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ABSTRACT OF THE DISSERTATION

Human immunodeficiency virus evolutionary dynamics in compartmentalised settings: a
mathematical & computational approach

By

Wen-Jian Chung

Doctor of Philosophy in Computational Science

University of California, Irvine, 2023

Professor Dominik Franz Xavier Wodarz, Chair

Experimental observations indicate that the human immunodeficiency virus (HIV) can repli-

cate in both the follicular and extrafollicular parts of secondary lymphoid tissues, HIV’s

primary replication site. The former is an immune privileged zone with low cytotoxic lym-

phocyte activity, and thus HIV replication is primarily concentrated there. Mathematical

models and stochastic Gillespie simulations show that this compartmentalization poten-

tially explains several seemingly counterintuitive observations. First, the observation of

post-therapy viral decline rate’s independence of cytotoxic T-lymphocyte (CTL) presence

in simian immunodeficiency virus (SIV)-infected macaques, assuming CTL-mediated lysis

significantly contributes to viral suppression. Second, the slow emergence of CTL-escape

mutants during chronic infection even if CTL-mediated lysis is responsible for viral suppres-

sion. Heterogeneity in CTL activity, and consequently the selection pressure and infected cell

population sizes, between the follicular and extrafollicular compartments can explain these

findings. The effect of secondary lymphoid tissue compartmentalization is also examined

in the context of non-escape scenarios, where the mutant HIV strain is recognised by the

CTL response. These findings highlight the importance of measuring viral populations sep-

arately in the extrafollicular and follicular compartments; peripheral blood viral load hides

the heterogeneity between compartments and its potential effects.

x



Chapter 1

Introduction

The original motivation behind the work in this dissertation is to propose another explanation

for the observed phenomenon of slow immune escape: compartmentalisation within the

human body, particularly in lymphoid tissues, and the presence of immune privileged “safe

havens” for the human immunodeficiency virus (HIV) may also play an important role in

the evolutionary dynamics of HIV in general. It is noteworthy that most mathematical

models of HIV treat the body as one homogeneous medium in which HIV infection takes

place. However, the human body is anything but homogeneous, consisting of many different

types of tissue with a lot of barriers between. HIV replication mostly takes place in secondary

lymphoid tissues such as the lymph nodes, spleen, or gut-associated lymphoid tissue. Within

these tissues, viral replication tends to be concentrated in B cell follicles, with lower levels

of replication observed in the extrafollicular compartments. One reason for this is that the

follicular compartment contains follicular CD4+ helper T-cells that are more permissive to

HIV than those in the extrafollicular compartment. The presence of a high concentration

of extracellular virions on the surface of follicular dendritic cells (FDCs) can also contribute

to viral spread in the follicular compartment. Furthermore, because CTLs have limited

or no presence in these compartments, they constitute an immune-privileged zone like the
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central nervous system or testes. These zones can become “safe havens” where HIV is able

to replicate relatively undisturbed by the immune response.

Using two-compartment deterministic ordinary differential equation (ODE) mathematical

models building on the basic dynamics established in this introduction and computational

stochastic simulations and comparing them with simpler single-compartment models, one of

the goals of this dissertation is to show that the permeability of these follicular reservoirs

to both infected cells and CTLs can significantly affect the amount of time it takes for HIV

to evolve an escape to the immune response. This can be intuitively explained by the fact

that the reservoirs in the follicular tissue where CTL activity is limited become safe havens,

thus the selective pressure on HIV to evolve an escape to the immune response is much

lower there. This is especially true if there is a cost to viral replication or infectiousness that

has been usually associated with such mutations. Since the majority of the HIV replication

will be occurring in the follicular compartment, and not in the extrafollicular compartment

where the CTL response is much stronger and thus better able to control HIV replication, it

will take much longer for an escape strain that has worse infectiousness or replication rate

to emerge and take hold in the entire system due to the lower selective pressure from CTLs

in the follicular compartment. However, the compartmentalisation of lymphoid tissues also

has other important effects on HIV dynamics, and the dissertation also covers the extended

work.

This dissertation is structured into five main chapters. The first chapter will provide back-

ground on HIV, basic mathematical models of HIV dynamics, and secondary lymphoid tis-

sues in order to provide context for the main body of work in the following chapters. The

immunology of HIV infection in secondary lymphoid tissues is a highly complex subject that

could be the subject of multiple dissertations; regrettably, in the interests of brevity, the

author will only be able to cover the aspects relevant to the work in this dissertation.

The second chapter primarily concentrates on studying the effect of lymphoid tissue com-
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partmentalisation on HIV dynamics using deterministic ODE models. One particularly

important effect studied here is that which compartmentalisation has on HIV decline with

the application of anti-retroviral therapy (ART). Experimental observations have established

that the rate of decline in infected cell populations (and thus infected cell lifetime) following

ART is remarkably consistent, irrespective of disease stage or the amount of immune con-

trol. This observation was confirmed by Klatt et al. in the SIV lab model by comparing

control simian subjects, where the CTL response is robust, with CTL-depleted monkeys,

where there is no CTL response. In both cases, the rate of decline in the viral load after

ART initiation was identical. From this result, they concluded that CTLs do not kill but

suppress infected cells by non-lytic means. However, lymphoid tissue compartmentalisation

and low CTL action in the immune-privileged follicular compartment may provide an alter-

native explanation. This chapter also provides some of the theoretical background for the

two-compartment ODE models, which form the basis for the two-compartment stochastic

models used in the following chapter.

The third chapter moves on to using a stochastic modeling approach to simulate HIV CTL

escape in compartmentalised lymphoid tissues. the process of HIV evolving an escape to-

wards the immune response via mutation is fundamentally random and probabilistic due to

the random nature of genetic mutations due to errors in ribonucleic acid (RNA) replication

and transcription during the HIV replication process. It is therefore not completely appro-

priate to model the emergence of mutants using deterministic differential equations and it

is therefore necessary to transition towards using stochastic simulations. In particular, for

small populations, population fluctuations can sometimes lead to situations where popu-

lation extinction occurs where a deterministic model might predict otherwise. Even with

high viral loads (populations), stochastic effects can be important. The well-known Gillespie

stochastic simulation algorithm, which originated from the study of chemical reactions is

primarily used in this chapter. Some background and theory behind the Gillespie algorithm

and its applicability to viral dynamics will also be discussed in this chapter. Two different
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types of CTL escape are considered as well: one where the wild type can immediately jump

to a complete escape from the CTL response, and one where the virus must first evolve some

degree of escape from the CTL response before then evolving a complete escape. In both

scenarios, it will be shown that increasing the degree of compartmentalisation between the

follicular and extrafollicular compartments will greatly increase the time taken for a com-

plete escape to the CTL response to evolve. This provides some support for the hypothesis

that lymphoid tissue compartmentalisation can help explain why HIV is slow to evolve an

escape to the host CTL response.

The fourth chapter further considers other effects of lymphoid tissue compartmentalisation

on the evolutionary dynamics of HIV, Instead of only considering the evolution of CTL escape

by HIV, which was concentrated on in the first two chapters, we will consider the evolution of

mutants that do not escape the immune response, but whose mutations still have an impact

on HIV’s reproductive fitness. How does the compartmental structure of the lymphoid

tissue influence the evolution of neutral, advantageous, or disadvantageous mutants? If we

assume that the degree of exchange between the follicular and extrafollicular compartments

is relatively small and the immune response is relatively strong, one compartment will have a

small infected cell population and the other will have a significantly larger population. This

considerably alters the evolutionary dynamics compared to those in a homogeneous single-

compartment model. Both ODEs and stochastic approaches will be used to help gain a better

understanding of the differences between a compartmentalised and non-compartmentalised

model.

Finally, the concluding chapter will summarise the work and discuss other potential im-

pacts the compartmentalised structure of lymphoid tissue could have on HIV’s evolutionary

dynamics in other contexts. Potential directions for future work will also be discussed.

It is important to emphasize that the compartmentalisation of lymphoid tissue is by no

means mutually exclusive with the other explanations that have been proposed for HIV’s
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slow immune escape or the other phenomena examined; rather, it should be considered as

contributing towards a more holistic picture of HIV’s evolutionary dynamics in vivo.
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Chapter 2

Background

2.1 HIV

HIV is a single-stranded enveloped RNA virus, a member of the Lentivirus genus of retro-

viruses. The basic structure of a HIV virion is illustrated in Fig. 2.1. It is a lymphtropic

virus that primarily infects and kills CD4+ helper T-lymphocytes, which are critical in co-

ordinating the adaptive immune response. However HIV is also capable of infecting other

CD4-expressing immune cells such as macrophages and microglia. It is transmitted via

infected bodily fluids, particularly blood and semen (1; 2).

The replication cycle of HIV is illustrated in Fig. 2.2. HIV first attaches to a CD4-expressing

cell with its spike using gp120 envelope glycoprotein to bind to the CD4 and a chemokine

coreceptor (CCR5 or CXCR4, depending on the strain). This initiates the fusion of the

HIV envelope with the cell membrane, allowing the capsid containing the RNA to enter the

cell. Once inside the cell, the two strands of RNA are transcribed into DNA using reverse

transcriptase as the capsid is transported to the cell’s nucleus (reverse transcription). Inside

the nucleus, the viral DNA is released from the capsid, then the viral integrase integrates
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Figure 2.1: Structure of HIV-1 virions. Upon maturation, the capsid proteins form a bullet-
shaped capsid surrounding the single-stranded RNA. The gp120 envelope glycoprotein at-
taches to CD4 receptors on immune cells and together with a coreceptor (CCR5 or CXCR4,
depending on the HIV strain) facilitates HIV’s entry into cell. (ViralZone (1))

the the viral genome into the host cell’s own genome. This is a defining characteristic of

retroviruses such as HIV. Once bound to the cell’s DNA, the HIV DNA can either become

dormant or activated to begin producing new HIV virions (1; 2).

Although HIV was only discovered in 1983, it is believed that HIV first infected humans

via a zoonotic event (or events) that occurred in southern Cameroon sometime in the early

20th century. HIV-1, the most globally prevalent HIV subtype, is descended from the simian

immunodeficiency virus (SIV), specifically the SIV subtype endemic in chimpanzees, SIVcpz.

Because of the close similarities between SIV and HIV and the problematic ethics of perform-

ing HIV experiments with humans, SIV infection in primates such as macaques is often used

as an experimental model for HIV infection in humans, such as in Connick et al. (2014) (3).

HIV infection is characterised by an initial acute infection followed by a long asymptomatic

(clinically latent) phase. However, even during this clinical latent phase where there is lit-
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Figure 2.2: HIV replication cycle. (The Science of HIV Project (2))

tle, if any, detectable viremia, HIV is very much still actively replicating in the lymphoid

tissues. As might be guessed from the name “lymphocyte”, the lymphatic system contains

98% of an adult human body’s lymphocytes. This means that even though HIV is pri-

marily transmitted through infected blood or semen, it is actually in lymphoid tissues such

as the spleen, lymph nodes, or gut-associated lymphoid tissue where the majority of HIV

replication takes place. Eventually, without treatment to suppress HIV replication, immune

exhaustion from persistent HIV infection results in the collapse of the adaptive immune re-

sponse following HIV infection, which may occur up to 10 years after the initial infection.

This is known as acquired immunodeficiency syndrome (AIDS), which is almost always fatal

without treatment.

Due to the immense clinical impact that HIV infection and AIDS has had since the first AIDS

cases were reported in 1981, the interaction between HIV and the human immune system

has been the subject of intensive study. It is known that the human body quickly activates

antibodies and cytotoxic CD8+ T-lymphocytes (CTLs) during the first phase of acute HIV

infection, accompanied by a significant drop in the measured blood viral load. Yet HIV is

usually able to survive this first response and establish itself in its host. The persistence

of HIV in the human body despite the adaptive immune response has been attributed to
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several factors. One of these is the fact that HIV has a very high replication rate, with some

1010—1012 virions generated every day in the absence of antiretroviral therapy (ART), as

well as a high mutation rate of approximately 3 × 10−5 per nucleotide base per replication

cycle, thanks to the error-prone nature of RNA viral replication. This allows it to change

the epitopes (the parts of the HIV antigen recognised by the immune system) that are

normally targeted by both the humoral and cell-mediated immune responses, thus escaping

the immune response (4). HIV is also able to establish itself in certain immune-privileged

zones such as the brain or testicles, where it is able to reproduce unhindered (5; 6). HIV

can also enter latency in infected cells: as a retrovirus, HIV’s genome is integrated into the

infected cell’s own genome, where it can then be reactivated. During this latency period,

no viral production takes place, and thus the infected cell is not targetable by the immune

response (7).

Today, HIV infection is treatable with anti-retroviral therapy (ART) (9). However, there is no

practical cure for HIV infection other than extremely dangerous procedures involving stem-

cell/bone marrow transplants from donors with the CCR5-delta 32 mutation that confers

resistance towards HIV infection, of which only five known successful cases exist (10). By

contrast, according to the US government, some 38.4 million people lived with HIV worldwide

in 2021 (11). While new infections and number of deaths from HIV have been declining over

the past two decades, the lifelong nature of HIV infection means that it will continue to

impose a substantial disease burden on global health for the foreseeable future. Despite the

high effectiveness of ART, HIV can and does evolve drug resistance, just as it evolves to

evade the immune response: over time, an individual’s HIV infection may become drug-

resistant, preventing effective control of the infection. Therefore, understanding HIV and

the biological processes underlying HIV infection remains an important task that provide

helpful insights in developing more effective therapies, and perhaps towards a practical cure.
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2.2 Basic in vivo mathematical models of HIV

The interaction between HIV and the host’s immune system has been the subject of mathe-

matical modeling efforts dating back to at least the early 1990s (12). A very basic model for

HIV infection can be described by the following set of ordinary differential equations (ODEs)

using the law of mass action:

Ẋ = λ− dX − βXY,

Ẏ = βXY − aY − pY Z,

Ż = cY Z − bZ.

(2.1)

The uninfected and infected CD4+ cell populations are denoted by X and Y , respectively.

The CTL population, whose growth is stimulated in response to infected cells and which also

preys on the infected cells, is denoted by Z. The law of mass action essentially states that

the rate of a chemical reaction is directly proportional to the product of the concentration

of the reactant species. Treating each interaction between the different populations of cells

as a “chemical” reaction, we can derive all the terms in the ODE model.

The dynamics of this model are governed by a number of constant parameters:

• λ, the production rate for uninfected cells.

• d, the natural death rate for uninfected cells.

• β, the infection rate for uninfected cells upon contact with infected cells.

• a, the death rate of infected cells.

• p, the rate at which infected cells are killed by CTLs upon contact.

• c, the CTL population expansion rate upon antigenic stimulation by infected cells.
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• b, the natural death rate of CTLs.

These values of these parameters will be discussed in Chapter 3 when the two-compartment

model is introduced.

Note that the model assumes the virion population (i.e., extracellular HIV virions) is in a

quasi-steady state with the infected cells, and is therefore proportional to the number of

infected cells. It is an extension of the well-established theoretical framework for describing

the dynamics of virus infections mathematically (13; 14; 15). It also assumes that the primary

driver of HIV infection in this model is direct contact between cells (cell-to-cell spread) and

does not directly include cell-free spread by free virions, Direct cell-to-cell spread has been

suggested to be the primary method by which HIV spreads in lymphoid tissues since CD4+

T-cells are densely packed there and interact with each other frequently, hence this is a

reasonable assumption for the models detailed in this dissertation (16; 17).

The presence of the cY Z term in the ODE for the CTL population (Ż) results in a very

aggressive expansion of the CTL response in reaction to any infection. It also simplifies the

algebra for stability analyses. However, it also implies that if the CTL population reaches

zero for any reason, the CTL population will never appear again. This is not consistent with

our understanding of human immunity, for this would imply that the human body would

never be able to mount an initial response to an infection since the CTL population would

be starting from zero. This is particularly important in the context of the emergence of CTL

escape mutants, which shall be explored later in Chapter 2.

It is therefore perhaps more appropriate to use the term cY instead of cY Z. The resulting

expansion of the immune response is “weaker” than in the model with the cY Z term, but

it also allows for the natural emergence of a reactive CTL population in response to an

infection. The ODE system is now as follows:

11



Ẋ = λ− dX − βXY,

Ẏ = βXY − aY − pY Z,

Ż = cY − bZ.

(2.2)

By setting Ẋ = Ẏ = Ż = 0, one can solve for the equilibria of the ODE system. For

this model, there are two equilibria that correspond to physically feasible outcomes of HIV

infection (the third has negative populations, and is thus biologically unrealistic):

• One where the infection dies out, leaving only healthy uninfected CD4+ cells (extinc-

tion):

X =
λ

d
, Y = Z = 0.

• Another where the infection is able to sustain itself, and all three populations X, Y ,

and Z are non-zero (establishment):

X = X∗, Y =
b(βX∗ − a)

cp
, Z =

(βX∗ − a)

p
, where

X∗ =
−(abβ + cdp) +

√
(abβ + cdp)2 − 4(abβcdp− bβ2cλp)

2bβp.

To determine the circumstances under which either equilibrium is locally stable (i.e., the sys-

tem will evolve towards given a nearby set of initial conditions), one must find the eigenvalues

of the Jacobian of the ODE system:

J =


∂Ẋ
∂X

∂Ẋ
∂Y

∂Ẋ
∂z

∂Ẏ
∂X

∂Ẏ
∂Y

∂Ẏ
∂z

∂Ż
∂X

∂Ż
∂Y

∂Ż
∂z

 =


−βY − d −βX 0

βY β − pZ − aX −pY

0 c b

 . (2.3)
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In order for an equilibrium to be asymptotically stable, the real parts of the eigenvalues

of the Jacobian corresponding to that equilibrium must all be negative. The use of a cY

instead of cY Z term significantly complicates the algebra and results in some rather long

and messy equations for the eigenvalues. Using the Maple 2022 algebraic solver to solve for

the eigenvalues of both equilibria and imposing the requirement that the real parts of the

eigenvalues are all negative gives the following results:

• The extinction equilibrium is stable when R0 = βλ/ad < 1.

• The establishment equilibrium is stable when R0 > 1.

R0 is known as the basic reproductive ratio of the virus. Experimental evidence indicates

that the median basic reproductive ratio for HIV is approximately R0 = 8.0, which can help

inform our parameter choices (18; 19; 25).

HIV-infected cells are assumed to have an average life-span of around 2.2 days, based on

experimental observations, which is equivalent to a = 0.45 (19). There is a large measured

range for the lifespan of uninfected activated CD4+ cells, which can be infected by HIV,

ranging from as little as six weeks (42 days) to 164 days (20; 21). For this work, d = 0.01

was chosen, which corresponds to a lifespan of 100 days, well within the range of measured

values.

The median naive CD4+ cell production rate has been measured to be about 8 × 107 cells

per day (22). There are approximately 800 lymph nodes in the human body, so the average

number of CD4+ cells entering each lymph node can be conservatively estimated to be

105 cells per day (23). HIV preferentially infects activated CD4+ T-cells, and the median

CD4+ cell activation fraction has been estimated to be approximately 0.005 per day during

chronic HIV infection (24). This means that during chronic HIV infection, we can plausibly

estimate that roughly 500 uninfected activated CD4+ cells will be generated each day in a
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lymph node, corresponding to λ = 500.

The parameter β has not been experimentally measured. However, since the median basic

reproductive ratio for HIV is approximately 8.0 and we have estimates for λ, a, and d, β can

also be estimated using the basic reproductive ratio formula R0 = βλ/ad. Throughout this

paper, we therefore use the values λ = 500, β = 0.00007, a = 0.45, and d = 0.01, resulting

in R0 = 7.78, unless otherwise specified.

The infection equilibrium (i.e., non-zero X, Y, Z equilibrium) of the basic in vivo HIV model

(2.1) has been shown by Korobeinikov to be globally stable if R0 > 1 (26). Using the same

methods, it is straightforward to show that the infection/establishment equilibrium in model

(2.2) is also globally stable if R0 > 1 using a Lyapunov function of the form:

V = (X −X∗lnX) + A(Y − Y ∗lnY ) +B(Z − Z∗lnZ)

where A and B are constants and X∗, Y ∗, Z∗ are the equilibrium populations, with the same

techniques used by Korobeinikov.

2.3 Secondary lymphoid tissues and HIV

As noted previously, the majority of the HIV-infected cells and HIV replication (5—10-fold

difference compared to peripheral blood levels) can be found in the secondary lymphoid

tissues such as lymph nodes and the spleen (27). This means that a proper understanding

of HIV infection, particularly during the asymptomatic “latent” phase, must take aspects of

the lymphoid tissue environment into account, which is quite different from the peripheral

blood environment.

Secondary lymphoid tissues are a critical part of the human immune system and primarily
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perform two major functions:

• Filtration of extracellular fluids such as lymph, blood, and interstitial fluid from foreign

particles.

• Housing lymphocytes produced in the primary lymphoid tissues (e.g., the thymus) and

providing an environment where they can react with foreign antigens to initiate the

adaptive immune response.

In light of these functions, secondary lymphoid tissues, unlike peripheral blood, are compart-

mentalised environments, as illustrated in Fig. 2.3 (28). For the purposes of this dissertation,

we divide the lymphoid tissues into two compartments: the B-cell follicles and the extrafol-

licular tissues.

B-cell follicles are primarily inhabited by B-cells, follicular helper CD4+ T-cells, and follicular

dendritic cells (FDCs) (29). Under normal circumstances, FDCs play a critical role as

antigen-presenting cells in the adaptive immune response as naive B and T-cells come into

contact with the FDCs and become activated. They are also responsible for maintaining the

follicular architecture of the lymphoid follicles. B-cells that demonstrate the highest affinity

with the antigens presented by the FDCs do not undergo apoptosis (programmed cell death)

and instead proliferate, assembling into germinal centers (30). Follicular helper T-cells assist

in this process by providing co-stimulation to the B-cells and producing cytokines (31).

The activated B-cells then differentiate into antibody-producing plasma cells and long-lived

memory cells.

During HIV infection, large amounts of HIV virions (estimated 1010−−1011 virions) can bind

to the FDCs. In vitro experiments have found that these FDC-bound virions can remain

infectious for at least 25 days and as long as 9 months in this state (32). Even though the

FDCs themselves are not productively infected by HIV, the FDC-bound virions are potently
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Figure 2.3: Illustration of the structure of a lymph node. Follicles are located in the outer
lymph node cortex and primarily house B-cells. When activated by the presence of foreign
antigens, the follicles will form germinal centers. Follicles are semi-immune privileged, where
CTL activity is inhibited. (Beck et al. (2019) (28))
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infectious to the follicular helper T-cells often found in close proximity to the FDCs, even in

the presence of large quantities of neutralising antibodies (33; 34; 35). It has therefore been

suggested that FDCs play a key role as a long-term reservoir for HIV, allowing it to persist

in spite of ART or the immune response. B-cells cannot be infected by HIV since they do

not express the CD4 receptor required for HIV to infect.

It is generally thought that CD8+ CTLs are essential for controlling HIV replication, as

evidenced by the correlation between the decline in viremia during HIV infection with the

appearance of HIV-specific CTLs and CTL depletion experiments using the SIV model (33;

36). While CTLs are present in the secondary lymphoid tissues, they are not commonly

found in the B-cell follicles and mostly remain in the extrafollicular tissues. During the

acute infection stage, HIV-infected cell concentrations were found to be similar in both the

follicular and extrafollicular tissues, whereas in the chronic stage following the appearance

of HIV-specific CTLs, the concentration in the extrafollicular tissue is markedly lower. (3)

It has also been observed that the concentration of HIV-specific CTLs is much lower in

the follicular tissue (40-fold reduction compared to extrafollicular tissue). (37) The exact

mechanisms behind the poor infiltration and activity of CTLs in the follicular lymphoid

tissues remain poorly understood, although it has been suspected that this may be because

very few HIV-specific CTL exhibit the follicular homing phenotype CXCR5+CCR7- during

chronic infection. (29)

The basic HIV mathematical models (2.1) and (2.2) clearly do not incorporate any form

of compartmental structure and implicitly assume a homogeneous well-mixed environment.

Other mathematical models commonly used in modelling HIV dynamics do not usually

incorporate this compartmental structure. (38; 39; 40; 41) This is understandable, as it con-

siderably complicates the mathematical analysis of such models, often making it impossible

to obtain closed form solutions for the equilibria or stability conditions, unlike with the sim-

pler models (2.1) and (2.2). The homogeneity assumption may be valid for modeling HIV
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dynamics restricted to the peripheral blood, but since the vast majority of HIV replication

occurs in the compartmentalised secondary lymphoid tissues, a model that wishes to accu-

rately capture HIV dynamics in the human body as a whole must account for this structure.

Incorporating this experimentally observed compartmentalisation into HIV mathematical

models can have profound consequences, as will be demonstrated in the following chapters.
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Chapter 3

Post-ART HIV decline

In this chapter, a two-compartment deterministic model for HIV infection will be presented

and be applied to modeling post-anti-retroviral therapy (ART) HIV clearance. It will be

shown that compartmentalisation of the secondary lymphoid tissues may explain the puz-

zling observation that the rate of post-ART HIV clearance is apparently independent of the

presence of the CTL response, a finding that has been used to propose that CTLs do not con-

trol HIV viremia via cytotoxic effects despite experimental in vivo and in vitro observations

that CTLs are potently cytotoxic against HIV-infected cells.

3.1 Anti-retrovirals

The first effective anti-retroviral drug against HIV, the reverse transcriptase inhibitor azi-

dothymidine also known as zidovudine, was approved by the FDA for treating HIV/AIDS

patients in 1987. According to the NIH, there are over 30 types of anti-retrovirals drugs

approved by the FDA for HIV, which can be divided into seven classes: (9)
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• Nucleoside reverse transcriptase inhibitors

• Non-nucleoside reverse transcriptase inhibitors

• Protease inhibitors

• Fusion inhibitors

• CCR5 antagonists

• Integrase strand transfer inhibitors

• Post-attachment inhibitors

All of these anti-retrovirals function by targeting various steps in HIV’s reproductive cycle

(see Fig. 2.2 in order to block HIV replication and/or prevent HIV from infecting other

uninfected CD4+ cells. They are usually given in combination in order to increase their

effectiveness and reduce the chance of HIV developing resistance. In most cases, they are

highly effective and capable of suppressing measured blood viral loads to below detectable

levels. However, they cannot eliminate already-infected cells or the HIV genomes integrated

into their DNA. The elimination of infected cells can only occur via their natural death or

via the cytotoxic immune response.

Mathematical models of post-ART in vivo HIV dynamics usually assume a single homoge-

neous environment in which the dynamics take place (38; 42). There are open questions as

to whether ART drugs can penetrate effectively into the lymphoid B-cell follicles or the sec-

ondary lymphoid tissues: there is at least one study that reports sub-optimal concentrations

of ART that may not fully suppress viral replication in secondary lymphoid tissues (43).

Conversely, there is a lack of evidence of ART-resistant mutants arising from secondary

lymphoid organs, which would be expected to appear if ART did not fully suppress viral

replication in these tissues (44).
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3.2 CTLs and post-ART HIV dynamics

As mentioned previously in Chapter 1, there is overwhelming evidence that CD8+ CTLs

play a crucial role in controlling HIV infection during the chronic phase. It has always

been assumed, as befitting the name “cytotoxic”, that CTLs accomplish this through direct

cytolytic action, killing the HIV-infected cells. This is supported by numerous in vitro

and in vivo studies conducted on both HIV in humans and its relative, SIV, in simians, as

summarised in Davenport & Petravic (2010) (45).

However, in 2010, Klatt et al. and Wong et al., using similar methods, published experimen-

tal results that challenged this assumption (46; 47). Using the simian-SIV model, comparing

CTL-depleted SIV-infected rhesus macaques and control groups of rhesus macaques with

functional CTL responses, both Klatt et al. and Wong et al. found that there was no

difference in the observed lifespan of HIV-infected cells in both groups. This implies that

the CTL response (or lack thereof) did not apparently affect the death rate of SIV-infected

cells. Klatt et al. further found that this held true with macaques in both the early and late

phases of chronic SIV infection, as illustrated in Fig. 3.1. Asquith et al. also report that

CTLs are inefficient at killing infected cells in vivo. (48)

As noted by Davenport & Petravic, this observation has potentially important implications

for our understanding of HIV infection and the immune response to it. It is difficult to rec-

oncile this apparent lack of cytotoxic activity from the CTL response with other observed in

vitro and in vivo results that imply the opposite. The importance of resolving this issue can-

not be understated because most prospective anti-HIV vaccines rely on activating the CTL

response against HIV. The work in this chapter proposes that perhaps compartmentalisation

can reconcile these apparently contradictory observations of potent cytotoxic anti-HIV CTL

activity and lack of CTL impact on HIV-infected cell lifespan. However, to do this, we will

need a mathematical model that builds in this compartmentalisation and does not assume
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Figure 3.1: Klatt et al.’s results. After ART, there is no significant difference between
the lifespan of SIV-infected cells from CD8 (CTL)-depleted and non-depleted macaques,
implying the CTLs are not directly killing the infected cells. This occurs in both the early
and late chronic phases of SIV infection (Klatt et al. (2010) (46))

a homogeneous medium like the basic HIV models (2.1) and (2.2).

3.3 Two-compartment deterministic model of HIV in-

fection

Consider a two-compartment mathematical model for HIV infection in lymphoid tissue. The

lymphoid tissue can be divided into the follicular (F) and extrafollicular (EF) compartments,

where HIV can replicate in both. The number of uninfected and infected CD4+ cells in the

follicular compartment are denoted by Xf and Yf , respectively. Similarly, the corresponding

populations in the extrafollicular compartment are denoted byXe and Ye, respectively. CTLs

primarily populate the extrafollicular compartment, denoted by Ze. CTLs may also enter

the follicular compartment, with the population there denoted by Zf . The average time

evolution of the populations in this model can be described by the following set of ODEs

using the law of mass action:
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Ẋe = λ− dXe − βXeYe,

Ẏe = βXeYe − aYe − pYeZe − η(Ye − Yf ),

Ẋf = λ− dXf − βXfYf ,

Ẏf = βXfYf − aYf − pYfZf − η(Yf − Ye),

Że = cYe − bZe − gZe + hZf ,

Żf = gZe − bZf − hZf .

(3.1)

The parameters are as follows:

• λ is the production rate for uninfected cells, d is the natural death rate for uninfected

cells,

• β is the infection rate (infectivity) for infected cells upon contact with uninfected cells.

• η is the migration rate of infected cells between the compartments.

• a is the death rate of infected cells.

• p is the rate at which infected cells are killed by CTLs upon contact.

• c is the CTL population expansion rate upon antigenic stimulation by infected cells.

• b is the natural death rate of CTLs.

• g is the rate at which CTLs infiltrate into the follicular compartment.

• h is the rate at which CTLs migrate back into the extrafollicular compartment

Note that CTL stimulation is assumed to only occur in the extrafollicular compartment. The

follicular tissue of secondary lymphoid tissue is a relatively immune privileged zone where
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B-cells reside, where an unchecked CTL response might result in excessive collateral damage.

CTLs generally do not enter these follicles unless they express CXCR5 and are less effective

at killing infected CD4+ cells than those in the extrafollicular (EF) compartment (29; 28).

This model has previously been examined in Wodarz et al. (2018) (49). It is worth examining

some of the basic properties of this model before applying it to modeling post-ART HIV

decline. In the limit η → 0, it is possible to effectively treat the model as describing

two completely separate compartments. In (49), λ and β are defined separately for each

compartment (λe, λf and βe, βf ). We can define the basic reproductive ratio of HIV in each

compartment, given by R0e = λeβe/ad and R0f = λfβf/ad. Naturally, if both R0e and

R0f > 1, then HIV will establish itself in both compartments. Without any CTL response

(Ze = Zf = 0), then the equilibrium will be as follows:

X∗
e =

a

βe

; Y ∗
e =

λe

a
− d

βe

; X∗
f =

a

βf

; Y ∗
f =

λf

a
− d

βf

According to Wodarz et al., it can be shown using the Jacobian of the ODE system (3.1)

that if η > 0, then the infection will be established in both compartments if the following

condition is met:

(βfλf − ad)(βeλe − ad)

dη(βfλf + βeλe − 2ad)
> 1.

The resulting exact infection equilibrium expression is far too complicated to give here, but

in the limit η → 0, it converges to the aforementioned equilibrium, as expected (49).

The addition of CTLs complicates matters somewhat. The CTL population will expand as

long as infected cells are present in the extrafollicular compartment, since that is where CTL

stimulation (the term cYe) occurs. The extent of the CTL expansion depends on the infected

cell population size. The system then converges towards a stable equilibrium describing

CTL-mediated virus control. The full expression for this equilibrium is too complicated to
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provide here, but the equilibrium viral load is inversely proportional to the strength of the

CTL response, which in this model is determined by the CTL expansion rate/responsiveness

(c), and the CTL-mediated killing rate (p). This is similar to the behaviour found in other

HIV models with a CTL response (50).

For simplicity, we may assume that the production rate of uninfected cells λ and the infec-

tivity of HIV β are the same in both compartments. They need not necessarily be the same,

but there is no evidence that these two parameters differ inside and outside the follicular

zone of a lymph node. In order to achieve a scenario where most of the CTLs are in the

extrafollicular compartment, as experimentally observed by Connick et al. (3), this requires

g ≫ h.

As noted previously, this two-compartment model has significantly greater complexity, both

in the difficulty of solving and mathematically analysing the ODE system and in the resulting

trajectories of the populations, compared to the simpler model (2.2). However, as we shall

see, it can help explain the apparently lack of influence of CTLs on the post-ART decline

rate of HIV/SIV-infected cells, as well as other phenomena to be described in the coming

chapters.

3.4 Model application

To model the post-ART decline scenario using (3.1), we must first set an initial population

for what is essentially an initial value problem (IVP). This can be done by setting all the

left-hand-side terms of (3.1) equal to zero and solving for the populations, and also requiring

all the populations to be non-zero. This represents a starting point where chronic infection

is established.

The parameter values chosen for this part of the work, except where otherwise noted, are
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given in Table 3.1. The reasoning behind the values chosen for λ, β, a, and d was covered

in Chapter 2. There is a large amount of uncertainty in the killing rate per CTL-infected

cell contact p for HIV/SIV: it ranges from as high as 1.21 to as low as 0.02 (48; 51). The

CTL death/response contraction rate b has been estimated to be between 1 and 2 (52). The

parameters c, η, g, and h are less well-estimated from observations. Throughout this work

we use a range of biologically plausible values for these parameters based on the work of

Wodarz et al., with the aim of simulating the segregation and uneven CTL and infected

cell populations seen by Connick et al. in lymph nodes (3; 49). We choose g and η values

much smaller than h, because if they are of similar scale, then there will be roughly equal

rates of migration between the compartments, which will result in more evenly distributed

populations, which are not what is observed in the B-cell follicles of lymph nodes and their

surroundings.

Parameter table (post-ART model)
Parameter Value Reference

Uninfected cell birth rate, λ 500 (22; 23; 18).
Uninfected cell death rate, d 0.01 (20; 21).
Infected cell death rate, a 0.45 (19).
Contact infection rate, β 7× 10−5 From R0 = βλ/ad ≈ 8 (18; 19; 25).

CTL killing rate, p 0.05 (48; 51).
CTL death rate, b 1 (52).

CTL expansion rate, c 0.1 (49).
Infected cell migration rate, η 0.0001 (49).

CTL migration rate (EF to F), g 0.0001 (49).
CTL migration rate (F to EF), h 1 (49).

Table 3.1: Table of parameters for post-ART HIV decline model.

Once we have the initial populations, we can then evolve them using the ODE system.

There is no known analytical solution for this IVP, but it is simple enough to solve them

numerically using common Runge—Kutta solvers, such as those available in MATLAB or

Python’s NumPy package. Since we want to model a post-ART scenario, we set β = 0 for

the time evolution because ART halts HIV replication and continued infection of uninfected

cells: there are no new infected cells being added to the Ye or Yf populations, and they will
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decline over time.

For the purposes of this computational experiment, we can “deplete” the CTL response by

simply setting p = 0, which “turns off” the CTL killing action, mimicking a CTL depletion

scenario.

3.5 Results & analysis

Figure 3.2 illustrates the main results of the simulations for the two-compartment model. In

Case A, it is clear that the infected cells in the extrafollicular compartment are affected by

the presence of the CTL response. This is why the initial decline is significantly faster with

CTLs than with the CTLs depleted. The CTL response also has the effect of reducing the

initial equilibrium population in the extrafollicular compartment.

In Case B, since the CTLs very rarely infiltrate into the follicular compartment, the pres-

ence or depletion of CTLs throughout the body has a negligible effect on both the starting

equilibrium population and the post-ART decline rate of infected cells in that compartment.

The decline rate of the extrafollicular infected cells in the non-depleted scenario converges to

that of the CTL-depleted scenario. To see why this is the case, consider the rate equations

for the Ye population:

Ẏe = βXeYe − aYe − pYeZe − η(Ye − Yf )

Since there are virtually no CTLs in the follicular compartment, i.e., Zf → 0, β = 0, and

the very low rate of migration between the two compartments can be neglected, we can
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Figure 3.2: Simulations of ODE model (3.1) during ART (β = 0), in the presence (solid line)
and absence (dashed line) of the CTL response. (A) Dynamics in the extrafollicular (EF)
compartment. (B) Dynamics in the follicular (F) compartment. (C) Total dynamics, where
populations are summed across both compartments.
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approximate the rate equation with:

Ẏe ≈ −aYe − pYeZe,

while the extrafollicular CTL population can be approximated with

Że ≈ cYe − bZe,

neglecting the very small amount of CTL migration between the two compartments. In the

CTL-depleted scenario, p = 0, therefore

Ẏe ≈ −aYe.

Since the CTL population Ze and infected cell population Ye is high at first, the term pYeZe

will dominate at first, while the CTL population is maintained, since it is directly stimulated

by the presence of infected cells (term cYe). However, because of the ART, there is no

replenishment of the infected cells, and as their numbers decline, so do the CTL numbers.

Because both Ye and Ze are both declining, the pYeZe term vanishes faster than aYe, and

eventually we are left with Ẏe ≈ −aYe, i.e., the same rate equation as the CTL-depleted

scenario.

In Case C, by combining the total viral load (Y = Ye+Yf ) in both compartments, we can see

that the decline rate of the total viral load is virtually the same for the CTL-depleted and

non-depleted scenarios, based on the slope of the graphs. Why is this the case? It is because

of the uneven CTL distribution in the two-compartment model with p ̸= 0; this results

in the follicular infected cell population being substantially larger than the extrafollicular

population, since they are not being depleted by the CTL response. The decline rate of

the follicular infected cells is also lower than that of the extrafollicular cells, which therefore

means that it is the dynamics in the follicular compartment that dominates, regardless of
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the CTL response or lack thereof.

Viral load in the peripheral blood is a measure of the total number of infected cells, and thus

its decline would reflect that of the total infected cell decline rate across both compartments

in (C). Thus, the two-compartment model can account for the constancy of the viral decline

slope irrespective of the strength of the CTL response, even though it assumes that the CTLs

themselves can be highly cytotoxic to the HIV-infected cells.

The single-compartment model (2.2), on the other hand, has different behaviour altogether.

In order to ensure the starting populations and R0 of the virus are the same as those of

the two-compartment model, the birth rate of uninfected cells λ is set to twice that of the

two-compartment model, i.e., λ = 1000 and the infectivity of the virus is reduced by half,

i.e., β = 0.000035 before it is set to 0 for the simulations. The simulations can be seen in

Fig. 3.3.

Figure 3.3: Simulations of ODE model (2.2) during ART (β = 0), for various values of the
CTL killing rate p. If the CTL killing is turned off (p = 0) then the decline has a constant
rate. If p ̸= 0, then the initial decline rate is faster than at later times. The white circle
marks the point at which the slopes change.
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The initial decline rate is affected by the CTL killing rate, similar to what occurs in the

extrafollicular compartment of the two-compartment model (see Fig. 3.2 (A)). Notably, there

is a point at which the decline rate for the total population of infected cells changes from

being dominated by the CTL killing action to being dominated by the natural infected cell

death rate as the infected cell and CTL populations decline over time, marked by the white

circle. Before this point, the behaviour is dominated by the CTL killing action; after it,

the natural death rate is more dominant because of the low CTL population. This point

does not exist in the two-compartment model’s total viral load (see Fig. 3.2 (C)) because

the decline there is completely dominated by the much larger follicular compartment, where

CTL action is minimal. This provides a potential way of distinguishing between the single

and two-compartment models.

It is important to note at this point that these models only take into account lytic CTL-

mediated activity and ignores non-lytic suppression of viral replication by the CTL response.

The reason is that we would like to investigate the dynamics under lytic activity, for which

it has been more difficult to explain the evolutionary dynamics of the virus. There have

been models that incorporate two stages for the infected cells in order to reproduce the

observed constant decline rate: a cellular eclipse (latent) phase and a virus production phase

that is subject to CTL-mediated killing (53). This model shows that such a complication is

unnecessary in order to explain the observations, though it does not exclude such a possibility.

Additionally, this model does not simulate the longer term virus decline dynamics during

ART, which would require a more complex model that tracks infected macrophages and

latently infected cells (54). This is beyond the current scope of the analysis and the added

complexity is unlikely to change the basic behaviour or conclusion arrived here.

In summary, compartmentalisation in secondary lymphoid tissues and the resulting uneven

CTL response can resolve the apparently contradictory observations that CTLs are highly

potent against HIV-infected cells, while at the same time CTL depletion does not affect
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the decline rate of HIV viral load post-ART. In light of this result, it is suggested that

experiments and especially therapies centred around the CTL response should account for

this inhomogeneity in the CTL response.
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Chapter 4

HIV CTL escape

In this chapter, the two-compartment deterministic model for HIV infection presented in

Chapter 3 will be modified and applied to modeling HIV evolution towards escaping the CTL

response. It will be shown that compartmentalisation of the secondary lymphoid tissues and

the subsequent uneven cross-compartment immune response can offer a safe haven for HIV

replication in the face of a robust CTL response. This potentially explains the experimental

observation that HIV is relatively slow to evolve an escape towards the CTL response during

the chronic phase of infection.

4.1 HIV mutation & genetic diversity

As described in the Background chapter, HIV is a single-stranded RNA virus. In order to turn

its single-stranded RNA into DNA, it must under go reverse transcription using an enzyme

called reverse transcriptase. Unlike most other DNA polymerases, reverse transcriptase has

no “proofreading” mechanism to correct errors (i.e., a wrong base inserted into the genome)

occurring during reverse transcription. These errors are mutations in HIV’s genome, and
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the rate at which these errors are generated is called the mutation rate.

Cell culture studies generally estimate HIV-1’s mutation rate to be on the order of 10−5

errors per base pair per replication cycle (55). However, at least one in vivo study of HIV

genomes in peripheral blood mononuclear cells (which include lymphocytes and monocytes)

suggests that the actual mutation rate may be as much as two orders of magnitude higher, at

10−3, with reverse transcriptase contributing only 2% of mutations and the remaining 98%

resulting from editing by host cytidine deaminases of the A3 family (56).

As is usually the case for every biological organism, the vast majority of these mutations are

either neutral or outright detrimental to HIV’s survival. However, occasionally, the mutation

may be advantageous to its survival instead. In particular, these mutations can affect the

gp120 spike glycoprotein recognised by the immune response, with the point mutations

changing the epitope to the point where it cannot be recognised by either the CTL or

humoral (antibody) response (58). This process is termed immune escape, and it is one of

the keys to HIV’s survival.

HIV-1 also has an extremely prodigious reproduction rate, estimated at 1010 virions/day

within a single individual without ART (57). The high reproduction rate and high mutation

rate combined lead to exceptional degree of genetic diversity, even compared to other RNA

viruses such as influenza. This is illustrated by Fig. 4.1, most notably by comparing the

size of the phylogenetic trees for globally circulating influenza strains of 1996 with that for

HIV in a single individual taken 6 years after infection. Their sizes are broadly comparable,

indicating a similar level of genetic diversity (59).

The genetic diversity of HIV strains and HIV’s ability to evolve to evade the immune response

represent some of the greatest challenges to developing effective treatments and vaccines

against HIV. It also underlies the need for total viral replication suppression during ART, as

incomplete replication suppression will almost inevitably lead to HIV evolving resistance to
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Figure 4.1: Phylogenetic trees of HIV-1 variation and subtypes (clades) of HIV sequences
taken from different populations. The length of the spokes from the center of each cluster
is in proportion to the degree of variation in the gp41 region of the env gene. The scale
bar at the bottom left shows 10% divergence at the amino acid level. Thus, the genetic
diversity in a single HIV-infected individual 6 years after infection is broadly equivalent to
the global variation in the haemagglutinin gene of seasonal influenza Type A H3N2 in 1996.
The variation in the Amsterdam cohort of subtype B infection is correspondingly greater.
The longer HIV has been circulating, the greater the variation, hence why the phylogenetic
tree from the Democratic Republic of the Congo where HIV-1 has resided longest is immense.
(Ndung’u & Weiss (2012) (59))
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the ART drug(s) used. This is also the reason why ART uses multiple classes of medications

(see Chapter 1) because it is much more improbable for HIV to evolve resistance against

different ART drug classes simultaneously.

4.2 HIV’s “slow” CTL escape

On a fundamental level, the viral adaptation rate against the immune response is propor-

tional to two factors. One is the strength of the immune response, which for our purposes

can be taken to be the CTL response. The stronger the immune response is, the greater the

selective pressure on the virus to evolve to escape it.

The other is the viral abundance, i.e., number of infected cells. More infected cells results

in greater viral reproduction, and thus a higher rate of mutant production, increasing the

likelihood of an escape mutant strain appearing. However, the immune response strength is

also inversely proportional to the viral abundance: the greater the CTL response, the more

infected cells will be killed, thus suppressing viral reproduction.

Qualitatively then, the relationship between the immune response strength and the viral

adaptation rate can be illustrated by Fig. 4.2, from Saad-Roy et al. (2021) (60). There is

clearly a “Goldilocks” effect at play here: too much immune pressure results in low viral

abundance and a low adaptation rate, while too little immune pressure ends up weakening

the selective pressure on the virus and this also results in a low adaptation rate.

Despite its high mutation rate, the time it takes for HIV to escape the immune response

by evolving an escape mutation to a targeted epitope is longer than expected. In fact, it

has been experimentally observed in HIV-positive patients that it takes an average of over

two years for an HLA-restricted HIV epitope (i.e., one that can be targeted by the immune

response) even with a CTL response to evolve an escape mutation (61). This is illustrated
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Figure 4.2: Qualitative illustration of the relationship between net viral adaptation rate and
immune pressure (black). It can be thought of roughly as the sum between two factors:
strength of selection (blue), which is directly proportional to immune pressure, and viral
abundance (red), which is inversely proportional to immune pressure. (Saad-Roy et al.
(2021) (60))

in Fig. 4.3 taken from (61). As many as 1/3rd of the patients did not drive a CTL escape

variant within the first 2 years.

Some explanations have been proposed to explain this curious phenomenon, based on math-

ematical simulations:

• HIV can also establish latency in infected cells, allowing it to lie dormant and evade

the CTL response or ART, which only targets cells where HIV replication is active.

Once these pressures subside, the latently infected cells can reactivate, resuming the

infection process. (8) Doekes et al. suggest that latently infected CD4+ T-cells can

severely delay evolutionary dynamics within a single host, with the size of the latent

reservoir and level of homeostatic proliferation of cells within the reservoir having

significant effects on the time it takes for escape to evolve. (62)

• Van Deutekom et al. also propose that the breadth of the immune response from the

CTLs will affect the rate of immune escape. The broader the immune response to

different HIV epitopes, the slower the rate of escape. (53)
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Figure 4.3: Epitopes in HLA-matched hosts are split according to whether they have a mea-
surable CTL (CD8+) response to them (light red) or not (dark red). Escape is significantly
faster if the host has a measurable CTL response to that epitope, but even in that case
it takes over 2 years for 50% of the epitopes to escape the CTL response. (Roberts et al.
(2015) (61))
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• Davenport et al. showed that the timing of the immune response as well as the as-

sociated fitness costs with evolving an escape response can greatly affect the rate of

escape. (63)

Most of the mathematical models used to arrive at these conclusions are single compartment

models that do not take into account the existence of the actively replicating follicular

reservoirs and the degree of compartmentalization that exists in secondary lymphoid tissue

when it comes to the CTL response there. (13; 14; 15; 16) This is a potentially important

missing element, especially because these tissues are where most HIV replication occurs.

In Chapter 1, we showed that compartmentalisation and the uneven CTL response can

slow down post-ART HIV viral load decline, and it is plausible to think that these may be

playing a role in the experimentally observed slow CTL escape rate. Of course, this is not to

say that these explanations are wrong or mutually exclusive with the compartmentalisation

hypothesis. All of them may play a part in delaying the evolution of CTL escape HIV

mutants.

4.3 Two-compartment deterministic model of HIV in-

fection with CTL escape mutation

The single-compartment ODE system (2.2) can be modified to model the emergence of HIV

escape mutants as follows:

Ẋ = λ− dX − βXY − β1XY1,

Ẏ = β(1− µ)XY − aY − pY Z,

Ẏ1 = µβXY + β1XY1 − aY1,

Ż = cY − bZ.

(4.1)
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Here, HIV escape mutants are represented by the population Y1, with the original “wild”

type kept as Y . The escape mutants have their own infection rate parameter β1. It is known

that most mutations to the HIV genome lower the virus’ reproductive fitness, including those

that confer escape from a host’s immune response. It is therefore reasonable to expect that

β > β1. Conversely, this model assumes total escape for the mutant strain, thus there is no

CTL response against it (i.e., no pY1Z term). The parameter µ is the mutation rate. For the

sake of simplicity, it is assumed that a point mutation gives rise to viral escape. Mutation

only occurs during viral replication, thus the µβXY term represents mutant production from

the reproduction of the wild Y type.

By again setting Ẋ = Ẏ = Ẏ1 = Ż = 0, one can solve for the equilibria of the ODE system

as usual. Two of these have relatively simple forms:

• One with only healthy uninfected CD4+ cells: X = λ/d, Y = Y1 = Z = 0 (extinction).

• One where the mutant takes over: X = a/β1, Y1 = (β1λ − ad)/aβ1 and Y = Z = 0

(fixation).

The same stability analysis as for the equilibria of (2.2) was done with the associated Jaco-

bian:

J =



∂Ẋ
∂X

∂Ẋ
∂Y

∂Ẋ
∂Y1

∂Ẋ
∂z

∂Ẏ
∂X

∂Ẏ
∂Y

∂Ẏ
∂Y1

∂Ẏ
∂z

∂Ẏ1

∂X
∂Ẏ1

∂Y
∂Ẏ1

∂Y1

∂Ẏ1

∂z

∂Ż
∂X

∂Ż
∂Y

∂Ż
∂Y1

∂Ż
∂z



=



−β1Y1 − βY − d −βX −β1X 0

β(1− µ)Y β(1− µ)X − a− pZ 0 −pY

µβY + β1Y1 µβX β1X − a 0

0 c 0 −b


.

(4.2)
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Once again solving for the eigenvalues of the Jacobian evaluated at each equilibrium, using

the Maple 2022 algebraic solver gives the following conditions:

• the extinction equilibrium is stable when R0,1 = β1λ/ad < 1 and βλ(1− µ)/ad < 1,

• the fixation equilibrium is stable when R0,1 = β1λ/ad > 1 and β1 > β(1− µ).

where R0,1 is the basic reproductive ratio of the mutant strain.

These conditions are fairly intuitive: the former simply occurs when neither strain is capable

of sustaining an infection (for the wild strain, either it also has to compensate for the loss

during reproduction due to mutation), and the latter will occur when the escape strain does

not lose enough fitness from its mutation to be unable to out-compete the wild strain. There

are other equilibria as well that can be obtained by solving a complicated cubic equation;

the coexistence equilibrium where both strains persist (i.e., R0,1 > 1, βλ(1−µ)/ad > 1, and

β1 < β(1− µ)) is one of those solutions.

We now turn to the two-compartment model:

Ẋe = λ− dXe − βXeYe − β1X1eY1e,

Ẏe = β(1− µ)XeYe − aYe − pYeZe − η(Ye − Yf ),

Ẋf = λ− dXf − βXfYf − β1X1fY1f ,

Ẏf = β(1− µ)XfYf − aYf − pYfZf − η(Yf − Ye),

˙Y1e = βµXeYe + β1XeY1e − aY1e − η(Y1e − Y1f ),

˙Y1f = βµXfYf + β1XfY1f − aY1f − η(Y1f − Y1e),

Że = cYe − bZe − gZe + hZf ,

Żf = gZe − bZf − hZf .

(4.3)

Built on the model of the previous section, we introduce two new populations: Y1e and Y1f
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(cells infected by a mutant strain able to evade the immune response), We also introduced

a new parameter associated with these populations: β1, the infectivity of the mutant strain

upon contact with uninfected cells.

Unless otherwise noted, the base parameters used in the compartmentalised escape model

are given in Table 4.1 The reasoning behind these parameters (other than µ) was already

discussed in Chapters 2 and 3. µ = 2 × 10−5 was selected based on the experimentally

observed HIV mutation rate, which is on the order of 10−5 (55). c is allowed to vary for

within the range c = 0.0001 to c = 10 in order to investigate the effect of CTL pressure on

the system.

Parameter table (HIV escape model)
Parameter Value/Range Reference

Uninfected cell birth rate, λ 500 (22; 23; 18).
Uninfected cell death rate, d 0.01 (20; 21)
Infected cell death rate, a 0.45 (19)
Contact infection rate, β 7× 10−5 R0 = βλ/ad ≈ 8. (18; 19; 25)

Contact infection rate (mutant), β1 0.99β Plausible fitness cost.
CTL killing rate, p 0.05 (48; 51)
CTL death rate, b 1 (52)

CTL expansion rate, c 10−3–10 (49)
Infected cell migration rate, η 0.0001 (49)

CTL migration rate (EF to F), g 0.0001 (49)
CTL migration rate (F to EF), h 1 (49)

Mutation rate, µ 2× 10−5 (55)

Table 4.1: Table of parameters for HIV escape model.

Assume that the fitness cost of the escape mutation is such that β1 < β(1−µ) and complete

mutant fixation does not occur. First consider strong compartmentalization, i.e. a low rate

of virus exchange, η, between compartments and a low rate of CTL migration, g, into the

follicular compartment (Figure 4.4). This regime is intended to model the compartmentalised

lymph node scenario described in (3) and (29). A strong CTL response suppresses the

virus in the extrafollicular compartment, and that the escape mutant dominates in the EF

compartment, while it remains a minority in the follicles due to the low CTL activity and
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hence selection there (Figure 4.4 (i)). This is similar to what happens in the early chronic

phase of infection. If the CTL response is weaker than a certain threshold, the escape mutant

remains a minority in both compartments (Figure 4.4 (ii)). This may simulate an advanced

disease stage where the CTL response is exhausted.

On the other hand, the weak compartmentalization scenario simulates a highly mixed system

where both virus-infected cells and CTLs migrate often between compartments (larger values

of h and g; see Figure 4.5). This is not what is observed in (3), but serves as a point of

comparison. The outcome in both compartments is always identical because the CTLs are

more or less equally distributed. If the CTL response is strong (high c), the escape mutant

dominates in both compartments (Figure 4.5 (i)). For relatively low values of c, the escape

strain represents only a minority in both compartments (Figure 4.5 (ii)).

4.4 Gillespie simulations of the two-compartment HIV

CTL escape model

The process of mutation is fundamentally random and probabilistic due to the random na-

ture of genetic mutations due to errors in RNA transcription during the HIV replication

process. (64) It is therefore not completely appropriate to model this system using determin-

istic differential equations and we must transition towards using stochastic simulations (53).

In particular, for small populations, population fluctuations can sometimes lead to situations

where extinction occurs where a deterministic model might predict otherwise. Even with

high viral loads (populations), stochastic effects can be important (65).

For this work, we used the Gillespie stochastic simulation algorithm (66). This is a Monte

Carlo method that starts by sampling two uniformly distributed random numbers r1 and r2

from the interval [0, 1]. We can think of the evolving dynamical system from HIV infection
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Figure 4.4: Outcomes in ODE model (4.3), including a CTL escape mutant. (A) These
plots assume strong compartmentalization, i.e. infected cells move between compartments
with a relatively slow rate, and CTL enter the follicular compartment with the slow rate,
η = g = 0.0001. Dynamics are shown for (i) a relatively strong CTL response (c = 1) and
(ii) for a relatively weak CTL response (c = 10−4). Left and right graphs show dynamics in
the extrafollicular and follicular compartments, respectively. Solid lines depict the dynamics
of the wild-type virus, dashed lines the dynamics of the CTL escape mutant.

44



Figure 4.5: Outcomes in ODE model (4.3), including a CTL escape mutant. (B) Same graphs
as in Fig. 4.4, but under the assumption that infected cells move with a faster rate between
compartments and CTL move to the follicular compartment with a high rate, identical to
the rate at which they move from the F to the EF compartment. For (B) η = g = 1. For
strong CTL responses, c = 1. For weak CTL response c = 10−4.
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as a series of events or “chemical reactions” where each event is only dependent on the

event that happened immediately before it (i.e., a Markov chain). The first random number

is used along with the starting populations (starting from an equilibrium solved using the

ODE system (1), i.e., a system where no mutant strains have occurred yet) to compute the

time until the next “reaction”, τ :

τ =
1

Rtot

log

(
1

r1

)
, (4.4)

where Rtot =
∑

j aj is the total “reaction” rate from summing all the non-duplicated terms

in the ODE (3) (e.g., a1 = λ, a2 = dXe, a3 = βXeYe, a4 = aYe, etc.) except for the random

mutation terms with µ. These are handled separately.

The second random number r2 is used to determine what “reaction” takes place after that

time by computing the integer n which satisfies the following equation:

n−1∑
j=1

aj ≤ r2Rtot ≤
n∑

j=1

an, (4.5)

and the populations are adjusted according to the reaction that took place. For example, if

n = 3, then the reaction that takes place is the one corresponding to a3 = βXeYe:

Xe + Ye → Ye + Ye

therefore we would raise the population of Ye by 1 and lower the population of Xe by 1.

However, we must also account for mutation from the original strain (Ye) to the intermediate

escape one (Y1e). To do this, we sample a third random number r3 from the interval (0, 1).
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If r3 ≤ µ, instead of raising the population of Ye by 1, we instead raise the population of

Y1e by 1. Mutation for the other populations involving µ is modeled in a similar way. The

reader is advised to refer to Figure 4.6 for a diagram illustrating the various “reactions”.

Figure 4.6: Diagram of the various “reactions” in the stochastic model and associated rate
constants. The processes are: (a) CD4+ cell birth (λ), (b) uninfected CD4+ cell death
(dXe/f ), (c) HIV infection of uninfected CD4+ cell by contact with infected cell (βXe/fYe/f

and β1X1e/1fY1e/1f ), (d) migration of infected cells between the follicular and extrafollicular
compartments (ηXe/f and ηX1e/1f ), (e) infected cell death (aYe/f and aY1e/1f ), (f) activation
of CTL response (cYe), (g) migration of extrafollicular CTLs into the follicular compartment
(gZe), (h) migration of follicular CTLs out of the follicular compartment (hZf ), (i) infected
cell killed by CTL upon contact (pYe/fZe/f ), (j) CTL natural death (bZe/f ), and (k) viral
mutation (µβXe/fYe/f )

For each set of parameters, a large number of simulations (> 1, 000, 000) are run for each

parameter and the mean takeover time for the escape strain Y1 = Y1e + Y1f is computed.

Takeover time is defined as the time it takes for the population of the complete escape strain

Y2 to reach Y1/Ytot = 0.95, where Ytot = Ye + Yf + Y1e + Y1f . Each simulation is run until

either takeover is achieved or all populations of the virus go extinct, in which case that run

is not counted towards the statistics.
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Stochastic simulations were run for both models (4.3) and (4.1). For (4.1), β = 0.000035

and λ = 1000 were used in order to maintain the same uninfected cell generation rate as

the two-compartment model, while also keeping the basic reproduction ratio R0 identical

between both models. The starting populations for all models are determined using the

appropriate ODEs by solving for an equilibrium where the infected cell, uninfected cell, and

CTL populations are non-zero with mutations turned off (µ = 0). The populations are then

evolved using the Gillespie algorithm with µ ̸= 0.

Three model versions are compared:

• Model (i) is characterized by strong compartmentalization (h = g = 0.0001).

• Model (ii) still has compartments, but populations move between them with relatively

high rates (h = g = 1).

• Model (iii) is the single-compartment model (4.1).

The value of c on the x-axis corresponds to model (i), and is varied from low to high. For

each value of c for model (i), we adjust the corresponding value in model versions (ii) and

(iii) such that total viral load is identical across the model versions, eliminating additional

effects occurring as a result of variation in the viral load).

In addition to the takeover time, the contribution of the extrafollicular and follicular com-

partments to mutant evolution is also tracked via the origin of the escape mutants in the

computer simulations. When the total mutant infected cell fraction in the extrafollicular

compartment reached 95%, we determined in which compartment the largest escape clone

originated, and thus recorded the fraction of simulation runs in which the largest escape

clone originated in the extrafollicular and follicular compartments, respectively. The results

and their analyses are given in the next section.
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4.5 Results & analysis

The main results are illustrated in Fig. 4.7. Let us first consider model (i), represented by

the purple lines. As is typical for virus dynamics models, total viral load at equilibrium

declines with greater CTL responsiveness, c. However, due to the compartmentalization, the

decline in the viral load is restricted almost entirely to the extrafollicular (EF) compartment

(Fig. 4.7(A)). The follicular (F) compartment is not significantly affected by the greater CTL

proliferation, due to the assumed slow rate at which CTLs enter the F compartment.

Fig. 4.7 (B) shows that the average time to mutant invasion has a minimum for an inter-

mediate strength of the CTL response, c. This what one would expect, bearing in mind

Fig. 4.2 qualitatively describing net viral adaptation rates from earlier in the chapter. For

weak CTL responses, the viral load is high in both compartments and the selection pressure

is low. While mutants are generated at a relatively fast rate, their ability to rise at the

expense of the wild-type virus is limited because of the low selection pressure. For strong

CTL responses, there is high selection pressure in the EF compartment, which facilitates

escape mutant invasion. Due to the low viral loads in the EF compartment, however, the

probability to generate a mutant is low, which contributes to the increased invasion times.

Mutants are generated more rapidly in the F compartment, where the viral load is higher.

However, due to the limited CTL activity in the F compartment, the generated mutants are

unlikely to rise to significant levels. They are more likely to go extinct instead, especially

because they are assumed to carry an intrinsic fitness cost. For intermediate rates of CTL

proliferation, the viral load in the EF compartment is intermediate, providing a higher chance

to generate the CTL escape mutant, while the selection pressure still favors the escape mutant

to a sufficient extent. This results in the shortest mutant invasion times.

The mutants are overwhelmingly preferentially generated in the EF compartment over a

wide range of CTL expansion rates (Fig. 4.7 (C)). Recall that in the F compartment, very
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few CTLs are present and the escape mutant is assumed to carry an intrinsic fitness cost.

The mutant is thus not likely to emerge in the follicles and move to the EF compartment,

given the low inter-compartment migration rate.

For very strong CTL responses, however, escape mutants originate more frequently in the

F compartment. In this regime, the CTL response essentially eliminates the virus from the

EF compartment, which is only maintained there by influx from the follicles. It is thus more

likely that escape mutants are produced in the follicle and subsequently move to the EF

compartment, rather than originating in the EF compartment.

Let us now turn out attention to the other models (ii) and (iii). Since these models have

the same total viral loads as model (i) by design, this allows us to isolate the effect of

compartmentalisation from other potential confounding factors. Starting with model (ii),

which still has a compartmental structure and is represented by the green lines, the fast

migration rates between compartments renders the system more mixed, resulting in the

virus being almost equally abundant in both the F and EF locations (Fig. 4.7 (A), green).

Hence, both compartments also contribute equally to escape mutant production (Fig. 4.7

(C), green).

Comparing the average time to escape mutant dominance between models (i) and (ii), differ-

ent patterns can be observed depending on the strength of the CTL response. For relatively

strong CTL responses (c above a threshold), the average time to mutant dominance is signif-

icantly longer for the strong compartmentalisation (i) than for weak compartmentalisation

(ii) (green vs. purple). In other words, strong compartmentalisation significantly delays

the rate at which CTL escape mutants invade in the EF compartment. With strong com-

partmentalisation, the low selection pressure in the F compartment makes it unlikely for

mutants to emerge there and take over the EF compartment; at the same time, the strong

CTL-mediated virus control in the EF compartment results in infrequent mutant production

there.
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Figure 4.7: Stochastic evolutionary dynamics of CTL escape, as a function of CTL respon-
siveness, c. Gillespie simulations of ODE model (4.3) were performed. (A) Total wild-type
virus load (without mutants) as a function of the parameter cin model (i). These are the
values predicted by the ODEs and represent the stochastic averages. The black line denotes
total virus load, which is kept identical across all three model versions. The purple and
green lines show virus load by compartment for models (i) and (ii) respectively. Solid and
dashed lines depict the F and EF compartments, respectively. (B) The average time for the
CTL escape mutant to reach 95% of the infected cell population in the EF compartment.
Purple is model (i), green model (ii), and brown model (iii). Standard errors are shown as
error bars but are small and difficult to see. (C) Fraction of simulation runs in which the
invading CTL escape mutant was generated in the F (dashed line) and the EF (solid line)
compartment. Purple is model (i) and green model (ii). For the compartmental model (i):
η = g = 0.0001. For model (ii), parameters were identical, but with η = g = 1. For the
single compartment model (iii): λ = 1000; β = 7× 10−5.
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In contrast, for weak compartmentalisation (ii), there is significant selection pressure in

both compartments, and the viral load in each compartment is intermediate (Fig. 4.7 (A)).

This leads to overall faster mutant production, coupled by relatively strong selection. The

situation, however, reverses for weak CTL responses (smaller c). Now, the strong compart-

mentalisation (i) accelerates mutant invasion in the EF compartment, compared to model

(ii) (Fig. 4.7 (B)). In this setting, the viral load in the EF compartment is relatively high,

even with strong compartmentalisation, due to the weaker CTL response. This results in

more frequent mutant production, and concomitant selection of the produced mutants. For

weaker compartmentalisation (ii), on the other hand, the CTLs stimulated in the EF com-

partment can readily move to the F compartment. This lowers the total number of CTLs in

the EF compartment, leading to reduced selection pressure and slower mutant invasion.

The single-compartment model (iii), represented by brown lines lacks any compartmental

structure and is more typical of previous mathematical models that considered the evolution

of immune escape (Fig. 4.7 (B), brown). Escape mutant invasion occurs fastest here (com-

pared to both models (i) and (ii)). In the strongly compartmentalised model (i), the overall

viral load is given by the sum of the low number of infected cells in the EF compartment and

the large number of infected cells in the F compartment, due to the uneven CTL activity. To

achieve a comparable total viral load in the single compartment model (version iii) requires

a CTL response of only intermediate strength. As in Fig. 4.2, this results in intermediate

virus load in the single compartment, together with significant selection pressure, and this

promotes escape mutant invasion.

In summary, for a fixed total viral load, both compartmentalised models (i) and (ii) predict

a significantly longer time for escape mutant invasion to complete compared to the single-

compartment model (iii). This again highlights the role of compartmentalisation in delaying

CTL escape mutant evolution. This can be attributed to the partitioned and uneven CTL

population in the compartments, which, even in the face of strongly responsive CTLs that
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could apply a lot of selection pressure, allows the follicles to maintain a large reservoir of

infected cells shielded from the CTLs, reducing the selection pressure on the HIV replicating

there. It provides an alternative or complementary explanation to those that have already

been proposed to explain HIV’s “slow” CTL escape during the chronic infection phase, and

should be accounted for given that experiments have demonstrated the compartmentalised

nature of secondary lymphoid tissues.

It has been observed that CTL escape mutants in people living with HIV arise faster dur-

ing the acute phase of the infection, in contrast to the slow escape seen during chronic

infection (61). During acute SIV infection, the distribution of virus across the follicular

and extrafollicular compartments is more even than during chronic infection, due to less

pronounced CTL activity (3). Hence, the compartmental dynamics that delay CTL escape

mutant emergence in model (i) apply less during acute infection, potentialy explaining the

discrepancy in the rate of escape mutant evolution. Thus, the compartmentalised model (i)

can reconcile the relatively long emergence times for CTL escape mutants in chronic infection

with the presence of a strong lytic CTL response that limits overall viral load. Simultane-

ously, the observed faster emergence of CTL escape in acute infection can be explained by

lower escape times observed for weaker CTL responsiveness in model (i).
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Chapter 5

Non-escape HIV mutant emergence

In this chapter, we now turn to looking at scenarios where HIV mutants are generated that do

not escape the CTL response, but instead the mutations affect the infectivity (β) of the virus.

It will build on the tools (i.e. Gillespie simulations) and two-compartment model shown in

the previous chapter, with some subtle but important differences, in order to investigate

how compartmentalisation affects the evolutionary course of HIV in these scenarios. We will

primarily be interested in two aspects of HIV’s evolution in this scenario: the fixation time

and the fixation probability.

5.1 Fixation & the Moran process

Fixation is the process of replacing an initially heterogeneous population with the offspring

of one individual. (67) The fixation probability is the probability that the offspring of that

one individual eventually dominates the whole population, instead of going extinct, while

the fixation time is the time taken for this to occur. Kimura was the first to use the term

“fixation” in his series of seminal papers applying concepts and methods from statistical
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physics to population genetics, although Haldane, Wright, and Fisher all did work on fixation

probability and time that precedes Kimura. (68) (69; 70; 71)

In the context of HIV and non-escape mutant emergence, it makes sense to ask what the

fixation probability of a HIV mutant with an infectivity-advantageous mutation is. To help

answer this, one can use the Moran model with selection, a relatively simple stochastic model

where the total population N is fixed. (72; 73) Assume two populations of HIV-infected cells

of different strains, Y and Y1, with infectivities β and β1, where β1 is advantaged by the

factor r > 1, i.e., β1 = rβ. At each step of the stochastic Moran process, one cell is chosen

to reproduce and another to die, thus keeping the population fixed. Since the mutant Y1 has

a reproductive fitness advantage r, the probability that Y1 is chosen to reproduce is:

PY1→Y1+1 =
rY1

rY1 +N − Y1

.

The probability that wild type Y is chosen for reproduction is:

PY→Y+1 =
N − Y1

rY1 +N − Y1

.

Conversely, since the reproductive fitness does not play a role in the death process, the

probabilities that Y and Y1 are chosen for death are, respectively:

PY→Y−1 =
N − Y1

N
,

PY1→Y1−1 =
Y1

N
.

The fixation probability of a single mutant in the population advantage r is (73):

ρ =
1− 1/r

1− 1/rN
. (5.1)
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For very large N , then ρ ∼ 1− 1/r. The rate of evolution R from an all Y population to all

Y1 is given by:

R = Nµρ,

where µ is the mutation rate.

However, the Moran process assumes a fixed total population. In the case of HIV infection,

it is clear that the total HIV-infected cell population is certainly not fixed, for it is subject to

not only natural “birth” (cell infection) and death processes, but also to “predation” by the

CTL response. These create fluctuations in the total infected cell population, as seen in the

Lotka—Volterra predator-prey model. These can have a significant impact on evolutionary

dynamics, as in Gokhale et al.’s work in host-parasite coevolution. (74)

There have been attempts to investigate the fixation probability of a mutant emerging in a

varying population. Ewens derived the fixation probability of a favourable mutant emerging

in population that cycles through a sequence of population sizes N1, N2, N3, ..., Nk, N1, ...

through a Moran-like process. (75) For a mutant with fitness advantage 1+δ, Ewens deduced

that the fixation probability of the mutant in the cyclical population model was:

ρ =
2δN∗

N
,

where N =
∑k

i=1Ni/k is the arithmetic mean while N∗ is the harmonic mean:

N∗ = k

(
k∑

i=1

Ni
−1

)−1

.

For a given N and k, the fixation probability is maximised when N1 = N2 = ... = Nk,

whereupon ρ = 2δ. Ewens noted that if the variation in the Nis is large, the fixation proba-

bility can be much lower than 2δ. Otto & Whitlock also found that this fixation probability
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formula derived by Ewens is a good approximation for scenarios where the mutant emerges

other cyclical populations such as those following a sinusoidal or log-sine function (76).

More recently, it was shown by Parsons & Quince that a similar suppression of mutant

fixation probability also occurs in populations that intrinsically fluctuate stochastically (77).

This is in contrast to the work of Ewens and Otto & Whitlock, where the fluctuations

created artificially by forcing the populations through a cyclic pattern, and suggests that

this effect is inherently caused by any variations in the population, regardless of the cause

of the fluctuations, be they externally imposed by the environment or intrinsic random

fluctuations.

Based on the results of Ewens, Otto & Whitlock, and Parsons & Quince, one can expect that

the fluctuations of the HIV-infected cell population will result in a lower fixation probability

than would be predicted by the Moran formula (5.1). One would also expect that the larger

fluctuations are in the population, the greater the reduction in the fixation probability as

well.

5.2 Non-escape HIV mutant emergence model

The deterministic mathematical models used for the non-escape mutant emergence scenario

are similar to the ones used in Chapter 2 for a CTL escape scenario ((4.1) and (4.3)).

However, here neither strain evades the CTL response. To simplify things, assume the

CTL response strength parameter c is identical for both strains. The CTL response to the

mutant strain with the populations Z1e and Z1f (only Z1 in the single-compartment model)

is completely independent of the CTL response to the wild strain (Ze, Zf ).

The mutant emergence scenario can be described by the following system of deterministic

ODEs for the single-compartment (Model I) case:
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Ẋ = λ− dX − βXY − β1XY1,

Ẏ = β(1− µ)XY − aY − pY Z,

Ẏ1 = βµXY + β1XY1 − aY1 − pY1Z1,

Ż = cY − bZ,

Ż1 = cY1 − bZ1.

(5.2)

This gives the required properties, where the CTL responses are equally effective against

each strain, but are independent of each other. This is biologically realistic because CTLs

undergo differentiation and are primed against a specific antigen. A CTL response against

one strain may not recognise a different one. (78)

The two-compartment (Model II) case is given by the following system of ODEs:

Ẋe = λ− dXe − βXeYe − β1XeY1e,

Ẏe = β(1− µ)XeYe − aYe − pYeZe − η(Ye − Yf ),

Ẋf = λ− dXf − βXfYf − β1XfY1f ,

Ẏf = β(1− µ)XfYf − aYf − pYfZf − η(Yf − Ye),

˙Y1e = βµXeYe + β1XeY1e − aY1e − pY1eZ1e − η(Y1e − Y1f ),

˙Y1f = βµXfYf + β1XfY1f − aY1f − pY1fZ1f − η(Y1f − Y1e),

Że = cYe − bZe − gZe + hZf ,

Żf = gZe − bZf − hZf ,

Ż1e = cY1e − bZ1e − gZ1e + hZ1f ,

˙Z1f = gZ1e − bZ1f − hZ1f .

(5.3)
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Unless otherwise noted, the base parameter values used are given in Table 5.1. The reasoning

behind these parameter values was already discussed in Chapters 2, 3, and 4. The c values

in the single-compartment model are chosen so that the starting equilibrium infected cell

population Y in the single-compartment model is equal to the initial total Ye+Yf population

in the corresponding two-compartment model.

Parameter table (non-escape HIV mutant fixation model)
Parameter Value/Range Reference

Uninfected cell birth rate, λ 500 (22; 23; 18).
Uninfected cell death rate, d 0.01 (20; 21)
Infected cell death rate, a 0.45 (19)
Contact infection rate, β 7× 10−5 R0 = βλ/ad ≈ 8. (18; 19; 25)

Contact infection rate (mutant), β1 1.005β or 1.01β Plausible fitness advantages.
CTL killing rate, p 0.05 (48; 51)
CTL death rate, b 1 (52)

CTL expansion rate, c 10−3–10 (49)
Infected cell migration rate, η 0.0001 (49)

CTL migration rate (EF to F), g 0.0001 (49)
CTL migration rate (F to EF), h 1 (49)

Mutation rate, µ 2× 10−5 (55)

Table 5.1: Table of parameters for non-escape HIV mutant fixation model.

The biologically realistic equilibria of these systems are:

• Extinction of both strains (stable when the R0 < 1 for both strains).

• One strain dominates (i.e., mutant fixates or goes extinct).

In general, assuming both strains have R0 > 1, the dominant strain is determined by the

criterion β−(µβ+β1), similar to the escape models in Chapter 2. If β−(µβ+β1) > 0, then the

wild strain remains dominant and the mutant never fixates. Conversely, if β− (µβ+β1) < 0,

then the mutant strain will fixate and displace the wild type into extinction. Because the

CTL response is equally effective against both the wild and mutant strains, there is no

coexistence equilibrium in the no-escape fixation scenario.

59



As noted in Chapter 4 as well, because mutation is fundamentally a probabilistic process and

the models evolve from initially small mutant populations, it is more appropriate to model the

non-escape fixation scenario using the stochastic Gillespie process. The same basic parameter

values specified for the ODEs were used for the simulations. These simulations were then

used to determine the average fixation times and fixation probabilities of the advantageous

HIV mutant in the single and two-compartment models for various CTL response strengths

and fitness advantages.

Once again, in Model I, λ is set to twice its value in Model II in order to maintain the same

rate of generating uninfected cells, while β and β1 are set to half their respective values

in order to preserve R0 ∼ 8, as observed experimentally. To ensure a proper comparison

between Models I and II, the parameter c for Model I is chosen so that the initial total

wild-type infected cell population of Model I is the same as for the corresponding Model II

for a chosen value of c there. As in Chapter 2, each Gillespie simulation run is done with

an initial state where the wild strain-infected cell, uninfected cell, and CTL populations are

in equilibrium with no mutants present, calculated using the deterministic equations (5.3)

for the two-compartment scenario and (5.2) for the single-compartment one, rounded to the

nearest integer. Each run is then allowed to evolve until the mutant fixates, defined as

reaching 100% of the total population (across both compartments in the two-compartment

scenario). The time between the start of the run and the end of fixation is taken to be the

fixation time. Many runs are needed in order to get reasonably accurate statistics, usually

∼ 105 runs. The fraction of runs in which the mutant first emerges in in the follicular (F)

or extrafollicular (EF) compartments is also noted.

The fixation probability is defined as the probability that the offspring of a single mutant

will fixate within the population. The Moran formula (5.1) gives the probability for a single

mutant within a fixed-size population, which serves as the baseline for comparison. However,

the population size is not fixed in both the single and two-compartment HIV models, thus
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the Moran formula may not be accurate.

To simulate the fixation probability, the Gillespie simulations must be modified slightly.

Instead of an initial zero-mutant population, a single mutant infected cell will be introduced

at the beginning of the simulation run. In the two-compartment model (Model II), the

location of this mutant will be determined by generating a random number r and comparing

it to the criterion Yf/(Ye + Yf ): if r < Yf/(Ye + Yf ), then the mutant will be placed in the

follicular compartment, otherwise it will be placed in the extrafollicular compartment. The

mutation rate µ is set to zero, since only the descendants of the original mutant will be

counted. The simulation is then run until either the mutant infected cells go extinct or they

fixate, reaching 100% of the total population. If they do fixate, then the conditional fixation

time is also recorded. The fraction of runs with fixation compared to the total number of

runs is thus the fixation probability of the mutant strain.

Because the fixation probability is very low (the Moran formula (5.1) predicts the fixation

probability to be between 9% to 0.5% depending on how advantageous the mutation is), a

lot of runs are needed to obtain reasonably good statistics. For this work, it was found that

at least 1, 000, 000 runs are needed to obtain a reasonable number of runs where fixation

occurs and thus statistically reasonable results, and sometimes significantly more are needed

for the lower fixation probabilities.

5.3 Results & analysis

The fixation time results for β1 = 1.005β and β1 = 1.01β with mutation are shown in Fig. 5.1.

Fig. 5.2 shows how the initial follicular, extrafollicular, and total infected cell populations

change as c is varied.

The results for both values of β1 show similar behaviour when the CTL response strength
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Figure 5.1: Fixation times for (A) β1 = 1.005β and (B) β1 = 1.01β given various values
of c given various values of c for the two-compartment (blue) and one-compartment (red)
models. The error bars show the standard error.
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Figure 5.2: Initial F (blue dashed), EF (blue), and total (F + EF, red) wild type popu-
lations in the two-compartment model given various values of c. The single-compartment
model’s parameters are chosen so that it has the same populations as the corresponding
two-compartment model’s total populations.
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c is varied. In the two-compartment model, the lowest fixation time is observed for low

values of c, and the fixation time increases as c increases. For β1 = 1.01β, the fixation time

appears to plateau for c > 1 and c < 0.01, while for β1 = 1.005β it appears to increase more

monotonously. Conversely, the fixation times of the single-compartment model appear to

be fairly independent of c. It is quite clear that the compartmentalisation has a significant

impact on the fixation process, but the question is: how exactly does compartmentalisation

affect the fixation time, i.e., by what mechanism?

Mutant fixation is a combination of two processes: mutant generation (i.e., the time it

takes for the mutant to be created) and mutant invasion (i.e., the time for the mutant to

reproduce and displace the original population). Intuitively, one might surmise that as the

total wild-type populations are decreases as the CTL response increases, the longer it will

take to generate a mutant. After all, given a smaller population, the mutant generation rate

(µβY ) will be lower for a fixed mutation rate and infectivity. This will tend to delay mutant

creation.

However, if that were the sole reason, then we would expect the single-compartment’s fixation

times to follow the same pattern, since we chose c values so that it has the same total wild

infected cells as the corresponding two-compartment model. This suggests that there are

additional factors at play here.

Consider Fig. 5.3, which shows the fractions of compartments for the two-compartment

model in which the mutant successfully first emerges before fixating for β1 = 1.01β. It can

be seen in Fig. 5.2 that, for lower c, the EF and F populations are comparable, and thus the

fixating mutant is more-or-less equally likely to appear in either compartment. At higher c,

the EF population is much lower, since the CTL response is stronger there, hence the fixating

mutant is far less likely to appear in the EF compartment first. This is in clear contrast

to the pattern observed in Chapter 4 (c.f. Fig. 4.7 (C)), where the mutant preferentially

appears in the EF compartment first due to its ability to evade the CTL response. The F
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Figure 5.3: Fraction of runs in which the fixating mutant first emerged in EF (dashed) or F
(solid) for β1 = 1.01β given various values of c.

compartment is shielded from the CTL response, thus decreasing the selective pressure and

infected cell turnover. This means that the CTL escape mutant has less of an advantage in

F compartment, hence why it preferentially emerges in the EF compartment. However, here

the mutant does not directly evade the CTL response: it has a higher infectivity than the

wild type, which is a selective advantage in either compartment. This makes it unlikely that

the CTL response is completely responsible for the behaviour.

It is interesting to look at what happens if the mutation rate is increased. Fig. 5.4 shows

the fixation times for mutation rates µ = 5 × 10−5 (A) and 2 × 10−3 (B) with β1 = 1.01β.

At lower mutation rates, it is natural to expect that the fixation times will increase as c

increases, since it will take longer to generate a mutant due to the shrinking population

from the CTL response. However, the disproportionate effect that increasing c has on the

two-compartment model suggests that some other factors are at play here. Notably, the
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fixation times for higher c are significantly greater for the two compartment model than the

one-compartment model. This pattern is robust across the different mutation rates.

Let us consider what are the main differences between the two models:

• Uneven CTL response, with a strong response in EF and nearly none in F, for the two-

compartment model, while a uniform but weaker response in the one-compartment

model, required to keep the total population sizes the same for both models.

• Smaller initial wild-infected cell population size of the EF compartment compared to

F in the two-compartment model, ranging from around 870 at c = 0.001 to 6 at c = 10

for the former, while F remains mostly fixed at around 970 for all c values. In the one

compartment model, the total population size decreases from around 1840 to 970.

• The need for infected cells to migrate into both compartments for fixation to occur in

the two-compartment model due to their compartmentalisation.

The CTL response is equally effective against both strains and the infectivity advantage is

equally selected for in both compartments, so the CTL response alone cannot explain the

diverging fixation times. This leaves us with the other two possibilities.

The changing population sizes have two effects:

• A smaller population size decreases the mutant generation rate for given a fixed mu-

tation rate.

• Fixation occurs faster in a smaller population, since it will take less time for the mutant

to reproduce to reach 100% of the population than in a larger population.

These two effects act in opposite directions (one tends to increase the overall fixation time

by the reducing mutant generation rate, while the other decreases it by reducing the mutant
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Figure 5.4: Fixation times for β1 = 1.01β given various values of c, (A) µ = 5×10−5 and (B)
µ = 2 × 10−3 for the two-compartment (blue) and one-compartment (red) scenarios. The
error bars show the standard error.
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invasion time) as c increases. However, the population size effect alone is insufficient to

explain the disparity in fixation time observed between the two models for larger c for the

various mutation rates, especially in the case µ = 2× 10−3, where the mutation rate is high

enough so that a mutant is generated very quickly from the initial populations.

By exclusion, this leaves us with the third factor, the compartmentalisation itself. We de-

fined fixation as the process of the mutant completely displacing 100% of the initial wild-type

population. This means that the mutant has to displace the wild strain in both compart-

ments of the two-compartment model. We can see that in Fig. 5.3, as c increases the virus

preferentially emerges in the F compartment due to the majority of the wild infected cells

being killed in the EF compartment, thus having a much smaller population.

A mutant emerging in F must then migrate to the EF compartment in order to fixate, but

this is limited by the very small migration rate η = 0.0001. This could serve as a bottleneck

that could explain why the fixation time for the two-compartment model diverges from that

of the one-compartment model with increasing c for all µ. It is known from mathematical

studies that, in subdivided populations, the migration rate between the population groups is

inversely related to the fixation time for an advantageous mutant in the Moran birth-death

process (79; 80; 81; 82). This provides further support for the migration rate hypothesis.

Furthermore, in the EF compartment, the death rate of infected cells is very high because of

the strong CTL response at high c. A mutant-infected cell migrating from F to EF is likely

to be killed before it can spread. This further decreases the already low probability of the

mutant to invade into the EF compartment and can significantly delay complete fixation in

both compartments for large c.

We now turn to the matter of the fixation probabilities. Fig. 5.5 shows the fixation proba-

bilities for the β1 (β1 = 1.005β, 1.01β) and c values considered in Fig. 5.1. Here, µ = 0, since

we are only interested in the probability that the only starting mutant’s offspring fixate, and
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the red dashed line in each graph shows the predicted fixation probability using the Moran

formula (5.1) based on the total population. Fig. 5.6 presents the conditional fixation times

corresponding to Fig. 5.5.

The conditional fixation time graphs for both parameter sets show consistent behaviour:

monotonous decline in the fixation time as c increases. In all both cases, the two-compartment’s

fixation times are universally significantly greater than those of the single-compartment.

Once again, this discrepancy between the two models suggests that the behaviour cannot

be solely explained by the fact that the total infected cell population is decreasing as c in-

creases, since both models have the same total populations. Since the mutation rate is set to

zero and the simulations already start with a single mutant, the discrepancy cannot also be

attributed to the time it takes for a mutant to appear, as might be concluded from Fig. 5.1.

It is therefore strongly indicative that the compartmentalisation of the CTL response is the

cause of the difference, which supports the conclusions obtained from Fig. 5.4.

The behaviour of the fixation probability graphs in Fig. 5.5 is rather more interesting, but

also difficult to interpret. The fixation probabilities in both models are universally lower

than the ones calculated using the Moran formula, as predicted earlier due to the population

fluctuations induced by CTL “predation.” Due to the low fixation probabilities involved

(for example, based on the Moran formula, the number of runs that would be expected to

reach fixation given β1 = 1.01β is only ∼ 10, 000 out of 1, 000, 000 runs, and even less for

β1 = 1.005β. This results in a considerable degree of statistical uncertainty.

One pattern that can be noticed in the graphs is, in the two-compartment model, after an

initially high fixation probability for low c, the probability decreases as c increases until

it reaches a certain point, where it begins to increase again along with c. In the cases of

β1 = 1.01β (Fig. 5.5 (B)), the fixation probability at c = 10 is even higher than for c = 0.001.

One possible explanation is that fluctuations in the infected cell populations induced by the
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Figure 5.5: Fixation probabilities for (A) β1 = 1.005β and (B) β1 = 1.01β given various
values of c and µ in the two-compartment (blue) and the one-compartment (red) scenarios.
The error bars show the standard error at the 95% confidence interval.
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Figure 5.6: Conditional fixation times for (A) β1 = 1.005β and (B) β1 = 1.01β given various
values of c and µ in the two-compartment (blue) and the one-compartment (red) scenarios.
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CTL response are affecting the fixation probability. At lower c, the CTL response is weak

and does not induce many fluctuations. Higher c induces larger fluctuations, decreasing the

fixation probabilities. This alone could explain the relatively consistent decrease in the fixa-

tion probability as c increases in the single compartment model. Another factor that needs

to be considered is the impact of the population sizes themselves on the fixation probability.

In the two-compartment model, as the CTL response gets stronger, the fluctuations in the

EF compartment increase, but the EF population also gets smaller, becoming minuscule

in comparison to the F compartment. The F compartment, on the other hand, is mostly

unaffected by the CTL response, and as the EF population shrinks, it is the dynamics in

the F compartment that become dominant. This might explain the “V”-shaped curve in the

fixation probabilities for the 2-compartment model.

To gain some insight into these, simulations were done with different uninfected cell produc-

tion rate λ values (λ = 50, 500, 5000, with β = 7×10−4, 7×10−5, 7×10−6 scaled accordingly

to maintain the reproduction number R0 ∼ 8 and β1 = 1.01β). This results in significantly

smaller (λ = 50) or larger (λ = 5000) infected cell populations than the baseline λ = 500

value. The fixation probability results are presented in Fig. 5.7 (λ = 50 and 5000). The

reader may refer to Fig. 5.5 (B) for the baseline (λ = 500) graph. Once again, µ = 0, since

we are only interested in the probability that the sole starting mutant’s offspring fixate, and

the red dashed line in each graph shows the predicted fixation probability using the Moran

formula (5.1), based on the total populations. It is noteworthy in the λ = 50 case that the

Moran predicted fixation probability is increasing with c. This is because the populations

(N) involved are small enough that 1/rN in the denominator in the formula is no longer neg-

ligible. Therefore, as the CTL response grows stronger, the infected cell population shrinks,

resulting in the denominator (1− 1/rN) decreasing. Since the numerator (1− 1/r) is fixed,

the predicted fixation probability increases.

The relative size of the fluctuations can be measured using the standard deviation normalised
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Figure 5.7: Fixation probabilities for β1 = 1.01β and (A) λ = 50 and (B) λ = 5000 given
various values of c in the two-compartment (blue) and the one-compartment (red) scenarios.
The error bars show the standard error at the 95% confidence interval.
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by the (arithmetic) mean of the infected cell populations. This is shown for λ = 50, 5000 in

Fig. 5.8. It can be clearly seen that as the CTL response gets stronger, the standard devia-

tion/mean ratio (and therefore the relative size of the fluctuations) increases. This is driven

both directly via the strengthening CTL response itself and indirectly via the decreasing

infected cell population caused by the former. It is also apparent that the follicular infected

cell population (Yf ) in the two-compartment model is barely affected by the strengthened

CTL response due to the compartmentalisation.

Earlier in the chapter, Ewens’ work showing that cyclical fluctuations reduce fixation proba-

bility was described. It is reasonable to regard a cyclically fluctuating population as a good

approximation for the CTL-induced fluctuations of the HIV infected cell populations. Using

the ratio of the infected cell populations’ harmonic means to their arithmetic means (de-

noted N∗/N), as Ewens did for cyclic populations, Fig. 5.9 shows how it changes with c for

λ = 500 together with the standard deviation/arithmetic mean ratio. It is inversely related

to the standard deviation/mean (i.e., the relative fluctuation size). This provides support

for the relationship between Ewens’ results for fixation probability in a cyclical population

and the behaviour we are seeing in Fig. 5.5. The harmonic/arithmetic mean ratio N∗/N for

the combined Y = Ye + Yf population will not give an accurate picture of the dynamics of

the system as a whole, since the F and EF compartments have very different CTL responses

and thus fluctuations.

Paying particular attention to the λ = 500 case and comparing it to the population fractions

shown in Fig. 5.2, this appears to be consistent with the explanation proposed earlier for the

“V” shape curve of the two-compartment model’s fixation probabilities in Fig. 5.5 (B). For

lower c, the mutant is relatively equally likely to appear in either the EF or F compartments,

and since the overall CTL response is weak in both compartments, the fluctuations are

small in both compartments. This would increase the overall fixation probability. As the

c increases, the fluctuations increase for the EF population, which would lower the overall
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Figure 5.8: Standard deviation/arithmetic mean for the wild infected cell populations at equi-
librium with (A) λ = 50 and (B) λ = 5000 given various values of c in the two-compartment
(blue) and the one-compartment (red) scenarios.
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Figure 5.9: (A) Harmonic mean/arithmetic mean and (B) standard deviation/arithmetic
mean for the wild infected cell populations at equilibrium with λ = 500 given various values
of c in the two-compartment (blue) and the one-compartment (red) scenarios.
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fixation probability. However, the EF population is also decreasing, and it becomes less

likely for a mutant to spawn there. The F compartment, on the other hand, is mostly

unaffected by the CTL response, and as c continues to increase , it is the dynamics in the

F compartment that become dominant. At very high c, the EF population is too small to

significantly affect the fixation probability, hence it would be almost completely driven by

the population dynamics in F.

To further cement this, we can look at what happens if we reduce c and b by a factor of 100.

Doing so does not affect the initial equilibrium populations, but significantly increases the

relative size of the fluctuations. This can be seen in Fig. 5.10 for λ = 500 and 5000. It can

clearly be seen that the relative fluctuation sizes as measured by the standard deviation/mean

ratio are significantly higher than in Figs. 5.8 (B) and 5.9 (B).

The fixation probability simulations for λ = 500 and λ = 5000 are given in Fig. 5.11. As pre-

dicted, the fixation probability is generally lower for both the single and two-compartment

models, which can only be attributed to the increased fluctuation sizes: the selective ad-

vantage of the mutant remains fixed and the equilibrium infected cell population sizes are

almost exactly the same. As seen in Figs. 5.5 (B) and 5.7 (B), in the two-compartment

model, after decreasing because of increased fluctuations induced in the EF infected cell

population, the fixation probability increases again after a certain point because the evolu-

tionary dynamics of the much larger F compartment infected cell population become more

dominant. As the EF compartment’s infected cell population is reduced with the increasing

CTL response, it becomes less and less relevant to the overall dynamics. This is what causes

the fixation probabilities of the two-compartment model to converge towards the predicted

by the constant-population Moran process. The single-compartment model’s fixation prob-

ability decreases monotonously with increasing c, as expected, due to the increasingly larger

fluctuations induced by the CTL response. These results, combined with those in Figs. 5.5

(B) and 5.7 (B), provide strong support for our hypothesis that fluctuations can explain
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the unusual discrepancy in behaviour observed in the fixation probabilities of the single and

two-compartment models.

In summary, HIV evolutionary dynamics concerning the fixation of an advantaged HIV

mutant become significantly richer and more complex when transitioning from a single ho-

mogeneous compartment model to a two-compartment model where the CTL response is

considerably more constrained in the follicular compartment compared to the extrafollicular

compartment. The simulations implemented and shown in this work stress the importance

of considering the following factors and how they balance against each other when dealing

with fixation times and probabilities and how the compartmentalisation affects them:

• Differences in infected cell population sizes between the two compartments due to the

uneven CTL response, and their effect on the mutant generation and invasion processes.

• CTL-induced fluctuations in the infected cell populations.

• The migration rate of infected cells between the two compartments.

The complex interplay between these factors significantly complicates the dynamics com-

pared to those of the post-ART decline dynamics of Chapter 3 and CTL escape evolution

in Chapter 4, and the author believes that further work examining HIV mutant fixation in

a compartmentalised medium is highly warranted.
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Figure 5.10: Standard deviation/arithmetic mean for the wild infected cell populations with
(A) λ = 500 and (B) λ = 5000, with b = 0.01, given various values of c in the two-
compartment (blue) and the one-compartment (red) scenarios.
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Figure 5.11: Fixation probabilities for β1 = 1.01β and (A) λ = 500 and (B) 5000 given
various values of c in the two-compartment (blue) and the one-compartment (red) scenarios.
Here, both c and b are divided by 100 within the model to increase the size of the fluctuations.
The error bars show the standard error at the 95% confidence interval.
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Chapter 6

Conclusion

Mathematical models have made major contributions to our understanding of HIV dynam-

ics. Most are simplified models that treat the in vivo HIV population as a homogeneous,

well-mixed system. Some studies have used more complex spatial models to explore viral

dynamics, but explicit consideration of uneven virus replication and uneven CTL responses

in the extra-follicular and follicular tissues of secondary lymphoid tissues has been largely

neglected.

It is clear that incorporating the effects of compartmentalisation into mathematical models of

HIV dynamics and evolution can dramatically alter the in vivo population and evolutionary

dynamics of HIV. It can also help explain some puzzling observations that have been made

about HIV dynamics and evolution with potentially clinically important consequences:

• Apparent lack of effect that CTL depletion has on post-ART SIV clearance in the

SIV-simian experimental model of HIV infection.

• Slower-than-expected rate of escape for HIV against the CTL response during chronic

HIV infection.
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When applied to the scenario of non-escape advantageous HIV mutant fixation, it highlights

the influence that HIV-infected cell population fluctuations induced by the uneven CTL

response have on HIV’s evolutionary dynamics. This is in addition to the direct effects from

the uneven selection pressure already seen in the post-ART clearance and escape mutant

evolution scenarios. It also highlights some of the more counter-intuitive aspects that emerge

when compartmentalisation is taken into account in these models.

It is hoped that collaboration with experimental scientists will allow the parameters used in

this model to be better estimated, which will greatly help in refining the compartmentalised

models and confirming their predictions. In particular, the parameters g, η, and h governing

the permeability of the compartments to CTLs and infected cells are not well-constrained,

and experiments measuring the flow of CTLs and infected cells across the B-cell follicle

barrier in a lymph node. The author envisages that such experiments would need to involve

lymph node biopsies taken from both inside and outside the B-cell follicles of a lymph node

over a period of time.

As discussed in Chapter 3, for the single-compartment model in the post-ART decline sce-

nario, there is a point at which the post-ART decline rate for the total population of infected

cells changes from being dominated by the CTL killing action to being dominated by the

natural infected cell death rate as the infected cell and CTL populations decline over time.

This point does not exist in the two-compartment model because the decline there is com-

pletely dominated by the much larger follicular compartment, where CTL action is minimal.

Experimental measurements of post-ART HIV/SIV viral load over time can therefore help

validate the two-compartment model by determining the existence of this point.

With respect to the HIV mutation (both escape and non-escape) scenarios, the author once

again believes that the results of this theoretical work mean that future experiments to de-

termine the rate of escape or mutant fixation should be based on measurements of mutant

and wild viral loads taken from within the lymph node compartments, rather than from
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peripheral blood. Time-series data of the viral loads can help validate the two-compartment

model, however the author recognises the difficulty of obtaining these measurements. Never-

theless, the profound potential benefits that can be obtained from a better understanding of

HIV dynamics in the lymph node and its impact on HIV evolution cannot be understated.

A potential direction for future theoretical work is investigating the effect of compartmen-

talisation in therapeutic contexts. We have already seen the effect of compartmentalisation

on post-ART HIV clearance in Chapter 1. It was mentioned in that chapter that the issue of

ART drug penetration into follicular lymphoid tissues is mostly unresolved, because while at

least one study reported sub-optimal drug concentrations in the follicles, there is no evidence

of ART-resistance emerging from the secondary lymphoid tissues during treatment. It will

be interesting to see whether an uneven cross-compartment ART effectiveness can reconcile

these apparently contradictory findings, as was possible in the post-ART clearance and slow

CTL escape scenarios. Such a scenario can be modeled by having different infectivities (βe

and βf ) for each compartment; the work in this dissertation assumes that the infectivity is

identical in both compartments.

In conclusion, the arguments and simulation results presented in this dissertation lead to

the conclusion that, even though it adds some complexity to the mathematical models,

compartmentalisation is a factor that should be considered for any mathematical model of

the in vivo population and evolutionary dynamics of HIV. While it is considerably more

difficult to mathematically analyse the two-compartment models compared to their single-

compartment equivalents, the former may better encapsulate the essential population and

evolutionary dynamics of HIV. Given that most HIV replication occurs in the secondary

lymphoid tissues, observations of which confirm their compartmentalised nature, it might

be important to investigate more closely the heterogeneity in virus dynamics between the

follicular and extrafollicular compartments when studying the dynamics and evolution of

HIV in vivo, rather than to solely concentrate on plasma viral loads measured in patients,
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as is the usual method. It is admittedly more difficult to monitor viral loads in lymphoid

tissues compared to the peripheral blood, especially in human patients, but as the work and

mathematical models in Chapters 1 and 2 show, it may be a necessity in order to better

understand how HIV infection actually progresses and evolves in the human body.
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Ferré V., Mhawej M.-J., Biafore F., Ouattara D. A. et al. “Mathematical modeling of HIV
dynamics after antiretroviral therapy initiation: a clinical research study.” AIDS Res. Hum
Retroviruses (2014); 30(9): 831-4. doi: 10.1089/AID.2013.0286.

[39] Rong L., Gilchrist M. A., Feng Z., and Perelson A. S. “Modeling within-host
HIV-1 dynamics and the evolution of drug resistance: trade-offs between viral en-
zyme function and drug susceptibility.” J. Theor. Biol. (2007); 247(4): 804–818. doi:
10.1016/j.jtbi.2007.04.014.

[40] Gadhamsetty S., Beltman J. B., and de Boer R. J. “What do mathematical models tell
us about killing rates during HIV-1 infection?” Immunol. Lett. (2015); 168(1): 1-6. doi:
10.1016/j.imlet.2015.07.009.

[41] Akin E., Yeni G., and Perelson A. S. “Continuous and Discrete Modeling of HIV-1
Decline on Therapy.” J. Math. Biol. (2020); 81(1): 1-24. doi: 10.1007/s00285-020-01492-z.

[42] Rizal A., Handari B. D., Aldila D., and Rahmayani S. A. “Mathematical models for the
dynamics of the HIV with antiretroviral treatment interventions and the effect of apoptosis
on T-cells.” AIP Conference Proceedings (2020); 2264: 020008. doi: 10.1063/5.0023444.

[43] Fletcher C. V., Staskus K., Wietgrefe S. W., Rothenberger M., Reilly C., Chipman J. G.,
Beilman G. J., Khoruts A., Thorkelson A., Schmidt et al, T. E. “Persistent HIV-1 repli-
cation is associated with lower antiretroviral drug concentrations in lymphatic tissues.”
Proc. Natl. Acad. Sci. USA. (2014); 111(6): 2307–2312. doi: 10.1073/pnas.1318249111.

88



[44] Günthard H. F., Wong J. K., Ignacio C. C., Guatelli J. C., Riggs N. L., Havlir D. V.,
and Richman D. D. “Human immunodeficiency virus replication and genotypic resistance
in blood and lymph nodes after a year of potent antiretroviral therapy.” J. Virol. (1998);
72: 2422–8. doi: 10.1128/JVI.72.3.2422-2428.1998.

[45] Davenport M. P. and Petravic J. “CD8+ T Cell Control of HIV — A Known Unknown.”
PLOS Pathog. (2001) 6(1): e1000728. doi: 10.1371/journal.ppat.1000728.

[46] Klatt N. R., Shudo E., Ortiz A. M., Engram J. C., Paiardini M., Lawson B., Miller M.
D., Else J., Pandrea I., Estes J. D. et al. “CD8+ Lymphocytes Control Viral Replication
in SIVmac239-Infected Rhesus Macaques without Decreasing the Lifespan of Productively
Infected Cells.” PLOS Pathog. (2010); 6: e1000747. doi: 10.1371/journal.ppat.1000747.

[47] Wong J. K., Strain M. C., Porrata R., Reay E., Sankaran-Walters S., Ignacio C. C.,
Russell T., Pillai S. K., Looney D. J., and Dandekar S. “In vivo CD8+ T-cell suppression
of SIV viremia is not mediated by CTL clearance of productively infected cells.” PLOS
Pathog. (2010); 6: e1000748. doi: 10.1371/journal.ppat.1000748.

[48] Asquith B., Edwards C. T. T., Lipsitch M., and McLean A. R. “Inefficient Cytotoxic T
Lymphocyte–Mediated Killing of HIV-1–Infected Cells In Vivo.” PLOS Biol. (2006); 4(4):
e90. doi: 10.1371/journal.pbio.0040090.

[49] Wodarz D., Skinner P. J., Levy D. N., and Connick E. “Virus and CTL dynamics in
the extrafollicular and follicular tissue compartments in SIV-infected macaques.” PLOS
Comp. Biol. (2018); 14(10): e1006461. doi: 10.1371/journal.pcbi.1006461.

[50] Nowak M. A. and Bangham C. R. “Population dynamics of immune responses to per-
sistent viruses.” Science (1996); 272(5258): 74-9. doi: 10.1126/science.272.5258.74.

[51] Regoes R. R., Barber D. L., Ahmed R., and Antia R. “Estimation of the rate of killing
by cytotoxic T lymphocytes in vivo.” Proc. Natl. Acad. Sci. USA (2007); 104(5):1599-603.
doi: 10.1073/pnas.0508830104.

[52] De Boer R. J., Homann D., and Perelson A. S. “Different dynamics of CD4+ and CD8+
T cell responses during and after acute lymphocytic choriomeningitis virus infection.” J.
Immunol. (2003); 171(8): 3928–3935. doi: 10.4049/jimmunol.171.8.3928.

[53] Van Deutekom, H. W. M., Wijnker, G., and de Boer, R. J. “The Rate of Immune Es-
cape Vanishes When Multiple Immune Responses Control an HIV Infection.” J. Immunol.
(2013); 191(6): 3277-3286. doi: 10.4049/jimmunol.1300962.

[54] Perelson A. S. “Modelling viral and immune system dynamics.” Nature Rev. Immunol.
(2002); 2(1): 28-36. doi: 10.1038/nri700.

[55] Abram M. E., Ferris A. L., Shao W., Alvord W. G., and Hughes S. H. H. “Nature,
position, and frequency of mutations made in a single cycle of HIV-1 replication.” J.
Virol. (2010); 84: 9864–78. doi: 10.1128/JVI.00915-10.

89
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