d models. Tech. rep., Digital Equipment Corporation,

Cambridge Research Lab, 1997.

[17] Rohr, K. Human movement analysis based on explicit motion mod-

els. InMotion-Based Recognition. Kluwer Academic Publishers, Dor-

drecht Boston, 1997, ch. 8, 171–198.

[18] Sullivan, J., Blake, A., Isard, M., and MacCormick, J. Object local-

ization by bayesian correlation. In Proc. 7th Int. Conf. on Computer
Vision (1999), vol. 2, 1068–1075.

[19] Vicon web based literature. URL http://www.metrics.co.uk, 1999.

valid December 1999.

Automatic Annotation of Everyday MovementsDeva Ramanan
D. A. Forsyth
U. C. Berkeley

Goal
Automatically annotate videos of

people with their activities
Why is it hard?

how to link tracks with annotations?

there may not be a “right” annotation

hard to track arms + legs

Manually annotate
motion capture library

•Semi-automatic with a SVM
•User free to compose multiple
annotations together

Arikan, et al. “Motion Synthesis from Annotations” SIGGRAPH 03

clusterdetect

model
build

detect

Track by model
building + detection

Ramanan and Forsyth. “Finding and Tracking People from
the Bottom Up” CVPR 03

z

3D motion synthesis
from video

M T

m

t

•Estimate MAP sequence of 3D
poses {Mi} and orientations {Ti}
given 2D tracks {mi} and known
camera {ti}
•Vector quantize 11,000 poses
from motion library into 300

single frame
of HMM

REPORTING RESULTS

estimated 3D
pose rendered
at estimated
orientation

manual
annotation:
present
right-facing
not left-facing
walking
not stopped
backward

Annotating w/o
temporal

consistency
Annotating novel

motion

SYSTEM MODEL

Annotations

{run,walk, wave, etc.}

3D motion
library

original video 2D track

annotated
videoTracker

Motion Synthesizer

user

(automatic)
annotation
associated
with
estimated
3D pose

A B C D E F

Figure 5. Finding people in the USC dataset. On the top, we show poses localized by ΘML. On the bottom, we show poses localized by

ΘCL. This data is quite challenging. Many images contain other people in the background (A,C), limb-like clutter (C), and self-occlusion

(B,D). The CL model performs better than the ML model because it is less confused by edges close to the body. An exception is (C),

where the spread-eagle spatial prior (from Fig. 1) forces the CL model to snap onto limb-like clutter in the background. In general, the CL

model does well at finding the torso and legs, but often misses the arms. We show in Table 2 that we localize torsos and legs just as well as

specialized approaches that exploit face and skin detection [19].

Figure 6. We can localize horses with our articulated model. On the top, we show poses localized by ΘML. On the bottom, we show poses

localized by ΘCL. Looking at the learned models (left), we see the CL model learns a more spread out rest pose (similar to Fig 1). This

dataset is known to be challenging because of the variation in appearance and pose. Our CL model consistently achieves good localizations;

the body and many of the legs are almost always correctly localized (although the estimates for left/right limbs can be incorrect). We look

at quantitative results in Table 3.

is discriminative (rather than generative) and the model pa-
rameters are jointly learned (rather than independently). We
demonstrate these models on challenging datasets, achiev-

ing or surpassing state-of-the-art results.

Acknowledgments: Thanks to David Crandall, Pedro
Felzenszwalb, and Mun Wai Lee for helpful discussions

(a) (b) (c) (d)

Figure 3.2: Example articulated structures. (a-c) model a person, while (d) models a horse.
Images are taken from (a) [106] (b) [35] (c) [91] (d) [90].

Then, we describe the state representations we used for modeling mice. Our approach

for choosing a hidden state representation was to begin with a very simple representation.

When/if it was determined that this state representation was lacking in information, we

added information to the representation. We began our research with manually-determined

state representations. These manually determined state representations were used in the

research described in Sections 6.9 and 7. Our recent research has explored automatically

learned state representations.

3.1 Previous Work

3.1.1 Articulated Structures

While a person is also a highly deformable object, a person is well-modeled by an

articulated structure [94]. An articulated structure models the target as a collection of rigid

objects that are connected at joints. Figure 3.2 shows example articulated representations

of a person. Unfortunately, an articulated model does not work well for a mouse because

the limbs of the mouse are relatively small and difficult to detect, and the body of the mouse

is very blob-like, as is evident in Figure 3.3.

3.1.2 Active Shape Models

For targets which are more blob-like, such as faces, lips, and objects tracked in

medical imaging such as the heart and lungs, a common approach is to learn an active

shape model from training data [26]. In active shape models, the target is modeled in terms

of the positions of landmark points. Corresponding landmark points are first labeled in

12

Figure 3.3: An attempt at finding an articulated model of a mouse. The legs of the mouse
are difficult to detect, and the body and head are very blob-like.

 1

 2

 3

 4

 5

 6 7
 8

 9

 10

 11

 12
 13

 14

 15 16 17
 18

 19
 20 21

 22

 23
 24

 25 26 27

 28
 29 30

 31 32 33

 34

 35
 36

 37

 38
 39

 40
 41

 42

 43

 44

 45

 46

 47
 48 49

 50
 51

 52

 53
 54

 55
 56

Figure 5: Annotated hand using 56 landmarks.

 1

 2

 3 4 5 6
 7
 8

 9
 10 11

 12

 13
 14

 15
 16 17

 18
 19 20 21 22 23 24

 25 26 27

 28
 29 30 31 32 33 34 35 36 37

 38
 39 40 41 42 43 44 45 46 47

 48
 49

 50 51 52
 53 54

 55

 56

Figure 6: Annotated hand with contracted fingers.

9

 1

 2

 3

 4

 5

 6 7
 8

 9

 10

 11

 12
 13

 14

 15 16 17
 18

 19
 20 21

 22

 23
 24

 25 26 27

 28
 29 30

 31 32 33

 34

 35
 36

 37

 38
 39

 40
 41

 42

 43

 44

 45

 46

 47
 48 49

 50
 51

 52

 53
 54

 55
 56

Figure 5: Annotated hand using 56 landmarks.

 1

 2

 3 4 5 6
 7
 8

 9
 10 11

 12

 13
 14

 15
 16 17

 18
 19 20 21 22 23 24

 25 26 27

 28
 29 30 31 32 33 34 35 36 37

 38
 39 40 41 42 43 44 45 46 47

 48
 49

 50 51 52
 53 54

 55

 56

Figure 6: Annotated hand with contracted fingers.

9

(a) (b) (c)

Figure 3.4: An active shape model learned for a hand. In each training image, 56 corre-
sponding parts were manually labeled. Two training images are shown in (a) and (b). (c)
shows the learned active shape model. The middle column of (c) shows the mean landmark
positions. Each row corresponds to a different dimension of the subspace learned. The left
and right columns show the variation in the landmark positions along the given dimension.
Note that the hand modeled can only deform; it is not allowed to rotate out-of-plane.

a set of training images. A low-dimensional manifold of the landmark positions is found,

and the hidden state space is then any point on this low-dimensional manifold. Figure

3.4 shows the 56 corresponding parts manually labeled for learning an active shape model

representation of a hand. Note that the hand modeled only deforms – it is not allowed to

rotate out-of-plane.

The original active shape model [26] finds the optimal d-dimensional linear sub-

space of the landmark positions using PCA. This approach assumes (among other things)

that the space of feasible landmark positions is unimodal. If this is not the case, we get

an inefficient representation of shape, and implausible shapes can occur. This proved to

be a problem with modeling mice, as the number of dimensions required to represent the

variability in mouse shape using this approach is very large. This huge amount of variabil-

13

Figure 3.5: An attempt to label corresponding landmark points in training images of mice.
Even in this small set of examples in which the mouse is on the floor of the cage, it is
difficult to define corresponding parts.

ity stems from the correspondence problem. Active shape model approaches assume that

there are landmark points that appear and are easily identifiable (by the human labeler)

in every possible shape. When a target is free to perform out-of-plane rotation and is very

deformable, as is the case for mice, a given landmark point may only appear in a small

subset of frames. See, for example, the mouse shapes in Figure 3.5. Even for this set of

examples in which the mouse is only on the floor of the cage, correspondences are difficult

to find. We attempted to find corresponding landmark points for the mice, but many of

the decisions made were arbitrary, and corresponding points did not in fact correspond to

the same part of the mouse. For example, in the left image of Figure 3.5, only one ear of

the mouse is visible, while in the other two images, both ears are visible. Thus, the nose of

the mouse in the left image corresponds to an ear of the mouse in the other two images.

A number of approaches exist for extending active shape models to multimodal

shape distributions [19, 52, 48, 47]. [48] assumes that correspondences can only be found

between subsets of training examples. [48] first uses an integrated registration and clustering

approach to partition the shapes, establish point correspondences between similar shapes,

and align them with respect to a similarity transform. Then, a separate linear subspace is

found for each cluster. Finally, transition probabilities between different parameterizations

are determined. We explore a similar approach in Section 3.4.

14

θ

a

b(µx, µy)

Figure 3.6: Ellipse representation of a mouse. The figure on the left shows the five param-
eters of the ellipse. The figure on the right shows an example ellipse fit.

3.2 Ellipse-shaped Mice

Our first model of a mouse was as the five parameters of an ellipse. The hidden

state representation for K mice contained 5K parameters, obtained by concatenating the

ellipse parameters for each mouse. An ellipse can be defined by the x-coordinate of the

center µx, the y-coordinate of the center µy, the semi-major axis length a, the semi-minor

axis length b, and the rotation θ, as shown in Figure 3.6. Alternatively, an ellipse can be

defined by the two parameters defining the center of the ellipse and the three parameters

defining the 2-D covariance Σ of the ellipse:

(x− µ)>Σ−1(x− µ) ≤ 4 (3.1)

The relationship between the covariance Σ and the ellipse parameters (a, b, θ) is

Σ =

 cos θ sin θ

− sin θ cos θ

> a2 0

0 b2

 cos θ sin θ

− sin θ cos θ

 (3.2)

We found that the ellipse well-modeled the mouse for blob-based tracking (Section

4.11.1), although little signal was available during occlusions.

3.3 Contour Templates

A more complex representation is necessary for contour-based tracking (Section

4.9.1), as the edge feature is much sparser than the blob feature. We found decent perfor-

mance by allowing any affine transformation of any of 12 manually drawn contour templates,

15

(a) (b)

(c)

Figure 3.7: Contour template representation of a mouse. (a) shows the 12 manually drawn
templates. (b) shows the parameterization of the template and affine transformation. (c)
shows an example fit.

shown in Figure 3.7.

These templates were chosen in a fairly arbitrary manner. After much study of

video of mice, I chose 12 images in which the mice seemed to be in representative poses. I

then outlined these mice and fit smooth B-spline functions to the outlines. It was necessary

to have a simple, analytical expression for each contour template for the work presented in

Section 6.9.

3.4 Learning a Hidden State Representation

While the ellipse and contour template representations worked much of the time,

as discussed in Section 6.9, we felt that better results could be obtained with a more precise

state representation. We have therefore recently been exploring methods for learning a

hidden state representation from video. Our approach is most similar to [44], the basis for

[48] described earlier.

Training data is collected in a mostly unsupervised manner. The manual labels

given are the approximate starts and ends of occlusions in a video sequence. This is a fairly

simple problem, and we plan on automating this step in the future. As tracking mice is

16

(a)

(b)

(c)

Figure 3.8: Automatically collected training data. The mice are tracked during non-
occlusions using the background subtraction data. Around the predicted position of the
mouse, we crop subimages. (a) shows the subimage of the original video frame cropped
around the predicted mouse position. (b) shows the cropped subimage of the foreground
probability image. Each pixel represents the probability that the pixel belongs to the fore-
ground, with white representing 1 and black representing 0. (c) shows the cropped subimage
of the edge detection image.

fairly simple in the frames in which there is no occlusion, we automatically track the mice

in these frames using an ellipse model of a mouse and the background subtraction images

(see Section 4.1). From the background subtraction images, we crop subimages around

the predicted position of each mouse. As our background subtraction image contains the

log-likelihood ratio of foreground to background, we can use this image to compute the

probability that each pixel belongs to the foreground. Figure 3.8 (b) shows examples of the

probability that each pixel belongs to foreground for example training images. We also crop

subimages around the predicted mouse positions from the edge detection images. Figure

3.8 (c) show the edge pixels for example training images. We collect training data for each

of three mice from 3000 training images.

We then define a distance between a pair of shapes. First, the two shapes are

aligned by finding the best affine transformation aligning the two shapes in terms of the

17

shape context distance [10]. Then, the Chamfer distance between the aligned edge training

images and the sum-squared distance between the aligned foreground images are averaged.

Because of the computational requirements of computing the pairwise distance

between all shapes, we make two simplifications. First, we break up the training data into

four disjoint sets based on the ellipse positions of the mice. These correspond to mice on

the ceiling, round mice on the floor, horizontal mice on the floor, and vertical mice on the

floor. Only pairwise distances within each set are computed. Second, we only compute the

pairwise distance between 225 samples from each class. This is approximately one sample

from every 10 frames.

We use the k-medoids algorithm to cluster the 225 samples into 20 initial classes.

We then greedily compute a hierarchical clustering using agglomerative clustering. At each

iteration, we merge the two clusters whose average distance to the combined center is

smallest. At each level of the hierarchy, each of the 3000 · 3 training examples is given a

cluster label. Each training example is aligned to the center of its cluster, and the mean

probability that a pixel is foreground is computed. In addition, the mean distance to an

edge from each pixel is computed. We call the mean probability of foreground the blob

template for the cluster, and the mean distance to an edge the contour template for the

cluster.

As the ellipse model of the mouse is symmetric according to reflections and rotation

by π, we perform a post-processing step to determine whether to flip the templates over

the x-axis and/or rotate the templates by π. We choose to rotate and flip so that the total

rotation and the total number of flips are minimized. The optimal setting is computed

using a variant of the WalkSAT algorithm [101]. The resulting blob and contour templates

are shown in Figures 3.9, 3.10, 3.11, 3.12.

Representative examples of the fits of the templates to the 9000 training instances

are shown in Figure 3.13. Here, we use only the contour template, and plot the local minima

of the average distance below a threshold. In future work, we plan to incorporate this model

of mouse shape.

3.5 Acknowledgements

Portions of this chapter are based on the paper “Tracking Multiple Mouse Con-

tours (without Too Many Samples)” by K. Branson and S. Belongie [17]. I developed the

algorithm, performed the experiments, and wrote the paper.

18

Figure 3.9: Blob and contour templates for each level of the hierarchy for mice on the
ceiling. The left image for each cluster is the blob template; each pixel shows the probability
of foreground. The right image for each cluster is the contour template. Each pixel shows
the negative average distance to a detected edge.

19

Figure 3.10: Blob and contour templates for each level of the hierarchy for round mice
on the floor. The left image for each cluster is the blob template; each pixel shows the
probability of foreground. The right image for each cluster is the contour template. Each
pixel shows the negative average distance to a detected edge.

Figure 3.11: Blob and contour templates for each level of the hierarchy for vertical mice
on the floor. The left image for each cluster is the blob template; each pixel shows the
probability of foreground. The right image for each cluster is the contour template. Each
pixel shows the negative average distance to a detected edge.

20

Figure 3.12: Blob and contour templates for each level of the hierarchy for horizontal mice
on the floor. The left image for each cluster is the blob template; each pixel shows the
probability of foreground. The right image for each cluster is the contour template. Each
pixel shows the negative average distance to a detected edge.

21

1 177 354

530 707 883

1059 1236 1412

1589 1765 1942

2118 2294 2471

2647 2824 3000

Figure 3.13: Example results of fitting the 20 · 4 training images to the 3000 · 3 training
instances. We plot the local minima of the average distance to an edge below a threshold
for evenly spaced example images.

4

Appearance Models

Perhaps the most essential part of a visual tracking algorithm is the model of the

relationship between a video frame image and the positions of the targets: the appearance

model. An appearance model can be viewed mathematically as a function fapp : Y×X → R

that inputs the video frame image yt and the hypothesized positions of the targets xt

and outputs a score fapp(yt,xt) that is higher the better the image and target positions

correspond with one another. Often, this function is given a probabilistic interpretation.

Generative models interpret the appearance scoring function fapp(yt,xt) as the likelihood

of the video image given the state of the targets, p(yt|xt).

In this chapter, I discuss appearance models for tracking. The appearance models

discussed make different assumptions about the nature of the video and target appearance.

Each type works with different statistics of the video sequence, and assumes that enough

information is available in these statistics to determine the targets’ positions. To choose an

appearance model reasonable for one’s application, one must use domain-specific knowledge.

Existing appearance models had previously only been applied to tracking targets quite

different from mice, for instance people and cars. In this chapter, I discuss the applicability

of these appearance models to the mouse tracking application with respect to the following

questions. Do the assumptions made by the model reasonable? Are the statistics of the

video sequence modeled sufficient for tracking?

Before we begin reviewing appearance models for tracking, let us note that object

detection and recognition are very related fields. Recent algorithms have been bridging the

gap between tracking and detection [5, 6, 124]. However, I focus on appearance models

specific to tracking in this thesis.

22

23

4.1 Background Modeling

In many tracking applications, the camera is assumed to be still. In this case, it

is useful to learn the appearance of the video frame image if the targets were absent. For

example, in the mouse tracking application, this is the appearance of an empty cage, as

in Figure 4.1. The majority of background models model each local region of the image

Frame 21 Frame 988 Frame 2805 Frame 4521

Frame 6176 Frame 7793 Frame 9371 Frame 10936

Figure 4.1: Expected background appearance of the mouse cage computed automatically
at different frames in the sequence. These images were computed from the expected value
of the Gaussian components of the background model.

independently, i.e. for each location g on a dense grid, we learn a separate model

scoreback(yg; θg) (4.1)

where yg are the image observations in a small patch centered at location g and θg are

the parameters of the function specific to the background model at location g. The value

scoreback(yg) should be high if the image patch at location g is contained mostly in the

background, and low if it is contained mostly in the foreground. It is common to give a

probabilistic interpretation to this score:

scoreback(yg) = p(yg|labelg = background; θg). (4.2)

Thus, the scoreback(·) function can be viewed as a statistical description of the background

appearance at location g.

At every location g in the current video frame, we compute scoreback(yg). The

background likelihood image of these scores, as can be seen in Figure 4.2, is a very useful

feature for tracking.

Research on background modeling has has focused on three questions. First, what

representation zg should be used for a patch of background yg? Second, what parametric

24

(a) Original image. (b) Expected value of
current background model.

(c) Log of the background
likelihood score for each

pixel.

Figure 4.2: Background likelihood model applied to a video frame.

form of scoreback(·) should be assumed [85]? Finally, how do we estimate the parameters of

the background appearance model? More specifically, as the appearance of the background

generally changes over time, how do we update the background model?

Because background modeling proved to be one of the most successful features for

mouse tracking, I discuss in some detail a smattering of approaches to background modeling.

I focus on background models that (1) model background appearance at each pixel location

independently and (2) treat each frame independently. I focus on this type of background

model because they are simpler and faster to compute. After all, the background likelihood

image is just one appearance feature used in my appearance model. For a more general

review of background modeling algorithms, see e.g. [85, 38, 65, 103]. In Section 4.2, I discuss

the approach to background modeling I chose for the mouse tracking application.

4.1.1 Patch Representation

The majority of background modeling algorithms operate on single pixels, i.e. patches

of size 1. Choosing the patch representation then boils down to choosing a color space repre-

sentation. A number of color spaces have been experimented with, including RGB, normal-

ized RGB, and HSV. When choosing a color space, one of the main concerns of prior research

has been invariance to lighting changes. For an experimental comparison of different color

spaces for background modeling under illumination changes, see [68]. [126, 59] propose an

edge-based representation of a patch, again for invariance to illumination changes.

A number of approaches for change detection that operate on patches of size

greater than 1 interpret the pixel values in the patch as a vector of random variables. The

background score scoreback(yg) is a function of the sum-squared difference between the

current patch yg and a reference patch [87].

A few approaches convolve each color channel of the patch with a filter, for instance

a Gaussian filter, resulting in a single value to represent each channel of the patch [110].

25

Texture features can be captured using a Laplacian of Gaussian (LoG) filter [57].

4.1.2 Parametric Form

As in most machine learning problems, there is a bias versus variance tradeoff

when selecting the parametric form of the background model. If the parametric form is

too simple, then the model will not represent the data well and results will be poor. If the

parametric form is too complex, the amount of data necessary to learn the parameters is

excessive, and results again will be poor.

Possibly the simplest model is a single Gaussian [85]:

p(yg|labelg = background; θg) = N (zg;µg; Σg) (4.3)

where zg is a chosen representation of the patch of pixels yg.

In many applications including mouse tracking, the appearance of a background

patch can change periodically. In the mouse tracking application, this is primarily due to

• Shadows cast by the mice.

• Reflections cast by the mice.

• Noise from the camera and compression artifacts.

See Figure 4.3(d-f) for illustrations of these periodic changes. In more standard applications,

periodic changes in appearance are also due to objects moving in the background, for

example trees moving in the wind [107]. See Figure 4.3(a-c) for illustrations of these types

of periodic changes.

(a) (b) (c) (d) (e) (f)

Figure 4.3: (a-c) Example video frames of an outdoor scene from [58]. The tree moves in
the wind, causing variance in the background appearance at a given location. (a) Video
frame 1. (b) Video frame 30 (≈ 1 second later). (c) Absolute difference of (a) and (b)
(image intensity is scaled). (d-f) Example images of the right bottom corner of the mouse
cage. The appearance of the bedding is different in the shadow of the mouse. (d) Video
frame 200. (e) Video frame 400 (≈ 7 seconds later). (f) Absolute difference of the rectangles
plotted in (d) and (e) (image intensity is scaled).

Because of periodic changes in the background appearance, a multimodal model

26

of the background patch appearance is useful. One such model is a Gaussian mixture model

(GMM) [107, 42, 63, 70]:

p(yg|labelg = background; θg) =
nmodes∑

i=1

πgiN (zg;µgi; Σgi), (4.4)

for a prespecified number of mixture components, nmodes. The computational requirements

for a GMM are only slightly more than for a single Gaussian, while the representational

power of the GMM is much larger.

An even more general model of the background appearance is based on kernel

density estimation (KDE) [38]:

p(yg|labelg = background; θg) =
1

nkernels

nkernels∑
i=1

N (zg;µgi; Σ). (4.5)

Note that Equation (4.5) differs from (4.4) in that (1) the prior for each component is

uniform, (2) the same variance Σ is used for each component, and (3) most importantly,

the number of components nkernels is much larger than the number of components nmodes.

Each component of the GMM is meant to represent a mode of the distribution, while KDE

is more like a smoothed version of a histogram density approximation.

Finally, some algorithms incorporate components intended to detect shadows [63,

32]

4.1.3 Updating the Background Model

Once we have chosen a parametric model of the background appearance, we must

devise a method for updating estimates of its parameters. These methods learn the optimal

values of the parameters that fit the sequence of background patch appearances in

zwindow(t) , (zt−w,g, zt−w+1,g, zt−w+2,g, ..., zt−1,g), (4.6)

where w is the number of frames in the sliding window of frames fit and t is the current

frame.

We desire the following properties of our update algorithm. First, the update

method selected must be fast since it will be called often by a real-time algorithm. Second,

it must be robust to foreground patches in the data window. Third, it must adapt quickly

to changes in the background appearance. Of course, the second and third requirements

27

are often contradictory, since it is difficult to distinguish a foreground patch from a change

in the background appearance. Changes in background appearance in the mouse tracking

application primarily involve movement of the bedding, for instance when mice walk or

dig. In less controlled scenes than the mouse cage, appearance changes can include drastic

lighting changes in outdoor scenes and the addition or removal of an object from the scene.

See Figures 4.4 and 4.5 for examples.

(a) Lower left corner of the
cage in frame 2.

(b) Lower left corner of the
cage in frame 2999.

(c) Absolute difference of
(a) and (b), multiplied by

2.125 to enhance
differences.

Figure 4.4: The background appearance of the mouse cage changes as the bedding is moved
around by the mice. The background model must adapt to these changes.

(a) (b) (c) (d)

Figure 4.5: Example video frames of an outdoor scene from [58]. (a) Video frame 1. (b)
Video frame 6789 (≈ 4 minutes later). (c) Absolute difference of (a) and (b). (d) Although
the camera is still, the background appearance changes. First, as highlighted in the top box,
a car that was parked in frame 1 has left the scene in frame 6789. Second, lighting changes
have caused slight differences in the background appearance in nearly all locations. Effects
of lighting change are most evident in the windows of the cars and building, as highlighted
in the middle and bottom boxes.

Computational Efficiency.

Recomputing the optimal parameters at each update requires storing the relevant

window of frames and performing a computation that is O(w) in running time. To make

28

the update fast, most background modeling algorithms compute an online estimate of the

parameters. For example, if we choose the single Gaussian parametric model (Equation

(4.3)), and we choose to estimate the parameter µg as the mean of the window of patch

values, the online update of the mean is

µtg = αzt−1,g + (1− α)µt−1,g (4.7)

where a large α is analogous to a small window length w.

Robustness versus Adaptiveness.

The background model parameters for location g are estimated from the sequence

of patches zt−w:t−1,g. Often, some patches in this sequence will correspond to foreground.

Ideally, these foreground patches would be ignored by the estimation algorithm.

One approach to making the parameter estimates robust to foreground patches

in the window zwindow(t) is to make the window length w large. If foreground patches

are a small fraction of the window, then they will not have much effect on the parameter

estimates. The minimum necessary length of the window depends on the application. If

the targets always move quickly, then at any given time t, one can expect at most a few

frames in the window to contain foreground patches. However, if the targets can stay still

for long periods of time, as is the case in the mouse tracking application, the window length

would have to be huge to ensure robustness. As noted above, increasing the window length

w causes the modeling algorithm to adapt more slowly to changes in the background scene.

A second approach is to use robust estimates of the parameters instead of the max-

imum likelihood estimates. For example, the median patch value of the window zwindow(t)

(where the median is taken in each dimension independently) is a more robust estimate of

µtg than the sample mean [32]. Assuming that more than half of the patches in the window

are background, then the median will be robust to foreground patches. One of the draw-

backs of using robust statistics is that they are computationally expensive. For example,

to compute the median, one must store a sorted list of all the patches in the window. This

prohibits increasing the window length w to accommodate targets that stay still for long

periods of time.

A third approach is to try to determine, based on the current parametric model

of background (and possibly higher level information), if the newest patch is likely to be

background or not. If it is not likely to be background, then the patch is not added to the

29

background model [67]. A number of approaches instead add the patch to a separate model,

to aid in classification [42]. In machine learning applications, it is often risky to use data

labeled by an inexact classifier as though it were ground truth. Errors in classification will

compound, resulting in drift.

A related approach is to add every patch in the window to the background model,

but only use some of the background patches to compute the background scores for the

current frame, scoreback(yg). [107] uses the GMM parametric model. Every new patch ztg

is used to update the mean and variance of only the single closest mixture component. The

score scoreback(yg) is computed using only the highest weight mixture components. Thus,

in general there will be some low weight components corresponding to foreground, while

the rest correspond to background. Only the background components are used to compute

the background score, scoreback(yg).

4.2 Background Modeling for Mouse Tracking

The likelihood that a pixel in the video was produced by the background model is

a very useful feature for mouse tracking, as is evident in the example in Figure 4.2. Because

we have control over the mouse cage environment, we can make many assumptions about

the appearance of the scene background. First, the camera can be assumed to be stationary.

Second, we can assume illumination is constant. This makes background modeling for mouse

tracking easier than background modeling for outdoor scenes. Third, we can assume that

the only movement in the video sequence is caused by the mice. Thus, the periodic motion

in our video sequence is much less a problem than in other tracking applications.

One of the main difficulties with applying background modeling techniques to

mouse tracking is that the mice can and often do occlude a given pixel of the background

for many frames in a row. Consider, for instance, if a mouse goes to sleep. Our background

modeling procedure must not let this stationary mouse become part of the background. At

the same time, we would like our model to adapt to changes in the scene appearance, as,

for instance, the bedding of the cage is often shifted by the mice. A second difficulty with

our data is the similarity of mouse color and the color of the bedding, particularly when

the bedding is in the shadow of the mouse. A similar difficulty occurs at the ceiling of the

cage. Figure 4.6.

Following [57], I chose to represent an image patch of size 11 × 11 (recall that

each video frame is 480× 720) by six features – two features per color channel. I chose the

30

Figure 4.6: Illustration of the similarity in color of the bedding and a mouse.

(a) Gaussian filter, L
(intensity) channel

(b) Gaussian filter, a
(magenta-green) channel

(c) Gaussian filter, b
(yellow-blue) channel

(d) LoG filter, L channel (e) LoG filter, a channel (b) LoG filter, b channel

Figure 4.7: The six features used to represent each patch. Each pixel of the above images
corresponds to a patch.

CIELAB color space representation. The CIELAB color space was constructed using human

perception as a model. Small changes in human perception of a color correspond to small

changes in the CIELAB color value, and large changes in human perception correspond to

large changes in CIELAB color value [123]. While there is no guarantee that the color space

used in human perception is a good color space for the specific task of mouse tracking, we

do know that humans are able to easily track the mice, thus motivating the choice of the

CIELAB color space.

Independently for each color channel, we convolve the image patch with a Gaussian

filter (with standard deviation 1.5) to create the first feature. We create the second feature

by convolving with a Laplacian of Gaussian (LoG) filter (with standard deviation 1.5).

Figure 4.7 shows the six filter representation of a video frame. The LoG filter is useful

distinguishing the bedding, ceiling, and lixit (the tube protruding from the water bottle)

from the foreground. Figure 4.8 illustrates the decrease in misclassification error for each

pixel location with the LoG filters included.

We chose to follow the background modeling algorithm of [107]. The main modi-

31

Figure 4.8: Illustration of the decrease in misclassification error when LoG filters are in-
corporated. A linear classifier was trained independently at each location in the image to
distinguish foreground and background patches using linear discriminant analysis [51]. The
training data consisted of 100 time-separated hand-labeled frames, created for learning the
foreground distribution (see Section 4.4). Foreground and background classes were set to
have equal priors. The misclassification error takes into account these priors. This was done
for data containing the Gaussian and LoG filters and for data containing just the Gaussian
filters. The difference in misclassification rate, thresholded at .1, is plotted. The main areas
of improvement are the bedding, scratches at the back right corner of the cage, and the
ceiling.

fication we made to this algorithm involved using a very rough, static foreground classifier

(see Section 4.4 for details). Pixels that are classified by this foreground classifier as fore-

ground are not used to estimate parameters of the background. The exception to this rule

is any pixel location that was always classified as foreground. There were 27 such pixel

locations in our video sequence. At these locations, all the data was pooled to learn a

foreground classifier. Figure 4.13 shows example results of this rough foreground classifier.

Because a mouse often stays still for many frames in a row, a mouse will sometimes

become part of the background without this modification. This modification is resistant

to drift because the foreground classifier is never modified. It is reasonable to use a static

model because there are no permanent changes in the foreground appearance e.g. due to

illumination changes.

As this foreground classifier is very rough, there will be a number of false positives

and false negatives. False negatives, i.e. classifying a pixel as background when it is truly

foreground, result in parts of the foreground being incorporated into the background model.

The method of [107] was designed to be resistant to a reasonable fraction of false negatives,

since all foreground pixels are added to the background model in their method. In Figure

32

Figure 4.9: Pixel locations that can never contain foreground because of the structure of
the cage. These locations are always classified as background by our system. The mask was
manually input.

4.1, we see some effects of false negatives where foreground is very evident in the background

model.

The main disadvantage of using our rough foreground classifier is false positives,

i.e. pixels that are classified as foreground when they are truly background. If all the pixels

at a location are classified as foreground, then all pixels are added to the background model,

thus there is no disadvantage. There are two possible failure modes. First, if some appear-

ance of the background at a location are classified as foreground and some are classified

as background, then only those that are classified as background will be used in the back-

ground model. Second, consider a background location always is classified as foreground.

If at some point when a mouse is in front of this location true foreground is classified as

background, then this background location will always be modeled as foreground. While we

did not qualitatively notice failures of these sorts in our results, we have not experimented

on a long enough video sequence to be confident. We plan to implement safeguards against

these failure modes in future work.

A second modification we made to the background modeling algorithm of [107]

was to manually input a mask outlining the feeder. There is not enough space between the

feeder and the cage wall for the mice to occlude the feeder, thus these locations can always

be classified as background. Figure 4.9 shows the mask of pixel locations always classified as

background. This was helpful in speeding up our implementation. As we feel the feeder is

very easy to identify automatically, in future implementations this step will be automated.

Besides these modifications, our background modeling algorithm followed [107].

We made no attempt to optimize the parameters of this algorithm. The first set of values

we chose worked fairly well. Table 4.1 contains the parameters used in our implementation.

Below, we briefly describe the background modeling algorithm of [107]. For full details,

please see the original paper.

33

We compute initial estimates of the background model by learning independent

GMMs at each location in every fifth frame of the first 1000 frames (excluding pixels in these

frames classified as foreground) using EM for GMMs. The standard EM algorithm was

modified to force all covariance matrices to be diagonal and to enforce a minimum variance.

The minimum variance in dimension d was set to be one tenth the sample variance of that

feature in all locations in 100 time-spaced frames:

σ2
min,d =

(
1
10

)(
1

NimagesNpixels

)Nimages∑
i=1

Npixels∑
g=1

y2
igd −

Nimages∑
n=1

Npixels∑
g=1

yigd

2 (4.8)

where Nimages = 100 is the number of training images, Npixels = 283 · 720 is the number of

pixels in each image, yigd is the value of feature d in location g in training image i. This

came out to

Σmin = diag[(30.6608, 4.5499, 10.1498, 0.2496, 0.0261, 0.0483)]. (4.9)

Once the background model is initialized, we update the parameters every fifth

frame. The update step involves the following steps. First, we apply the rough foreground

classifier at each location. No updates are performed at locations classified as foreground.

Second, we compute the closest mixture component to each new pixel using the Mahalanobis

distance.

If the Mahalanobis distance is at most σmax = 2.5 ·
√

6 = 6.1237, we add the pixel

ynew to the closest mixture component i with the following update rules:

µi ← (1− α)µi + αynew (4.10)

Σi ← (1− α)Σi + αdiag(ynew − µi)2 (4.11)

π ← (1− α)π + αe(i) (4.12)

π ← π/‖π‖ (4.13)

where µi is the mean of the closest mixture component, Σi is the variance of the closest

mixture component, π is the vector of priors for all components, e(i) is a vector that is 1

for the closest component and 0 for the other components, and α = 0.01.

Otherwise, if the Mahalanobis distance to all mixture components is larger than

σmax, then we remove the mixture component with the lowest prior and replace it with a

mixture component centered at the new pixel ynew. The prior of the new mixture component

34

Table 4.1: Parameters used for estimating the background model and background likelihood
for mouse tracking.

Parameter Description Parameter value
The width and height of an image patch. 11
The color space used to represent an image. CIELAB [46]
First filter convolved with image patch Gaussian
Standard deviation of Gaussian filter 1.5
Second filter convolved with image patch LoG
Standard deviation of LoG 1.5
Number of frames skipped between updates. 4
Number of frames skipped between initialization frames. 4
Number of frames used to initialize. 200
Minimum variance of image patch, where features are
represented in the order: (L, Gaussian), (a, Gaussian),
(b, Gaussian), (L, LoG), (a, LoG), (b, LoG).

(30.6608, 4.5499, 10.1498,
0.2496, 0.0261, 0.0483)

Maximum Mahalanobis distance for membership to
existing component.

6.1237

Update weight. 0.05
Initial prior of new mixture component. 0.01
Initial variance of new mixture component. (153.3042, 22.7495,

50.7490, 1.2482, 0.1308,
0.2412)

Minimum weight of background mixture components 0.8

is set to πinit = .01. The variance of the new mixture component is set to one half the sample

variance of that feature in all locations in 100 time-spaced frames (Equation (4.8)). This

came out to:

Σinit = diag[(153.3042, 22.7495, 50.7490, 1.2482, 0.1308, 0.2412)]. (4.14)

At each new frame, we compute the background likelihood using only some of

the mixture components from the un-updated background model. We sort the background

mixture components from highest prior to lowest prior, and use the first mixture components

whose total weight is at least minweight = 0.8. We set the weight of the other mixture

component(s) to 0 to compute the background likelihood.

4.3 Foreground Density Tracking

One common model of target appearance involves determining how well image

patches within a region match a model of foreground patch appearance. These models take

35

Figure 9: Football sequence, tracking player no. 59. The frames 70, 96, 108, 127, 140, 147 are
shown.

[5, p.82] has been assumed. The uncertainty of the measurements has been estimated according

to [55]. The idea is to normalize the similarity surface and represent it as a probability density

function. Since the similarity surface is smooth, for each filter only 3 measurements are taken into

account, one at the convergence point (peak of the surface) and the other two at a distance equal to

half of the target dimension, measured from the peak. We fit a scaled Gaussian to the three points

and compute the measurement uncertainty as the standard deviation of the fitted Gaussian.

A first set of tracking results incorporating the Kalman filter is presented in Figure 10 for

the 120 frames Hand sequence where the dynamic model is assumed to be affected by a noise

with standard deviation equal to . The size of the green cross marked on the target indicates the

state uncertainty for the two trackers. Observe that the overall algorithm is able to track the target

(hand) in the presence of complete occlusion by a similar object (the other hand). The presence of a

similar object in the neighborhood increases the measurement uncertainty in frame 46, determining

an increase in state uncertainty. In Figure 11a we present the measurements (dotted) and the

estimated location of the target (continuous). Note that the graph is symmetric with respect to

the number of frames since the sequence has been played forward and backward. The velocity

associated with the two trackers is shown in Figure 11b.

A second set of results showing tracking with Kalman filter is displayed in Figure 12. The

sequence has frames of pixels each and the initial normalization constants were

21

Figure 4.10: Results of tracking a football player through a complicated sequence involving
occlusion and complex transformations. The color histogram describing the region tracked
is fairly uniform through this sequence. Images taken from [25].

basically the same form as the patch distributions for a single background location, described

in Section 4.1. Two types of scoring functions exist for foreground density tracking. We

discuss these next.

4.3.1 Kernel-Based Tracking

The first type of scoring function assumes that the distribution of pixels in a fore-

ground region does not change over time. These algorithms are termed kernel-based tracking

algorithms [25] because they use kernel density estimation (KDE) to model the foreground

density. The score for a hypothesized hidden state is computed from the distance between

the a static model of foreground density and the empirical density of the pixels within the

target region corresponding to the hypothesized hidden state. This form of tracking is sim-

ilar to region-based template matching (Section 4.5), except instead of treating an image

as a vector, an image is treated as a bag of pixels. That is, the locations of the individual

locations of the pixels within the region are ignored. The benefit of this bag of pixels repre-

sentation is its robustness to projective transformation, partial occlusion, deformation, and

a reasonable amount of out-of-plane rotation. Figure 4.10 for an illustration of the power

of these kernel-based techniques. Besides its robustness to common deformations during

tracking, kernel-based tracking is popular because there are fast algorithms for optimizing

the appearance score [24, 50].

36

4.3.2 Foreground Likelihood Maximization

A second type of scoring function assumes that each pixel in a region is drawn

i.i.d. from the same foreground distribution. The score for a hypothesized region is the

likelihood of the observed foreground region given a model of foreground density [39, 125,

57, 88]. Because this method of foreground tracking is so similar to background tracking,

the two are usually combined.

The foreground density models used in this type of algorithm can be either static

or updated online. Static and online foreground density models have the same advantages

and disadvantages and static and adaptive background models. While online foreground

density models may adapt to changes in the foreground appearance, they are also prone to

drift.

4.4 Foreground Density Modeling for Mouse Tracking

The foreground patch appearance for mice is very homogeneous. This means that

both offline and online models of foreground density are usually useless in distinguishing one

region of foreground from another. Thus, during occlusions, foreground density modeling

cannot be used to separate one mouse from another. However, the foreground model is

extremely useful for distinguishing foreground from background, much more so than in other

applications. We can therefore use foreground modeling, much like background modeling,

to fit the shapes of the targets during occlusions such that pixels inside the targets look like

foreground and pixels outside the targets do not.

The fast optimization algorithms for kernel-based tracking such as [25, 50] can only

estimate the position and scale of the target, not the shape, size, and rotation. Thus, these

algorithms cannot be directly used to estimate the positions of the mice from the shape

of the foreground mask during occlusions, as in blob tracking algorithms such as [57, 125].

In future work, we plan to explore using kernel-based tracking algorithms for initializing

searches such as those used in [57].

As in our background model (Section 4.2), we represent an image patch of size

11 × 11 by six features – two features for each of three color channels. Again, we use the

CIELAB color space and the Gaussian and LoG filters. Figure 4.7 shows the six filter

representation of a video frame.

Since the general foreground appearance is static over time, we learn a static

model of appearance from hand-labeled training data. We fit an eight-component Gaussian

37

(a) Labeled image (b) Foreground training data (c) Bkgd data excluded.

Figure 4.11: Examples of the labeled data from which the foreground GMM was learned.

mixture model to the foreground data of 100 labeled frames, spaced equally in time. See

Figure 4.11 for example training images. Empirically, we found that a Gaussian mixture

model fit the foreground likelihood well. See Figure 4.12 for a visual comparison of the

GMM fit and the empirical distribution of the data.

The rough foreground classifier used to filter pixels before updating the background

model (see Section 4.2) was created from the foreground GMM. From the 100 training im-

ages, we also learn a threshold for the foreground likelihood. If the foreground likelihood

of a patch is above the threshold, we classify the patch as foreground. The threshold was

chosen to minimize the classification error on the training set. Because the number of back-

ground pixels in the training set is so much higher than the number of foreground pixels,

we (arbitrarily) set the misclassification cost for foreground to be 5 times the misclassifica-

tion cost for background. This is equivalent to setting the foreground class prior to 0.2886

and the background class prior to 0.7114. Figure 4.13 shows example results of this rough

foreground classifier.

Patches in the video that are classified as foreground based on foreground likelihood

alone are not used to estimate or update the background model, with one exception. There

were 27 locations in the image, all on the right side of the ceiling of the cage, that always

looked like foreground, i.e. the background appearance at these 27 locations had foreground

likelihood greater than the learned threshold. At these locations, we ignored the foreground

label and estimated the background parameters using all the data.

38

(a) (b)

(c) (d)

Figure 4.12: Plot of the foreground likelihood learned from the labeled training data. (a)
The projection of the parametric likelihood model onto the first principal component of the
foreground data. (b) The projection of the empirical likelihood of the labeled training data
on the first principal component. (c) The projection of the parametric likelihood model
onto the first two principal components of the foreground data. (d) The projection of the
empirical likelihood of the labeled training data onto the first two principal components.
The axes of (a) and (b) and the axes of (c) and (d) are the same. We can see that the
learned mixture model is close to the empirical distribution. In all plots, the color of the
surface plotted is the RGB equivalent of the Gaussian filter features of the patch. Thus,
the color of the plot is a visualization of the foreground color.

39

Frame 21 Frame 988 Frame 2805 Frame 4521

Frame 6176 Frame 7793 Frame 9371 Frame 10936

Figure 4.13: Results of the rough foreground classifier on example video frames. The top
row shows pixels classified as foreground and masks out pixels classified as background.
The bottom row shows pixels classified as background and masks out pixels classified as
foreground.

4.5 Region-based Template Matching

A popular approach to tracking is to maintain a template model of the global

appearance of the foreground region. In this section, I briefly discuss algorithms that find

the transformation of an image texture map that best matches the input image in terms of

sum-squared distance or normalized cross-correlation. I do not go into much detail because

these techniques do not work very well for mouse tracking. These techniques require the

target to have parts with different texture appearances, whereas the image texture of the

mouse is uniform.

4.5.1 Static Image Prototype

One of the earliest methods for tracking models the global appearance by a static

image prototype. The target state contains the transformation of the image prototype

that matches the current video frame. The sum-squared difference or the normalized cross-

correlation between the current video frame and the image prototype under the hypothesized

transform is used to score the hypothesized transform. In rigid template matching, the state

corresponds to a rigid translation (e.g. translation, rotation, scaling) [23]. Influenced by

research on active shape models (see Section 3.1.2), larger classes of transformations such

40

as affine transformations and free-vibration modes have been considered [100]. See Figure

4.14 for example transformations of a static image prototype from [100].

The target appearances that can be represented by a static image prototype model

are very limited. For instance, this approach cannot model significant out of plane rotation.

Thus, it is not directly applicable to mouse tracking.

Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the

difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each

input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows

every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on

the original input images. Marquardt-Levenbergminimization averaged 0.9 frames/sec, while the difference decomposition

averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg

was not able to track the object completely through this sequence.

7

Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the

difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each

input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows

every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on

the original input images. Marquardt-Levenbergminimization averaged 0.9 frames/sec, while the difference decomposition

averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg

was not able to track the object completely through this sequence.

7

Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the

difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each

input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows

every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on

the original input images. Marquardt-Levenbergminimization averaged 0.9 frames/sec, while the difference decomposition

averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg

was not able to track the object completely through this sequence.

7

Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the

difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each

input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows

every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on

the original input images. Marquardt-Levenbergminimization averaged 0.9 frames/sec, while the difference decomposition

averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg

was not able to track the object completely through this sequence.

7

Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the

difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each

input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows

every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on

the original input images. Marquardt-Levenbergminimization averaged 0.9 frames/sec, while the difference decomposition

averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg

was not able to track the object completely through this sequence.

7

Figure 4.14: Example warps of an Active Blob template image. Images from [100].

4.5.2 Active Appearance Models

For static image prototype tracking to work in non-rigid tracking, all possible tar-

get deformations must be approximately representable by the class of image transformations

chosen. It is very difficult to manually describe a concise yet complete set of possible de-

formations for non-rigid targets. Active appearance models [27, 109] attempt to learn the

appearances the target can take. Instead of to a single image prototype under a transforma-

tion, the image is matched to a space of image textures under a transformation. The space

of image textures is the top principal components of registered and aligned training images.

Besides a shape transformation, the target state contains the coordinates of a texture in

the principal subspace. The score of a hypothesized shape transform and image texture is

based on the sum-squared difference or normalized cross-correlation between the current

video frame and the hypothesized image texture warped by the hypothesized shape trans-

form. See Figure 4.15 for an illustration of the space of image textures and appearances

generated by this model.

Like active shape models (Section 3.1.2), active appearance models assume that

the correspondence problem between every possible target appearance is solved – one must

be able to identify corresponding points in every training image. If one uses a 2-D model

of target shape and appearance, then this is impossible if the targets exhibit significant

out-of-plane rotation. As discussed in Section 3.1.2, 3-D models of shape are not applicable

to targets that deform as much as the mice. Even if one solves the correspondence problem,

the features present in the mouse texture are small in size, thus small errors in registration

cause the appearance model to fail. Figure 4.16 illustrates this. This example suggests that

41

60 Chapter 7 – FAME – A Flexible Appearance Modelling Environment

-3 std. dev. mean texture +3 std. dev.

Figure 7.9: Texture deformation using the three largest principal modes (row-wise, top-
down).

(a) - 3 std mean + 3 std (b)

Figure 4.15: (a) Principal components of an active appearance model representing faces.
Each row corresponds to a different principal component. The left column is the image
texture -3 standard deviations along a principal component, the middle column is the mean
image texture, and the right column is the image texture +3 standard deviations along a
principal component. Images from [109]. (b) The active appearance model fit to a novel
input video frame. The top image is the original input image. The bottom image contains
the fit active appearance model overlaid on the original image. Images from [108].

the texture of a mouse is rich enough in features to warrant a complex, static model of

texture.

4.5.3 Part-Based Models

To deal with large amounts of shape variation and occluded/missing parts, the

above appearance models have been generalized to part-based models [89, 106, 61] (see

Section 4.5.3). The target is broken into multiple parts. Each part has an individual image

template or active appearance model. See Figure 4.17 for an illustration.

As discussed in Section 4.5.3, it is not clear how to break a mouse into parts, as

they are not as articulated as most of the subjects of part-based models.

4.5.4 Online Appearance Models

The above methods use static templates that are learned or set before tracking

begins, and never updated. This template must be invariant to any lighting changes or out-

of-plane rotation that occurs in the video sequence. Instead of trying to develop an image

42

(a) (b) (c) (d)

- 3 std mean + 3 std
(e)

Figure 4.16: Active appearance models for mice. We manually labeled 11 corresponding
points in 7 images, each 10 frames apart. This corresponds to about 2 seconds of video in
which the amount of out-of-plane rotation and deformation is small enough that correspon-
dences could be defined. Using leave-one-out cross validation, we illustrate the performance
of the learned active appearance model from this training data set. (a) Manually entered
correspondences. (b) Training images warped so that correspondence points match loca-
tions in first training image. (c) Projection of each training image on the 5 dimensional
principal subspace computed from the other 6 training images. (d) Absolute difference be-
tween (b) and (c). (e) First principal component of active appearance model learned. We
see that the projections in (c) looks basically like the mean image in (e), and most of the
texture is lost, even in this short sequence. The texture that is captured is due mainly to
lighting changes. The hair of these mice is blonde at the ends and brown at the roots, thus
it is lighter when seen at an angle. In future work, we plan to investigate if this type of
texture information can benefit tracking through occlusions.

43

(a) (b) (c) (d)

Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detectors for varying frames. In (a) and (b) we consider
the performance of the models on the training frames. In (c) and (d) we look at performance on
the entire sequence. Our models perform similarly on both the training and test frames, so they
seem to generalize well. For small , both detectors fortuitously learn a good model due to a lack of
background clutter. As increases, background clutter leads our edge detectors to construct poor
appearance models. For large , clustering yields working models irrespective of the detectors.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self-starting tracker on ”Weave Run”. We show a subset of frames illustrating one figure
passing another, with the learned appearance templates below. Note the correct figure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
fixed (this would prove difficult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.

!"#$%%&'()*+#,+-.%+/001+2333+4#567-%"+8#$'%-9+4#(,%"%($%+#(+4#567-%"+:'*'#(+;(&+!;--%"(+<%$#)('-'#(+=4:!<>01?+
@0A1BAC@CD01+E@FG00+H+/001+2333+

(a) (b) (c) (d)

Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detectors for varying frames. In (a) and (b) we consider
the performance of the models on the training frames. In (c) and (d) we look at performance on
the entire sequence. Our models perform similarly on both the training and test frames, so they
seem to generalize well. For small , both detectors fortuitously learn a good model due to a lack of
background clutter. As increases, background clutter leads our edge detectors to construct poor
appearance models. For large , clustering yields working models irrespective of the detectors.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self-starting tracker on ”Weave Run”. We show a subset of frames illustrating one figure
passing another, with the learned appearance templates below. Note the correct figure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
fixed (this would prove difficult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.

!"#$%%&'()*+#,+-.%+/001+2333+4#567-%"+8#$'%-9+4#(,%"%($%+#(+4#567-%"+:'*'#(+;(&+!;--%"(+<%$#)('-'#(+=4:!<>01?+
@0A1BAC@CD01+E@FG00+H+/001+2333+

(a) (b) (c) (d)

Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detectors for varying frames. In (a) and (b) we consider
the performance of the models on the training frames. In (c) and (d) we look at performance on
the entire sequence. Our models perform similarly on both the training and test frames, so they
seem to generalize well. For small , both detectors fortuitously learn a good model due to a lack of
background clutter. As increases, background clutter leads our edge detectors to construct poor
appearance models. For large , clustering yields working models irrespective of the detectors.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self-starting tracker on ”Weave Run”. We show a subset of frames illustrating one figure
passing another, with the learned appearance templates below. Note the correct figure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
fixed (this would prove difficult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.

!"#$%%&'()*+#,+-.%+/001+2333+4#567-%"+8#$'%-9+4#(,%"%($%+#(+4#567-%"+:'*'#(+;(&+!;--%"(+<%$#)('-'#(+=4:!<>01?+
@0A1BAC@CD01+E@FG00+H+/001+2333+

(a) (b) (c) (d)

Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detectors for varying frames. In (a) and (b) we consider
the performance of the models on the training frames. In (c) and (d) we look at performance on
the entire sequence. Our models perform similarly on both the training and test frames, so they
seem to generalize well. For small , both detectors fortuitously learn a good model due to a lack of
background clutter. As increases, background clutter leads our edge detectors to construct poor
appearance models. For large , clustering yields working models irrespective of the detectors.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self-starting tracker on ”Weave Run”. We show a subset of frames illustrating one figure
passing another, with the learned appearance templates below. Note the correct figure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
fixed (this would prove difficult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.

!"#$%%&'()*+#,+-.%+/001+2333+4#567-%"+8#$'%-9+4#(,%"%($%+#(+4#567-%"+:'*'#(+;(&+!;--%"(+<%$#)('-'#(+=4:!<>01?+
@0A1BAC@CD01+E@FG00+H+/001+2333+

(a) (b)

Figure 4.17: (a) Examples of part-based image templates. (b) These part-based image
templates fit to a video frame. Images from [90].

Figure 1: A person moves from dark toward bright area with large lighting and pose changes. The
images in the second row shows the current sample mean, tracked region, reconstructed image, and
the reconstruction error respectively. The third and forth rows shows 10 largest eigenbases.

Figure 2: An animal doll moving with large pose, lighting variation in a cluttered background.

models the appearance of the target, as shown in eigenbases and reconstructed images, in
the presence of noisy background pixels.

We recorded a sequence to demonstrate that our tracker performs well in outdoor environ-
ment where lighting conditions change drastically. The video was acquired when a person
walking underneath a trellis covered by vines. As shown in Figure 3, the cast shadow
changes the appearance of the target face drastically. Furthermore, the combined pose and
lighting variation with low frame rate makes the tracking task extremely difficult. Nev-
ertheless, the results show that our tracker successfully follows the target accurately and
robustly. Due to heavy shadows and drastic lighting change, other tracking methods based
on gradient, contour, or color information are unlikely to perform well in this case.

4.2 Discussion

The success of our tracker can be attributed to several factors. It is well known that
the appearance of an object undergoing pose change can be modeled well by view-based

Figure 4.18: Example of the updates to the eigenspace template from [72]. The large
image shows face tracking results in a video sequence with lighting changes and out-of-
plane rotation. The second row shows the current sample mean, the part of the video frame
matched to the template, the closest image in the appearance manifold, and the error of
the match. The last two rows show images from the top 10 principal components. Image
taken in full from [72].

texture that applies in all situations, many approaches update the image texture online.

That is, after every video frame, the part of the video frame that matched the previous

template is incorporated into the new template. For example, [9] replaces the previous

template with the part of the current video frame matched. [72] and [71] add the matched

part of the video to the image manifold representing the target. See Figure 4.18 for an

example of the changes to the appearance template over time.

We tried an approach similar to [9] for mouse tracking. We represented the hidden

state of a mouse by an ellipse. Given the position of the ellipse in the first frame, we

searched for the affine transformation of the image region within the ellipse that resulted

in the largest normalized cross-correlation with the second image. The hidden state in the

second frame is then the affine transformation applied to the hidden state in the first frame.

44

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.19: Selected frames of an online tracking algorithm applied to mouse tracking.
The position and therefore the texture of the mouse can change quickly. As the algorithm
implemented uses a local search method to find the best fit, even from frame (a) to frame
(b) the position of the mouse is not fit well. The front mouse is completely lost during the
occlusion. This could either be because there are not enough features available, because of
the local search procedure, or both.

We tried to track the front mouse in this way. This method failed during the first occlusion.

See Figure 4.19 for an illustration of the results.

From discussion with the authors of [72] and [71], we determined that the appear-

ance of a mouse changed too rapidly for tracking to be aided by the use of more complicated

appearance manifolds.

4.6 Feature Point-Based Tracking

When few assumptions can be made about the shape or appearance of the target,

feature point-based tracking is popular. Instead of matching a template describing the global

appearance of the target, or even the appearance of a few specific object parts, feature point-

based tracking matches small, selected windows around feature points in consecutive frames.

These feature points are detected automatically using criteria that describe how trackable

the features are. For example, the criterion used in [105] is the minimum eigenvalue of

the 2 × 2 gradient matrix, a quantity directly related to the effectiveness of the tracking

algorithm employed in [105]. Other criteria include cornerness and other interest descriptors

[97]. These features are tracked from the first frame to the second by finding the motion

parameters (e.g. translation or affine) that lead to the best match in the second frame in

terms of sum-squared distance.

45

4.7 Feature Point-Based Mouse Tracking

We experimented with [105] on the mouse video. We used the implementation or

KLT available at [14]. All parameters were set to their default values. In our experiments,

we tracked 150 features in each frame. If a feature was deemed to be lost, we detected a

new feature to replace it. In Figures 4.20 and 4.21, we plot some of the features tracked.

We plot only those features that move more than four pixels within their lifetimes.

There are three occlusions in this sequence. Let’s interpret the results frame by

frame with respect to these occlusions. In frames 1-7, no features are tracked on mouse 3 as

it occludes mouse 2, most likely because of motion blur. However, the heads of mice 1 and

3 are (partially) tracked as mouse 3 occludes mouse 1 in frames 13-30. In frames 65-77, no

features are reliably tracked on mice 1 and 2 as the mouse 2 occludes mouse 1. In frames

83-88, a point at the intersection of two mice is tracked. This is not useful for inferring

the position of either mouse. From frames 83-100, some some features on mice 1 and 2 are

successfully tracked.

Thus, useful signal for tracking through occlusions was available in one of the

three occlusions. In addition, the results are extremely noisy. Finally, points that were

successfully tracked were usually only tracked for a few frames. This is because most of

the features were on the boundary of a mouse. Features on the boundary are often not

long-lasting because of self-occlusion. Our conclusion was that KLT was not well-suited to

the mouse tracking application because of the lack of distinguishing texture in the interior

of the mouse.

However, this investigation into KLT led us to try a number of more successful

appearance features. Since points on the boundary of the mouse were somewhat successfully

tracked by KLT, we experimented with edge tracking algorithms, as discussed in Section

4.9. Because there was not enough texture in the interior of a mouse to track using small

feature windows, we experimented with affine flow, which pools texture information in the

interior of an entire mouse (see Section 4.8.3).

4.8 Optical Flow

Instead of selecting only a sparse set of good features to track, optical flow al-

gorithms approximately track every pixel in the image. This is similar in goal to the

online region-based correlation approaches described in Section 4.5, e.g. [9]. However, since

searching for the closest match to every point in the first frame is prohibitive, optical flow

46

1 2
3

Figure 4.20: Results of running the KLT tracker [105] on the mouse tracking data. Here,
we plot 18 equally-spaced frames of the 100 frame test sequence (frame numbers are shown
for each row at the right of the image). So that we can reference different mice, the mice are
numbered in the first frame. In a given frame, we plot the tracks of some detected features
over time. The end of the track corresponds to the current location of the feature, while the
start of the track corresponds to the location in which the feature was first detected. The
location of the feature in the current frame is indicated by a circle. Thus, we see chains of
feature detections following mouse 1 as its head drops.

47

Figure 4.21: All the tracks detected in the sequence illustrated in Figure 4.20 over time.
The z-axis corresponds to time. For comparison, tracks are plotted with the same colors in
Figure 4.20 as in this figure.

48

optimizes a first-order approximation to the brightness constancy assumption. This is the

assumption that every pixel in the first frame I1 is present in the next video frame I2, but

may have translated:

∀ pixel locations p, ∃ translation ∆p such that I1(p) = I2(p + ∆p) (4.15)

The brightness constancy assumption does not hold for most image sequences. It is violated

when parts of the scene are occluded or unoccluded. For instance, as a target translates

across a scene, part of the scene at the front of the target is occluded while part of the scene

at the back of the target is unoccluded. It is also violated if lighting conditions change, for

instance if the target moves from a well-lighted area to a less lighted area. Nonetheless,

optical flow has been extremely successful in practice.

The Taylor series first-order approximation to the brightness constancy assumption

at location p is:
∂I1(p)

∂x
u +

∂I1(p)
∂y

v + (I2(p)− I1(p)) = 0. (4.16)

where u and v are the x- and y-components of the translation p, respectively. This approx-

imation is reasonable if the translation ∆p = (u, v)> is small.

The brightness constancy assumption does not fully constrain the translation

(u, v)> for each pixel location p, as there are two unknowns in Equation (4.16). The

solution is to constrain (usually overconstrain) the system by assuming the optical flow

field is spatially coherent. There are two common types of spatial coherence. Both types

are incorrect at motion boundaries, thus the optical flow estimates will be incorrect at these

locations.

4.8.1 Horn-Schunck Flow

The first method is to add a regularization term to encourage spatial coherence:

J(u,v) =
∑
p

[error (I1x(p)u + I1y(p)v + (I2(p)− I1(p))) + λJsmooth(u,v)] (4.17)

where u and v are the vectors of flow at every location, the sum is over all locations in the

image, I1x(p) and I1y(p) are discrete approximations of the x- and y-gradients of the first

image at location p, respectively, error(·) is any error function, Jsmooth(·) is a smoothness

criterion, and λ is the weight of the smoothness term relative to the error term. The error

49

term proposed in [53] is the squared-error:

errorsq(z) = z2. (4.18)

The smoothness term proposed in [53] penalizes the first-order gradient:

Jsmooth(u,v) =
∑
p

1
2|Np|

∑
q∈Np

[
(up − uq)2 + (vp − vq)2

]
(4.19)

where again the first sum is over all locations p in the image and Np is the set of pixel

locations neighboring p to the north, south, east, and west. Putting together Equations

(4.17–4.19), the optical flow criterion proposed in [53] is

JHS(u,v) =
∑
p

[
(I1x(p)u + I1y(p)v + (I2(p)− I1(p)))2

]

+ λ
∑
p

 1
2|Np|

∑
q∈Np

(
(up − uq)2 + (vp − vq)2

) (4.20)

The heuristic of penalizing the first-order gradient of the flow may cause errors

wherever the true motion in a neighborhood is not uniform. This will occur in general

occur even within moving objects. However, it causes the largest errors at the boundaries

of moving objects, where the true difference in flow is large. Estimation errors at motion

boundaries can also be propagated to other locations.

4.8.2 Lucas-Kanade Flow

The second method of incorporating spatial coherence into the brightness con-

stancy assumption is to assume that the motion within a small region R of the image is

uniform [76]. Then, the goal is to find the single motion vector (u, v)> that minimizes the

error of Equation (4.16) summed over the entire region R:

J(u, v) ,
∑
p∈R

error (I1x(p)u + I1y(p)v + (I2(p)− I1(p))) (4.21)

50

where error(·) is the chosen error function. In [76], the squared error defined in Equation

(4.18) is used. The optical flow criterion proposed in [76] is

JLK(u, v) =
∑
p∈R

(I1x(p)u + I1y(p)v + (I2(p)− I1(p)))2 , (4.22)

One advantage is that the optimal solution can be found in closed form: u

v

 = −(M>
LKMLK)−1M>

LK

 ∑
p Ix(p)(I2(p)− I1(p))∑
p Iy(p)(I2(p)− I1(p))

 (4.23)

where

MLK =

 ∑
p I2

x(p)
∑

p Ix(p)Iy(p)∑
p Ix(p)Iy(p)

∑
p Iy(p)2

 . (4.24)

To overconstrain the system, the number of pixels in region R must be large enough to

make the matrix M>
LKMLK well-conditioned. This is called the aperture problem, and will

occur if the region is uniform in intensity or has a non-zero gradient in only one direction.

If the gradient in one of the direction of the patch is due mainly to noise or other features

that do not obey the brightness constancy assumption, then the computed optical flow may

be arbitrarily incorrect. In addition, the estimate will be incorrect if there are multiple

motions in the region, violating the spatial coherence assumption.

4.8.3 Affine Flow

To be applicable on larger regions more likely to contain enough signal to con-

strain the problem, the Lucas-Kanade optical flow criterion can be extended to more com-

plex parametric motion models. For example, one could model the motion as an affine

transformation:  up

vp

 =

 a1

a4

+

 a2 a3

a5 a6

p, (4.25)

51

where a = (a1, ..., a6)> are the parameters of the affine transformation. Affine flow finds

the parameters a that best satisfy Equation (4.21):

J(a) =
∑
p∈R

error (I1x(p)up + I1y(p)vp + (I2(p)− I1(p)))

=
∑
p∈R

error (I1x(p)(a1 + (a2 a3)p) + I1y(p)(a4 + (a5 a6)p) + (I2(p)− I1(p)))

=
∑
p∈R

error
(
z>pa + (I2(p)− I1(p))

)
(4.26)

where

zp , (I1x(p), I1x(p)x, I1x(p)y, I1y(p), I1y(p)px, I1y(p)py)
> (4.27)

and p = (px, py)>.

If the squared error is used, then this can be written as

J(a) =
∑
p∈R

[
z>pa + (I2(p)− I1(p))

]2
(4.28)

Since the affine transformation is linear, the optimal parameters a can again be found in

closed form:

a = −(Z>Z)−1ZIt (4.29)

where Z is the matrix whose columns are zp and It is the column vector whose entries are

I2(p)− I1(p).

4.8.4 Robust Flow

The spatial coherence constraints of Equations (4.17) and (4.26) are not always

correct, [15] suggests using robust error functions error(·) instead of the squared error.

Their experiments estimate the affine flow using the Geman-McClure norm with parameter

σ:

error(z;σ) =
z2

σ + z2
(4.30)

Their estimation algorithm is an iterative algorithm that using the simultaneous over-

relaxation technique.

52

(a) Frames 0, 15, and 30 of the “flower
garden” sequence.

(b) Three motion segments computed.

Figure 4.22: Example of segmentation of a video sequence into different objects. (a) shows
example images from the video sequence in which the camera moves. Because the tree,
flower bed, and house are at different depths, their image motions are distinct. (b) shows
the three motion segments computed. The first motion segment corresponds to the flower
bed, the second to the sky and house, the third to the tree. The affine motion estimated
for each segment is also plotted in (b). Images taken from [120].

4.8.5 Motion Segmentation

A number of approaches, some of the earliest being [1, 33], use affine flow to

segment a short sequence of images into different objects, the hypothesis being that one

object has a single motion and different objects have different motions. See Figure 4.22 for

an example. These techniques are called layer-based because they model an image in the

sequence as the superposition of 2-D layers, each layer representing an object.

[1, 120] describe a k-means-based iterative method for segmenting an image into

regions, each of whose individual motion is well-described by an affine transformation. At

each iteration, from the current affine motion parameters of the segments, the support of

the segments is estimated. Then, from the support of the segments, the affine motion

parameters are re-estimated. [33] describes a similar technique for segmenting an image

into regions whose motion is well described by individual translations using the more robust

truncated squared error instead of simply squared error. [55] presents an algorithm that

sequentially estimates the motion and support of the object with the dominant motion,

removes the pixels following this motion, and continues to the next object. [7] formalizes

an optimization criterion and presents an EM-based alternative to these algorithms for

different motion models.

The above motion segmentation algorithms only take into account the motion of

a pixel, not the location of the pixel. [121, 3, 81, 104] present methods of incorporating

spatial coherence into the segmentation criterion.

[111, 112] describe their region-based algorithm in the motion segmentation frame-

work. At every frame [111], simultaneously estimates the positions of the targets and assigns

membership of every pixel location to a target.

53

In more detail, xtk = (xtk, ytk, θtk,Atk, ẋtk, ẏtk, θ̇tk)>, the hidden state at frame

t for object k, contains the following properties: the target center (xtk, ytk), the rotation

of the target θtk, the target center velocity (ẋtk, ẏtk), the rotational velocity θ̇tk, and the

appearance, represented by a texture map Atk. To enforce the constraint that each seg-

ment’s shape, appearance, and motion change gradually, [111] places a prior on the state at

time t given the state at time t− 1. The prior distribution on the state of target k at time

t is Gaussian around the state of target k at time t − 1, with fixed, diagonal covariance.

Soft pixel memberships to targets are assigned based on the distance between the appear-

ance of the pixel and the appearance hypothesized for the pixel by the hidden state. The

MAP state is estimated through a generalized EM algorithm which iteratively assigns pixel

memberships then updates some of the hidden state parameters.

The Pfinder algorithm [125] is similar in many respects to [111]. Pfinder represents

a target by the target center position and position covariance, the target velocity, and its

appearance. In addition, Pfinder also uses an iterative EM-like algorithm to simultaneously

estimate the target’s state and the pixel memberships to targets. One of the main differences

is that the Pfinder appearance model is the mean color and covariance of the color of the

target, instead of a texture map. The two algorithms also differ in the iterative update

steps.

Affine flow tracking combined with motion segmentation proved effective at track-

ing mice through occlusions [18]. Our algorithm used acausal inference to successfully

track mice through occlusions. Because the inference scheme is vital to the success of this

algorithm, we discuss it in Section 7.

4.9 Edge-Based Tracking

All the previously discussed features focus on the appearance of features inside

the target. A very popular approach in tracking is to instead score a hypothesized hidden

state by computing the distance between the predicted boundary of the target and edges

detected in the image [78, 16]. Edge-based approaches have the advantage of being robust

to many types of appearance changes. For example, we can fit a model of a person boundary

to different people wearing different clothes. Edge-based approaches are also invariant to

illumination changes. An additional advantage of edge-based approaches is that appearance

scores can be computed quickly. Instead of needing to examine every pixel within the target,

one only needs to examine pixels on the boundary.

54

Given the hypothesized target boundary, there are a few common methods for

computing how well this boundary matches edges in the image. Perhaps the simplest

matching score is the “edginess” of the pixels directly under the boundary [64]. More

specifically, we compute some edge score, for instance the gradient magnitude of the image

at the locations of pixels in the target boundary, and sum these edge scores. If the edges

are blurred, then the edge score will increase the closer a pixel is to the true location of the

edge.

A similar approach is to directly compute the minimum distance from a predicted

boundary pixel location to any edge location. The average distance for each predicted

boundary pixel location is called the Chamfer distance [45]. Since edges corresponding to

a boundary may not be detected, a more robust measure is the Hausdorff distance [45], in

which the maximum distance is thresholded.

These approaches do not take into account the correlation between the predicted

direction of the boundary at a location and the direction of edges detected in the image.

One method for taking this correlation into account is to compute edges near the predicted

boundary pixel from image gradient in the direction normal to the boundary at that location

[16].

4.9.1 Contour Likelihood Model

[78] describes a generative model of edges detected in the image given the bound-

ary of the target. The advantage of this generative model is that it makes use of more

information in the image. While the Chamfer score only uses the closest edge detected,

this method uses all edges detected. This work focuses on a measurement line model of the

boundary. Instead of modeling the probability of the entire edge image, this work models

the distribution of detected edges along line segments normal to the boundary at a few

discrete points. Figure 4.23 illustrates these measurement lines.

Let {p1, ...,pm} be the locations of the m measurement lines in the image. Let

{n1, ...nm} be the unit normals to the predicted boundary at locations {p1, ...,pm}. Let L

be the length of each measurement line. [78] constructs the following generative model of

the edge detection image. For each location p on the boundary, there is some probability q01

that the edge corresponding to the boundary is not detected. If it is detected, the location

of the detection is chosen randomly from a Gaussian distribution on the line normal to the

boundary centered at the boundary location p. There will also be spurious edge detections,

caused by clutter in the background and features in the target. [78] assumes that the

55

pi

ni

Figure 4.23: Illustration of measurement lines on a mouse contour. The number and lo-
cations of edge detections along a measurement line are modeled. pi is the center of the
measurement line and ni is the unit normal of the contour at the measurement line location.

distributions of clutter in the foreground and background are the same and fixed. Let

bL(n) be the probability of detecting n edges from clutter. Finally, assume that detections

from clutter are distributed uniformly along the measurement line. Let zi = (zi1, ..., zini)

be the 1-D locations of detected edges along the measurement line where the origin is at

the measurement line center. Given these assumptions, we can evaluate the likelihood of

detecting zi as

p(zi|x) =
ni∑

j=1

(1− q01)
(

1
Lni−1

)
b(ni − 1)N (zij ; 0, σ2) + q01

(
1

Ln

)
b(ni). (4.31)

Term j of the sum corresponds to the probability that detection zij was produced by the

edge and all the other detections were produced by clutter. The last term in the equation

corresponds to the probability that all the detections were produced by clutter. [78] assumes

the measurement locations of edges detected along measurement lines are conditionally

independent, thus p(z1:m|x) =
∏m

i=1 p(zi|x). Generalizations and perturbations of this

model can be found in [78].

One of the main difficulties with this approach is setting the parameters. The

parameters must be set to account for inaccuracies in the target shape model and the

shortcomings of the inference algorithm. It is difficult to quantify these inaccuracies using

intuition and domain knowledge. Since we multiply the measurement line likelihoods, if

even one of these measurement line likelihoods is close to zero, the entire likelihood is

zero. Parameters must therefore be set so that measurement line likelihoods are fairly

flat. In addition, we must consider the joint effect of all the parameters. For example, the

56

parameters dictate precisely how far away a detected edge must be for it to be more likely

to be produced by clutter than by the boundary.

4.10 Contour Tracking for Mice

Contour tracking relies on an accurate edge detection algorithm. This is a challenge

for our video sequence because there is a large amount of clutter in the scene. Much of

the bedding has a high image intensity gradient and there are scratches on the cage. It is

difficult to detect edges between the mice and bedding because the bedding in the shadow

of the mice is very similar in color to the mouse. In addition, the edges between pairs of

mice are subtle, if visible at all. We tried numerous edge detection methods, and the only

one that gave reasonable results was the boundary detection algorithm used by the Berkeley

Segmentation Engine (BSE) [80, 41]. BSE computes the posterior probability of an edge

based on the brightness, texture, and color gradient using a classifier trained on 12,000

manually labeled images. We credit BSE’s superior performance in part to the texture

gradient, which is robust to the types of clutter described. Figure 4.24 shows example

images illustrating BSE’s performance. The major downside of the BSE boundary detector

is it is expensive – processing one entire image took over five minutes on a 2.8 GHz machine.

We hypothesize that this algorithm can be optimized for tracking applications to reduce this

cost. In addition, we plan to try faster methods such as [36] that can be tuned specifically

to the mouse tracking task.

Because the BSE boundary detector outputs soft probabilities rather than hard

edge classifications, we used a soft version of the generic contour likelihood. This was

essential for detecting edges between pairs of mice, as BSE often outputs a weak response

for these edges (see Figure 4.24(b)). The BSE output for location g is p(edge|yg), the

probability that g is an edge given the observations yg. We model the probability of a

binary classification of each measurement line pixel z given the edge features y as:

p(z|y) =
L∏

i=0

p(edge|yi)zi(1− p(edge|yi))1−zi . (4.32)

We assume equal priors for all z, so this is equal to p(y|z). The probability of observing

57

Figure 4.24: Comparison of BSE boundary detection and Canny edge detection on example
frames. The left column shows the original video frame, the middle column shows the soft
scores output by BSE, and the third column shows the Canny edge detection results. We
can see that edges in the bedding and edges in the corners from scratches on the cage have
a lower score than real edges in the image, whereas in the Canny detection results all edges
have equal weight. This is due to the texture gradient computed by BSE. In the first row, we
see that both methods detect the edge between the two mice on the left. In the second row,
BSE gives a weak edge score at the boundary between the two left mice, while Canny does
not detect this edge. In addition, edges between the back mouse and the green background
are missed by Canny. In the third row, we see scratches on the cage in front of the mouse
on the ceiling. While BSE only gives a weak response to some of these edges, many edges
are detected by Canny, occluding the contour of the mouse.

58

1 10 20

25 27 28

29 40

Figure 4.25: Results of using independent contour likelihood appearance models for tracking
multiple mice. In frame 28, the two target boundaries follow a single mouse.

measurement line y given the hypothesized contour is the sum over all these possibilities:

p(y|x) =
∑

z∈{0,1}L+1

p(y|z)p(z, n|x), (4.33)

where p(z|x) is the generic contour likelihood described in Equation (4.31). While this

computation is extremely fast for small L, it grows exponentially with L. To combat this,

the sum can be taken only over z such that p(y|z) is significant.

4.11 Multitarget Likelihoods

We have discussed a number of appearance models for single target tracking. In

this section, we describe methods of constructing multitarget appearance models. An obvi-

ous approach is to treat the targets independently. For instance, suppose one is using the

contour likelihood appearance model just described in Section 4.9.1 . For each target, we

compute and combine the contour likelihood of each target’s boundary. We could combine

these likelihoods by multiplying them. Inevitably, this approach will result in multiple tar-

get boundaries following the single target that matches the likelihood model best. This is

illustrated in Figure 4.25. The problem with this approach is that the appearance score of

multiple targets can be reenforced by a single observation (a single edge detection).

59

[111] and [125] describe motion segmentation algorithms for tracking multiple tar-

gets (see Section 4.8.5). However, the goal of these algorithms is really to track the visible

pixels of the targets. If, for instance, half of a target is occluded, both techniques estimate

the position of the target as just the position of the unoccluded part of the target. This

is intentional in Pfinder; it is meant to track blobs of pixels in the image. If a target is

occluded, its covariance matrix will just shrink. [111] does not address this issue, as the

semi-minor and semi-major axis lengths for a target are fixed. Thus, if the algorithm were

applied to video in which a target was occluded, it would most likely fail. While these ap-

proaches do not allow the appearance score of multiple targets to be reenforced by a single

pixel appearance, they accomplish this in a way that penalizes multiple targets containing

the same pixel locations.

To obtain the desired multitarget behavior, one must consider the data association

problem: which observations were produced by each target? In addition, one must have a

reasonable model of occlusions. This model must take into account the states of the other

targets when estimating the observations expected for a given target.

Data association is a term originating in research on tracking from radar obser-

vations [102]. In radar tracking, at any time t, we are given a set of (x, y) coordinates of

detections. It is assumed that these detections are either produced by a target close to

the detection or are produced by noise. Each target is assumed to produce at most one

detection, and each detection is assumed to be produced by at most one target. The data

association problem is then matching targets with detections. This problem is much sim-

pler (though not necessarily easier) than the data association problem in visual tracking.

In visual tracking, we must associate each feature in the video frame with a target or with

background.

Multitarget appearance scores are difficult to optimize because we must score the

hidden states of all the targets jointly. Thus, the size of the hidden state space increases

exponentially with the number of targets K. Figure 4.28 shows this curse of dimension-

ality. In Figure 4.28(a), we see the results of running an independent tracker for each

target. In Figure 4.28(b), we see the results of running a joint multitarget tracker with

the same amount of computation. As this sequence does not have an occlusion, there is no

disadvantage to running independent trackers. We see that results are much worse for the

multitarget tracker.

60

(a) Log-likelihood ratio. (b) Predicted hidden state. (c) Predicted probability
of foreground.

Figure 4.26: Illustration of BraMBLe appearance model. (a) The log-likelihood ratio of
foreground to background for each patch in the image. This can be thought of as BraMBLe’s
representation of the video frame. (b) A hypothesized joint hidden state of all the mice.
(c) Probability that each pixel is within a mouse for the proposed hidden state. BraMBLe
measures how well (a) and (c) match.

4.11.1 Bayesian Multiple Blob Likelihood

The Bayesian multiple blob likelihood (BraMBLe) [57] is a multitarget appearance

model that uses background and foreground appearance features. Given the hypothesized

target positions x, BraMBLe first computes the label lg(x) for each image location g on

a grid as either foreground (within some target) or background (outside all targets). The

likelihood of a patch at location g given that it is background, pg(yg|background) is modeled

as discussed in Section 4.1. The likelihood of a patch given that it is foreground is modeled

as discussed in Section 4.3.2. The grid features are assumed to be independent given the

state, so the likelihood of the entire frame is p(y|x) =
∏

g pg(yg|lg(x)), where p(yg|fore)

and pg(yg|back) are the foreground and background likelihoods.

BraMBLe can be interpreted as representing the current video frame as the log-

likelihood ratio of foreground to background. Then, it finds the hidden state of the targets

such that the shape of the region predicted to be foreground matches the shape of the region

with a high log-likelihood ratio. This is illustrated in Figure 4.26.

61

4.11.2 Sprites

[60] describes a multitarget region-based template appearance model. Let sk be

the appearance of target k in the current frame. This appearance map has an entry for each

pixel location in the image. Let mk be a binary mask indicating which pixels belong to

target k in the current frame. Like sk, there is an entry in mk for each pixel location in the

image. Let b be the background appearance at the current frame. Let cl be the identity of

the lth target in depth, where c1 is the front target in the current frame and cK is the back

target in the current frame. This model of depth is called 2.1-dimensional. The expected

appearance y of the current frame using these notations is assumed to be

y = mc1 ∗ sc1 + (1−mc1) ∗ {mc2sc2 + (1−mc2) ∗ [...

∗ (mcK ∗ scK + (1−mcK)b)) ...]} (4.34)

[60] is actually not intended for tracking applications. It works the same on an

unordered set of images as on a sequence of frames. Instead of assuming a motion model,

it assumes that the target mask and target appearance map in a particular frame are each

distributed according to a Gaussian around a mean target mask and a mean appearance

map, respectively. This is not effective in the mouse tracking application, as the mice

are visually identical and without a motion model there is no distinguishing one from

another. [93] describes a similar 2.1-dimensional multitarget model for tracking. This

model is explored for foreground likelihood maximization, region-based template matching,

and edge tracking.

4.11.3 Multitarget Contour Likelihood

[79] describes a multitarget extension of the contour likelihood model discussed

in Section 4.9.1. This model enforces that a detected edge can only belong to one target.

This model is significantly more complex than the model in Equation (4.31) because there

are many more configurations we must sum over. Suppose a measurement line centered on

one target’s predicted boundary also intersects the predicted boundary of a second target.

Then the following data associations can occur for this two target case.

1. Both boundaries are undetected and all observations are caused by clutter.

2. Observation i was produced by target k, the other target’s boundary is undetected,

and all other observations are caused by clutter for i = 1, ..., n, and k = 1, 2.

62

3. Observation i1 was produced by the first target, observation i2 6= i1 was produced by

the second target, and all other observations are produced by clutter, for i1 = 1, ..., n

and i2 = 1, ..., n.

More complex cases can occur with three or more targets. If two intersections are predicted

with the measurement line, the likelihood is

p(z|x) = q02b(n)
(

1
Ln

)
+

q12b(n− 1)
(

1
Ln−1

)(n∑
i=1

N (zi; ν1, σ
2) +

n∑
i=1

N (zi; ν2, σ
2)

)

+ q22b(n− 2)
(

1
Ln−2

) n∑
i1 6=i2

N (zi1 ; ν1, σ
2)N (zi2 ; ν2, σ

2) (4.35)

where q02 is the probability of missing two detections, q12 is the probability of missing one

detection, q22 = 1− q01− q02, ν1 is the predicted location of the first target’s boundary on

the measurement line, and ν2 is the predicted location of the second target’s boundary on

the measurement line.

4.12 Multitarget Likelihood Models for Mice

The BraMBLe model is well-suited to the mouse tracking problem, since the back-

ground is relatively static and the foreground is homogeneous in appearance. Empirically,

BraMBLe performs well at estimating the mouse positions (up to a permutation of identity

labels). In addition, the space searched by BraMBLe does grow exponentially with the num-

ber of targets. However, its likelihood function is smooth and well-behaved, in comparison

to those used for contour tracking. Assuming the foreground and background likelihood

models are correct, the log of the BraMBLe score is proportional to the area of overlap of

the predicted foreground region and the true foreground region. Thus, BraMBLe is able to

give a meaningful ranking of two hidden states that are far from the true hidden state. This

properties make the search simple and robust. Another advantage of the BraMBLe model is

that it gives meaningful rankings even if the shape model is inexact. We can reduce the size

of the hidden state space by considering simple models of the mouse shape. For instance,

we can use an ellipse model of the mouse.

The main failure with the BraMBLe model is the lack of signal during severe

occlusions. For example, see the frame in the last row of Figure 4.26. By working only with

63

the log-likelihood ratio of foreground to background, BraMBLe only considers the shape

of the silhouette of all the targets jointly. This is ignoring all information in the interior

of the foreground region. During severe occlusions, much of the signal available is in the

interior of the foreground region. During occlusions, the likelihood will be higher for some

reasonable fits than others based on the relationship between the model of shape and the true

object shape. Because BraMBLe assumes each patch is conditionally independent, often the

difference in scores will be several orders in magnitude. Thus, the posterior distribution of

hidden state will be very peaked at an incorrect estimate. Other inaccuracies were produced

where background or foreground modeling were inaccurate, for instance at shadows.

Nonetheless, the BraMBLe tracking algorithm produced reasonable results. Some

results are shown in Figure 4.27.

The multitarget contour likelihood proved less successful on the mice. While we

were able to achieve good results when the mice were not occluding one another, we could

not get reasonable results during occlusions. We experimented with a number of param-

eter settings, but were unable to track reasonably through any occlusion. As there are a

number of parameters to set in the multitarget case, we may still have not found the best

parameter setting. While attempting to determine the cause of the failure, we noticed that

the assumptions that one detection was caused by at most one target and one target can

cause at most one detection often did not hold.

4.13 Combining Appearance Features

More robust trackers can be achieved by combining sets of the appearance features

described in this chapter. Background modeling is often combined with other appearance

features since it can greatly reduce the effects of background clutter. A number of algorithms

combine edge-based tracking methods with tracking methods that model the interior of the

targets.

[13] combines kernel-based tracking (Section 4.3.1) and edge tracking for single

target tracking. This is done by simply adding together the contour score and foreground

score. [22] also combines kernel-based tracking with an edge-based module for single target

tracking. This is done using a Markov random field (MRF) model with a variable for each

pixel location in each video frame.

[93] combines foreground likelihood maximization (Section 4.3.2) with edge track-

ing and region-based matching with edge tracking for multiple targets. This approach also

64

Frame 52 Frame 140 Frame 177

Frame 520 Frame 530 Frame 535

Frame 545 Frame 580 Frame 585

Frame 590 Frame 600 Frame 605

Figure 4.27: Example results of running BraMBLe on the mouse tracking application. In
the first row, we see that BraMBLe is very effective at tracking the mice when there are
no occlusions, even when motion is fast. Frame 52 shows that some errors can occur when
background and foreground modeling is inaccurate, as is the case on the ceiling. The lower
three rows show frames from an occlusion. We see in frames 520 and 530 that BraMBLe
tracks the green mouse as it occludes the red mouse and the blue mouse for a few frames.
In frame 540, the identities of the blue and green mouse have swapped. In the rest of the
frames, we see that BraMBLe chooses a state such that most of the mouse pixels are labeled
as foreground, but that this state does not correctly identify the positions of the individual
mice.

65

150 175 185

186 200 225
(a) Independent trackers.

150 175 185

186 200 225
(b) A single joint multitarget tracker.

Figure 4.28: Illustration of the curse of dimensionality associated with multitarget track-
ing. In (a) the targets are tracked independently using the single target contour likelihood
described in Section 4.9.1. In (b), the targets are tracked jointly using the multitarget
likelihood described in Section 4.11.3. While in general we see that the estimates in (b) are
more inexact than those in (a), we also see that when the mouse moves quickly, as it does
from frames 175-200, the target can be lost entirely my the multitarget likelihood. The
only difference between these two trackers is that the search for the optimal state is done
independently in (a) and jointly in (b). In frame 225, the blue mouse stands up again and
regains its tracker.

66

adds the edge tracking and region tracking scores.

[56] combines foreground likelihood maximization (Section 4.3.2) with edge-based

tracking for single target tracking. Instead of adding the two types of scores together, [56]

uses the region-based score only to improve inference. The contour likelihood is the only

score that is actually reflected in the posterior distribution.

4.14 Combining Multiple Cues for Mouse Tracking

We found that combining the BraMBLe multitarget appearance likelihood (Section

4.11.1) with the single target contour likelihood (Section 4.9.1) worked well for mouse track-

ing. This is a natural combination because both algorithms have complementary strengths.

The multiple blob tracker uses a natural multitarget model and searches a simpler space.

On the other hand, contour tracking gives more fine-tuned results and utilizes cues that are

available during severe occlusions.

We represent the useful information in an image observation by two sets of the

features. The blob features yb are those used by the BraMBLe tracker to determine how

much each location matches the foreground and background models. The contour features

yc are the edges in the image. This representation encompasses much of the available signal,

as the interior of the mouse is nearly featureless. Our current model ignores optical flow

features. As discussed in Section 7, these features are useful in the mouse tracking domain,

and we plan on incorporating them in the future.

To combine the BraMBLe likelihood p(yb|x) and a soft version of the generic

contour likelihood p(yc|x) =
∏

k p(yck|x), we assume conditional independence given the

state of the mice:

p(y|x) = p(yb|x)
K∏

k=1

p(yck|xk). (4.36)

While [56] avoids this assumption, it does this by not including the region score at all. It is

essential that p(yb|x) be included in our likelihood in order to use BraMBLe to model the

multitarget dependencies.

This appearance likelihood is similar to those discussed in the previous section

that add together the scores from the different cues. Our approach to multicue, multitarget

tracking is unique because our inference algorithm takes into consideration the complemen-

tary strengths of these two sets of features. We capitalize on the independence assumptions

of our model to perform most of the search independently for each mouse. This reduces the

67

size and complexity of the search space exponentially, and allows our Monte Carlo sampling

algorithm to search the complex state parameter space with a reasonable number of sam-

ples. This is described in detail in Section 6.9. We hold discussion of experimental results

using multiple cues until this section.

4.15 Acknowledgements

Portions of this chapter are based on papers that I have co-authored with others.

Listed below are my contributions to each of these papers.

1. “Tracking Multiple Mouse Contours (without Too Many Samples)” by K. Branson

and S. Belongie [17]. I developed the algorithm, performed the experiments, and

wrote the paper.

2. “Three Brown Mice: See How They Run” by K. Branson, V. Rabaud, and S. Belongie.

With insights from S. Belongie, I was responsible for developing the algorithm, per-

forming the experiments, and writing the paper.

5

Motion Model

As with the hidden state representation, we began our research with a very simple

motion model.

Recall that the motion model describes how the mice move from one frame to the

next. First, we assume that the targets move independently. This means that we can factor

p(xt,1:K |xt−1,1:K) =
∏
k

p(xtk|xt,k−1). (5.1)

Second, we assume that all continuous position parameters follow independent constant

velocity and/or autoregressive Gaussian diffusion models:

xst|xt−1 ∼ N ((I− Γ)(xs,t−1 + Λvs,t−1) + Γx̂s,Σs),

where Γ is the diagonal autoregressive matrix, Λ is the diagonal dampening matrix, and Σs

is the assumed diagonal covariance matrix. Velocities are set by subtracting the previous

state from the current state.

Empirically, we found that this model fit the data well most of the time. Figure

5.1 shows the empirical distribution of the error for the constant velocity fit for the x and

y coordinates of the center of a mouse. This is shown for the data collected automatically

during nonocclusions, as discussed in Section 3.4. There are some instances in which the

constant velocity prediction is very inaccurate. Notice in Figure 5.1 that there are a few

examples in which the error is greater than 20 pixels. This means that, in order for the

search space defined by the motion model to include enough samples from regions near the

true position of the mice for all cases, the variance of the motion model must be large.

To model changes in the discrete contour template described in Section 3.3, we

68

69

(a) (b) (c) (d)

Figure 5.1: Illustration of the error of the constant velocity model prediction of the x- and y-
coordinates of the center of a mouse. (a) and (b) illustrate the error for the x-coordinate, (c)
and (d) illustrate the error for the y-coordinate. (a) and (c) show a histogram approximation
of the probability of an error of given magnitude and sign. (b) and (d) show the cumulatively
probability that the error magnitude is less than a given magnitude.

created some ad-hoc rules that seemed sensible. In our current research, we are working on

learning a similar set of rules for the learned blob and contour templates discussed in Section

3.4. There is a high probability that the contour template does not change. The probability

of changing to a different contour template is based on whether the current and new contour

face the same direction. We first determine which contours are allowed given the generated

shape. If no contour is allowed, we rotate the shape after scaling by the minimum amount

to allow at least one contour. We then decide which direction (left or right) the generated

contour should face (if contours facing both directions are allowed). We flip the direction

with probability proportional to the squared eccentricity. Given the direction, we choose an

allowed contour facing that direction. If the direction has not changed, we choose the same

contour with high probability. All other contours allowed in a given direction are given

equal weight.

5.1 Acknowledgements

Portions of this chapter are based on “Tracking Multiple Mouse Contours (without

Too Many Samples)” by K. Branson and S. Belongie [17]. I developed the algorithm,

performed the experiments, and wrote the paper.

6

Online Inference Algorithms

Once we have assumed a statistical relationship between the hidden states and

video observations, we must define a method for inferring statistics of the hidden states given

a novel video sequence. In online tracking, this relationship is the posterior distribution of

the current hidden state xt given given all observations seen so far, y1:t. Statistics we are

interested in inferring include the MAP estimate of the hidden state at every frame given a

video sequence

x∗t = arg max
xt

p(xt|y1:τ), (6.1)

and the expected value of the hidden state

E[xt|y1:t] =
∫

xtp(xt|y1:t)dxt (6.2)

Recall that we have defined our posterior distribution recursively in terms of the

appearance and motion models:

p(xt|y1:t) =
1
Z

p(yt|xt)
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (6.3)

In visual tracking, usually the relationship between a hidden state and a video frame is

complex, thus there is no analytical expression for the hidden state statistics given the

video sequence. Thus, inference in tracking is almost always approximate.

Much of the research in tracking has focused on improving the performance of

approximate inference algorithms. In this chapter, we describe a few general methods.

70

71

6.1 Greedy Inference

One common inference algorithm involves approximating the posterior distribution

p(xt|y1:t) by a delta function at the approximately optimal hidden state

p(xt|y1:t) ≈ δ(xt − x̂t) (6.4)

The posterior distribution then reduces to

p(xt|y1:t) ≈
1
Z

p(yt|xt)p(xt|x̂t−1). (6.5)

Then, the state xt that maximizes Equation (6.5) is found either approximately or exactly.

Greedily fixing the state of the target at each frame can be dangerous, for example,

during occlusions. If one target is occluded, there is not enough information to accurately

determine the state of this target. However, a greedy decision will be made. If the difference

between the true state and the approximate state is too large, it may be impossible to recover

from this error.

In Section 7, we discuss a greedy iterative algorithm that incorporates information

from the future to successfully track the mice.

6.2 Approximate Kalman Filters

If the motion and appearance models are linear Gaussian, i.e.

p(yt|xt) = N (yt;Axt,Σa), p(xt|xt−1) = N (xt;Bxt−1,Σb) (6.6)

then the posterior distribution p(xt|y1:t) will be Gaussian and we can perform inference

analytically using Kalman filtering [122]. In visual tracking, the appearance model will

almost never have a linear Gaussian form.

The extended Kalman filter (EKF) relaxes the assumption that the means of the

Gaussians be linear functions. Instead, it assumes that these functions are approximately

linear in the neighborhood around the current estimate. That is, if E[xt|xt−1] = f(xt−1

72

and E[yt|xt] = h(xt) then it approximates these as

f(xt−1) ≈ f̂(xt−1) = f(x̄t−1|t−1) + (∇f(x̄t−1|t−1)
>(xt−1 − x̄t−1|t−1) (6.7)

h(xt) ≈ ĥ(xt) = h(x̄t|t−1) + (∇h(x̄t|t−1)
>(xt − x̄t|t−1) (6.8)

where

x̄t−1|t−1 = E[xt−1|y1:t−1], x̄t|t−1 = f(x̄t−1|t−1). (6.9)

These approximations are linear and can be plugged in the standard Kalman filtering equa-

tions [122].

The extended Kalman filter will fail if either of these functions are highly nonlinear

in the region of interest. While the extended Kalman filter only applies the nonlinear

functions f and h to the current estimates of the expected value, the unscented Kalman

filter (UKF) applies these functions to a weighted sample set representation of the mean

and variance.

The unscented Kalman filter [62, 119] deterministically generates 2d + 1 weighted

samples, where d is the dimensionality of the hidden state. This set is chosen so that it

is symmetric and the weighted mean and variance match the mean and variance of the

posterior distribution at time t − 1. The samples are propagated through the dynamics

equation f , and the mean and covariance of the prior distribution p(xt|y1:t−1) are estimated

as the weighted mean and covariance of the sample set. These propagated samples are then

propagated again through the observation function h. The observation mean and covariance

are approximated as the weighted mean and covariance of the sample set. These computed

means and variances are input into the standard Kalman filtering equation to estimate the

current posterior distribution.

While the extended Kalman filter is a first-order approximation, the unscented

Kalman filter is a third-order approximation, and can thus deal with more nonlinearity in

the dynamics and observation equations f and h.

We tried the UKF on the mouse tracking application with BraMBLe model (Sec-

tion 4.11.1) and the five parameter ellipse hidden state. Our hope was that it would provide

a good estimate of the uncertainty of a prediction for use in an acausal inference algorithm

(see Chapter 7). The results are shown in Figure 6.1. We indicate two standard devia-

tions of the posterior distribution of each parameter. Note that the variance does not seem

correlated to be correlated to the error in the estimate. In addition, the UKF was unable

to track through this non-occlusion sequence. In retrospect, the BraMBLe model and the

73

Figure 6.1: Results of trying the UKF inference algorithm for mouse tracking using the
BraMBLe appearance model. We indicate two standard deviations of the x and y position
by the magenta cross, two standard deviations of the minor and major axis lengths by the
yellow ellipses, and two standard deviations of the angle with the cyan cross. We note that
mice are lost twice in this sequence and the estimates of variance are uninformative.

UKF are probably not a good fit, as BraMBLe is highly nonlinear. Recall that we assume

each grid location is independent and the likelihood is therefore a product of many Gaussian

densities. It is thus very peaked and nonlinear.

We note for the reader interested in applying UKF to visual tracking that we had

to tweak the UKF algorithm to deal with numerical precision issues. We found that the

estimated covariance Pt of the Gaussian distribution was usually singular up to working

precision if the UKF was performed using the original parameterization of the hidden state.

At each iteration t, we found it necessary to normalize the hidden state by the standard

deviation of each dimension.

6.3 Sequential Importance Sampling

Sequential importance sampling (SIS), also referred to as particle filtering and

CONDENSATION relaxes both the linearity and Gaussian assumptions at the cost of ad-

ditional computational expense. Instead of representing the distribution by a small set of

deterministically chosen weighted samples, as is done by the unscented Kalman filter, the

74

distribution is represented by a large set of stochastically chosen weighted samples. The

larger the set of samples, the better the approximation.

6.3.1 Importance Sampling

As sequential importance sampling is an iterative sampling algorithm, we first

review importance sampling. The goal in importance sampling is to approximate the dis-

tribution p(x) by a finite sum

p(x) ≈ pN (x) =
N∑

i=1

w(i)δ(x− x(i)) (6.10)

for the purpose of approximating some integral, e.g.

E[f(x)] =
∫

f(x)p(x)dx ≈
∫

f(x)pN (x)dx =
N∑

i=1

f(x(i))w(i) (6.11)

Thus, we are representing the distribution p(x) by the set of N weighted samples {(x(i), w(i))}Ni=1.

We assume that we can evaluate some

p̃(x) ∝ p(x). (6.12)

In addition, we assume that we can draw samples from some q(x) that is “close” to p(x).

In importance sampling, we draw N i.i.d. samples from q(x):

x(i) ∼ q, i = 1, ..., N. (6.13)

We then compute unnormalized weights:

w̃(i) = p̃(x(i))/q(x(i)), i = 1, ..., N. (6.14)

Finally, we normalize the weights:

w(i) = w̃(i)/

N∑
j=1

w(j), i = 1, ..., N. (6.15)

We use the weighted sample set (also referred to as a particle set) {(x(i), w(i))}Ni=1

75

to approximate p:

p(x) ≈ pN (x) =
N∑

i=1

w(i)δ(x− x(i)) (6.16)

This is a reasonable approximation because, using the approximation

q(x) ≈ qN (x) =
1
N

N∑
i=1

δ(x− x(i)), (6.17)

we get an approximation of the unnormalized p̃:

p̃(x) = p̃(x)
q(x)
q(x)

(6.18)

=
p̃(x)
q(x)

q(x) (6.19)

≈ p̃(x)
q(x)

qN (x) (6.20)

=
1
N

N∑
i=1

p̃(x)
q(x)

δ(x− x(i)) (6.21)

=
1
N

N∑
i=1

w̃(i)δ(x− x(i)) , p̃N (x). (6.22)

We normalize this approximation to get an approximation of p:

p(x) = p̃(x)/
∫

p̃(x)dx (6.23)

≈ p̃N (x)/
∫

p̃N (x)dx (6.24)

=
1
N

∑N
i=1 w̃(i)δ(x− x(i))

1
N

∫ ∑N
i=1 w̃(i)δ(x′ − x(i))dx′

(6.25)

=
∑N

i=1 w̃(i)δ(x− x(i))∫ ∑N
i=1 w̃(i)δ(x′ − x(i))dx′

(6.26)

=
∑N

i=1 w̃(i)δ(x− x(i))∑N
i=1 w̃(i)

(6.27)

=
N∑

i=1

w(i)δ(x− x(i)) (6.28)

, pN (x) (6.29)

76

Finally, we can use this approximate distribution to approximate the integral

E[f(x)] =
∫

f(x)p(x)dx (6.30)

≈
∫

f(x)
N∑

i=1

w(i)δ(x− x(i))dx (6.31)

=
N∑

i=1

w(i)x(i) , EN [f(x)] (6.32)

Above, we stated that the importance function q(x) must be close to the true

distribution p(x). For the approximate expected value EN [f(x)] to converge almost surely

to the true expected value E[f(x)] as the number of samples N approaches infinity, all that

is necessary is that q(·) be nonzero over the support of p(·):

q(x) > 0 ∀x : p(x) > 0. (6.33)

This assumption is easy to satisfy. For instance, this is satisfied for any p(·) if q(·) is a

density with infinite support such as a Gaussian [37]. To be correct, we note that there are

a few reasonable conditions on the true distribution p(x). p(x) must be finite everywhere

and the variance of the function f must be finite:

p(x) <∞ ∀x, V arp[f(x)] <∞. (6.34)

In reality, the number of samples we can use is fixed by the running time and

space requirements of our application. The variance of the estimated expected value

(over randomness in the sampling algorithm) increases with the variance of the weights
1
N

∑
i(w

(i))2 − 1/N2 [73, 74, 75, 77]. The optimal importance function is the true distribu-

tion, p(x), in which case the variance of the weights is 0.

[77] quantifies this in terms of the effective sample size:

NN =
V arp[f(x)]

V arqN [
∑N

i=1 w(i)x(i)]
. (6.35)

The effective sample size is the number of i.i.d. samples from the true distribution needed to

achieve the same approximation accuracy as EN [f(x)]. [77] shows that the effective sample

77

size can be approximated by the survival diagnostic

DN =

(
N∑

i=1

(w(i))2
)−1

(6.36)

6.4 Bootstrap Filter

The most popular instantiation of sequential importance sampling is bootstrap

filtering. Given a set of samples {x(i)
t−1}Ni=1 such that

p(xt−1|y1:t−1) ≈ pN (xt−1|y1:t−1) =
1
N

N∑
i=1

δ(xt−1 − x(i)
t−1) (6.37)

the bootstrap filter generates a set of samples {x(i)
t }Ni=1 such that

p(xt|y1:t) ≈ pN (xt|y1:t) =
1
N

N∑
i=1

δ(xt − x(i)
t) (6.38)

at each iteration.

It does this by importance sampling using the importance function

q(xt|y1:t) =
∫

p(xt|xt−1)pN (xt−1|y1:t−1)dxt−1 ≈ p(xt|y1:t−1) (6.39)

First, we draw N samples

x̃(i) ∼ 1
N

∑
j

p(xt|x(i)
t−1) ≈ p(xt|y1:t−1) (6.40)

This approximation holds because

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (6.41)

≈
∫

p(xt|xt−1)pN (xt−1|y1:t−1)dxt−1 (6.42)

=
∫

p(xt|xt−1)
1
N

∑
i

δ(xt−1 − x(i)
t−1)dxt−1 (6.43)

=
1
N

∑
i

p(xt|x(i)
t−1)δ(xt−1 − x(i)

t−1) (6.44)

78

A popular modification is to generate

x̃(i)
t ∼ p(xt|x(i)

t−1), i = 1, ..., N (6.45)

to reduce the variance of the estimate.

Next, we compute the weights

w̃
(i)
t = p(yt|x̃(i)

t) (6.46)

w
(i)
t = w̃

(i)
t /

∑
j

w̃
(j)
t (6.47)

This gives us an approximation of p(xt|y1:t):

p̃(xt|y1:t)
q(xt|y1:t)

=
p(yt|xt)p(xt|y1:t−1)∫

p(xt|xt−1)pN (xt−1|y1:t−1)dxt−1
(6.48)

≈ p(yt|xt)p(xt|y1:t−1)
p(xt|y1:t−1)

(6.49)

= p(yt|xt) (6.50)

Now, we have an approximation of p(xt|y1:t):

p(xt|y1:t) ≈
∑

i

w
(i)
t δ(xt − x̃(i)

t) (6.51)

as this is just importance sampling.

Finally, we resample

x(i)
t ∼

∑
j

w
(i)
t δ(xt − x̃(j)

t) (6.52)

The sample set {x(i)
t }Ni=1 approximates the filtering distribution

p(xt|y1:t) ≈ pN (xt|y1:t) =
1
N

N∑
i=1

δ(xt − x(i)
t) (6.53)

6.5 Approximation Error

As we discussed in the previous section, for importance sampling to be effective for

a fixed number of samples N , the importance function must be close to the true distribution

in the sense that the weights must have small variance. Thus, the variance of the observation

79

likelihood over samples drawn from the prior distribution

V arx[p(yt|xt)|y1:t−1]. (6.54)

must be small. If the variance of the motion model p(xt|xt−1) is high, as in the case of

mouse tracking, then there will be many states with high density according to the motion

model which will have very low density according to the appearance model. In this case,

the effective sample size will be a fraction of the number of samples N , and we must choose

N to be large in order to get a reasonable approximation.

Since the weights are normalized to sum to one, the highest variance of the weights

is achieved if all the weight is on a single sample. We note that the variance of the motion

model also usually increases exponentially with the dimensionality of the hidden state rep-

resentation. Suppose, for example, the motion model p(xt|xt−1 models each dimension of

the hidden state independently:

p(xt|xt−1) =
d∏

j=1

p(xtj |xt−1,j). (6.55)

This is a common assumption. If we assume that the size of the hidden state space in

which the observation likelihood p(yt|xt) is high is constant, then the fraction of samples

with high weight will decrease exponentially with dimensionality. Thus, the variance of the

weights increases exponentially with dimensionality of the hidden state space.

[31] shows that the inaccuracy of the estimates will often increase with time. As-

suming that the true distribution does not forget its initial condition, then the approx-

imation errors accumulate with time. So, to ensure a constant precision, one needs an

increasingly large number of samples for each frame.

To ensure that the error does not increase with time, we need to assume that any

error is forgotten (exponentially) with time. More specifically, we must assume there exists

some ε and some measure λ(·) such that

ελ(xt) ≤ g(yt|xt)p(xt|xt−1) ≤ ε−1λ(xt) (6.56)

for any xt−1.

These two requirements (Equations (6.54) and (6.56)) seem somewhat contradic-

tory. The requirement that the variance in Equation (6.54) be small forces the posterior

80

density not to depend too much on the appearance model p(yt|xt). The requirement that

the system be memoryless described in Equation (6.56) forces the posterior density not to

depend too much on the prior distribution p(xt|y1:t−1).

In most applications, particularly visual tracking, neither of these requirements

are met. Bootstrap filtering produces sample sets such that only a small number of samples

will have significant weight. In addition, the accuracy of the approximation degrades with

time. While bootstrap filtering has the potential to represent multimodal, non-Gaussian

distributions, in practice it cannot represent many modes for many frames. Thus, bootstrap

filtering degrades into an almost-greedy algorithm in practice. If things work fairly well, it

may put off deciding between a pair of modes for a few frames, but it does not accurately

approximate the true posterior distribution. If things do not work well, bootstrap filtering

may perform worse than a greedy algorithm which approximates the distribution at each

frame with a delta function at the approximate optimum. This is because bootstrap fil-

tering not only must represent all modes of the distribution, it must find all modes of the

distribution through random sampling.

6.6 Improvements to Bootstrap Filtering

SIS is a more general framework than bootstrap filtering. In general, it just means

that one recursively estimates p(xt|y1:t) by a set of weighted particles {(x(i)
t , w

(i)
t)}Ni=1. It

is not specific on how one computes these particles. One of the simplest things that we can

change is to use an importance function closer to the posterior distribution than the prior

distribution q(xt|y1:t) ≈ p(xt|y1:t−1). Many algorithms try to use importance functions

that incorporate the current observation, yt. We discuss this in Section 6.7.

As we have discussed, the number of samples required for accurate estimation

often increases exponentially with the number of targets tracked. For this reason, a number

of algorithms try to do as much processing as possible independently for each target. We

discuss this approach in Section 6.8.

In Section 6.9, we discuss the SIS algorithm we developed for tracking mice. This

algorithm combines both techniques in Sections 6.7 and 6.8.

Before we describe these techniques, we mention that there are several other ap-

proaches to minimizing the variance of SIS and increasing the effective number of particles.

We briefly describe some of these approaches now.

A common technique for decreasing the variance of the estimator is to do less

81

sampling. It is not necessary to resample in every iteration, just when the effective number

of particles is small. Schemes for determining when to resample involve estimating the

effective number of particles [11].

In addition, there are other methods of generating samples from the particle ap-

proximation that have lower variance than just resampling according to the weights [30].

Another problem with the resampling step is that the number of unique particles

could be very small. To prevent this, the RESAMPLE-MOVE algorithm uses MCMC

methods [12] set up a Markov chain in which the stationary distribution is the desired

posterior p(xt|y1:t), for instance using Gibbs sampling or Metropolis-Hastings. After the

resampling step, it iterates a given sample through the Markov chain. This creates diversity

in the samples.

As mentioned before, the number of particles necessary to guarantee low er-

ror increases with the dimensionality of the state vector. For many applications, Rao-

Blackwellization can be used to decrease the number of dimensions we need to sample over.

Many distributions can be factored as

p(xt|y1:t) = p(xt2|xt1,y1:t)p(xt1|y1:t) (6.57)

where xt1 is one part of the hidden state at time t and xt2 is the rest of the hidden state at

time t. If one of these distributions is such that integration can be performed analytically,

we only need to sample over the other one. This is called Rao-Blackwellization [4].

6.7 Other Choices of Importance Function

Much research in SIS has focused on improving the similarity between the im-

portance function and the posterior distribution. In this section, we discuss some of the

proposed approaches.

6.7.1 Auxiliary Particle Filter

Instead of uniformly sampling pN (xt−1|y1:t−1) then drawing a sample from the

motion model p(xt|xt−1), the auxiliary particle filter [86] first incorporates information in

yt into which sample x(n)
t−1 to choose.

To do this, it adds the auxiliary variable n to the distribution and first draw

82

samples from

p(xt, n|y1:t) ∝ p(yt|xt)p(xt|x(n)
t−1) (6.58)

Note that

N∑
n=1

p(xt, n|y1:t) ∝ p(yt|xt)
N∑

n=1

p(xt|x(n)
t−1) ≈ p(yt|xt)p(xt|y1:t−1). (6.59)

Let µ
(n)
t be the mean (or some other representative) of p(xt|x(n)

t−1). The auxiliary particle

filter uses the importance function

q(xt, n|y1:t) ∝ p(yt|µ(n)
t)p(xt|xn

t−1). (6.60)

Integrating xt out gives

q(n|y1:t) ∝ p(yt|µ(n)
t) (6.61)

So, to sample from q(xt, n|y1:t), the auxiliary particle filter first chooses a sample n with

probability p(yt|µ(n)
t). Then, it draws a sample from p(xt|x(n)

t−1).

We have not yet applied this particle filtering approach to mouse tracking. While

we plan to experiment with this method in the future, we worry that the observation

likelihood of the predicted mean may not be sufficiently informative for mouse tracking.

This is because the variance of the motion model is high and the observation likelihood

is peaked. We discussed the inaccuracy of low-order approximations in Section 6.2. In

addition, [8] found empirically that auxiliary particle filtering did not work as well on

occlusions as bootstrap filtering.

6.7.2 Combining Kalman and Particle Filtering

Instead of incorporating the current frame by computing the observation likeli-

hood just at the predicted mean µ
(n)
t , we can use the extended Kalman filter to incorporate

information from the current frame using a linear approximation of the observation likeli-

hood at a Gaussian approximation of the distribution [37, 34]. Extended Kalman particle

filtering first resamples the particle set according to the weights, then for each new sample

i computes the extended Kalman filter approximation of the posterior distribution

qi(xt|y1:t) = p(yt|xt)
∫

p(xt|xt−1)N (xt−1;x
(i)
t−1,Σ

(i)
t−1). (6.62)

83

The new sample x(i)
t is drawn according to this Gaussian approximation.

We emphasize an important difference between Kalman particle filtering and aux-

iliary particle filtering. In extended Kalman particle filtering, for each sample from the

previous frame, an approximation incorporating the current observation is used to pro-

duce a single new sample in the current frame. In auxiliary particle filtering, we choose

samples from the previous frame according to an approximation incorporating the current

observation.

Instead of using the EKF approximation, we can use the more accurate UKF

approximation [114, 115, 96]. We experimented with this modification, and found that the

estimates produced by the UKF were less accurate than using just the bootstrap filter.

Again, this is most likely because the appearance likelihood is very peaked and nonlinear.

We plan to explore unscented particle filtering in the future with a less peaked observation

likelihood.

6.7.3 Domain-Specific Methods

[83] incorporates the current observation into the importance function by first

running the object detection algorithm described in [117, 118]. Samples are proposed around

detected objects. This algorithm is applied to tracking many hockey players, thus the object

detection algorithm mainly distinguishes dark rectangles from the white background.

A similar approach is described in [56]. This algorithm incorporates the current

observation into the importance function by running a skin-color segmenter on the current

video frame. Samples are proposed around large enough regions of skin-color.

In Section 6.9, we discuss a novel, related approach that was highly effective for

mouse tracking.

6.8 Multitarget Sequential Importance Sampling

As discussed earlier, the number of samples required to accurately track multiple

targets often grows exponentially with the number of targets. It is therefore beneficial to

do as much inference as possible independently for each target. There are a number of

approaches, including our own, which exploit this fact.

The multitarget tracking problem also exists in applications in which observations

are from non-visual sensors such as radar, discussed briefly in Section 4.11. As the ob-

servation and motion models are simple in these applications, the only difficulty in these

84

applications is the data association problem. The most popular approach in this area of

research is the Joint Probabilistic Data Association Filter (JPDAF) [102], which estimates

the product of the marginal posterior distributions instead of the joint posterior distribu-

tion. Monte Carlo sampling-based extensions of the JPDAF are described in [116]. While

these algorithms are not directly applicable to visual tracking, we can see parallels between

research in multitarget visual tracking and multitarget radar tracking. In fact, a number of

papers focus on extending radar tracking algorithms to visual tracking [20, 93, 28, 29, 99, 92].

In Section 6.8.1, we discuss some popular multitarget radar tracking algorithms. In Section

6.8.2, we discuss similar approaches to improving SIS for multitarget tracking.

6.8.1 Radar-Based Tracking

Radar-based tracking algorithms represent the multitarget tracking problem in

terms of the data association problem, discussed in Section 4.11. Let us describe the as-

sumptions made by these algorithms. The observation at time t, yt = (y1,t, ..., yMt), is made

up of Mt observations. It is assumed each target generated at most one observation at a

particular time step (it may go undetected). It is also assumed that each observation was

produced by at most one target (it may have been produced by noise). Because of this

one-to-one relationship, the association is represented as λt = (λ1,t, ..., λtk) where

λkt =

 0 if target k is undetected

j ∈ {1, ...,Mt} if target k generated observation j
(6.63)

Besides the first-order Markov assumption, it is assumed that the observations are

independent of one another, so the likelihood can be factored as

p(yt|xt, λt) =
∏

j∈clutter

pC(yjt)
K∏

k=1

p(yλkt,t|xkt), (6.64)

The first product is over all observations assigned by λt to be clutter. pC(·) denotes the

clutter distribution, and is assumed to be uniform. In the second product, we take p(y0t|xkt)

to be the probability that target k is undetected. We note that in visual multitarget tracking

it is not obvious how to factor the observation likelihood into independent components like

this.

85

Standard Filtering

Without making any other assumptions or approximations, estimating p(xt|y1:t)

requires first estimating p(xt, λt|y1:t). Once we have computed p(xt, λt|y1:t), we marginalize

over the association variable λt

p(xt|y1:t) =
∑
λt

p(xt, λt|y1:t). (6.65)

Each term of the sum is computed iteratively using the recursive decomposition

p(xt|y1:t) =
∑
λt

w(λt)p(yt|xt, λt)p(xt|y1:t−1), (6.66)

where w(λt) is the weight of the hypothesized data association vector λt. Recall that

computing p(xt|y1:t−1) requires integrating over the previous posterior:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (6.67)

The posterior at every frame is a mixture distribution with a component for each possible

data association value. If Mt is the number of observations and K is the number of targets,

the number of components is the number of binary vectors of length Mt such that at most

K elements are 1:

Nt =
K∑

i=0

(
Mt

i

)
K!

(K − i)!
. (6.68)

At each frame, the number of mixture components compounds, as there is a mixture com-

ponent for every possible sequence of data association vectors. Thus, the number of mixture

components at time t is prodT
τ=1Nτ . Computing and storing this huge number of compo-

nents is intractable. The multiple hypothesis tracking algorithm [95] involves storing as

many components as possible and throwing away those with the lowest weight.

The Joint Probabilistic Data Association Filter

Instead of estimating the joint posterior distribution p(xt|y1:t) at each frame, the

JPDAF estimates the marginal posteriors p(xtk|y1:t) for each target k. Each marginal

posterior can be represented by a mixture with a small number of components, so the

product of the marginals effectively has a high number of components.

To estimate the marginal posterior p(xtk|y1:t), the JPDAF estimates marginal mo-

86

tion and appearance models. It is common to assume that the targets move independently,

so the motion model can be decomposed as

p(xt|xt−1) =
K∏

k=1

p(xtk|xt−1,k) (6.69)

The marginal posterior is assumed to have the form:

p(yt|xtk) =
Mt∑
i=0

wi
tkp(yti|xtk). (6.70)

Here, p(yt0|xtk) is the probability that the target is undetected. The soft assignment weight

wi
tk is an approximation of the probability that target k will produce observation i. It is

computed from

pk′(ytj |y1:t−1) =
∫

p(ytj |xtk′)p(xtk′ |y1:t−1)dxtk′ (6.71)

for all k′ = 1, ...K and j = 0, ...,Mt. This is the expected matching score between target k′

and observation j. The expression for the soft assignment weight wi
tk is

wi
tk =

∑
λ:λk=i

1
Z

p(λ)
K∏

k′=1

pk′(ytλk′ |y1:t−1). (6.72)

The standard approach involves enumerating all possible configurations of joint hidden state

and data association vector then computing the matching score between each target and

its assigned observation. This approach enumerates all possible configurations of the data

association vector then computes the expected matching score between each target and its

assigned observation.

The marginal distribution has a component for each observation, instead of a Nt

components. Effectively, the product of the marginals therefore has MK
t components, but

each component never has to be computed or stored. The number of components will still

compound over time and low weight components will need to be thrown away. However,

there is an exponential decrease in the number of components necessary to represent similar

information.

The JPDAF was originally proposed with Gaussian approximations of the distri-

butions. At the beginning of each iteration, the prior distribution is approximated by a

Gaussian distribution. [98] presented a SIS version of the JPDAF which allows a particle

set representation of the data, as well as nonlinear and non-Gaussian motion and observa-

87

tion models. Second, because the density is represented by a sum of delta functions, the

number of components remains constant.

6.8.2 Partitioned Sampling

[77] proposed an algorithm for performing the sampling independently for each

target using the multitarget contour likelihood. This algorithm depends on modeling the

likelihood p(yt|xt,1:k). For each target k, beginning with the target in front and ending with

the target in back, [77] first draws samples from the prior distribution for the target k:

x(n)
tk ∼ p(xtk|x

(n)
t−1,k). (6.73)

This sample is concatenated with the results of sampling for the first k − 1 targets:

x(n)
t,1:k = (x̃(n)

t,1:k−1,x
(n)
tk) (6.74)

These concatenated samples are weighted by the target contour likelihood

w
(n)
tk ∝

p(yt|xt,1:k)
p(yt|xt,1:k−1)

(6.75)

The particles {x(n)
t,1:k, w

(n)
tk } are then resampled according to the weights {w(n)

tk } to create an

unweighted sample set {x̃(n)
t1 . This is repeated for k = 1, ...,K, where k = 1 is the front

target and k = K is the back target.

The benefit of this algorithm is that we sample over each target sequentially.

If we are confident that our single target likelihood p(yt|xt1) is representative, then this

sampling step locates the relevant part of the state space for the dimensions of the state

space corresponding to the first target. Then, for the second target, we only need to search

the part of the state space corresponding to the second target.

Of course, if there is no ordering of targets known so that we can reliably locate

the relevant part of the search space for one target without considering the positions of the

other targets, then this approach will fail. For example, the BraMBLe model of appearance

relies on the shape of all the targets to compute the likelihood score, and cannot be simply

factored like the multitarget contour likelihood – there is no analytic form for p(yt|xt,1:k)

for k 6= K.

In the next section, we propose an approach similar to the MC-JPDAF for such a

situation.

88

6.9 Tracking Multiple Mouse Contours (without Too Many

Samples)

In this section, we present a particle filtering algorithm for robustly tracking the

contours of multiple deformable objects through severe occlusions. Our algorithm combines

a multiple blob tracker with a contour tracker in a manner that keeps the required number of

samples small. This is a natural combination because both algorithms have complementary

strengths. The multiple blob tracker uses a natural multitarget model and searches a smaller

and simpler space. On the other hand, contour tracking gives more fine-tuned results and

relies on cues that are available during severe occlusions. Our choice of combination of

these two algorithms accentuates the advantages of each. In addition, we capitalize on the

independence assumptions of our model to perform most of the search independently for

each mouse. This reduces the size and complexity of the search space exponentially, and

allows our Monte Carlo sampling algorithm to search the complex state parameter space

with a reasonable number of samples. Our algorithm works with a detailed representation of

a mouse contour to achieve encouraging results on a video sequence of three mice exploring

a cage.

6.9.1 Blob and Contour Model

We use a particle filtering algorithm to approximate p(xt|y1:t), the posterior distri-

bution of the state of all K mice in frame t, xt = xt,1:K , given blob and contour observations

for frames 1 to t. We use the combined blob and contour observation model described in

Section 4.14. We describe our model of the position of the mouse in Section 3. We use the

constant velocity motion model described in Section 5. See Table 6.1 for a summary of the

motion and appearance models assumed.

6.9.2 Blob-Contour Particle Filtering

In this section, we describe our algorithm for efficiently sampling from the com-

bined blob and contour posterior distribution of the K mice, p(xtk|yb,1:t,yc,1:t), given the

models and independence assumptions described in Section 6.9.1.

At each iteration of particle filtering, we generate a set of weighted samples

{(x(i)
t , w

(i)
t)}Ni=1 such that p(xt|y1:t) ≈

∑N
i=1 w

(i)
t δ(xt−x(i)

t) from the previous set of weighted

samples {(x(i)
t−1, w

(i)
t−1)}Ni=1. The most popular particle filtering algorithm is the bootstrap

filter. As described in Section 6.3, the importance function used in this algorithm is

89

Table 6.1: Blob-Contour Model. The first column describes the model, the second column
states which section the model was discussed in, the third column states which mice the
model applies to, and the third column shows the mathwmatical expression for the model
at frame t.

Description Section Mice Distribution
Single Blob State §3.2 k xbtk = (µxtk, µytk, atk, btk, θtk)>

Single Blob-Contour State §3 k xtk = (x>btk, φtk, ctk, ftk)>

Blob State §3.2 1 : K xbt = xbt,1:K = (x>bt1, . . . ,x
>
btK)>

Blob-Contour State §3.2 1 : K xt = xt,1:K = (x>t1, . . . ,x
>
tK)>

Blob Observation Likelihood §4.11.1 1 : K p(ybt|xbt) =
∏

g pg(ybtg|lg(xbt))
Contour Observation Likelihood §4.9.1 k p(yctk|xtk) =

∏
m p(yctkm|xtk)

Contour Observation Likelihood §4.9.1 1 : K p(yct|xt) =
∏

k p(yctk|xtk)
Blob-Contour Observation Likelihood §4.14 1 : K p(ybt,yct|xt) = p(ybt|xbt)p(yct|xt)
Blob-Contour Transition Distribution §5 k p(xtk|xt−1,k)
Blob-Contour Transition Distribution §5 1 : K p(xt|xt−1) =

∏
k p(xtk|xt−1,k).

p(xt,1:K |xt−1,1:K), and the importance weight is p(ybt,yct|xt,1:K). Three properties of our

problem cause this direct application to fail for any practical number of samples N . First,

because the motion of the mice is erratic, the variance of p(xt,1:K |xt−1,1:K) is high. Second,

because the contour feature is sparse, the scores given by p(yct|xt,1:K) are only meaningful

within a short radius of the optimal fits for all K mice. Third, the dimension of xt,1:K is

proportional to K, thus the search space size is exponential in K. Because of these three

properties of the relationship between the importance and true posterior distributions, a

huge number of samples must be generated so that enough fall within the short radius of

the optimal fits.

We address these problems by performing three sampling steps, instead of just

one. Each step incorporates a subset of the observations to gradually hone in on the small

subspace truly important in the posterior distribution. The first step performs bootstrap

filtering using only the blob observations. This step localizes the search space for the mice by

moving the distribution toward the optimal fits and decreasing its variance. The second step

performs bootstrap filtering using the contour observations independently for each mouse.

This allows the algorithm to find the important regions for each mouse independently,

exponentially reducing the search space by preventing a good fit for one mouse from being

rejected because it is paired with a bad fit for another (this problem is also addressed in

the sensor observation literature [84]). The third step of sampling combines the K sets of

particles by sampling independently from each, then weights by the necessary importance

weight. These sampling steps are illustrated in Figure 6.3.

90

One can interpret the first two filtering steps as generating samples from the

approximate marginal posteriors p(yt|xtk), as in the JPDAF (Section 6.8.1). Then, the

importance function in the third sampling step is the product of the posterior marginals:

q3(xt|y1:t) =
K∏

k=1

p(xtk|y1:t−1,bt,ctk). (6.76)

We describe these three steps in more detail next. Figure 6.2 shows the algorithm steps.

For t = 1, 2, . . . :
1. Sample from the marginal posteriors:

For i = 1, . . . , N:

a. Choose x̃(i)
t−1,1:K ∼ {(x

(j)
t−1,1:K , w

(j)
t−1)}.

b. Generate b(i)
1:K ∼ p(b1:K |x̃(i)

t−1,1:K).

c. Compute the weight w
(i)
b ∝ p(ybt|b

(i)
1:K).

d. Choose b̃(i)
1:K ∼ {b̃

(j)
1:K , w

(j)
b)}

e. For k = 1, . . . ,K,

Generate x̃(i)
tk ∼ p(xtk|b̃

(i)
k).

f. Compute the weight w
(i)
tk = p(yctk|x̃

(i)
tk).

2. Sample from the joint posterior:
For i = 1, . . . , N:
a. For k = 1, . . . ,K,

Choose x(i)
tk ∼ {(x̃

(j)
tk , w

(j)
tk)}.

b. Concatenate: x(i)
t,1:K = (x(i)

t1 , . . . ,x(i)
tK).

c. Compute the importance weight:

w
(i)
t ∝ p(ybt|x

(i)
t,1:K)

∑N
j=1 w

(j)
t−1

∏K
k=1 p(x(i)

tk |x
(j)
t−1,k).

Figure 6.2: Blob and Contour Particle Filtering

Step 1: Blob Sampling

In the first sampling step, we perform an iteration of bootstrap filtering (with sys-

tematic resampling with replacement) using only the blob observation ybt. Given {(x(i)
t−1,1:K , w

(i)
t−1)}

representing p(xt−1,1:K |y1:t−1), we generate {b(i)
t,1:K}Ni=1 from

q1(bt|y1:t) =
∫

p(bt|xt−1)p(xt−1|y1:t−1)dxt−1, (6.77)

where p(bt|xt−1) =
∏

k p(btk|xt−1,k) and p(btk|xt−1,k) has the same form as p(xtk|xt−1,k)

for all blob parameters, and is a δ function around the previous state for the contour

91

a1
a2b1

b2

µx1
µx2

 p

a2
b2

(a1, b1)

(a) (d)

a1
a2b1

b2

a2

b2

(a1, b1)

(b) (c)

Figure 6.3: Illustration of the importance functions used in each sampling step. The x-axis
of each plot corresponds to the x-coordinate of the center of one mouse. The y-axis of
each plot corresponds to the x-coordinate of the center of the second mouse. The z-access
indicates probability density. The entire axes of (c) and (d) correspond to the small white
rectangle [a1, a2]× [b1, b2] in (a) and (b). (d) shows the true posterior distribution according
to the model, p(xt|y1:t). (a) shows the importance function used in bootstrap filtering, the
prior distribution p(xt|y1:t−1). We see that the distribution is not centered over the right
part of the space (the small white rectangle). In addition, it has a high variance. Drawing
enough samples from the important part of the space is difficult. (b) shows the results of
performing an iteration of bootstrap filtering using only the blob observation to localize
the search space. This results in the distribution p(xt|y1:t−1,ybt). Notice that the variance
is now smaller and the density is centered over the correct part of the space. (c) shows
the product of the marginal posterior distributions

∏K
k=1 p(xtk|x1:t−1,ybt,yctk). (c) is very

close to (d).

92

parameters. We then weight by w
(i)
bt ∝ p(ybt|bt) so that

p(bt|y1:t−1,bt) ≈
∑

i

w
(i)
bt δ(bt − b(i)

t). (6.78)

The marginal is

p(btk|y1:t−1,bt) =
∫

p(bt|y1:t−1,bt)dbt1:K\k

≈
∫ ∑

i

w
(i)
bt δ(bt − b(i)

t)dbt,1:K\k =
∑

i

w
(i)
bt δ(btk − b(i)

tk). (6.79)

This sampling step is illustrated in Figure 6.3(a-b).

Step 2: Independent Contour Sampling

In the second sampling step, we perform an iteration of bootstrap filtering using the

contour observation yctk for each mouse k independently. Given {(b(i)
tk , w

(i)
bt)} representing

p(btk|y1:t−1,bt), we generate {x̃(i)
tk } from

q2(xtk|y1:t) =
∫

p(xtk|btk)p(btk|y1:t−1,bt)dbtk, (6.80)

where p(xtk|btk) is the same as p(xtk|xt−1,k) for the contour parameters and Gaussian

(with a different, smaller variance) around btk for the blob parameters. We then weight by

w
(i)
tk ∝ p(yctk|x̃tk) so that

p(xtk|y1:t−1,bt,ctk) ≈
∑

i

w
(i)
tk δ(xtk − x̃(i)

tk). (6.81)

This sampling step is illustrated in Figure 6.3(c-d).

Step 3: Combining the Marginals

In the final sampling step, we perform an iteration of sampling to combine the

individual mouse marginals. Given {(x̃(i)
tk , w

(i)
tk)} representing p(xtk|y1:t−1,bt,ctk) for k =

1, . . . ,K, we generate {x(i)
t } from

q3(xtk|y1:t) =
K∏

k=1

p(xtk|y1:t−1,bt,ctk) (6.82)

93

by independently sampling from {(x̃(i)
tk , w

(i)
tk)} for k = 1, . . . ,K and concatenating. We then

weight by

w
(i)
t ∝

p(x(i)
t |y1:t)

q3(xt|y1:t)
(6.83)

∝
p(ybt|x

(i)
t)
∏

k p(yctk|x
(i)
tk)
∫

p(x(i)
t |xt−1)p(xt−1|y1:t−1)dxt−1∏

k p(xtk|y1:t−1,bt,ctk)
(6.84)

≈
p(ybt|x

(i)
t)
∏

k p(yctk|x
(i)
tk)
∫

p(x(i)
t |xt−1)

∑
j w

(j)
t−1δ(xt−1 − x(j)

t−1)dxt−1∏
k

∑
j w

(j)
tk δ(x(i)

tk − x̃(j)
tk)

(6.85)

=
p(ybt|x

(i)
t)
∏

k p(yctk|x
(i)
tk)
∑

j w
(j)
t−1p(x(i)

t |x
(j)
t−1)∏

k p(yctk|x
(i)
tk)

(6.86)

= p(ybt|x
(i)
t)
∑

j

w
(j)
t−1p(x(i)

t |x
(j)
t−1) (6.87)

This sampling step is illustrated in Figure 6.3(d-e).

Our sampling algorithm is consistent because it is a sequence of three consistent

steps. The first two steps are standard applications of bootstrap filtering, and are thus

consistent. So, each of the K particle sets input in step 3 in the limit as N →∞ converge

pointwise to the true marginal posterior. Step 3 generates samples from the product of the

marginal posteriors. If any of the marginals has zero density, then the joint density is also

zero. Finally, we weight by the ratio of the joint posterior to the particle approximations of

the marginal posteriors. As these particle approximations are consistent, the ratio is also

consistent.

6.9.3 Experiments

We evaluated our blob and contour tracking algorithm on a video sequence of three

identical mice exploring a cage. This sequence contained 11 occlusions of varying difficulty.

The model parameters were chosen by hand using a separate video sequence. Many of the

parameters were set using our knowledge about the problem. These include the variance

of the transition models and the constraints on the state. Other parameters, including the

damping and autoregressive constants, were set to values used in [16]. The contour likelihood

parameters were set so that the ranking of the probability of each vector of observed edge

detections seemed reasonable. Some of the parameters were chosen somewhat arbitrarily

and never varied – these include the number of observation lines and the parameters used

in the BraMBLe likelihood. The number of samples was chosen to be N = 2000. While

94

we had qualitatively similar performance with N = 1000 samples, the results returned by

particle filtering varied quite a bit. We thus chose to present results with N = 2000 samples,

for which the output of our particle filtering algorithm was stable. This number of samples

compares favorably to the 4000 samples used to track a pair of leaves in [79] and the 1000

samples used to track two people/blobs in [57].

Summary still frames are shown in Figures 6.4, 6.5, and 6.6. These results demon-

strate the following strengths of our algorithm:

• Our contour tracking algorithm is robust to erratic mouse behavior – we never lose

a mouse. For instance, we follow mice that jump, drop from the ceiling, and make

quick turns and accelerations that are not fit by our simple dynamics model (see

Figure 6.4(a-c)).

• Two contours never fit the same mouse.

• Our algorithm is rarely distracted by background clutter. This implies that our feature

extraction methods and the blob and contour combination provide robust observation

likelihoods. The only exceptions are when both algorithms make mistakes: when the

blob tracker mistakes shaded bedding for foreground and the contour tracker fits to

the edge of a tail (see Figure 6.4(d) for an example).

• Perhaps the most impressive result is that our algorithm accurately tracks the mice

through 7 out of 11 occlusions and partway through the other 4. This is because of the

detailed fit provided by the contour tracking algorithm and its ability to use features

available during occlusions. Example successful frames are shown in Figure 6.5(a-c).

• In general, our algorithm usually found very good contour fits outside of occlusions,

much better than those obtained using contour tracking alone.

Our algorithm has a couple of failure modes which we plan on addressing in future

work. First, it occasionally gets stuck in local optima in which the contour fit was facing

the wrong direction (see Figure 6.4(d)). We plan to address this problem with a better

model of the probability of the direction changing. Second, our algorithm swaps identity

labels in four occlusions (see Figure 6.6). The reason for this is that the fit of our algorithm

is heavily biased by the fit of the BraMBLe algorithm. For occlusions in which the contour

observation signals are weak, this bias from BraMBLe can dominate. We propose a solution

to this in Section 6.9.4.

For comparison, we also implemented a combined blob-contour tracking algorithm

which performed two steps of sampling instead of three, resulting in the final importance

95

function

q′(xt|y1:t) =
∫

p(xt|bt)p(bt|y1:t−1,bt)dbt. (6.88)

This algorithm has the disadvantage that samples of all k mice are weighted by the product

of the contour likelihood for each mouse. Thus, the number of samples fitting blobs is the

same, but the effective number of samples used when fitting contours is much smaller. We

tested this algorithm on 500 frames with 6 occlusions (our algorithm works on 4). The

results fit our theory. While this algorithm was resistant to drift (blob tracking is the same

in both algorithms), the contour fits found were less satisfactory. In general, they were

less fine-tuned and more variable from frame to frame, suggesting that more samples are

needed. This is particularly evident during occlusions. The fits during occlusions are less

fine-tuned to the contour data, and therefore more influenced by the blob tracking results.

This causes worse fits in every occlusion in the sequence. This algorithm swapped identities

twice more than the algorithm proposed in this paper.

6.9.4 Conclusions and Future Work

Our algorithm combines the BraMBLe likelihood [57] with the "generic contour

likelihood" [78] to utilize a robust set of features necessary for our noisy, real world mouse

video. Our algorithm breaks each iteration of particle filtering into three steps, each incor-

porating a subset of the observations to gradually hone in on the small space in which most

mass of the posterior density lies. This can also be seen as modifying the importance func-

tion of the particle filtering algorithm to be the product of the posterior marginal densities,

thus incorporating the current observation in the importance function. This dramatically

reduces the number of samples necessary for accurate tracking.

In chapter 7, we discuss possible modifications to this algorithm that use informa-

tion from both the past and the future to determine the positions of the mice during an

occlusion. We hope that this will solve the main failure of the algorithm proposed in this

algorithm by making BraMBLe return a more global fit.

6.10 Acknowledgements

Portions of this chapter are based on “Tracking Multiple Mouse Contours (without

Too Many Samples)” by K. Branson and S. Belongie [17]. I developed the algorithm,

performed the experiments, and wrote the paper.

96

(a)

(b)

(c)

(d)

Figure 6.4: (a) Tracking results for a mouse jumping. (b) Tracking results for a mouse
falling from the ceiling. (c) Tracking results for a mouse turning quickly. (d) The contour
is fit to a tail and the blob is fit to a shadow; the tracker is robust to scratches on the cage;
the contour is flipped.

97

(a)

(b)

(c)

Figure 6.5: The first three occlusion sequences in which our tracking algorithm performs
well.

(a)

(b)

Figure 6.6: The first two occlusion sequences on which our algorithm swaps mouse identities.

7

Acausal Inference Algorithms

In the last chapter, we discussed algorithms that infer statistics of the current state

given the previous and current video frames. In many applications, one requires real-time

responses to detected activities in the video, thus online inference algorithms are necessary.

In applications such automatic health monitoring, it is sufficient to receive results after a few

minutes delay. However, because monitoring must be done 24 hours a day, the processing

speed must be real-time or near real-time.

In our application, one can wait until the end of difficult occlusions to determine

the positions of the targets during the occlusion. Thus, one would like to estimate statistics

of the posterior density p(xt|y1:T), where t is the current frame and T is the last frame of

the occlusion. This is beneficial because it is easy to determine the positions of the mice

before the occlusion begins and after the occlusion ends.

In this chapter, we discuss algorithms for acausal inference.

7.1 Affine Flow Plus a Hint

Monte Carlo smoothing algorithms failed because the forward sampling step does

not incorporate the future observations. We developed an algorithm that directly incorpo-

rates a hint of the future positions of the targets into the forward pass of the algorithm. As

discussed previously, the subproblems of foreground/background classification and tracking

for separated mice (mice that are neither occluded or occluding) are fairly simple. The

subproblem remaining is to track the mouse identities while they are occluding one an-

other. Given the foreground/background labeling, this subproblem reduces to assigning

membership of each foreground pixel to the mouse identities.

98

99

As segmenting the individual mice is more difficult when a frame is viewed out of

context of its neighboring frames, we incorporate a cue from the surrounding sequence of

frames. Using a depth ordering heuristic, we associate the front mouse at the start of an

occlusion event with the front mouse at the end of an occlusion event. This correspondence

holds much of the time because the targets cannot pass through each other. While one

mouse occludes another, their depth ordering usually cannot change, as observed in [79].

We predict mouse identity labels for each frame sequentially. However, when labeling a

frame during an occlusion event, we incorporate the hint of the future location of the mice

in addition to the predicted labels of the previous frames.

Because this correspondence guess is necessary in our occlusion reasoning, images

can be processed at frame-rate, but tracking results for occluded or occluding mice are

delayed until the end of the occlusion event.

Our approach breaks the tracking task into the subproblems of background/foreground

classification, tracking separated mice and tracking through occlusion. First, the pixels in

each frame are classified as either foreground or background. Next, the membership of

the foreground pixels in every frame is assigned using a simple tracking algorithm without

occlusion reasoning. The mouse models computed in this step are used to detect the starts

and ends of occlusion events. At the end of an occlusion event, the membership of the

foreground pixels in the frames of the occlusion event are reassigned using our occlusion

reasoning algorithm. The modules used to solve each of these subproblems are described

below.

7.1.1 Background/Foreground Labeling

In our implementation, we used a slightly different background/foreground clas-

sification algorithm than that described in Section 4.2. This algorithm did not work as

well as the previously described algorithm. However, results were sufficient for this pilot

experiment. Next, we describe the simple background/foreground classification we used.

This algorithm was sub-optimal, but did not corrupt our results.

To classify pixels in every frame as background or foreground, we model the back-

ground using a modified temporal median. The absolute difference of the current frame

and the current background estimate is thresholded. Background pixels are those below the

threshold and foreground pixels are those above the threshold.

Standard background estimation using a temporal median estimates the back-

ground intensity of each pixel as the median of the previous nB intensities of that pixel.

100

This technique fails when more of the previous nB intensities of a pixel correspond to fore-

ground than background. As it often occurs that a mouse (e.g. a sleeping mouse) is still

for many frames at a time, we include an additional component depending on the color of

the pixel. Each pixel is classified as either mouse color or not mouse color. The intensity

of each pixel classified as mouse color is only added to the pixel’s intensity history if that

pixel has always been classified as mouse color.

To classify the pixels in a frame as mouse color or not, the pixels are segmented

into a set number of clusters (we used 3) based on color using k-means. In order to deter-

mine which color cluster(s) correspond to mouse color (we assumed only one cluster was

mouse color), we use the previous background estimate to classify pixels as background

and foreground. The mouse color cluster(s) are the mode color cluster(s) of the foreground

pixels.

7.1.2 Separated Target Tracking

In all frames, whether or not there is occlusion, the distribution of the pixel lo-

cations of each of the k mice identities is modeled as a bivariate Gaussian. In a frame in

which the mice are not occluding each other, the problem of assigning mouse membership

to each of the foreground pixels is that of fitting a mixture of k Gaussians to the locations

of the foreground pixels. We use the EM algorithm to estimate the mean vectors and (full)

covariance matrices of GMM [51]. As the inter-frame motion is small, only a few iterations

of EM are necessary when we use the parameters of the GMM at frame t − 1 to initialize

the EM fit at frame t.

7.1.3 Detection of Occlusion Events

The goal of this module is to determine the starts and ends of occlusion events, as

well as which mice and foreground pixels are involved. Occlusion events are detected using

the GMM parameters computed using EM.

The Fisher distance in the x direction between each pair of target distributions is

thresholded to determine when one mouse of the pair is occluding the other. We use only

the x distance because all mice are resting on the floor and the x location estimates of our

GMM are more stable. The Fisher distance in x between a pair of distributions is defined

as

JF [µx1, σ
2
x1, µx2, σ

2
x2] =

(µx1 − µx2)2

(σ2
x1 + σ2

x2)/2
, (7.1)

101

where µx1 and µx2 are the x-coordinates of the distributions’ means and σ2
x1 and σ2

x2 are

the variance in x of the distributions [51]. Because the units of σx and µx are the same, the

Fisher distance is unitless and a constant threshold (we chose 8.0) is used.

7.1.4 Tracking through Occlusion

When an occlusion event is detected, the membership of each foreground pixel

in the occlusion must be assigned. The front mouse is tracked through the occlusion by

combining several cues: the pixel intensities, the foreground classification, a depth-order

heuristic, and the assumed bivariate Gaussian distribution of the pixels owned by a mouse

(Section 7.1.2). Given an estimate of the pixels belonging to each mouse in frame t, we

compute the “best” affine transformation describing the motion of that mouse from frame

t to t + 1. Given these affine motion estimates, the pixels belonging to each mouse identity

in frame t + 1 are estimated.

In Section 7.1.4 and 7.1.4, we will describe our criterion for the “best” affine motion

and how it is optimized. In Section 7.1.4, we will describe how the pixel memberships are

estimated.

Optical Flow Computation

Our algorithm for tracking through occlusion is based on optical flow estimation

using multiple affine models. Consider the set of pixels belonging to one mouse. We assume

that the Horn-Schunck brightness constancy condition (see Section 4.8 holds within this set

of pixels, so that

Ixu + Iyv + It = 0 (7.2)

Here, I(x, y, t) denotes the intensity at location (x, y)> and time t, the subscript denotes

partial differentiation and u and v are the x and y components of the flow at (x, y). As in

[54], we use an affine model for the flow of the form u

v

 =

 a1 + a2x + a3y

a4 + a5x + a6y

 . (7.3)

As discussed in Section 4.8.3, in the least-squares sense, the best a given only the

102

optical flow cue minimizes

H0[a] =
∑

(x,y)∈M

w(x, y)(z>a + It)2, (7.4)

where M is the set of pixels belonging to the mouse, the vectors z and a are defined as

z = (Ix, Ixx, Ixy, Iy, Iyx, Iyy)>,

a = (a1, ..., a6)>

and w(x, y) is a measure of the certainty that pixel (x, y) at time t is in M.

Because of the high amount of occlusion and the lack of features on the targets,

the optical flow cue alone is not enough to get an accurate motion estimate. We thus add

a hint of the future mouse locations in the form of a quadratic regularization term, which

nudges the estimate a toward the prior affine motion estimate â, to be discussed in Section

7.1.4. We use the term “prior” because of the close relation of this regularization term to

an assumed prior distribution on a [51]. The strength of this nudge, for each component of

a, is defined by the 6 × 6 matrix λΣ−1
a . The scalar λ sets the weight of the regularization

penalty relative to the optical flow estimate. We use λ = 0.0001. The matrix Σa is a

measure of the relative weights of the regularization for each of the individual entries of a.

We take Σa to be diagonal. Each entry corresponds to our guess of the amount of variance

in the corresponding entry of a. With this regularization term, our new criterion is

H[a] =
∑

(x,y)∈M

w(x, y)(z>a + It)2 + λ(a− â)>Σ−1
a (a− â). (7.5)

Taking the partial derivative of H[a] with respect to a, setting it to zero, and

solving for a, we find that

a = (Z>WZ + λΣ−1
a)−1(−Z>W It + λΣ−1

a â), (7.6)

where Z is the |M| × 6 matrix with rows z>, W is a |M| × |M| diagonal matrix of the

weights w, and It is a length |M| vector of the It.

Note the following special cases:

a = −(Z>WZ)−1Z>W It as λ→ 0 (7.7)

103

which optimizes H0[a], and

a = â as λ→∞ (7.8)

in which the a is chosen without regard to the optical flow computation.

Note that the affine motion is estimated only for pixels labeled as unoccluded,

while the mean and variance of the location of the mouse correspond to all pixel locations,

occluded and unoccluded. It is only safe to assume that the affine transformation for the

visible part of the mouse equals the affine transformation for the entire mouse if a significant

portion of the mouse is observable. While the weight of the optical flow term in the form

above is proportional to the number of unoccluded pixels, we found that this weight does not

degrade fast enough. We thus ignore the optical flow estimate if more than some fraction

(we chose 0.7) of the mouse is occluded, and rely only on the affine motion prior â.

Prior Estimation

Next, we discuss the choice of â for each mouse in each frame of the occlusion.

As mentioned before, â can be interpreted as the mean of the prior distribution on a. To

estimate â, we use only the depth ordering cue, though other cues could be incorporated.

The depth ordering cue is an estimate of which blob is in front at the start of the occlusion

and which blob is in front at the end of the occlusion. As these blobs must correspond

to the same mouse, we reason that during the occlusion event, the succession of frame to

frame motions must transform the initial front mouse to the final front mouse. We cannot

assume that the back mice do not change depth ordering with respect to each other during

the occlusion. Instead, we assume that the blob of all the back mice at the start of the

occlusion corresponds to the blob of all the back mice at the end of the occlusion. We set

the prior estimates for each of the back mice to be all the same.

While many more sophisticated interpolations exist, we found that linearly inter-

polating the affine motion worked well. To describe the interpolation, we will break the

affine motion into two parts,

A =

 a2 a3

a5 a6

 , t = (a1, a4)> (7.9)

If the displacement (u, v) is computed in the coordinate system centered on µ and the

pixel locations p belonging to a mouse follow the normal distribution N (µ,Σ), then the

104

Figure 7.1: An example showing how the mean and covariance of the mouse on the left
is linearly interpolated into the mean and covariance of the mouse on the right, using
our algorithm for linear interpolation. The leftmost ellipse corresponds to (µ1,Σ1) and the
rightmost ellipse corresponds to (µn,Σn). The affine prior â transforms any of these ellipses
to the ellipse on its right.

transformed locations p′ = p + (u, v)> follow the normal distribution N (µ′,Σ′), where

µ′ = µ + t, Σ′ = AΣA>. (7.10)

We first compute the transformation (A1:n, t1:n) that transforms the mouse in the

first frame of the occlusion event, described by p1 ∼ N (µ1,Σ1), to the mouse in the last

frame of the occlusion event, described by pn ∼ N (µn,Σn), where n is the number of frames

in the occlusion event. Any pair in the family

t1:n = µn − µ1

A1:n = Σ1/2
n O>Σ−1/2

1

where O is an arbitrary orthogonal matrix will perform the desired transformation [43]. We

set the matrix O equal to the identity because the next step requires A1:n to be positive

semidefinite. We estimate the prior transformation relating each pair of adjacent frames by

t̂ =
t1:n

n− 1
, Â = A

1/(n−1)
1:n . (7.11)

Thus,N (µn,Σn) is the result of incrementally applying the transformation (Â, t̂) toN (µ1,Σ1)

n− 1 times. Figure 7.1 shows an example linear interpolation of the affine parameters.

There are many other ways to estimate â; this method was chosen for its sim-

plicity of implementation. Other linear interpolations exist because there are other ways

of parameterizing the Gaussian distribution. For example, we could instead search for the

transformation â that contains as little scaling as possible. Instead of fitting a line to

the mouse parameters at the start and end of the occlusion event, we could fit a spline.

105

Figure 7.2: The depth-ordering of the mice is evident based on the lowest pixel belonging
to each mouse.

This spline would be influenced by heuristics that estimate the likelihood of each param-

eterization at each frame in the occlusion event. We would then estimate ât:t+1 as the

transformation that takes the model along the spline at frame t to the model along the

spline at frame t+1. We plan on exploring alternatives to our linear interpolation in future

work.

Estimating the correspondence between mice at the start and end of an occlusion

event relies on a very simple heuristic to compute the depth ordering. The front mouse is

the mouse that owns the pixel with the lowest (largest) y-coordinate. This is true in any

unoccluded environment in which the floor is visible and the camera is above the floor. This

depth cue is evident in the example in Figure 7.2. Because this estimate relies heavily on

the noisy foreground classification, we used the lowest (largest) y-coordinate in the past 5

frames as a depth estimate.

Pixel Membership Estimation

Given the estimates of the affine motions transforming the mice at frame t to the

mice at frame t+1, the foreground pixels belonging to each mouse in frame t+1 are estimated

(see Section 4.8.5). The pixels belonging to one mouse should be similar in both motion and

location, as motivated in [121]. In order to incorporate both motion and location, we assign

membership based on the weighted sum of proximity and motion similarity. In future work,

we plan to incorporate more complex models such as [60]. However, this simple approach

worked sufficiently well to justify the incorporation of the affine hint.

We estimate the mean and variance of the location of a mouse at frame t + 1 by

applying the computed affine transformation to the estimated mean and variance of the

106

location of the mouse at frame t. The proximity criterion for a pixel at location p is

Jl[p] = (p− µt+1)
>Σ−1

t+1(p− µt+1). (7.12)

We also compute the local optical flow for each foreground pixel. For this, we use

Lucas-Kanade with a Gaussian window with standard deviation 2.0. Note that this re-uses

the spatiotemporal derivatives used in the affine flow estimation. The optical flow of each

pixel in a mouse should be similar to the regional optical flow of the entire mouse. The

motion similarity term for a pixel p with motion (ulocal, vlocal)> is

Jm[p] = λlocal[(ulocal − a1)2 + (vlocal − a4)2]. (7.13)

Our total cost function is therefore

J [p] = Jl[p] + Jm[p]. (7.14)

Each relevant foreground pixel is assigned to the mouse with the lowest summed

location and motion similarity terms.

Tracking the Back Mice

To track the back mice, we reapply the algorithm to just the back mice. Because

the back mice might be occluded by the front mouse at the start or end of their occlusions,

the depth ordering heuristic is much less reliable. We do not use this heuristic if any of the

back mice in the occlusion are significantly occluded by the front mouse. Instead, we use

â = 0, thus the regularization term shrinks the optical flow estimates.

7.1.5 Parameter Sensitivity and Computational Considerations

We have mentioned the parameter settings we used in our experiments through-

out this section. These parameters weight the different terms in our optimization. The

parameter λ, the weight of the prior term in the flow estimation, was set to 10−4. How-

ever, the algorithm is not particularly sensitive to this parameter. Values in the range 10−5

to 5 × 10−4 produced similar results. This insensitivity and the small size of effective λ

settings is due to the ability of the affine flow estimation stage to rely solely on the prior

estimate when too much of the mouse is occluded. In future work, we will experiment with

a dynamically computed λ based on an estimate of the reliability of the optical flow cue.

107

The parameter λlocal is the weight of the motion criterion in the mask estimation. It

was set to 1.0, but values between 0.25 and 2 produced similar results. As λlocal corresponds

to the inverse of the variance of ulocal and vlocal, dynamic estimation may also work for this

parameter.

The matrix Σa was set to diag{1, 0.1, 0.1, 1, 0.1, 0.1}. As Σa corresponds to the

relative variance of a, we plan to fit Σa from actual data.

The running time of our occlusion reasoning module is linear in the total number

of foreground pixels in the frames of the occlusion event. While our current implementation

is in MatlabTM, we believe that a more efficient implementation of this module will run in

real time. Currently, the occlusion reasoning takes about 0.642 seconds per frame in our

experiments with three mice on a 2.4 MHz Pentium 4. Approximately 0.172 seconds of this

time is involved in affine flow estimation, 0.0529 seconds of this time is involved in mask

estimation, and the rest of the time is overhead from parameter passing in functions.

7.1.6 Experiments

We report the initial success of our algorithm in tracking three mice in a cage.

We tested our algorithm on a 1000-frame video sequence taken from the side of

a Static Micro-IsolatorTMcage containing three adolescent mice. The first 200 frames were

used for background initialization and tracking was started at frame 225, in which there

was no occlusion. Figure 7.2 shows an example frame from this sequence. The cage is made

of a translucent plastic and is approximately the size of a shoe box. At the top of the cage

is a metal container with food pellets in one half and a water bottle in the other half. The

camera was positioned slightly above the level of the mouse floor. Because of reflections in

the table and the top of the cage, we cropped each initially 240×360 pixel frame at the top

grate (row 60) and the bottom of the cage (row 193), resulting in 134 × 360 pixel frames.

The video was recorded at 30 frames/second and compressed into Windows Media Video

(wmv) format.

Our results are summarized in Figures 7.3 and 7.4. For purposes of visualization,

we show in Figure 7.3(a) a single scanline of the image (row 96 of the cropped image) at

every frame of the video sequence. Row 96 was chosen as it passes through the middle of

the mice. The x-axis of this image is time and the y-axis is actually the x-axis of an original

frame. Each dark path from left to right in this (t, x) image is the path a single mouse takes

through the sequence; notice there are three paths.

Let us call the mouse that starts at the top of this (t, x) image mouse 1, the mouse

108

(a) (t, x) raw image data (360× 776 pixels): a single scanline of the image at every frame.

(b) (t, x) predicted image (360× 776 pixels): membership of points in a scanline of the image at every frame.

Figure 4: Tracking results (t, x) plot of results. The x-axis in these images is time and the y-axis is the x-axis
of the original frame. Each column corresponds to the same scanline of a different frame.

(a) Frames 49, 64, 80, 104

(b) Frames 516, 525, 539, 556.

Figure 5: Example frames showing the raw image frames from an occlusion event in the top row and the Gaussian
parameters estimated by our algorithm. The ellipses correspond to 2 standard deviations of the Gaussians.

7

(a) (t, x) raw image data (360× 776 pixels): a single scanline of the image at every frame.
(a) (t, x) raw image data (360× 776 pixels): a single scanline of the image at every frame.

(b) (t, x) predicted image (360× 776 pixels): membership of points in a scanline of the image at every frame.

Figure 4: Tracking results (t, x) plot of results. The x-axis in these images is time and the y-axis is the x-axis
of the original frame. Each column corresponds to the same scanline of a different frame.

(a) Frames 49, 64, 80, 104

(b) Frames 516, 525, 539, 556.

Figure 5: Example frames showing the raw image frames from an occlusion event in the top row and the Gaussian
parameters estimated by our algorithm. The ellipses correspond to 2 standard deviations of the Gaussians.

7

(b) (t, x) predicted image (360×776 pixels): membership of points in a scanline of the image at every frame.

Figure 7.3: Tracking results (t, x) plot of results. The x-axis in these images is time and
the y-axis is the x-axis of the original frame. Each column corresponds to the same scanline
of a different frame.

that starts in the middle mouse 2, and the mouse that starts at the bottom mouse 3. In this

sequence, the mice begin unoccluded, then in frame 49 they all move together and mouse 3

passes in front of the other two. In frame 240, mouse 1 passes in front of mouse 3. In frame

299, mouse 3 passes behind mouse 2. In frame 516, all the mice again come together and

mouse 3 passes in front, then turns around and again passes in front of them in frame 581.

Meanwhile, in frame 538 mouse 1 passes in front of mouse 2. Finally, in frame 675, mouse

1 passes in front of mouse 2.

In Figure 7.3(b), we show the labels estimated by our algorithm in this (t, x) for-

mat. At each frame, each point along the scanline (row 96) within two standard deviations

of a mouse is plotted with a color corresponding to that mouse’s label. That is, we plot

point (t, x) with a color corresponding to mouse m if

((x, r)> − µmt)
>Σ−1

mt((x, r)> − µmt) ≤ 2, (7.15)

where µmt and Σmt are the estimated parameters of mouse m at frame t and r is the

scanline row, 96. Thus, each path of one color is the estimated path of a mouse. There

are two breaks in the path of mouse 3; these occur because two standard deviations of

109

(a) (t, x) raw image data (360× 776 pixels): a single scanline of the image at every frame.

(b) (t, x) predicted image (360× 776 pixels): membership of points in a scanline of the image at every frame.

Figure 4: Tracking results (t, x) plot of results. The x-axis in these images is time and the y-axis is the x-axis
of the original frame. Each column corresponds to the same scanline of a different frame.

(a) Frames 49, 64, 80, 104

(b) Frames 516, 525, 539, 556.

Figure 5: Example frames showing the raw image frames from an occlusion event in the top row and the Gaussian
parameters estimated by our algorithm. The ellipses correspond to 2 standard deviations of the Gaussians.

7

(a) Frames 49, 64, 80, 104

(a) (t, x) raw image data (360× 776 pixels): a single scanline of the image at every frame.

(b) (t, x) predicted image (360× 776 pixels): membership of points in a scanline of the image at every frame.

Figure 4: Tracking results (t, x) plot of results. The x-axis in these images is time and the y-axis is the x-axis
of the original frame. Each column corresponds to the same scanline of a different frame.

(a) Frames 49, 64, 80, 104

(b) Frames 516, 525, 539, 556.

Figure 5: Example frames showing the raw image frames from an occlusion event in the top row and the Gaussian
parameters estimated by our algorithm. The ellipses correspond to 2 standard deviations of the Gaussians.

7

(b) Frames 516, 525, 539, 556.

Figure 7.4: Example frames showing the raw image frames from an occlusion event in the
top row and the Gaussian parameters estimated by our algorithm. The ellipses correspond
to 2 standard deviations of the Gaussians.

the estimated Gaussian does not intersect the chosen scanline (because of errors in the

foreground classification). We also plot the x-component of the centers of the estimated

Gaussians in white. For points predicted to belong to multiple mice, we plot the color of

the mouse predicted to be in front.

In this 776 frame sequence, the identities of the mice are never switched. In fact,

the estimated mouse paths match the actual mouse paths very closely. In Figure 7.4, we

show some example image frames and the mouse parameters estimated by our algorithm

for two occlusion events.

7.1.7 Discussion and Conclusion

We have presented a collection of modules that combine many cues to track iden-

tical, non-rigid, featureless objects through severe occlusions. The novel module is the

occlusion tracking module. This module uses a depth ordering heuristic to match up the

front mouse at the start of an occlusion with the front mouse at the end of the occlusion.

This correspondence is used as a hint that is combined with the optical flow cue. Because

of the nature of our targets and the high amount of occlusion, a single frame out of context

can have multiple fits that seem equally good. The “premonition” of the final location of the

mouse gives our algorithm a way of deciding between these equally good fits. This module

is thus a step in the direction of an algorithm that reasons both forward and backward in

110

time.

Mouse identity was tracked without error in all 776 frames, despite noise in the

foreground classification, occlusion detection, and depth estimation. We have thus presented

an approach for assigning unique identity labels to mice through occlusions that can work

with suboptimal modules.

In our experiments, these imperfections did not corrupt the occlusion reasoning

module because the true depth ordering of the mice does not change rapidly. Our algorithm

combines numerous cues, thus in our experiments one module’s failure does not cause the

entire algorithm fail. For example, in one case the foreground classification was poor (it

missed the feet of a mouse), which led to an incorrect estimate of the depth ordering in

an occlusion event. As this occlusion was not complete, there were sufficient intensity

cues to overcome the incorrect depth correspondence. The algorithm succeeded despite the

incorrect depth estimate.

Our algorithm did not fail on the sequence we tested because all the modules never

failed simultaneously. There are cases in which our algorithm would fail. One can imagine

a scenario in which an occlusion is detected too early when in fact the mice are just next

to one another. The mice can then change depth ordering. Or, as the mice are flexible,

one mouse may bend around another mouse (for instance if one mouse climbs over another

mouse). Their depth ordering will therefore change during an occlusions. The latter case

is rare. For these reasons, in future work we plan to incorporate more acausal cues, e.g.

behavioral and appearance cues, to make the estimate more robust. This algorithm can

also fail if the depth ordering is not estimated correctly. We would also to develop a more

robust depth estimation heuristic that does not rely so heavily on foreground classification.

This can include a smoothed estimate that uses the assumption that depth changes slowly

as well as occlusion junction detection [82] when our depth ordering heuristic fails (e.g. for

back mice).

In conclusion, the major contribution of this work is a method for tracking indis-

tinguishable, featureless targets through occlusion events by combining multiple cues in an

acausal fashion throughout the duration of each occlusion event.

7.2 Monte Carlo Smoothing

Monte Carlo smoothing is a sampling-based method for estimating the distribution

of the hidden states x0:T = (x0, ...,xT) of a Markov chain, given the observations, y1:T =

111

(y1, ...,yT). There are two goals addressed in the literature:

• Estimating the distribution of all the hidden states, p(x0:T |y1:T .

• Estimating the marginal distribution of each state, p(xt|y0:T).

To do this, existing algorithms rely on filtering algorithms which estimate p(xt|y1:t). Smooth-

ing algorithms take advantage of the chain structure of the distribution and factor the dis-

tribution into parts it can estimate using filtering. In this section, we review a number of

Monte Carlo smoothing algorithms.

7.2.1 Smoothing by Storing the State Vector

The goal in this section is to estimate the distribution p(x0:T |y1:T) by a set of

particles {x(j)
0:T |T }

N
j=1. This set of particles is found recursively. While we are only interested

in estimating p(x0:T |y1:T), we estimate p(x0:t|y1:t) for all t = 0, 1, ..., T . We use a recursive

decomposition of p(x0:t|y1:t) that involves p(x0:t−1|y1:t−1):

p(x0:t|y1:t) =
p(yt|x0:t,y1:t−1)p(x0:t|y1:t−1)

p(yt|y1:t−1)
(7.16)

=
p(yt|xt)p(x0:t|y1:t−1)

p(yt|y1:t−1)
(7.17)

=
p(yt|xt)p(xt|x0:t−1,y1:t−1)p(x0:t−1|y1:t−1)

p(yt|y1:t−1)
(7.18)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

p(yt|y1:t−1)
. (7.19)

To implement this recursive decomposition in terms of particle set estimates, we

assume that p(xt|xt−1) is easy to sample from, that we can evaluate p(yt|y1:t−1), and

that we have an unweighted particle set {x(j)
0:t−1|t−1}

N
j=1 that estimates the distribution

p(x0:t−1|y1:t−1). For each particle j = 1, ..., N , we generate a new particle x(j)
t|t−1 according

to

p(xt|xt−1 = x(j)
t−1|t−1). (7.20)

We concatenate this new particle to the old particles,

x(j)
0:t|t−1 = (x(j)

0:t−1|t−1,x
(j)
t|t−1). (7.21)

The particle set {x(j)
0:t|t−1}

N
j=1 approximates

p(x0:t|y1:t−1) = p(xt|xt−1)p(x0:t−1|y1:t−1). (7.22)

112

This is because p(x0:t−1 = x(j)
0:t−1|t−1|y1:t−1) is constant for each j, as is p(xt = x(j)

t|t−1|xt−1 =

x(j)
t−1). To compute a particle set approximating p(x0:t|y1:t), we weight our particle set

{x(j)
0:t|t−1}

N
j=1 . This requires weighting each particle j by

w
(j)
t = p(yt|xt = x(j)

t|t−1), (7.23)

resulting in a weighted particle set {(x(j)
0:t|t−1, w

(j)
t)}Nj=1. In order to have an unweighted

particle set, we resample {(x(j)
0:t|t−1, w

(j)
t)}Nj=1 according to the weights, resulting in an un-

weighted particle set {x(j)
0:t|t}

N
j=1.

The major drawback of this algorithm is the amount of resampling that is per-

formed. Notice that here we are resampling entire sequences. After t2 iterations, the

particles generated in iteration t1 have been resampled t2 − t1 times. Experiments in [66]

found that for reasonable values of T (T = 100, 500), there was a huge amount of degeneracy

in the particle set. In his experiment, the set {x(j)
1|500} contained only one unique particle.

7.2.2 Smoothing by the Two-Filter Formula

[66] also presents another smoothing formulation, which estimates the marginal

p(xt|y1:T) for all t = 1, ..., T . This algorithm is based on the factorization of p(xt|y1:T) into

a forward and backward filter:

p(xt|y1:T) = p(xt|y1:t,yt+1:T) (7.24)

= p(yt+1:T |xt,y1:t−1)p(xt|y1:t)/p(yt+1:T |y1:t) (7.25)

∝ p(yt+1:T |xt)p(xt|y1:t) (7.26)

We call p(yt+1:T |xt) the backward filter and p(xt|y1:t) the forward filter. We use

any particle filtering algorithm to generate a set of particles {(x(j)
t|1:t, w

(j)
t|1:t} according to

p(xt|y1:t). We then reweight each particle (x(j)
t|1:t, w

(j)
t|1:t by p(yt+1:T |xt = x(j)

t|1:t). Thus, the

support of the smoothing distribution is the same as the support of the forward predicting

distribution. To estimate p(yt:T |xt = x(j)
t|1:t), we use the following recursive decomposition:

p(yt+1:T |x(j)
t|1:t) =

∫
p(yt+1:T ,xt+1|x(j)

t|1:t)dxt+1 (7.27)

=
∫

p(yt+1:T |xt+1)p(xt+1|x(j)
t|1:t)dxt+1 (7.28)

=
∫

p(yt+2:T |xt+1)p(yt+1|xt+1)p(xt+1|x(j)
t|1:t)dxt+1 (7.29)

113

To estimate this integral for each j = 1, ..., N , we assume that most of the weight

of the integral is on the set of particles distributed according to p(xt+1|y1:t+1), which is

{x(i)
t+1|1:t+1}

N
i=1. Then, we approximate the integral by the sum over these particles. As the

first term in Equation (7.29) is the weight for the next frame, this is a recursive definition

and the weights can be estimated in a backward pass starting at t = T and ending at t = 1.

The advantage of this algorithm over the previous algorithm is that it does not

suffer from the same particle degeneracy described for Kitagawa’s first algorithm. The par-

ticles are generated using filtering, and reweighted to estimate the smoothing distribution.

The main disadvantage of this algorithm is that samples are proposed using standard par-

ticle filtering and then reweighted. If, as is often the case, particle filtering loses modes

of the distribution because of the greedy decisions required by the fixed sample size, these

modes can never be recovered. Thus, both algorithms suffer if the support of the filtering

distribution is very different from the support of the smoothing distribution, and both will

work if the support is very similar.

7.2.3 Chen and Lai, 2003

The smoothing algorithm discussed in [21] uses the decomposition

p(xt|y1:T) =
p(xt|y1:t)p(xt|yt+1:T)

p(xt)
p(y1:t)p(yt+1:T)

p(y1:T)
(7.30)

∝ p(xt|y1:t)p(xt|yt+1:T)
p(xt)

. (7.31)

Using any particle filtering method, we can create a set of samples {(x(i)
t|1:t, w

(i)
t|1:t)}

to approximate the forward distribution:

p(xt|y1:t) ≈
N∑

i=1

w
(i)
t|1:tδ(xt,x

(i)
t|1:t). (7.32)

Assuming we can draw samples from p(xt+1|xt), we can draw weighted samples

{(x(j)
t+1|t+1:T , w

(j)
t+1|t+1:T } from p(xt+1|yt+1:T) using standard filtering as well:

p(xt+1|yt+1:T) ≈
N∑

j=1

w
(j)
t+1|t+1:T δ(xt+1,x

(j)
t+1|t+2:T). (7.33)

This backward recursion begins with the set of weighted samples {x(j)
T |T , w

(j)
T |T },

114

where x(j)
T |T = x(j)

T |1:T and

w
(j)
T |T ∝

p(yT |x(j)
T |T)p(x(j)

T |T)

w
(j)
T |1:T

. (7.34)

We must now combine these two filter approximations. Combining the approximations of

the terms in equation 7.31, we get the approximation:

p(xt|y1:T) ∝
N∑

i=1,j=1

w
(i)
t|1:tw

(j)
t+1|t+1:T δ(xt − x(i)

t)p(x(i)
t|1:t|x

(j)
t+1|t+1:T)/p(x(i)

t). (7.35)

This algorithm takes running time O(TN2) and space O(TN). As in Section 7.2.2,

this amounts to a reweighting of the samples from the filtering density, p(xt|y1:t), and thus

will only be efficient if the smoothing and filtering distributions have similar supports.

7.2.4 Godsill et al., 2002

[49] uses a recursive definition of p(xt:T |y1:T). For t = 1, this is the desired

smoothing distribution. Using particle filtering, we can find a particle set representing this

distribution for t = T , p(xT |y1:T). Then, for t = T, ..., 1, we use the following recursive

decomposition to generate a particle set representing the smoothing density:

p(xt:T |y1:T) = p(xt|xt+1:T ,y1:T)p(xt+1:T |y1:T) (7.36)

= p(xt|xt+1,y1:t)p(xt+1:T |y1:T) (7.37)

We can decompose the first term in equation 7.37:

p(xt|xt+1,y1:t) =
p(xt+1|xt)p(xt|y1:t)p(y1:t)

p(xt+1,y1:t)
(7.38)

=
p(xt+1|xt)p(xt|y1:t)

p(xt+1|y1:t)
(7.39)

∝ p(xt+1|xt)p(xt|y1:t) (7.40)

Suppose we have a set of particles {x̃(j)
t+1:T } representing p(xt+1:T |y1:T), and a set

of particles {(x(j)
t , w

(j)
t)} representing p(xt|y1:t). We use the recursive definition in equation

7.40 to generate samples from p(xt:T |y1:T). To do this, we first generate a particle set

{(x̃(ij)
t , w̃

(ij)
t)}Ni=1 representing p(xt|xt+1 = x̃(j)

t+1,y1:t). This can be done by reweighting the

samples {(x(j)
t } by

w̃
(ij)
t = w

(i)
t p(xt+1 = x̃(j)

t+1|xt = x(i)
t).

115

Next, we draw one sample x̃(j)
t+1:T from {x̃(j)

t+1:T } and one sample x(ij)
t from {(x(i)

t , w̃
(ij)
t)}Ni=1.

Since x̃(j)
t+1:T is distributed according to p(xt+1:T |y1:T) and x(ij)

t is distributed according to

p(xt|xt+1 = x̃(j)
t+1,y1:t), the concatenation of these two samples, x̃(j)

t:T = (x̃(ij)
t , x̃(j)

t+1:T) is

distributed according to the product, p(xt:T |y1:T).

This algorithm takes time O(N2T) and space O(TN). The authors claim that this

algorithm is superior because it generates sample trajectories from the smoothing density

without excessive resampling. Like all the other algorithms presented, it has the fault that

it relies on the smoothing density being similar to the filtering density. This is because

the new sample concatenated is chosen from {(x(i)
t , w̃

(ij)
t)}Ni=1, which is the filtering samples

reweighted. Thus, if the samples in the filtering distribution are not concentrated in the

right space, this algorithm will fail.

7.2.5 Monte Carlo Smoothing for Mouse Tracking

We experimented with a variation of the Monte Carlo smoothing algorithms pre-

sented in [49] to track the mice through occlusions. Our approach used the blob and contour

tracking framework described in Section 6.9.

Empirically, we found that particle filtering did lose modes of the distribution

when a mistake was made. Generating samples in a forward pass and reweighting them in

a backward pass was therefore not effective.

We then modified [49] to take into account the positions of the targets at the end

of the occlusion. Instead of relying on the depth ordering cue, we assumed the states of the

targets were known up to a permutation of identity labels. Our approach was to maintain

a fixed number of particles for each possible permutation of identity labelings between the

mice in the first and last frames. For the three mice, there were 3! = 6 permutations. If we

fix the identities of the mice in the first frame to (1, 2, 3) and we fix the identities of the mice

in the last frame to (a, b, c), then the matchings are (1, 2, 3) = (a, b, c), (1, 2, 3) = (a, c, b),

... , (1, 2, 3) = (c, b, a).

Thus, we broke up the posterior into K! = 6 hypotheses:

p(xt|y1:t) =
K!∑

m=1

P (xm
T+1|y1:t)p(xt|y1:t,xm

T+1) (7.41)

p(xt:T |y1:T) =
K!∑

m=1

P (xm
T+1|y1:T)p(xt:T |y1:T ,xm

T+1). (7.42)

116

Each hypothesis m corresponds to a different permutation of the targets’ identities in the

final state. We restricted our sampling algorithm to draw N ′ = N/K! samples for each

hypothesis. We then performed the smoothing algorithm of [49] in this stratified sample

space. The forward filtering recursion given the hypothesized final state xm
T is very similar

to standard forward filtering:

p(xt|y1:t) ∝
∑
m

P (xm
T+1|y1:t)p(yt|xt)

∫
p(xt|xt−1,xm

T+1)p(xt−1|y1:t−1,xm
T+1)dxt−1 (7.43)

The only differences are (1) the weight of the hypothesis P (xm
T+1|y1:t) and that the motion

model p(xt|xt−1) has been replaced by the clamped motion model p(xt|xt−1,xm
T+1). We

compute the hypothesis weight as

P (xm
T+1|y1:t) =

p(yt,xm
T+1|y1:t−1)∑M

m=1 p(yt,xm
T+1|y1:t−1)

(7.44)

where

p(yt,xm
T+1|y1:t−1) = P (xm

T+1|y1:t−1)p(yt|y1:t−1,xm
T+1) (7.45)

= P (xm
T+1|y1:t−1)

∫
p(xt,yt|y1:t−1,xm

T+1)dxt (7.46)

= P (xm
T+1|y1:t−1)

∫
p(yt|xt)p(xt|y1:t−1,xm

T+1)dxt (7.47)

The backward recursion decomposes similarly. Particle approximations to these recursions

are described in Sections 6.9 and 7.2.4.

The main difficulty with this approach was setting the clamped motion model

p(xt|xt−1,xT+1). If this is a linear Gaussian model, then the effect of the final frame

decreases quadratically as t decreases. Thus, for most of the filtering, the effect of the final

position is not noticed. At the very end of the occlusion, if tracking has been performed

incorrectly, the targets will be pulled to the correct position. We tried a number of different

weighting functions varying from exponential to linear. Linear weighting functions had the

opposite effect. In cases in which the mouse was still for most of the occlusion, then at the

end ran to the other side of the cage, tracking was performed incorrectly. We also attempted

algorithms that began filtering at the end and at the beginning with a prior that forced the

paths to meet in the middle with the same effect.

The reasons for these difficulties was a lack of accurate estimate of uncertainty. The

approach in Section 7 was effective because in frames in which there was enough information

117

for affine flow to be effective, the prior had little effect, while in frames where there was a

lack of information, the prior was mainly used. With the appearance likelihoods used, we

found no good estimate of the confidence. In future research, we plan to focus on learning

confidence estimates from labeled data. In addition, we are also exploring an algorithm

that clusters the particles based on their distances to the different proposed final states,

and keeps a similar number of particles for each cluster.

7.3 Acknowledgements

Portions of this chapter are based on “Three Brown Mice: See How They Run” by

K. Branson, V. Rabaud, and S. Belongie. With insights from S. Belongie, I was responsible

for developing the algorithm, performing the experiments, and writing the paper.

8

Conclusions and Future Work

In this thesis, I have addressed the challenging problem of tracking multiple iden-

tical mice through severe occlusions. This is a novel problem, not previously addressed

by the computer vision community. I have proposed and explored numerous approaches

for each part of the tracking problem: choosing a hidden state representation, appearance

model, and motion model, and performing inference using the chosen model. I have made

significant progress on one of the hardest tracking problems I have encountered. We hope

that the approaches described in this thesis are not only useful for mouse tracking, but also

for other emerging, novel tracking applications.

My current research focuses on using machine learning techniques to extend the

ideas in this thesis.

First, as mentioned in Section 5, we are working on learning a model of the prob-

ability of switching from one contour to the next. Our approach involves first learning a

tree-structured set of rules for predicting the template class given the continuous parame-

ters of the mouse parameter. This is combined with another tree-structured set of rules for

predicting the current class template given the previous class template. Both of these trees

take advantage of the hierarchical model learned.

Second, we are exploring methods for learning to combine all the appearance

features discussed in Section 4 in an optimal method. Recall that the BraMBLe likelihood,

for example, is very peaked. We are exploring methods that smooth this likelihood in an

optimal manner, according to manually labeled training data. In more detail, our approach

learns a conditional random field [69] in which the feature functions correspond to each of

the appearance features discussed in Section 4. We plan to use a variant of gradient tree

boosting to learn sets of rules such as, if the BraMBLe likelihood is greater than z, then

118

119

add z′ to the probability.

Finally, we are exploring methods of extending the sampling approach discussed in

Section 6.9. One can view this method as a three-tiered resolution pyramid. The lowest tier

corresponds to the blob-sampling step, the second lowest tier corresponds to the marginal-

contour-sampling step, and the third tier corresponds to the combined observations. We

plan to learn many conditional random fields at many different resolutions, where resolution

refers to a specific amount of subsampling of each dimension, as well as which features to

evaluate and include. We then plan to learn how to combine these conditional random fields

in the most efficient manner. This can be done using a shortest-paths dynamic programming

algorithm.

Bibliography

[1] E. H. Adelson. Layered representations for image coding. Vision and Modeling Tech-
nical Report 181, MIT Media Lab, 1991.

[2] Allentown Inc. Allentown micro-vent system caging. http://www.allentowninc.
com/Plastic_Caging2.htm.

[3] Y. Altunbasak, P. Eren, and A. Tekalp. Region-Based Parametric Motion Segmenta-
tion Using Color Information. Graphical Models and Image Processing, 60(1):13–23,
1998.

[4] C. Andrieu, A. Doucet, and E. Punskaya. Sequential Monte Carlo methods for optimal
filtering. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo
Methods in Practice, Statistics for Engineering and Information Science, chapter 4,
pages 77–96. Springer, 2001.

[5] S. Avidan. Ensemble tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 2, pages 494–501, 2005.

[6] S. Avidan. SpatialBoost: Adding Spatial Reasoning to AdaBoost. In Proceedings of
the European Conference on Computer Vision, volume IV, page 386. Springer-Verlag,
2006.

[7] S. Ayer and H. Sawhney. Layered representation of motion video using robust
maximum-likelihood estimation of mixture models and mdl encoding. In Proceedings
of the IEEE International Conference on Computer Vision, page 777, Los Alamitos,
CA, USA, 1995. IEEE Computer Society.

[8] T. Bando, T. Shibata, and S. Doya, K. Ishii. Switching particle filters for efficient
real-time visual tracking. In Proceedings of the International Conference on Pattern
Recognition, volume 2, pages 720–723, August 2004.

[9] B. Bascle and R. Deriche. Region tracking through image sequences. In Proceedings
of the IEEE International Conference on Computer Vision, pages 302–307, 1995.

[10] S. Belongie, J. Malik, and J. Puzicha. Shape context: A new descriptor for shape
matching and object recognition. In Advances in Neural Information Processing Sys-
tems, 2000.

120

121

[11] N. Bergman. Posterior cramer-rao bounds for sequential estimation. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Prac-
tice, Statistics for Engineering and Information Science, chapter 15, pages 321–338.
Springer, 2001.

[12] C. Berzuini and W. Gilks. RESAMPLE-MOVE filtering with cross-model jumps. In
A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in
Practice, Statistics for Engineering and Information Science, chapter 6, pages 117–138.
Springer, 2001.

[13] S. Birchfield. Elliptical head tracking using intensity gradients and colorhistograms.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 232–237, 1998.

[14] S. Birchfield. KLT: An implementation of the Kanade-Lucas-Tomasi feature tracker.
http://www.ces/clemson.edu/stb/klt/index.html, March 2006.

[15] M. Black and P. Anandan. The robust estimation of multiple motions: parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–
104, 1996.

[16] A. Blake and M. Isard. Active Contours. Springer, Great Britain, 2000.

[17] K. Branson and S. Belongie. Tracking multiple mouse contours (without too many
samples). In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[18] K. Branson, V. Rabaud, and S. Belongie. Three brown mice: See how they run.
In Proceedings of the IEEE Workshop on Visual Surveillance and Performance Eval-
uation of Tracking and Surveillance at the International Conference on Computer
Vision, 2003.

[19] C. Bregler and S. Omohundro. Surface learning with applications to lipreading. In
Advances in Neural Information Processing Systems, volume 6, 1994.

[20] T.-J. Cham and J. M. Rehg. A multiple hypothesis approach to figure tracking. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 239–245, 1999.

[21] Y. Chen and T. L. Lai. Sequential Monte Carlo methods for filtering and smoothing
in hidden Markov models. Technical Report 2003-18, Duke University, August 2003.

[22] Y. Chen, Y. Rui, and T. Huang. Multicue HMM-UKF for Real-Time Contour Track-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9):1525–
1529, 2006.

[23] R. Chin and C. Dyer. Model-based recognition in robot vision. ACM Computing
Surveys (CSUR), 18(1):67–108, 1986.

[24] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using
mean shift. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, 2000.

122

[25] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(5):564–575, 2003.

[26] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active Shape Models - Their
tracking and applications. Computer Vision and Image Understanding, 61(2), 1995.

[27] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In Pro-
ceedings of the European Conference on Computer Vision, volume 1407, pages 484–??,
1998.

[28] I. Cox and S. Hingorani. An efficient implementation and evaluation of reid’s multiple
hypothesis tracking algorithm for visual tracking. In Proceedings of the International
Conference on Pattern Recognition, volume A, pages 437–442, 1994.

[29] I. J. Cox and S. L. Hingorani. An efficient implementation of reid’s multiple hypoth-
esis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 18(2):138–150, 1996.

[30] D. Crisan. Particle filters - a theoretical perspective. In A. Doucet, N. de Freitas,
and N. Gordon, editors, Sequential Monte Carlo Methods in Practice, Statistics for
Engineering and Information Science, chapter 2, pages 15–42. Springer, 2001.

[31] D. Crisan and A. Doucet. A survey of convergence results on particle filtering methods
forpractitioners. IEEE Transactions on Signal Processing, 50(3):736–746, 2002.

[32] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects, ghosts,
and shadows in video streams. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(10):1337–1342, 2003.

[33] T. Darrell and A. Pentland. Robust estimation of a multi-layered motion representa-
tion. In Proceedings of the IEEE Workshop on Visual Motion, pages 173–178, 1991.

[34] J. de Freitas, M. Niranjan, A. Gee, and A. Doucet. Sequential Monte Carlo Methods
to Train Neural Network Models. Neural Computation, 12(4):955–993, April 2000.

[35] J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by annealed
particle filtering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 126–133, 2000.

[36] P. Dollár, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries.
In CVPR, June 2006.

[37] A. Doucet. On sequential simulation-based methods for bayesian filtering. Technical
Report CUED/F-INFENG/TR. 310, Cambridge University Department of Engineer-
ing, 1998.

[38] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis. Background and fore-
ground modeling using nonparametric kernel density for visual surveillance. In Pro-
ceedings of the IEEE, volume 90(7), pages 1151–1163, July 2002.

123

[39] P. Fieguth and D. Terzopoulos. Color-based tracking of heads and other mobile objects
at videoframe rates. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 21–27, 1997.

[40] Foundation for Biomedical Research. Fbr’s position on animal research. http://www.
fbresearch.org/about/position.htm.

[41] C. Fowlkes. The Berkeley segmentation engine. http://www.cs.berkeley.edu/
~fowlkes/BSE/, May 2005.

[42] N. Friedman and S. Russell. Image segmentation in video sequences: A probabilistic
approach. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
1997.

[43] J. Gårding. Shape from surface markings. PhD thesis, Royal Institute of Technology,
Stockholm, 1991.

[44] D. Gavrila, J. Giebel, and H. Neumann. Learning shape models from examples. In
Proceedings of the Symposium of the German Association for Pattern Recognition
(DAGM), pages 369–376, 2001.

[45] D. M. Gavrila. Multi-feature hierarchical template matching using distance trans-
forms. In Proceedings of the International Conference on Pattern Recognition, pages
439–444, 1998.

[46] P. Getreuer. Matlab central file exchange – color space converter. http:
//www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=
7744&objectType=FILE, May 2005.

[47] J. Giebel. Learning Dynamic Shape Models for Bayesian Tracking. PhD thesis, Uni-
versitat Mannheim, 2005.

[48] J. Giebel and D. Gavrila. Multimodal shape tracking with point distribution models.
In Proceedings of the Symposium of the German Association for Pattern Recognition
(DAGM), pages 1–8, 2002.

[49] S. Godsill, A. Doucet, and M. West. Monte Carlo Smoothing for Nonlinear Time
Series. Journal of the American Statistical Association, 99(465):156–169, 2004.

[50] G. Hager, M. Dewan, and C. Stewart. Multiple kernel tracking with SSD. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 1,
2004.

[51] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer Verlag, Basel, 2001.

[52] T. Heap and D. Hogg. Improving specificity in pdms using a hierarchical approach.
In Proceedings of the British Machine Vision Conference, 1997.

[53] B. Horn and B. Schunck. Determining Optical Flow. Artificial Intelligence, 17(1-
3):185–203, 1981.

124

[54] M. Irani and P. Anandan. All about direct methods. In Proceedings of the Interna-
tional Workshop on Vision Algorithms: Theory and Practice. Springer-Verlag, 1999.

[55] M. Irani, B. Rousso, and S. Peleg. Computing occluding and transparent motions.
International Journal of Computer Vision, 12(1):5–16, 1994.

[56] M. Isard and A. Blake. ICONDENSATION: Unifying low-level and high-level tracking
in a stochastic framework. In Proceedings of the European Conference on Computer
Vision, volume 1406, pages 893–908, 1998.

[57] M. Isard and J. MacCormick. BraMBLe: A Bayesian multiple-blob tracker. In Pro-
ceedings of the IEEE International Conference on Computer Vision, 2001.

[58] J. Ferryman and S. Maybank, University of Reading, UK. Performance evaluation of
tracking and surveillance (PETS) data set, 2001.

[59] S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Detection and location of people
in video images using adaptive fusion of color and edge information. In Proceedings
of the International Conference on Pattern Recognition, pages 4627–4631, 2000.

[60] N. Jojic and B. J. Frey. Learning flexible sprites in video layers. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, volume 01, page
199, Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[61] E. Jones and S. Soatto. Layered Active Appearance Models. In Proceedings of the
IEEE International Conference on Computer Vision, volume 2, 2005.

[62] S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new approach for filtering nonlinear
systems. In Proceedings of the American Control Conference, volume 3, 1995.

[63] P. KaewTraKulPong and R. Bowden. An improved adaptive background mixture
model for real-time tracking with shadow detection. In Proceedings of the European
Workshop on Advanced Video-based Surveillance Systems, 2001.

[64] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Interna-
tional Journal of Computer Vision, pages 321–331, 1988.

[65] K. Kim, D. Harwood, and L. Davis. Background updating for visual surveillance. In
Advances in Visual Computing, pages 337–346. Springer, 2005.

[66] G. Kitigawa and S. Sato. Monte carlo smoothing and self-organising state-space
model. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo
Methods in Practice, Statistics for Engineering and Information Science, chapter 9,
pages 177–196. Springer, 2001.

[67] D. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, and S. Russell.
Towards robust automatic traffic scene analysis in real-time. In Proceedings of the
International Conference on Pattern Recognition, volume 1, 1994.

[68] F. Kristensen, P. Nilsson, and V. Owall. Background Segmentation Beyond RGB.
In Proceedings of the Asian Conference on Computer Vision, volume 3852, page 602.
Springer-Verlag, 2006.

125

[69] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the International
Conference on Machine Learning, pages 282–289, 2001.

[70] D. Lee. Effective Gaussian Mixture Learning for Video Background Subtraction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(5):827–832, 2005.

[71] K.-C. Lee and D. Kriegman. Online learning of probabilistic appearance manifolds
for video-based recognition and tracking. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, volume 1, pages 852–859, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[72] J. Lim, D. Ross, R.-S. Lin, and M.-H. Yang. Incremental learning for visual tracking.
In Advances in Neural Information Processing Systems, volume 18, pages 793–800,
2005.

[73] J. Liu. Metropolized independent sampling with comparisons to rejection sampling
and importance sampling. Statistics and Computing, 6:113–119, 1996.

[74] J. Liu and R. Chen. Blind Deconvolution Via Sequential Imputations. Journal of the
American Statistical Association, 90(430), 1995.

[75] J. S. Liu and R. Chen. Sequential Monte Carlo methods for dynamic systems. Journal
of the American Statistical Association, 93(443):1032–1044, 1998.

[76] B. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proceedings of the International Joint Conferences on Artificial
Intelligence, pages 674–679, 1981.

[77] J. MacCormick. Probabilistic Modelling and Stochastic Algorithms for Visual Locali-
sation and Tracking. PhD thesis, Oxford, January 2000.

[78] J. MacCormick. Stochastic Algorithms for Visual Tracking. Distinguished Disserta-
tions. Springer, Great Britain, 2002.

[79] J. MacCormick and A. Blake. A probabilistic exclusion principle for tracking multiple
objects. International Journal of Computer Vision, 39(1):57–71, 2000.

[80] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(5):530–549, May 2004.

[81] F. Moscheni, S. Bhattacharjee, and M. Kunt. Spatio-temporal segmentation based on
region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(9):897–915, 1998.

[82] S. Niyogi. Detecting kinetic occlusion. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1044–1049, 1995.

[83] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A boosted particle
filter: Multitarget detection and tracking. In Proceedings of the European Conference
on Computer Vision, 2004.

126

[84] M. Orton and W. Fitzgerald. A bayesian approach to tracking multiple targets using
sensor arrays and particle filters. IEEE Transactions on Signal Processing, 2002.

[85] M. Piccardi. Background subtraction techniques: a review. In Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics, volume 4, pages
3099–3104, 2004.

[86] M. Pitt and N. Shephard. Auxiliary variable based particle filters. In A. Doucet, N. D.
Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice, Statis-
tics for Engineering and Information Science, chapter 13, pages 273–293. Springer,
2001.

[87] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam. Image change detection algo-
rithms: a systematic survey. In Proceedings of the IEEE International Conference on
Image Processing, volume 14 (3), pages 294–307, 2005.

[88] Y. Raja, S. McKenna, and S. Gong. Segmentation and Tracking Using Color Mixture
Models. In Proceedings of the Asian Conference on Computer Vision, pages 607–614.
Springer-Verlag London, UK, 1998.

[89] D. Ramanan. Tracking People and Recognizing their Activities. PhD thesis, University
of Delaware, 2000.

[90] D. Ramanan and D. Forsyth. Finding and tracking people from the bottom up. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, 2003.

[91] D. Ramanan, D. Forsyth, and A. Zisserman. Tracking people by learning their appear-
ance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007:65–81,
2001.

[92] C. Rasmussen and G. Hager. Joint probabilistic techniques for tracking multi-part
objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 16–21, 1998.

[93] C. Rasmussen and G. D. Hager. Probabilistic data association methods for track-
ing complex visual objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):560–576, 2001.

[94] J. Rehg and T. Kanade. Visual tracking of high dof articulated structures: An ap-
plication to human hand tracking. In Proceedings of the European Conference on
Computer Vision, volume II, pages 35–46, May 1994.

[95] D. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic
Control, 24(6):843–854, 1979.

[96] Y. Rui and Y. Chen. Better Proposal Distributions: Object Tracking Using Unscented
Particle Filter. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 786–793, 2001.

[97] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of Interest Point Detectors.
International Journal of Computer Vision, 37(2):151–172, 2000.

127

[98] D. Schulz, W. Burgard, D. Fox, and A. Cremers. Tracking multiple moving targets
with a mobile robot using particle filters and statistical data association. In Proceed-
ings of the IEEE International Conference on Robotics and Automation, volume 2,
2001.

[99] D. Schulz, W. Burgard, D. Fox, and A. Cremers. People Tracking with Mobile Robots
Using Sample-Based Joint Probabilistic Data Association Filters. The International
Journal of Robotics Research, 22(2):99–116, 2003.

[100] S. Sclaroff and J. Isidoro. Active blobs. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1146–1153, 1998.

[101] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability testing.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 26:521–
532, 1996.

[102] Y. B. Shaalom and T. E. Fortman. Tracking and Data Association. Academic Press,
Boston, 1988.

[103] Y. Sheikh and M. Shah. Bayesian Modeling of Dynamic Scenes for Object Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11):1778–1792,
2005.

[104] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1154–1160, 1998.

[105] J. Shi and C. Tomasi. Good features to track. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1994.

[106] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Tracking loose-limbed people.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
volume 01, pages 421–428, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[107] C. Stauffer and W. Grimson. Adaptive background mixture models for real-time
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1999.

[108] M. B. Stegmann. Active appearance models. http://www2.imm.dtu.dk/~aam/, De-
cember 2004.

[109] M. B. Stegmann. Generative Interpretation of Medical Images. PhD thesis, Informat-
ics and Mathematical Modelling, Technical University of Denmark, DTU, Richard
Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2004. Awarded the Nordic
Award for the Best Ph.D. Thesis in Image Analysis and Pattern Recognition in the
years 2003-2004 at SCIA’05.

[110] J. Sullivan. A Bayesian Framefork for Localisation in Visual Images. PhD thesis,
Oxford, September 2000.

128

[111] H. Tao, H. Sawhney, and R. Kumar. Object tracking with Bayesian estimation of
dynamic layer representations. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(1):75–89, 2002.

[112] H. Tao, H. S. Sawhney, and R. Kumar. Dynamic layer representation with applications
to tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 02, page 2134, Los Alamitos, CA, USA, 2000. IEEE Computer
Society.

[113] University of California Center for Animal Alternatives. The mouse in science: Why
mice? http://www.vetmed.ucdavis.edu/Animal_Alternatives/whymice.htm.

[114] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented particle fil-
ter. Technical Report CUED/F-INFENG/TR380, Cambridge University Engineering
Department, August, 2000.

[115] R. van der Merwe, N. de Freitas, A. Doucet, and E. Wan. The unscented particel
filter. In Advances in Neural Information Processing Systems, Nov 2001.

[116] J. Vermaak, S. Godsill, and P. Perez. Monte carlo filtering for multi-target tracking
and data association. Transactions on Aerospace and Electronic Systems, 41(1):309–
332, January 2005.

[117] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2001.

[118] P. Viola and M. Jones. Robust real-time object detection. International Journal of
Computer Vision, 2002.

[119] E. Wan and R. Van Der Merwe. The unscented Kalman filter for nonlinear estimation.
In Proceedings of the IEEE Adaptive Systems for Signal Processing, Communications,
and Control Symposium, pages 153–158, 2000.

[120] J. Wang and E. Adelson. Representing moving images with layers. In Proceedings of
the IEEE International Conference on Image Processing, volume 3 (5), pages 625–638,
1994.

[121] Y. Weiss and E. H. Adelson. A unified mixture framework for motion segmentation:
Incorporating spatial coherence and estimating the number of models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, volume 00,
page 321, Los Alamitos, CA, USA, 1996. IEEE Computer Society.

[122] G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report
TR 95-041, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175,
July 2006.

[123] Wikipedia. Lab color space – Wikipedia, the free encyclopedia. http://en.
wikipedia.org/w/index.php?title=Lab_color_space&oldid=943475366, 2006.

129

[124] O. Williams, A. Blake, and R. Cipolla. Sparse bayesian learning for efficient vi-
sual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(8):1292–1304, 2005.

[125] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: real-time tracking of
the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):780–785, 1997.

[126] Y. Yang and M. Levine. The background primal sketch: An approach for tracking
moving objects. Machine Vision and Applications, 5(1):17–34, 1992.

